WorldWideScience

Sample records for neural processing resources

  1. Event-driven processing for hardware-efficient neural spike sorting

    Science.gov (United States)

    Liu, Yan; Pereira, João L.; Constandinou, Timothy G.

    2018-02-01

    Objective. The prospect of real-time and on-node spike sorting provides a genuine opportunity to push the envelope of large-scale integrated neural recording systems. In such systems the hardware resources, power requirements and data bandwidth increase linearly with channel count. Event-based (or data-driven) processing can provide here a new efficient means for hardware implementation that is completely activity dependant. In this work, we investigate using continuous-time level-crossing sampling for efficient data representation and subsequent spike processing. Approach. (1) We first compare signals (synthetic neural datasets) encoded with this technique against conventional sampling. (2) We then show how such a representation can be directly exploited by extracting simple time domain features from the bitstream to perform neural spike sorting. (3) The proposed method is implemented in a low power FPGA platform to demonstrate its hardware viability. Main results. It is observed that considerably lower data rates are achievable when using 7 bits or less to represent the signals, whilst maintaining the signal fidelity. Results obtained using both MATLAB and reconfigurable logic hardware (FPGA) indicate that feature extraction and spike sorting accuracies can be achieved with comparable or better accuracy than reference methods whilst also requiring relatively low hardware resources. Significance. By effectively exploiting continuous-time data representation, neural signal processing can be achieved in a completely event-driven manner, reducing both the required resources (memory, complexity) and computations (operations). This will see future large-scale neural systems integrating on-node processing in real-time hardware.

  2. Neural processing of musical meter in musicians and non-musicians.

    Science.gov (United States)

    Zhao, T Christina; Lam, H T Gloria; Sohi, Harkirat; Kuhl, Patricia K

    2017-11-01

    Musical sounds, along with speech, are the most prominent sounds in our daily lives. They are highly dynamic, yet well structured in the temporal domain in a hierarchical manner. The temporal structures enhance the predictability of musical sounds. Western music provides an excellent example: while time intervals between musical notes are highly variable, underlying beats can be realized. The beat-level temporal structure provides a sense of regular pulses. Beats can be further organized into units, giving the percept of alternating strong and weak beats (i.e. metrical structure or meter). Examining neural processing at the meter level offers a unique opportunity to understand how the human brain extracts temporal patterns, predicts future stimuli and optimizes neural resources for processing. The present study addresses two important questions regarding meter processing, using the mismatch negativity (MMN) obtained with electroencephalography (EEG): 1) how tempo (fast vs. slow) and type of metrical structure (duple: two beats per unit vs. triple: three beats per unit) affect the neural processing of metrical structure in non-musically trained individuals, and 2) how early music training modulates the neural processing of metrical structure. Metrical structures were established by patterns of consecutive strong and weak tones (Standard) with occasional violations that disrupted and reset the structure (Deviant). Twenty non-musicians listened passively to these tones while their neural activities were recorded. MMN indexed the neural sensitivity to the meter violations. Results suggested that MMNs were larger for fast tempo and for triple meter conditions. Further, 20 musically trained individuals were tested using the same methods and the results were compared to the non-musicians. While tempo and meter type similarly influenced MMNs in both groups, musicians overall exhibited significantly reduced MMNs, compared to their non-musician counterparts. Further analyses

  3. Attractor neural networks with resource-efficient synaptic connectivity

    Science.gov (United States)

    Pehlevan, Cengiz; Sengupta, Anirvan

    Memories are thought to be stored in the attractor states of recurrent neural networks. Here we explore how resource constraints interplay with memory storage function to shape synaptic connectivity of attractor networks. We propose that given a set of memories, in the form of population activity patterns, the neural circuit choses a synaptic connectivity configuration that minimizes a resource usage cost. We argue that the total synaptic weight (l1-norm) in the network measures the resource cost because synaptic weight is correlated with synaptic volume, which is a limited resource, and is proportional to neurotransmitter release and post-synaptic current, both of which cost energy. Using numerical simulations and replica theory, we characterize optimal connectivity profiles in resource-efficient attractor networks. Our theory explains several experimental observations on cortical connectivity profiles, 1) connectivity is sparse, because synapses are costly, 2) bidirectional connections are overrepresented and 3) are stronger, because attractor states need strong recurrence.

  4. The neural substrates associated with attentional resources and difficulty of concurrent processing of the two verbal tasks.

    Science.gov (United States)

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C; Sadato, Norihiro; Watanabe, Yasuyoshi

    2012-07-01

    The kana pick-out test has been widely used in Japan to evaluate the ability to divide attention in both adult and pediatric patients. However, the neural substrates underlying the ability to divide attention using the kana pick-out test, which requires participants to pick out individual letters (vowels) in a story while also reading for comprehension, thus requiring simultaneous allocation of attention to both activities, are still unclear. Moreover, outside of the clinical area, neuroimaging studies focused on the mechanisms of divided attention during complex story comprehension are rare. Thus, the purpose of the present study, to clarify the neural substrates of kana pick-out test, improves our current understanding of the basic neural mechanisms of dual task performance in verbal memory function. We compared patterns of activation in the brain obtained during performance of the individual tasks of vowel identification and story comprehension, to levels of activation when participants performed the two tasks simultaneously during the kana pick-out test. We found that activations of the left dorsal inferior frontal gyrus and superior parietal lobule increase in functional connectivity to a greater extent during the dual task condition compared to the two single task conditions. In contrast, activations of the left fusiform gyrus and middle temporal gyrus, which are significantly involved in picking out letters and complex sentences during story comprehension, respectively, were reduced in the dual task condition compared to during the two single task conditions. These results suggest that increased activations of the dorsal inferior frontal gyrus and superior parietal lobule during dual task performance may be associated with the capacity for attentional resources, and reduced activations of the left fusiform gyrus and middle temporal gyrus may reflect the difficulty of concurrent processing of the two tasks. In addition, the increase in synchronization between

  5. LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices

    Directory of Open Access Journals (Sweden)

    Ziyang He

    2018-04-01

    Full Text Available By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices.

  6. LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices.

    Science.gov (United States)

    He, Ziyang; Zhang, Xiaoqing; Cao, Yangjie; Liu, Zhi; Zhang, Bo; Wang, Xiaoyan

    2018-04-17

    By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG) arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices.

  7. Signal Processing and Neural Network Simulator

    Science.gov (United States)

    Tebbe, Dennis L.; Billhartz, Thomas J.; Doner, John R.; Kraft, Timothy T.

    1995-04-01

    The signal processing and neural network simulator (SPANNS) is a digital signal processing simulator with the capability to invoke neural networks into signal processing chains. This is a generic tool which will greatly facilitate the design and simulation of systems with embedded neural networks. The SPANNS is based on the Signal Processing WorkSystemTM (SPWTM), a commercial-off-the-shelf signal processing simulator. SPW provides a block diagram approach to constructing signal processing simulations. Neural network paradigms implemented in the SPANNS include Backpropagation, Kohonen Feature Map, Outstar, Fully Recurrent, Adaptive Resonance Theory 1, 2, & 3, and Brain State in a Box. The SPANNS was developed by integrating SAIC's Industrial Strength Neural Networks (ISNN) Software into SPW.

  8. Neural Parallel Engine: A toolbox for massively parallel neural signal processing.

    Science.gov (United States)

    Tam, Wing-Kin; Yang, Zhi

    2018-05-01

    Large-scale neural recordings provide detailed information on neuronal activities and can help elicit the underlying neural mechanisms of the brain. However, the computational burden is also formidable when we try to process the huge data stream generated by such recordings. In this study, we report the development of Neural Parallel Engine (NPE), a toolbox for massively parallel neural signal processing on graphical processing units (GPUs). It offers a selection of the most commonly used routines in neural signal processing such as spike detection and spike sorting, including advanced algorithms such as exponential-component-power-component (EC-PC) spike detection and binary pursuit spike sorting. We also propose a new method for detecting peaks in parallel through a parallel compact operation. Our toolbox is able to offer a 5× to 110× speedup compared with its CPU counterparts depending on the algorithms. A user-friendly MATLAB interface is provided to allow easy integration of the toolbox into existing workflows. Previous efforts on GPU neural signal processing only focus on a few rudimentary algorithms, are not well-optimized and often do not provide a user-friendly programming interface to fit into existing workflows. There is a strong need for a comprehensive toolbox for massively parallel neural signal processing. A new toolbox for massively parallel neural signal processing has been created. It can offer significant speedup in processing signals from large-scale recordings up to thousands of channels. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Neural networks in signal processing

    International Nuclear Information System (INIS)

    Govil, R.

    2000-01-01

    Nuclear Engineering has matured during the last decade. In research and design, control, supervision, maintenance and production, mathematical models and theories are used extensively. In all such applications signal processing is embedded in the process. Artificial Neural Networks (ANN), because of their nonlinear, adaptive nature are well suited to such applications where the classical assumptions of linearity and second order Gaussian noise statistics cannot be made. ANN's can be treated as nonparametric techniques, which can model an underlying process from example data. They can also adopt their model parameters to statistical change with time. Algorithms in the framework of Neural Networks in Signal processing have found new applications potentials in the field of Nuclear Engineering. This paper reviews the fundamentals of Neural Networks in signal processing and their applications in tasks such as recognition/identification and control. The topics covered include dynamic modeling, model based ANN's, statistical learning, eigen structure based processing and generalization structures. (orig.)

  10. Neural overlap in processing music and speech

    Science.gov (United States)

    Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L.

    2015-01-01

    Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing. PMID:25646513

  11. Neural overlap in processing music and speech.

    Science.gov (United States)

    Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L

    2015-03-19

    Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Principles of neural information processing

    CERN Document Server

    Seelen, Werner v

    2016-01-01

    In this fundamental book the authors devise a framework that describes the working of the brain as a whole. It presents a comprehensive introduction to the principles of Neural Information Processing as well as recent and authoritative research. The books´ guiding principles are the main purpose of neural activity, namely, to organize behavior to ensure survival, as well as the understanding of the evolutionary genesis of the brain. Among the developed principles and strategies belong self-organization of neural systems, flexibility, the active interpretation of the world by means of construction and prediction as well as their embedding into the world, all of which form the framework of the presented description. Since, in brains, their partial self-organization, the lifelong adaptation and their use of various methods of processing incoming information are all interconnected, the authors have chosen not only neurobiology and evolution theory as a basis for the elaboration of such a framework, but also syst...

  13. Development of distributed topographical forecasting model for wind resource assessment using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, P.B. [Green Life Energy Solutions LLP, Secunderabad (India); Rao, S.S. [National Institute of Technology. Dept. of Mechanical Engineering, Warangal (India); Reddy, K.H. [JNT Univ.. Dept. of Mechanical Engineering, Anantapur (India)

    2012-07-01

    Economics of wind power projects largely depend on the availability of wind power density. Wind resource assessment is a study estimating wind speeds and wind power densities in the region under consideration. The accuracy and reliability of data sets comprising of wind speeds and wind power densities at different heights per topographic region characterized by elevation or mean sea level, is important for wind power projects. Indian Wind Resource Assessment program conducted in 80's consisted of wind data measured by monitoring stations at different topographies in order to measure wind power density values at 25 and 50 meters above the ground level. In this paper, an attempt has been made to assess wind resource at a given location using artificial neural networks. Existing wind resource data has been used to train the neural networks. Location topography (characterized by longitude, latitude and mean sea level), air density, mean annual wind speed (MAWS) are used as inputs to the neural network. Mean annual wind power density (MAWPD) in watt/m{sup 2} is predicted for a new topographic location. Simple back propagation based neural network has been found to be sufficient for predicting these values with suitable accuracy. This model is closely linked to the problem of wind energy forecasting considering the variations of specific atmospheric variables with time horizons. This model will help the wind farm developers to have an initial estimation of the wind energy potential at a particular topography. (Author)

  14. Analysis of the Growth Process of Neural Cells in Culture Environment Using Image Processing Techniques

    Science.gov (United States)

    Mirsafianf, Atefeh S.; Isfahani, Shirin N.; Kasaei, Shohreh; Mobasheri, Hamid

    Here we present an approach for processing neural cells images to analyze their growth process in culture environment. We have applied several image processing techniques for: 1- Environmental noise reduction, 2- Neural cells segmentation, 3- Neural cells classification based on their dendrites' growth conditions, and 4- neurons' features Extraction and measurement (e.g., like cell body area, number of dendrites, axon's length, and so on). Due to the large amount of noise in the images, we have used feed forward artificial neural networks to detect edges more precisely.

  15. A minimum resource neural network framework for solving multiconstraint shortest path problems.

    Science.gov (United States)

    Zhang, Junying; Zhao, Xiaoxue; He, Xiaotao

    2014-08-01

    Characterized by using minimum hard (structural) and soft (computational) resources, a novel parameter-free minimal resource neural network (MRNN) framework is proposed for solving a wide range of single-source shortest path (SP) problems for various graph types. The problems are the k-shortest time path problems with any combination of three constraints: time, hop, and label constraints, and the graphs can be directed, undirected, or bidirected with symmetric and/or asymmetric traversal time, which can be real and time dependent. Isomorphic to the graph where the SP is to be sought, the network is activated by generating autowave at source neuron and the autowave travels automatically along the paths with the speed of a hop in an iteration. Properties of the network are studied, algorithms are presented, and computation complexity is analyzed. The framework guarantees globally optimal solutions of a series of problems during the iteration process of the network, which provides insight into why even the SP is still too long to be satisfied. The network facilitates very large scale integrated circuit implementation and adapt to very large scale problems due to its massively parallel processing and minimum resource utilization. When implemented in a sequentially processing computer, experiments on synthetic graphs, road maps of cities of the USA, and vehicle routing with time windows indicate that the MRNN is especially efficient for large scale sparse graphs and even dense graphs with some constraints, e.g., the CPU time taken and the iteration number used for the road maps of cities of the USA is even less than  ∼ 2% and 0.5% that of the Dijkstra's algorithm.

  16. Neural Correlates of Processing Negative and Sexually Arousing Pictures

    Science.gov (United States)

    Bailey, Kira; West, Robert; Mullaney, Kellie M.

    2012-01-01

    Recent work has questioned whether the negativity bias is a distinct component of affective picture processing. The current study was designed to determine whether there are different neural correlates of processing positive and negative pictures using event-related brain potentials. The early posterior negativity and late positive potential were greatest in amplitude for erotic pictures. Partial Least Squares analysis revealed one latent variable that distinguished erotic pictures from neutral and positive pictures and another that differentiated negative pictures from neutral and positive pictures. The effects of orienting task on the neural correlates of processing negative and erotic pictures indicate that affective picture processing is sensitive to both stimulus-driven, and attentional or decision processes. The current data, together with other recent findings from our laboratory, lead to the suggestion that there are distinct neural correlates of processing negative and positive stimuli during affective picture processing. PMID:23029071

  17. High level cognitive information processing in neural networks

    Science.gov (United States)

    Barnden, John A.; Fields, Christopher A.

    1992-01-01

    Two related research efforts were addressed: (1) high-level connectionist cognitive modeling; and (2) local neural circuit modeling. The goals of the first effort were to develop connectionist models of high-level cognitive processes such as problem solving or natural language understanding, and to understand the computational requirements of such models. The goals of the second effort were to develop biologically-realistic model of local neural circuits, and to understand the computational behavior of such models. In keeping with the nature of NASA's Innovative Research Program, all the work conducted under the grant was highly innovative. For instance, the following ideas, all summarized, are contributions to the study of connectionist/neural networks: (1) the temporal-winner-take-all, relative-position encoding, and pattern-similarity association techniques; (2) the importation of logical combinators into connection; (3) the use of analogy-based reasoning as a bridge across the gap between the traditional symbolic paradigm and the connectionist paradigm; and (4) the application of connectionism to the domain of belief representation/reasoning. The work on local neural circuit modeling also departs significantly from the work of related researchers. In particular, its concentration on low-level neural phenomena that could support high-level cognitive processing is unusual within the area of biological local circuit modeling, and also serves to expand the horizons of the artificial neural net field.

  18. The gamma model : a new neural network for temporal processing

    NARCIS (Netherlands)

    Vries, de B.

    1992-01-01

    In this paper we develop the gamma neural model, a new neural net architecture for processing of temporal patterns. Time varying patterns are normally segmented into a sequence of static patterns that are successively presented to a neural net. In the approach presented here segmentation is avoided.

  19. A Neural Theory of Visual Attention: Bridging Cognition and Neurophysiology

    Science.gov (United States)

    Bundesen, Claus; Habekost, Thomas; Kyllingsbaek, Soren

    2005-01-01

    A neural theory of visual attention (NTVA) is presented. NTVA is a neural interpretation of C. Bundesen's (1990) theory of visual attention (TVA). In NTVA, visual processing capacity is distributed across stimuli by dynamic remapping of receptive fields of cortical cells such that more processing resources (cells) are devoted to behaviorally…

  20. A novel neural-wavelet approach for process diagnostics and complex system modeling

    Science.gov (United States)

    Gao, Rong

    Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.

  1. Neural substrates of sublexical processing for spelling.

    Science.gov (United States)

    DeMarco, Andrew T; Wilson, Stephen M; Rising, Kindle; Rapcsak, Steven Z; Beeson, Pélagie M

    2017-01-01

    We used fMRI to examine the neural substrates of sublexical phoneme-grapheme conversion during spelling in a group of healthy young adults. Participants performed a writing-to-dictation task involving irregular words (e.g., choir), plausible nonwords (e.g., kroid), and a control task of drawing familiar geometric shapes (e.g., squares). Written production of both irregular words and nonwords engaged a left-hemisphere perisylvian network associated with reading/spelling and phonological processing skills. Effects of lexicality, manifested by increased activation during nonword relative to irregular word spelling, were noted in anterior perisylvian regions (posterior inferior frontal gyrus/operculum/precentral gyrus/insula), and in left ventral occipito-temporal cortex. In addition to enhanced neural responses within domain-specific components of the language network, the increased cognitive demands associated with spelling nonwords engaged domain-general frontoparietal cortical networks involved in selective attention and executive control. These results elucidate the neural substrates of sublexical processing during written language production and complement lesion-deficit correlation studies of phonological agraphia. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Diagnostic Classifiers: Revealing how Neural Networks Process Hierarchical Structure

    NARCIS (Netherlands)

    Veldhoen, S.; Hupkes, D.; Zuidema, W.

    2016-01-01

    We investigate how neural networks can be used for hierarchical, compositional semantics. To this end, we define the simple but nontrivial artificial task of processing nested arithmetic expressions and study whether different types of neural networks can learn to add and subtract. We find that

  3. Resource-adaptive cognitive processes

    CERN Document Server

    Crocker, Matthew W

    2010-01-01

    This book investigates the adaptation of cognitive processes to limited resources. The central topics of this book are heuristics considered as results of the adaptation to resource limitations, through natural evolution in the case of humans, or through artificial construction in the case of computational systems; the construction and analysis of resource control in cognitive processes; and an analysis of resource-adaptivity within the paradigm of concurrent computation. The editors integrated the results of a collaborative 5-year research project that involved over 50 scientists. After a mot

  4. Precision Scaling of Neural Networks for Efficient Audio Processing

    OpenAIRE

    Ko, Jong Hwan; Fromm, Josh; Philipose, Matthai; Tashev, Ivan; Zarar, Shuayb

    2017-01-01

    While deep neural networks have shown powerful performance in many audio applications, their large computation and memory demand has been a challenge for real-time processing. In this paper, we study the impact of scaling the precision of neural networks on the performance of two common audio processing tasks, namely, voice-activity detection and single-channel speech enhancement. We determine the optimal pair of weight/neuron bit precision by exploring its impact on both the performance and ...

  5. Neural network training by Kalman filtering in process system monitoring

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-03-01

    Kalman filtering approach for neural network training is described. Its extended form is used as an adaptive filter in a nonlinear environment of the form a feedforward neural network. Kalman filtering approach generally provides fast training as well as avoiding excessive learning which results in enhanced generalization capability. The network is used in a process monitoring application where the inputs are measurement signals. Since the measurement errors are also modelled in Kalman filter the approach yields accurate training with the implication of accurate neural network model representing the input and output relationships in the application. As the process of concern is a dynamic system, the input source of information to neural network is time dependent so that the training algorithm presents an adaptive form for real-time operation for the monitoring task. (orig.)

  6. Optimization of blanking process using neural network simulation

    International Nuclear Information System (INIS)

    Hambli, R.

    2005-01-01

    The present work describes a methodology using the finite element method and neural network simulation in order to predict the optimum punch-die clearance during sheet metal blanking processes. A damage model is used in order to describe crack initiation and propagation into the sheet. The proposed approach combines predictive finite element and neural network modeling of the leading blanking parameters. Numerical results obtained by finite element computation including damage and fracture modeling were utilized to train the developed simulation environment based on back propagation neural network modeling. The comparative study between the numerical results and the experimental ones shows the good agreement. (author)

  7. Introduction to spiking neural networks: Information processing, learning and applications.

    Science.gov (United States)

    Ponulak, Filip; Kasinski, Andrzej

    2011-01-01

    The concept that neural information is encoded in the firing rate of neurons has been the dominant paradigm in neurobiology for many years. This paradigm has also been adopted by the theory of artificial neural networks. Recent physiological experiments demonstrate, however, that in many parts of the nervous system, neural code is founded on the timing of individual action potentials. This finding has given rise to the emergence of a new class of neural models, called spiking neural networks. In this paper we summarize basic properties of spiking neurons and spiking networks. Our focus is, specifically, on models of spike-based information coding, synaptic plasticity and learning. We also survey real-life applications of spiking models. The paper is meant to be an introduction to spiking neural networks for scientists from various disciplines interested in spike-based neural processing.

  8. Hybrid digital signal processing and neural networks applications in PWRs

    International Nuclear Information System (INIS)

    Eryurek, E.; Upadhyaya, B.R.; Kavaklioglu, K.

    1991-01-01

    Signal validation and plant subsystem tracking in power and process industries require the prediction of one or more state variables. Both heteroassociative and auotassociative neural networks were applied for characterizing relationships among sets of signals. A multi-layer neural network paradigm was applied for sensor and process monitoring in a Pressurized Water Reactor (PWR). This nonlinear interpolation technique was found to be very effective for these applications

  9. Linking Neural and Symbolic Representation and Processing of Conceptual Structures

    Directory of Open Access Journals (Sweden)

    Frank van der Velde

    2017-08-01

    Full Text Available We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like structures. First is the Neural Blackboard Architecture (NBA, which aims to account for representation and processing of complex and combinatorial conceptual structures in the brain. Second is IDyOT (Information Dynamics of Thinking, which derives sentence-like structures by learning statistical sequential regularities over a suitable corpus. Although IDyOT is designed at a level more abstract than the neural, so it is a model of cognitive function, rather than neural processing, there are strong similarities between the composite structures developed in IDyOT and the NBA. We hypothesize that these similarities form the basis of a combined architecture in which the individual strengths of each architecture are integrated. We outline and discuss the characteristics of this combined architecture, emphasizing the representation and processing of conceptual structures.

  10. Nonlinear signal processing using neural networks: Prediction and system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A.; Farber, R.

    1987-06-01

    The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.

  11. Active voltammetric microsensors with neural signal processing.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can

  12. Active voltammetric microsensors with neural signal processing

    Science.gov (United States)

    Vogt, Michael C.; Skubal, Laura R.

    1999-02-01

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical 'signatures' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration; the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  13. Neural activation in stress-related exhaustion

    DEFF Research Database (Denmark)

    Gavelin, Hanna Malmberg; Neely, Anna Stigsdotter; Andersson, Micael

    2017-01-01

    The primary purpose of this study was to investigate the association between burnout and neural activation during working memory processing in patients with stress-related exhaustion. Additionally, we investigated the neural effects of cognitive training as part of stress rehabilitation. Fifty...... association between burnout level and working memory performance was found, however, our findings indicate that frontostriatal neural responses related to working memory were modulated by burnout severity. We suggest that patients with high levels of burnout need to recruit additional cognitive resources...... to uphold task performance. Following cognitive training, increased neural activation was observed during 3-back in working memory-related regions, including the striatum, however, low sample size limits any firm conclusions....

  14. Nonlinear identification of process dynamics using neural networks

    International Nuclear Information System (INIS)

    Parlos, A.G.; Atiya, A.F.; Chong, K.T.

    1992-01-01

    In this paper the nonlinear identification of process dynamics encountered in nuclear power plant components is addressed, in an input-output sense, using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the model structure to be identified. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard backpropagation learning algorithm is modified, and it is used for the supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The response of representative steam generator is predicted using a neural network, and it is compared to the response obtained from a sophisticated computer model based on first principles. The transient responses compare well, although further research is warranted to determine the predictive capabilities of these networks during more severe operational transients and accident scenarios

  15. Explicit versus implicit neural processing of musical emotions

    OpenAIRE

    Bogert, Brigitte; Numminen-Kontti, Taru; Gold, Benjamin; Sams, Mikko; Numminen, Jussi; Burunat, Iballa; Lampinen, Jouko; Brattico, Elvira

    2016-01-01

    Music is often used to regulate emotions and mood. Typically, music conveys and induces emotions even when one does not attend to them. Studies on the neural substrates of musical emotions have, however, only examined brain activity when subjects have focused on the emotional content of the music. Here we address with functional magnetic resonance imaging (fMRI) the neural processing of happy, sad, and fearful music with a paradigm in which 56 subjects were instructed to either classify the e...

  16. Neural manufacturing: a novel concept for processing modeling, monitoring, and control

    Science.gov (United States)

    Fu, Chi Y.; Petrich, Loren; Law, Benjamin

    1995-09-01

    Semiconductor fabrication lines have become extremely costly, and achieving a good return from such a high capital investment requires efficient utilization of these expensive facilities. It is highly desirable to shorten processing development time, increase fabrication yield, enhance flexibility, improve quality, and minimize downtime. We propose that these ends can be achieved by applying recent advances in the areas of artificial neural networks, fuzzy logic, machine learning, and genetic algorithms. We use the term neural manufacturing to describe such applications. This paper describes our use of artificial neural networks to improve the monitoring and control of semiconductor process.

  17. Neural processes underlying cultural differences in cognitive persistence.

    Science.gov (United States)

    Telzer, Eva H; Qu, Yang; Lin, Lynda C

    2017-08-01

    Self-improvement motivation, which occurs when individuals seek to improve upon their competence by gaining new knowledge and improving upon their skills, is critical for cognitive, social, and educational adjustment. While many studies have delineated the neural mechanisms supporting extrinsic motivation induced by monetary rewards, less work has examined the neural processes that support intrinsically motivated behaviors, such as self-improvement motivation. Because cultural groups traditionally vary in terms of their self-improvement motivation, we examined cultural differences in the behavioral and neural processes underlying motivated behaviors during cognitive persistence in the absence of extrinsic rewards. In Study 1, 71 American (47 females, M=19.68 years) and 68 Chinese (38 females, M=19.37 years) students completed a behavioral cognitive control task that required cognitive persistence across time. In Study 2, 14 American and 15 Chinese students completed the same cognitive persistence task during an fMRI scan. Across both studies, American students showed significant declines in cognitive performance across time, whereas Chinese participants demonstrated effective cognitive persistence. These behavioral effects were explained by cultural differences in self-improvement motivation and paralleled by increasing activation and functional coupling between the inferior frontal gyrus (IFG) and ventral striatum (VS) across the task among Chinese participants, neural activation and coupling that remained low in American participants. These findings suggest a potential neural mechanism by which the VS and IFG work in concert to promote cognitive persistence in the absence of extrinsic rewards. Thus, frontostriatal circuitry may be a neurobiological signal representing intrinsic motivation for self-improvement that serves an adaptive function, increasing Chinese students' motivation to engage in cognitive persistence. Copyright © 2017 Elsevier Inc. All rights

  18. A neural theory of visual attention

    DEFF Research Database (Denmark)

    Bundesen, Claus; Habekost, Thomas; Kyllingsbæk, Søren

    2005-01-01

    A neural theory of visual attention (NTVA) is presented. NTVA is a neural interpretation of C. Bundesen's (1990) theory of visual attention (TVA). In NTVA, visual processing capacity is distributed across stimuli by dynamic remapping of receptive fields of cortical cells such that more processing...... resources (cells) are devoted to behaviorally important objects than to less important ones. By use of the same basic equations used in TVA, NTVA accounts for a wide range of known attentional effects in human performance (reaction times and error rates) and a wide range of effects observed in firing rates...

  19. Neural correlates of processing "self-conscious" vs. "basic" emotions.

    Science.gov (United States)

    Gilead, Michael; Katzir, Maayan; Eyal, Tal; Liberman, Nira

    2016-01-29

    Self-conscious emotions are prevalent in our daily lives and play an important role in both normal and pathological behavior. Despite their immense significance, the neural substrates that are involved in the processing of such emotions are surprisingly under-studied. In light of this, we conducted an fMRI study in which participants thought of various personal events which elicited feelings of negative and positive self-conscious (i.e., guilt, pride) or basic (i.e., anger, joy) emotions. We performed a conjunction analysis to investigate the neural correlates associated with processing events that are related to self-conscious vs. basic emotions, irrespective of valence. The results show that processing self-conscious emotions resulted in activation within frontal areas associated with self-processing and self-control, namely, the mPFC extending to the dACC, and within the lateral-dorsal prefrontal cortex. Processing basic emotions resulted in activation throughout relatively phylogenetically-ancient regions of the cortex, namely in visual and tactile processing areas and in the insular cortex. Furthermore, self-conscious emotions differentially activated the mPFC such that the negative self-conscious emotion (guilt) was associated with a more dorsal activation, and the positive self-conscious emotion (pride) was associated with a more ventral activation. We discuss how these results shed light on the nature of mental representations and neural systems involved in self-reflective and affective processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Fault detection and diagnosis for complex multivariable processes using neural networks

    International Nuclear Information System (INIS)

    Weerasinghe, M.

    1998-06-01

    Development of a reliable fault diagnosis method for large-scale industrial plants is laborious and often difficult to achieve due to the complexity of the targeted systems. The main objective of this thesis is to investigate the application of neural networks to the diagnosis of non-catastrophic faults in an industrial nuclear fuel processing plant. The proposed methods were initially developed by application to a simulated chemical process prior to further validation on real industrial data. The diagnosis of faults at a single operating point is first investigated. Statistical data conditioning methods of data scaling and principal component analysis are investigated to facilitate fault classification and reduce the complexity of neural networks. Successful fault diagnosis was achieved with significantly smaller networks than using all process variables as network inputs. Industrial processes often manufacture at various operating points, but demonstrated applications of neural networks for fault diagnosis usually only consider a single (primary) operating point. Developing a standard neural network scheme for fault diagnosis at all operating points would be usually impractical due to the unavailability of suitable training data for less frequently used (secondary) operating points. To overcome this problem, the application of a single neural network for the diagnosis of faults operating at different points is investigated. The data conditioning followed the same techniques as used for the fault diagnosis of a single operating point. The results showed that a single neural network could be successfully used to diagnose faults at operating points other than that it is trained for, and the data conditioning significantly improved the classification. Artificial neural networks have been shown to be an effective tool for process fault diagnosis. However, a main criticism is that details of the procedures taken to reach the fault diagnosis decisions are embedded in

  1. A novel neural network for multi project programming with limited resources

    International Nuclear Information System (INIS)

    Liping, Z.; Jianhua, W.; Fenfang, Z.; Guojian, H.

    1996-01-01

    This paper discusses the theory of multi project programming and how to use Artificial Neural Network model to solve this problem. To obtain global optimum solution, the simulated annealing technology is used in our scheme. To improve the convergence property of argument matrix in the process of optimization for target function. Lagrange operator is replaced with the inverse of temperature in simulated annealing. Combining the Hopfield networks algorithm, this problem is solved speedily and satisfactorily. Experimental results show it is very effective to use Artificial Neural Network to solve the problem

  2. Emotionally anesthetized: media violence induces neural changes during emotional face processing.

    Science.gov (United States)

    Stockdale, Laura A; Morrison, Robert G; Kmiecik, Matthew J; Garbarino, James; Silton, Rebecca L

    2015-10-01

    Media violence exposure causes increased aggression and decreased prosocial behavior, suggesting that media violence desensitizes people to the emotional experience of others. Alterations in emotional face processing following exposure to media violence may result in desensitization to others' emotional states. This study used scalp electroencephalography methods to examine the link between exposure to violence and neural changes associated with emotional face processing. Twenty-five participants were shown a violent or nonviolent film clip and then completed a gender discrimination stop-signal task using emotional faces. Media violence did not affect the early visual P100 component; however, decreased amplitude was observed in the N170 and P200 event-related potentials following the violent film, indicating that exposure to film violence leads to suppression of holistic face processing and implicit emotional processing. Participants who had just seen a violent film showed increased frontal N200/P300 amplitude. These results suggest that media violence exposure may desensitize people to emotional stimuli and thereby require fewer cognitive resources to inhibit behavior. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Doubly stochastic Poisson processes in artificial neural learning.

    Science.gov (United States)

    Card, H C

    1998-01-01

    This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.

  4. Uranium resource processing. Secondary resources

    International Nuclear Information System (INIS)

    Gupta, C.K.; Singh, H.

    2003-01-01

    This book concentrates on the processing of secondary sources for recovering uranium, a field which has gained in importance in recent years as it is environmental-friendly and economically in tune with the philosophy of sustainable development. Special mention is made of rock phosphate, copper and gold tailings, uranium scrap materials (both natural and enriched) and sea water. This volume includes related area of ore mineralogy, resource classification, processing principles involved in solubilization followed by separation and safety aspects

  5. Handbook on neural information processing

    CERN Document Server

    Maggini, Marco; Jain, Lakhmi

    2013-01-01

    This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include:                         Deep architectures                         Recurrent, recursive, and graph neural networks                         Cellular neural networks                         Bayesian networks                         Approximation capabilities of neural networks                         Semi-supervised learning                         Statistical relational learning                         Kernel methods for structured data                         Multiple classifier systems                         Self organisation and modal learning                         Applications to ...

  6. Designing neural networks that process mean values of random variables

    International Nuclear Information System (INIS)

    Barber, Michael J.; Clark, John W.

    2014-01-01

    We develop a class of neural networks derived from probabilistic models posed in the form of Bayesian networks. Making biologically and technically plausible assumptions about the nature of the probabilistic models to be represented in the networks, we derive neural networks exhibiting standard dynamics that require no training to determine the synaptic weights, that perform accurate calculation of the mean values of the relevant random variables, that can pool multiple sources of evidence, and that deal appropriately with ambivalent, inconsistent, or contradictory evidence. - Highlights: • High-level neural computations are specified by Bayesian belief networks of random variables. • Probability densities of random variables are encoded in activities of populations of neurons. • Top-down algorithm generates specific neural network implementation of given computation. • Resulting “neural belief networks” process mean values of random variables. • Such networks pool multiple sources of evidence and deal properly with inconsistent evidence

  7. Designing neural networks that process mean values of random variables

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Michael J. [AIT Austrian Institute of Technology, Innovation Systems Department, 1220 Vienna (Austria); Clark, John W. [Department of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130 (United States); Centro de Ciências Matemáticas, Universidade de Madeira, 9000-390 Funchal (Portugal)

    2014-06-13

    We develop a class of neural networks derived from probabilistic models posed in the form of Bayesian networks. Making biologically and technically plausible assumptions about the nature of the probabilistic models to be represented in the networks, we derive neural networks exhibiting standard dynamics that require no training to determine the synaptic weights, that perform accurate calculation of the mean values of the relevant random variables, that can pool multiple sources of evidence, and that deal appropriately with ambivalent, inconsistent, or contradictory evidence. - Highlights: • High-level neural computations are specified by Bayesian belief networks of random variables. • Probability densities of random variables are encoded in activities of populations of neurons. • Top-down algorithm generates specific neural network implementation of given computation. • Resulting “neural belief networks” process mean values of random variables. • Such networks pool multiple sources of evidence and deal properly with inconsistent evidence.

  8. Neural mechanisms of order information processing in working memory

    Directory of Open Access Journals (Sweden)

    Barbara Dolenc

    2013-11-01

    Full Text Available The ability to encode and maintain the exact order of short sequences of stimuli or events is often crucial to our ability for effective high-order planning. However, it is not yet clear which neural mechanisms underpin this process. Several studies suggest that in comparison with item recognition temporal order coding activates prefrontal and parietal brain regions. Results of various studies tend to favour the hypothesis that the order of the stimuli is represented and encoded on several stages, from primacy and recency estimates to the exact position of the item in a sequence. Different brain regions play a different role in this process. Dorsolateral prefrontal cortex has a more general role in attention, while the premotor cortex is more involved in the process of information grouping. Parietal lobe and hippocampus also play a significant role in order processing as they enable the representation of distance. Moreover, order maintenance is associated with the existence of neural oscillators that operate at different frequencies. Electrophysiological studies revealed that theta and alpha oscillations play an important role in the maintenance of temporal order information. Those EEG oscillations are differentially associated with processes that support the maintenance of order information and item recognition. Various studies suggest a link between prefrontal areas and memory for temporal order, implying that EEG neural oscillations in the prefrontal cortex may play a role in the maintenance of information on temporal order.

  9. Process identification through modular neural networks and rule extraction (extended abstract)

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.; Blockeel, Hendrik; Denecker, Marc

    2002-01-01

    Monolithic neural networks may be trained from measured data to establish knowledge about the process. Unfortunately, this knowledge is not guaranteed to be found and – if at all – hard to extract. Modular neural networks are better suited for this purpose. Domain-ordered by topology, rule

  10. Music Signal Processing Using Vector Product Neural Networks

    Science.gov (United States)

    Fan, Z. C.; Chan, T. S.; Yang, Y. H.; Jang, J. S. R.

    2017-05-01

    We propose a novel neural network model for music signal processing using vector product neurons and dimensionality transformations. Here, the inputs are first mapped from real values into three-dimensional vectors then fed into a three-dimensional vector product neural network where the inputs, outputs, and weights are all three-dimensional values. Next, the final outputs are mapped back to the reals. Two methods for dimensionality transformation are proposed, one via context windows and the other via spectral coloring. Experimental results on the iKala dataset for blind singing voice separation confirm the efficacy of our model.

  11. Neural correlates of successful semantic processing during propofol sedation

    NARCIS (Netherlands)

    Adapa, Ram M.; Davis, Matthew H.; Stamatakis, Emmanuel A.; Absalom, Anthony R.; Menon, David K.

    Sedation has a graded effect on brain responses to auditory stimuli: perceptual processing persists at sedation levels that attenuate more complex processing. We used fMRI in healthy volunteers sedated with propofol to assess changes in neural responses to spoken stimuli. Volunteers were scanned

  12. Neural network connectivity and response latency modelled by stochastic processes

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano

    is connected to thousands of other neurons. The rst question is: how to model neural networks through stochastic processes? A multivariate Ornstein-Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the proposed answer. Obviously, dependencies between neurons imply dependencies......Stochastic processes and their rst passage times have been widely used to describe the membrane potential dynamics of single neurons and to reproduce neuronal spikes, respectively.However, cerebral cortex in human brains is estimated to contain 10-20 billions of neurons and each of them...... between their spike times. Therefore, the second question is: how to detect neural network connectivity from simultaneously recorded spike trains? Answering this question corresponds to investigate the joint distribution of sequences of rst passage times. A non-parametric method based on copulas...

  13. Parametric models to relate spike train and LFP dynamics with neural information processing.

    Science.gov (United States)

    Banerjee, Arpan; Dean, Heather L; Pesaran, Bijan

    2012-01-01

    Spike trains and local field potentials (LFPs) resulting from extracellular current flows provide a substrate for neural information processing. Understanding the neural code from simultaneous spike-field recordings and subsequent decoding of information processing events will have widespread applications. One way to demonstrate an understanding of the neural code, with particular advantages for the development of applications, is to formulate a parametric statistical model of neural activity and its covariates. Here, we propose a set of parametric spike-field models (unified models) that can be used with existing decoding algorithms to reveal the timing of task or stimulus specific processing. Our proposed unified modeling framework captures the effects of two important features of information processing: time-varying stimulus-driven inputs and ongoing background activity that occurs even in the absence of environmental inputs. We have applied this framework for decoding neural latencies in simulated and experimentally recorded spike-field sessions obtained from the lateral intraparietal area (LIP) of awake, behaving monkeys performing cued look-and-reach movements to spatial targets. Using both simulated and experimental data, we find that estimates of trial-by-trial parameters are not significantly affected by the presence of ongoing background activity. However, including background activity in the unified model improves goodness of fit for predicting individual spiking events. Uncovering the relationship between the model parameters and the timing of movements offers new ways to test hypotheses about the relationship between neural activity and behavior. We obtained significant spike-field onset time correlations from single trials using a previously published data set where significantly strong correlation was only obtained through trial averaging. We also found that unified models extracted a stronger relationship between neural response latency and trial

  14. A Quantum Implementation Model for Artificial Neural Networks

    OpenAIRE

    Ammar Daskin

    2018-01-01

    The learning process for multilayered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow–Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, these iterative formulas result in terms formed by the principal components of the weight matrix, namely, the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the pha...

  15. Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers

    International Nuclear Information System (INIS)

    Mikulandrić, Robert; Lončar, Dražen; Böhning, Dorith; Böhme, Rene; Beckmann, Michael

    2014-01-01

    Highlights: • 2 Different equilibrium models are developed and their performance is analysed. • Neural network prediction models for 2 different fixed bed gasifier types are developed. • The influence of different input parameters on neural network model performance is analysed. • Methodology for neural network model development for different gasifier types is described. • Neural network models are verified for various operating conditions based on measured data. - Abstract: The number of the small and middle-scale biomass gasification combined heat and power plants as well as syngas production plants has been significantly increased in the last decade mostly due to extensive incentives. However, existing issues regarding syngas quality, process efficiency, emissions and environmental standards are preventing biomass gasification technology to become more economically viable. To encounter these issues, special attention is given to the development of mathematical models which can be used for a process analysis or plant control purposes. The presented paper analyses possibilities of neural networks to predict process parameters with high speed and accuracy. After a related literature review and measurement data analysis, different modelling approaches for the process parameter prediction that can be used for an on-line process control were developed and their performance were analysed. Neural network models showed good capability to predict biomass gasification process parameters with reasonable accuracy and speed. Measurement data for the model development, verification and performance analysis were derived from biomass gasification plant operated by Technical University Dresden

  16. Neural PID Control Strategy for Networked Process Control

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2013-01-01

    Full Text Available A new method with a two-layer hierarchy is presented based on a neural proportional-integral-derivative (PID iterative learning method over the communication network for the closed-loop automatic tuning of a PID controller. It can enhance the performance of the well-known simple PID feedback control loop in the local field when real networked process control applied to systems with uncertain factors, such as external disturbance or randomly delayed measurements. The proposed PID iterative learning method is implemented by backpropagation neural networks whose weights are updated via minimizing tracking error entropy of closed-loop systems. The convergence in the mean square sense is analysed for closed-loop networked control systems. To demonstrate the potential applications of the proposed strategies, a pressure-tank experiment is provided to show the usefulness and effectiveness of the proposed design method in network process control systems.

  17. How age of bilingual exposure can change the neural systems for language in the developing brain: a functional near infrared spectroscopy investigation of syntactic processing in monolingual and bilingual children.

    Science.gov (United States)

    Jasinska, K K; Petitto, L A

    2013-10-01

    Is the developing bilingual brain fundamentally similar to the monolingual brain (e.g., neural resources supporting language and cognition)? Or, does early-life bilingual language experience change the brain? If so, how does age of first bilingual exposure impact neural activation for language? We compared how typically-developing bilingual and monolingual children (ages 7-10) and adults recruit brain areas during sentence processing using functional Near Infrared Spectroscopy (fNIRS) brain imaging. Bilingual participants included early-exposed (bilingual exposure from birth) and later-exposed individuals (bilingual exposure between ages 4-6). Both bilingual children and adults showed greater neural activation in left-hemisphere classic language areas, and additionally, right-hemisphere homologues (Right Superior Temporal Gyrus, Right Inferior Frontal Gyrus). However, important differences were observed between early-exposed and later-exposed bilinguals in their earliest-exposed language. Early bilingual exposure imparts fundamental changes to classic language areas instead of alterations to brain regions governing higher cognitive executive functions. However, age of first bilingual exposure does matter. Later-exposed bilinguals showed greater recruitment of the prefrontal cortex relative to early-exposed bilinguals and monolinguals. The findings provide fascinating insight into the neural resources that facilitate bilingual language use and are discussed in terms of how early-life language experiences can modify the neural systems underlying human language processing. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Noun and verb processing in aphasia: Behavioural profiles and neural correlates

    Directory of Open Access Journals (Sweden)

    Reem S.W. Alyahya

    Full Text Available The behavioural and neural processes underpinning different word classes, particularly nouns and verbs, have been a long-standing area of interest in psycholinguistic, neuropsychology and aphasiology research. This topic has theoretical implications concerning the organisation of the language system, as well as clinical consequences related to the management of patients with language deficits. Research findings, however, have diverged widely, which might, in part, reflect methodological differences, particularly related to controlling the psycholinguistic variations between nouns and verbs. The first aim of this study, therefore, was to develop a set of neuropsychological tests that assessed single-word production and comprehension with a matched set of nouns and verbs. Secondly, the behavioural profiles and neural correlates of noun and verb processing were explored, based on these novel tests, in a relatively large cohort of 48 patients with chronic post-stroke aphasia. A data-driven approach, principal component analysis (PCA, was also used to determine how noun and verb production and comprehension were related to the patients' underlying fundamental language domains. The results revealed no performance differences between noun and verb production and comprehension once matched on multiple psycholinguistic features including, most critically, imageability. Interestingly, the noun-verb differences found in previous studies were replicated in this study once un-matched materials were used. Lesion-symptom mapping revealed overlapping neural correlates of noun and verb processing along left temporal and parietal regions. These findings support the view that the neural representation of noun and verb processing at single-word level are jointly-supported by distributed cortical regions. The PCA generated five fundamental language and cognitive components of aphasia: phonological production, phonological recognition, semantics, fluency, and

  19. Combinatorial structures and processing in neural blackboard architectures

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, Frank; de Kamps, Marc; Besold, Tarek R.; d'Avila Garcez, Artur; Marcus, Gary F.; Miikkulainen, Risto

    2015-01-01

    We discuss and illustrate Neural Blackboard Architectures (NBAs) as the basis for variable binding and combinatorial processing the brain. We focus on the NBA for sentence structure. NBAs are based on the notion that conceptual representations are in situ, hence cannot be copied or transported.

  20. Neural Activations of Guided Imagery and Music in Negative Emotional Processing: A Functional MRI Study.

    Science.gov (United States)

    Lee, Sang Eun; Han, Yeji; Park, HyunWook

    2016-01-01

    The Bonny Method of Guided Imagery and Music uses music and imagery to access and explore personal emotions associated with episodic memories. Understanding the neural mechanism of guided imagery and music (GIM) as combined stimuli for emotional processing informs clinical application. We performed functional magnetic resonance imaging (fMRI) to demonstrate neural mechanisms of GIM for negative emotional processing when personal episodic memory is recalled and re-experienced through GIM processes. Twenty-four healthy volunteers participated in the study, which used classical music and verbal instruction stimuli to evoke negative emotions. To analyze the neural mechanism, activated regions associated with negative emotional and episodic memory processing were extracted by conducting volume analyses for the contrast between GIM and guided imagery (GI) or music (M). The GIM stimuli showed increased activation over the M-only stimuli in five neural regions associated with negative emotional and episodic memory processing, including the left amygdala, left anterior cingulate gyrus, left insula, bilateral culmen, and left angular gyrus (AG). Compared with GI alone, GIM showed increased activation in three regions associated with episodic memory processing in the emotional context, including the right posterior cingulate gyrus, bilateral parahippocampal gyrus, and AG. No neural regions related to negative emotional and episodic memory processing showed more activation for M and GI than for GIM. As a combined multimodal stimulus, GIM may increase neural activations related to negative emotions and episodic memory processing. Findings suggest a neural basis for GIM with personal episodic memories affecting cortical and subcortical structures and functions. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Linking neural and symbolic representation and processing of conceptual structures

    NARCIS (Netherlands)

    van der Velde, Frank; Forth, Jamie; Nazareth, Deniece S.; Wiggins, Geraint A.

    2017-01-01

    We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like) structures. First is the Neural Blackboard Architecture (NBA), which aims to account for representation and processing of complex and combinatorial conceptual

  2. A Quantum Implementation Model for Artificial Neural Networks

    OpenAIRE

    Daskin, Ammar

    2016-01-01

    The learning process for multi layered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow-Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, this iterative formulas result in terms formed by the principal components of the weight matrix: i.e., the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the phase...

  3. Simulation analysis of resource flexibility on healthcare processes.

    Science.gov (United States)

    Simwita, Yusta W; Helgheim, Berit I

    2016-01-01

    This paper uses discrete event simulation to explore the best resource flexibility scenario and examine the effect of implementing resource flexibility on different stages of patient treatment process. Specifically we investigate the effect of resource flexibility on patient waiting time and throughput in an orthopedic care process. We further seek to explore on how implementation of resource flexibility on patient treatment processes affects patient access to healthcare services. We focus on two resources, namely, orthopedic surgeon and operating room. The observational approach was used to collect process data. The developed model was validated by comparing the simulation output with actual patient data collected from the studied orthopedic care process. We developed different scenarios to identify the best resource flexibility scenario and explore the effect of resource flexibility on patient waiting time, throughput, and future changes in demand. The developed scenarios focused on creating flexibility on service capacity of this care process by altering the amount of additional human resource capacity at different stages of patient care process and extending the use of operating room capacity. The study found that resource flexibility can improve responsiveness to patient demand in the treatment process. Testing different scenarios showed that the introduction of resource flexibility reduces patient waiting time and improves throughput. The simulation results show that patient access to health services can be improved by implementing resource flexibility at different stages of the patient treatment process. This study contributes to the current health care literature by explaining how implementing resource flexibility at different stages of patient care processes can improve ability to respond to increasing patients demands. This study was limited to a single patient process; studies focusing on additional processes are recommended.

  4. Concepts in context: Processing mental state concepts with internal or external focus involves different neural systems

    Science.gov (United States)

    Oosterwijk, Suzanne; Mackey, Scott; Wilson-Mendenhall, Christine; Winkielman, Piotr; Paulus, Martin P.

    2015-01-01

    According to embodied cognition theories concepts are contextually-situated and grounded in neural systems that produce experiential states. This view predicts that processing mental state concepts recruits neural regions associated with different aspects of experience depending on the context in which people understand a concept. This neuroimaging study tested this prediction using a set of sentences that described emotional (e.g., fear, joy) and non-emotional (e.g., thinking, hunger) mental states with internal focus (i.e. focusing on bodily sensations and introspection) or external focus (i.e. focusing on expression and action). Consistent with our predictions, data suggested that the inferior frontal gyrus, a region associated with action representation, was engaged more by external than internal sentences. By contrast, the ventromedial prefrontal cortex, a region associated with the generation of internal states, was engaged more by internal emotion sentences than external sentence categories. Similar patterns emerged when we examined the relationship between neural activity and independent ratings of sentence focus. Furthermore, ratings of emotion were associated with activation in the medial prefrontal cortex, whereas ratings of activity were associated with activation in the inferior frontal gyrus. These results suggest that mental state concepts are represented in a dynamic way, using context-relevant interoceptive and sensorimotor resources. PMID:25748274

  5. Artificial neural networks in variable process control: application in particleboard manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, L. G.; Garcia Fernandez, F.; Palacios, P. de; Conde, M.

    2009-07-01

    Artificial neural networks are an efficient tool for modelling production control processes using data from the actual production as well as simulated or design of experiments data. In this study two artificial neural networks were combined with the control process charts and it was checked whether the data obtained by the networks were valid for variable process control in particleboard manufacture. The networks made it possible to obtain the mean and standard deviation of the internal bond strength of the particleboard within acceptable margins using known data of thickness, density, moisture content, swelling and absorption. The networks obtained met the acceptance criteria for test values from non-standard test methods, as well as the criteria for using these values in statistical process control. (Author) 47 refs.

  6. Impact of load-related neural processes on feature binding in visuospatial working memory.

    Directory of Open Access Journals (Sweden)

    Nicole A Kochan

    Full Text Available BACKGROUND: The capacity of visual working memory (WM is substantially limited and only a fraction of what we see is maintained as a temporary trace. The process of binding visual features has been proposed as an adaptive means of minimising information demands on WM. However the neural mechanisms underlying this process, and its modulation by task and load effects, are not well understood. OBJECTIVE: To investigate the neural correlates of feature binding and its modulation by WM load during the sequential phases of encoding, maintenance and retrieval. METHODS AND FINDINGS: 18 young healthy participants performed a visuospatial WM task with independent factors of load and feature conjunction (object identity and position in an event-related functional MRI study. During stimulus encoding, load-invariant conjunction-related activity was observed in left prefrontal cortex and left hippocampus. During maintenance, greater activity for task demands of feature conjunction versus single features, and for increased load was observed in left-sided regions of the superior occipital cortex, precuneus and superior frontal cortex. Where these effects were expressed in overlapping cortical regions, their combined effect was additive. During retrieval, however, an interaction of load and feature conjunction was observed. This modulation of feature conjunction activity under increased load was expressed through greater deactivation in medial structures identified as part of the default mode network. CONCLUSIONS AND SIGNIFICANCE: The relationship between memory load and feature binding qualitatively differed through each phase of the WM task. Of particular interest was the interaction of these factors observed within regions of the default mode network during retrieval which we interpret as suggesting that at low loads, binding processes may be 'automatic' but at higher loads it becomes a resource-intensive process leading to disengagement of activity in this

  7. Long-Term Alterations in Neural and Endocrine Processes Induced by Motherhood

    Science.gov (United States)

    Bridges, Robert S.

    2015-01-01

    The reproductive experience of pregnancy, lactation and motherhood can significantly remodel the female’s biological state, affecting endocrine, neuroendocrine, neural, and immunological processes. The brain, pituitary gland, liver, thymus, and mammary tissue are among the structures that are modified by reproductive experience. The present review that focuses on rodent research, but also includes pertinent studies in sheep and other species, identifies specific changes in these processes brought about by the biological states of pregnancy, parturition, and lactation and how the components of reproductive experience contribute to the remodeling of the maternal brain and organ systems. Findings indicate that prior parity alters key circulating hormone levels and neural receptor gene expression. Moreover, reproductive experience results in modifications in neural processes and glial support. The possible role of pregnancy-induced neurogenesis is considered in the context of neuroplasticity and behavior, and the effects of reproductive experience on maternal memory, i.e. the retention of maternal behavior, together with anxiety and learning are presented. Together, these sets of findings support the concept that the neural and biological state of the adult female is significantly and dramatically altered on a long-term basis by the experiences of parity and motherhood. Remodeling of the maternal brain and other biological systems is posited to help facilitate adaptations to environmental/ecological challenges as the female raises young and ages. PMID:26388065

  8. A preferential design approach for energy-efficient and robust implantable neural signal processing hardware.

    Science.gov (United States)

    Narasimhan, Seetharam; Chiel, Hillel J; Bhunia, Swarup

    2009-01-01

    For implantable neural interface applications, it is important to compress data and analyze spike patterns across multiple channels in real time. Such a computational task for online neural data processing requires an innovative circuit-architecture level design approach for low-power, robust and area-efficient hardware implementation. Conventional microprocessor or Digital Signal Processing (DSP) chips would dissipate too much power and are too large in size for an implantable system. In this paper, we propose a novel hardware design approach, referred to as "Preferential Design" that exploits the nature of the neural signal processing algorithm to achieve a low-voltage, robust and area-efficient implementation using nanoscale process technology. The basic idea is to isolate the critical components with respect to system performance and design them more conservatively compared to the noncritical ones. This allows aggressive voltage scaling for low power operation while ensuring robustness and area efficiency. We have applied the proposed approach to a neural signal processing algorithm using the Discrete Wavelet Transform (DWT) and observed significant improvement in power and robustness over conventional design.

  9. Acute Stress Influences Neural Circuits of Reward Processing

    Directory of Open Access Journals (Sweden)

    Anthony John Porcelli

    2012-11-01

    Full Text Available People often make decisions under aversive conditions such as acute stress. Yet, less is known about the process in which acute stress can influence decision-making. A growing body of research has established that reward-related information associated with the outcomes of decisions exerts a powerful influence over the choices people make and that an extensive network of brain regions, prominently featuring the striatum, is involved in the processing of this reward-related information. Thus, an important step in research on the nature of acute stress’ influence over decision-making is to examine how it may modulate responses to rewards and punishments within reward-processing neural circuitry. In the current experiment, we employed a simple reward processing paradigm – where participants received monetary rewards and punishments – known to evoke robust striatal responses. Immediately prior to performing each of two task runs, participants were exposed to acute stress (i.e., cold pressor or a no stress control procedure in a between-subjects fashion. No stress group participants exhibited a pattern of activity within the dorsal striatum and orbitofrontal cortex consistent with past research on outcome processing – specifically, differential responses for monetary rewards over punishments. In contrast, acute stress group participants’ dorsal striatum and orbitofrontal cortex demonstrated decreased sensitivity to monetary outcomes and a lack of differential activity. These findings provide insight into how neural circuits may process rewards and punishments associated with simple decisions under acutely stressful conditions.

  10. Smart management of sample dilution using an artificial neural network to achieve streamlined processes and saving resources: the automated nephelometric testing of serum free light chain as case study.

    Science.gov (United States)

    Ialongo, Cristiano; Pieri, Massimo; Bernardini, Sergio

    2017-02-01

    Saving resources is a paramount issue for the modern laboratory, and new trainable as well as smart technologies can be used to allow the automated instrumentation to manage samples more efficiently in order to achieve streamlined processes. In this regard the serum free light chain (sFLC) testing represents an interesting challenge, as it usually causes using a number of assays before achieving an acceptable result within the analytical range. An artificial neural network based on the multi-layer perceptron (MLP-ANN) was used to infer the starting dilution status of sFLC samples based on the information available through the laboratory information system (LIS). After the learning phase, the MLP-ANN simulation was applied to the nephelometric testing routinely performed in our laboratory on a BN ProSpec® System analyzer (Siemens Helathcare) using the N Latex FLC kit. The MLP-ANN reduced the serum kappa free light chain (κ-FLC) and serum lambda free light chain (λ-FLC) wasted tests by 69.4% and 70.8% with respect to the naïve stepwise dilution scheme used by the automated analyzer, and by 64.9% and 66.9% compared to a "rational" dilution scheme based on a 4-step dilution. Although it was restricted to follow-up samples, the MLP-ANN showed good predictive performance, which alongside the possibility to implement it in any automated system, made it a suitable solution for achieving streamlined laboratory processes and saving resources.

  11. From Imitation to Prediction, Data Compression vs Recurrent Neural Networks for Natural Language Processing

    Directory of Open Access Journals (Sweden)

    Juan Andres Laura

    2018-03-01

    Full Text Available In recent studies Recurrent Neural Networks were used for generative processes and their surprising performance can be explained by their ability to create good predictions. In addition, Data Compression is also based on prediction. What the problem comes down to is whether a data compressor could be used to perform as well as recurrent neural networks in the natural language processing tasks of sentiment analysis and automatic text generation. If this is possible, then the problem comes down to determining if a compression algorithm is even more intelligent than a neural network in such tasks. In our journey, a fundamental difference between a Data Compression Algorithm and Recurrent Neural Networks has been discovered.

  12. D-FNN Based Modeling and BP Neural Network Decoupling Control of PVC Stripping Process

    Directory of Open Access Journals (Sweden)

    Shu-zhi Gao

    2014-01-01

    Full Text Available PVC stripping process is a kind of complicated industrial process with characteristics of highly nonlinear and time varying. Aiming at the problem of establishing the accurate mathematics model due to the multivariable coupling and big time delay, the dynamic fuzzy neural network (D-FNN is adopted to establish the PVC stripping process model based on the actual process operation datum. Then, the PVC stripping process is decoupled by the distributed neural network decoupling module to obtain two single-input-single-output (SISO subsystems (slurry flow to top tower temperature and steam flow to bottom tower temperature. Finally, the PID controller based on BP neural networks is used to control the decoupled PVC stripper system. Simulation results show the effectiveness of the proposed integrated intelligent control method.

  13. What Can Psychiatric Disorders Tell Us about Neural Processing of the Self?

    Science.gov (United States)

    Zhao, Weihua; Luo, Lizhu; Li, Qin; Kendrick, Keith M

    2013-01-01

    Many psychiatric disorders are associated with abnormal self-processing. While these disorders also have a wide-range of complex, and often heterogeneous sets of symptoms involving different cognitive, emotional, and motor domains, an impaired sense of self can contribute to many of these. Research investigating self-processing in healthy subjects has facilitated identification of changes in specific neural circuits which may cause altered self-processing in psychiatric disorders. While there is evidence for altered self-processing in many psychiatric disorders, here we will focus on four of the most studied ones, schizophrenia, autism spectrum disorder (ASD), major depression, and borderline personality disorder (BPD). We review evidence for dysfunction in two different neural systems implicated in self-processing, namely the cortical midline system (CMS) and the mirror neuron system (MNS), as well as contributions from altered inter-hemispheric connectivity (IHC). We conclude that while abnormalities in frontal-parietal activity and/or connectivity in the CMS are common to all four disorders there is more disruption of integration between frontal and parietal regions resulting in a shift toward parietal control in schizophrenia and ASD which may contribute to the greater severity and delusional aspects of their symptoms. Abnormalities in the MNS and in IHC are also particularly evident in schizophrenia and ASD and may lead to disturbances in sense of agency and the physical self in these two disorders. A better future understanding of how changes in the neural systems sub-serving self-processing contribute to different aspects of symptom abnormality in psychiatric disorders will require that more studies carry out detailed individual assessments of altered self-processing in conjunction with measurements of neural functioning.

  14. Adaptive Moving Object Tracking Integrating Neural Networks And Intelligent Processing

    Science.gov (United States)

    Lee, James S. J.; Nguyen, Dziem D.; Lin, C.

    1989-03-01

    A real-time adaptive scheme is introduced to detect and track moving objects under noisy, dynamic conditions including moving sensors. This approach integrates the adaptiveness and incremental learning characteristics of neural networks with intelligent reasoning and process control. Spatiotemporal filtering is used to detect and analyze motion, exploiting the speed and accuracy of multiresolution processing. A neural network algorithm constitutes the basic computational structure for classification. A recognition and learning controller guides the on-line training of the network, and invokes pattern recognition to determine processing parameters dynamically and to verify detection results. A tracking controller acts as the central control unit, so that tracking goals direct the over-all system. Performance is benchmarked against the Widrow-Hoff algorithm, for target detection scenarios presented in diverse FLIR image sequences. Efficient algorithm design ensures that this recognition and control scheme, implemented in software and commercially available image processing hardware, meets the real-time requirements of tracking applications.

  15. Autonomous dynamics in neural networks: the dHAN concept and associative thought processes

    Science.gov (United States)

    Gros, Claudius

    2007-02-01

    The neural activity of the human brain is dominated by self-sustained activities. External sensory stimuli influence this autonomous activity but they do not drive the brain directly. Most standard artificial neural network models are however input driven and do not show spontaneous activities. It constitutes a challenge to develop organizational principles for controlled, self-sustained activity in artificial neural networks. Here we propose and examine the dHAN concept for autonomous associative thought processes in dense and homogeneous associative networks. An associative thought-process is characterized, within this approach, by a time-series of transient attractors. Each transient state corresponds to a stored information, a memory. The subsequent transient states are characterized by large associative overlaps, which are identical to acquired patterns. Memory states, the acquired patterns, have such a dual functionality. In this approach the self-sustained neural activity has a central functional role. The network acquires a discrimination capability, as external stimuli need to compete with the autonomous activity. Noise in the input is readily filtered-out. Hebbian learning of external patterns occurs coinstantaneous with the ongoing associative thought process. The autonomous dynamics needs a long-term working-point optimization which acquires within the dHAN concept a dual functionality: It stabilizes the time development of the associative thought process and limits runaway synaptic growth, which generically occurs otherwise in neural networks with self-induced activities and Hebbian-type learning rules.

  16. The application of neural networks with artificial intelligence technique in the modeling of industrial processes

    International Nuclear Information System (INIS)

    Saini, K. K.; Saini, Sanju

    2008-01-01

    Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

  17. Effect of short-term escitalopram treatment on neural activation during emotional processing.

    Science.gov (United States)

    Maron, Eduard; Wall, Matt; Norbury, Ray; Godlewska, Beata; Terbeck, Sylvia; Cowen, Philip; Matthews, Paul; Nutt, David J

    2016-01-01

    Recent functional magnetic resonance (fMRI) imaging studies have revealed that subchronic medication with escitalopram leads to significant reduction in both amygdala and medial frontal gyrus reactivity during processing of emotional faces, suggesting that escitalopram may have a distinguishable modulatory effect on neural activation as compared with other serotonin-selective antidepressants. In this fMRI study we aimed to explore whether short-term medication with escitalopram in healthy volunteers is associated with reduced neural response to emotional processing, and whether this effect is predicted by drug plasma concentration. The neural response to fearful and happy faces was measured before and on day 7 of treatment with escitalopram (10mg) in 15 healthy volunteers and compared with those in a control unmedicated group (n=14). Significantly reduced activation to fearful, but not to happy facial expressions was observed in the bilateral amygdala, cingulate and right medial frontal gyrus following escitalopram medication. This effect was not correlated with plasma drug concentration. In accordance with previous data, we showed that escitalopram exerts its rapid direct effect on emotional processing via attenuation of neural activation in pathways involving medial frontal gyrus and amygdala, an effect that seems to be distinguishable from that of other SSRIs. © The Author(s) 2015.

  18. Conceptual modelling of human resource evaluation process

    Directory of Open Access Journals (Sweden)

    Negoiţă Doina Olivia

    2017-01-01

    Full Text Available Taking into account the highly diverse tasks which employees have to fulfil due to complex requirements of nowadays consumers, the human resource within an enterprise has become a strategic element for developing and exploiting products which meet the market expectations. Therefore, organizations encounter difficulties when approaching the human resource evaluation process. Hence, the aim of the current paper is to design a conceptual model of the aforementioned process, which allows the enterprises to develop a specific methodology. In order to design the conceptual model, Business Process Modelling instruments were employed - Adonis Community Edition Business Process Management Toolkit using the ADONIS BPMS Notation. The conceptual model was developed based on an in-depth secondary research regarding the human resource evaluation process. The proposed conceptual model represents a generic workflow (sequential and/ or simultaneously activities, which can be extended considering the enterprise’s needs regarding their requirements when conducting a human resource evaluation process. Enterprises can benefit from using software instruments for business process modelling as they enable process analysis and evaluation (predefined / specific queries and also model optimization (simulations.

  19. Study on algorithm of process neural network for soft sensing in sewage disposal system

    Science.gov (United States)

    Liu, Zaiwen; Xue, Hong; Wang, Xiaoyi; Yang, Bin; Lu, Siying

    2006-11-01

    A new method of soft sensing based on process neural network (PNN) for sewage disposal system is represented in the paper. PNN is an extension of traditional neural network, in which the inputs and outputs are time-variation. An aggregation operator is introduced to process neuron, and it makes the neuron network has the ability to deal with the information of space-time two dimensions at the same time, so the data processing enginery of biological neuron is imitated better than traditional neuron. Process neural network with the structure of three layers in which hidden layer is process neuron and input and output are common neurons for soft sensing is discussed. The intelligent soft sensing based on PNN may be used to fulfill measurement of the effluent BOD (Biochemical Oxygen Demand) from sewage disposal system, and a good training result of soft sensing was obtained by the method.

  20. Breakout Prediction Based on BP Neural Network in Continuous Casting Process

    Directory of Open Access Journals (Sweden)

    Zhang Ben-guo

    2016-01-01

    Full Text Available An improved BP neural network model was presented by modifying the learning algorithm of the traditional BP neural network, based on the Levenberg-Marquardt algorithm, and was applied to the breakout prediction system in the continuous casting process. The results showed that the accuracy rate of the model for the temperature pattern of sticking breakout was 96.43%, and the quote rate was 100%, that verified the feasibility of the model.

  1. Spike Neural Models Part II: Abstract Neural Models

    Directory of Open Access Journals (Sweden)

    Johnson, Melissa G.

    2018-02-01

    Full Text Available Neurons are complex cells that require a lot of time and resources to model completely. In spiking neural networks (SNN though, not all that complexity is required. Therefore simple, abstract models are often used. These models save time, use less computer resources, and are easier to understand. This tutorial presents two such models: Izhikevich's model, which is biologically realistic in the resulting spike trains but not in the parameters, and the Leaky Integrate and Fire (LIF model which is not biologically realistic but does quickly and easily integrate input to produce spikes. Izhikevich's model is based on Hodgkin-Huxley's model but simplified such that it uses only two differentiation equations and four parameters to produce various realistic spike patterns. LIF is based on a standard electrical circuit and contains one equation. Either of these two models, or any of the many other models in literature can be used in a SNN. Choosing a neural model is an important task that depends on the goal of the research and the resources available. Once a model is chosen, network decisions such as connectivity, delay, and sparseness, need to be made. Understanding neural models and how they are incorporated into the network is the first step in creating a SNN.

  2. Engaged listeners: shared neural processing of powerful political speeches.

    Science.gov (United States)

    Schmälzle, Ralf; Häcker, Frank E K; Honey, Christopher J; Hasson, Uri

    2015-08-01

    Powerful speeches can captivate audiences, whereas weaker speeches fail to engage their listeners. What is happening in the brains of a captivated audience? Here, we assess audience-wide functional brain dynamics during listening to speeches of varying rhetorical quality. The speeches were given by German politicians and evaluated as rhetorically powerful or weak. Listening to each of the speeches induced similar neural response time courses, as measured by inter-subject correlation analysis, in widespread brain regions involved in spoken language processing. Crucially, alignment of the time course across listeners was stronger for rhetorically powerful speeches, especially for bilateral regions of the superior temporal gyri and medial prefrontal cortex. Thus, during powerful speeches, listeners as a group are more coupled to each other, suggesting that powerful speeches are more potent in taking control of the listeners' brain responses. Weaker speeches were processed more heterogeneously, although they still prompted substantially correlated responses. These patterns of coupled neural responses bear resemblance to metaphors of resonance, which are often invoked in discussions of speech impact, and contribute to the literature on auditory attention under natural circumstances. Overall, this approach opens up possibilities for research on the neural mechanisms mediating the reception of entertaining or persuasive messages. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Sustainable processes synthesis for renewable resources

    International Nuclear Information System (INIS)

    Halasz, L.; Povoden, G.; Narodoslawsky, M.

    2005-01-01

    Renewable resources pose special challenges to process synthesis. Due to decentral raw material generation, usually low transport densities and the perishable character of most renewable raw materials in combination with their time dependent availability, logistical questions as well as adaptation to regional agricultural structures are necessary. This calls for synthesis of structures not only of single processes but of the whole value chain attached to the utilisation of a certain resource. As most of the innovative technologies proposed to build on a renewable raw material base face stiff economic competition from fossil based processes, economic optimality of the value chain is crucial to their implementation. On top of this widening of the process definition for synthesis, many processes on the base of renewable resources apply technologies (like membrane separations, chromatographic purification steps, etc.) for which the heuristic knowledge is still slim. This reduces the choice of methods for process synthesis, mainly to methods based on combinatorial principles. The paper investigates applicability as well as impact on technology development of process synthesis for renewable raw material utilisation. It takes logistic considerations into account and applies process synthesis to the case study of the green biorefinery concept. The results show the great potential of process synthesis for technology development of renewable resource utilisation. Applied early in the development phase, it can point towards the most promising utilisation pathways, thus guiding the engineering work. On top of that, and even more important, it can help avoid costly development flops as it also clearly indicates 'blind alleys' that have to be avoided

  4. Models of neural dynamics in brain information processing - the developments of 'the decade'

    International Nuclear Information System (INIS)

    Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B; Ivanitskii, Genrikh R

    2002-01-01

    Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)

  5. Psychological Processing in Chronic Pain: A Neural Systems Approach

    OpenAIRE

    Simons, Laura; Elman, Igor; Borsook, David

    2013-01-01

    Our understanding of chronic pain involves complex brain circuits that include sensory, emotional, cognitive and interoceptive processing. The feed-forward interactions between physical (e.g., trauma) and emotional pain and the consequences of altered psychological status on the expression of pain have made the evaluation and treatment of chronic pain a challenge in the clinic. By understanding the neural circuits involved in psychological processes, a mechanistic approach to the implementati...

  6. Fluvial particle characterization using artificial neural network and spectral image processing

    Science.gov (United States)

    Shrestha, Bim Prasad; Gautam, Bijaya; Nagata, Masateru

    2008-03-01

    Sand, chemical waste, microbes and other solid materials flowing with the water bodies are of great significance to us as they cause substantial impact to different sectors including drinking water management, hydropower generation, irrigation, aquatic life preservation and various other socio-ecological factors. Such particles can't completely be avoided due to the high cost of construction and maintenance of the waste-treatment methods. A detailed understanding of solid particles in surface water system can have benefit in effective, economic, environmental and social management of water resources. This paper describes an automated system of fluvial particle characterization based on spectral image processing that lead to the development of devices for monitoring flowing particles in river. Previous research in coherent field has shown that it is possible to automatically classify shapes and sizes of solid particles ranging from 300-400 μm using artificial neural networks (ANN) and image processing. Computer facilitated with hyper spectral and multi spectral images using ANN can further classify fluvial materials into organic, inorganic, biodegradable, bio non degradable and microbes. This makes the method attractive for real time monitoring of particles, sand and microorganism in water bodies at strategic locations. Continuous monitoring can be used to determine the effect of socio-economic activities in upstream rivers, or to monitor solid waste disposal from treatment plants and industries or to monitor erosive characteristic of sand and its contribution to degradation of efficiency of hydropower plant or to identify microorganism, calculate their population and study the impact of their presence. Such system can also be used to characterize fluvial particles for planning effective utilization of water resources in micro-mega hydropower plant, irrigation, aquatic life preservation etc.

  7. Energy-efficient neural information processing in individual neurons and neuronal networks.

    Science.gov (United States)

    Yu, Lianchun; Yu, Yuguo

    2017-11-01

    Brains are composed of networks of an enormous number of neurons interconnected with synapses. Neural information is carried by the electrical signals within neurons and the chemical signals among neurons. Generating these electrical and chemical signals is metabolically expensive. The fundamental issue raised here is whether brains have evolved efficient ways of developing an energy-efficient neural code from the molecular level to the circuit level. Here, we summarize the factors and biophysical mechanisms that could contribute to the energy-efficient neural code for processing input signals. The factors range from ion channel kinetics, body temperature, axonal propagation of action potentials, low-probability release of synaptic neurotransmitters, optimal input and noise, the size of neurons and neuronal clusters, excitation/inhibition balance, coding strategy, cortical wiring, and the organization of functional connectivity. Both experimental and computational evidence suggests that neural systems may use these factors to maximize the efficiency of energy consumption in processing neural signals. Studies indicate that efficient energy utilization may be universal in neuronal systems as an evolutionary consequence of the pressure of limited energy. As a result, neuronal connections may be wired in a highly economical manner to lower energy costs and space. Individual neurons within a network may encode independent stimulus components to allow a minimal number of neurons to represent whole stimulus characteristics efficiently. This basic principle may fundamentally change our view of how billions of neurons organize themselves into complex circuits to operate and generate the most powerful intelligent cognition in nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. USC orthogonal multiprocessor for image processing with neural networks

    Science.gov (United States)

    Hwang, Kai; Panda, Dhabaleswar K.; Haddadi, Navid

    1990-07-01

    This paper presents the architectural features and imaging applications of the Orthogonal MultiProcessor (OMP) system, which is under construction at the University of Southern California with research funding from NSF and assistance from several industrial partners. The prototype OMP is being built with 16 Intel i860 RISC microprocessors and 256 parallel memory modules using custom-designed spanning buses, which are 2-D interleaved and orthogonally accessed without conflicts. The 16-processor OMP prototype is targeted to achieve 430 MIPS and 600 Mflops, which have been verified by simulation experiments based on the design parameters used. The prototype OMP machine will be initially applied for image processing, computer vision, and neural network simulation applications. We summarize important vision and imaging algorithms that can be restructured with neural network models. These algorithms can efficiently run on the OMP hardware with linear speedup. The ultimate goal is to develop a high-performance Visual Computer (Viscom) for integrated low- and high-level image processing and vision tasks.

  9. Modeling of an industrial drying process by artificial neural networks

    Directory of Open Access Journals (Sweden)

    E. Assidjo

    2008-09-01

    Full Text Available A suitable method is needed to solve the nonquality problem in the grated coconut industry due to the poor control of product humidity during the process. In this study the possibility of using an artificial neural network (ANN, precisely a Multilayer Perceptron, for modeling the drying step of the production of grated coconut process is highlighted. Drying must confer to the product a final moisture of 3%. Unfortunately, under industrial conditions, this moisture varies from 1.9 to 4.8 %. In order to control this parameter and consequently reduce the proportion of the product that does not meet the humidity specification, a 9-4-1 neural network architecture was established using data gathered from an industrial plant. This Multilayer Perceptron can satisfactorily model the process with less bias, ranging from -0.35 to 0.34%, and can reduce the rate of rejected products from 92% to 3% during the first cycle of drying.

  10. Theory of Neural Information Processing Systems

    International Nuclear Information System (INIS)

    Galla, Tobias

    2006-01-01

    It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 10 11 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kuehn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the

  11. Effects of alexithymia and empathy on the neural processing of social and monetary rewards.

    Science.gov (United States)

    Goerlich, Katharina Sophia; Votinov, Mikhail; Lammertz, Sarah E; Winkler, Lina; Spreckelmeyer, Katja N; Habel, Ute; Gründer, Gerhard; Gossen, Anna

    2017-07-01

    Empathy has been found to affect the neural processing of social and monetary rewards. Alexithymia, a subclinical condition showing a close inverse relationship with empathy is linked to dysfunctions of socio-emotional processing in the brain. Whether alexithymia alters the neural processing of rewards, which is currently unknown. Here, we investigated the influence of both alexithymia and empathy on reward processing using a social incentive delay (SID) task and a monetary incentive delay (MID) task in 45 healthy men undergoing functional magnetic resonance imaging. Controlling for temperament-character dimensions and rejection sensitivity, the relationship of alexithymia and empathy with neural activity in several a priori regions of interest (ROIs) was examined by means of partial correlations, while participants anticipated and received social and monetary rewards. Results were considered significant if they survived Holm-Bonferroni correction for multiple comparisons. Alexithymia modulated neural activity in several ROIs of the emotion and reward network, both during the anticipation of social and monetary rewards and in response to the receipt of monetary rewards. In contrast, empathy did not affect reward anticipation and modulated ROI activity only in response to the receipt of social rewards. These results indicate a significant influence of alexithymia on the processing of social and monetary rewards in the healthy brain.

  12. Social anhedonia is associated with neural abnormalities during face emotion processing.

    Science.gov (United States)

    Germine, Laura T; Garrido, Lucia; Bruce, Lori; Hooker, Christine

    2011-10-01

    Human beings are social organisms with an intrinsic desire to seek and participate in social interactions. Social anhedonia is a personality trait characterized by a reduced desire for social affiliation and reduced pleasure derived from interpersonal interactions. Abnormally high levels of social anhedonia prospectively predict the development of schizophrenia and contribute to poorer outcomes for schizophrenia patients. Despite the strong association between social anhedonia and schizophrenia, the neural mechanisms that underlie individual differences in social anhedonia have not been studied and are thus poorly understood. Deficits in face emotion recognition are related to poorer social outcomes in schizophrenia, and it has been suggested that face emotion recognition deficits may be a behavioral marker for schizophrenia liability. In the current study, we used functional magnetic resonance imaging (fMRI) to see whether there are differences in the brain networks underlying basic face emotion processing in a community sample of individuals low vs. high in social anhedonia. We isolated the neural mechanisms related to face emotion processing by comparing face emotion discrimination with four other baseline conditions (identity discrimination of emotional faces, identity discrimination of neutral faces, object discrimination, and pattern discrimination). Results showed a group (high/low social anhedonia) × condition (emotion discrimination/control condition) interaction in the anterior portion of the rostral medial prefrontal cortex, right superior temporal gyrus, and left somatosensory cortex. As predicted, high (relative to low) social anhedonia participants showed less neural activity in face emotion processing regions during emotion discrimination as compared to each control condition. The findings suggest that social anhedonia is associated with abnormalities in networks responsible for basic processes associated with social cognition, and provide a

  13. Neural processing of emotional-intensity predicts emotion regulation choice.

    Science.gov (United States)

    Shafir, Roni; Thiruchselvam, Ravi; Suri, Gaurav; Gross, James J; Sheppes, Gal

    2016-12-01

    Emotional-intensity is a core characteristic of affective events that strongly determines how individuals choose to regulate their emotions. Our conceptual framework suggests that in high emotional-intensity situations, individuals prefer to disengage attention using distraction, which can more effectively block highly potent emotional information, as compared with engagement reappraisal, which is preferred in low emotional-intensity. However, existing supporting evidence remains indirect because prior intensity categorization of emotional stimuli was based on subjective measures that are potentially biased and only represent the endpoint of emotional-intensity processing. Accordingly, this study provides the first direct evidence for the role of online emotional-intensity processing in predicting behavioral regulatory-choices. Utilizing the high temporal resolution of event-related potentials, we evaluated online neural processing of stimuli's emotional-intensity (late positive potential, LPP) prior to regulatory-choices between distraction and reappraisal. Results showed that enhanced neural processing of intensity (enhanced LPP amplitudes) uniquely predicted (above subjective measures of intensity) increased tendency to subsequently choose distraction over reappraisal. Additionally, regulatory-choices led to adaptive consequences, demonstrated in finding that actual implementation of distraction relative to reappraisal-choice resulted in stronger attenuation of LPPs and self-reported arousal. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. A fuzzy art neural network based color image processing and ...

    African Journals Online (AJOL)

    To improve the learning process from the input data, a new learning rule was suggested. In this paper, a new method is proposed to deal with the RGB color image pixels, which enables a Fuzzy ART neural network to process the RGB color images. The application of the algorithm was implemented and tested on a set of ...

  15. Dissociated neural processing for decisions in managers and non-managers.

    Science.gov (United States)

    Caspers, Svenja; Heim, Stefan; Lucas, Marc G; Stephan, Egon; Fischer, Lorenz; Amunts, Katrin; Zilles, Karl

    2012-01-01

    Functional neuroimaging studies of decision-making so far mainly focused on decisions under uncertainty or negotiation with other persons. Dual process theory assumes that, in such situations, decision making relies on either a rapid intuitive, automated or a slower rational processing system. However, it still remains elusive how personality factors or professional requirements might modulate the decision process and the underlying neural mechanisms. Since decision making is a key task of managers, we hypothesized that managers, facing higher pressure for frequent and rapid decisions than non-managers, prefer the heuristic, automated decision strategy in contrast to non-managers. Such different strategies may, in turn, rely on different neural systems. We tested managers and non-managers in a functional magnetic resonance imaging study using a forced-choice paradigm on word-pairs. Managers showed subcortical activation in the head of the caudate nucleus, and reduced hemodynamic response within the cortex. In contrast, non-managers revealed the opposite pattern. With the head of the caudate nucleus being an initiating component for process automation, these results supported the initial hypothesis, hinting at automation during decisions in managers. More generally, the findings reveal how different professional requirements might modulate cognitive decision processing.

  16. Competition explains limited attention and perceptual resources: implications for perceptual load and dilution theories.

    Science.gov (United States)

    Scalf, Paige E; Torralbo, Ana; Tapia, Evelina; Beck, Diane M

    2013-01-01

    Both perceptual load theory and dilution theory purport to explain when and why task-irrelevant information, or so-called distractors are processed. Central to both explanations is the notion of limited resources, although the theories differ in the precise way in which those limitations affect distractor processing. We have recently proposed a neurally plausible explanation of limited resources in which neural competition among stimuli hinders their representation in the brain. This view of limited capacity can also explain distractor processing, whereby the competitive interactions and bias imposed to resolve the competition determine the extent to which a distractor is processed. This idea is compatible with aspects of both perceptual load and dilution models of distractor processing, but also serves to highlight their differences. Here we review the evidence in favor of a biased competition view of limited resources and relate these ideas to both classic perceptual load theory and dilution theory.

  17. Adaptive model predictive process control using neural networks

    Science.gov (United States)

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  18. Neural networks in front-end processing and control

    International Nuclear Information System (INIS)

    Lister, J.B.; Schnurrenberger, H.; Staeheli, N.; Stockhammer, N.; Duperrex, P.A.; Moret, J.M.

    1992-01-01

    Research into neural networks has gained a large following in recent years. In spite of the long term timescale of this Artificial Intelligence research, the tools which the community is developing can already find useful applications to real practical problems in experimental research. One of the main advantages of the parallel algorithms being developed in AI is the structural simplicity of the required hardware implementation, and the simple nature of the calculations involved. This makes these techniques ideal for problems in which both speed and data volume reduction are important, the case for most front-end processing tasks. In this paper the authors illustrate the use of a particular neural network known as the Multi-Layer Perceptron as a method for solving several different tasks, all drawn from the field of Tokamak research. The authors also briefly discuss the use of the Multi-Layer Perceptron as a non-linear controller in a feedback loop. The authors outline the type of problem which can be usefully addressed by these techniques, even before the large-scale parallel processing hardware currently under development becomes cheaply available. The authors also present some of the difficulties encountered in applying these networks

  19. Neural networks in front-end processing and control

    International Nuclear Information System (INIS)

    Lister, J.B.; Schnurrenberger, H.; Staeheli, N.; Stockhammer, N.; Duperrex, P.A.; Moret, J.M.

    1991-07-01

    Research into neural networks has gained a large following in recent years. In spite of the long term timescale of this Artificial Intelligence research, the tools which the community is developing can already find useful applications to real practical problems in experimental research. One of the main advantages of the parallel algorithms being developed in AI is the structural simplicity of the required hardware implementation, and the simple nature of the calculations involved. This makes these techniques ideal for problems in which both speed and data volume reduction are important, the case for most front-end processing tasks. In this paper we illustrate the use of a particular neural network known as the Multi-Layer Perceptron as a method for solving several different tasks, all drawn from the field of Tokamak research. We also briefly discuss the use of the Multi-Layer Perceptron as a non-linear controller in a feedback loop. We outline the type of problem which can be usefully addressed by these techniques, even before the large-scale parallel processing hardware currently under development becomes cheaply available. We also present some of the difficulties encountered in applying these networks. (author) 13 figs., 9 refs

  20. Neural dynamics of motion processing and speed discrimination.

    Science.gov (United States)

    Chey, J; Grossberg, S; Mingolla, E

    1998-09-01

    A neural network model of visual motion perception and speed discrimination is presented. The model shows how a distributed population code of speed tuning, that realizes a size-speed correlation, can be derived from the simplest mechanisms whereby activations of multiple spatially short-range filters of different size are transformed into speed-turned cell responses. These mechanisms use transient cell responses to moving stimuli, output thresholds that covary with filter size, and competition. These mechanisms are proposed to occur in the V1-->MT cortical processing stream. The model reproduces empirically derived speed discrimination curves and simulates data showing how visual speed perception and discrimination can be affected by stimulus contrast, duration, dot density and spatial frequency. Model motion mechanisms are analogous to mechanisms that have been used to model 3-D form and figure-ground perception. The model forms the front end of a larger motion processing system that has been used to simulate how global motion capture occurs, and how spatial attention is drawn to moving forms. It provides a computational foundation for an emerging neural theory of 3-D form and motion perception.

  1. Can Intrinsic Fluctuations Increase Efficiency in Neural Information Processing?

    Science.gov (United States)

    Liljenström, Hans

    2003-05-01

    All natural processes are accompanied by fluctuations, characterized as noise or chaos. Biological systems, which have evolved during billions of years, are likely to have adapted, not only to cope with such fluctuations, but also to make use of them. We investigate how the complex dynamics of the brain, including oscillations, chaos and noise, can affect the efficiency of neural information processing. In particular, we consider the amplification and functional role of internal fluctuations. Using computer simulations of a neural network model of the olfactory cortex and hippocampus, we demonstrate how microscopic fluctuations can result in global effects at the network level. We show that the rate of information processing in associative memory tasks can be maximized for optimal noise levels, analogous to stochastic resonance phenomena. Noise can also induce transitions between different dynamical states, which could be of significance for learning and memory. A chaotic-like behavior, induced by noise or by an increase in neuronal excitability, can enhance system performance if it is transient and converges to a limit cycle memory state. We speculate whether this dynamical behavior perhaps could be related to (creative) thinking.

  2. Neural processing of speech in children is influenced by bilingual experience

    Science.gov (United States)

    Krizman, Jennifer; Slater, Jessica; Skoe, Erika; Marian, Viorica; Kraus, Nina

    2014-01-01

    Language experience fine-tunes how the auditory system processes sound. For example, bilinguals, relative to monolinguals, have more robust evoked responses to speech that manifest as stronger neural encoding of the fundamental frequency (F0) and greater across-trial consistency. However, it is unknown whether such enhancements increase with increasing second language experience. We predict that F0 amplitude and neural consistency scale with dual-language experience during childhood, such that more years of bilingual experience leads to more robust F0 encoding and greater neural consistency. To test this hypothesis, we recorded auditory brainstem responses to the synthesized syllables ‘ba’ and ‘ga’ in two groups of bilingual children who were matched for age at test (8.4+/−0.67 years) but differed in their age of second language acquisition. One group learned English and Spanish simultaneously from birth (n=13), while the second group learned the two languages sequentially (n=15), spending on average their first four years as monolingual Spanish speakers. We find that simultaneous bilinguals have a larger F0 response to ‘ba’ and ‘ga’ and a more consistent response to ‘ba’ compared to sequential bilinguals. We also demonstrate that these neural enhancements positively relate with years of bilingual experience. These findings support the notion that bilingualism enhances subcortical auditory processing. PMID:25445377

  3. Resource Planning for Massive Number of Process Instances

    Science.gov (United States)

    Xu, Jiajie; Liu, Chengfei; Zhao, Xiaohui

    Resource allocation has been recognised as an important topic for business process execution. In this paper, we focus on planning resources for a massive number of process instances to meet the process requirements and cater for rational utilisation of resources before execution. After a motivating example, we present a model for planning resources for process instances. Then we design a set of heuristic rules that take both optimised planning at build time and instance dependencies at run time into account. Based on these rules we propose two strategies, one is called holistic and the other is called batched, for resource planning. Both strategies target a lower cost, however, the holistic strategy can achieve an earlier deadline while the batched strategy aims at rational use of resources. We discuss how to find balance between them in the paper with a comprehensive experimental study on these two approaches.

  4. Neural signal processing and closed-loop control algorithm design for an implanted neural recording and stimulation system.

    Science.gov (United States)

    Hamilton, Lei; McConley, Marc; Angermueller, Kai; Goldberg, David; Corba, Massimiliano; Kim, Louis; Moran, James; Parks, Philip D; Sang Chin; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed

  5. Filtering and spectral processing of 1-D signals using cellular neural networks

    NARCIS (Netherlands)

    Moreira-Tamayo, O.; Pineda de Gyvez, J.

    1996-01-01

    This paper presents cellular neural networks (CNN) for one-dimensional discrete signal processing. Although CNN has been extensively used in image processing applications, little has been done for 1-dimensional signal processing. We propose a novel CNN architecture to carry out these tasks. This

  6. Application of neural networks to multiple alarm processing and diagnosis in nuclear power plants

    International Nuclear Information System (INIS)

    Cheon, Se Woo; Chang Soon Heung; Chung, Hak Yeong

    1992-01-01

    This paper presents feasibility studies of multiple alarm processing and diagnosis using neural networks. The back-propagation neural network model is applied to the training of multiple alarm patterns for the identification of failure in a reactor coolant pump (RCP) system. The general mapping capability of the neural network enables to identify a fault easily. The case studies are performed with emphasis on the applicability of the neural network to pattern recognition problems. It is revealed that the neural network model can identify the cause of multiple alarms properly, even when untrained or sensor-failed alarm symptoms are given. It is also shown that multiple failures are easily identified using the symptoms of multiple alarms

  7. Compensatory recruitment of neural resources in chronic alcoholism.

    Science.gov (United States)

    Chanraud, Sandra; Sullivan, Edith V

    2014-01-01

    Functional recovery occurs with sustained sobriety, but the neural mechanisms enabling recovery are only now emerging. Theories about promising mechanisms involve concepts of neuroadaptation, where excessive alcohol consumption results in untoward structural and functional brain changes which are subsequently candidates for reversal with sobriety. Views on functional adaptation in chronic alcoholism have expanded with results from neuroimaging studies. Here, we first describe and define the concept of neuroadaptation according to emerging theories based on the growing literature in aging-related cognitive functioning. Then we describe findings as they apply to chronic alcoholism and factors that could influence compensation, such as functional brain reserve and the integrity of brain structure. Finally, we review brain plasticity based on physiologic mechanisms that could underlie mechanisms of neural compensation. Where possible, we provide operational criteria to define functional and neural compensation. © 2014 Elsevier B.V. All rights reserved.

  8. Neural activity, neural connectivity, and the processing of emotionally valenced information in older adults: links with life satisfaction.

    Science.gov (United States)

    Waldinger, Robert J; Kensinger, Elizabeth A; Schulz, Marc S

    2011-09-01

    This study examines whether differences in late-life well-being are linked to how older adults encode emotionally valenced information. Using fMRI with 39 older adults varying in life satisfaction, we examined how viewing positive and negative images would affect activation and connectivity of an emotion-processing network. Participants engaged most regions within this network more robustly for positive than for negative images, but within the PFC this effect was moderated by life satisfaction, with individuals higher in satisfaction showing lower levels of activity during the processing of positive images. Participants high in satisfaction showed stronger correlations among network regions-particularly between the amygdala and other emotion processing regions-when viewing positive, as compared with negative, images. Participants low in satisfaction showed no valence effect. Findings suggest that late-life satisfaction is linked with how emotion-processing regions are engaged and connected during processing of valenced information. This first demonstration of a link between neural recruitment and late-life well-being suggests that differences in neural network activation and connectivity may account for the preferential encoding of positive information seen in some older adults.

  9. Vicarious neural processing of outcomes during observational learning.

    Directory of Open Access Journals (Sweden)

    Elisabetta Monfardini

    Full Text Available Learning what behaviour is appropriate in a specific context by observing the actions of others and their outcomes is a key constituent of human cognition, because it saves time and energy and reduces exposure to potentially dangerous situations. Observational learning of associative rules relies on the ability to map the actions of others onto our own, process outcomes, and combine these sources of information. Here, we combined newly developed experimental tasks and functional magnetic resonance imaging (fMRI to investigate the neural mechanisms that govern such observational learning. Results show that the neural systems involved in individual trial-and-error learning and in action observation and execution both participate in observational learning. In addition, we identified brain areas that specifically activate for others' incorrect outcomes during learning in the posterior medial frontal cortex (pMFC, the anterior insula and the posterior superior temporal sulcus (pSTS.

  10. Vicarious neural processing of outcomes during observational learning.

    Science.gov (United States)

    Monfardini, Elisabetta; Gazzola, Valeria; Boussaoud, Driss; Brovelli, Andrea; Keysers, Christian; Wicker, Bruno

    2013-01-01

    Learning what behaviour is appropriate in a specific context by observing the actions of others and their outcomes is a key constituent of human cognition, because it saves time and energy and reduces exposure to potentially dangerous situations. Observational learning of associative rules relies on the ability to map the actions of others onto our own, process outcomes, and combine these sources of information. Here, we combined newly developed experimental tasks and functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms that govern such observational learning. Results show that the neural systems involved in individual trial-and-error learning and in action observation and execution both participate in observational learning. In addition, we identified brain areas that specifically activate for others' incorrect outcomes during learning in the posterior medial frontal cortex (pMFC), the anterior insula and the posterior superior temporal sulcus (pSTS).

  11. Neural Language Processing in Adolescent First-Language Learners: Longitudinal Case Studies in American Sign Language.

    Science.gov (United States)

    Ferjan Ramirez, Naja; Leonard, Matthew K; Davenport, Tristan S; Torres, Christina; Halgren, Eric; Mayberry, Rachel I

    2016-03-01

    One key question in neurolinguistics is the extent to which the neural processing system for language requires linguistic experience during early life to develop fully. We conducted a longitudinal anatomically constrained magnetoencephalography (aMEG) analysis of lexico-semantic processing in 2 deaf adolescents who had no sustained language input until 14 years of age, when they became fully immersed in American Sign Language. After 2 to 3 years of language, the adolescents' neural responses to signed words were highly atypical, localizing mainly to right dorsal frontoparietal regions and often responding more strongly to semantically primed words (Ferjan Ramirez N, Leonard MK, Torres C, Hatrak M, Halgren E, Mayberry RI. 2014. Neural language processing in adolescent first-language learners. Cereb Cortex. 24 (10): 2772-2783). Here, we show that after an additional 15 months of language experience, the adolescents' neural responses remained atypical in terms of polarity. While their responses to less familiar signed words still showed atypical localization patterns, the localization of responses to highly familiar signed words became more concentrated in the left perisylvian language network. Our findings suggest that the timing of language experience affects the organization of neural language processing; however, even in adolescence, language representation in the human brain continues to evolve with experience. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Competition explains limited attention and perceptual resources: implications for perceptual load and dilution theories

    Directory of Open Access Journals (Sweden)

    Paige E. Scalf

    2013-05-01

    Full Text Available Both perceptual load theory and dilution theory purport to explain when and why task-irrelevant information, or so-called distractors are processed. Central to both explanations is the notion of limited resources, although the theories differ in the precise way in which those limitations affect distractor processing. We have recently proposed a neurally plausible explanation of limited resources in which neural competition among stimuli hinders their representation in the brain. This view of limited capacity can also explain distractor processing, whereby the competitive interactions and bias imposed to resolve the competition determine the extent to which a distractor is processed. This idea is compatible with aspects of both perceptual load and dilution models of distractor processing, but also serves to highlight their differences. Here we review the evidence in favor of a biased competition view of limited resources and relate these ideas to both classic perceptual load theory and dilution theory.

  13. Statistical process control using optimized neural networks: a case study.

    Science.gov (United States)

    Addeh, Jalil; Ebrahimzadeh, Ata; Azarbad, Milad; Ranaee, Vahid

    2014-09-01

    The most common statistical process control (SPC) tools employed for monitoring process changes are control charts. A control chart demonstrates that the process has altered by generating an out-of-control signal. This study investigates the design of an accurate system for the control chart patterns (CCPs) recognition in two aspects. First, an efficient system is introduced that includes two main modules: feature extraction module and classifier module. In the feature extraction module, a proper set of shape features and statistical feature are proposed as the efficient characteristics of the patterns. In the classifier module, several neural networks, such as multilayer perceptron, probabilistic neural network and radial basis function are investigated. Based on an experimental study, the best classifier is chosen in order to recognize the CCPs. Second, a hybrid heuristic recognition system is introduced based on cuckoo optimization algorithm (COA) algorithm to improve the generalization performance of the classifier. The simulation results show that the proposed algorithm has high recognition accuracy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Using the artificial neural network to control the steam turbine heating process

    International Nuclear Information System (INIS)

    Nowak, Grzegorz; Rusin, Andrzej

    2016-01-01

    Highlights: • Inverse Artificial Neural Network has a potential to control the start-up process of a steam turbine. • Two serial neural networks made it possible to model the rotor stress based of steam parameters. • An ANN with feedback enables transient stress modelling with good accuracy. - Abstract: Due to the significant share of renewable energy sources (RES) – wind farms in particular – in the power sector of many countries, power generation systems become sensitive to variable weather conditions. Under unfavourable changes in weather, ensuring required energy supplies involves hasty start-ups of conventional steam power units whose operation should be characterized by higher and higher flexibility. Controlling the process of power engineering machinery operation requires fast predictive models that will make it possible to analyse many parallel scenarios and select the most favourable one. This approach is employed by the algorithm for the inverse neural network control presented in this paper. Based on the current thermal state of the turbine casing, the algorithm controls the steam temperature at the turbine inlet to keep both the start-up rate and the safety of the machine at the allowable level. The method used herein is based on two artificial neural networks (ANN) working in series.

  15. Reformulated Neural Network (ReNN): a New Alternative for Data-driven Modelling in Hydrology and Water Resources Engineering

    Science.gov (United States)

    Razavi, S.; Tolson, B.; Burn, D.; Seglenieks, F.

    2012-04-01

    Reformulated Neural Network (ReNN) has been recently developed as an efficient and more effective alternative to feedforward multi-layer perceptron (MLP) neural networks [Razavi, S., and Tolson, B. A. (2011). "A new formulation for feedforward neural networks." IEEE Transactions on Neural Networks, 22(10), 1588-1598, DOI: 1510.1109/TNN.2011.2163169]. This presentation initially aims to introduce the ReNN to the water resources community and then demonstrates ReNN applications to water resources related problems. ReNN is essentially equivalent to a single-hidden-layer MLP neural network but defined on a new set of network variables which is more effective than the traditional set of network weights and biases. The main features of the new network variables are that they are geometrically interpretable and each variable has a distinct role in forming the network response. ReNN is more efficiently trained as it has a less complex error response surface. In addition to the ReNN training efficiency, the interpretability of the ReNN variables enables the users to monitor and understand the internal behaviour of the network while training. Regularization in the ReNN response can be also directly measured and controlled. This feature improves the generalization ability of the network. The appeal of the ReNN is demonstrated with two ReNN applications to water resources engineering problems. In the first application, the ReNN is used to model the rainfall-runoff relationships in multiple watersheds in the Great Lakes basin located in northeastern North America. Modelling inflows to the Great Lakes are of great importance to the management of the Great Lakes system. Due to the lack of some detailed physical data about existing control structures in many subwatersheds of this huge basin, the data-driven approach to modelling such as the ReNN are required to replace predictions from a physically-based rainfall runoff model. Unlike traditional MLPs, the ReNN does not necessarily

  16. Dissociated neural processing for decisions in managers and non-managers.

    Directory of Open Access Journals (Sweden)

    Svenja Caspers

    Full Text Available Functional neuroimaging studies of decision-making so far mainly focused on decisions under uncertainty or negotiation with other persons. Dual process theory assumes that, in such situations, decision making relies on either a rapid intuitive, automated or a slower rational processing system. However, it still remains elusive how personality factors or professional requirements might modulate the decision process and the underlying neural mechanisms. Since decision making is a key task of managers, we hypothesized that managers, facing higher pressure for frequent and rapid decisions than non-managers, prefer the heuristic, automated decision strategy in contrast to non-managers. Such different strategies may, in turn, rely on different neural systems. We tested managers and non-managers in a functional magnetic resonance imaging study using a forced-choice paradigm on word-pairs. Managers showed subcortical activation in the head of the caudate nucleus, and reduced hemodynamic response within the cortex. In contrast, non-managers revealed the opposite pattern. With the head of the caudate nucleus being an initiating component for process automation, these results supported the initial hypothesis, hinting at automation during decisions in managers. More generally, the findings reveal how different professional requirements might modulate cognitive decision processing.

  17. Neural markers of opposite-sex bias in face processing

    Directory of Open Access Journals (Sweden)

    Alice Mado eProverbio

    2010-10-01

    Full Text Available Some behavioral and neuroimaging studies suggest that adults prefer to view attractive faces of the opposite sex more than attractive faces of the same sex. However, unlike the other-race face effect (ORE; Caldara et al., 2004, little is known regarding the existence of an opposite-/same-sex bias in face processing. In this study, the faces of 130 attractive male and female adults were foveally presented to 40 heterosexual university students (20 men and 20 women who were engaged in a secondary perceptual task (landscape detection. The automatic processing of face gender was investigated by recording ERPs from 128 scalp sites. Neural markers of opposite- vs. same-sex bias in face processing included larger and earlier centro-parietal N400s in response to faces of the opposite sex and a larger late positivity (LP to same-sex faces. Analysis of intra-cortical neural generators (swLORETA showed that facial processing-related (FG, BA37, BA20/21 and emotion-related brain areas (the right parahippocampal gyrus, BA35; uncus, BA36/38; and the cingulate gyrus, BA24 had higher activations in response to opposite- than same-sex faces. The results of this analysis, along with data obtained from ERP recordings, support the hypothesis that both genders process opposite-sex faces differently than same-sex faces. The data also suggest a hemispheric asymmetry in the processing of opposite-/same-sex faces, with the right hemisphere involved in processing same-sex faces and the left hemisphere involved in processing faces of the opposite sex. The data support previous literature suggesting a right lateralization for the representation of self-image and body awareness.

  18. Neural markers of opposite-sex bias in face processing.

    Science.gov (United States)

    Proverbio, Alice Mado; Riva, Federica; Martin, Eleonora; Zani, Alberto

    2010-01-01

    Some behavioral and neuroimaging studies suggest that adults prefer to view attractive faces of the opposite sex more than attractive faces of the same sex. However, unlike the other-race face effect (Caldara et al., 2004), little is known regarding the existence of an opposite-/same-sex bias in face processing. In this study, the faces of 130 attractive male and female adults were foveally presented to 40 heterosexual university students (20 men and 20 women) who were engaged in a secondary perceptual task (landscape detection). The automatic processing of face gender was investigated by recording ERPs from 128 scalp sites. Neural markers of opposite- vs. same-sex bias in face processing included larger and earlier centro-parietal N400s in response to faces of the opposite sex and a larger late positivity (LP) to same-sex faces. Analysis of intra-cortical neural generators (swLORETA) showed that facial processing-related (FG, BA37, BA20/21) and emotion-related brain areas (the right parahippocampal gyrus, BA35; uncus, BA36/38; and the cingulate gyrus, BA24) had higher activations in response to opposite- than same-sex faces. The results of this analysis, along with data obtained from ERP recordings, support the hypothesis that both genders process opposite-sex faces differently than same-sex faces. The data also suggest a hemispheric asymmetry in the processing of opposite-/same-sex faces, with the right hemisphere involved in processing same-sex faces and the left hemisphere involved in processing faces of the opposite sex. The data support previous literature suggesting a right lateralization for the representation of self-image and body awareness.

  19. Nicotine Withdrawal Induces Neural Deficits in Reward Processing.

    Science.gov (United States)

    Oliver, Jason A; Evans, David E; Addicott, Merideth A; Potts, Geoffrey F; Brandon, Thomas H; Drobes, David J

    2017-06-01

    Nicotine withdrawal reduces neurobiological responses to nonsmoking rewards. Insight into these reward deficits could inform the development of targeted interventions. This study examined the effect of withdrawal on neural and behavioral responses during a reward prediction task. Smokers (N = 48) attended two laboratory sessions following overnight abstinence. Withdrawal was manipulated by having participants smoke three regular nicotine (0.6 mg yield; satiation) or very low nicotine (0.05 mg yield; withdrawal) cigarettes. Electrophysiological recordings of neural activity were obtained while participants completed a reward prediction task that involved viewing four combinations of predictive and reward-determining stimuli: (1) Unexpected Reward; (2) Predicted Reward; (3) Predicted Punishment; (4) Unexpected Punishment. The task evokes a medial frontal negativity that mimics the phasic pattern of dopaminergic firing in ventral tegmental regions associated with reward prediction errors. Nicotine withdrawal decreased the amplitude of the medial frontal negativity equally across all trial types (p nicotine dependence (p Nicotine withdrawal had equivocal impact across trial types, suggesting reward processing deficits are unlikely to stem from changes in phasic dopaminergic activity during prediction errors. Effects on tonic activity may be more pronounced. Pharmacological interventions directly targeting the dopamine system and behavioral interventions designed to increase reward motivation and responsiveness (eg, behavioral activation) may aid in mitigating withdrawal symptoms and potentially improving smoking cessation outcomes. Findings from this study indicate nicotine withdrawal impacts reward processing signals that are observable in smokers' neural activity. This may play a role in the subjective aversive experience of nicotine withdrawal and potentially contribute to smoking relapse. Interventions that address abnormal responding to both pleasant and

  20. PHYSICAL RESOURCES OF INFORMATION PROCESSES AND TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Mikhail O. Kolbanev

    2014-11-01

    Full Text Available Subject of study. The paper describes basic information technologies for automating of information processes of data storage, distribution and processing in terms of required physical resources. It is shown that the study of these processes with such traditional objectives of modern computer science, as the ability to transfer knowledge, degree of automation, information security, coding, reliability, and others, is not enough. The reasons are: on the one hand, the increase in the volume and intensity of information exchange in the subject of human activity and, on the other hand, drawing near to the limit of information systems efficiency based on semiconductor technologies. Creation of such technologies, which not only provide support for information interaction, but also consume a rational amount of physical resources, has become an actual problem of modern engineering development. Thus, basic information technologies for storage, distribution and processing of information to support the interaction between people are the object of study, and physical temporal, spatial and energy resources required for implementation of these technologies are the subject of study. Approaches. An attempt is made to enlarge the possibilities of traditional cybernetics methodology, which replaces the consideration of material information component by states search for information objects. It is done by taking explicitly into account the amount of physical resources required for changes in the states of information media. Purpose of study. The paper deals with working out of a common approach to the comparison and subsequent selection of basic information technologies for storage, distribution and processing of data, taking into account not only the requirements for the quality of information exchange in particular subject area and the degree of technology application, but also the amounts of consumed physical resources. Main findings. Classification of resources

  1. Neural signal processing for identifying failed fuel rods in nuclear reactors

    International Nuclear Information System (INIS)

    Seixas, Jose M. de; Soares Filho, William; Pereira, Wagner C.A.; Teles, Claudio C.B.

    2002-01-01

    Ultrasonic pulses were used for automatic detection of failed nuclear fuel rods. For experimental tests of the proposed method, an assembly prototype of 16 x 16 rods was built by using genuine rods but without fuel inside (just air). Some rods were partially filled with water to simulate cracked rods. Using neural signal processing on the received echoes of the emitted ultrasonic pulses, a detection efficiency of 97% was obtained. Neural detection is shown to outperform other classical discriminating methods and can also reveal important features of the signal structure of the received echoes. (author)

  2. Neural correlates of early-closure garden-path processing: Effects of prosody and plausibility.

    Science.gov (United States)

    den Ouden, Dirk-Bart; Dickey, Michael Walsh; Anderson, Catherine; Christianson, Kiel

    2016-01-01

    Functional magnetic resonance imaging (fMRI) was used to investigate neural correlates of early-closure garden-path sentence processing and use of extrasyntactic information to resolve temporary syntactic ambiguities. Sixteen participants performed an auditory picture verification task on sentences presented with natural versus flat intonation. Stimuli included sentences in which the garden-path interpretation was plausible, implausible because of a late pragmatic cue, or implausible because of a semantic mismatch between an optionally transitive verb and the following noun. Natural sentence intonation was correlated with left-hemisphere temporal activation, but also with activation that suggests the allocation of more resources to interpretation when natural prosody is provided. Garden-path processing was associated with upregulation in bilateral inferior parietal and right-hemisphere dorsolateral prefrontal and inferior frontal cortex, while differences between the strength and type of plausibility cues were also reflected in activation patterns. Region of interest (ROI) analyses in regions associated with complex syntactic processing are consistent with a role for posterior temporal cortex supporting access to verb argument structure. Furthermore, ROI analyses within left-hemisphere inferior frontal gyrus suggest a division of labour, with the anterior-ventral part primarily involved in syntactic-semantic mismatch detection, the central part supporting structural reanalysis, and the posterior-dorsal part showing a general structural complexity effect.

  3. Neural Mechanisms and Information Processing in Recognition Systems

    Directory of Open Access Journals (Sweden)

    Mamiko Ozaki

    2014-10-01

    Full Text Available Nestmate recognition is a hallmark of social insects. It is based on the match/mismatch of an identity signal carried by members of the society with that of the perceiving individual. While the behavioral response, amicable or aggressive, is very clear, the neural systems underlying recognition are not fully understood. Here we contrast two alternative hypotheses for the neural mechanisms that are responsible for the perception and information processing in recognition. We focus on recognition via chemical signals, as the common modality in social insects. The first, classical, hypothesis states that upon perception of recognition cues by the sensory system the information is passed as is to the antennal lobes and to higher brain centers where the information is deciphered and compared to a neural template. Match or mismatch information is then transferred to some behavior-generating centers where the appropriate response is elicited. An alternative hypothesis, that of “pre-filter mechanism”, posits that the decision as to whether to pass on the information to the central nervous system takes place in the peripheral sensory system. We suggest that, through sensory adaptation, only alien signals are passed on to the brain, specifically to an “aggressive-behavior-switching center”, where the response is generated if the signal is above a certain threshold.

  4. Forward and Reverse Process Models for the Squeeze Casting Process Using Neural Network Based Approaches

    Directory of Open Access Journals (Sweden)

    Manjunath Patel Gowdru Chandrashekarappa

    2014-01-01

    Full Text Available The present research work is focussed to develop an intelligent system to establish the input-output relationship utilizing forward and reverse mappings of artificial neural networks. Forward mapping aims at predicting the density and secondary dendrite arm spacing (SDAS from the known set of squeeze cast process parameters such as time delay, pressure duration, squeezes pressure, pouring temperature, and die temperature. An attempt is also made to meet the industrial requirements of developing the reverse model to predict the recommended squeeze cast parameters for the desired density and SDAS. Two different neural network based approaches have been proposed to carry out the said task, namely, back propagation neural network (BPNN and genetic algorithm neural network (GA-NN. The batch mode of training is employed for both supervised learning networks and requires huge training data. The requirement of huge training data is generated artificially at random using regression equation derived through real experiments carried out earlier by the same authors. The performances of BPNN and GA-NN models are compared among themselves with those of regression for ten test cases. The results show that both models are capable of making better predictions and the models can be effectively used in shop floor in selection of most influential parameters for the desired outputs.

  5. Altered neural reward and loss processing and prediction error signalling in depression

    Science.gov (United States)

    Ubl, Bettina; Kuehner, Christine; Kirsch, Peter; Ruttorf, Michaela

    2015-01-01

    Dysfunctional processing of reward and punishment may play an important role in depression. However, functional magnetic resonance imaging (fMRI) studies have shown heterogeneous results for reward processing in fronto-striatal regions. We examined neural responsivity associated with the processing of reward and loss during anticipation and receipt of incentives and related prediction error (PE) signalling in depressed individuals. Thirty medication-free depressed persons and 28 healthy controls performed an fMRI reward paradigm. Regions of interest analyses focused on neural responses during anticipation and receipt of gains and losses and related PE-signals. Additionally, we assessed the relationship between neural responsivity during gain/loss processing and hedonic capacity. When compared with healthy controls, depressed individuals showed reduced fronto-striatal activity during anticipation of gains and losses. The groups did not significantly differ in response to reward and loss outcomes. In depressed individuals, activity increases in the orbitofrontal cortex and nucleus accumbens during reward anticipation were associated with hedonic capacity. Depressed individuals showed an absence of reward-related PEs but encoded loss-related PEs in the ventral striatum. Depression seems to be linked to blunted responsivity in fronto-striatal regions associated with limited motivational responses for rewards and losses. Alterations in PE encoding might mirror blunted reward- and enhanced loss-related associative learning in depression. PMID:25567763

  6. Analysis of Using Resources in Business Process Modeling and Simulation

    Directory of Open Access Journals (Sweden)

    Vasilecas Olegas

    2014-12-01

    Full Text Available One of the key purposes of Business Process Model and Notation (BPMN is to support graphical representation of the process model. However, such models have a lack of support for the graphical representation of resources, whose processes are used during simulation or execution of process instance. The paper analyzes different methods and their extensions for resource modeling. Further, this article presents a selected set of resource properties that are relevant for resource modeling. The paper proposes an approach that explains how to use the selected set of resource properties for extension of process modeling using BPMN and simulation tools. They are based on BPMN, where business process instances use resources in a concurrency manner.

  7. Neural Substrates for Processing Task-Irrelevant Sad Images in Adolescents

    Science.gov (United States)

    Wang, Lihong; Huettel, Scott; De Bellis, Michael D.

    2008-01-01

    Neural systems related to cognitive and emotional processing were examined in adolescents using event-related functional magnetic resonance imaging (fMRI). Ten healthy adolescents performed an emotional oddball task. Subjects detected infrequent circles (targets) within a continual stream of phase-scrambled images (standards). Sad and neutral…

  8. Use of neural networks in process engineering. Thermodynamics, diffusion, and process control and simulation applications

    International Nuclear Information System (INIS)

    Otero, F

    1998-01-01

    This article presents the current status of the use of Artificial Neural Networks (ANNs) in process engineering applications where common mathematical methods do not completely represent the behavior shown by experimental observations, results, and plant operating data. Three examples of the use of ANNs in typical process engineering applications such as prediction of activity in solvent-polymer binary systems, prediction of a surfactant self-diffusion coefficient of micellar systems, and process control and simulation are shown. These examples are important for polymerization applications, enhanced-oil recovery, and automatic process control

  9. Functional Roles of Neural Preparatory Processes in a Cued Stroop Task Revealed by Linking Electrophysiology with Behavioral Performance.

    Directory of Open Access Journals (Sweden)

    Chao Wang

    Full Text Available It is well established that cuing facilitates behavioral performance and that different aspects of instructional cues evoke specific neural preparatory processes in cued task-switching paradigms. To deduce the functional role of these neural preparatory processes the majority of studies vary aspects of the experimental paradigm and describe how these variations alter markers of neural preparatory processes. Although these studies provide important insights, they also have notable limitations, particularly in terms of understanding the causal or functional relationship of neural markers to cognitive and behavioral processes. In this study, we sought to address these limitations and uncover the functional roles of neural processes by examining how variability in the amplitude of neural preparatory processes predicts behavioral performance to subsequent stimuli. To achieve this objective 16 young adults were recruited to perform a cued Stroop task while their brain activity was measured using high-density electroencephalography. Four temporally overlapping but functionally and topographically distinct cue-triggered event related potentials (ERPs were identified: 1 A left-frontotemporal negativity (250-700 ms that was positively associated with word-reading performance; 2 a midline-frontal negativity (450-800 ms that was positively associated with color-naming and incongruent performance; 3 a left-frontal negativity (450-800 ms that was positively associated with switch trial performance; and 4 a centroparietal positivity (450-800 ms that was positively associated with performance for almost all trial types. These results suggest that at least four dissociable cognitive processes are evoked by instructional cues in the present task, including: 1 domain-specific task facilitation; 2 switch-specific task-set reconfiguration; 3 preparation for response conflict; and 4 proactive attentional control. Examining the relationship between ERPs and behavioral

  10. Functional Roles of Neural Preparatory Processes in a Cued Stroop Task Revealed by Linking Electrophysiology with Behavioral Performance.

    Science.gov (United States)

    Wang, Chao; Ding, Mingzhou; Kluger, Benzi M

    2015-01-01

    It is well established that cuing facilitates behavioral performance and that different aspects of instructional cues evoke specific neural preparatory processes in cued task-switching paradigms. To deduce the functional role of these neural preparatory processes the majority of studies vary aspects of the experimental paradigm and describe how these variations alter markers of neural preparatory processes. Although these studies provide important insights, they also have notable limitations, particularly in terms of understanding the causal or functional relationship of neural markers to cognitive and behavioral processes. In this study, we sought to address these limitations and uncover the functional roles of neural processes by examining how variability in the amplitude of neural preparatory processes predicts behavioral performance to subsequent stimuli. To achieve this objective 16 young adults were recruited to perform a cued Stroop task while their brain activity was measured using high-density electroencephalography. Four temporally overlapping but functionally and topographically distinct cue-triggered event related potentials (ERPs) were identified: 1) A left-frontotemporal negativity (250-700 ms) that was positively associated with word-reading performance; 2) a midline-frontal negativity (450-800 ms) that was positively associated with color-naming and incongruent performance; 3) a left-frontal negativity (450-800 ms) that was positively associated with switch trial performance; and 4) a centroparietal positivity (450-800 ms) that was positively associated with performance for almost all trial types. These results suggest that at least four dissociable cognitive processes are evoked by instructional cues in the present task, including: 1) domain-specific task facilitation; 2) switch-specific task-set reconfiguration; 3) preparation for response conflict; and 4) proactive attentional control. Examining the relationship between ERPs and behavioral

  11. Neural Adaptation Effects in Conceptual Processing

    Directory of Open Access Journals (Sweden)

    Barbara F. M. Marino

    2015-07-01

    Full Text Available We investigated the conceptual processing of nouns referring to objects characterized by a highly typical color and orientation. We used a go/no-go task in which we asked participants to categorize each noun as referring or not to natural entities (e.g., animals after a selective adaptation of color-edge neurons in the posterior LV4 region of the visual cortex was induced by means of a McCollough effect procedure. This manipulation affected categorization: the green-vertical adaptation led to slower responses than the green-horizontal adaptation, regardless of the specific color and orientation of the to-be-categorized noun. This result suggests that the conceptual processing of natural entities may entail the activation of modality-specific neural channels with weights proportional to the reliability of the signals produced by these channels during actual perception. This finding is discussed with reference to the debate about the grounded cognition view.

  12. Neural networks

    International Nuclear Information System (INIS)

    Denby, Bruce; Lindsey, Clark; Lyons, Louis

    1992-01-01

    The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive

  13. A novel joint-processing adaptive nonlinear equalizer using a modular recurrent neural network for chaotic communication systems.

    Science.gov (United States)

    Zhao, Haiquan; Zeng, Xiangping; Zhang, Jiashu; Liu, Yangguang; Wang, Xiaomin; Li, Tianrui

    2011-01-01

    To eliminate nonlinear channel distortion in chaotic communication systems, a novel joint-processing adaptive nonlinear equalizer based on a pipelined recurrent neural network (JPRNN) is proposed, using a modified real-time recurrent learning (RTRL) algorithm. Furthermore, an adaptive amplitude RTRL algorithm is adopted to overcome the deteriorating effect introduced by the nesting process. Computer simulations illustrate that the proposed equalizer outperforms the pipelined recurrent neural network (PRNN) and recurrent neural network (RNN) equalizers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting

    KAUST Repository

    Zhang, Xuesong; Liang, Faming; Yu, Beibei; Zong, Ziliang

    2011-01-01

    Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow

  15. Abnormal neural hierarchy in processing of verbal information in patients with schizophrenia.

    Science.gov (United States)

    Lerner, Yulia; Bleich-Cohen, Maya; Solnik-Knirsh, Shimrit; Yogev-Seligmann, Galit; Eisenstein, Tamir; Madah, Waheed; Shamir, Alon; Hendler, Talma; Kremer, Ilana

    2018-01-01

    Previous research indicates abnormal comprehension of verbal information in patients with schizophrenia. Yet the neural mechanism underlying the breakdown of verbal information processing in schizophrenia is poorly understood. Imaging studies in healthy populations have shown a network of brain areas involved in hierarchical processing of verbal information over time. Here, we identified critical aspects of this hierarchy, examining patients with schizophrenia. Using functional magnetic resonance imaging, we examined various levels of information comprehension elicited by naturally presented verbal stimuli; from a set of randomly shuffled words to an intact story. Specifically, patients with first episode schizophrenia ( N  = 15), their non-manifesting siblings ( N  = 14) and healthy controls ( N  = 15) listened to a narrated story and randomly scrambled versions of it. To quantify the degree of dissimilarity between the groups, we adopted an inter-subject correlation (inter-SC) approach, which estimates differences in synchronization of neural responses within and between groups. The temporal topography found in healthy and siblings groups were consistent with our previous findings - high synchronization in responses from early sensory toward high order perceptual and cognitive areas. In patients with schizophrenia, stimuli with short and intermediate temporal scales evoked a typical pattern of reliable responses, whereas story condition (long temporal scale) revealed robust and widespread disruption of the inter-SCs. In addition, the more similar the neural activity of patients with schizophrenia was to the average response in the healthy group, the less severe the positive symptoms of the patients. Our findings suggest that system-level neural indication of abnormal verbal information processing in schizophrenia reflects disease manifestations.

  16. Abnormal neural hierarchy in processing of verbal information in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Yulia Lerner

    2018-01-01

    Full Text Available Previous research indicates abnormal comprehension of verbal information in patients with schizophrenia. Yet the neural mechanism underlying the breakdown of verbal information processing in schizophrenia is poorly understood. Imaging studies in healthy populations have shown a network of brain areas involved in hierarchical processing of verbal information over time. Here, we identified critical aspects of this hierarchy, examining patients with schizophrenia. Using functional magnetic resonance imaging, we examined various levels of information comprehension elicited by naturally presented verbal stimuli; from a set of randomly shuffled words to an intact story. Specifically, patients with first episode schizophrenia (N = 15, their non-manifesting siblings (N = 14 and healthy controls (N = 15 listened to a narrated story and randomly scrambled versions of it. To quantify the degree of dissimilarity between the groups, we adopted an inter-subject correlation (inter-SC approach, which estimates differences in synchronization of neural responses within and between groups. The temporal topography found in healthy and siblings groups were consistent with our previous findings – high synchronization in responses from early sensory toward high order perceptual and cognitive areas. In patients with schizophrenia, stimuli with short and intermediate temporal scales evoked a typical pattern of reliable responses, whereas story condition (long temporal scale revealed robust and widespread disruption of the inter-SCs. In addition, the more similar the neural activity of patients with schizophrenia was to the average response in the healthy group, the less severe the positive symptoms of the patients. Our findings suggest that system-level neural indication of abnormal verbal information processing in schizophrenia reflects disease manifestations.

  17. Neural markers of individual and age differences in TVA attention capacity parameters

    DEFF Research Database (Denmark)

    Wiegand, Iris

    2013-01-01

    The ‘Theory of Visual Attention’ quantifies an interindividual’s capacity of attentional resources in parameters visual processing speed C and vSTM storage capacity K. Distinct neural markers of interindividual differences in these functions were identified by combining TVA-based assessment...

  18. Modeling of an industrial process of pleuromutilin fermentation using feed-forward neural networks

    Directory of Open Access Journals (Sweden)

    L. Khaouane

    2013-03-01

    Full Text Available This work investigates the use of artificial neural networks in modeling an industrial fermentation process of Pleuromutilin produced by Pleurotus mutilus in a fed-batch mode. Three feed-forward neural network models characterized by a similar structure (five neurons in the input layer, one hidden layer and one neuron in the output layer are constructed and optimized with the aim to predict the evolution of three main bioprocess variables: biomass, substrate and product. Results show a good fit between the predicted and experimental values for each model (the root mean squared errors were 0.4624% - 0.1234 g/L and 0.0016 mg/g respectively. Furthermore, the comparison between the optimized models and the unstructured kinetic models in terms of simulation results shows that neural network models gave more significant results. These results encourage further studies to integrate the mathematical formulae extracted from these models into an industrial control loop of the process.

  19. Modeling fMRI signals can provide insights into neural processing in the cerebral cortex.

    Science.gov (United States)

    Vanni, Simo; Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo

    2015-08-01

    Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. Copyright © 2015 the American Physiological Society.

  20. Resource recovery from bio-based production processes: a future necessity?

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; S.B.A. Udugama, Isuru; Cignitti, Stefano

    2017-01-01

    The promise of transforming waste streams with small economic value into valuable products makes resource recovery technologies in bio-based production processes an attractive proposition. However, the use of resource recovery technologies in industrial applications is still minimal, despite its...... technologies to industrial bio-based production processes. The role and importance of economics, technology readiness and socio-environmental impacts of resource recovery in successfully implementing resource recovery technologies in industrial bio-based production processes is also discussed. Finally, based...... wide use in closely related processes such as dairy production. In this paper, a perspective on the role of resource recovery in bio-based production processes is provided through reviewing the past practice and identifying the benefits, opportunities and challenges of introducing resource recovery...

  1. Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling.

    Science.gov (United States)

    Yang, S; Wang, D

    2000-01-01

    This paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-shop scheduling problem during its processing. Several heuristics that can be combined with the neural network are also presented. In the combined approaches, the neural network is used to obtain feasible solutions, the heuristic algorithms are used to improve the performance of the neural network and the quality of the obtained solutions. Simulations have shown that the proposed neural network and its combined approaches are efficient with respect to the quality of solutions and the solving speed.

  2. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  3. Neural correlates of attentional and mnemonic processing in event-based prospective memory.

    Science.gov (United States)

    Knight, Justin B; Ethridge, Lauren E; Marsh, Richard L; Clementz, Brett A

    2010-01-01

    Prospective memory (PM), or memory for realizing delayed intentions, was examined with an event-based paradigm while simultaneously measuring neural activity with high-density EEG recordings. Specifically, the neural substrates of monitoring for an event-based cue were examined, as well as those perhaps associated with the cognitive processes supporting detection of cues and fulfillment of intentions. Participants engaged in a baseline lexical decision task (LDT), followed by a LDT with an embedded PM component. Event-based cues were constituted by color and lexicality (red words). Behavioral data provided evidence that monitoring, or preparatory attentional processes, were used to detect cues. Analysis of the event-related potentials (ERP) revealed visual attentional modulations at 140 and 220 ms post-stimulus associated with preparatory attentional processes. In addition, ERP components at 220, 350, and 400 ms post-stimulus were enhanced for intention-related items. Our results suggest preparatory attention may operate by selectively modulating processing of features related to a previously formed event-based intention, as well as provide further evidence for the proposal that dissociable component processes support the fulfillment of delayed intentions.

  4. A Sparse Auto Encoder Deep Process Neural Network Model and its Application

    Directory of Open Access Journals (Sweden)

    Xu Shaohua

    2017-01-01

    Full Text Available Aiming at the problem of time-varying signal pattern classification, a sparse auto-encoder deep process neural network (SAE-DPNN is proposed. The input of SAE-DPNN is time-varying process signal and the output is pattern category. It combines the time-varying signal classification method of process neural network (PNN and the data feature extraction and hierarchical sparse representation mechanism of sparse automatic encoder (SAE. Based on the feedforward PNN model, SAE-DPNN is constructed by stacking the process neurons, SAE network and softmax classifier. It can maintain the time-sequence and structure of the input signal, express and synthesize the process distribution characteristics of multidimensional time-varying signals and their combinations. SAE-DPNN improves the identification of complex features and distinguishes between different types of signals, realizes the direct classification of time-varying signals. In this paper, the feature extraction and representation mechanism of time-varying signal in SAE-DPNN are analyzed, and a specific learning algorithm is given. The experimental results verify the effectiveness of the model and algorithm.

  5. Neural Correlates of Automatic and Controlled Auditory Processing in Schizophrenia

    Science.gov (United States)

    Morey, Rajendra A.; Mitchell, Teresa V.; Inan, Seniha; Lieberman, Jeffrey A.; Belger, Aysenil

    2009-01-01

    Individuals with schizophrenia demonstrate impairments in selective attention and sensory processing. The authors assessed differences in brain function between 26 participants with schizophrenia and 17 comparison subjects engaged in automatic (unattended) and controlled (attended) auditory information processing using event-related functional MRI. Lower regional neural activation during automatic auditory processing in the schizophrenia group was not confined to just the temporal lobe, but also extended to prefrontal regions. Controlled auditory processing was associated with a distributed frontotemporal and subcortical dysfunction. Differences in activation between these two modes of auditory information processing were more pronounced in the comparison group than in the patient group. PMID:19196926

  6. Residual Neural Processing of Musical Sound Features in Adult Cochlear Implant Users

    Science.gov (United States)

    Timm, Lydia; Vuust, Peter; Brattico, Elvira; Agrawal, Deepashri; Debener, Stefan; Büchner, Andreas; Dengler, Reinhard; Wittfoth, Matthias

    2014-01-01

    Auditory processing in general and music perception in particular are hampered in adult cochlear implant (CI) users. To examine the residual music perception skills and their underlying neural correlates in CI users implanted in adolescence or adulthood, we conducted an electrophysiological and behavioral study comparing adult CI users with normal-hearing age-matched controls (NH controls). We used a newly developed musical multi-feature paradigm, which makes it possible to test automatic auditory discrimination of six different types of sound feature changes inserted within a musical enriched setting lasting only 20 min. The presentation of stimuli did not require the participants’ attention, allowing the study of the early automatic stage of feature processing in the auditory cortex. For the CI users, we obtained mismatch negativity (MMN) brain responses to five feature changes but not to changes of rhythm, whereas we obtained MMNs for all the feature changes in the NH controls. Furthermore, the MMNs to deviants of pitch of CI users were reduced in amplitude and later than those of NH controls for changes of pitch and guitar timber. No other group differences in MMN parameters were found to changes in intensity and saxophone timber. Furthermore, the MMNs in CI users reflected the behavioral scores from a respective discrimination task and were correlated with patients’ age and speech intelligibility. Our results suggest that even though CI users are not performing at the same level as NH controls in neural discrimination of pitch-based features, they do possess potential neural abilities for music processing. However, CI users showed a disrupted ability to automatically discriminate rhythmic changes compared with controls. The current behavioral and MMN findings highlight the residual neural skills for music processing even in CI users who have been implanted in adolescence or adulthood. Highlights: -Automatic brain responses to musical feature changes

  7. Models of neural dynamics in brain information processing - the developments of 'the decade'

    Energy Technology Data Exchange (ETDEWEB)

    Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B [Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Ivanitskii, Genrikh R [Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation)

    2002-10-31

    Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)

  8. The Defense Resource Allocation Process

    National Research Council Canada - National Science Library

    Keller, William

    1997-01-01

    Above all, this book is about DECISION MAKING. In particular, it attempts to describe the formalized process by which we in the United States make and implement decisions about resources for our national security...

  9. Atypical resource allocation may contribute to many aspects of autism

    Directory of Open Access Journals (Sweden)

    Emily J. Goldknopf

    2013-12-01

    Full Text Available Based on a review of the literature and on reports by people with autism, this paper suggests that atypical resource allocation is a factor that contributes to many aspects of autism spectrum conditions, including difficulties with language and social cognition, atypical sensory and attentional experiences, executive and motor challenges, and perceptual and conceptual strengths and weaknesses. Drawing upon resource theoretical approaches that suggest that perception, cognition, and action draw upon multiple pools of resources, the approach states that compared with resources in typical cognition, resources in autism are narrowed or reduced, especially in people with strong sensory symptoms. In narrowed attention, resources are restricted to smaller areas and to fewer modalities, stages of processing, and cognitive processes than in typical cognition; resources may be more intense than in typical cognition. In reduced attentional capacity, overall resources are reduced; resources may be restricted to fewer modalities, stages of processing, and cognitive processes than in typical cognition, or the amount of resources allocated to each area or process may be reduced. Possible neural bases of the hypothesized atypical resource allocation, relations to other approaches, limitations, and tests of the hypotheses are discussed.

  10. Neural processing of reward in adolescent rodents

    Directory of Open Access Journals (Sweden)

    Nicholas W. Simon

    2015-02-01

    Full Text Available Immaturities in adolescent reward processing are thought to contribute to poor decision making and increased susceptibility to develop addictive and psychiatric disorders. Very little is known; however, about how the adolescent brain processes reward. The current mechanistic theories of reward processing are derived from adult models. Here we review recent research focused on understanding of how the adolescent brain responds to rewards and reward-associated events. A critical aspect of this work is that age-related differences are evident in neuronal processing of reward-related events across multiple brain regions even when adolescent rats demonstrate behavior similar to adults. These include differences in reward processing between adolescent and adult rats in orbitofrontal cortex and dorsal striatum. Surprisingly, minimal age related differences are observed in ventral striatum, which has been a focal point of developmental studies. We go on to discuss the implications of these differences for behavioral traits affected in adolescence, such as impulsivity, risk-taking, and behavioral flexibility. Collectively, this work suggests that reward-evoked neural activity differs as a function of age and that regions such as the dorsal striatum that are not traditionally associated with affective processing in adults may be critical for reward processing and psychiatric vulnerability in adolescents.

  11. The principles of artificial neural network information processing

    International Nuclear Information System (INIS)

    Dai, Ru-Wei

    1993-01-01

    In this article, the basic structure of an artificial neuron is first introduced. In addition, principles of artificial neural network as well as several important artificial neural models such as Perceptron, Back propagation model, Hopfield net, and ART model are briefly discussed and analyzed. Finally, the application of artificial neural network for Chinese Character Recognition is also given. (author)

  12. The principles of artificial neural network information processing

    International Nuclear Information System (INIS)

    Dai, Ru-Wei

    1993-01-01

    In this article, the basic structure of an artificial neuron is first introduced. In addition, principles of artificial neural network as well as several important artificial neural models such as perception, back propagation model, Hopfield net, and ART model are briefly discussed and analyzed. Finally the application of artificial neural network for Chinese character recognition is also given. (author)

  13. Feedback control stabilization of critical dynamics via resource transport on multilayer networks: How glia enable learning dynamics in the brain

    Science.gov (United States)

    Virkar, Yogesh S.; Shew, Woodrow L.; Restrepo, Juan G.; Ott, Edward

    2016-10-01

    Learning and memory are acquired through long-lasting changes in synapses. In the simplest models, such synaptic potentiation typically leads to runaway excitation, but in reality there must exist processes that robustly preserve overall stability of the neural system dynamics. How is this accomplished? Various approaches to this basic question have been considered. Here we propose a particularly compelling and natural mechanism for preserving stability of learning neural systems. This mechanism is based on the global processes by which metabolic resources are distributed to the neurons by glial cells. Specifically, we introduce and study a model composed of two interacting networks: a model neural network interconnected by synapses that undergo spike-timing-dependent plasticity; and a model glial network interconnected by gap junctions that diffusively transport metabolic resources among the glia and, ultimately, to neural synapses where they are consumed. Our main result is that the biophysical constraints imposed by diffusive transport of metabolic resources through the glial network can prevent runaway growth of synaptic strength, both during ongoing activity and during learning. Our findings suggest a previously unappreciated role for glial transport of metabolites in the feedback control stabilization of neural network dynamics during learning.

  14. Musical intervention enhances infants' neural processing of temporal structure in music and speech.

    Science.gov (United States)

    Zhao, T Christina; Kuhl, Patricia K

    2016-05-10

    Individuals with music training in early childhood show enhanced processing of musical sounds, an effect that generalizes to speech processing. However, the conclusions drawn from previous studies are limited due to the possible confounds of predisposition and other factors affecting musicians and nonmusicians. We used a randomized design to test the effects of a laboratory-controlled music intervention on young infants' neural processing of music and speech. Nine-month-old infants were randomly assigned to music (intervention) or play (control) activities for 12 sessions. The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g., multimodal, social, and repetitive experiences). Controls had similar multimodal, social, repetitive play, but without music. Upon completion, infants' neural processing of temporal structure was tested in both music (tones in triple meter) and speech (foreign syllable structure). Infants' neural processing was quantified by the mismatch response (MMR) measured with a traditional oddball paradigm using magnetoencephalography (MEG). The intervention group exhibited significantly larger MMRs in response to music temporal structure violations in both auditory and prefrontal cortical regions. Identical results were obtained for temporal structure changes in speech. The intervention thus enhanced temporal structure processing not only in music, but also in speech, at 9 mo of age. We argue that the intervention enhanced infants' ability to extract temporal structure information and to predict future events in time, a skill affecting both music and speech processing.

  15. Opponent appetitive-aversive neural processes underlie predictive learning of pain relief.

    Science.gov (United States)

    Seymour, Ben; O'Doherty, John P; Koltzenburg, Martin; Wiech, Katja; Frackowiak, Richard; Friston, Karl; Dolan, Raymond

    2005-09-01

    Termination of a painful or unpleasant event can be rewarding. However, whether the brain treats relief in a similar way as it treats natural reward is unclear, and the neural processes that underlie its representation as a motivational goal remain poorly understood. We used fMRI (functional magnetic resonance imaging) to investigate how humans learn to generate expectations of pain relief. Using a pavlovian conditioning procedure, we show that subjects experiencing prolonged experimentally induced pain can be conditioned to predict pain relief. This proceeds in a manner consistent with contemporary reward-learning theory (average reward/loss reinforcement learning), reflected by neural activity in the amygdala and midbrain. Furthermore, these reward-like learning signals are mirrored by opposite aversion-like signals in lateral orbitofrontal cortex and anterior cingulate cortex. This dual coding has parallels to 'opponent process' theories in psychology and promotes a formal account of prediction and expectation during pain.

  16. Marshaling and Acquiring Resources for the Process Improvement Process

    Science.gov (United States)

    1993-06-01

    stakeholders. ( Geber , 1990) D. IDENTIFYING SUPPLIERS Suppliers are just as crucial to setting requirements for processes as are customers. Although...output ( Geber , 1990, p. 32). Before gathering resources for process improvement, the functional manager must ensure that the relationship of internal...him patent information and clerical people process his applications. ( Geber , 1990, pp. 29-34) To get the full benefit of a white-collar worker as a

  17. Emotionally anesthetized: media violence induces neural changes during emotional face processing

    OpenAIRE

    Stockdale, Laura A.; Morrison, Robert G.; Kmiecik, Matthew J.; Garbarino, James; Silton, Rebecca L.

    2015-01-01

    Media violence exposure causes increased aggression and decreased prosocial behavior, suggesting that media violence desensitizes people to the emotional experience of others. Alterations in emotional face processing following exposure to media violence may result in desensitization to others’ emotional states. This study used scalp electroencephalography methods to examine the link between exposure to violence and neural changes associated with emotional face processing. Twenty-five particip...

  18. Recurrent Artificial Neural Networks and Finite State Natural Language Processing.

    Science.gov (United States)

    Moisl, Hermann

    It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…

  19. Neural processing associated with cognitive and affective Theory of Mind in adolescents and adults.

    Science.gov (United States)

    Sebastian, Catherine L; Fontaine, Nathalie M G; Bird, Geoffrey; Blakemore, Sarah-Jayne; Brito, Stephane A De; McCrory, Eamon J P; Viding, Essi

    2012-01-01

    Theory of Mind (ToM) is the ability to attribute thoughts, intentions and beliefs to others. This involves component processes, including cognitive perspective taking (cognitive ToM) and understanding emotions (affective ToM). This study assessed the distinction and overlap of neural processes involved in these respective components, and also investigated their development between adolescence and adulthood. While data suggest that ToM develops between adolescence and adulthood, these populations have not been compared on cognitive and affective ToM domains. Using fMRI with 15 adolescent (aged 11-16 years) and 15 adult (aged 24-40 years) males, we assessed neural responses during cartoon vignettes requiring cognitive ToM, affective ToM or physical causality comprehension (control). An additional aim was to explore relationships between fMRI data and self-reported empathy. Both cognitive and affective ToM conditions were associated with neural responses in the classic ToM network across both groups, although only affective ToM recruited medial/ventromedial PFC (mPFC/vmPFC). Adolescents additionally activated vmPFC more than did adults during affective ToM. The specificity of the mPFC/vmPFC response during affective ToM supports evidence from lesion studies suggesting that vmPFC may integrate affective information during ToM. Furthermore, the differential neural response in vmPFC between adult and adolescent groups indicates developmental changes in affective ToM processing.

  20. An application of neural networks to process and materials control

    International Nuclear Information System (INIS)

    Howell, J.A.; Whiteson, R.

    1991-01-01

    Process control consists of two basic elements: a model of the process and knowledge of the desired control algorithm. In some cases the level of the control algorithm is merely supervisory, as in an alarm-reporting or anomaly-detection system. If the model of the process is known, then a set of equations may often be solved explicitly to provide the control algorithm. Otherwise, the model has to be discovered through empirical studies. Neural networks have properties that make them useful in this application. They can learn (make internal models from experience or observations). The problem of anomaly detection in materials control systems fits well into this general control framework. To successfully model a process with a neutral network, a good set of observables must be chosen. These observables must in some sense adequately span the space of representable events, so that a signature metric can be built for normal operation. In this way, a non-normal event, one that does not fit within the signature, can be detected. In this paper, we discuss the issues involved in applying a neural network model to anomaly detection in materials control systems. These issues include data selection and representation, network architecture, prediction of events, the use of simulated data, and software tools. 10 refs., 4 figs., 1 tab

  1. Forecasting financial asset processes: stochastic dynamics via learning neural networks.

    Science.gov (United States)

    Giebel, S; Rainer, M

    2010-01-01

    Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.

  2. Prediction of ferric iron precipitation in bioleaching process using partial least squares and artificial neural network

    Directory of Open Access Journals (Sweden)

    Golmohammadi Hassan

    2013-01-01

    Full Text Available A quantitative structure-property relationship (QSPR study based on partial least squares (PLS and artificial neural network (ANN was developed for the prediction of ferric iron precipitation in bioleaching process. The leaching temperature, initial pH, oxidation/reduction potential (ORP, ferrous concentration and particle size of ore were used as inputs to the network. The output of the model was ferric iron precipitation. The optimal condition of the neural network was obtained by adjusting various parameters by trial-and-error. After optimization and training of the network according to back-propagation algorithm, a 5-5-1 neural network was generated for prediction of ferric iron precipitation. The root mean square error for the neural network calculated ferric iron precipitation for training, prediction and validation set are 32.860, 40.739 and 35.890, respectively, which are smaller than those obtained by PLS model (180.972, 165.047 and 149.950, respectively. Results obtained reveal the reliability and good predictivity of neural network model for the prediction of ferric iron precipitation in bioleaching process.

  3. Neural Correlates of Hostile Jokes: Cognitive and Motivational Processes in Humor Appreciation

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chan

    2016-10-01

    Full Text Available Hostile jokes provide aggressive catharsis and a feeling of superiority. Behavioral research has found that hostile jokes are perceived as funnier than non-hostile jokes. The purpose of the present study was to identify the neural correlates of the interaction between type and humor by comparing hostile jokes (HJs, non-hostile jokes (NJs, and their corresponding hostile sentences (HSs and non-hostile sentences (NSs. Hostile jokes primarily showed activation in the dorsomedial prefrontal cortex (dmPFC and midbrain compared with the corresponding hostile baseline. Conversely, non-hostile jokes primarily revealed activation in the ventromedial PFC (vmPFC, amygdala, midbrain, ventral anterior cingulate cortex, and nucleus accumbens (NAcc compared with the corresponding non-hostile baseline. These results support the critical role of the medial prefrontal cortex (mPFC for the neural correlates of social cognition and socio-emotional processing in response to different types of jokes. Moreover, the processing of hostile jokes showed increased activation in the dmPFC, which suggested cognitive operations of social motivation, whereas the processing of non-hostile jokes displayed increased activation in the vmPFC, which suggested social-affective engagement. Hostile jokes versus non-hostile jokes primarily showed increased activation in the dmPFC and midbrain, whereas non-hostile jokes versus hostile jokes primarily displayed greater activation in the amygdala and midbrain. The psychophysiological interaction (PPI analysis demonstrated functional coupling of the dmPFC-dlPFC and midbrain-dmPFC for hostile jokes and functional coupling of the vmPFC-midbrain and amygdala-midbrain-NAcc for non-hostile jokes. Surprisingly, the neural correlates of hostile jokes were not perceived as funnier than non-hostile jokes. Future studies could further investigate the neural correlates of potentially important traits of high-hostility tendencies in humor appreciation

  4. Neural and Behavioral Evidence for an Online Resetting Process in Visual Working Memory.

    Science.gov (United States)

    Balaban, Halely; Luria, Roy

    2017-02-01

    Visual working memory (VWM) guides behavior by holding a set of active representations and modifying them according to changes in the environment. This updating process relies on a unique mapping between each VWM representation and an actual object in the environment. Here, we destroyed this mapping by either presenting a coherent object but then breaking it into independent parts or presenting an object but then abruptly replacing it with a different object. This allowed us to introduce the neural marker and behavioral consequence of an online resetting process in humans' VWM. Across seven experiments, we demonstrate that this resetting process involves abandoning the old VWM contents because they no longer correspond to the objects in the environment. Then, VWM encodes the novel information and reestablishes the correspondence between the new representations and the objects. The resetting process was marked by a unique neural signature: a sharp drop in the amplitude of the electrophysiological index of VWM contents (the contralateral delay activity), presumably indicating the loss of the existent object-to-representation mappings. This marker was missing when an updating process occurred. Moreover, when tracking moving items, VWM failed to detect salient changes in the object's shape when these changes occurred during the resetting process. This happened despite the object being fully visible, presumably because the mapping between the object and a VWM representation was lost. Importantly, we show that resetting, its neural marker, and the behavioral cost it entails, are specific to situations that involve a destruction of the objects-to-representations correspondence. Visual working memory (VWM) maintains task-relevant information in an online state. Previous studies showed that VWM representations are accessed and modified after changes in the environment. Here, we show that this updating process critically depends on an ongoing mapping between the

  5. Towards a neural basis of processing musical semantics

    Science.gov (United States)

    Koelsch, Stefan

    2011-06-01

    Processing of meaning is critical for language perception, and therefore the majority of research on meaning processing has focused on the semantic, lexical, conceptual, and propositional processing of language. However, music is another a means of communication, and meaning also emerges from the interpretation of musical information. This article provides a framework for the investigation of the processing of musical meaning, and reviews neuroscience studies investigating this issue. These studies reveal two neural correlates of meaning processing, the N400 and the N5 (which are both components of the event-related electric brain potential). Here I argue that the N400 can be elicited by musical stimuli due to the processing of extra-musical meaning, whereas the N5 can be elicited due to the processing of intra-musical meaning. Notably, whereas the N400 can be elicited by both linguistic and musical stimuli, the N5 has so far only been observed for the processing of meaning in music. Thus, knowledge about both the N400 and the N5 can advance our understanding of how the human brain processes meaning information.

  6. A customizable stochastic state point process filter (SSPPF) for neural spiking activity.

    Science.gov (United States)

    Xin, Yao; Li, Will X Y; Min, Biao; Han, Yan; Cheung, Ray C C

    2013-01-01

    Stochastic State Point Process Filter (SSPPF) is effective for adaptive signal processing. In particular, it has been successfully applied to neural signal coding/decoding in recent years. Recent work has proven its efficiency in non-parametric coefficients tracking in modeling of mammal nervous system. However, existing SSPPF has only been realized in commercial software platforms which limit their computational capability. In this paper, the first hardware architecture of SSPPF has been designed and successfully implemented on field-programmable gate array (FPGA), proving a more efficient means for coefficient tracking in a well-established generalized Laguerre-Volterra model for mammalian hippocampal spiking activity research. By exploring the intrinsic parallelism of the FPGA, the proposed architecture is able to process matrices or vectors with random size, and is efficiently scalable. Experimental result shows its superior performance comparing to the software implementation, while maintaining the numerical precision. This architecture can also be potentially utilized in the future hippocampal cognitive neural prosthesis design.

  7. Dynamic Neural Processing of Linguistic Cues Related to Death

    Science.gov (United States)

    Ma, Yina; Qin, Jungang; Han, Shihui

    2013-01-01

    Behavioral studies suggest that humans evolve the capacity to cope with anxiety induced by the awareness of death’s inevitability. However, the neurocognitive processes that underlie online death-related thoughts remain unclear. Our recent functional MRI study found that the processing of linguistic cues related to death was characterized by decreased neural activity in human insular cortex. The current study further investigated the time course of neural processing of death-related linguistic cues. We recorded event-related potentials (ERP) to death-related, life-related, negative-valence, and neutral-valence words in a modified Stroop task that required color naming of words. We found that the amplitude of an early frontal/central negativity at 84–120 ms (N1) decreased to death-related words but increased to life-related words relative to neutral-valence words. The N1 effect associated with death-related and life-related words was correlated respectively with individuals’ pessimistic and optimistic attitudes toward life. Death-related words also increased the amplitude of a frontal/central positivity at 124–300 ms (P2) and of a frontal/central positivity at 300–500 ms (P3). However, the P2 and P3 modulations were observed for both death-related and negative-valence words but not for life-related words. The ERP results suggest an early inverse coding of linguistic cues related to life and death, which is followed by negative emotional responses to death-related information. PMID:23840787

  8. Level of processing modulates the neural correlates of emotional memory formation

    OpenAIRE

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2010-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study employed a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under ...

  9. What works in auditory working memory? A neural oscillations perspective.

    Science.gov (United States)

    Wilsch, Anna; Obleser, Jonas

    2016-06-01

    Working memory is a limited resource: brains can only maintain small amounts of sensory input (memory load) over a brief period of time (memory decay). The dynamics of slow neural oscillations as recorded using magneto- and electroencephalography (M/EEG) provide a window into the neural mechanics of these limitations. Especially oscillations in the alpha range (8-13Hz) are a sensitive marker for memory load. Moreover, according to current models, the resultant working memory load is determined by the relative noise in the neural representation of maintained information. The auditory domain allows memory researchers to apply and test the concept of noise quite literally: Employing degraded stimulus acoustics increases memory load and, at the same time, allows assessing the cognitive resources required to process speech in noise in an ecologically valid and clinically relevant way. The present review first summarizes recent findings on neural oscillations, especially alpha power, and how they reflect memory load and memory decay in auditory working memory. The focus is specifically on memory load resulting from acoustic degradation. These findings are then contrasted with contextual factors that benefit neural as well as behavioral markers of memory performance, by reducing representational noise. We end on discussing the functional role of alpha power in auditory working memory and suggest extensions of the current methodological toolkit. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  10. Erythropoietin reduces neural and cognitive processing of fear in human models of antidepressant drug action

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla; O'Sullivan, Ursula; Harmer, Catherine J

    2007-01-01

    with reduced attention to fear. Erythropoietin additionally reduced recognition of fearful facial expressions without affecting recognition of other emotional expressions. These actions occurred in the absence of changes in hematological parameters. CONCLUSIONS: The present study demonstrates that Epo directly......) versus saline on the neural processing of happy and fearful faces in 23 healthy volunteers. Facial expression recognition was assessed outside the scanner. RESULTS: One week after administration, Epo reduced neural response to fearful versus neutral faces in the occipito-parietal cortex consistent...... study aimed to explore the effects of Epo on neural and behavioral measures of emotional processing relevant for depression and the effects of conventional antidepressant medication. METHODS: In the present study, we used functional magnetic resonance imaging to explore the effects of Epo (40,000 IU...

  11. Neural correlates of attentional and mnemonic processing in event-based prospective memory

    Directory of Open Access Journals (Sweden)

    Justin B Knight

    2010-02-01

    Full Text Available Prospective memory, or memory for realizing delayed intentions, was examined with an event-based paradigm while simultaneously measuring neural activity with high-density EEG recordings. Specifically, the neural substrates of monitoring for an event-based cue were examined, as well as those perhaps associated with the cognitive processes supporting detection of cues and fulfillment of intentions. Participants engaged in a baseline lexical decision task (LDT, followed by a LDT with an embedded prospective memory (PM component. Event-based cues were constituted by color and lexicality (red words. Behavioral data provided evidence that monitoring, or preparatory attentional processes, were used to detect cues. Analysis of the event-related potentials (ERP revealed visual attentional modulations at 140 and 220 ms post-stimulus associated with preparatory attentional processes. In addition, ERP components at 220, 350, and 400 ms post-stimulus were enhanced for intention-related items. Our results suggest preparatory attention may operate by selectively modulating processing of features related to a previously formed event-based intention, as well as provide further evidence for the proposal that dissociable component processes support the fulfillment of delayed intentions.

  12. A Quantum Implementation Model for Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ammar Daskin

    2018-02-01

    Full Text Available The learning process for multilayered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow–Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, these iterative formulas result in terms formed by the principal components of the weight matrix, namely, the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the phase estimation algorithm is known to provide speedups over the conventional algorithms for the eigenvalue-related problems. Combining the quantum amplitude amplification with the phase estimation algorithm, a quantum implementation model for artificial neural networks using the Widrow–Hoff learning rule is presented. The complexity of the model is found to be linear in the size of the weight matrix. This provides a quadratic improvement over the classical algorithms. Quanta 2018; 7: 7–18.

  13. Neural correlates of treatment response in depressed bipolar adolescents during emotion processing.

    Science.gov (United States)

    Diler, Rasim Somer; Ladouceur, Cecile D; Segreti, Annamaria; Almeida, Jorge R C; Birmaher, Boris; Axelson, David A; Phillips, Mary L; Pan, Lisa A

    2013-06-01

    Depressive mood in adolescents with bipolar disorder (BDd) is associated with significant morbidity and mortality, but we have limited information about neural correlates of depression and treatment response in BDd. Ten adolescents with BDd (8 females, mean age = 15.6 ± 0.9) completed two (fearful and happy) face gender labeling fMRI experiments at baseline and after 6-weeks of open treatment. Whole-brain analysis was used at baseline to compare their neural activity with those of 10 age and sex-matched healthy controls (HC). For comparisons of the neural activity at baseline and after treatment of youth with BDd, region of interest analysis for dorsal/ventral prefrontal, anterior cingulate, and amygdala activity, and significant regions identified by wholebrain analysis between BDd and HC were analyzed. There was significant improvement in depression scores (mean percentage change on the Child Depression Rating Scale-Revised 57 % ± 28). Neural activity after treatment was decreased in left occipital cortex in the intense fearful experiment, but increased in left insula, left cerebellum, and right ventrolateral prefrontal cortex in the intense happy experiment. Greater improvement in depression was associated with baseline higher activity in ventral ACC to mild happy faces. Study sample size was relatively small for subgroup analysis and consisted of mainly female adolescents that were predominantly on psychotropic medications during scanning. Our results of reduced negative emotion processing versus increased positive emotion processing after treatment of depression (improvement of cognitive bias to negative and away from positive) are consistent with the improvement of depression according to Beck's cognitive theory.

  14. Neural processing of auditory signals and modular neural control for sound tropism of walking machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Pasemann, Frank; Fischer, Joern

    2005-01-01

    and a neural preprocessing system together with a modular neural controller are used to generate a sound tropism of a four-legged walking machine. The neural preprocessing network is acting as a low-pass filter and it is followed by a network which discerns between signals coming from the left or the right....... The parameters of these networks are optimized by an evolutionary algorithm. In addition, a simple modular neural controller then generates the desired different walking patterns such that the machine walks straight, then turns towards a switched-on sound source, and then stops near to it....

  15. Emotional sounds modulate early neural processing of emotional pictures

    Directory of Open Access Journals (Sweden)

    Antje B M Gerdes

    2013-10-01

    Full Text Available In our natural environment, emotional information is conveyed by converging visual and auditory information; multimodal integration is of utmost importance. In the laboratory, however, emotion researchers have mostly focused on the examination of unimodal stimuli. Few existing studies on multimodal emotion processing have focused on human communication such as the integration of facial and vocal expressions. Extending the concept of multimodality, the current study examines how the neural processing of emotional pictures is influenced by simultaneously presented sounds. Twenty pleasant, unpleasant, and neutral pictures of complex scenes were presented to 22 healthy participants. On the critical trials these pictures were paired with pleasant, unpleasant and neutral sounds. Sound presentation started 500 ms before picture onset and each stimulus presentation lasted for 2s. EEG was recorded from 64 channels and ERP analyses focused on the picture onset. In addition, valence, and arousal ratings were obtained. Previous findings for the neural processing of emotional pictures were replicated. Specifically, unpleasant compared to neutral pictures were associated with an increased parietal P200 and a more pronounced centroparietal late positive potential (LPP, independent of the accompanying sound valence. For audiovisual stimulation, increased parietal P100 and P200 were found in response to all pictures which were accompanied by unpleasant or pleasant sounds compared to pictures with neutral sounds. Most importantly, incongruent audiovisual pairs of unpleasant pictures and pleasant sounds enhanced parietal P100 and P200 compared to pairings with congruent sounds. Taken together, the present findings indicate that emotional sounds modulate early stages of visual processing and, therefore, provide an avenue by which multimodal experience may enhance perception.

  16. Neural basis for generalized quantifier comprehension.

    Science.gov (United States)

    McMillan, Corey T; Clark, Robin; Moore, Peachie; Devita, Christian; Grossman, Murray

    2005-01-01

    Generalized quantifiers like "all cars" are semantically well understood, yet we know little about their neural representation. Our model of quantifier processing includes a numerosity device, operations that combine number elements and working memory. Semantic theory posits two types of quantifiers: first-order quantifiers identify a number state (e.g. "at least 3") and higher-order quantifiers additionally require maintaining a number state actively in working memory for comparison with another state (e.g. "less than half"). We used BOLD fMRI to test the hypothesis that all quantifiers recruit inferior parietal cortex associated with numerosity, while only higher-order quantifiers recruit prefrontal cortex associated with executive resources like working memory. Our findings showed that first-order and higher-order quantifiers both recruit right inferior parietal cortex, suggesting that a numerosity component contributes to quantifier comprehension. Moreover, only probes of higher-order quantifiers recruited right dorsolateral prefrontal cortex, suggesting involvement of executive resources like working memory. We also observed activation of thalamus and anterior cingulate that may be associated with selective attention. Our findings are consistent with a large-scale neural network centered in frontal and parietal cortex that supports comprehension of generalized quantifiers.

  17. The method of educational assessment affects children's neural processing and performance: behavioural and fMRI Evidence

    Science.gov (United States)

    Howard, Steven J.; Burianová, Hana; Calleia, Alysha; Fynes-Clinton, Samuel; Kervin, Lisa; Bokosmaty, Sahar

    2017-08-01

    Standardised educational assessments are now widespread, yet their development has given comparatively more consideration to what to assess than how to optimally assess students' competencies. Existing evidence from behavioural studies with children and neuroscience studies with adults suggest that the method of assessment may affect neural processing and performance, but current evidence remains limited. To investigate the impact of assessment methods on neural processing and performance in young children, we used functional magnetic resonance imaging to identify and quantify the neural correlates during performance across a range of current approaches to standardised spelling assessment. Results indicated that children's test performance declined as the cognitive load of assessment method increased. Activation of neural nodes associated with working memory further suggests that this performance decline may be a consequence of a higher cognitive load, rather than the complexity of the content. These findings provide insights into principles of assessment (re)design, to ensure assessment results are an accurate reflection of students' true levels of competency.

  18. Neural Correlates of Contrast and Humor: Processing Common Features of Verbal Irony

    Science.gov (United States)

    Obert, Alexandre; Gierski, Fabien; Calmus, Arnaud; Flucher, Aurélie; Portefaix, Christophe; Pierot, Laurent; Kaladjian, Arthur; Caillies, Stéphanie

    2016-01-01

    Irony is a kind of figurative language used by a speaker to say something that contrasts with the context and, to some extent, lends humor to a situation. However, little is known about the brain regions that specifically support the processing of these two common features of irony. The present study had two main aims: (i) investigate the neural basis of irony processing, by delivering short ironic spoken sentences (and their literal counterparts) to participants undergoing fMRI; and (ii) assess the neural effect of two irony parameters, obtained from normative studies: degree of contrast and humor appreciation. Results revealed activation of the bilateral inferior frontal gyrus (IFG), posterior part of the left superior temporal gyrus, medial frontal cortex, and left caudate during irony processing, suggesting the involvement of both semantic and theory-of-mind networks. Parametric models showed that contrast was specifically associated with the activation of bilateral frontal and subcortical areas, and that these regions were also sensitive to humor, as shown by a conjunction analysis. Activation of the bilateral IFG is consistent with the literature on humor processing, and reflects incongruity detection/resolution processes. Moreover, the activation of subcortical structures can be related to the reward processing of social events. PMID:27851821

  19. Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process.

    Science.gov (United States)

    Hamamé, Carlos M; Cosmelli, Diego; Henriquez, Rodrigo; Aboitiz, Francisco

    2011-04-26

    Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed. We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz) and alpha (8-14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing. We conclude that there are reorganizations in several neural processes that contribute differently to perceptual learning in a visual search task. We propose an integrative model of neural activity reorganization, whereby perceptual learning takes place as a two-stage phenomenon including perceptual, attentional and contextual processes.

  20. Sadness is unique: Neural processing of emotions in speech prosody in musicians and non-musicians

    Directory of Open Access Journals (Sweden)

    Mona ePark

    2015-01-01

    Full Text Available Musical training has been shown to have positive effects on several aspects of speech processing, however, the effects of musical training on the neural processing of speech prosody conveying distinct emotions are yet to be better understood. We used functional magnetic resonance imaging (fMRI to investigate whether the neural responses to speech prosody conveying happiness, sadness, and fear differ between musicians and non-musicians. Differences in processing of emotional speech prosody between the two groups were only observed when sadness was expressed. Musicians showed increased activation in the middle frontal gyrus, the anterior medial prefrontal cortex, the posterior cingulate cortex and the retrosplenial cortex. Our results suggest an increased sensitivity of emotional processing in musicians with respect to sadness expressed in speech, possibly reflecting empathic processes.

  1. Image processing using pulse-coupled neural networks applications in Python

    CERN Document Server

    Lindblad, Thomas

    2013-01-01

    Image processing algorithms based on the mammalian visual cortex are powerful tools for extraction information and manipulating images. This book reviews the neural theory and translates them into digital models. Applications are given in areas of image recognition, foveation, image fusion and information extraction. The third edition reflects renewed international interest in pulse image processing with updated sections presenting several newly developed applications. This edition also introduces a suite of Python scripts that assist readers in replicating results presented in the text and to further develop their own applications.

  2. Level of Processing Modulates the Neural Correlates of Emotional Memory Formation

    Science.gov (United States)

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2011-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on…

  3. Programmable neural processing on a smartdust for brain-computer interfaces.

    Science.gov (United States)

    Yuwen Sun; Shimeng Huang; Oresko, Joseph J; Cheng, Allen C

    2010-10-01

    Brain-computer interfaces (BCIs) offer tremendous promise for improving the quality of life for disabled individuals. BCIs use spike sorting to identify the source of each neural firing. To date, spike sorting has been performed by either using off-chip analysis, which requires a wired connection penetrating the skull to a bulky external power/processing unit, or via custom application-specific integrated circuits that lack the programmability to perform different algorithms and upgrades. In this research, we propose and test the feasibility of performing on-chip, real-time spike sorting on a programmable smartdust, including feature extraction, classification, compression, and wireless transmission. A detailed power/performance tradeoff analysis using DVFS is presented. Our experimental results show that the execution time and power density meet the requirements to perform real-time spike sorting and wireless transmission on a single neural channel.

  4. Multiscale neural connectivity during human sensory processing in the brain

    Science.gov (United States)

    Maksimenko, Vladimir A.; Runnova, Anastasia E.; Frolov, Nikita S.; Makarov, Vladimir V.; Nedaivozov, Vladimir; Koronovskii, Alexey A.; Pisarchik, Alexander; Hramov, Alexander E.

    2018-05-01

    Stimulus-related brain activity is considered using wavelet-based analysis of neural interactions between occipital and parietal brain areas in alpha (8-12 Hz) and beta (15-30 Hz) frequency bands. We show that human sensory processing related to the visual stimuli perception induces brain response resulted in different ways of parieto-occipital interactions in these bands. In the alpha frequency band the parieto-occipital neuronal network is characterized by homogeneous increase of the interaction between all interconnected areas both within occipital and parietal lobes and between them. In the beta frequency band the occipital lobe starts to play a leading role in the dynamics of the occipital-parietal network: The perception of visual stimuli excites the visual center in the occipital area and then, due to the increase of parieto-occipital interactions, such excitation is transferred to the parietal area, where the attentional center takes place. In the case when stimuli are characterized by a high degree of ambiguity, we find greater increase of the interaction between interconnected areas in the parietal lobe due to the increase of human attention. Based on revealed mechanisms, we describe the complex response of the parieto-occipital brain neuronal network during the perception and primary processing of the visual stimuli. The results can serve as an essential complement to the existing theory of neural aspects of visual stimuli processing.

  5. Neural Signaling of Food Healthiness Associated with Emotion Processing.

    Science.gov (United States)

    Herwig, Uwe; Dhum, Matthias; Hittmeyer, Anna; Opialla, Sarah; Scherpiet, Sigrid; Keller, Carmen; Brühl, Annette B; Siegrist, Michael

    2016-01-01

    The ability to differentiate healthy from unhealthy foods is important in order to promote good health. Food, however, may have an emotional connotation, which could be inversely related to healthiness. The neurobiological background of differentiating healthy and unhealthy food and its relations to emotion processing are not yet well understood. We addressed the neural activations, particularly considering the single subject level, when one evaluates a food item to be of a higher, compared to a lower grade of healthiness with a particular view on emotion processing brain regions. Thirty-seven healthy subjects underwent functional magnetic resonance imaging while evaluating the healthiness of food presented as photographs with a subsequent rating on a visual analog scale. We compared individual evaluations of high and low healthiness of food items and also considered gender differences. We found increased activation when food was evaluated to be healthy in the left dorsolateral prefrontal cortex and precuneus in whole brain analyses. In ROI analyses, perceived and rated higher healthiness was associated with lower amygdala activity and higher ventral striatal and orbitofrontal cortex activity. Females exerted a higher activation in midbrain areas when rating food items as being healthy. Our results underline the close relationship between food and emotion processing, which makes sense considering evolutionary aspects. Actively evaluating and deciding whether food is healthy is accompanied by neural signaling associated with reward and self-relevance, which could promote salutary nutrition behavior. The involved brain regions may be amenable to mechanisms of emotion regulation in the context of psychotherapeutic regulation of food intake.

  6. Processing of chromatic information in a deep convolutional neural network.

    Science.gov (United States)

    Flachot, Alban; Gegenfurtner, Karl R

    2018-04-01

    Deep convolutional neural networks are a class of machine-learning algorithms capable of solving non-trivial tasks, such as object recognition, with human-like performance. Little is known about the exact computations that deep neural networks learn, and to what extent these computations are similar to the ones performed by the primate brain. Here, we investigate how color information is processed in the different layers of the AlexNet deep neural network, originally trained on object classification of over 1.2M images of objects in their natural contexts. We found that the color-responsive units in the first layer of AlexNet learned linear features and were broadly tuned to two directions in color space, analogously to what is known of color responsive cells in the primate thalamus. Moreover, these directions are decorrelated and lead to statistically efficient representations, similar to the cardinal directions of the second-stage color mechanisms in primates. We also found, in analogy to the early stages of the primate visual system, that chromatic and achromatic information were segregated in the early layers of the network. Units in the higher layers of AlexNet exhibit on average a lower responsivity for color than units at earlier stages.

  7. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-05-01

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. BOOK REVIEW: Theory of Neural Information Processing Systems

    Science.gov (United States)

    Galla, Tobias

    2006-04-01

    It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 1011 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kühn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the

  9. Specific neural basis of Chinese idioms processing: an event-related functional MRI study

    International Nuclear Information System (INIS)

    Chen Shaoqi; Zhang Yanzhen; Xiao Zhuangwei; Zhang Xuexin

    2007-01-01

    Objective: To address the neural basis of Chinese idioms processing with different kinds of stimuli using an event-related fMRI design. Methods: Sixteen native Chinese speakers were asked to perform a semantic decision task during fMRI scanning. Three kinds of stimuli were used: Real idioms (Real-idiom condition); Literally plausible phrases (Pseudo-idiom condition, the last character of a real idiom was replaced by a character with similar meaning); Literally implausible strings (Non-idiom condition, the last character of a real idiom was replaced by a character with unrelated meaning). Reaction time and correct rate were recorded at the same time. Results: The error rate was 2.6%, 5.2% and 0.9% (F=3.51, P 0.05) for real idioms, pseudo-idioms and wrong idioms, respectively. Similar neural network was activated in all of the three conditions. However, the right hippocampus was only activated in the real idiom condition, and significant activations were found in anterior portion of left inferior frontal gyms (BA47) in real-and pseudo-idiom conditions, but not in non-idiom condition. Conclusion: The right hippocampus plays a specific role in the particular wording of the Chinese idioms. And the left anterior inferior frontal gyms (BA47) may be engaged in the semantic processing of Chinese idioms. The results support the notion that there were specific neural bases for Chinese idioms processing. (authors)

  10. Neural pathways in processing of sexual arousal: a dynamic causal modeling study.

    Science.gov (United States)

    Seok, J-W; Park, M-S; Sohn, J-H

    2016-09-01

    Three decades of research have investigated brain processing of visual sexual stimuli with neuroimaging methods. These researchers have found that sexual arousal stimuli elicit activity in a broad neural network of cortical and subcortical brain areas that are known to be associated with cognitive, emotional, motivational and physiological components. However, it is not completely understood how these neural systems integrate and modulated incoming information. Therefore, we identify cerebral areas whose activations were correlated with sexual arousal using event-related functional magnetic resonance imaging and used the dynamic causal modeling method for searching the effective connectivity about the sexual arousal processing network. Thirteen heterosexual males were scanned while they passively viewed alternating short trials of erotic and neutral pictures on a monitor. We created a subset of seven models based on our results and previous studies and selected a dominant connectivity model. Consequently, we suggest a dynamic causal model of the brain processes mediating the cognitive, emotional, motivational and physiological factors of human male sexual arousal. These findings are significant implications for the neuropsychology of male sexuality.

  11. Is There Neural Evidence for an Evidence Accumulation Process in Memory Decisions?

    NARCIS (Netherlands)

    van Vugt, Marieke K; Beulen, Marijke A; Taatgen, Niels A

    2016-01-01

    Models of evidence accumulation have been very successful at describing human decision making behavior. Recent years have also seen the first reports of neural correlates of this accumulation process. However, these studies have mostly focused on perceptual decision making tasks, ignoring the role

  12. Young Adults with Autism Spectrum Disorder Show Early Atypical Neural Activity during Emotional Face Processing

    Directory of Open Access Journals (Sweden)

    Rachel C. Leung

    2018-02-01

    Full Text Available Social cognition is impaired in autism spectrum disorder (ASD. The ability to perceive and interpret affect is integral to successful social functioning and has an extended developmental course. However, the neural mechanisms underlying emotional face processing in ASD are unclear. Using magnetoencephalography (MEG, the present study explored neural activation during implicit emotional face processing in young adults with and without ASD. Twenty-six young adults with ASD and 26 healthy controls were recruited. Participants indicated the location of a scrambled pattern (target that was presented alongside a happy or angry face. Emotion-related activation sources for each emotion were estimated using the Empirical Bayes Beamformer (pcorr ≤ 0.001 in Statistical Parametric Mapping 12 (SPM12. Emotional faces elicited elevated fusiform, amygdala and anterior insula and reduced anterior cingulate cortex (ACC activity in adults with ASD relative to controls. Within group comparisons revealed that angry vs. happy faces elicited distinct neural activity in typically developing adults; there was no distinction in young adults with ASD. Our data suggest difficulties in affect processing in ASD reflect atypical recruitment of traditional emotional processing areas. These early differences may contribute to difficulties in deriving social reward from faces, ascribing salience to faces, and an immature threat processing system, which collectively could result in deficits in emotional face processing.

  13. Neural Systems Underlying Emotional and Non-emotional Interference Processing: An ALE Meta-Analysis of Functional Neuroimaging Studies

    OpenAIRE

    Xu, Min; Xu, Guiping; Yang, Yang

    2016-01-01

    Understanding how the nature of interference might influence the recruitments of the neural systems is considered as the key to understanding cognitive control. Although, interference processing in the emotional domain has recently attracted great interest, the question of whether there are separable neural patterns for emotional and non-emotional interference processing remains open. Here, we performed an activation likelihood estimation meta-analysis of 78 neuroimaging experiments, and exam...

  14. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    Science.gov (United States)

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-06-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.

  15. Hypothetical Pattern Recognition Design Using Multi-Layer Perceptorn Neural Network For Supervised Learning

    Directory of Open Access Journals (Sweden)

    Md. Abdullah-al-mamun

    2015-08-01

    Full Text Available Abstract Humans are capable to identifying diverse shape in the different pattern in the real world as effortless fashion due to their intelligence is grow since born with facing several learning process. Same way we can prepared an machine using human like brain called Artificial Neural Network that can be recognize different pattern from the real world object. Although the various techniques is exists to implementation the pattern recognition but recently the artificial neural network approaches have been giving the significant attention. Because the approached of artificial neural network is like a human brain that is learn from different observation and give a decision the previously learning rule. Over the 50 years research now a days pattern recognition for machine learning using artificial neural network got a significant achievement. For this reason many real world problem can be solve by modeling the pattern recognition process. The objective of this paper is to present the theoretical concept for pattern recognition design using Multi-Layer Perceptorn neural networkin the algorithm of artificial Intelligence as the best possible way of utilizing available resources to make a decision that can be a human like performance.

  16. Neural reward processing is modulated by approach- and avoidance-related personality traits

    NARCIS (Netherlands)

    Simon, J.J.; Walther, S.; Fiebach, C.J.; Friederich, H.C.; Stippich, C.; Weisbrod, M.; Kaiser, S.

    2009-01-01

    The neural processing of reward can be differentiated into two sub-components with different functions, "wanting" (i.e., the expectation of a reward which includes appetitive and motivational components) and "liking" (i.e., the hedonic impact experienced during the receipt of a reward), involving

  17. Predicting tool life in turning operations using neural networks and image processing

    Science.gov (United States)

    Mikołajczyk, T.; Nowicki, K.; Bustillo, A.; Yu Pimenov, D.

    2018-05-01

    A two-step method is presented for the automatic prediction of tool life in turning operations. First, experimental data are collected for three cutting edges under the same constant processing conditions. In these experiments, the parameter of tool wear, VB, is measured with conventional methods and the same parameter is estimated using Neural Wear, a customized software package that combines flank wear image recognition and Artificial Neural Networks (ANNs). Second, an ANN model of tool life is trained with the data collected from the first two cutting edges and the subsequent model is evaluated on two different subsets for the third cutting edge: the first subset is obtained from the direct measurement of tool wear and the second is obtained from the Neural Wear software that estimates tool wear using edge images. Although the complete-automated solution, Neural Wear software for tool wear recognition plus the ANN model of tool life prediction, presented a slightly higher error than the direct measurements, it was within the same range and can meet all industrial requirements. These results confirm that the combination of image recognition software and ANN modelling could potentially be developed into a useful industrial tool for low-cost estimation of tool life in turning operations.

  18. The neural basis of sublexical speech and corresponding nonspeech processing: a combined EEG-MEG study.

    Science.gov (United States)

    Kuuluvainen, Soila; Nevalainen, Päivi; Sorokin, Alexander; Mittag, Maria; Partanen, Eino; Putkinen, Vesa; Seppänen, Miia; Kähkönen, Seppo; Kujala, Teija

    2014-03-01

    We addressed the neural organization of speech versus nonspeech sound processing by investigating preattentive cortical auditory processing of changes in five features of a consonant-vowel syllable (consonant, vowel, sound duration, frequency, and intensity) and their acoustically matched nonspeech counterparts in a simultaneous EEG-MEG recording of mismatch negativity (MMN/MMNm). Overall, speech-sound processing was enhanced compared to nonspeech sound processing. This effect was strongest for changes which affect word meaning (consonant, vowel, and vowel duration) in the left and for the vowel identity change in the right hemisphere also. Furthermore, in the right hemisphere, speech-sound frequency and intensity changes were processed faster than their nonspeech counterparts, and there was a trend for speech-enhancement in frequency processing. In summary, the results support the proposed existence of long-term memory traces for speech sounds in the auditory cortices, and indicate at least partly distinct neural substrates for speech and nonspeech sound processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Sequential neural processes in abacus mental addition: an EEG and FMRI case study.

    Science.gov (United States)

    Ku, Yixuan; Hong, Bo; Zhou, Wenjing; Bodner, Mark; Zhou, Yong-Di

    2012-01-01

    Abacus experts are able to mentally calculate multi-digit numbers rapidly. Some behavioral and neuroimaging studies have suggested a visuospatial and visuomotor strategy during abacus mental calculation. However, no study up to now has attempted to dissociate temporally the visuospatial neural process from the visuomotor neural process during abacus mental calculation. In the present study, an abacus expert performed the mental addition tasks (8-digit and 4-digit addends presented in visual or auditory modes) swiftly and accurately. The 100% correct rates in this expert's task performance were significantly higher than those of ordinary subjects performing 1-digit and 2-digit addition tasks. ERPs, EEG source localizations, and fMRI results taken together suggested visuospatial and visuomotor processes were sequentially arranged during the abacus mental addition with visual addends and could be dissociated from each other temporally. The visuospatial transformation of the numbers, in which the superior parietal lobule was most likely involved, might occur first (around 380 ms) after the onset of the stimuli. The visuomotor processing, in which the superior/middle frontal gyri were most likely involved, might occur later (around 440 ms). Meanwhile, fMRI results suggested that neural networks involved in the abacus mental addition with auditory stimuli were similar to those in the visual abacus mental addition. The most prominently activated brain areas in both conditions included the bilateral superior parietal lobules (BA 7) and bilateral middle frontal gyri (BA 6). These results suggest a supra-modal brain network in abacus mental addition, which may develop from normal mental calculation networks.

  20. Resource depletion promotes automatic processing: implications for distribution of practice.

    Science.gov (United States)

    Scheel, Matthew H

    2010-12-01

    Recent models of cognition include two processing systems: an automatic system that relies on associative learning, intuition, and heuristics, and a controlled system that relies on deliberate consideration. Automatic processing requires fewer resources and is more likely when resources are depleted. This study showed that prolonged practice on a resource-depleting mental arithmetic task promoted automatic processing on a subsequent problem-solving task, as evidenced by faster responding and more errors. Distribution of practice effects (0, 60, 120, or 180 sec. between problems) on rigidity also disappeared when groups had equal time on resource-depleting tasks. These results suggest that distribution of practice effects is reducible to resource availability. The discussion includes implications for interpreting discrepancies in the traditional distribution of practice effect.

  1. Using Dual Process Models to Examine Impulsivity Throughout Neural Maturation.

    Science.gov (United States)

    Leshem, Rotem

    2016-01-01

    The multivariate construct of impulsivity is examined through neural systems and connections that comprise the executive functioning system. It is proposed that cognitive and behavioral components of impulsivity can be divided into two distinct groups, mediated by (1) the cognitive control system: deficits in top-down cognitive control processes referred to as action/cognitive impulsivity and (2) the socioemotional system: related to bottom-up affective/motivational processes referred to as affective impulsivity. Examination of impulsivity from a developmental viewpoint can guide future research, potentially enabling the selection of more effective interventions for impulsive individuals, based on the cognitive components requiring improvement.

  2. Fuzzy logic and neural networks basic concepts & application

    CERN Document Server

    Alavala, Chennakesava R

    2008-01-01

    About the Book: The primary purpose of this book is to provide the student with a comprehensive knowledge of basic concepts of fuzzy logic and neural networks. The hybridization of fuzzy logic and neural networks is also included. No previous knowledge of fuzzy logic and neural networks is required. Fuzzy logic and neural networks have been discussed in detail through illustrative examples, methods and generic applications. Extensive and carefully selected references is an invaluable resource for further study of fuzzy logic and neural networks. Each chapter is followed by a question bank

  3. Hybrid digital signal processing and neural networks for automated diagnostics using NDE methods

    International Nuclear Information System (INIS)

    Upadhyaya, B.R.; Yan, W.

    1993-11-01

    The primary purpose of the current research was to develop an integrated approach by combining information compression methods and artificial neural networks for the monitoring of plant components using nondestructive examination data. Specifically, data from eddy current inspection of heat exchanger tubing were utilized to evaluate this technology. The focus of the research was to develop and test various data compression methods (for eddy current data) and the performance of different neural network paradigms for defect classification and defect parameter estimation. Feedforward, fully-connected neural networks, that use the back-propagation algorithm for network training, were implemented for defect classification and defect parameter estimation using a modular network architecture. A large eddy current tube inspection database was acquired from the Metals and Ceramics Division of ORNL. These data were used to study the performance of artificial neural networks for defect type classification and for estimating defect parameters. A PC-based data preprocessing and display program was also developed as part of an expert system for data management and decision making. The results of the analysis showed that for effective (low-error) defect classification and estimation of parameters, it is necessary to identify proper feature vectors using different data representation methods. The integration of data compression and artificial neural networks for information processing was established as an effective technique for automation of diagnostics using nondestructive examination methods

  4. Application of fuzzy neural network technologies in management of transport and logistics processes in Arctic

    Science.gov (United States)

    Levchenko, N. G.; Glushkov, S. V.; Sobolevskaya, E. Yu; Orlov, A. P.

    2018-05-01

    The method of modeling the transport and logistics process using fuzzy neural network technologies has been considered. The analysis of the implemented fuzzy neural network model of the information management system of transnational multimodal transportation of the process showed the expediency of applying this method to the management of transport and logistics processes in the Arctic and Subarctic conditions. The modular architecture of this model can be expanded by incorporating additional modules, since the working conditions in the Arctic and the subarctic themselves will present more and more realistic tasks. The architecture allows increasing the information management system, without affecting the system or the method itself. The model has a wide range of application possibilities, including: analysis of the situation and behavior of interacting elements; dynamic monitoring and diagnostics of management processes; simulation of real events and processes; prediction and prevention of critical situations.

  5. Neural information processing in cognition: we start to understand the orchestra, but where is the conductor?

    Directory of Open Access Journals (Sweden)

    Guenther ePalm

    2016-01-01

    Full Text Available Research in neural information processing has been successful in the past, providing useful approaches both to practical problems in computer science and to computational models in neuroscience. Recent developments in the area of cognitive neuroscience present new challenges for a computational or theoretical understanding asking for neural information processing models that fulfill criteria or constraints from cognitive psychology, neuroscience and computational efficiency. The most important of these criteria for the evaluation of present and future contributions to this new emerging field are listed at the end of this article.

  6. Neural Information Processing in Cognition: We Start to Understand the Orchestra, but Where is the Conductor?

    Science.gov (United States)

    Palm, Günther

    2016-01-01

    Research in neural information processing has been successful in the past, providing useful approaches both to practical problems in computer science and to computational models in neuroscience. Recent developments in the area of cognitive neuroscience present new challenges for a computational or theoretical understanding asking for neural information processing models that fulfill criteria or constraints from cognitive psychology, neuroscience and computational efficiency. The most important of these criteria for the evaluation of present and future contributions to this new emerging field are listed at the end of this article. PMID:26858632

  7. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability qu...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem.......The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...

  8. Neural mechanisms of hypnosis and meditation.

    Science.gov (United States)

    De Benedittis, Giuseppe

    2015-12-01

    Hypnosis has been an elusive concept for science for a long time. However, the explosive advances in neuroscience in the last few decades have provided a "bridge of understanding" between classical neurophysiological studies and psychophysiological studies. These studies have shed new light on the neural basis of the hypnotic experience. Furthermore, an ambitious new area of research is focusing on mapping the core processes of psychotherapy and the neurobiology/underlying them. Hypnosis research offers powerful techniques to isolate psychological processes in ways that allow their neural bases to be mapped. The Hypnotic Brain can serve as a way to tap neurocognitive questions and our cognitive assays can in turn shed new light on the neural bases of hypnosis. This cross-talk should enhance research and clinical applications. An increasing body of evidence provides insight in the neural mechanisms of the Meditative Brain. Discrete meditative styles are likely to target different neurodynamic patterns. Recent findings emphasize increased attentional resources activating the attentional and salience networks with coherent perception. Cognitive and emotional equanimity gives rise to an eudaimonic state, made of calm, resilience and stability, readiness to express compassion and empathy, a main goal of Buddhist practices. Structural changes in gray matter of key areas of the brain involved in learning processes suggest that these skills can be learned through practice. Hypnosis and Meditation represent two important, historical and influential landmarks of Western and Eastern civilization and culture respectively. Neuroscience has beginning to provide a better understanding of the mechanisms of both Hypnotic and Meditative Brain, outlining similarities but also differences between the two states and processes. It is important not to view either the Eastern or the Western system as superior to the other. Cross-fertilization of the ancient Eastern meditation techniques

  9. Neural Indices of Semantic Processing in Early Childhood Distinguish Eventual Stuttering Persistence and Recovery

    Science.gov (United States)

    Kreidler, Kathryn; Wray, Amanda Hampton; Usler, Evan; Weber, Christine

    2017-01-01

    Purpose: Maturation of neural processes for language may lag in some children who stutter (CWS), and event-related potentials (ERPs) distinguish CWS who have recovered from those who have persisted. The current study explores whether ERPs indexing semantic processing may distinguish children who will eventually persist in stuttering…

  10. Expanding the occupational health methodology: A concatenated artificial neural network approach to model the burnout process in Chinese nurses.

    Science.gov (United States)

    Ladstätter, Felix; Garrosa, Eva; Moreno-Jiménez, Bernardo; Ponsoda, Vicente; Reales Aviles, José Manuel; Dai, Junming

    2016-01-01

    Artificial neural networks are sophisticated modelling and prediction tools capable of extracting complex, non-linear relationships between predictor (input) and predicted (output) variables. This study explores this capacity by modelling non-linearities in the hardiness-modulated burnout process with a neural network. Specifically, two multi-layer feed-forward artificial neural networks are concatenated in an attempt to model the composite non-linear burnout process. Sensitivity analysis, a Monte Carlo-based global simulation technique, is then utilised to examine the first-order effects of the predictor variables on the burnout sub-dimensions and consequences. Results show that (1) this concatenated artificial neural network approach is feasible to model the burnout process, (2) sensitivity analysis is a prolific method to study the relative importance of predictor variables and (3) the relationships among variables involved in the development of burnout and its consequences are to different degrees non-linear. Many relationships among variables (e.g., stressors and strains) are not linear, yet researchers use linear methods such as Pearson correlation or linear regression to analyse these relationships. Artificial neural network analysis is an innovative method to analyse non-linear relationships and in combination with sensitivity analysis superior to linear methods.

  11. Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.

    Science.gov (United States)

    Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming

    2018-05-01

    The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.

  12. Neural Correlates of Hostile Jokes: Cognitive and Motivational Processes in Humor Appreciation.

    Science.gov (United States)

    Chan, Yu-Chen; Liao, Yi-Jun; Tu, Cheng-Hao; Chen, Hsueh-Chih

    2016-01-01

    Hostile jokes (HJs) provide aggressive catharsis and a feeling of superiority. Behavioral research has found that HJs are perceived as funnier than non-hostile jokes (NJs). The purpose of the present study was to identify the neural correlates of the interaction between type and humor by comparing HJs, NJs, and their corresponding hostile sentences (HSs) and non-hostile sentences (NSs). HJs primarily showed activation in the dorsomedial prefrontal cortex (dmPFC) and midbrain compared with the corresponding hostile baseline. Conversely, NJs primarily revealed activation in the ventromedial PFC (vmPFC), amygdala, midbrain, ventral anterior cingulate cortex, and nucleus accumbens (NAcc) compared with the corresponding non-hostile baseline. These results support the critical role of the medial PFC (mPFC) for the neural correlates of social cognition and socio-emotional processing in response to different types of jokes. Moreover, the processing of HJs showed increased activation in the dmPFC, which suggested cognitive operations of social motivation, whereas the processing of NJs displayed increased activation in the vmPFC, which suggested social-affective engagement. HJs versus NJs primarily showed increased activation in the dmPFC and midbrain, whereas NJs versus HJs primarily displayed greater activation in the amygdala and midbrain. The psychophysiological interaction (PPI) analysis demonstrated functional coupling of the dmPFC-dlPFC and midbrain-dmPFC for HJs and functional coupling of the vmPFC-midbrain and amygdala-midbrain-NAcc for NJs. Surprisingly, HJs were not perceived as funnier than NJs. Future studies could further investigate the neural correlates of potentially important traits of high-hostility tendencies in humor appreciation based on the psychoanalytic and superiority theories of humor.

  13. Neural Correlates of Hostile Jokes: Cognitive and Motivational Processes in Humor Appreciation

    Science.gov (United States)

    Chan, Yu-Chen; Liao, Yi-Jun; Tu, Cheng-Hao

    2016-01-01

    Hostile jokes (HJs) provide aggressive catharsis and a feeling of superiority. Behavioral research has found that HJs are perceived as funnier than non-hostile jokes (NJs). The purpose of the present study was to identify the neural correlates of the interaction between type and humor by comparing HJs, NJs, and their corresponding hostile sentences (HSs) and non-hostile sentences (NSs). HJs primarily showed activation in the dorsomedial prefrontal cortex (dmPFC) and midbrain compared with the corresponding hostile baseline. Conversely, NJs primarily revealed activation in the ventromedial PFC (vmPFC), amygdala, midbrain, ventral anterior cingulate cortex, and nucleus accumbens (NAcc) compared with the corresponding non-hostile baseline. These results support the critical role of the medial PFC (mPFC) for the neural correlates of social cognition and socio-emotional processing in response to different types of jokes. Moreover, the processing of HJs showed increased activation in the dmPFC, which suggested cognitive operations of social motivation, whereas the processing of NJs displayed increased activation in the vmPFC, which suggested social-affective engagement. HJs versus NJs primarily showed increased activation in the dmPFC and midbrain, whereas NJs versus HJs primarily displayed greater activation in the amygdala and midbrain. The psychophysiological interaction (PPI) analysis demonstrated functional coupling of the dmPFC–dlPFC and midbrain–dmPFC for HJs and functional coupling of the vmPFC–midbrain and amygdala–midbrain–NAcc for NJs. Surprisingly, HJs were not perceived as funnier than NJs. Future studies could further investigate the neural correlates of potentially important traits of high-hostility tendencies in humor appreciation based on the psychoanalytic and superiority theories of humor. PMID:27840604

  14. Unconscious neural processing differs with method used to render stimuli invisible

    Directory of Open Access Journals (Sweden)

    Sergey Victor Fogelson

    2014-06-01

    Full Text Available Visual stimuli can be kept from awareness using various methods. The extent of processing that a given stimulus receives in the absence of awareness is typically used to make claims about the role of consciousness more generally. The neural processing elicited by a stimulus, however, may also depend on the method used to keep it from awareness, and not only on whether the stimulus reaches awareness. Here we report that the method used to render an image invisible has a dramatic effect on how category information about the unseen stimulus is encoded across the human brain. We collected fMRI data while subjects viewed images of faces and tools, that were rendered invisible using either continuous flash suppression (CFS or chromatic flicker fusion (CFF. In a third condition, we presented the same images under normal fully visible viewing conditions. We found that category information about visible images could be extracted from patterns of fMRI responses throughout areas of neocortex known to be involved in face or tool processing. However, category information about stimuli kept from awareness using CFS could be recovered exclusively within occipital cortex, whereas information about stimuli kept from awareness using CFF was also decodable within temporal and frontal regions. We conclude that unconsciously presented objects are processed differently depending on how they are rendered subjectively invisible. Caution should therefore be used in making generalizations on the basis of any one method about the neural basis of consciousness or the extent of information processing without consciousness.

  15. Unconscious neural processing differs with method used to render stimuli invisible.

    Science.gov (United States)

    Fogelson, Sergey V; Kohler, Peter J; Miller, Kevin J; Granger, Richard; Tse, Peter U

    2014-01-01

    Visual stimuli can be kept from awareness using various methods. The extent of processing that a given stimulus receives in the absence of awareness is typically used to make claims about the role of consciousness more generally. The neural processing elicited by a stimulus, however, may also depend on the method used to keep it from awareness, and not only on whether the stimulus reaches awareness. Here we report that the method used to render an image invisible has a dramatic effect on how category information about the unseen stimulus is encoded across the human brain. We collected fMRI data while subjects viewed images of faces and tools, that were rendered invisible using either continuous flash suppression (CFS) or chromatic flicker fusion (CFF). In a third condition, we presented the same images under normal fully visible viewing conditions. We found that category information about visible images could be extracted from patterns of fMRI responses throughout areas of neocortex known to be involved in face or tool processing. However, category information about stimuli kept from awareness using CFS could be recovered exclusively within occipital cortex, whereas information about stimuli kept from awareness using CFF was also decodable within temporal and frontal regions. We conclude that unconsciously presented objects are processed differently depending on how they are rendered subjectively invisible. Caution should therefore be used in making generalizations on the basis of any one method about the neural basis of consciousness or the extent of information processing without consciousness.

  16. The role of automaticity and attention in neural processes underlying empathy for happiness, sadness, and anxiety

    Directory of Open Access Journals (Sweden)

    Sylvia A. Morelli

    2013-05-01

    Full Text Available Although many studies have examined the neural basis of experiencing empathy, relatively little is known about how empathic processes are affected by different attentional conditions. Thus, we examined whether instructions to empathize might amplify responses in empathy-related regions and whether cognitive load would diminish the involvement of these regions. 32 participants completed a functional magnetic resonance imaging session assessing empathic responses to individuals experiencing happy, sad, and anxious events. Stimuli were presented under three conditions: watching naturally, while instructed to empathize, and under cognitive load. Across analyses, we found evidence for a core set of neural regions that support empathic processes (dorsomedial prefrontal cortex, DMPFC; medial prefrontal cortex, MPFC; temporoparietal junction, TPJ; amygdala; ventral anterior insula, AI; septal area, SA. Two key regions – the ventral AI and SA – were consistently active across all attentional conditions, suggesting that they are automatically engaged during empathy. In addition, watching versus empathizing with targets was not markedly different and instead led to similar subjective and neural responses to others’ emotional experiences. In contrast, cognitive load reduced the subjective experience of empathy and diminished neural responses in several regions related to empathy (DMPFC, MPFC, TPJ, amygdala and social cognition. The current results reveal how attention impacts empathic processes and provides insight into how empathy may unfold in everyday interactions.

  17. Neural cascade of conflict processing: not just time-on-task

    Science.gov (United States)

    McKay, Cameron C.; van den Berg, Berry; Woldorff, Marty G.

    2017-01-01

    In visual conflict tasks (e.g., Stroop or flanker), response times (RTs) are generally longer on incongruent trials relative to congruent ones. Two event-related-potential (ERP) components classically associated with the processing of stimulus conflict are the fronto-central, incongruency-related negativity (Ninc) and the posterior late-positive complex (LPC), which are derived from the ERP difference waves for incongruent minus congruent trials. It has been questioned, however, whether these effects, or other neural measures of incongruency (e.g., fMRI responses in the anterior cingulate), reflect true conflict processing, or whether such effects derive mainly from differential time-on-task. To address this question, we leveraged high-temporal-resolution ERP measures of brain activity during two behavioral tasks. The first task, a modified Erikson flanker paradigm (with congruent and incongruent trials), was used to evoke the classic RT and ERP effects associated with conflict. In the second, a non-conflict comparison condition, participants visually discriminated a single stimulus (with easy and hard discrimination conditions). Behaviorally, the parameters were titrated to yield similar RT effects of conflict and difficulty (27 ms). Neurally, both within-task contrasts showed an initial fronto-central negative-polarity wave (N2-latency effect), but they then diverged. In the difficulty difference wave, the initial negativity led directly into the posterior LPC, whereas in the incongruency contrast the initial negativity was followed a by a second fronto-central negative peak (Ninc), which was then followed by a considerably longer-latency LPC. These results provide clear evidence that the longer processing for incongruent stimulus inputs do not just reflect time-on-task or difficulty, but include a true conflict-processing component. PMID:28017818

  18. Neural correlates of gesture processing across human development.

    Science.gov (United States)

    Wakefield, Elizabeth M; James, Thomas W; James, Karin H

    2013-01-01

    Co-speech gesture facilitates learning to a greater degree in children than in adults, suggesting that the mechanisms underlying the processing of co-speech gesture differ as a function of development. We suggest that this may be partially due to children's lack of experience producing gesture, leading to differences in the recruitment of sensorimotor networks when comparing adults to children. Here, we investigated the neural substrates of gesture processing in a cross-sectional sample of 5-, 7.5-, and 10-year-old children and adults and focused on relative recruitment of a sensorimotor system that included the precentral gyrus (PCG) and the posterior middle temporal gyrus (pMTG). Children and adults were presented with videos in which communication occurred through different combinations of speech and gesture during a functional magnetic resonance imaging (fMRI) session. Results demonstrated that the PCG and pMTG were recruited to different extents in the two populations. We interpret these novel findings as supporting the idea that gesture perception (pMTG) is affected by a history of gesture production (PCG), revealing the importance of considering gesture processing as a sensorimotor process.

  19. Erythropoietin modulates neural and cognitive processing of emotional information in biomarker models of antidepressant drug action in depressed patients

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Favaron, Elisa; Hafizi, Sepehr

    2010-01-01

    Erythropoietin (Epo) has neuroprotective and neurotrophic effects, and may be a novel therapeutic agent in the treatment of psychiatric disorders. We have demonstrated antidepressant-like effects of Epo on the neural and cognitive processing of facial expressions in healthy volunteers. The curren...... study investigates the effects of Epo on the neural and cognitive response to emotional facial expressions in depressed patients.......Erythropoietin (Epo) has neuroprotective and neurotrophic effects, and may be a novel therapeutic agent in the treatment of psychiatric disorders. We have demonstrated antidepressant-like effects of Epo on the neural and cognitive processing of facial expressions in healthy volunteers. The current...

  20. Concentration: The Neural Underpinnings of How Cognitive Load Shields Against Distraction.

    Science.gov (United States)

    Sörqvist, Patrik; Dahlström, Örjan; Karlsson, Thomas; Rönnberg, Jerker

    2016-01-01

    Whether cognitive load-and other aspects of task difficulty-increases or decreases distractibility is subject of much debate in contemporary psychology. One camp argues that cognitive load usurps executive resources, which otherwise could be used for attentional control, and therefore cognitive load increases distraction. The other camp argues that cognitive load demands high levels of concentration (focal-task engagement), which suppresses peripheral processing and therefore decreases distraction. In this article, we employed an functional magnetic resonance imaging (fMRI) protocol to explore whether higher cognitive load in a visually-presented task suppresses task-irrelevant auditory processing in cortical and subcortical areas. The results show that selectively attending to an auditory stimulus facilitates its neural processing in the auditory cortex, and switching the locus-of-attention to the visual modality decreases the neural response in the auditory cortex. When the cognitive load of the task presented in the visual modality increases, the neural response to the auditory stimulus is further suppressed, along with increased activity in networks related to effortful attention. Taken together, the results suggest that higher cognitive load decreases peripheral processing of task-irrelevant information-which decreases distractibility-as a side effect of the increased activity in a focused-attention network.

  1. High school music classes enhance the neural processing of speech.

    Science.gov (United States)

    Tierney, Adam; Krizman, Jennifer; Skoe, Erika; Johnston, Kathleen; Kraus, Nina

    2013-01-01

    Should music be a priority in public education? One argument for teaching music in school is that private music instruction relates to enhanced language abilities and neural function. However, the directionality of this relationship is unclear and it is unknown whether school-based music training can produce these enhancements. Here we show that 2 years of group music classes in high school enhance the neural encoding of speech. To tease apart the relationships between music and neural function, we tested high school students participating in either music or fitness-based training. These groups were matched at the onset of training on neural timing, reading ability, and IQ. Auditory brainstem responses were collected to a synthesized speech sound presented in background noise. After 2 years of training, the neural responses of the music training group were earlier than at pre-training, while the neural timing of students in the fitness training group was unchanged. These results represent the strongest evidence to date that in-school music education can cause enhanced speech encoding. The neural benefits of musical training are, therefore, not limited to expensive private instruction early in childhood but can be elicited by cost-effective group instruction during adolescence.

  2. Models of neural networks temporal aspects of coding and information processing in biological systems

    CERN Document Server

    Hemmen, J; Schulten, Klaus

    1994-01-01

    Since the appearance of Vol. 1 of Models of Neural Networks in 1991, the theory of neural nets has focused on two paradigms: information coding through coherent firing of the neurons and functional feedback. Information coding through coherent neuronal firing exploits time as a cardinal degree of freedom. This capacity of a neural network rests on the fact that the neuronal action potential is a short, say 1 ms, spike, localized in space and time. Spatial as well as temporal correlations of activity may represent different states of a network. In particular, temporal correlations of activity may express that neurons process the same "object" of, for example, a visual scene by spiking at the very same time. The traditional description of a neural network through a firing rate, the famous S-shaped curve, presupposes a wide time window of, say, at least 100 ms. It thus fails to exploit the capacity to "bind" sets of coherently firing neurons for the purpose of both scene segmentation and figure-ground segregatio...

  3. Control System Design for Cylindrical Tank Process Using Neural Model Predictive Control Technique

    Directory of Open Access Journals (Sweden)

    M. Sridevi

    2010-10-01

    Full Text Available Chemical manufacturing and process industry requires innovative technologies for process identification. This paper deals with model identification and control of cylindrical process. Model identification of the process was done using ARMAX technique. A neural model predictive controller was designed for the identified model. The performance of the controllers was evaluated using MATLAB software. The performance of NMPC controller was compared with Smith Predictor controller and IMC controller based on rise time, settling time, overshoot and ISE and it was found that the NMPC controller is better suited for this process.

  4. Attention and Visuospatial Working Memory Share the Same Processing Resources

    Directory of Open Access Journals (Sweden)

    Jing eFeng

    2012-04-01

    Full Text Available Attention and visuospatial working memory (VWM share very similar characteristics; both have the same upper bound of about four items in capacity and they recruit overlapping brain regions. We examined whether both attention and visuospatial working memory share the same processing resources using a novel dual-task-costs approach based on a load-varying dual-task technique. With sufficiently large loads on attention and VWM, considerable interference between the two processes was observed. A further load increase on either process produced reciprocal increases in interference on both processes, indicating that attention and VWM share common resources. More critically, comparison among four experiments on the reciprocal interference effects, as measured by the dual-task costs, demonstrates no significant contribution from additional processing other than the shared processes. These results support the notion that attention and VWM share the same processing resources.

  5. Process for forming synapses in neural networks and resistor therefor

    Science.gov (United States)

    Fu, Chi Y.

    1996-01-01

    Customizable neural network in which one or more resistors form each synapse. All the resistors in the synaptic array are identical, thus simplifying the processing issues. Highly doped, amorphous silicon is used as the resistor material, to create extremely high resistances occupying very small spaces. Connected in series with each resistor in the array is at least one severable conductor whose uppermost layer has a lower reflectivity of laser energy than typical metal conductors at a desired laser wavelength.

  6. Neural correlates of the processing of self-referent emotional information in bulimia nervosa.

    Science.gov (United States)

    Pringle, A; Ashworth, F; Harmer, C J; Norbury, R; Cooper, M J

    2011-10-01

    There is increasing interest in understanding the roles of distorted beliefs about the self, ostensibly unrelated to eating, weight and shape, in eating disorders (EDs), but little is known about their neural correlates. We therefore used functional magnetic resonance imaging to investigate the neural correlates of self-referent emotional processing in EDs. During the scan, unmedicated patients with bulimia nervosa (n=11) and healthy controls (n=16) responded to personality words previously found to be related to negative self beliefs in EDs and depression. Rating of the negative personality descriptors resulted in reduced activation in patients compared to controls in parietal, occipital and limbic areas including the amygdala. There was no evidence that reduced activity in patients was secondary to increased cognitive control. Different patterns of neural activation between patients and controls may be the result of either habituation to personally relevant negative self beliefs or of emotional blunting in patients. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Prediction of deformations of steel plate by artificial neural network in forming process with induction heating

    International Nuclear Information System (INIS)

    Nguyen, Truong Thinh; Yang, Young Soo; Bae, Kang Yul; Choi, Sung Nam

    2009-01-01

    To control a heat source easily in the forming process of steel plate with heating, the electro-magnetic induction process has been used as a substitute of the flame heating process. However, only few studies have analyzed the deformation of a workpiece in the induction heating process by using a mathematical model. This is mainly due to the difficulty of modeling the heat flux from the inductor traveling on the conductive plate during the induction process. In this study, the heat flux distribution over a steel plate during the induction process is first analyzed by a numerical method with the assumption that the process is in a quasi-stationary state around the inductor and also that the heat flux itself greatly depends on the temperature of the workpiece. With the heat flux, heat flow and thermo-mechanical analyses on the plate to obtain deformations during the heating process are then performed with a commercial FEM program for 34 combinations of heating parameters. An artificial neural network is proposed to build a simplified relationship between deformations and heating parameters that can be easily utilized to predict deformations of steel plate with a wide range of heating parameters in the heating process. After its architecture is optimized, the artificial neural network is trained with the deformations obtained from the FEM analyses as outputs and the related heating parameters as inputs. The predicted outputs from the neural network are compared with those of the experiments and the numerical results. They are in good agreement

  8. The effect of the neural activity on topological properties of growing neural networks.

    Science.gov (United States)

    Gafarov, F M; Gafarova, V R

    2016-09-01

    The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.

  9. Neural Reward Processing Mediates the Relationship between Insomnia Symptoms and Depression in Adolescence.

    Science.gov (United States)

    Casement, Melynda D; Keenan, Kate E; Hipwell, Alison E; Guyer, Amanda E; Forbes, Erika E

    2016-02-01

    Emerging evidence suggests that insomnia may disrupt reward-related brain function-a potentially important factor in the development of depressive disorder. Adolescence may be a period during which such disruption is especially problematic given the rise in the incidence of insomnia and ongoing development of neural systems that support reward processing. The present study uses longitudinal data to test the hypothesis that disruption of neural reward processing is a mechanism by which insomnia symptoms-including nocturnal insomnia symptoms (NIS) and nonrestorative sleep (NRS)-contribute to depressive symptoms in adolescent girls. Participants were 123 adolescent girls and their caregivers from an ongoing longitudinal study of precursors to depression across adolescent development. NIS and NRS were assessed annually from ages 9 to 13 years. Girls completed a monetary reward task during a functional MRI scan at age 16 years. Depressive symptoms were assessed at ages 16 and 17 years. Multivariable regression tested the prospective associations between NIS and NRS, neural response during reward anticipation, and the mean number of depressive symptoms (omitting sleep problems). NRS, but not NIS, during early adolescence was positively associated with late adolescent dorsal medial prefrontal cortex (dmPFC) response to reward anticipation and depressive symptoms. DMPFC response mediated the relationship between early adolescent NRS and late adolescent depressive symptoms. These results suggest that NRS may contribute to depression by disrupting reward processing via altered activity in a region of prefrontal cortex involved in affective control. The results also support the mechanistic differentiation of NIS and NRS. © 2016 Associated Professional Sleep Societies, LLC.

  10. Forward and reverse mapping for milling process using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Rashmi L. Malghan

    2018-02-01

    Full Text Available The data set presented is related to the milling process of AA6061-4.5%Cu-5%SiCp composite. The data primarily concentrates on predicting values of some machining responses, such as cutting force, surface finish and power utilization utilizing using forward back propagation neural network based approach, i.e. ANN based on three process parameters, such as spindle speed, feed rate and depth of cut.The comparing reverse model is likewise created to prescribe the ideal settings of processing parameters for accomplishing the desired responses as indicated by the necessities of the end clients. These modelling approaches are very proficient to foresee the benefits of machining responses and also process parameter settings in light of the experimental technique. Keywords: ANN, Forward mapping, Reverse mapping, Milling process

  11. Diminished Neural Processing of Aversive and Rewarding Stimuli During Selective Serotonin Reuptake Inhibitor Treatment

    Science.gov (United States)

    McCabe, Ciara; Mishor, Zevic; Cowen, Philip J.; Harmer, Catherine J.

    2010-01-01

    Background Selective serotonin reuptake inhibitors (SSRIs) are popular medications for anxiety and depression, but their effectiveness, particularly in patients with prominent symptoms of loss of motivation and pleasure, has been questioned. There are few studies of the effect of SSRIs on neural reward mechanisms in humans. Methods We studied 45 healthy participants who were randomly allocated to receive the SSRI citalopram, the noradrenaline reuptake inhibitor reboxetine, or placebo for 7 days in a double-blind, parallel group design. We used functional magnetic resonance imaging to measure the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (sight of moldy strawberries and/or an unpleasant strawberry taste) on the final day of drug treatment. Results Citalopram reduced activation to the chocolate stimuli in the ventral striatum and the ventral medial/orbitofrontal cortex. In contrast, reboxetine did not suppress ventral striatal activity and in fact increased neural responses within medial orbitofrontal cortex to reward. Citalopram also decreased neural responses to the aversive stimuli conditions in key “punishment” areas such as the lateral orbitofrontal cortex. Reboxetine produced a similar, although weaker effect. Conclusions Our findings are the first to show that treatment with SSRIs can diminish the neural processing of both rewarding and aversive stimuli. The ability of SSRIs to decrease neural responses to reward might underlie the questioned efficacy of SSRIs in depressive conditions characterized by decreased motivation and anhedonia and could also account for the experience of emotional blunting described by some patients during SSRI treatment. PMID:20034615

  12. Neural dynamics of morphological processing in spoken word comprehension: Laterality and automaticity

    Directory of Open Access Journals (Sweden)

    Caroline M. Whiting

    2013-11-01

    Full Text Available Rapid and automatic processing of grammatical complexity is argued to take place during speech comprehension, engaging a left-lateralised fronto-temporal language network. Here we address how neural activity in these regions is modulated by the grammatical properties of spoken words. We used combined magneto- and electroencephalography (MEG, EEG to delineate the spatiotemporal patterns of activity that support the recognition of morphologically complex words in English with inflectional (-s and derivational (-er affixes (e.g. bakes, baker. The mismatch negativity (MMN, an index of linguistic memory traces elicited in a passive listening paradigm, was used to examine the neural dynamics elicited by morphologically complex words. Results revealed an initial peak 130-180 ms after the deviation point with a major source in left superior temporal cortex. The localisation of this early activation showed a sensitivity to two grammatical properties of the stimuli: 1 the presence of morphological complexity, with affixed words showing increased left-laterality compared to non-affixed words; and 2 the grammatical category, with affixed verbs showing greater left-lateralisation in inferior frontal gyrus compared to affixed nouns (bakes vs. beaks. This automatic brain response was additionally sensitive to semantic coherence (the meaning of the stem vs. the meaning of the whole form in fronto-temporal regions. These results demonstrate that the spatiotemporal pattern of neural activity in spoken word processing is modulated by the presence of morphological structure, predominantly engaging the left-hemisphere’s fronto-temporal language network, and does not require focused attention on the linguistic input.

  13. Optical Calibration Process Developed for Neural-Network-Based Optical Nondestructive Evaluation Method

    Science.gov (United States)

    Decker, Arthur J.

    2004-01-01

    A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation

  14. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  15. Hidden sources of joy, fear, and sadness: Explicit versus implicit neural processing of musical emotions.

    Science.gov (United States)

    Bogert, Brigitte; Numminen-Kontti, Taru; Gold, Benjamin; Sams, Mikko; Numminen, Jussi; Burunat, Iballa; Lampinen, Jouko; Brattico, Elvira

    2016-08-01

    Music is often used to regulate emotions and mood. Typically, music conveys and induces emotions even when one does not attend to them. Studies on the neural substrates of musical emotions have, however, only examined brain activity when subjects have focused on the emotional content of the music. Here we address with functional magnetic resonance imaging (fMRI) the neural processing of happy, sad, and fearful music with a paradigm in which 56 subjects were instructed to either classify the emotions (explicit condition) or pay attention to the number of instruments playing (implicit condition) in 4-s music clips. In the implicit vs. explicit condition, stimuli activated bilaterally the inferior parietal lobule, premotor cortex, caudate, and ventromedial frontal areas. The cortical dorsomedial prefrontal and occipital areas activated during explicit processing were those previously shown to be associated with the cognitive processing of music and emotion recognition and regulation. Moreover, happiness in music was associated with activity in the bilateral auditory cortex, left parahippocampal gyrus, and supplementary motor area, whereas the negative emotions of sadness and fear corresponded with activation of the left anterior cingulate and middle frontal gyrus and down-regulation of the orbitofrontal cortex. Our study demonstrates for the first time in healthy subjects the neural underpinnings of the implicit processing of brief musical emotions, particularly in frontoparietal, dorsolateral prefrontal, and striatal areas of the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dissociable neural processes during risky decision-making in individuals with Internet-gaming disorder

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2017-01-01

    Full Text Available Risk-taking is purported to be central to addictive behaviors. However, for Internet gaming disorder (IGD, a condition conceptualized as a behavioral addiction, the neural processes underlying impaired decision-making (risk evaluation and outcome processing related to gains and losses have not been systematically investigated. Forty-one males with IGD and 27 healthy comparison (HC male participants were recruited, and the cups task was used to identify neural processes associated with gain- and loss-related risk- and outcome-processing in IGD. During risk evaluation, the IGD group, compared to the HC participants, showed weaker modulation for experienced risk within the bilateral dorsolateral prefrontal cortex (DLPFC (t = −4.07; t = −3.94; PFWE < 0.05 and inferior parietal lobule (IPL (t = −4.08; t = −4.08; PFWE < 0.05 for potential losses. The modulation of the left DLPFC and bilateral IPL activation were negatively related to addiction severity within the IGD group (r = −0.55; r = −0.61; r = −0.51; PFWE < 0.05. During outcome processing, the IGD group presented greater responses for the experienced reward within the ventral striatum, ventromedial prefrontal cortex, and orbitofrontal cortex (OFC (t = 5.04, PFWE < 0.05 for potential gains, as compared to HC participants. Within the IGD group, the increased reward-related activity in the right OFC was positively associated with severity of IGD (r = 0.51, PFWE < 0.05. These results provide a neurobiological foundation for decision-making deficits in individuals with IGD and suggest an imbalance between hypersensitivity for reward and weaker risk experience and self-control for loss. The findings suggest a biological mechanism for why individuals with IGD may persist in game-seeking behavior despite negative consequences, and treatment development strategies may focus on targeting these neural pathways in this population.

  17. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    Science.gov (United States)

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  18. Learning-induced neural plasticity of speech processing before birth.

    Science.gov (United States)

    Partanen, Eino; Kujala, Teija; Näätänen, Risto; Liitola, Auli; Sambeth, Anke; Huotilainen, Minna

    2013-09-10

    Learning, the foundation of adaptive and intelligent behavior, is based on plastic changes in neural assemblies, reflected by the modulation of electric brain responses. In infancy, auditory learning implicates the formation and strengthening of neural long-term memory traces, improving discrimination skills, in particular those forming the prerequisites for speech perception and understanding. Although previous behavioral observations show that newborns react differentially to unfamiliar sounds vs. familiar sound material that they were exposed to as fetuses, the neural basis of fetal learning has not thus far been investigated. Here we demonstrate direct neural correlates of human fetal learning of speech-like auditory stimuli. We presented variants of words to fetuses; unlike infants with no exposure to these stimuli, the exposed fetuses showed enhanced brain activity (mismatch responses) in response to pitch changes for the trained variants after birth. Furthermore, a significant correlation existed between the amount of prenatal exposure and brain activity, with greater activity being associated with a higher amount of prenatal speech exposure. Moreover, the learning effect was generalized to other types of similar speech sounds not included in the training material. Consequently, our results indicate neural commitment specifically tuned to the speech features heard before birth and their memory representations.

  19. Natural Language Processing with Small Feed-Forward Networks

    OpenAIRE

    Botha, Jan A.; Pitler, Emily; Ma, Ji; Bakalov, Anton; Salcianu, Alex; Weiss, David; McDonald, Ryan; Petrov, Slav

    2017-01-01

    We show that small and shallow feed-forward neural networks can achieve near state-of-the-art results on a range of unstructured and structured language processing tasks while being considerably cheaper in memory and computational requirements than deep recurrent models. Motivated by resource-constrained environments like mobile phones, we showcase simple techniques for obtaining such small neural network models, and investigate different tradeoffs when deciding how to allocate a small memory...

  20. Neural network post-processing of grayscale optical correlator

    Science.gov (United States)

    Lu, Thomas T; Hughlett, Casey L.; Zhoua, Hanying; Chao, Tien-Hsin; Hanan, Jay C.

    2005-01-01

    In this paper we present the use of a radial basis function neural network (RBFNN) as a post-processor to assist the optical correlator to identify the objects and to reject false alarms. Image plane features near the correlation peaks are extracted and fed to the neural network for analysis. The approach is capable of handling large number of object variations and filter sets. Preliminary experimental results are presented and the performance is analyzed.

  1. PROVIDING RELIABILITY OF HUMAN RESOURCES IN PRODUCTION MANAGEMENT PROCESS

    Directory of Open Access Journals (Sweden)

    Anna MAZUR

    2014-07-01

    Full Text Available People are the most valuable asset of an organization and the results of a company mostly depends on them. The human factor can also be a weak link in the company and cause of the high risk for many of the processes. Reliability of the human factor in the process of the manufacturing process will depend on many factors. The authors include aspects of human error, safety culture, knowledge, communication skills, teamwork and leadership role in the developed model of reliability of human resources in the management of the production process. Based on the case study and the results of research and observation of the author present risk areas defined in a specific manufacturing process and the results of evaluation of the reliability of human resources in the process.

  2. Investigating Circadian Rhythmicity in Pain Sensitivity Using a Neural Circuit Model for Spinal Cord Processing of Pain

    DEFF Research Database (Denmark)

    Crodelle, Jennifer; Piltz, Sofia Helena; Booth, Victoria

    2017-01-01

    Primary processing of painful stimulation occurs in the dorsal horn of the spinal cord. In this article, we introduce mathematical models of the neural circuitry in the dorsal horn responsible for processing nerve fiber inputs from noxious stimulation of peripheral tissues and generating the resu......Primary processing of painful stimulation occurs in the dorsal horn of the spinal cord. In this article, we introduce mathematical models of the neural circuitry in the dorsal horn responsible for processing nerve fiber inputs from noxious stimulation of peripheral tissues and generating...... the resultant pain signal. The differential equation models describe the average firing rates of excitatory and inhibitory interneuron populations, as well as the wide dynamic range (WDR) neurons whose output correlates with the pain signal. The temporal profile of inputs on the different afferent nerve fibers...

  3. [GSH fermentation process modeling using entropy-criterion based RBF neural network model].

    Science.gov (United States)

    Tan, Zuoping; Wang, Shitong; Deng, Zhaohong; Du, Guocheng

    2008-05-01

    The prediction accuracy and generalization of GSH fermentation process modeling are often deteriorated by noise existing in the corresponding experimental data. In order to avoid this problem, we present a novel RBF neural network modeling approach based on entropy criterion. It considers the whole distribution structure of the training data set in the parameter learning process compared with the traditional MSE-criterion based parameter learning, and thus effectively avoids the weak generalization and over-learning. Then the proposed approach is applied to the GSH fermentation process modeling. Our results demonstrate that this proposed method has better prediction accuracy, generalization and robustness such that it offers a potential application merit for the GSH fermentation process modeling.

  4. The neural processing of foreign-accented speech and its relationship to listener bias

    Directory of Open Access Journals (Sweden)

    Han-Gyol eYi

    2014-10-01

    Full Text Available Foreign-accented speech often presents a challenging listening condition. In addition to deviations from the target speech norms related to the inexperience of the nonnative speaker, listener characteristics may play a role in determining intelligibility levels. We have previously shown that an implicit visual bias for associating East Asian faces and foreignness predicts the listeners’ perceptual ability to process Korean-accented English audiovisual speech (Yi et al., 2013. Here, we examine the neural mechanism underlying the influence of listener bias to foreign faces on speech perception. In a functional magnetic resonance imaging (fMRI study, native English speakers listened to native- and Korean-accented English sentences, with or without faces. The participants’ Asian-foreign association was measured using an implicit association test (IAT, conducted outside the scanner. We found that foreign-accented speech evoked greater activity in the bilateral primary auditory cortices and the inferior frontal gyri, potentially reflecting greater computational demand. Higher IAT scores, indicating greater bias, were associated with increased BOLD response to foreign-accented speech with faces in the primary auditory cortex, the early node for spectrotemporal analysis. We conclude the following: (1 foreign-accented speech perception places greater demand on the neural systems underlying speech perception; (2 face of the talker can exaggerate the perceived foreignness of foreign-accented speech; (3 implicit Asian-foreign association is associated with decreased neural efficiency in early spectrotemporal processing.

  5. Genetic Algorithms vs. Artificial Neural Networks in Economic Forecasting Process

    Directory of Open Access Journals (Sweden)

    Nicolae Morariu

    2008-01-01

    Full Text Available This paper aims to describe the implementa-tion of a neural network and a genetic algorithm system in order to forecast certain economic indicators of a free market economy. In a free market economy forecasting process precedes the economic planning (a management function, providing important information for the result of the last process. Forecasting represents a starting point in setting of target for a firm, an organization or even a branch of the economy. Thus, the forecasting method used can influence in a significant mode the evolution of an entity. In the following we will describe the forecasting of an economic indicator using two intelligent systems. The difference between the results obtained by this two systems are described in chapter IV.

  6. How right is left? Handedness modulates neural responses during morphosyntactic processing.

    Science.gov (United States)

    Grey, Sarah; Tanner, Darren; van Hell, Janet G

    2017-08-15

    Most neurocognitive models of language processing generally assume population-wide homogeneity in the neural mechanisms used during language comprehension, yet individual differences are known to influence these neural mechanisms. In this study, we focus on handedness as an individual difference hypothesized to affect language comprehension. Left-handers and right-handers with a left-handed blood relative, or familial sinistrals, are hypothesized to process language differently than right-handers with no left-handed relatives (Hancock and Bever, 2013; Ullman, 2004). Yet, left-handers are often excluded from neurocognitive language research, and familial sinistrality in right-handers is often not taken into account. In the current study we used event-related potentials to test morphosyntactic processing in three groups that differed in their handedness profiles: left-handers (LH), right-handers with a left-handed blood relative (RH FS+), and right-handers with no reported left-handed blood relative (RH FS-; both right-handed groups were previously tested by Tanner and Van Hell, 2014). Results indicated that the RH FS- group showed only P600 responses during morphosyntactic processing whereas the LH and RH FS+ groups showed biphasic N400-P600 patterns. N400s in LH and RH FS+ groups are consistent with theories that associate left-handedness (self or familial) with increased reliance on lexical/semantic mechanisms during language processing. Inspection of individual-level results illustrated that variability in RH FS- individuals' morphosyntactic processing was remarkably low: most individuals were P600-dominant. In contrast, LH and RH FS+ individuals showed marked variability in brain responses, which was similar for both groups: half of individuals were N400-dominant and half were P600-dominant. Our findings have implications for neurocognitive models of language that have been largely formulated around data from only right-handers without accounting for familial

  7. Ethanol production from steam exploded rapeseed straw and the process simulation using artificial neural networks

    DEFF Research Database (Denmark)

    Talebnia, Farid; Mighani, Moein; Rahimnejad, Mostafa

    2015-01-01

    and 67% of maximum theoretical value. Next, data of the experimental runs were exploited for modeling the processes by artificial neural networks (ANNs) and performance of the developed models was evaluated. The ANN-based models showed a great potential for time-course prediction of the studied processes....... Efficiency of the joint network for simulating the whole process was also determined and promising results were obtained....

  8. "Thinking about not-thinking": neural correlates of conceptual processing during Zen meditation.

    Directory of Open Access Journals (Sweden)

    Giuseppe Pagnoni

    2008-09-01

    Full Text Available Recent neuroimaging studies have identified a set of brain regions that are metabolically active during wakeful rest and consistently deactivate in a variety the performance of demanding tasks. This "default network" has been functionally linked to the stream of thoughts occurring automatically in the absence of goal-directed activity and which constitutes an aspect of mental behavior specifically addressed by many meditative practices. Zen meditation, in particular, is traditionally associated with a mental state of full awareness but reduced conceptual content, to be attained via a disciplined regulation of attention and bodily posture. Using fMRI and a simplified meditative condition interspersed with a lexical decision task, we investigated the neural correlates of conceptual processing during meditation in regular Zen practitioners and matched control subjects. While behavioral performance did not differ between groups, Zen practitioners displayed a reduced duration of the neural response linked to conceptual processing in regions of the default network, suggesting that meditative training may foster the ability to control the automatic cascade of semantic associations triggered by a stimulus and, by extension, to voluntarily regulate the flow of spontaneous mentation.

  9. A longitudinal study investigating neural processing of speech envelope modulation rates in children with (a family risk for) dyslexia.

    Science.gov (United States)

    De Vos, Astrid; Vanvooren, Sophie; Vanderauwera, Jolijn; Ghesquière, Pol; Wouters, Jan

    2017-08-01

    Recent evidence suggests that a fundamental deficit in the synchronization of neural oscillations to temporal information in speech may underlie phonological processing problems in dyslexia. Since previous studies were performed cross-sectionally in school-aged children or adults, developmental aspects of neural auditory processing in relation to reading acquisition and dyslexia remain to be investigated. The present longitudinal study followed 68 children during development from pre-reader (5 years old) to beginning reader (7 years old) and more advanced reader (9 years old). Thirty-six children had a family risk for dyslexia and 14 children eventually developed dyslexia. EEG recordings of auditory steady-state responses to 4 and 20 Hz modulations, corresponding to syllable and phoneme rates, were collected at each point in time. Our results demonstrate an increase in neural synchronization to phoneme-rate modulations around the onset of reading acquisition. This effect was negatively correlated with later reading and phonological skills, indicating that children who exhibit the largest increase in neural synchronization to phoneme rates, develop the poorest reading and phonological skills. Accordingly, neural synchronization to phoneme-rate modulations was found to be significantly higher in beginning and more advanced readers with dyslexia. We found no developmental effects regarding neural synchronization to syllable rates, nor any effects of a family risk for dyslexia. Altogether, our findings suggest that the onset of reading instruction coincides with an increase in neural responsiveness to phoneme-rate modulations, and that the extent of this increase is related to (the outcome of) reading development. Hereby, dyslexic children persistently demonstrate atypically high neural synchronization to phoneme rates from the beginning of reading acquisition onwards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Exploring the neural correlates of visual creativity

    Science.gov (United States)

    Liew, Sook-Lei; Dandekar, Francesco

    2013-01-01

    Although creativity has been called the most important of all human resources, its neural basis is still unclear. In the current study, we used fMRI to measure neural activity in participants solving a visuospatial creativity problem that involves divergent thinking and has been considered a canonical right hemisphere task. As hypothesized, both the visual creativity task and the control task as compared to rest activated a variety of areas including the posterior parietal cortex bilaterally and motor regions, which are known to be involved in visuospatial rotation of objects. However, directly comparing the two tasks indicated that the creative task more strongly activated left hemisphere regions including the posterior parietal cortex, the premotor cortex, dorsolateral prefrontal cortex (DLPFC) and the medial PFC. These results demonstrate that even in a task that is specialized to the right hemisphere, robust parallel activity in the left hemisphere supports creative processing. Furthermore, the results support the notion that higher motor planning may be a general component of creative improvisation and that such goal-directed planning of novel solutions may be organized top-down by the left DLPFC and by working memory processing in the medial prefrontal cortex. PMID:22349801

  11. A method to evaluate process performance by integrating time and resources

    Science.gov (United States)

    Wang, Yu; Wei, Qingjie; Jin, Shuang

    2017-06-01

    The purpose of process mining is to improve the existing process of the enterprise, so how to measure the performance of the process is particularly important. However, the current research on the performance evaluation method is still insufficient. The main methods of evaluation are mainly using time or resource. These basic statistics cannot evaluate process performance very well. In this paper, a method of evaluating the performance of the process based on time dimension and resource dimension is proposed. This method can be used to measure the utilization and redundancy of resources in the process. This paper will introduce the design principle and formula of the evaluation algorithm. Then, the design and the implementation of the evaluation method will be introduced. Finally, we will use the evaluating method to analyse the event log from a telephone maintenance process and propose an optimization plan.

  12. A potential neural substrate for processing functional classes of complex acoustic signals.

    Directory of Open Access Journals (Sweden)

    Isabelle George

    Full Text Available Categorization is essential to all cognitive processes, but identifying the neural substrates underlying categorization processes is a real challenge. Among animals that have been shown to be able of categorization, songbirds are particularly interesting because they provide researchers with clear examples of categories of acoustic signals allowing different levels of recognition, and they possess a system of specialized brain structures found only in birds that learn to sing: the song system. Moreover, an avian brain nucleus that is analogous to the mammalian secondary auditory cortex (the caudo-medial nidopallium, or NCM has recently emerged as a plausible site for sensory representation of birdsong, and appears as a well positioned brain region for categorization of songs. Hence, we tested responses in this non-primary, associative area to clear and distinct classes of songs with different functions and social values, and for a possible correspondence between these responses and the functional aspects of songs, in a highly social songbird species: the European starling. Our results clearly show differential neuronal responses to the ethologically defined classes of songs, both in the number of neurons responding, and in the response magnitude of these neurons. Most importantly, these differential responses corresponded to the functional classes of songs, with increasing activation from non-specific to species-specific and from species-specific to individual-specific sounds. These data therefore suggest a potential neural substrate for sorting natural communication signals into categories, and for individual vocal recognition of same-species members. Given the many parallels that exist between birdsong and speech, these results may contribute to a better understanding of the neural bases of speech.

  13. Neural correlates of anticipation and processing of performance feedback in social anxiety.

    Science.gov (United States)

    Heitmann, Carina Y; Peterburs, Jutta; Mothes-Lasch, Martin; Hallfarth, Marlit C; Böhme, Stephanie; Miltner, Wolfgang H R; Straube, Thomas

    2014-12-01

    Fear of negative evaluation, such as negative social performance feedback, is the core symptom of social anxiety. The present study investigated the neural correlates of anticipation and perception of social performance feedback in social anxiety. High (HSA) and low (LSA) socially anxious individuals were asked to give a speech on a personally relevant topic and received standardized but appropriate expert performance feedback in a succeeding experimental session in which neural activity was measured during anticipation and presentation of negative and positive performance feedback concerning the speech performance, or a neutral feedback-unrelated control condition. HSA compared to LSA subjects reported greater anxiety during anticipation of negative feedback. Functional magnetic resonance imaging results showed deactivation of medial prefrontal brain areas during anticipation of negative feedback relative to the control and the positive condition, and medial prefrontal and insular hyperactivation during presentation of negative as well as positive feedback in HSA compared to LSA subjects. The results indicate distinct processes underlying feedback processing during anticipation and presentation of feedback in HSA as compared to LSA individuals. In line with the role of the medial prefrontal cortex in self-referential information processing and the insula in interoception, social anxiety seems to be associated with lower self-monitoring during feedback anticipation, and an increased self-focus and interoception during feedback presentation, regardless of feedback valence. © 2014 Wiley Periodicals, Inc.

  14. Disruption of visual awareness during the attentional blink is reflected by selective disruption of late-stage neural processing

    Science.gov (United States)

    Harris, Joseph A.; McMahon, Alex R.; Woldorff, Marty G.

    2015-01-01

    Any information represented in the brain holds the potential to influence behavior. It is therefore of broad interest to determine the extent and quality of neural processing of stimulus input that occurs with and without awareness. The attentional blink is a useful tool for dissociating neural and behavioral measures of perceptual visual processing across conditions of awareness. The extent of higher-order visual information beyond basic sensory signaling that is processed during the attentional blink remains controversial. To determine what neural processing at the level of visual-object identification occurs in the absence of awareness, electrophysiological responses to images of faces and houses were recorded both within and outside of the attentional blink period during a rapid serial visual presentation (RSVP) stream. Electrophysiological results were sorted according to behavioral performance (correctly identified targets versus missed targets) within these blink and non-blink periods. An early index of face-specific processing (the N170, 140–220 ms post-stimulus) was observed regardless of whether the subject demonstrated awareness of the stimulus, whereas a later face-specific effect with the same topographic distribution (500–700 ms post-stimulus) was only seen for accurate behavioral discrimination of the stimulus content. The present findings suggest a multi-stage process of object-category processing, with only the later phase being associated with explicit visual awareness. PMID:23859644

  15. Attenuated Neural Processing of Risk in Young Adults at Risk for Stimulant Dependence.

    Directory of Open Access Journals (Sweden)

    Martina Reske

    Full Text Available Approximately 10% of young adults report non-medical use of stimulants (cocaine, amphetamine, methylphenidate, which puts them at risk for the development of dependence. This fMRI study investigates whether subjects at early stages of stimulant use show altered decision making processing.158 occasional stimulants users (OSU and 50 comparison subjects (CS performed a "risky gains" decision making task during which they could select safe options (cash in 20 cents or gamble them for double or nothing in two consecutive gambles (win or lose 40 or 80 cents, "risky decisions". The primary analysis focused on risky versus safe decisions. Three secondary analyses were conducted: First, a robust regression examined the effect of lifetime exposure to stimulants and marijuana; second, subgroups of OSU with >1000 (n = 42, or <50 lifetime marijuana uses (n = 32, were compared to CS with <50 lifetime uses (n = 46 to examine potential marijuana effects; third, brain activation associated with behavioral adjustment following monetary losses was probed.There were no behavioral differences between groups. OSU showed attenuated activation across risky and safe decisions in prefrontal cortex, insula, and dorsal striatum, exhibited lower anterior cingulate cortex (ACC and dorsal striatum activation for risky decisions and greater inferior frontal gyrus activation for safe decisions. Those OSU with relatively more stimulant use showed greater dorsal ACC and posterior insula attenuation. In comparison, greater lifetime marijuana use was associated with less neural differentiation between risky and safe decisions. OSU who chose more safe responses after losses exhibited similarities with CS relative to those preferring risky options.Individuals at risk for the development of stimulant use disorders presented less differentiated neural processing of risky and safe options. Specifically, OSU show attenuated brain response in regions critical for performance monitoring

  16. Engaging narratives evoke similar neural activity and lead to similar time perception.

    Science.gov (United States)

    Cohen, Samantha S; Henin, Simon; Parra, Lucas C

    2017-07-04

    It is said that we lose track of time - that "time flies" - when we are engrossed in a story. How does engagement with the story cause this distorted perception of time, and what are its neural correlates? People commit both time and attentional resources to an engaging stimulus. For narrative videos, attentional engagement can be represented as the level of similarity between the electroencephalographic responses of different viewers. Here we show that this measure of neural engagement predicted the duration of time that viewers were willing to commit to narrative videos. Contrary to popular wisdom, engagement did not distort the average perception of time duration. Rather, more similar brain responses resulted in a more uniform perception of time across viewers. These findings suggest that by capturing the attention of an audience, narrative videos bring both neural processing and the subjective perception of time into synchrony.

  17. Neural activity and emotional processing following military deployment: Effects of mild traumatic brain injury and posttraumatic stress disorder.

    Science.gov (United States)

    Zuj, Daniel V; Felmingham, Kim L; Palmer, Matthew A; Lawrence-Wood, Ellie; Van Hooff, Miranda; Lawrence, Andrew J; Bryant, Richard A; McFarlane, Alexander C

    2017-11-01

    Posttraumatic Stress Disorder (PTSD) and mild traumatic brain injury (mTBI) are common comorbidities during military deployment that affect emotional brain processing, yet few studies have examined the independent effects of mTBI and PTSD. The purpose of this study was to examine distinct differences in neural responses to emotional faces in mTBI and PTSD. Twenty-one soldiers reporting high PTSD symptoms were compared to 21 soldiers with low symptoms, and 16 soldiers who reported mTBI-consistent injury and symptoms were compared with 16 soldiers who did not sustain an mTBI. Participants viewed emotional face expressions while their neural activity was recorded (via event-related potentials) prior to and following deployment. The high-PTSD group displayed increased P1 and P2 amplitudes to threatening faces at post-deployment compared to the low-PTSD group. In contrast, the mTBI group displayed reduced face-specific processing (N170 amplitude) to all facial expressions compared to the no-mTBI group. Here, we identified distinctive neural patterns of emotional face processing, with attentional biases towards threatening faces in PTSD, and reduced emotional face processing in mTBI. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process.

    Science.gov (United States)

    Choi, D J; Park, H

    2001-11-01

    For control and automation of biological treatment processes, lack of reliable on-line sensors to measure water quality parameters is one of the most important problems to overcome. Many parameters cannot be measured directly with on-line sensors. The accuracy of existing hardware sensors is also not sufficient and maintenance problems such as electrode fouling often cause trouble. This paper deals with the development of software sensor techniques that estimate the target water quality parameter from other parameters using the correlation between water quality parameters. We focus our attention on the preprocessing of noisy data and the selection of the best model feasible to the situation. Problems of existing approaches are also discussed. We propose a hybrid neural network as a software sensor inferring wastewater quality parameter. Multivariate regression, artificial neural networks (ANN), and a hybrid technique that combines principal component analysis as a preprocessing stage are applied to data from industrial wastewater processes. The hybrid ANN technique shows an enhancement of prediction capability and reduces the overfitting problem of neural networks. The result shows that the hybrid ANN technique can be used to extract information from noisy data and to describe the nonlinearity of complex wastewater treatment processes.

  19. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    Science.gov (United States)

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-03-23

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Model Checking Process Algebra of Communicating Resources for Real-time Systems

    DEFF Research Database (Denmark)

    Boudjadar, Jalil; Kim, Jin Hyun; Larsen, Kim Guldstrand

    2014-01-01

    This paper presents a new process algebra, called PACOR, for real-time systems which deals with resource constrained timed behavior as an improved version of the ACSR algebra. We define PACOR as a Process Algebra of Communicating Resources which allows to express preemptiveness, urgent ness...

  1. Banknote recognition: investigating processing and cognition framework using competitive neural network.

    Science.gov (United States)

    Oyedotun, Oyebade K; Khashman, Adnan

    2017-02-01

    Humans are apt at recognizing patterns and discovering even abstract features which are sometimes embedded therein. Our ability to use the banknotes in circulation for business transactions lies in the effortlessness with which we can recognize the different banknote denominations after seeing them over a period of time. More significant is that we can usually recognize these banknote denominations irrespective of what parts of the banknotes are exposed to us visually. Furthermore, our recognition ability is largely unaffected even when these banknotes are partially occluded. In a similar analogy, the robustness of intelligent systems to perform the task of banknote recognition should not collapse under some minimum level of partial occlusion. Artificial neural networks are intelligent systems which from inception have taken many important cues related to structure and learning rules from the human nervous/cognition processing system. Likewise, it has been shown that advances in artificial neural network simulations can help us understand the human nervous/cognition system even furthermore. In this paper, we investigate three cognition hypothetical frameworks to vision-based recognition of banknote denominations using competitive neural networks. In order to make the task more challenging and stress-test the investigated hypotheses, we also consider the recognition of occluded banknotes. The implemented hypothetical systems are tasked to perform fast recognition of banknotes with up to 75 % occlusion. The investigated hypothetical systems are trained on Nigeria's Naira banknotes and several experiments are performed to demonstrate the findings presented within this work.

  2. Internal mechanisms underlying anticipatory language processing: Evidence from event-related-potentials and neural oscillations.

    Science.gov (United States)

    Li, Xiaoqing; Zhang, Yuping; Xia, Jinyan; Swaab, Tamara Y

    2017-07-28

    Although numerous studies have demonstrated that the language processing system can predict upcoming content during comprehension, there is still no clear picture of the anticipatory stage of predictive processing. This electroencephalograph study examined the cognitive and neural oscillatory mechanisms underlying anticipatory processing during language comprehension, and the consequences of this prediction for bottom-up processing of predicted/unpredicted content. Participants read Mandarin Chinese sentences that were either strongly or weakly constraining and that contained critical nouns that were congruent or incongruent with the sentence contexts. We examined the effects of semantic predictability on anticipatory processing prior to the onset of the critical nouns and on integration of the critical nouns. The results revealed that, at the integration stage, the strong-constraint condition (compared to the weak-constraint condition) elicited a reduced N400 and reduced theta activity (4-7Hz) for the congruent nouns, but induced beta (13-18Hz) and theta (4-7Hz) power decreases for the incongruent nouns, indicating benefits of confirmed predictions and potential costs of disconfirmed predictions. More importantly, at the anticipatory stage, the strongly constraining context elicited an enhanced sustained anterior negativity and beta power decrease (19-25Hz), which indicates that strong prediction places a higher processing load on the anticipatory stage of processing. The differences (in the ease of processing and the underlying neural oscillatory activities) between anticipatory and integration stages of lexical processing were discussed with regard to predictive processing models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Neural analysis of bovine ovaries ultrasound images in the identification process of the corpus luteum

    Science.gov (United States)

    Górna, K.; Jaśkowski, B. M.; Okoń, P.; Czechlowski, M.; Koszela, K.; Zaborowicz, M.; Idziaszek, P.

    2017-07-01

    The aim of the paper is to shown the neural image analysis as a method useful for identifying the development stage of the domestic bovine corpus luteum on digital USG (UltraSonoGraphy) images. Corpus luteum (CL) is a transient endocrine gland that develops after ovulation from the follicle secretory cells. The aim of CL is the production of progesterone, which regulates many reproductive functions. In the presented studies, identification of the corpus luteum was carried out on the basis of information contained in ultrasound digital images. Development stage of the corpus luteum was considered in two aspects: just before and middle of domination phase and luteolysis and degradation phase. Prior to the classification, the ultrasound images have been processed using a GLCM (Gray Level Co-occurence Matrix). To generate a classification model, a Neural Networks module implemented in the STATISTICA was used. Five representative parameters describing the ultrasound image were used as learner variables. On the output of the artificial neural network was generated information about the development stage of the corpus luteum. Results of this study indicate that neural image analysis combined with GLCM texture analysis may be a useful tool for identifying the bovine corpus luteum in the context of its development phase. Best-generated artificial neural network model was the structure of MLP (Multi Layer Perceptron) 5:5-17-1:1.

  4. The neural basis of emotions varies over time: different regions go with onset- and offset-bound processes underlying emotion intensity.

    Science.gov (United States)

    Résibois, Maxime; Verduyn, Philippe; Delaveau, Pauline; Rotgé, Jean-Yves; Kuppens, Peter; Van Mechelen, Iven; Fossati, Philippe

    2017-08-01

    According to theories of emotion dynamics, emotions unfold across two phases in which different types of processes come to the fore: emotion onset and emotion offset. Differences in onset-bound processes are reflected by the degree of explosiveness or steepness of the response at onset, and differences in offset-bound processes by the degree of accumulation or intensification of the subsequent response. Whether onset- and offset-bound processes have distinctive neural correlates and, hence, whether the neural basis of emotions varies over time, still remains unknown. In the present fMRI study, we address this question using a recently developed paradigm that allows to disentangle explosiveness and accumulation. Thirty-one participants were exposed to neutral and negative social feedback, and asked to reflect on its contents. Emotional intensity while reading and thinking about the feedback was measured with an intensity profile tracking approach. Using non-negative matrix factorization, the resulting profile data were decomposed in explosiveness and accumulation components, which were subsequently entered as continuous regressors of the BOLD response. It was found that the neural basis of emotion intensity shifts as emotions unfold over time with emotion explosiveness and accumulation having distinctive neural correlates. © The Author (2017). Published by Oxford University Press.

  5. The Correlation among Neural Dynamic Processing of Conflict Control, Testosterone and Cortisol Levels in 10-Year-Old Children.

    Science.gov (United States)

    Shangguan, Fangfang; Liu, Tongran; Liu, Xiuying; Shi, Jiannong

    2017-01-01

    Cognitive control is related to goal-directed self-regulation abilities, which is fundamental for human development. Conflict control includes the neural processes of conflict monitoring and conflict resolution. Testosterone and cortisol are essential hormones for the development of cognitive functions. However, there are no studies that have investigated the correlation of these two hormones with conflict control in preadolescents. In this study, we aimed to explore whether testosterone, cortisol, and testosterone/cortisol ratio worked differently for preadolescent's conflict control processes in varied conflict control tasks. Thirty-two 10-year-old children (16 boys and 16 girls) were enrolled. They were instructed to accomplish three conflict control tasks with different conflict dimensions, including the Flanker, Simon, and Stroop tasks, and electrophysiological signals were recorded. Salivary samples were collected from each child. The testosterone and cortisol levels were determined by enzyme-linked immunosorbent assay. The electrophysiological results showed that the incongruent trials induced greater N2/N450 and P3/SP responses than the congruent trials during neural processes of conflict monitoring and conflict resolution in the Flanker and Stroop tasks. The hormonal findings showed that (1) the testosterone/cortisol ratio was correlated with conflict control accuracy and conflict resolution in the Flanker task; (2) the testosterone level was associated with conflict control performance and neural processing of conflict resolution in the Stroop task; (3) the cortisol level was correlated with conflict control performance and neural processing of conflict monitoring in the Simon task. In conclusion, in 10-year-old children, the fewer processes a task needs, the more likely there is an association between the T/C ratios and the behavioral and brain response, and the dual-hormone effects on conflict resolution may be testosterone-driven in the Stroop and

  6. The Correlation among Neural Dynamic Processing of Conflict Control, Testosterone and Cortisol Levels in 10-Year-Old Children

    Directory of Open Access Journals (Sweden)

    Fangfang Shangguan

    2017-06-01

    Full Text Available Cognitive control is related to goal-directed self-regulation abilities, which is fundamental for human development. Conflict control includes the neural processes of conflict monitoring and conflict resolution. Testosterone and cortisol are essential hormones for the development of cognitive functions. However, there are no studies that have investigated the correlation of these two hormones with conflict control in preadolescents. In this study, we aimed to explore whether testosterone, cortisol, and testosterone/cortisol ratio worked differently for preadolescent’s conflict control processes in varied conflict control tasks. Thirty-two 10-year-old children (16 boys and 16 girls were enrolled. They were instructed to accomplish three conflict control tasks with different conflict dimensions, including the Flanker, Simon, and Stroop tasks, and electrophysiological signals were recorded. Salivary samples were collected from each child. The testosterone and cortisol levels were determined by enzyme-linked immunosorbent assay. The electrophysiological results showed that the incongruent trials induced greater N2/N450 and P3/SP responses than the congruent trials during neural processes of conflict monitoring and conflict resolution in the Flanker and Stroop tasks. The hormonal findings showed that (1 the testosterone/cortisol ratio was correlated with conflict control accuracy and conflict resolution in the Flanker task; (2 the testosterone level was associated with conflict control performance and neural processing of conflict resolution in the Stroop task; (3 the cortisol level was correlated with conflict control performance and neural processing of conflict monitoring in the Simon task. In conclusion, in 10-year-old children, the fewer processes a task needs, the more likely there is an association between the T/C ratios and the behavioral and brain response, and the dual-hormone effects on conflict resolution may be testosterone-driven in

  7. PROCESSING THE INFORMATION CONTENT ON THE BASIS OF FUZZY NEURAL MODEL OF DECISION MAKING

    Directory of Open Access Journals (Sweden)

    Nina V. Komleva

    2013-01-01

    Full Text Available The article is devoted to the issues of mathematical modeling of the decision-making process of information content processing based on the fuzzy neural network TSK. Integral rating assessment of the content, which is necessary for taking a decision about its further usage, is made depended on varying characteristics. Mechanism for building individual trajectory and forming individual competence is provided to make the intellectual content search.

  8. Model checking process algebra of communicating resources for real-time systems

    DEFF Research Database (Denmark)

    Boudjadar, Jalil; Kim, Jin Hyun; Larsen, Kim Guldstrand

    2014-01-01

    This paper presents a new process algebra, called PACoR, for real-time systems which deals with resource- constrained timed behavior as an improved version of the ACSR algebra. We define PACoR as a Process Algebra of Communicating Resources which allows to explicitly express preemptiveness...

  9. Fluid Intelligence and Automatic Neural Processes in Facial Expression Perception

    DEFF Research Database (Denmark)

    Liu, Tongran; Xiao, Tong; Li, Xiaoyan

    2015-01-01

    The relationship between human fluid intelligence and social-emotional abilities has been a topic of considerable interest. The current study investigated whether adolescents with different intellectual levels had different automatic neural processing of facial expressions. Two groups of adolescent...... males were enrolled: a high IQ group and an average IQ group. Age and parental socioeconomic status were matched between the two groups. Participants counted the numbers of the central cross changes while paired facial expressions were presented bilaterally in an oddball paradigm. There were two.......2). Participants were required to concentrate on the primary task of counting the central cross changes and to ignore the expressions to ensure that facial expression processing was automatic. Event-related potentials (ERPs) were obtained during the tasks. The visual mismatch negativity (vMMN) components were...

  10. Neural Processing of Emotional Musical and Nonmusical Stimuli in Depression.

    Directory of Open Access Journals (Sweden)

    Rebecca J Lepping

    Full Text Available Anterior cingulate cortex (ACC and striatum are part of the emotional neural circuitry implicated in major depressive disorder (MDD. Music is often used for emotion regulation, and pleasurable music listening activates the dopaminergic system in the brain, including the ACC. The present study uses functional MRI (fMRI and an emotional nonmusical and musical stimuli paradigm to examine how neural processing of emotionally provocative auditory stimuli is altered within the ACC and striatum in depression.Nineteen MDD and 20 never-depressed (ND control participants listened to standardized positive and negative emotional musical and nonmusical stimuli during fMRI scanning and gave subjective ratings of valence and arousal following scanning.ND participants exhibited greater activation to positive versus negative stimuli in ventral ACC. When compared with ND participants, MDD participants showed a different pattern of activation in ACC. In the rostral part of the ACC, ND participants showed greater activation for positive information, while MDD participants showed greater activation to negative information. In dorsal ACC, the pattern of activation distinguished between the types of stimuli, with ND participants showing greater activation to music compared to nonmusical stimuli, while MDD participants showed greater activation to nonmusical stimuli, with the greatest response to negative nonmusical stimuli. No group differences were found in striatum.These results suggest that people with depression may process emotional auditory stimuli differently based on both the type of stimulation and the emotional content of that stimulation. This raises the possibility that music may be useful in retraining ACC function, potentially leading to more effective and targeted treatments.

  11. Neural Networks for Optimal Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1995-01-01

    Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....

  12. Prediction of Increasing Production Activities using Combination of Query Aggregation on Complex Events Processing and Neural Network

    Directory of Open Access Journals (Sweden)

    Achmad Arwan

    2016-07-01

    Full Text Available AbstrakProduksi, order, penjualan, dan pengiriman adalah serangkaian event yang saling terkait dalam industri manufaktur. Selanjutnya hasil dari event tersebut dicatat dalam event log. Complex Event Processing adalah metode yang digunakan untuk menganalisis apakah terdapat pola kombinasi peristiwa tertentu (peluang/ancaman yang terjadi pada sebuah sistem, sehingga dapat ditangani secara cepat dan tepat. Jaringan saraf tiruan adalah metode yang digunakan untuk mengklasifikasi data peningkatan proses produksi. Hasil pencatatan rangkaian proses yang menyebabkan peningkatan produksi digunakan sebagai data latih untuk mendapatkan fungsi aktivasi dari jaringan saraf tiruan. Penjumlahan hasil catatan event log dimasukkan ke input jaringan saraf tiruan untuk perhitungan nilai aktivasi. Ketika nilai aktivasi lebih dari batas yang ditentukan, maka sistem mengeluarkan sinyal untuk meningkatkan produksi, jika tidak, sistem tetap memantau kejadian. Hasil percobaan menunjukkan bahwa akurasi dari metode ini adalah 77% dari 39 rangkaian aliran event.Kata kunci: complex event processing, event, jaringan saraf tiruan, prediksi peningkatan produksi, proses. AbstractProductions, orders, sales, and shipments are series of interrelated events within manufacturing industry. Further these events were recorded in the event log. Complex event processing is a method that used to analyze whether there are patterns of combinations of certain events (opportunities / threats that occur in a system, so it can be addressed quickly and appropriately. Artificial neural network is a method that we used to classify production increase activities. The series of events that cause the increase of the production used as a dataset to train the weight of neural network which result activation value. An aggregate stream of events inserted into the neural network input to compute the value of activation. When the value is over a certain threshold (the activation value results

  13. Neural substrates of decision-making.

    Science.gov (United States)

    Broche-Pérez, Y; Herrera Jiménez, L F; Omar-Martínez, E

    2016-06-01

    Decision-making is the process of selecting a course of action from among 2 or more alternatives by considering the potential outcomes of selecting each option and estimating its consequences in the short, medium and long term. The prefrontal cortex (PFC) has traditionally been considered the key neural structure in decision-making process. However, new studies support the hypothesis that describes a complex neural network including both cortical and subcortical structures. The aim of this review is to summarise evidence on the anatomical structures underlying the decision-making process, considering new findings that support the existence of a complex neural network that gives rise to this complex neuropsychological process. Current evidence shows that the cortical structures involved in decision-making include the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and dorsolateral prefrontal cortex (DLPFC). This process is assisted by subcortical structures including the amygdala, thalamus, and cerebellum. Findings to date show that both cortical and subcortical brain regions contribute to the decision-making process. The neural basis of decision-making is a complex neural network of cortico-cortical and cortico-subcortical connections which includes subareas of the PFC, limbic structures, and the cerebellum. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  14. Participation process and outcome interactions: Exploring participation in water resource management

    Science.gov (United States)

    Carr, G.; Loucks, D. P.; Blöschl, G.

    2012-04-01

    Evaluating participation programmes, projects and activities aids understanding of effective mechanisms and enables the identification of improvements to current strategies. Characteristics of participation processes, such whether the process is cost effective, adequately facilitated, accessible, includes a representative section of society or interest groups and allocates power equivalently between participants, are commonly described and evaluated in the literature. A key question concerns whether effective processes lead to desirable outcomes. Two types of outcomes can be identified from participation programmes - tangible and non-tangible. Tangible outcomes include resource management changes or resource quality changes. Non tangible outcomes include developing and strengthening communication and action networks, building trust between individuals and/or organisations, developing innovative solutions, or developing shared knowledge and understandings of issues. To better understand how participation impacts upon resource management it is necessary to identify i) how non-tangible outcomes lead to resource management outcomes and ii) which characteristics of the participation process are connected to achieving non-tangible outcomes. This has been attempted with a literature based meta-analysis. Literature has been analysed to identify outcomes from participations programmes, and the process characteristics present that are associated with promoting or inhibiting their achievement. Preliminary analysis shows that process characteristics such as representation, facilitation and accessibility are important for achieving non-tangible outcomes. The relationship between non-tangible outcomes and resource management outcomes is less clear in the literature. This may be due to the different timescales over which the different types of outcomes emerge (resource management outcomes emerge over longer time periods) and the different contexts or settings in which

  15. Optimum Neural Network Architecture for Precipitation Prediction of Myanmar

    OpenAIRE

    Khaing Win Mar; Thinn Thu Naing

    2008-01-01

    Nowadays, precipitation prediction is required for proper planning and management of water resources. Prediction with neural network models has received increasing interest in various research and application domains. However, it is difficult to determine the best neural network architecture for prediction since it is not immediately obvious how many input or hidden nodes are used in the model. In this paper, neural network model is used as a forecasting tool. The major aim is to evaluate a s...

  16. Neural pulse frequency modulation of an exponentially correlated Gaussian process

    Science.gov (United States)

    Hutchinson, C. E.; Chon, Y.-T.

    1976-01-01

    The effect of NPFM (Neural Pulse Frequency Modulation) on a stationary Gaussian input, namely an exponentially correlated Gaussian input, is investigated with special emphasis on the determination of the average number of pulses in unit time, known also as the average frequency of pulse occurrence. For some classes of stationary input processes where the formulation of the appropriate multidimensional Markov diffusion model of the input-plus-NPFM system is possible, the average impulse frequency may be obtained by a generalization of the approach adopted. The results are approximate and numerical, but are in close agreement with Monte Carlo computer simulation results.

  17. Rare earth metals-primary resources and prospects of processing secondary resources in India

    International Nuclear Information System (INIS)

    Pandey, B.D.

    2015-01-01

    The importance of Rare earth metals (REMs) in modern technological applications is associated with their spectroscopic and magnetic properties. The occurrence of rare earths in mixed form is commonly reported and their separation to the individual metal is a challenging task because of the similar chemical properties. The economical processing of the primary ores of rare earths is limited to a few countries and their supply at the international level is currently dominated by China. Hence assessing the present scenario of the primary resources of rare earths vis-à-vis their applications and demand is crucial at this stage, besides looking at the alternate resources to ensure availability of REMs; such aspects are covered in the manuscript. In view of the environmental concerns in the processing of ores such as monazite, xenotime, bastnasite, etc, and increasing demand of REMs, corresponding increase in demand of the raw materials has been recorded. It is therefore, necessary to utilize the end-of the-life rare earth containing materials as a rich resource by developing an appropriate recycling technology, which is emerging as a high priority area. To recover the REMs, major secondary resources such as electronic wastes, industrial wastes, spent catalysts and magnets, and phosphors powder, etc, have been considered for now. This will not only open the prospects of utilizing the wastes containing REMs, but will also limit the imports while lowering the production cost and decreasing the load on the primary reserves. The paper also examines the efficient recycling methods to recover a fairly good amount of rare earths which are relevant to India in view of the limited exploitation of the ores. Recovery of REMs from secondary resources using mechanical treatment followed by hydrometallurgical methods is prevalent and the same is reviewed in some detail. The recent R and D work pursued at CSIR-NML to extract (leaching and metal separation using some phosphatic reagents

  18. Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks

    Directory of Open Access Journals (Sweden)

    J. C. Ochoa-Rivera

    2002-01-01

    Full Text Available A model for multivariate streamflow generation is presented, based on a multilayer feedforward neural network. The structure of the model results from two components, the neural network (NN deterministic component and a random component which is assumed to be normally distributed. It is from this second component that the model achieves the ability to incorporate effectively the uncertainty associated with hydrological processes, making it valuable as a practical tool for synthetic generation of streamflow series. The NN topology and the corresponding analytical explicit formulation of the model are described in detail. The model is calibrated with a series of monthly inflows to two reservoir sites located in the Tagus River basin (Spain, while validation is performed through estimation of a set of statistics that is relevant for water resources systems planning and management. Among others, drought and storage statistics are computed and compared for both the synthetic and historical series. The performance of the NN-based model was compared to that of a standard autoregressive AR(2 model. Results show that NN represents a promising modelling alternative for simulation purposes, with interesting potential in the context of water resources systems management and optimisation. Keywords: neural networks, perceptron multilayer, error backpropagation, hydrological scenario generation, multivariate time-series..

  19. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia

    Science.gov (United States)

    Crabtree, Gregg W.; Gogos, Joseph A.

    2014-01-01

    Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations. PMID:25505409

  20. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting

    KAUST Repository

    Zhang, Xuesong

    2011-11-01

    Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework (BNN-PIS) to incorporate the uncertainties associated with parameters, inputs, and structures into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform BNNs that only consider uncertainties associated with parameters and model structures. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters shows that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of and interactions among different uncertainty sources is expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting. © 2011 Elsevier B.V.

  1. Adaptive neural network controller for the molten steel level control of strip casting processes

    International Nuclear Information System (INIS)

    Chen, Hung Yi; Huang, Shiuh Jer

    2010-01-01

    The twin-roll strip casting process is a steel-strip production method which combines continuous casting and hot rolling processes. The production line from molten liquid steel to the final steel-strip is shortened and the production cost is reduced significantly as compared to conventional continuous casting. The quality of strip casting process depends on many process parameters, such as molten steel level in the pool, solidification position, and roll gap. Their relationships are complex and the strip casting process has the properties of nonlinear uncertainty and time-varying characteristics. It is difficult to establish an accurate process model for designing a model-based controller to monitor the strip quality. In this paper, a model-free adaptive neural network controller is developed to overcome this problem. The proposed control strategy is based on a neural network structure combined with a sliding-mode control scheme. An adaptive rule is employed to on-line adjust the weights of radial basis functions by using the reaching condition of a specified sliding surface. This surface has the on-line learning ability to respond to the system's nonlinear and time-varying behaviors. Since this model-free controller has a simple control structure and small number of control parameters, it is easy to implement. Simulation results, based on a semi experimental system dynamic model and parameters, are executed to show the control performance of the proposed intelligent controller. In addition, the control performance is compared with that of a traditional Pid controller

  2. Business Process Simulation: Requirements for Business and Resource Models

    Directory of Open Access Journals (Sweden)

    Audrius Rima

    2015-07-01

    Full Text Available The purpose of Business Process Model and Notation (BPMN is to provide easily understandable graphical representation of business process. Thus BPMN is widely used and applied in various areas one of them being a business process simulation. This paper addresses some BPMN model based business process simulation problems. The paper formulate requirements for business process and resource models in enabling their use for business process simulation.

  3. Neural correlates of sublexical processing in phonological working memory.

    Science.gov (United States)

    McGettigan, Carolyn; Warren, Jane E; Eisner, Frank; Marshall, Chloe R; Shanmugalingam, Pradheep; Scott, Sophie K

    2011-04-01

    This study investigated links between working memory and speech processing systems. We used delayed pseudoword repetition in fMRI to investigate the neural correlates of sublexical structure in phonological working memory (pWM). We orthogonally varied the number of syllables and consonant clusters in auditory pseudowords and measured the neural responses to these manipulations under conditions of covert rehearsal (Experiment 1). A left-dominant network of temporal and motor cortex showed increased activity for longer items, with motor cortex only showing greater activity concomitant with adding consonant clusters. An individual-differences analysis revealed a significant positive relationship between activity in the angular gyrus and the hippocampus, and accuracy on pseudoword repetition. As models of pWM stipulate that its neural correlates should be activated during both perception and production/rehearsal [Buchsbaum, B. R., & D'Esposito, M. The search for the phonological store: From loop to convolution. Journal of Cognitive Neuroscience, 20, 762-778, 2008; Jacquemot, C., & Scott, S. K. What is the relationship between phonological short-term memory and speech processing? Trends in Cognitive Sciences, 10, 480-486, 2006; Baddeley, A. D., & Hitch, G. Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47-89). New York: Academic Press, 1974], we further assessed the effects of the two factors in a separate passive listening experiment (Experiment 2). In this experiment, the effect of the number of syllables was concentrated in posterior-medial regions of the supratemporal plane bilaterally, although there was no evidence of a significant response to added clusters. Taken together, the results identify the planum temporale as a key region in pWM; within this region, representations are likely to take the form of auditory or audiomotor "templates" or "chunks" at the level of the syllable

  4. Deep architecture neural network-based real-time image processing for image-guided radiotherapy.

    Science.gov (United States)

    Mori, Shinichiro

    2017-08-01

    To develop real-time image processing for image-guided radiotherapy, we evaluated several neural network models for use with different imaging modalities, including X-ray fluoroscopic image denoising. Setup images of prostate cancer patients were acquired with two oblique X-ray fluoroscopic units. Two types of residual network were designed: a convolutional autoencoder (rCAE) and a convolutional neural network (rCNN). We changed the convolutional kernel size and number of convolutional layers for both networks, and the number of pooling and upsampling layers for rCAE. The ground-truth image was applied to the contrast-limited adaptive histogram equalization (CLAHE) method of image processing. Network models were trained to keep the quality of the output image close to that of the ground-truth image from the input image without image processing. For image denoising evaluation, noisy input images were used for the training. More than 6 convolutional layers with convolutional kernels >5×5 improved image quality. However, this did not allow real-time imaging. After applying a pair of pooling and upsampling layers to both networks, rCAEs with >3 convolutions each and rCNNs with >12 convolutions with a pair of pooling and upsampling layers achieved real-time processing at 30 frames per second (fps) with acceptable image quality. Use of our suggested network achieved real-time image processing for contrast enhancement and image denoising by the use of a conventional modern personal computer. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. High school music classes enhance the neural processing of speech

    Directory of Open Access Journals (Sweden)

    Adam eTierney

    2013-12-01

    Full Text Available Should music be a priority in public education? One argument for teaching music in school is that private music instruction relates to enhanced language abilities and neural function. However, the directionality of this relationship is unclear and it is unknown whether school-based music training can produce these enhancements. Here we show that two years of group music classes in high school enhance the subcortical encoding of speech. To tease apart the relationships between music and neural function, we tested high school students participating in either music or fitness-based training. These groups were matched at the onset of training on neural timing, reading ability, and IQ. Auditory brainstem responses were collected to a synthesized speech sound presented in background noise. After 2 years of training, the subcortical responses of the music training group were earlier than at pretraining, while the neural timing of students in the fitness training group was unchanged. These results represent the strongest evidence to date that in-school music education can cause enhanced speech encoding. The neural benefits of musical training are, therefore, not limited to expensive private instruction early in childhood but can be elicited by cost-effective group instruction during adolescence.

  6. Endogenous testosterone levels are associated with neural activity in men with schizophrenia during facial emotion processing.

    Science.gov (United States)

    Ji, Ellen; Weickert, Cynthia Shannon; Lenroot, Rhoshel; Catts, Stanley V; Vercammen, Ans; White, Christopher; Gur, Raquel E; Weickert, Thomas W

    2015-06-01

    Growing evidence suggests that testosterone may play a role in the pathophysiology of schizophrenia given that testosterone has been linked to cognition and negative symptoms in schizophrenia. Here, we determine the extent to which serum testosterone levels are related to neural activity in affective processing circuitry in men with schizophrenia. Functional magnetic resonance imaging was used to measure blood-oxygen-level-dependent signal changes as 32 healthy controls and 26 people with schizophrenia performed a facial emotion identification task. Whole brain analyses were performed to determine regions of differential activity between groups during processing of angry versus non-threatening faces. A follow-up ROI analysis using a regression model in a subset of 16 healthy men and 16 men with schizophrenia was used to determine the extent to which serum testosterone levels were related to neural activity. Healthy controls displayed significantly greater activation than people with schizophrenia in the left inferior frontal gyrus (IFG). There was no significant difference in circulating testosterone levels between healthy men and men with schizophrenia. Regression analyses between activation in the IFG and circulating testosterone levels revealed a significant positive correlation in men with schizophrenia (r=.63, p=.01) and no significant relationship in healthy men. This study provides the first evidence that circulating serum testosterone levels are related to IFG activation during emotion face processing in men with schizophrenia but not in healthy men, which suggests that testosterone levels modulate neural processes relevant to facial emotion processing that may interfere with social functioning in men with schizophrenia. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  7. Common neural substrates for visual working memory and attention.

    Science.gov (United States)

    Mayer, Jutta S; Bittner, Robert A; Nikolić, Danko; Bledowski, Christoph; Goebel, Rainer; Linden, David E J

    2007-06-01

    Humans are severely limited in their ability to memorize visual information over short periods of time. Selective attention has been implicated as a limiting factor. Here we used functional magnetic resonance imaging to test the hypothesis that this limitation is due to common neural resources shared by visual working memory (WM) and selective attention. We combined visual search and delayed discrimination of complex objects and independently modulated the demands on selective attention and WM encoding. Participants were presented with a search array and performed easy or difficult visual search in order to encode one or three complex objects into visual WM. Overlapping activation for attention-demanding visual search and WM encoding was observed in distributed posterior and frontal regions. In the right prefrontal cortex and bilateral insula blood oxygen-level-dependent activation additively increased with increased WM load and attentional demand. Conversely, several visual, parietal and premotor areas showed overlapping activation for the two task components and were severely reduced in their WM load response under the condition with high attentional demand. Regions in the left prefrontal cortex were selectively responsive to WM load. Areas selectively responsive to high attentional demand were found within the right prefrontal and bilateral occipital cortex. These results indicate that encoding into visual WM and visual selective attention require to a high degree access to common neural resources. We propose that competition for resources shared by visual attention and WM encoding can limit processing capabilities in distributed posterior brain regions.

  8. Food Processing Curriculum Material and Resource Guide.

    Science.gov (United States)

    Louisiana State Dept. of Education, Baton Rouge.

    Intended for secondary vocational agriculture teachers, this curriculum guide contains a course outline and a resource manual for a seven-unit food processing course on meats. Within the course outline, units are divided into separate lessons. Materials provided for each lesson include preparation for instruction (student objectives, review of…

  9. Direct process estimation from tomographic data using artificial neural systems

    Science.gov (United States)

    Mohamad-Saleh, Junita; Hoyle, Brian S.; Podd, Frank J.; Spink, D. M.

    2001-07-01

    The paper deals with the goal of component fraction estimation in multicomponent flows, a critical measurement in many processes. Electrical capacitance tomography (ECT) is a well-researched sensing technique for this task, due to its low-cost, non-intrusion, and fast response. However, typical systems, which include practicable real-time reconstruction algorithms, give inaccurate results, and existing approaches to direct component fraction measurement are flow-regime dependent. In the investigation described, an artificial neural network approach is used to directly estimate the component fractions in gas-oil, gas-water, and gas-oil-water flows from ECT measurements. A 2D finite- element electric field model of a 12-electrode ECT sensor is used to simulate ECT measurements of various flow conditions. The raw measurements are reduced to a mutually independent set using principal components analysis and used with their corresponding component fractions to train multilayer feed-forward neural networks (MLFFNNs). The trained MLFFNNs are tested with patterns consisting of unlearned ECT simulated and plant measurements. Results included in the paper have a mean absolute error of less than 1% for the estimation of various multicomponent fractions of the permittivity distribution. They are also shown to give improved component fraction estimation compared to a well known direct ECT method.

  10. The Effect of an Enrichment Reading Program on the Cognitive Processes and Neural Structures of Children Having Reading Difficulties

    Directory of Open Access Journals (Sweden)

    Hayriye Gül KURUYER

    2017-06-01

    Full Text Available The main purpose of the current study is to explain the effect of an enrichment reading program on the cognitive processes and neural structures of children experiencing reading difficulties. The current study was carried out in line with a single-subject research method and the between-subjects multiple probe design belonging to this method. This research focuses on a group of eight students with reading difficulties. Within the context of the study, memory capacities, attention spans, reading-related activation and white matter pathways of the students were determined before and after the application of the enrichment reading program. This determination process was carried out in two stages. Neuro-imaging was performed in the first stage and in the second stage the students’ cognitive processes and neural structures were investigated in terms of focusing attention and memory capacities by using the following tools: Stroop Test TBAG Form, Auditory Verbal Digit Span Test-Form B, Cancellation Test and Number Order Learning Test. The results obtained show that the enrichment reading program resulted in an improvement in the reading profiles of the students having reading difficulties in terms of their cognitive processes and neural structures.

  11. Specific and Nonspecific Neural Activity during Selective Processing of Visual Representations in Working Memory

    Science.gov (United States)

    Oh, Hwamee; Leung, Hoi-Chung

    2010-01-01

    In this fMRI study, we investigated prefrontal cortex (PFC) and visual association regions during selective information processing. We recorded behavioral responses and neural activity during a delayed recognition task with a cue presented during the delay period. A specific cue ("Face" or "Scene") was used to indicate which one of the two…

  12. Big Data X-Learning Resources Integration and Processing in Cloud Environments

    Directory of Open Access Journals (Sweden)

    Kong Xiangsheng

    2014-09-01

    Full Text Available The cloud computing platform has good flexibility characteristics, more and more learning systems are migrated to the cloud platform. Firstly, this paper describes different types of educational environments and the data they provide. Then, it proposes a kind of heterogeneous learning resources mining, integration and processing architecture. In order to integrate and process the different types of learning resources in different educational environments, this paper specifically proposes a novel solution and massive storage integration algorithm and conversion algorithm to the heterogeneous learning resources storage and management cloud environments.

  13. Anger in brain and body: the neural and physiological perturbation of decision-making by emotion.

    Science.gov (United States)

    Garfinkel, Sarah N; Zorab, Emma; Navaratnam, Nakulan; Engels, Miriam; Mallorquí-Bagué, Núria; Minati, Ludovico; Dowell, Nicholas G; Brosschot, Jos F; Thayer, Julian F; Critchley, Hugo D

    2016-01-01

    Emotion and cognition are dynamically coupled to bodily arousal: the induction of anger, even unconsciously, can reprioritise neural and physiological resources toward action states that bias cognitive processes. Here we examine behavioural, neural and bodily effects of covert anger processing and its influence on cognition, indexed by lexical decision-making. While recording beat-to-beat blood pressure, the words ANGER or RELAX were presented subliminally just prior to rapid word/non-word reaction-time judgements of letter-strings. Subliminal ANGER primes delayed the time taken to reach rapid lexical decisions, relative to RELAX primes. However, individuals with high trait anger were speeded up by subliminal anger primes. ANGER primes increased systolic blood pressure and the magnitude of this increase predicted reaction time prolongation. Within the brain, ANGER trials evoked an enhancement of activity within dorsal pons and an attenuation of activity within visual occipitotemporal and attentional parietal cortices. Activity within periaqueductal grey matter, occipital and parietal regions increased linearly with evoked blood pressure changes, indicating neural substrates through which covert anger impairs semantic decisions, putatively through its expression as visceral arousal. The behavioural and physiological impact of anger states compromises the efficiency of cognitive processing through action-ready changes in autonomic response that skew regional neural activity. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Acoustic richness modulates the neural networks supporting intelligible speech processing.

    Science.gov (United States)

    Lee, Yune-Sang; Min, Nam Eun; Wingfield, Arthur; Grossman, Murray; Peelle, Jonathan E

    2016-03-01

    The information contained in a sensory signal plays a critical role in determining what neural processes are engaged. Here we used interleaved silent steady-state (ISSS) functional magnetic resonance imaging (fMRI) to explore how human listeners cope with different degrees of acoustic richness during auditory sentence comprehension. Twenty-six healthy young adults underwent scanning while hearing sentences that varied in acoustic richness (high vs. low spectral detail) and syntactic complexity (subject-relative vs. object-relative center-embedded clause structures). We manipulated acoustic richness by presenting the stimuli as unprocessed full-spectrum speech, or noise-vocoded with 24 channels. Importantly, although the vocoded sentences were spectrally impoverished, all sentences were highly intelligible. These manipulations allowed us to test how intelligible speech processing was affected by orthogonal linguistic and acoustic demands. Acoustically rich speech showed stronger activation than acoustically less-detailed speech in a bilateral temporoparietal network with more pronounced activity in the right hemisphere. By contrast, listening to sentences with greater syntactic complexity resulted in increased activation of a left-lateralized network including left posterior lateral temporal cortex, left inferior frontal gyrus, and left dorsolateral prefrontal cortex. Significant interactions between acoustic richness and syntactic complexity occurred in left supramarginal gyrus, right superior temporal gyrus, and right inferior frontal gyrus, indicating that the regions recruited for syntactic challenge differed as a function of acoustic properties of the speech. Our findings suggest that the neural systems involved in speech perception are finely tuned to the type of information available, and that reducing the richness of the acoustic signal dramatically alters the brain's response to spoken language, even when intelligibility is high. Copyright © 2015 Elsevier

  15. A shared resource between declarative memory and motor memory.

    Science.gov (United States)

    Keisler, Aysha; Shadmehr, Reza

    2010-11-03

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and nondeclarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/nondeclarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system.

  16. A shared resource between declarative memory and motor memory

    Science.gov (United States)

    Keisler, Aysha; Shadmehr, Reza

    2010-01-01

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and non-declarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/non-declarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system. PMID:21048140

  17. Neural processing of high and low spatial frequency information in faces changes across development: qualitative changes in face processing during adolescence.

    Science.gov (United States)

    Peters, Judith C; Vlamings, Petra; Kemner, Chantal

    2013-05-01

    Face perception in adults depends on skilled processing of interattribute distances ('configural' processing), which is disrupted for faces presented in inverted orientation (face inversion effect or FIE). Children are not proficient in configural processing, and this might relate to an underlying immaturity to use facial information in low spatial frequency (SF) ranges, which capture the coarse information needed for configural processing. We hypothesized that during adolescence a shift from use of high to low SF information takes place. Therefore, we studied the influence of SF content on neural face processing in groups of children (9-10 years), adolescents (14-15 years) and young adults (21-29 years) by measuring event-related potentials (ERPs) to upright and inverted faces which varied in SF content. Results revealed that children show a neural FIE in early processing stages (i.e. P1; generated in early visual areas), suggesting a superficial, global facial analysis. In contrast, ERPs of adults revealed an FIE at later processing stages (i.e. N170; generated in face-selective, higher visual areas). Interestingly, adolescents showed FIEs in both processing stages, suggesting a hybrid developmental stage. Furthermore, adolescents and adults showed FIEs for stimuli containing low SF information, whereas such effects were driven by both low and high SF information in children. These results indicate that face processing has a protracted maturational course into adolescence, and is dependent on changes in SF processing. During adolescence, sensitivity to configural cues is developed, which aids the fast and holistic processing that is so special for faces. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Tactical resource allocation and elective patient admission planning in care processes.

    Science.gov (United States)

    Hulshof, Peter J H; Boucherie, Richard J; Hans, Erwin W; Hurink, Johann L

    2013-06-01

    Tactical planning of resources in hospitals concerns elective patient admission planning and the intermediate term allocation of resource capacities. Its main objectives are to achieve equitable access for patients, to meet production targets/to serve the strategically agreed number of patients, and to use resources efficiently. This paper proposes a method to develop a tactical resource allocation and elective patient admission plan. These tactical plans allocate available resources to various care processes and determine the selection of patients to be served that are at a particular stage of their care process. Our method is developed in a Mixed Integer Linear Programming (MILP) framework and copes with multiple resources, multiple time periods and multiple patient groups with various uncertain treatment paths through the hospital, thereby integrating decision making for a chain of hospital resources. Computational results indicate that our method leads to a more equitable distribution of resources and provides control of patient access times, the number of patients served and the fraction of allocated resource capacity. Our approach is generic, as the base MILP and the solution approach allow for including various extensions to both the objective criteria and the constraints. Consequently, the proposed method is applicable in various settings of tactical hospital management.

  19. Low-cost autonomous perceptron neural network inspired by quantum computation

    Science.gov (United States)

    Zidan, Mohammed; Abdel-Aty, Abdel-Haleem; El-Sadek, Alaa; Zanaty, E. A.; Abdel-Aty, Mahmoud

    2017-11-01

    Achieving low cost learning with reliable accuracy is one of the important goals to achieve intelligent machines to save time, energy and perform learning process over limited computational resources machines. In this paper, we propose an efficient algorithm for a perceptron neural network inspired by quantum computing composite from a single neuron to classify inspirable linear applications after a single training iteration O(1). The algorithm is applied over a real world data set and the results are outer performs the other state-of-the art algorithms.

  20. Neural correlates of own- and other-race face recognition in children: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Ding, Xiao Pan; Fu, Genyue; Lee, Kang

    2014-01-15

    The present study used the functional Near-infrared Spectroscopy (fNIRS) methodology to investigate the neural correlates of elementary school children's own- and other-race face processing. An old-new paradigm was used to assess children's recognition ability of own- and other-race faces. FNIRS data revealed that other-race faces elicited significantly greater [oxy-Hb] changes than own-race faces in the right middle frontal gyrus and inferior frontal gyrus regions (BA9) and the left cuneus (BA18). With increased age, the [oxy-Hb] activity differences between own- and other-race faces, or the neural other-race effect (NORE), underwent significant changes in these two cortical areas: at younger ages, the neural response to the other-race faces was modestly greater than that to the own-race faces, but with increased age, the neural response to the own-race faces became increasingly greater than that to the other-race faces. Moreover, these areas had strong regional functional connectivity with a swath of the cortical regions in terms of the neural other-race effect that also changed with increased age. We also found significant and positive correlations between the behavioral other-race effect (reaction time) and the neural other-race effect in the right middle frontal gyrus and inferior frontal gyrus regions (BA9). These results taken together suggest that children, like adults, devote different amounts of neural resources to processing own- and other-race faces, but the size and direction of the neural other-race effect and associated functional regional connectivity change with increased age. © 2013.

  1. Neural Networks as a Tool for Georadar Data Processing

    Directory of Open Access Journals (Sweden)

    Szymczyk Piotr

    2015-12-01

    Full Text Available In this article a new neural network based method for automatic classification of ground penetrating radar (GPR traces is proposed. The presented approach is based on a new representation of GPR signals by polynomials approximation. The coefficients of the polynomial (the feature vector are neural network inputs for automatic classification of a special kind of geologic structure—a sinkhole. The analysis and results show that the classifier can effectively distinguish sinkholes from other geologic structures.

  2. Identifying temporal and causal contributions of neural processes underlying the Implicit Association Test (IAT

    Directory of Open Access Journals (Sweden)

    Chad Edward Forbes

    2012-11-01

    Full Text Available The Implicit Association Test (IAT is a popular behavioral measure that assesses the associative strength between outgroup members and stereotypical and counterstereotypical traits. Less is known, however, about the degree to which the IAT reflects automatic processing. Two studies examined automatic processing contributions to a gender-IAT using a data driven, social neuroscience approach. Performance on congruent (e.g., categorizing male names with synonyms of strength and incongruent (e.g., categorizing female names with synonyms of strength IAT blocks were separately analyzed using EEG (event-related potentials, or ERPs, and coherence; Study 1 and lesion (Study 2 methodologies. Compared to incongruent blocks, performance on congruent IAT blocks was associated with more positive ERPs that manifested in frontal and occipital regions at automatic processing speeds, occipital regions at more controlled processing speeds and was compromised by volume loss in the anterior temporal lobe, insula and medial PFC. Performance on incongruent blocks was associated with volume loss in supplementary motor areas, cingulate gyrus and a region in medial PFC similar to that found for congruent blocks. Greater coherence was found between frontal and occipital regions to the extent individuals exhibited more bias. This suggests there are separable neural contributions to congruent and incongruent blocks of the IAT but there is also a surprising amount of overlap. Given the temporal and regional neural distinctions, these results provide converging evidence that stereotypic associative strength assessed by the IAT indexes automatic processing to a degree.

  3. Complex-Valued Neural Networks

    CERN Document Server

    Hirose, Akira

    2012-01-01

    This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...

  4. Are lexical tones musical? Native language's influence on neural response to pitch in different domains.

    Science.gov (United States)

    Chen, Ao; Peter, Varghese; Wijnen, Frank; Schnack, Hugo; Burnham, Denis

    2018-04-21

    Language experience shapes musical and speech pitch processing. We investigated whether speaking a lexical tone language natively modulates neural processing of pitch in language and music as well as their correlation. We tested tone language (Mandarin Chinese), and non-tone language (Dutch) listeners in a passive oddball paradigm measuring mismatch negativity (MMN) for (i) Chinese lexical tones and (ii) three-note musical melodies with similar pitch contours. For lexical tones, Chinese listeners showed a later MMN peak than the non-tone language listeners, whereas for MMN amplitude there were no significant differences between groups. Dutch participants also showed a late discriminative negativity (LDN). In the music condition two MMNs, corresponding to the two notes that differed between the standard and the deviant were found for both groups, and an LDN were found for both the Dutch and the Chinese listeners. The music MMNs were significantly right lateralized. Importantly, significant correlations were found between the lexical tone and the music MMNs for the Dutch but not the Chinese participants. The results suggest that speaking a tone language natively does not necessarily enhance neural responses to pitch either in language or in music, but that it does change the nature of neural pitch processing: non-tone language speakers appear to perceive lexical tones as musical, whereas for tone language speakers, lexical tones and music may activate different neural networks. Neural resources seem to be assigned differently for the lexical tones and for musical melodies, presumably depending on the presence or absence of long-term phonological memory traces. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Neural networks and statistical learning

    CERN Document Server

    Du, Ke-Lin

    2014-01-01

    Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...

  6. Adaptive Resource Utilization Prediction System for Infrastructure as a Service Cloud

    Directory of Open Access Journals (Sweden)

    Qazi Zia Ullah

    2017-01-01

    Full Text Available Infrastructure as a Service (IaaS cloud provides resources as a service from a pool of compute, network, and storage resources. Cloud providers can manage their resource usage by knowing future usage demand from the current and past usage patterns of resources. Resource usage prediction is of great importance for dynamic scaling of cloud resources to achieve efficiency in terms of cost and energy consumption while keeping quality of service. The purpose of this paper is to present a real-time resource usage prediction system. The system takes real-time utilization of resources and feeds utilization values into several buffers based on the type of resources and time span size. Buffers are read by R language based statistical system. These buffers’ data are checked to determine whether their data follows Gaussian distribution or not. In case of following Gaussian distribution, Autoregressive Integrated Moving Average (ARIMA is applied; otherwise Autoregressive Neural Network (AR-NN is applied. In ARIMA process, a model is selected based on minimum Akaike Information Criterion (AIC values. Similarly, in AR-NN process, a network with the lowest Network Information Criterion (NIC value is selected. We have evaluated our system with real traces of CPU utilization of an IaaS cloud of one hundred and twenty servers.

  7. Fast Inference of Deep Neural Networks in FPGAs for Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Javier [Fermilab; Han, Song [MIT; Harris, Philip [MIT; Jindariani, Sergo [Fermilab; Kreinar, Edward [EIS Intl., Herndon; Kreis, Benjamin [Fermilab; Ngadiuba, Jennifer [CERN; Pierini, Maurizio [CERN; Rivera, Ryan [Fermilab; Tran, Nhan [Fermilab; Wu, Zhenbin [Illinois U., Chicago

    2018-04-16

    Recent results at the Large Hadron Collider (LHC) have pointed to enhanced physics capabilities through the improvement of the real-time event processing techniques. Machine learning methods are ubiquitous and have proven to be very powerful in LHC physics, and particle physics as a whole. However, exploration of the use of such techniques in low-latency, low-power FPGA hardware has only just begun. FPGA-based trigger and data acquisition (DAQ) systems have extremely low, sub-microsecond latency requirements that are unique to particle physics. We present a case study for neural network inference in FPGAs focusing on a classifier for jet substructure which would enable, among many other physics scenarios, searches for new dark sector particles and novel measurements of the Higgs boson. While we focus on a specific example, the lessons are far-reaching. We develop a package based on High-Level Synthesis (HLS) called hls4ml to build machine learning models in FPGAs. The use of HLS increases accessibility across a broad user community and allows for a drastic decrease in firmware development time. We map out FPGA resource usage and latency versus neural network hyperparameters to identify the problems in particle physics that would benefit from performing neural network inference with FPGAs. For our example jet substructure model, we fit well within the available resources of modern FPGAs with a latency on the scale of 100 ns.

  8. Additive Feed Forward Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1999-01-01

    This paper demonstrates a method to control a non-linear, multivariable, noisy process using trained neural networks. The basis for the method is a trained neural network controller acting as the inverse process model. A training method for obtaining such an inverse process model is applied....... A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...

  9. Neural Correlates of Sex/Gender Differences in Humor Processing for Different Joke Types.

    Science.gov (United States)

    Chan, Yu-Chen

    2016-01-01

    Humor operates through a variety of techniques, which first generate surprise and then amusement and laughter once the unexpected incongruity is resolved. As different types of jokes use different techniques, the corresponding humor processes also differ. The present study builds on the framework of the 'tri-component theory of humor,' which details the mechanisms involved in cognition (comprehension), affect (appreciation), and laughter (expression). This study seeks to identify differences among joke types and between sexes/genders in the neural mechanisms underlying humor processing. Three types of verbal jokes, bridging-inference jokes (BJs), exaggeration jokes (EJs), and ambiguity jokes (AJs), were used as stimuli. The findings revealed differences in brain activity for an interaction between sex/gender and joke type. For BJs, women displayed greater activation in the temporoparietal-mesocortical-motor network than men, demonstrating the importance of the temporoparietal junction (TPJ) presumably for 'theory of mind' processing, the orbitofrontal cortex for motivational functions and reward coding, and the supplementary motor area for laughter. Women also showed greater activation than men in the frontal-mesolimbic network associated with EJs, including the anterior (frontopolar) prefrontal cortex (aPFC, BA 10) for executive control processes, and the amygdala and midbrain for reward anticipation and salience processes. Conversely, AJs elicited greater activation in men than women in the frontal-paralimbic network, including the dorsal prefrontal cortex (dPFC) and parahippocampal gyrus. All joke types elicited greater activation in the aPFC of women than of men, whereas men showed greater activation than women in the dPFC. To confirm the findings related to sex/gender differences, random group analysis and within group variance analysis were also performed. These findings help further establish the mechanisms underlying the processing of different joke types

  10. Neural Correlates of Sex/Gender Differences in Humor Processing for Different Joke Types

    Directory of Open Access Journals (Sweden)

    Yu-Chen eChan

    2016-04-01

    Full Text Available Humor operates through a variety of techniques, which first generate surprise and then amusement and laughter once the unexpected incongruity is resolved. As different types of jokes use different techniques, the corresponding humor processes also differ. The present study builds on the framework of the ‘tri-component theory of humor’, which details the mechanisms involved in cognition (comprehension, affect (appreciation, and laughter (expression. This study seeks to identify differences among joke types and between sexes/genders in the neural mechanisms underlying humor processing. Three types of verbal jokes, bridging-inference jokes (BJs, exaggeration jokes (EJs, and ambiguity jokes (AJs, were used as stimuli. The findings revealed differences in brain activity for an interaction between sex/gender and joke type. For BJs, women displayed greater activation in the temporoparietal-mesocortical-motor network than men, demonstrating the importance of the temporoparietal junction (TPJ presumably for ‘theory of mind’ processing, the orbitofrontal cortex for motivational functions and reward coding, and the supplementary motor area for laughter. Women also showed greater activation than men in the frontal-mesolimbic network associated with EJs, including the anterior (frontopolar prefrontal cortex (aPFC, BA 10 for executive control processes, and the amygdala and midbrain for reward anticipation and salience processes. Conversely, AJs elicited greater activation in men than women in the frontal-paralimbic network, including the dorsal prefrontal cortex (dPFC and parahippocampal gyrus. All joke types elicited greater activation in the aPFC of women than of men, whereas men showed greater activation than women in the dPFC. To confirm the findings related to sex/gender differences, random group analysis and within group variance analysis were also performed. These findings help further establish the mechanisms underlying the processing of

  11. Neural responses to ambiguity involve domain-general and domain-specific emotion processing systems.

    Science.gov (United States)

    Neta, Maital; Kelley, William M; Whalen, Paul J

    2013-04-01

    Extant research has examined the process of decision making under uncertainty, specifically in situations of ambiguity. However, much of this work has been conducted in the context of semantic and low-level visual processing. An open question is whether ambiguity in social signals (e.g., emotional facial expressions) is processed similarly or whether a unique set of processors come on-line to resolve ambiguity in a social context. Our work has examined ambiguity using surprised facial expressions, as they have predicted both positive and negative outcomes in the past. Specifically, whereas some people tended to interpret surprise as negatively valenced, others tended toward a more positive interpretation. Here, we examined neural responses to social ambiguity using faces (surprise) and nonface emotional scenes (International Affective Picture System). Moreover, we examined whether these effects are specific to ambiguity resolution (i.e., judgments about the ambiguity) or whether similar effects would be demonstrated for incidental judgments (e.g., nonvalence judgments about ambiguously valenced stimuli). We found that a distinct task control (i.e., cingulo-opercular) network was more active when resolving ambiguity. We also found that activity in the ventral amygdala was greater to faces and scenes that were rated explicitly along the dimension of valence, consistent with findings that the ventral amygdala tracks valence. Taken together, there is a complex neural architecture that supports decision making in the presence of ambiguity: (a) a core set of cortical structures engaged for explicit ambiguity processing across stimulus boundaries and (b) other dedicated circuits for biologically relevant learning situations involving faces.

  12. Differences in neural responses to reward and punishment processing between anorexia nervosa subtypes: An fMRI study.

    Science.gov (United States)

    Murao, Ema; Sugihara, Genichi; Isobe, Masanori; Noda, Tomomi; Kawabata, Michiko; Matsukawa, Noriko; Takahashi, Hidehiko; Murai, Toshiya; Noma, Shun'ichi

    2017-09-01

    Anorexia nervosa (AN) includes the restricting (AN-r) and binge-eating/purging (AN-bp) subtypes, which have been reported to differ regarding their underlying pathophysiologies as well as their behavioral patterns. However, the differences in neural mechanisms of reward systems between AN subtypes remain unclear. The aim of the present study was to explore differences in the neural processing of reward and punishment between AN subtypes. Twenty-three female patients with AN (11 AN-r and 12 AN-bp) and 20 healthy women underwent functional magnetic resonance imaging while performing a monetary incentive delay task. Whole-brain one-way analysis of variance was conducted to test between-group differences. There were significant group differences in brain activation in the rostral anterior cingulate cortex and right posterior insula during loss anticipation, with increased brain activation in the AN-bp group relative to the AN-r and healthy women groups. No significant differences were found during gain anticipation. AN-bp patients showed altered neural responses to punishment in brain regions implicated in emotional arousal. Our findings suggest that individuals with AN-bp are more sensitive to potential punishment than individuals with AN-r and healthy individuals at the neural level. The present study provides preliminary evidence that there are neurobiological differences between AN subtypes with regard to the reward system, especially punishment processing. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.

  13. SYNAPTIC DEPRESSION IN DEEP NEURAL NETWORKS FOR SPEECH PROCESSING.

    Science.gov (United States)

    Zhang, Wenhao; Li, Hanyu; Yang, Minda; Mesgarani, Nima

    2016-03-01

    A characteristic property of biological neurons is their ability to dynamically change the synaptic efficacy in response to variable input conditions. This mechanism, known as synaptic depression, significantly contributes to the formation of normalized representation of speech features. Synaptic depression also contributes to the robust performance of biological systems. In this paper, we describe how synaptic depression can be modeled and incorporated into deep neural network architectures to improve their generalization ability. We observed that when synaptic depression is added to the hidden layers of a neural network, it reduces the effect of changing background activity in the node activations. In addition, we show that when synaptic depression is included in a deep neural network trained for phoneme classification, the performance of the network improves under noisy conditions not included in the training phase. Our results suggest that more complete neuron models may further reduce the gap between the biological performance and artificial computing, resulting in networks that better generalize to novel signal conditions.

  14. A pilot study investigating changes in neural processing after mindfulness training in elite athletes.

    Science.gov (United States)

    Haase, Lori; May, April C; Falahpour, Maryam; Isakovic, Sara; Simmons, Alan N; Hickman, Steven D; Liu, Thomas T; Paulus, Martin P

    2015-01-01

    The ability to pay close attention to the present moment can be a crucial factor for performing well in a competitive situation. Training mindfulness is one approach to potentially improve elite athletes' ability to focus their attention on the present moment. However, virtually nothing is known about whether these types of interventions alter neural systems that are important for optimal performance. This pilot study examined whether an intervention aimed at improving mindfulness [Mindful Performance Enhancement, Awareness and Knowledge (mPEAK)] changes neural activation patterns during an interoceptive challenge. Participants completed a task involving anticipation and experience of loaded breathing during functional magnetic resonance imaging recording. There were five main results following mPEAK training: (1) elite athletes self-reported higher levels of interoceptive awareness and mindfulness and lower levels of alexithymia; (2) greater insula and anterior cingulate cortex (ACC) activation during anticipation and post-breathing load conditions; (3) increased ACC activation during the anticipation condition was associated with increased scores on the describing subscale of the Five Facet Mindfulness Questionnaire; (4) increased insula activation during the post-load condition was associated with decreases in the Toronto Alexithymia Scale identifying feelings subscale; (5) decreased resting state functional connectivity between the PCC and the right medial frontal cortex and the ACC. Taken together, this pilot study suggests that mPEAK training may lead to increased attention to bodily signals and greater neural processing during the anticipation and recovery from interoceptive perturbations. This association between attention to and processing of interoceptive afferents may result in greater adaptation during stressful situations in elite athletes.

  15. Computational modeling of neural plasticity for self-organization of neural networks.

    Science.gov (United States)

    Chrol-Cannon, Joseph; Jin, Yaochu

    2014-11-01

    Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Methodology for automatic process of the fired ceramic tile's internal defect using IR images and artificial neural network

    OpenAIRE

    Andrade, Roberto Márcio de; Eduardo, Alexandre Carlos

    2011-01-01

    In the ceramic industry, rarely testing systems were employed to on-line detect the presence of defects in ceramic tiles. This paper is concerned with the problem of automatic inspection of ceramic tiles using Infrared Images and Artificial Neural Network (ANN). The performance of the technique has been evaluated theoretically and experimentally from laboratory and on line tile samples. It has been performed system for IR image processing and, utilizing an Artificial Neural Network (ANN), det...

  17. Bioprinting for Neural Tissue Engineering.

    Science.gov (United States)

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Use of neural network based auto-associative memory as a data compressor for pre-processing optical emission spectra in gas thermometry with the help of neural network

    International Nuclear Information System (INIS)

    Dolenko, S.A.; Filippov, A.V.; Pal, A.F.; Persiantsev, I.G.; Serov, A.O.

    2003-01-01

    Determination of temperature from optical emission spectra is an inverse problem that is often very difficult to solve, especially when substantial noise is present. One of the means that can be used to solve such a problem is a neural network trained on the results of modeling of spectra at different temperatures (Dolenko, et al., in: I.C. Parmee (Ed.), Adaptive Computing in Design and Manufacture, Springer, London, 1998, p. 345). Reducing the dimensionality of the input data prior to application of neural network can increase the accuracy and stability of temperature determination. In this study, such pre-processing is performed with another neural network working as an auto-associative memory with a narrow bottleneck in the hidden layer. The improvement in the accuracy and stability of temperature determination in presence of noise is demonstrated on model spectra similar to those recorded in a DC-discharge CVD reactor

  19. Inhibition: Mental Control Process or Mental Resource?

    Science.gov (United States)

    Im-Bolter, Nancie; Johnson, Janice; Ling, Daphne; Pascual-Leone, Juan

    2015-01-01

    The current study tested 2 models of inhibition in 45 children with language impairment and 45 children with normally developing language; children were aged 7 to 12 years. Of interest was whether a model of inhibition as a mental-control process (i.e., executive function) or as a mental resource would more accurately reflect the relations among…

  20. Neural components of altruistic punishment

    Directory of Open Access Journals (Sweden)

    Emily eDu

    2015-02-01

    Full Text Available Altruistic punishment, which occurs when an individual incurs a cost to punish in response to unfairness or a norm violation, may play a role in perpetuating cooperation. The neural correlates underlying costly punishment have only recently begun to be explored. Here we review the current state of research on the neural basis of altruism from the perspectives of costly punishment, emphasizing the importance of characterizing elementary neural processes underlying a decision to punish. In particular, we emphasize three cognitive processes that contribute to the decision to altruistically punish in most scenarios: inequity aversion, cost-benefit calculation, and social reference frame to distinguish self from others. Overall, we argue for the importance of understanding the neural correlates of altruistic punishment with respect to the core computations necessary to achieve a decision to punish.

  1. A probablistic neural network classification system for signal and image processing

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, B. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Acoustical Heart Valve Analysis Package is a system for signal and image processing and classification. It is being developed in both Matlab and C, to provide an interactive, interpreted environment, and has been optimized for large scale matrix operations. It has been used successfully to classify acoustic signals from implanted prosthetic heart valves in human patients, and will be integrated into a commercial Heart Valve Screening Center. The system uses several standard signal processing algorithms, as well as supervised learning techniques using the probabilistic neural network (PNN). Although currently used for the acoustic heart valve application, the algorithms and modular design allow it to be used for other applications, as well. We will describe the signal classification system, and show results from a set of test valves.

  2. Effects of task demands on the early neural processing of fearful and happy facial expressions.

    Science.gov (United States)

    Itier, Roxane J; Neath-Tavares, Karly N

    2017-05-15

    Task demands shape how we process environmental stimuli but their impact on the early neural processing of facial expressions remains unclear. In a within-subject design, ERPs were recorded to the same fearful, happy and neutral facial expressions presented during a gender discrimination, an explicit emotion discrimination and an oddball detection tasks, the most studied tasks in the field. Using an eye tracker, fixation on the face nose was enforced using a gaze-contingent presentation. Task demands modulated amplitudes from 200 to 350ms at occipito-temporal sites spanning the EPN component. Amplitudes were more negative for fearful than neutral expressions starting on N170 from 150 to 350ms, with a temporo-occipital distribution, whereas no clear effect of happy expressions was seen. Task and emotion effects never interacted in any time window or for the ERP components analyzed (P1, N170, EPN). Thus, whether emotion is explicitly discriminated or irrelevant for the task at hand, neural correlates of fearful and happy facial expressions seem immune to these task demands during the first 350ms of visual processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Multidimensional analysis of the abnormal neural oscillations associated with lexical processing in schizophrenia.

    Science.gov (United States)

    Xu, Tingting; Stephane, Massoud; Parhi, Keshab K

    2013-04-01

    The neural mechanisms of language abnormalities, the core symptoms in schizophrenia, remain unclear. In this study, a new experimental paradigm, combining magnetoencephalography (MEG) techniques and machine intelligence methodologies, was designed to gain knowledge about the frequency, brain location, and time of occurrence of the neural oscillations that are associated with lexical processing in schizophrenia. The 248-channel MEG recordings were obtained from 12 patients with schizophrenia and 10 healthy controls, during a lexical processing task, where the patients discriminated correct from incorrect lexical stimuli that were visually presented. Event-related desynchronization/synchronization (ERD/ERS) was computed along the frequency, time, and space dimensions combined, that resulted in a large spectral-spatial-temporal ERD/ERS feature set. Machine intelligence techniques were then applied to select a small subset of oscillation patterns that are abnormal in patients with schizophrenia, according to their discriminating power in patient and control classification. Patients with schizophrenia showed abnormal ERD/ERS patterns during both lexical encoding and post-encoding periods. The top-ranked features were located at the occipital and left frontal-temporal areas, and covered a wide frequency range, including δ (1-4 Hz), α (8-12 Hz), β (12-32 Hz), and γ (32-48 Hz) bands. These top features could discriminate the patient group from the control group with 90.91% high accuracy, which demonstrates significant brain oscillation abnormalities in patients with schizophrenia at the specific frequency, time, and brain location indicated by these top features. As neural oscillation abnormality may be due to the mechanisms of the disease, the spectral, spatial, and temporal content of the discriminating features can offer useful information for helping understand the physiological basis of the language disorder in schizophrenia, as well as the pathology of the

  4. New model of enterprises resource planning implementation planning process in manufacturing enterprises

    Directory of Open Access Journals (Sweden)

    Mirjana Misita

    2016-05-01

    Full Text Available This article presents new model of enterprises resource planning implementation planning process in manufacturing enterprises based on assessment of risk sources. This assessment was performed by applying analytic hierarchy process. Analytic hierarchy process method allows variation of relative importance of specific risk sources dependent on the section from which the risk source originates (organizational environment, technical issues, people issues, adoption process management, and external support. Survey was conducted on 85 manufacturing enterprises involved with an enterprises resource planning solution. Ranking of risk sources assessments returns most frequent risks of enterprises resource planning implementation success in manufacturing enterprises, and representative factors were isolated through factor analysis by risk source origin. Finally, results indicate that there are hidden causes of failed implementation, for example, risk source “top management training and education,” from risk origin “adoption process management.”

  5. Neural processing of race during imitation: self-similarity versus social status

    Science.gov (United States)

    Reynolds Losin, Elizabeth A.; Cross, Katy A.; Iacoboni, Marco; Dapretto, Mirella

    2017-01-01

    People preferentially imitate others who are similar to them or have high social status. Such imitative biases are thought to have evolved because they increase the efficiency of cultural acquisition. Here we focused on distinguishing between self-similarity and social status as two candidate mechanisms underlying neural responses to a person’s race during imitation. We used fMRI to measure neural responses when 20 African American (AA) and 20 European American (EA) young adults imitated AA, EA and Chinese American (CA) models and also passively observed their gestures and faces. We found that both AA and EA participants exhibited more activity in lateral fronto-parietal and visual regions when imitating AAs compared to EAs or CAs. These results suggest that racial self-similarity is not likely to modulate neural responses to race during imitation, in contrast with findings from previous neuroimaging studies of face perception and action observation. Furthermore, AA and EA participants associated AAs with lower social status than EAs or CAs, suggesting that the social status associated with different racial groups may instead modulate neural activity during imitation of individuals from those groups. Taken together, these findings suggest that neural responses to race during imitation are driven by socially-learned associations rather than self-similarity. This may reflect the adaptive role of imitation in social learning, where learning from higher-status models can be more beneficial. This study provides neural evidence consistent with evolutionary theories of cultural acquisition. PMID:23813738

  6. Processing Optimization of Typed Resources with Synchronized Storage and Computation Adaptation in Fog Computing

    Directory of Open Access Journals (Sweden)

    Zhengyang Song

    2018-01-01

    Full Text Available Wide application of the Internet of Things (IoT system has been increasingly demanding more hardware facilities for processing various resources including data, information, and knowledge. With the rapid growth of generated resource quantity, it is difficult to adapt to this situation by using traditional cloud computing models. Fog computing enables storage and computing services to perform at the edge of the network to extend cloud computing. However, there are some problems such as restricted computation, limited storage, and expensive network bandwidth in Fog computing applications. It is a challenge to balance the distribution of network resources. We propose a processing optimization mechanism of typed resources with synchronized storage and computation adaptation in Fog computing. In this mechanism, we process typed resources in a wireless-network-based three-tier architecture consisting of Data Graph, Information Graph, and Knowledge Graph. The proposed mechanism aims to minimize processing cost over network, computation, and storage while maximizing the performance of processing in a business value driven manner. Simulation results show that the proposed approach improves the ratio of performance over user investment. Meanwhile, conversions between resource types deliver support for dynamically allocating network resources.

  7. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    changes or to abandon the strong identity thesis altogether. Were one to pursue a theory according to which consciousness is not an epiphenomenon to brain processes, consciousness may in fact affect its own neural basis. The neural correlate of consciousness is often seen as a stable structure, that is...

  8. Artificial neural network approach to modeling of alcoholic fermentation of thick juice from sugar beet processing

    Directory of Open Access Journals (Sweden)

    Jokić Aleksandar I.

    2012-01-01

    Full Text Available In this paper the bioethanol production in batch culture by free Saccharomyces cerevisiae cells from thick juice as intermediate product of sugar beet processing was examined. The obtained results suggest that it is possible to decrease fermentation time for the cultivation medium based on thick juice with starting sugar content of 5-15 g kg-1. For the fermentation of cultivation medium based on thick juice with starting sugar content of 20 and 25 g kg-1 significant increase in ethanol content was attained during the whole fermentation process, resulting in 12.51 and 10.95 dm3 m-3 ethanol contents after 48 h, respectively. Other goals of this work were to investigate the possibilities for experimental results prediction using artificial neural networks (ANNs and to find its optimal topology. A feed-forward back-propagation artificial neural network was used to test the hypothesis. As input variables fermentation time and starting sugar content were used. Neural networks had one output value, ethanol content, yeast cell number or sugar content. There was one hidden layer and the optimal number of neurons was found to be nine for all selected network outputs. In this study transfer function was tansig and the selected learning rule was Levenberg-Marquardt. Results suggest that artificial neural networks are good prediction tool for selected network outputs. It was found that experimental results are in very good agreement with computed ones. The coefficient of determination (the R-squared was found to be 0.9997, 0.9997 and 0.9999 for ethanol content, yeast cell number and sugar content, respectively.

  9. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  10. Multiple simultaneous fault diagnosis via hierarchical and single artificial neural networks

    International Nuclear Information System (INIS)

    Eslamloueyan, R.; Shahrokhi, M.; Bozorgmehri, R.

    2003-01-01

    Process fault diagnosis involves interpreting the current status of the plant given sensor reading and process knowledge. There has been considerable work done in this area with a variety of approaches being proposed for process fault diagnosis. Neural networks have been used to solve process fault diagnosis problems in chemical process, as they are well suited for recognizing multi-dimensional nonlinear patterns. In this work, the use of Hierarchical Artificial Neural Networks in diagnosing the multi-faults of a chemical process are discussed and compared with that of Single Artificial Neural Networks. The lower efficiency of Hierarchical Artificial Neural Networks , in comparison to Single Artificial Neural Networks, in process fault diagnosis is elaborated and analyzed. Also, the concept of a multi-level selection switch is presented and developed to improve the performance of hierarchical artificial neural networks. Simulation results indicate that application of multi-level selection switch increase the performance of the hierarchical artificial neural networks considerably

  11. An RNA-binding protein, Qki5, regulates embryonic neural stem cells through pre-mRNA processing in cell adhesion signaling.

    Science.gov (United States)

    Hayakawa-Yano, Yoshika; Suyama, Satoshi; Nogami, Masahiro; Yugami, Masato; Koya, Ikuko; Furukawa, Takako; Zhou, Li; Abe, Manabu; Sakimura, Kenji; Takebayashi, Hirohide; Nakanishi, Atsushi; Okano, Hideyuki; Yano, Masato

    2017-09-15

    Cell type-specific transcriptomes are enabled by the action of multiple regulators, which are frequently expressed within restricted tissue regions. In the present study, we identify one such regulator, Quaking 5 (Qki5), as an RNA-binding protein (RNABP) that is expressed in early embryonic neural stem cells and subsequently down-regulated during neurogenesis. mRNA sequencing analysis in neural stem cell culture indicates that Qki proteins play supporting roles in the neural stem cell transcriptome and various forms of mRNA processing that may result from regionally restricted expression and subcellular localization. Also, our in utero electroporation gain-of-function study suggests that the nuclear-type Qki isoform Qki5 supports the neural stem cell state. We next performed in vivo transcriptome-wide protein-RNA interaction mapping to search for direct targets of Qki5 and elucidate how Qki5 regulates neural stem cell function. Combined with our transcriptome analysis, this mapping analysis yielded a bona fide map of Qki5-RNA interaction at single-nucleotide resolution, the identification of 892 Qki5 direct target genes, and an accurate Qki5-dependent alternative splicing rule in the developing brain. Last, our target gene list provides the first compelling evidence that Qki5 is associated with specific biological events; namely, cell-cell adhesion. This prediction was confirmed by histological analysis of mice in which Qki proteins were genetically ablated, which revealed disruption of the apical surface of the lateral wall in the developing brain. These data collectively indicate that Qki5 regulates communication between neural stem cells by mediating numerous RNA processing events and suggest new links between splicing regulation and neural stem cell states. © 2017 Hayakawa-Yano et al.; Published by Cold Spring Harbor Laboratory Press.

  12. A quantum-implementable neural network model

    Science.gov (United States)

    Chen, Jialin; Wang, Lingli; Charbon, Edoardo

    2017-10-01

    A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.

  13. Distributed resource management across process boundaries

    KAUST Repository

    Suresh, Lalith

    2017-09-27

    Multi-tenant distributed systems composed of small services, such as Service-oriented Architectures (SOAs) and Micro-services, raise new challenges in attaining high performance and efficient resource utilization. In these systems, a request execution spans tens to thousands of processes, and the execution paths and resource demands on different services are generally not known when a request first enters the system. In this paper, we highlight the fundamental challenges of regulating load and scheduling in SOAs while meeting end-to-end performance objectives on metrics of concern to both tenants and operators. We design Wisp, a framework for building SOAs that transparently adapts rate limiters and request schedulers system-wide according to operator policies to satisfy end-to-end goals while responding to changing system conditions. In evaluations against production as well as synthetic workloads, Wisp successfully enforces a range of end-to-end performance objectives, such as reducing average latencies, meeting deadlines, providing fairness and isolation, and avoiding system overload.

  14. Distributed resource management across process boundaries

    KAUST Repository

    Suresh, Lalith; Bodik, Peter; Menache, Ishai; Canini, Marco; Ciucu, Florin

    2017-01-01

    Multi-tenant distributed systems composed of small services, such as Service-oriented Architectures (SOAs) and Micro-services, raise new challenges in attaining high performance and efficient resource utilization. In these systems, a request execution spans tens to thousands of processes, and the execution paths and resource demands on different services are generally not known when a request first enters the system. In this paper, we highlight the fundamental challenges of regulating load and scheduling in SOAs while meeting end-to-end performance objectives on metrics of concern to both tenants and operators. We design Wisp, a framework for building SOAs that transparently adapts rate limiters and request schedulers system-wide according to operator policies to satisfy end-to-end goals while responding to changing system conditions. In evaluations against production as well as synthetic workloads, Wisp successfully enforces a range of end-to-end performance objectives, such as reducing average latencies, meeting deadlines, providing fairness and isolation, and avoiding system overload.

  15. Dynamic decomposition of spatiotemporal neural signals.

    Directory of Open Access Journals (Sweden)

    Luca Ambrogioni

    2017-05-01

    Full Text Available Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals.

  16. Deep learning with convolutional neural networks: a resource for the control of robotic prosthetic hands via electromyography

    Directory of Open Access Journals (Sweden)

    Manfredo Atzori

    2016-09-01

    Full Text Available Motivation: Natural control methods based on surface electromyography and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications and commercial prostheses are in the best case capable to offer natural control for only a few movements. Objective: In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its capabilities for the natural control of robotic hands via surface electromyography by providing a baseline on a large number of intact and amputated subjects. Methods: We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 hand amputated subjects. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets.Results: The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods but lower than the results obtained with the best reference methods in our tests. Significance: The results show that convolutional neural networks with a very simple architecture can produce accuracy comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters can be fundamental for the analysis of surface electromyography data. Finally, the results suggest that deeper and more complex networks may increase dexterous control robustness, thus contributing to bridge the gap between the market and scientific research

  17. Aberrant Neural Connectivity during Emotional Processing Associated with Posttraumatic Stress.

    Science.gov (United States)

    Sadeh, Naomi; Spielberg, Jeffrey M; Warren, Stacie L; Miller, Gregory A; Heller, Wendy

    2014-11-01

    Given the complexity of the brain, characterizing relations among distributed brain regions is likely essential to describing the neural instantiation of posttraumatic stress symptoms. This study examined patterns of functional connectivity among key brain regions implicated in the pathophysiology of posttraumatic stress disorder (PTSD) in 35 trauma-exposed adults using an emotion-word Stroop task. PTSD symptom severity (particularly hyperarousal symptoms) moderated amygdala-mPFC coupling during the processing of unpleasant words, and this moderation correlated positively with reported real-world impairment and amygdala reactivity. Reexperiencing severity moderated hippocampus-insula coupling during pleasant and unpleasant words. Results provide evidence that PTSD symptoms differentially moderate functional coupling during emotional interference and underscore the importance of examining network connectivity in research on PTSD. They suggest that hyperarousal is associated with negative mPFC-amygdala coupling and that reexperiencing is associated with altered insula-hippocampus function, patterns of connectivity that may represent separable indicators of dysfunctional inhibitory control during affective processing.

  18. Simplified LQG Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...

  19. Application of neural networks in coastal engineering

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    the neural network attractive. A neural network is an information processing system modeled on the structure of the dynamic process. It can solve the complex/nonlinear problems quickly once trained by operating on problems using an interconnected number...

  20. Neural mechanisms of attentional control in mindfulness meditation

    Directory of Open Access Journals (Sweden)

    Peter eMalinowski

    2013-02-01

    Full Text Available The scientific interest in meditation and mindfulness practice has recently seen an unprecedented surge. After an initial phase of presenting beneficial effects of mindfulness practice in various domains, research is now seeking to unravel the underlying psychological and neurophysiological mechanisms. Advances in understanding these processes are required for improving and fine-tuning mindfulness-based interventions that target specific conditions such as eating disorders or attention deficit hyperactivity disorders. This review presents a theoretical framework that emphasizes the central role of attentional control mechanisms in the development of mindfulness skills. It discusses the phenomenological level of experience during meditation, the different attentional functions that are involved, and relates these to the brain networks that subserve these functions. On the basis of currently available empirical evidence specific processes as to how attention exerts its positive influence are considered and it is concluded that meditation practice appears to positively impact attentional functions by improving resource allocation processes. As a result, attentional resources are allocated more fully during early processing phases which subsequently enhance further processing. Neural changes resulting from a pure form of mindfulness practice that is central to most mindfulness programs are considered from the perspective that they constitute a useful reference point for future research. Furthermore, possible interrelations between the improvement of attentional control and emotion regulation skills are discussed.

  1. Neural and Computational Mechanisms of Action Processing: Interaction between Visual and Motor Representations.

    Science.gov (United States)

    Giese, Martin A; Rizzolatti, Giacomo

    2015-10-07

    Action recognition has received enormous interest in the field of neuroscience over the last two decades. In spite of this interest, the knowledge in terms of fundamental neural mechanisms that provide constraints for underlying computations remains rather limited. This fact stands in contrast with a wide variety of speculative theories about how action recognition might work. This review focuses on new fundamental electrophysiological results in monkeys, which provide constraints for the detailed underlying computations. In addition, we review models for action recognition and processing that have concrete mathematical implementations, as opposed to conceptual models. We think that only such implemented models can be meaningfully linked quantitatively to physiological data and have a potential to narrow down the many possible computational explanations for action recognition. In addition, only concrete implementations allow judging whether postulated computational concepts have a feasible implementation in terms of realistic neural circuits. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Optical-Correlator Neural Network Based On Neocognitron

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1994-01-01

    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  3. Neural mechanisms of selective attention in the somatosensory system.

    Science.gov (United States)

    Gomez-Ramirez, Manuel; Hysaj, Kristjana; Niebur, Ernst

    2016-09-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. Copyright © 2016 the American Physiological Society.

  4. Guide to resource conservation and cost savings opportunities in the dairy processing sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This guide identifies and promotes opportunities for conserving energy and water, as well as reducing waste, in the dairy processing sector. The guide begins with an introduction and a profile of Ontario`s dairy processing sector, outlining the context for resource conservation and cost savings opportunities. It then outlines the rationale and the generic processes selected for careful examination of resource conservation and cost savings opportunities. Subsequent chapters describe the energy, water, and material resources commonly used in relation to the generic processes; the air, water, and solid waste residuals commonly derived from those processes; and new technologies with potential application in dairy processing. The generic processes covered in the guide are for fluid milk, cheese, ice cream and frozen products, cultured products such as yogurt, butter, and dried or evaporated products. The report ends with additional useful information for dairy processors.

  5. Power to punish norm violations affects the neural processes of fairness-related decision making

    Directory of Open Access Journals (Sweden)

    Xuemei eCheng

    2015-12-01

    Full Text Available Punishing norm violations is considered an important motive during rejection of unfair offers in the Ultimatum Game (UG. The present study investigates the impact of the power to punish norm violations on people’s responses to unfairness and associated neural correlates. In the UG condition participants had the power to punish norm violations, while an alternate condition, the Impunity Game (IG, was presented where participants had no power to punish norm violations since rejection only reduced the responder’s income to zero. Results showed that unfair offers were rejected more often in UG compared to IG. At the neural level, anterior insula and dorsal anterior cingulate cortex were more active when participants received and rejected unfair offers in both UG and IG. Moreover, greater dorsolateral prefrontal cortex activity was observed when participants rejected than accepted unfair offers in UG but not in IG. Ventromedial prefrontal cortex activation was higher in UG than IG when unfair offers were accepted as well as when rejecting unfair offers in IG as opposed to UG. Taken together, our results demonstrate that the power to punish norm violations affects not only people’s behavioral responses to unfairness but also the neural correlates of the fairness-related social decision-making process.

  6. Recurrent Neural Network Applications for Astronomical Time Series

    Science.gov (United States)

    Protopapas, Pavlos

    2017-06-01

    The benefits of good predictive models in astronomy lie in early event prediction systems and effective resource allocation. Current time series methods applicable to regular time series have not evolved to generalize for irregular time series. In this talk, I will describe two Recurrent Neural Network methods, Long Short-Term Memory (LSTM) and Echo State Networks (ESNs) for predicting irregular time series. Feature engineering along with a non-linear modeling proved to be an effective predictor. For noisy time series, the prediction is improved by training the network on error realizations using the error estimates from astronomical light curves. In addition to this, we propose a new neural network architecture to remove correlation from the residuals in order to improve prediction and compensate for the noisy data. Finally, I show how to set hyperparameters for a stable and performant solution correctly. In this work, we circumvent this obstacle by optimizing ESN hyperparameters using Bayesian optimization with Gaussian Process priors. This automates the tuning procedure, enabling users to employ the power of RNN without needing an in-depth understanding of the tuning procedure.

  7. Neural correlates and neural computations in posterior parietal cortex during perceptual decision-making

    Directory of Open Access Journals (Sweden)

    Alexander eHuk

    2012-10-01

    Full Text Available A recent line of work has found remarkable success in relating perceptual decision-making and the spiking activity in the macaque lateral intraparietal area (LIP. In this review, we focus on questions about the neural computations in LIP that are not answered by demonstrations of neural correlates of psychological processes. We highlight three areas of limitations in our current understanding of the precise neural computations that might underlie neural correlates of decisions: (1 empirical questions not yet answered by existing data; (2 implementation issues related to how neural circuits could actually implement the mechanisms suggested by both physiology and psychology; and (3 ecological constraints related to the use of well-controlled laboratory tasks and whether they provide an accurate window on sensorimotor computation. These issues motivate the adoption of a more general encoding-decoding framework that will be fruitful for more detailed contemplation of how neural computations in LIP relate to the formation of perceptual decisions.

  8. Prediction of Emergency Department Hospital Admission Based on Natural Language Processing and Neural Networks.

    Science.gov (United States)

    Zhang, Xingyu; Kim, Joyce; Patzer, Rachel E; Pitts, Stephen R; Patzer, Aaron; Schrager, Justin D

    2017-10-26

    To describe and compare logistic regression and neural network modeling strategies to predict hospital admission or transfer following initial presentation to Emergency Department (ED) triage with and without the addition of natural language processing elements. Using data from the National Hospital Ambulatory Medical Care Survey (NHAMCS), a cross-sectional probability sample of United States EDs from 2012 and 2013 survey years, we developed several predictive models with the outcome being admission to the hospital or transfer vs. discharge home. We included patient characteristics immediately available after the patient has presented to the ED and undergone a triage process. We used this information to construct logistic regression (LR) and multilayer neural network models (MLNN) which included natural language processing (NLP) and principal component analysis from the patient's reason for visit. Ten-fold cross validation was used to test the predictive capacity of each model and receiver operating curves (AUC) were then calculated for each model. Of the 47,200 ED visits from 642 hospitals, 6,335 (13.42%) resulted in hospital admission (or transfer). A total of 48 principal components were extracted by NLP from the reason for visit fields, which explained 75% of the overall variance for hospitalization. In the model including only structured variables, the AUC was 0.824 (95% CI 0.818-0.830) for logistic regression and 0.823 (95% CI 0.817-0.829) for MLNN. Models including only free-text information generated AUC of 0.742 (95% CI 0.731- 0.753) for logistic regression and 0.753 (95% CI 0.742-0.764) for MLNN. When both structured variables and free text variables were included, the AUC reached 0.846 (95% CI 0.839-0.853) for logistic regression and 0.844 (95% CI 0.836-0.852) for MLNN. The predictive accuracy of hospital admission or transfer for patients who presented to ED triage overall was good, and was improved with the inclusion of free text data from a patient

  9. Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process

    Science.gov (United States)

    Konno, Hidetoshi; Tamura, Yoshiyasu

    2018-01-01

    In neural spike counting experiments, it is known that there are two main features: (i) the counting number has a fractional power-law growth with time and (ii) the waiting time (i.e., the inter-spike-interval) distribution has a heavy tail. The method of superstatistical Poisson processes (SSPPs) is examined whether these main features are properly modeled. Although various mixed/compound Poisson processes are generated with selecting a suitable distribution of the birth-rate of spiking neurons, only the second feature (ii) can be modeled by the method of SSPPs. Namely, the first one (i) associated with the effect of long-memory cannot be modeled properly. Then, it is shown that the two main features can be modeled successfully by a class of fractional SSPP (FSSPP).

  10. Dynamic pricing and automated resource allocation for complex information services reinforcement learning and combinatorial auctions

    CERN Document Server

    Schwind, Michael; Fandel, G

    2007-01-01

    Many firms provide their customers with online information products which require limited resources such as server capacity. This book develops allocation mechanisms that aim to ensure an efficient resource allocation in modern IT-services. Recent methods of artificial intelligence, such as neural networks and reinforcement learning, and nature-oriented optimization methods, such as genetic algorithms and simulated annealing, are advanced and applied to allocation processes in distributed IT-infrastructures, e.g. grid systems. The author presents two methods, both of which using the users??? w

  11. Multimedia presentation as a form of E-learning resources in the educational process

    Directory of Open Access Journals (Sweden)

    Bizyaev АА

    2017-06-01

    Full Text Available The article describes the features of the use of multimedia presentations as an electronic learning resource in the educational process, reflecting resource requirements; pedagogical goals that may be achieved. Currently one of the main directions in the educational process is the effective use of teaching computers. Pressing issue implementation of information and communication technologies in education is to develop educational resources with the aim to increase the level and quality of education.

  12. Nature vs. Nurture: The Role of Environmental Resources in Evolutionary Deep Intelligence

    OpenAIRE

    Chung, Audrey G.; Fieguth, Paul; Wong, Alexander

    2018-01-01

    Evolutionary deep intelligence synthesizes highly efficient deep neural networks architectures over successive generations. Inspired by the nature versus nurture debate, we propose a study to examine the role of external factors on the network synthesis process by varying the availability of simulated environmental resources. Experimental results were obtained for networks synthesized via asexual evolutionary synthesis (1-parent) and sexual evolutionary synthesis (2-parent, 3-parent, and 5-pa...

  13. COMT val108/158 met genotype affects neural but not cognitive processing in healthy individuals.

    Science.gov (United States)

    Dennis, Nancy A; Need, Anna C; LaBar, Kevin S; Waters-Metenier, Sheena; Cirulli, Elizabeth T; Kragel, James; Goldstein, David B; Cabeza, Roberto

    2010-03-01

    The relationship between cognition and a functional polymorphism in the catechol-O-methlytransferase (COMT) gene, val108/158met, is one of debate in the literature. Furthermore, based on the dopaminergic differences associated with the COMT val108/158met genotype, neural differences during cognition may be present, regardless of genotypic differences in cognitive performance. To investigate these issues the current study aimed to 1) examine the effects of COMT genotype using a large sample of healthy individuals (n = 496-1218) and multiple cognitive measures, and using a subset of the sample (n = 22), 2) examine whether COMT genotype effects medial temporal lobe (MTL) and frontal activity during successful relational memory processing, and 3) investigate group differences in functional connectivity associated with successful relational memory processing. Results revealed no significant group difference in cognitive performance between COMT genotypes in any of the 19 cognitive measures. However, in the subset sample, COMT val homozygotes exhibited significantly decreased MTL and increased prefrontal activity during both successful relational encoding and retrieval, and reduced connectivity between these regions compared with met homozygotes. Taken together, the results suggest that although the COMT val108/158met genotype has no effect on cognitive behavioral measures in healthy individuals, it is associated with differences in neural process underlying cognitive output.

  14. Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks.

    Science.gov (United States)

    Naveros, Francisco; Garrido, Jesus A; Carrillo, Richard R; Ros, Eduardo; Luque, Niceto R

    2017-01-01

    Modeling and simulating the neural structures which make up our central neural system is instrumental for deciphering the computational neural cues beneath. Higher levels of biological plausibility usually impose higher levels of complexity in mathematical modeling, from neural to behavioral levels. This paper focuses on overcoming the simulation problems (accuracy and performance) derived from using higher levels of mathematical complexity at a neural level. This study proposes different techniques for simulating neural models that hold incremental levels of mathematical complexity: leaky integrate-and-fire (LIF), adaptive exponential integrate-and-fire (AdEx), and Hodgkin-Huxley (HH) neural models (ranged from low to high neural complexity). The studied techniques are classified into two main families depending on how the neural-model dynamic evaluation is computed: the event-driven or the time-driven families. Whilst event-driven techniques pre-compile and store the neural dynamics within look-up tables, time-driven techniques compute the neural dynamics iteratively during the simulation time. We propose two modifications for the event-driven family: a look-up table recombination to better cope with the incremental neural complexity together with a better handling of the synchronous input activity. Regarding the time-driven family, we propose a modification in computing the neural dynamics: the bi-fixed-step integration method. This method automatically adjusts the simulation step size to better cope with the stiffness of the neural model dynamics running in CPU platforms. One version of this method is also implemented for hybrid CPU-GPU platforms. Finally, we analyze how the performance and accuracy of these modifications evolve with increasing levels of neural complexity. We also demonstrate how the proposed modifications which constitute the main contribution of this study systematically outperform the traditional event- and time-driven techniques under

  15. Windowed active sampling for reliable neural learning

    NARCIS (Netherlands)

    Barakova, E.I; Spaanenburg, L

    The composition of the example set has a major impact on the quality of neural learning. The popular approach is focused on extensive pre-processing to bridge the representation gap between process measurement and neural presentation. In contrast, windowed active sampling attempts to solve these

  16. Interaction matters: A perceived social partner alters the neural processing of human speech.

    Science.gov (United States)

    Rice, Katherine; Redcay, Elizabeth

    2016-04-01

    Mounting evidence suggests that social interaction changes how communicative behaviors (e.g., spoken language, gaze) are processed, but the precise neural bases by which social-interactive context may alter communication remain unknown. Various perspectives suggest that live interactions are more rewarding, more attention-grabbing, or require increased mentalizing-thinking about the thoughts of others. Dissociating between these possibilities is difficult because most extant neuroimaging paradigms examining social interaction have not directly compared live paradigms to conventional "offline" (or recorded) paradigms. We developed a novel fMRI paradigm to assess whether and how an interactive context changes the processing of speech matched in content and vocal characteristics. Participants listened to short vignettes--which contained no reference to people or mental states--believing that some vignettes were prerecorded and that others were presented over a real-time audio-feed by a live social partner. In actuality, all speech was prerecorded. Simply believing that speech was live increased activation in each participant's own mentalizing regions, defined using a functional localizer. Contrasting live to recorded speech did not reveal significant differences in attention or reward regions. Further, higher levels of autistic-like traits were associated with altered neural specialization for live interaction. These results suggest that humans engage in ongoing mentalizing about social partners, even when such mentalizing is not explicitly required, illustrating how social context shapes social cognition. Understanding communication in social context has important implications for typical and atypical social processing, especially for disorders like autism where social difficulties are more acute in live interaction. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Adolescent transformations of behavioral and neural processes as potential targets for prevention.

    Science.gov (United States)

    Eldreth, Dana; Hardin, Michael G; Pavletic, Nevia; Ernst, Monique

    2013-06-01

    Adolescence is a transitional period in development that is marked by a distinct, typical behavioral profile of high rates of exploration, novelty-seeking, and emotional lability. While these behaviors generally assist the adolescent transition to independence, they can also confer vulnerability for excessive risk-taking and psychopathology, particularly in the context of specific environmental or genetic influences. As prevention research depends on the identification of targets of vulnerability, the following review will discuss the interplay among motivational systems including reward-related, avoidance-related, and regulatory processes in typical and atypical adolescent development. Each set of processes will be discussed in relation to their underlying neural correlates and distinct developmental trajectories. Evidence suggests that typical adolescent behavior and the risk for atypical development are mediated by heightened adolescent responsiveness of reward-related and avoidance-related systems under specific conditions, concurrent with poor modulation by immature regulatory processes. Finally, we will propose strategies to exploit heightened reward processing to reinforce inhibitory control, which is an essential component of regulatory processes in prevention interventions.

  18. Concurrent processes scheduling with scarce resources in small and medium enterprises

    Institute of Scientific and Technical Information of China (English)

    马嵩华

    2016-01-01

    Scarce resources , precedence and non-determined time-lag are three constraints commonly found in small and medium manufacturing enterprises (SMEs), which are deemed to block the ap-plication of workflow management system ( WfMS ) .To tackle this problem , a workflow scheduling approach is proposed based on timing workflow net (TWF-net) and genetic algorithm (GA).The workflow is modelled in a form of TWF-net in favour of process simulation and resource conflict checking .After simplifying and reconstructing the set of workflow instance , the conflict resolution problem is transformed into a resource-constrained project scheduling problem ( RCPSP ) , which could be efficiently solved by a heuristic method , such as GA.Finally, problems of various sizes are utilized to test the performance of the proposed algorithm and to compare it with first-come-first-served ( FCFS) strategy.The evaluation demonstrates that the proposed method is an overwhelming and effective approach for scheduling the concurrent processes with precedence and resource con -straints .

  19. Neural constructivism or self-organization?

    NARCIS (Netherlands)

    van der Maas, H.L.J.; Molenaar, P.C.M.

    2000-01-01

    Comments on the article by S. R. Quartz et al (see record 1998-00749-001) which discussed the constructivist perspective of interaction between cognition and neural processes during development and consequences for theories of learning. Three arguments are given to show that neural constructivism

  20. Radial basis function neural networks with sequential learning MRAN and its applications

    CERN Document Server

    Sundararajan, N; Wei Lu Ying

    1999-01-01

    This book presents in detail the newly developed sequential learning algorithm for radial basis function neural networks, which realizes a minimal network. This algorithm, created by the authors, is referred to as Minimal Resource Allocation Networks (MRAN). The book describes the application of MRAN in different areas, including pattern recognition, time series prediction, system identification, control, communication and signal processing. Benchmark problems from these areas have been studied, and MRAN is compared with other algorithms. In order to make the book self-contained, a review of t

  1. Research on the Prediction Model of CPU Utilization Based on ARIMA-BP Neural Network

    Directory of Open Access Journals (Sweden)

    Wang Jina

    2016-01-01

    Full Text Available The dynamic deployment technology of the virtual machine is one of the current cloud computing research focuses. The traditional methods mainly work after the degradation of the service performance that usually lag. To solve the problem a new prediction model based on the CPU utilization is constructed in this paper. A reference offered by the new prediction model of the CPU utilization is provided to the VM dynamic deployment process which will speed to finish the deployment process before the degradation of the service performance. By this method it not only ensure the quality of services but also improve the server performance and resource utilization. The new prediction method of the CPU utilization based on the ARIMA-BP neural network mainly include four parts: preprocess the collected data, build the predictive model of ARIMA-BP neural network, modify the nonlinear residuals of the time series by the BP prediction algorithm and obtain the prediction results by analyzing the above data comprehensively.

  2. High school music classes enhance the neural processing of speech

    OpenAIRE

    Tierney, Adam; Krizman, Jennifer; Skoe, Erika; Johnston, Kathleen; Kraus, Nina

    2013-01-01

    Should music be a priority in public education? One argument for teaching music in school is that private music instruction relates to enhanced language abilities and neural function. However, the directionality of this relationship is unclear and it is unknown whether school-based music training can produce these enhancements. Here we show that two years of group music classes in high school enhance the subcortical encoding of speech. To tease apart the relationships between music and neural...

  3. Planning pesticides usage for herbal and animal pests based on intelligent classification system with image processing and neural networks

    Directory of Open Access Journals (Sweden)

    Dimililer Kamil

    2018-01-01

    Full Text Available Pests are divided into two as herbal and animal pests in agriculture, and detection and use of minimum pesticides are quite challenging task. Last three decades, researchers have been improving their studies on these manners. Therefore, effective, efficient, and as well as intelligent systems are designed and modelled. In this paper, an intelligent classification system is designed for detecting pests as herbal or animal to use of proper pesticides accordingly. The designed system suggests two main stages. Firstly, images are processed using different image processing techniques that images have specific distinguishing geometric patterns. The second stage is neural network phase for classification. A backpropagation neural network is used for training and testing with processed images. System is tested, and experiment results show efficiency and effective classification rate. Autonomy and time efficiency within the pesticide usage are also discussed.

  4. Comparison of Classifier Architectures for Online Neural Spike Sorting.

    Science.gov (United States)

    Saeed, Maryam; Khan, Amir Ali; Kamboh, Awais Mehmood

    2017-04-01

    High-density, intracranial recordings from micro-electrode arrays need to undergo Spike Sorting in order to associate the recorded neuronal spikes to particular neurons. This involves spike detection, feature extraction, and classification. To reduce the data transmission and power requirements, on-chip real-time processing is becoming very popular. However, high computational resources are required for classifiers in on-chip spike-sorters, making scalability a great challenge. In this review paper, we analyze several popular classifiers to propose five new hardware architectures using the off-chip training with on-chip classification approach. These include support vector classification, fuzzy C-means classification, self-organizing maps classification, moving-centroid K-means classification, and Cosine distance classification. The performance of these architectures is analyzed in terms of accuracy and resource requirement. We establish that the neural networks based Self-Organizing Maps classifier offers the most viable solution. A spike sorter based on the Self-Organizing Maps classifier, requires only 7.83% of computational resources of the best-reported spike sorter, hierarchical adaptive means, while offering a 3% better accuracy at 7 dB SNR.

  5. Improving the Financial Resourcing Process for Civil/Military Operations

    National Research Council Canada - National Science Library

    Gadbois, Karen

    2004-01-01

    .... This was evident in the most recent stability operation in Afghanistan. Although financial resourcing is key to the planning process prior to operational commencement the intricacies of the rules and financial mechanisms are not sufficiently addressed...

  6. A Fuzzy Neural Network Based on Non-Euclidean Distance Clustering for Quality Index Model in Slashing Process

    Directory of Open Access Journals (Sweden)

    Yuxian Zhang

    2015-01-01

    Full Text Available The quality index model in slashing process is difficult to build by reason of the outliers and noise data from original data. To the above problem, a fuzzy neural network based on non-Euclidean distance clustering is proposed in which the input space is partitioned into many local regions by the fuzzy clustering based on non-Euclidean distance so that the computation complexity is decreased, and fuzzy rule number is determined by validity function based on both the separation and the compactness among clusterings. Then, the premise parameters and consequent parameters are trained by hybrid learning algorithm. The parameters identification is realized; meanwhile the convergence condition of consequent parameters is obtained by Lyapunov function. Finally, the proposed method is applied to build the quality index model in slashing process in which the experimental data come from the actual slashing process. The experiment results show that the proposed fuzzy neural network for quality index model has lower computation complexity and faster convergence time, comparing with GP-FNN, BPNN, and RBFNN.

  7. Role of Human Resources in the Mergers and Acquisitions Processes

    Directory of Open Access Journals (Sweden)

    Anna Szewczyk

    2007-06-01

    Full Text Available The human resources are one of the most important topics when you talk about the value and importance of a company itself. The article tries to show the different aspects where the human resource affects a merger in the different states of a merger process, especially to the pre-merger-phase, and to which problems it can lead when you not pay attention to it. Finally the question, which is indeed the most important aim concerning mergers namely: how and in which degree the human resource effects the goodwill, is tried to answer.

  8. The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses

    Science.gov (United States)

    Zoefel, Benedikt; ten Oever, Sanne; Sack, Alexander T.

    2018-01-01

    It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favor of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive. In this context, we also explicitly discuss the potential functional role of such entrained oscillations, suggesting that these stimulus-aligned oscillations reflect, and serve as, predictive processes, an idea often only implicitly assumed in the literature. PMID:29563860

  9. Cultural influences on the neural correlate of moral decision making processes.

    Science.gov (United States)

    Han, Hyemin; Glover, Gary H; Jeong, Changwoo

    2014-02-01

    This study compares the neural substrate of moral decision making processes between Korean and American participants. By comparison with Americans, Korean participants showed increased activity in the right putamen associated with socio-intuitive processes and right superior frontal gyrus associated with cognitive control processes under a moral-personal condition, and in the right postcentral sulcus associated with mental calculation in familiar contexts under a moral-impersonal condition. On the other hand, American participants showed a significantly higher degree of activity in the bilateral anterior cingulate cortex (ACC) associated with conflict resolution under the moral-personal condition, and in the right medial frontal gyrus (MFG) associated with simple cognitive branching in non-familiar contexts under the moral-impersonal condition when a more lenient threshold was applied, than Korean participants. These findings support the ideas of the interactions between the cultural background, education, and brain development, proposed in the field of cultural psychology and educational psychology. The study introduces educational implications relevant to moral psychologists and educators. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Energy efficient processing of natural resources; Energieeffiziente Verarbeitung natuerlicher Rohstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pehlken, Alexandra [Univ. Bremen (Germany). Projekt FU2; Hans, Carl [Bremer Institut fuer Produktion und Logistik GmbH BIBA, Bremen (Germany). Abt. Intelligente Informations- und Kommunikationsumgebungen fuer die kooperative Produktion im Forschungsbereich Informations- und Kommunikationstechnische Anwendungen; Thoben, Klaus-Dieter [Univ. Bremen (Germany). Inst. fuer integrierte Produktentwicklung; Bremer Institut fuer Produktion und Logistik GmbH BIBA, Bremen (Germany). Forschungsbereich Informations- und kommunikationstechnische Anwendungen; Austing, Bernhard [Fa. Austing, Damme (Germany)

    2012-10-15

    Energy efficiency is gaining high importance in production processes. High energy consumption is directly related to high costs. The processing of natural resources is resulting in additional energy input because of defined output quality demands. This paper discussed approaches and IT-solutions for the automatically adjustment of production processes to cope with varying input qualities. The intention is to achieve the lowest energy input into the process without quality restraints.

  11. Genetic Algorithm Optimized Neural Networks Ensemble as ...

    African Journals Online (AJOL)

    NJD

    Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) for the simultaneous ... process by training a number of neural networks. .... Matlab® version 6.1 was employed for building principal component ... provide a fair simulation of calibration data set with some degree.

  12. Judicial Process, Grade Eight. Resource Unit (Unit V).

    Science.gov (United States)

    Minnesota Univ., Minneapolis. Project Social Studies Curriculum Center.

    This resource unit, developed by the University of Minnesota's Project Social Studies, introduces eighth graders to the judicial process. The unit was designed with two major purposes in mind. First, it helps pupils understand judicial decision-making, and second, it provides for the study of the rights guaranteed by the federal Constitution. Both…

  13. Upgrading Unconventional Oil Resources with the EST Process

    Energy Technology Data Exchange (ETDEWEB)

    Delbianco, Alberto; Meli, Salvatori; Panariti, Nicolleta; Rispoli, Giacomo

    2007-07-01

    We strongly believe that unconventional oils will play a much larger role in the growth of supply than is currently recognized. As a matter of fact, whereas the earth's conventional proven world oil reserves are 1.3 trillion barrels, extra-heavy plus bitumen resources amount to about 4 trillion barrels. The unconventional oils are characterized by low API gravity (<10), high viscosity and high concentration of poisons such as sulphur, nitrogen, metals, and asphaltenes. For this reason, a key role for the full exploitation of these hydrocarbon resources is played by the downstream processes that are required to upgrade and convert them into valuable products. In this scenario, Eni has developed a novel hydrocracking process (EST: Eni Slurry Technology) which is particularly well-suited for the conversion and upgrading of heavy feedstocks (conventional vacuum residues, extra-heavy oils and bitumen). EST employs nano-sized hydrogenation catalysts and an original process scheme that allow complete feedstock conversion to an upgraded synthetic crude oil (SCO) with an API gravity gain greater than 20 and avoid the production of residual by-products, such as pet-coke or heavy fuel oil. A Commercial Demonstration Unit (CDP) of 1200 bbl/d capacity is successfully operating in the Eni's Taranto refinery since November 2005. (auth)

  14. Neural networks underlying language and social cognition during self-other processing in Autism spectrum disorders.

    Science.gov (United States)

    Kana, Rajesh K; Sartin, Emma B; Stevens, Carl; Deshpande, Hrishikesh D; Klein, Christopher; Klinger, Mark R; Klinger, Laura Grofer

    2017-07-28

    The social communication impairments defining autism spectrum disorders (ASD) may be built upon core deficits in perspective-taking, language processing, and self-other representation. Self-referential processing entails the ability to incorporate self-awareness, self-judgment, and self-memory in information processing. Very few studies have examined the neural bases of integrating self-other representation and semantic processing in individuals with ASD. The main objective of this functional MRI study is to examine the role of language and social brain networks in self-other processing in young adults with ASD. Nineteen high-functioning male adults with ASD and 19 age-sex-and-IQ-matched typically developing (TD) control participants made "yes" or "no" judgments of whether an adjective, presented visually, described them (self) or their favorite teacher (other). Both ASD and TD participants showed significantly increased activity in the medial prefrontal cortex (MPFC) during self and other processing relative to letter search. Analyses of group differences revealed significantly reduced activity in left inferior frontal gyrus (LIFG), and left inferior parietal lobule (LIPL) in ASD participants, relative to TD controls. ASD participants also showed significantly weaker functional connectivity of the anterior cingulate cortex (ACC) with several brain areas while processing self-related words. The LIFG and IPL are important regions functionally at the intersection of language and social roles; reduced recruitment of these regions in ASD participants may suggest poor level of semantic and social processing. In addition, poor connectivity of the ACC may suggest the difficulty in meeting the linguistic and social demands of this task in ASD. Overall, this study provides new evidence of the altered recruitment of the neural networks underlying language and social cognition in ASD. Published by Elsevier Ltd.

  15. Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process

    Directory of Open Access Journals (Sweden)

    Hidetoshi Konno

    2018-01-01

    Full Text Available In neural spike counting experiments, it is known that there are two main features: (i the counting number has a fractional power-law growth with time and (ii the waiting time (i.e., the inter-spike-interval distribution has a heavy tail. The method of superstatistical Poisson processes (SSPPs is examined whether these main features are properly modeled. Although various mixed/compound Poisson processes are generated with selecting a suitable distribution of the birth-rate of spiking neurons, only the second feature (ii can be modeled by the method of SSPPs. Namely, the first one (i associated with the effect of long-memory cannot be modeled properly. Then, it is shown that the two main features can be modeled successfully by a class of fractional SSPP (FSSPP.

  16. A neural model of motion processing and visual navigation by cortical area MST.

    Science.gov (United States)

    Grossberg, S; Mingolla, E; Pack, C

    1999-12-01

    Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.

  17. Effects of modality on the neural correlates of encoding processes supporting recollection and familiarity

    Science.gov (United States)

    Gottlieb, Lauren J.; Rugg, Michael D.

    2011-01-01

    Prior research has demonstrated that the neural correlates of successful encoding (“subsequent memory effects”) partially overlap with neural regions selectively engaged by the on-line demands of the study task. The primary goal of the present experiment was to determine whether this overlap is associated solely with encoding processes supporting later recollection, or whether overlapping subsequent memory and study condition effects are also evident when later memory is familiarity-based. Subjects (N = 17) underwent fMRI scanning while studying a series of visually and auditorily presented words. Memory for the words was subsequently tested with a modified Remember/Know procedure. Auditorily selective subsequent familiarity effects were evident in bilateral temporal regions that also responded preferentially to auditory items. Although other interpretations are possible, these findings suggest that overlap between study condition-selective subsequent memory effects and regions selectively sensitive to study demands is not uniquely associated with later recollection. In addition, modality-independent subsequent memory effects were identified in several cortical regions. In every case, the effects were greatest for later recollected items, and smaller for items later recognized on the basis of familiarity. The implications of this quantitative dissociation for dual-process models of recognition memory are discussed. PMID:21852431

  18. Neural bases of congenital amusia in tonal language speakers.

    Science.gov (United States)

    Zhang, Caicai; Peng, Gang; Shao, Jing; Wang, William S-Y

    2017-03-01

    Congenital amusia is a lifelong neurodevelopmental disorder of fine-grained pitch processing. In this fMRI study, we examined the neural bases of congenial amusia in speakers of a tonal language - Cantonese. Previous studies on non-tonal language speakers suggest that the neural deficits of congenital amusia lie in the music-selective neural circuitry in the right inferior frontal gyrus (IFG). However, it is unclear whether this finding can generalize to congenital amusics in tonal languages. Tonal language experience has been reported to shape the neural processing of pitch, which raises the question of how tonal language experience affects the neural bases of congenital amusia. To investigate this question, we examined the neural circuitries sub-serving the processing of relative pitch interval in pitch-matched Cantonese level tone and musical stimuli in 11 Cantonese-speaking amusics and 11 musically intact controls. Cantonese-speaking amusics exhibited abnormal brain activities in a widely distributed neural network during the processing of lexical tone and musical stimuli. Whereas the controls exhibited significant activation in the right superior temporal gyrus (STG) in the lexical tone condition and in the cerebellum regardless of the lexical tone and music conditions, no activation was found in the amusics in those regions, which likely reflects a dysfunctional neural mechanism of relative pitch processing in the amusics. Furthermore, the amusics showed abnormally strong activation of the right middle frontal gyrus and precuneus when the pitch stimuli were repeated, which presumably reflect deficits of attending to repeated pitch stimuli or encoding them into working memory. No significant group difference was found in the right IFG in either the whole-brain analysis or region-of-interest analysis. These findings imply that the neural deficits in tonal language speakers might differ from those in non-tonal language speakers, and overlap partly with the

  19. Complex-valued neural networks advances and applications

    CERN Document Server

    Hirose, Akira

    2013-01-01

    Presents the latest advances in complex-valued neural networks by demonstrating the theory in a wide range of applications Complex-valued neural networks is a rapidly developing neural network framework that utilizes complex arithmetic, exhibiting specific characteristics in its learning, self-organizing, and processing dynamics. They are highly suitable for processing complex amplitude, composed of amplitude and phase, which is one of the core concepts in physical systems to deal with electromagnetic, light, sonic/ultrasonic waves as well as quantum waves, namely, electron and

  20. The impact of acute stress on the neural processing of food cues in bulimia nervosa: Replication in two samples.

    Science.gov (United States)

    Collins, Brittany; Breithaupt, Lauren; McDowell, Jennifer E; Miller, L Stephen; Thompson, James; Fischer, Sarah

    2017-07-01

    The impact of acute stress on the neural processing of food cues in bulimia nervosa (BN) is unknown, despite theory that acute stress decreases cognitive control over food and hence increases vulnerability to environmental triggers for binge eating. Thus, the goals of this manuscript were to explore the impact of acute stress on the neural processing of food cues in BN. In Study 1, 10 women with Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5; American Psychiatric Association, 2013) BN and 10 healthy controls participated in an fMRI paradigm examining the neural correlates of visual food cue processing pre and post an acute stress induction. Whole brain analysis indicated that women with BN exhibited significant decreases in activation in the precuneus, associated with self-referential processing, the paracingulate gyrus, and the anterior vermis of the cerebellum. Healthy controls exhibited increased activation in these regions in response to food cues poststress. In Study 2, 17 women with DSM-5 BN or otherwise specified feeding and eating disorder with BN symptoms participated in the same paradigm. A region of interest analysis replicated findings from Study 1. Replication of imaging findings in 2 different samples suggests the potential importance of these regions in relation to BN. Decreased activation in the precuneus, specifically, is consistent with models of BN that posit that binge eating serves as a concrete distraction from aversive internal stimuli. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Neural and hybrid modeling: an alternative route to efficiently predict the behavior of biotechnological processes aimed at biofuels obtainment.

    Science.gov (United States)

    Curcio, Stefano; Saraceno, Alessandra; Calabrò, Vincenza; Iorio, Gabriele

    2014-01-01

    The present paper was aimed at showing that advanced modeling techniques, based either on artificial neural networks or on hybrid systems, might efficiently predict the behavior of two biotechnological processes designed for the obtainment of second-generation biofuels from waste biomasses. In particular, the enzymatic transesterification of waste-oil glycerides, the key step for the obtainment of biodiesel, and the anaerobic digestion of agroindustry wastes to produce biogas were modeled. It was proved that the proposed modeling approaches provided very accurate predictions of systems behavior. Both neural network and hybrid modeling definitely represented a valid alternative to traditional theoretical models, especially when comprehensive knowledge of the metabolic pathways, of the true kinetic mechanisms, and of the transport phenomena involved in biotechnological processes was difficult to be achieved.

  2. Biological neural networks as model systems for designing future parallel processing computers

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.

  3. Petri neural network model for the effect of controlled thermomechanical process parameters on the mechanical properties of HSLA steels

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.

    1999-10-01

    The effect of composition and controlled thermomechanical process parameters on the mechanical properties of HSLA steels is modelled using the Widrow-Hoff's concept of training a neural net with feed-forward topology by applying Rumelhart's back propagation type algorithm for supervised learning, using a Petri like net structure. The data used are from laboratory experiments as well as from the published literature. The results from the neural network are found to be consistent and in good agreement with the experimented results. (author)

  4. Image processing and analysis using neural networks for optometry area

    Science.gov (United States)

    Netto, Antonio V.; Ferreira de Oliveira, Maria C.

    2002-11-01

    In this work we describe the framework of a functional system for processing and analyzing images of the human eye acquired by the Hartmann-Shack technique (HS), in order to extract information to formulate a diagnosis of eye refractive errors (astigmatism, hypermetropia and myopia). The analysis is to be carried out using an Artificial Intelligence system based on Neural Nets, Fuzzy Logic and Classifier Combination. The major goal is to establish the basis of a new technology to effectively measure ocular refractive errors that is based on methods alternative those adopted in current patented systems. Moreover, analysis of images acquired with the Hartmann-Shack technique may enable the extraction of additional information on the health of an eye under exam from the same image used to detect refraction errors.

  5. Adaptive Filtering Using Recurrent Neural Networks

    Science.gov (United States)

    Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.

    2005-01-01

    A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.

  6. Common and dissociable neural correlates associated with component processes of inductive reasoning.

    Science.gov (United States)

    Jia, Xiuqin; Liang, Peipeng; Lu, Jie; Yang, Yanhui; Zhong, Ning; Li, Kuncheng

    2011-06-15

    The ability to draw numerical inductive reasoning requires two key cognitive processes, identification and extrapolation. This study aimed to identify the neural correlates of both component processes of numerical inductive reasoning using event-related fMRI. Three kinds of tasks: rule induction (RI), rule induction and application (RIA), and perceptual judgment (Jud) were solved by twenty right-handed adults. Our results found that the left superior parietal lobule (SPL) extending into the precuneus and left dorsolateral prefrontal cortex (DLPFC) were commonly recruited in the two components. It was also observed that the fronto-parietal network was more specific to identification, whereas the striatal-thalamic network was more specific to extrapolation. The findings suggest that numerical inductive reasoning is mediated by the coordination of multiple brain areas including the prefrontal, parietal, and subcortical regions, of which some are more specific to demands on only one of these two component processes, whereas others are sensitive to both. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. The behavioural patterns and neural correlates of concrete and abstract verb processing in aphasia: A novel verb semantic battery

    Directory of Open Access Journals (Sweden)

    Reem S.W. Alyahya

    2018-01-01

    Full Text Available Typically, processing is more accurate and efficient for concrete than abstract concepts in both healthy adults and individuals with aphasia. While, concreteness effects have been thoroughly documented with respect to noun processing, other words classes have received little attention despite tending to be less concrete than nouns. The aim of the current study was to explore concrete-abstract differences in verbs and identify their neural correlates in post-stroke aphasia. Given the dearth of comprehension tests for verbs, a battery of neuropsychological tests was developed in this study to assess the comprehension of concrete and abstract verbs. Specifically, a sensitive verb synonym judgment test was generated that varied both the items' imageability and frequency, and a picture-to-word matching test with numerous concrete verbs. Normative data were then collected and the tests were administered to a cohort of 48 individuals with chronic post-stroke aphasia to explore the behavioural patterns and neural correlates of verb processing. The results revealed significantly better comprehension of concrete than abstract verbs, aligning with the existing aphasiological literature on noun processing. In addition, the patients performed better during verb comprehension than verb production. Lesion-symptom correlational analyses revealed common areas that support processing of concrete and abstract verbs, including the left anterior temporal lobe, posterior supramarginal gyrus and superior lateral occipital cortex. A direct contrast between them revealed additional regions with graded differences. Specifically, the left frontal regions were associated with processing abstract verbs; whereas, the left posterior temporal and occipital regions were associated with processing concrete verbs. Moreover, overlapping and distinct neural correlates were identified in association with the comprehension and production of concrete verbs. These patient findings

  8. The behavioural patterns and neural correlates of concrete and abstract verb processing in aphasia: A novel verb semantic battery.

    Science.gov (United States)

    Alyahya, Reem S W; Halai, Ajay D; Conroy, Paul; Lambon Ralph, Matthew A

    2018-01-01

    Typically, processing is more accurate and efficient for concrete than abstract concepts in both healthy adults and individuals with aphasia. While, concreteness effects have been thoroughly documented with respect to noun processing, other words classes have received little attention despite tending to be less concrete than nouns. The aim of the current study was to explore concrete-abstract differences in verbs and identify their neural correlates in post-stroke aphasia. Given the dearth of comprehension tests for verbs, a battery of neuropsychological tests was developed in this study to assess the comprehension of concrete and abstract verbs. Specifically, a sensitive verb synonym judgment test was generated that varied both the items' imageability and frequency, and a picture-to-word matching test with numerous concrete verbs. Normative data were then collected and the tests were administered to a cohort of 48 individuals with chronic post-stroke aphasia to explore the behavioural patterns and neural correlates of verb processing. The results revealed significantly better comprehension of concrete than abstract verbs, aligning with the existing aphasiological literature on noun processing. In addition, the patients performed better during verb comprehension than verb production. Lesion-symptom correlational analyses revealed common areas that support processing of concrete and abstract verbs, including the left anterior temporal lobe, posterior supramarginal gyrus and superior lateral occipital cortex. A direct contrast between them revealed additional regions with graded differences. Specifically, the left frontal regions were associated with processing abstract verbs; whereas, the left posterior temporal and occipital regions were associated with processing concrete verbs. Moreover, overlapping and distinct neural correlates were identified in association with the comprehension and production of concrete verbs. These patient findings align with data from

  9. Neural Networks and Micromechanics

    Science.gov (United States)

    Kussul, Ernst; Baidyk, Tatiana; Wunsch, Donald C.

    The title of the book, "Neural Networks and Micromechanics," seems artificial. However, the scientific and technological developments in recent decades demonstrate a very close connection between the two different areas of neural networks and micromechanics. The purpose of this book is to demonstrate this connection. Some artificial intelligence (AI) methods, including neural networks, could be used to improve automation system performance in manufacturing processes. However, the implementation of these AI methods within industry is rather slow because of the high cost of conducting experiments using conventional manufacturing and AI systems. To lower the cost, we have developed special micromechanical equipment that is similar to conventional mechanical equipment but of much smaller size and therefore of lower cost. This equipment could be used to evaluate different AI methods in an easy and inexpensive way. The proved methods could be transferred to industry through appropriate scaling. In this book, we describe the prototypes of low cost microequipment for manufacturing processes and the implementation of some AI methods to increase precision, such as computer vision systems based on neural networks for microdevice assembly and genetic algorithms for microequipment characterization and the increase of microequipment precision.

  10. Intranasal oxytocin enhances neural processing of monetary reward and loss in post-traumatic stress disorder and traumatized controls.

    Science.gov (United States)

    Nawijn, Laura; van Zuiden, Mirjam; Koch, Saskia B J; Frijling, Jessie L; Veltman, Dick J; Olff, Miranda

    2016-04-01

    Anhedonia is a significant clinical problem in post-traumatic stress disorder (PTSD). PTSD patients show reduced motivational approach behavior, which may underlie anhedonic symptoms. Oxytocin administration is known to increase reward sensitivity and approach behavior. We therefore investigated whether oxytocin administration affected neural responses during motivational processing in PTSD patients and trauma-exposed controls. 35 police officers with PTSD (21 males) and 37 trauma-exposed police officers without PTSD (19 males) were included in a within-subjects, randomized, placebo-controlled fMRI study. Neural responses during anticipation of monetary reward and loss were investigated with a monetary incentive delay task (MID) after placebo and oxytocin (40 IU) administration. Oxytocin increased neural responses during reward and loss anticipation in PTSD patients and controls in the striatum, dorsal anterior cingulate cortex and insula, key regions in the reward pathway. Although PTSD patients did not differ from controls in motivational processing under placebo, anhedonia severity in PTSD patients was negatively related to reward responsiveness in the ventral striatum. Furthermore, oxytocin effects on reward processing in the ventral striatum were positively associated with anhedonia. Oxytocin administration increased reward pathway sensitivity during reward and loss anticipation in PTSD patients and trauma-exposed controls. Thus, oxytocin administration may increase motivation for goal-directed approach behavior in PTSD patients and controls, providing evidence for a neurobiological pathway through which oxytocin could potentially increase motivation and reward sensitivity in PTSD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Erythropoietin modulates neural and cognitive processing of emotional information in biomarker models of antidepressant drug action in depressed patients

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Favaron, Elisa; Hafizi, Sepehr

    2010-01-01

    . The current study investigates the effects of Epo on the neural and cognitive response to emotional facial expressions in depressed patients. METHOD: Nineteen acutely depressed patients were randomized to receive Epo (40,000 IU) or saline intravenously in a double-blind, parallel-group design. On day 3, we......OBJECTIVE: Erythropoietin (Epo) has neuroprotective and neurotrophic effects, and may be a novel therapeutic agent in the treatment of psychiatric disorders. We have demonstrated antidepressant-like effects of Epo on the neural and cognitive processing of facial expressions in healthy volunteers...... assessed neuronal responses to fearful and happy faces using functional magnetic resonance imaging and measured facial expression recognition after the scan. RESULTS: Epo reduced neural response to fearful vs. happy faces in the amygdala and hippocampus, and to fearful faces vs. baseline in superior...

  12. Combined expert system/neural networks method for process fault diagnosis

    Science.gov (United States)

    Reifman, Jaques; Wei, Thomas Y. C.

    1995-01-01

    A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.

  13. Combined expert system/neural networks method for process fault diagnosis

    Science.gov (United States)

    Reifman, J.; Wei, T.Y.C.

    1995-08-15

    A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.

  14. Attention Modulates the Neural Processes Underlying Multisensory Integration of Emotion

    Directory of Open Access Journals (Sweden)

    Hao Tam Ho

    2011-10-01

    Full Text Available Integrating emotional information from multiple sensory modalities is generally assumed to be a pre-attentive process (de Gelder et al., 1999. This assumption, however, presupposes that the integrative process occurs independent of attention. Using event-potentials (ERP the present study investigated whether the neural processes underlying the integration of dynamic facial expression and emotional prosody is indeed unaffected by attentional manipulations. To this end, participants were presented with congruent and incongruent face-voice combinations (eg, an angry face combined with a neutral voice and performed different two-choice tasks in four consecutive blocks. Three of the tasks directed the participants' attention to emotion expressions in the face, the voice or both. The fourth task required participants to attend to the synchronicity between voice and lip movements. The results show divergent modulations of early ERP components by the different attentional manipulations. For example, when attention was directed to the face (or the voice, incongruent stimuli elicited a reduced N1 as compared to congruent stimuli. This effect was absent, when attention was diverted away from the emotionality in both face and voice suggesting that the detection of emotional incongruence already requires attention. Based on these findings, we question whether multisensory integration of emotion occurs indeed pre-attentively.

  15. Neural processing of food and emotional stimuli in adolescent and adult anorexia nervosa patients.

    Science.gov (United States)

    Horndasch, Stefanie; Roesch, Julie; Forster, Clemens; Dörfler, Arnd; Lindsiepe, Silja; Heinrich, Hartmut; Graap, Holmer; Moll, Gunther H; Kratz, Oliver

    2018-01-01

    A constant preoccupation with food and restrictive eating are main symptoms of anorexia nervosa (AN). Imaging studies revealed aberrant neural activation patterns in brain regions processing hedonic and reward reactions as well as-potentially aversive-emotions. An imbalance between so called "bottom-up" and "top-down" control areas is discussed. The present study is focusing on neural processing of disease-specific food stimuli and emotional stimuli and its developmental course in adolescent and adult AN patients and could offer new insight into differential mechanisms underlying shorter or more chronic disease. 33 adolescents aged 12-18 years (15 AN patients, 18 control participants) and 32 adult women (16 AN patients, 16 control participants) underwent functional magnetic resonance imaging (fMRI, 3T high-field scanner) while watching pictures of high and low-calorie food and affective stimuli. Afterwards, they rated subjective valence of each picture. FMRI data analysis was performed using a region of interest based approach. Pictures of high-calorie food items were rated more negatively by AN patients. Differences in activation between patients and controls were found in "bottom up" and "top down" control areas for food stimuli and in several emotion processing regions for affective stimuli which were more pronounced in adolescents than in adults. A differential pattern was seen for food stimuli compared to generally emotion eliciting stimuli. Adolescents with AN show reduced processing of affective stimuli and enhanced activation of regions involved in "bottom up" reward processing and "top down" control as well as the insula with regard to food stimuli with a focus on brain regions which underlie changes during adolescent development. In adults less clear and less specific activation differences were present, pointing towards a high impact that regions undergoing maturation might have on AN symptoms.

  16. Neural processing of food and emotional stimuli in adolescent and adult anorexia nervosa patients

    Science.gov (United States)

    Forster, Clemens; Dörfler, Arnd; Lindsiepe, Silja; Heinrich, Hartmut; Graap, Holmer; Moll, Gunther H.; Kratz, Oliver

    2018-01-01

    Background A constant preoccupation with food and restrictive eating are main symptoms of anorexia nervosa (AN). Imaging studies revealed aberrant neural activation patterns in brain regions processing hedonic and reward reactions as well as–potentially aversive–emotions. An imbalance between so called “bottom-up” and “top-down” control areas is discussed. The present study is focusing on neural processing of disease-specific food stimuli and emotional stimuli and its developmental course in adolescent and adult AN patients and could offer new insight into differential mechanisms underlying shorter or more chronic disease. Methods 33 adolescents aged 12–18 years (15 AN patients, 18 control participants) and 32 adult women (16 AN patients, 16 control participants) underwent functional magnetic resonance imaging (fMRI, 3T high-field scanner) while watching pictures of high and low-calorie food and affective stimuli. Afterwards, they rated subjective valence of each picture. FMRI data analysis was performed using a region of interest based approach. Results Pictures of high-calorie food items were rated more negatively by AN patients. Differences in activation between patients and controls were found in “bottom up” and “top down” control areas for food stimuli and in several emotion processing regions for affective stimuli which were more pronounced in adolescents than in adults. Conclusion A differential pattern was seen for food stimuli compared to generally emotion eliciting stimuli. Adolescents with AN show reduced processing of affective stimuli and enhanced activation of regions involved in “bottom up” reward processing and “top down” control as well as the insula with regard to food stimuli with a focus on brain regions which underlie changes during adolescent development. In adults less clear and less specific activation differences were present, pointing towards a high impact that regions undergoing maturation might have on AN

  17. The improving processes in the human resources management

    OpenAIRE

    Darja Holátová

    2002-01-01

    The quality management of the human resources management, the quality of the products, services and prosperities of the firms is among others dependent on the quality management. Managers convey a leadership and commitment necessary for creating the environment for quality improvement. The managers are responsible for their own actions, development and improvement of their own work processes.

  18. Altered neural processing of reward and punishment in adolescents with Major Depressive Disorder.

    Science.gov (United States)

    Landes, I; Bakos, S; Kohls, G; Bartling, J; Schulte-Körne, G; Greimel, E

    2018-05-01

    Altered reward and punishment function has been suggested as an important vulnerability factor for the development of Major Depressive Disorder (MDD). Prior ERP studies found evidence for neurophysiological dysfunctions in reinforcement processes in adults with MDD. To date, only few ERP studies have examined the neural underpinnings of reinforcement processing in adolescents diagnosed with MDD. The present event-related potential (ERP) study aimed to investigate neurophysiological mechanisms of anticipation and consumption of reward and punishment in adolescents with MDD in one comprehensive paradigm. During ERP recording, 25 adolescents with MDD and 29 healthy controls (12-17 years) completed a Monetary Incentive Delay Task comprising both a monetary reward and a monetary punishment condition. During anticipation, the cue-P3 signaling attentional allocation was recorded. During consumption, the feedback-P3 and Reward Positivity (RewP) were recorded to capture attentional allocation and outcome evaluation, respectively. Compared to controls, adolescents with MDD showed prolonged cue-P3 latencies to reward cues. Furthermore, unlike controls, adolescents with MDD displayed shorter feedback-P3 latencies in the reward versus punishment condition. RewPs did not differ between groups. It remains unanswered whether the observed alterations in adolescent MDD represent a state or trait. Delayed neural processing of reward cues corresponds to the clinical presentation of adolescent MDD with reduced motivational tendencies to obtain rewards. Relatively shorter feedback-P3 latencies in the reward versus punishment condition could indicate a high salience of performance-contingent reward. Frequent exposure of negatively biased adolescents with MDD to performance-contingent rewards might constitute a promising intervention approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Male veterans with PTSD exhibit aberrant neural dynamics during working memory processing: an MEG study.

    Science.gov (United States)

    McDermott, Timothy J; Badura-Brack, Amy S; Becker, Katherine M; Ryan, Tara J; Khanna, Maya M; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2016-06-01

    Posttraumatic stress disorder (PTSD) is associated with executive functioning deficits, including disruptions in working memory. In this study, we examined the neural dynamics of working memory processing in veterans with PTSD and a matched healthy control sample using magnetoencephalography (MEG). Our sample of recent combat veterans with PTSD and demographically matched participants without PTSD completed a working memory task during a 306-sensor MEG recording. The MEG data were preprocessed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach to identify spatiotemporal dynamics. Fifty-one men were included in our analyses: 27 combat veterans with PTSD and 24 controls. Across all participants, a dynamic wave of neural activity spread from posterior visual cortices to left frontotemporal regions during encoding, consistent with a verbal working memory task, and was sustained throughout maintenance. Differences related to PTSD emerged during early encoding, with patients exhibiting stronger α oscillatory responses than controls in the right inferior frontal gyrus (IFG). Differences spread to the right supramarginal and temporal cortices during later encoding where, along with the right IFG, they persisted throughout the maintenance period. This study focused on men with combat-related PTSD using a verbal working memory task. Future studies should evaluate women and the impact of various traumatic experiences using diverse tasks. Posttraumatic stress disorder is associated with neurophysiological abnormalities during working memory encoding and maintenance. Veterans with PTSD engaged a bilateral network, including the inferior prefrontal cortices and supramarginal gyri. Right hemispheric neural activity likely reflects compensatory processing, as veterans with PTSD work to maintain accurate performance despite known cognitive deficits associated with the disorder.

  20. Automated processing of measuring information and control processes of eutrophication in water for household purpose, based on artificial neural networks

    Directory of Open Access Journals (Sweden)

    О.М. Безвесільна

    2006-04-01

    Full Text Available  The possibilities of application  informational-computer technologies for automated handling of a measuring information about development of seaweed (evtrofication in household reservoirs are considered. The input data’s for a research of processes evtrofication are videoimages of tests of water, which are used for the definition of geometric characteristics, number and biomass of seaweed. For handling a measuring information the methods of digital handling videoimages and mathematical means of artificial neural networks are offered.

  1. Synaptic energy drives the information processing mechanisms in spiking neural networks.

    Science.gov (United States)

    El Laithy, Karim; Bogdan, Martin

    2014-04-01

    Flow of energy and free energy minimization underpins almost every aspect of naturally occurring physical mechanisms. Inspired by this fact this work establishes an energy-based framework that spans the multi-scale range of biological neural systems and integrates synaptic dynamic, synchronous spiking activity and neural states into one consistent working paradigm. Following a bottom-up approach, a hypothetical energy function is proposed for dynamic synaptic models based on the theoretical thermodynamic principles and the Hopfield networks. We show that a synapse exposes stable operating points in terms of its excitatory postsynaptic potential as a function of its synaptic strength. We postulate that synapses in a network operating at these stable points can drive this network to an internal state of synchronous firing. The presented analysis is related to the widely investigated temporal coherent activities (cell assemblies) over a certain range of time scales (binding-by-synchrony). This introduces a novel explanation of the observed (poly)synchronous activities within networks regarding the synaptic (coupling) functionality. On a network level the transitions from one firing scheme to the other express discrete sets of neural states. The neural states exist as long as the network sustains the internal synaptic energy.

  2. Financial Incentives Differentially Regulate Neural Processing of Positive and Negative Emotions during Value-Based Decision-Making

    Directory of Open Access Journals (Sweden)

    Anne M. Farrell

    2018-02-01

    Full Text Available Emotional and economic incentives often conflict in decision environments. To make economically desirable decisions then, deliberative neural processes must be engaged to regulate automatic emotional reactions. In this functional magnetic resonance imaging (fMRI study, we evaluated how fixed wage (FW incentives and performance-based (PB financial incentives, in which pay is proportional to outcome, differentially regulate positive and negative emotional reactions to hypothetical colleagues that conflicted with the economics of available alternatives. Neural activity from FW to PB incentive contexts decreased for positive emotional stimuli but increased for negative stimuli in middle temporal, insula, and medial prefrontal regions. In addition, PB incentives further induced greater responses to negative than positive emotional decisions in the frontal and anterior cingulate regions involved in emotion regulation. Greater response to positive than negative emotional features in these regions also correlated with lower frequencies of economically desirable choices. Our findings suggest that whereas positive emotion regulation involves a reduction of responses in valence representation regions, negative emotion regulation additionally engages brain regions for deliberative processing and signaling of incongruous events.

  3. Financial Incentives Differentially Regulate Neural Processing of Positive and Negative Emotions during Value-Based Decision-Making.

    Science.gov (United States)

    Farrell, Anne M; Goh, Joshua O S; White, Brian J

    2018-01-01

    Emotional and economic incentives often conflict in decision environments. To make economically desirable decisions then, deliberative neural processes must be engaged to regulate automatic emotional reactions. In this functional magnetic resonance imaging (fMRI) study, we evaluated how fixed wage (FW) incentives and performance-based (PB) financial incentives, in which pay is proportional to outcome, differentially regulate positive and negative emotional reactions to hypothetical colleagues that conflicted with the economics of available alternatives. Neural activity from FW to PB incentive contexts decreased for positive emotional stimuli but increased for negative stimuli in middle temporal, insula, and medial prefrontal regions. In addition, PB incentives further induced greater responses to negative than positive emotional decisions in the frontal and anterior cingulate regions involved in emotion regulation. Greater response to positive than negative emotional features in these regions also correlated with lower frequencies of economically desirable choices. Our findings suggest that whereas positive emotion regulation involves a reduction of responses in valence representation regions, negative emotion regulation additionally engages brain regions for deliberative processing and signaling of incongruous events.

  4. Tuning Neural Phase Entrainment to Speech.

    Science.gov (United States)

    Falk, Simone; Lanzilotti, Cosima; Schön, Daniele

    2017-08-01

    Musical rhythm positively impacts on subsequent speech processing. However, the neural mechanisms underlying this phenomenon are so far unclear. We investigated whether carryover effects from a preceding musical cue to a speech stimulus result from a continuation of neural phase entrainment to periodicities that are present in both music and speech. Participants listened and memorized French metrical sentences that contained (quasi-)periodic recurrences of accents and syllables. Speech stimuli were preceded by a rhythmically regular or irregular musical cue. Our results show that the presence of a regular cue modulates neural response as estimated by EEG power spectral density, intertrial coherence, and source analyses at critical frequencies during speech processing compared with the irregular condition. Importantly, intertrial coherences for regular cues were indicative of the participants' success in memorizing the subsequent speech stimuli. These findings underscore the highly adaptive nature of neural phase entrainment across fundamentally different auditory stimuli. They also support current models of neural phase entrainment as a tool of predictive timing and attentional selection across cognitive domains.

  5. A new perspective on behavioral inconsistency and neural noise in aging: Compensatory speeding of neural communication

    Directory of Open Access Journals (Sweden)

    S. Lee Hong

    2012-09-01

    Full Text Available This paper seeks to present a new perspective on the aging brain. Here, we make connections between two key phenomena of brain aging: 1 increased neural noise or random background activity; and 2 slowing of brain activity. Our perspective proposes the possibility that the slowing of neural processing due to decreasing nerve conduction velocities leads to a compensatory speeding of neuron firing rates. These increased firing rates lead to a broader distribution of power in the frequency spectrum of neural oscillations, which we propose, can just as easily be interpreted as neural noise. Compensatory speeding of neural activity, as we present, is constrained by the: A availability of metabolic energy sources; and B competition for frequency bandwidth needed for neural communication. We propose that these constraints lead to the eventual inability to compensate for age-related declines in neural function that are manifested clinically as deficits in cognition, affect, and motor behavior.

  6. A high-speed analog neural processor

    NARCIS (Netherlands)

    Masa, P.; Masa, Peter; Hoen, Klaas; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    Targeted at high-energy physics research applications, our special-purpose analog neural processor can classify up to 70 dimensional vectors within 50 nanoseconds. The decision-making process of the implemented feedforward neural network enables this type of computation to tolerate weight

  7. The Dose-Dependent Effects of Vascular Risk Factors on Dynamic Compensatory Neural Processes in Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Haifeng Chen

    2018-05-01

    Full Text Available Background/Objectives: Mild cognitive impairment (MCI has been associated with risk for Alzheimer's Disease (AD. Previous investigations have suggested that vascular risk factors (VRFs were associated with cognitive decline and AD pathogenesis, and the intervention of VRFs may be a possible way to prevent dementia. However, in MCI, little is known about the potential impacts of VRFs on neural networks and their neural substrates, which may be a neuroimaging biomarker of the disease progression.Methods: 128 elderly Han Chinese participants (67 MCI subjects and 61 matched normal elderly with or without VRFs (hypertension, diabetes mellitus, hypercholesterolemia, smoking and alcohol drinking underwent the resting-state functional magnetic resonance imaging (fMRI and neuropsychological tests. We obtained the default mode network (DMN to identify alterations in MCI with the varying number of the VRF and analyzed the significant correlation with behavioral performance.Results: The effects of VRF on the DMN were primarily in bilateral dorsolateral prefrontal cortex (DLPFC (i.e., middle frontal gyrus. Normal elderly showed the gradually increased functional activity of DLPFC, while a fluctuant activation of DLPFC was displayed in MCI with the growing number of the VRF. Interestingly, the left DLPFC further displayed significantly dynamic correlation with executive function as the variation of VRF loading. Initial level of compensation was observed in normal aging and none-vascular risk factor (NVRF MCI, while these compensatory neural processes were suppressed in One-VRF MCI and were subsequently re-aroused in Over-One-VRF MCI.Conclusions: These findings suggested that the dose-dependent effects of VRF on DLPFC were highlighted in MCI, and the dynamic compensatory neural processes that fluctuated along with variations of VRF loading could be key role in the progression of MCI.

  8. An Extended Petri-Net Based Approach for Supply Chain Process Enactment in Resource-Centric Web Service Environment

    Science.gov (United States)

    Wang, Xiaodong; Zhang, Xiaoyu; Cai, Hongming; Xu, Boyi

    Enacting a supply-chain process involves variant partners and different IT systems. REST receives increasing attention for distributed systems with loosely coupled resources. Nevertheless, resource model incompatibilities and conflicts prevent effective process modeling and deployment in resource-centric Web service environment. In this paper, a Petri-net based framework for supply-chain process integration is proposed. A resource meta-model is constructed to represent the basic information of resources. Then based on resource meta-model, XML schemas and documents are derived, which represent resources and their states in Petri-net. Thereafter, XML-net, a high level Petri-net, is employed for modeling control and data flow of process. From process model in XML-net, RESTful services and choreography descriptions are deduced. Therefore, unified resource representation and RESTful services description are proposed for cross-system integration in a more effective way. A case study is given to illustrate the approach and the desirable features of the approach are discussed.

  9. Neural sensitivity to social deviance predicts attentive processing of peer-group judgment.

    Science.gov (United States)

    Schnuerch, Robert; Trautmann-Lengsfeld, Sina Alexa; Bertram, Mario; Gibbons, Henning

    2014-01-01

    The detection of one's deviance from social norms is an essential mechanism of individual adjustment to group behavior and, thus, for the perpetuation of norms within groups. It has been suggested that error signals in mediofrontal cortex provide the neural basis of such deviance detection, which contributes to later adjustment to the norm. In the present study, we used event-related potentials (ERPs) to demonstrate that, across participants, the strength of mediofrontal brain correlates of the detection of deviance from a peer group's norms was negatively related to attentive processing of the same group's judgments in a later task. We propose that an individual's perception of social deviance might bias basic cognitive processing during further interaction with the group. Strongly perceiving disagreement with a group could cause an individual to avoid or inhibit this group's judgments.

  10. Neural network monitoring of resistive welding

    International Nuclear Information System (INIS)

    Quero, J.M.; Millan, R.L.; Franquelo, L.G.; Canas, J.

    1994-01-01

    Supervision of welding processes is one of the most important and complicated tasks in production lines. Artificial Neural Networks have been applied for modeling and control of ph physical processes. In our paper we propose the use of a neural network classifier for on-line non-destructive testing. This system has been developed and installed in a resistive welding station. Results confirm the validity of this novel approach. (Author) 6 refs

  11. Proposal of a model of mammalian neural induction

    Science.gov (United States)

    Levine, Ariel J.; Brivanlou, Ali H.

    2009-01-01

    How does the vertebrate embryo make a nervous system? This complex question has been at the center of developmental biology for many years. The earliest step in this process – the induction of neural tissue – is intimately linked to patterning of the entire early embryo, and the molecular and embryological basis these processes are beginning to emerge. Here, we analyze classic and cutting-edge findings on neural induction in the mouse. We find that data from genetics, tissue explants, tissue grafting, and molecular marker expression support a coherent framework for mammalian neural induction. In this model, the gastrula organizer of the mouse embryo inhibits BMP signaling to allow neural tissue to form as a default fate – in the absence of instructive signals. The first neural tissue induced is anterior and subsequent neural tissue is posteriorized to form the midbrain, hindbrain, and spinal cord. The anterior visceral endoderm protects the pre-specified anterior neural fate from similar posteriorization, allowing formation of forebrain. This model is very similar to the default model of neural induction in the frog, thus bridging the evolutionary gap between amphibians and mammals. PMID:17585896

  12. Cognitive processes and neural basis of language switching: proposal of a new model.

    Science.gov (United States)

    Moritz-Gasser, Sylvie; Duffau, Hugues

    2009-12-09

    Although studies on bilingualism are abundant, cognitive processes and neural foundations of language switching received less attention. The aim of our study is to provide new insights to this still open question: do dedicated region(s) for language switching exist or is this function underlain by a distributed circuit of interconnected brain areas, part of a more general cognitive system? On the basis of recent behavioral, neuroimaging, and brain stimulation studies, we propose an original 'hodological' model of language switching. This process might be subserved by a large-scale cortico-subcortical network, with an executive system (prefrontal cortex, anterior cingulum, caudate nucleus) controlling a more dedicated language subcircuit, which involves postero-temporal areas, supramarginal and angular gyri, Broca's area, and the superior longitudinal fasciculus.

  13. Modular representation of layered neural networks.

    Science.gov (United States)

    Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio

    2018-01-01

    Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Artificial neural networks for processing fluorescence spectroscopy data in skin cancer diagnostics

    International Nuclear Information System (INIS)

    Lenhardt, L; Zeković, I; Dramićanin, T; Dramićanin, M D

    2013-01-01

    Over the years various optical spectroscopic techniques have been widely used as diagnostic tools in the discrimination of many types of malignant diseases. Recently, synchronous fluorescent spectroscopy (SFS) coupled with chemometrics has been applied in cancer diagnostics. The SFS method involves simultaneous scanning of both emission and excitation wavelengths while keeping the interval of wavelengths (constant-wavelength mode) or frequencies (constant-energy mode) between them constant. This method is fast, relatively inexpensive, sensitive and non-invasive. Total synchronous fluorescence spectra of normal skin, nevus and melanoma samples were used as input for training of artificial neural networks. Two different types of artificial neural networks were trained, the self-organizing map and the feed-forward neural network. Histopathology results of investigated skin samples were used as the gold standard for network output. Based on the obtained classification success rate of neural networks, we concluded that both networks provided high sensitivity with classification errors between 2 and 4%. (paper)

  15. Neural and Hybrid Modeling: An Alternative Route to Efficiently Predict the Behavior of Biotechnological Processes Aimed at Biofuels Obtainment

    Directory of Open Access Journals (Sweden)

    Stefano Curcio

    2014-01-01

    Full Text Available The present paper was aimed at showing that advanced modeling techniques, based either on artificial neural networks or on hybrid systems, might efficiently predict the behavior of two biotechnological processes designed for the obtainment of second-generation biofuels from waste biomasses. In particular, the enzymatic transesterification of waste-oil glycerides, the key step for the obtainment of biodiesel, and the anaerobic digestion of agroindustry wastes to produce biogas were modeled. It was proved that the proposed modeling approaches provided very accurate predictions of systems behavior. Both neural network and hybrid modeling definitely represented a valid alternative to traditional theoretical models, especially when comprehensive knowledge of the metabolic pathways, of the true kinetic mechanisms, and of the transport phenomena involved in biotechnological processes was difficult to be achieved.

  16. Biomass energy - Definitions, resources and transformation processes

    International Nuclear Information System (INIS)

    Damien, Alain

    2013-01-01

    Biomass energy is today considered as a new renewable energy source, and thus, has entered a regulatory framework aiming at encouraging its development for CO 2 pollution abatement. This book addresses the constraints, both natural and technological, of the exploitation of the biomass resource, and then the economical and regulatory aspects of this industry. This second edition provides a complement about the plants used and the new R and D progresses made in this domain. Content: 1 - Definitions and general considerations: natural organic products, regulatory and standardized definitions, energy aspects of biomass fuels; 2 - Resources: energy production dedicated crops, biomass by-products, biomass from wastes; 3 - Biomass to energy transformation processes: combustion, gasification, pyrolysis, torrefaction, methanation, alcoholic fermentation, landfill biogas, Fischer-Tropsch synthesis, methanol synthesis, trans-esterification, synthetic natural gas production, bio-hydrogen production; 4 - Biofuels: solid fuels, solid automotive biofuels, gaseous biofuels, liquid biofuels, comparative efficiency; 5 - Situation of biomass energy: regulations, impact on non-energy purpose biomass, advantages and drawbacks

  17. Rodent Zic Genes in Neural Network Wiring.

    Science.gov (United States)

    Herrera, Eloísa

    2018-01-01

    The formation of the nervous system is a multistep process that yields a mature brain. Failure in any of the steps of this process may cause brain malfunction. In the early stages of embryonic development, neural progenitors quickly proliferate and then, at a specific moment, differentiate into neurons or glia. Once they become postmitotic neurons, they migrate to their final destinations and begin to extend their axons to connect with other neurons, sometimes located in quite distant regions, to establish different neural circuits. During the last decade, it has become evident that Zic genes, in addition to playing important roles in early development (e.g., gastrulation and neural tube closure), are involved in different processes of late brain development, such as neuronal migration, axon guidance, and refinement of axon terminals. ZIC proteins are therefore essential for the proper wiring and connectivity of the brain. In this chapter, we review our current knowledge of the role of Zic genes in the late stages of neural circuit formation.

  18. RESOURCE SAVING TECHNOLOGICAL PROCESS OF LARGE-SIZE DIE THERMAL TREATMENT

    Directory of Open Access Journals (Sweden)

    L. A. Glazkov

    2009-01-01

    Full Text Available The given paper presents a development of a technological process pertaining to hardening large-size parts made of die steel. The proposed process applies a water-air mixture instead of a conventional hardening medium that is industrial oil.While developing this new technological process it has been necessary to solve the following problems: reduction of thermal treatment duration, reduction of power resource expense (natural gas and mineral oil, elimination of fire danger and increase of process ecological efficiency. 

  19. Anomaly detection in an automated safeguards system using neural networks

    International Nuclear Information System (INIS)

    Whiteson, R.; Howell, J.A.

    1992-01-01

    An automated safeguards system must be able to detect an anomalous event, identify the nature of the event, and recommend a corrective action. Neural networks represent a new way of thinking about basic computational mechanisms for intelligent information processing. In this paper, we discuss the issues involved in applying a neural network model to the first step of this process: anomaly detection in materials accounting systems. We extend our previous model to a 3-tank problem and compare different neural network architectures and algorithms. We evaluate the computational difficulties in training neural networks and explore how certain design principles affect the problems. The issues involved in building a neural network architecture include how the information flows, how the network is trained, how the neurons in a network are connected, how the neurons process information, and how the connections between neurons are modified. Our approach is based on the demonstrated ability of neural networks to model complex, nonlinear, real-time processes. By modeling the normal behavior of the processes, we can predict how a system should be behaving and, therefore, detect when an abnormality occurs

  20. Modelling and Predicting the Breaking Strength and Mass Irregularity of Cotton Rotor-Spun Yarns Containing Cotton Fiber Recovered from Ginning Process by Using Artificial Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Mohsen Shanbeh

    2011-01-01

    Full Text Available One of the main methods to reduce the production costs is waste recycling which is the most important challenge for the future. Cotton wastes collected from ginning process have desirable properties which could be used during spinning process. The purpose of this study was to develop predictive models of breaking strength and mass irregularity (CV% of cotton waste rotor-spun yarns containing cotton waste collected from ginning process by using the artificial neural network trained with backpropagation algorithm. Artificial neural network models have been developed based on rotor diameter, rotor speed, navel type, opener roller speed, ginning waste proportion and yarn linear density as input parameters. The parameters of artificial neural network model, namely, learning, and momentum rate, number of hidden layers and number of hidden processing elements (neurons were optimized to get the best predictive models. The findings showed that the breaking strength and mass irregularity of rotor spun yarns could be predicted satisfactorily by artificial neural network. The maximum error in predicting the breaking strength and mass irregularity of testing data was 8.34% and 6.65%, respectively.

  1. The role of trauma-related distractors on neural systems for working memory and emotion processing in posttraumatic stress disorder.

    Science.gov (United States)

    Morey, Rajendra A; Dolcos, Florin; Petty, Christopher M; Cooper, Debra A; Hayes, Jasmeet Pannu; LaBar, Kevin S; McCarthy, Gregory

    2009-05-01

    The relevance of emotional stimuli to threat and survival confers a privileged role in their processing. In PTSD, the ability of trauma-related information to divert attention is especially pronounced. Information unrelated to the trauma may also be highly distracting when it shares perceptual features with trauma material. Our goal was to study how trauma-related environmental cues modulate working memory networks in PTSD. We examined neural activity in participants performing a visual working memory task while distracted by task-irrelevant trauma and non-trauma material. Recent post-9/11 veterans were divided into a PTSD group (n=22) and a trauma-exposed control group (n=20) based on the Davidson trauma scale. Using fMRI, we measured hemodynamic change in response to emotional (trauma-related) and neutral distraction presented during the active maintenance period of a delayed-response working memory task. The goal was to examine differences in functional networks associated with working memory (dorsolateral prefrontal cortex and lateral parietal cortex) and emotion processing (amygdala, ventrolateral prefrontal cortex, and fusiform gyrus). The PTSD group showed markedly different neural activity compared to the trauma-exposed control group in response to task-irrelevant visual distractors. Enhanced activity in ventral emotion processing regions was associated with trauma distractors in the PTSD group, whereas activity in brain regions associated with working memory and attention regions was disrupted by distractor stimuli independent of trauma content. Neural evidence for the impact of distraction on working memory is consistent with PTSD symptoms of hypervigilance and general distractibility during goal-directed cognitive processing.

  2. Neural correlates of cross-domain affective priming.

    Science.gov (United States)

    Zhang, Qin; Li, Xiaohua; Gold, Brian T; Jiang, Yang

    2010-05-06

    The affective priming effect has mostly been studied using reaction time (RT) measures; however, the neural bases of affective priming are not well established. To understand the neural correlates of cross-domain emotional stimuli presented rapidly, we obtained event-related potential (ERP) measures during an affective priming task using short SOA (stimulus onset asynchrony) conditions. Two sets of 480 picture-word pairs were presented at SOAs of either 150ms or 250ms between prime and target stimuli. Participants decided whether the valence of each target word was pleasant or unpleasant. Behavioral results from both SOA conditions were consistent with previous reports of affective priming, with longer RTs for incongruent than congruent pairs at SOAs of 150ms (771 vs. 738ms) and 250ms (765 vs. 720ms). ERP results revealed that the N400 effect (associated with incongruent pairs in affective processing) occurred at anterior scalp regions at an SOA of 150ms, and this effect was only observed for negative target words across the scalp at an SOA of 250ms. In contrast, late positive potentials (LPPs) (associated with attentional resource allocation) occurred across the scalp at an SOA of 250ms. LPPs were only observed for positive target words at posterior parts of the brain at an SOA of 150ms. Our finding of ERP signatures at very short SOAs provides the first neural evidence that affective pictures can exert an automatic influence on the evaluation of affective target words. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Statistical learning problem of artificial neural network to control roofing process

    Directory of Open Access Journals (Sweden)

    Lapidus Azariy

    2017-01-01

    Full Text Available Now software developed on the basis of artificial neural networks (ANN has been actively implemented in construction companies to support decision-making in organization and management of construction processes. ANN learning is the main stage of its development. A key question for supervised learning is how many number of training examples we need to approximate the true relationship between network inputs and output with the desired accuracy. Also designing of ANN architecture is related to learning problem known as “curse of dimensionality”. This problem is important for the study of construction process management because of the difficulty to get training data from construction sites. In previous studies the authors have designed a 4-layer feedforward ANN with a unit model of 12-5-4-1 to approximate estimation and prediction of roofing process. This paper presented the statistical learning side of created ANN with simple-error-minimization algorithm. The sample size to efficient training and the confidence interval of network outputs defined. In conclusion the authors predicted successful ANN learning in a large construction business company within a short space of time.

  4. Cooperating attackers in neural cryptography.

    Science.gov (United States)

    Shacham, Lanir N; Klein, Einat; Mislovaty, Rachel; Kanter, Ido; Kinzel, Wolfgang

    2004-06-01

    A successful attack strategy in neural cryptography is presented. The neural cryptosystem, based on synchronization of neural networks by mutual learning, has been recently shown to be secure under different attack strategies. The success of the advanced attacker presented here, called the "majority-flipping attacker," does not decay with the parameters of the model. This attacker's outstanding success is due to its using a group of attackers which cooperate throughout the synchronization process, unlike any other attack strategy known. An analytical description of this attack is also presented, and fits the results of simulations.

  5. Neural networks and applications tutorial

    Science.gov (United States)

    Guyon, I.

    1991-09-01

    The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.

  6. THE ANALYSIS OF POSSIBILITIES OF INTERNET RESOURCES TO IMPROVE THE EFFICIENCY THE EDUCATIONAL PROCESS

    Directory of Open Access Journals (Sweden)

    С А Усманов

    2017-12-01

    Full Text Available In article the analysis of Internet resources of educational appointment is carried out and the short characteristic of the main opportunities of these resources is given. Today it is already impossible to present educational process without use of opportunities of Internet resources. The modern teacher has to be able to work with information which is necessary for realization of his professional activity, the solution of his professional tasks, to have skills of cooperation with pupils on the basis of information exchange. The educational Internet resource is complete, named, interconnected, uniform systemically organized set which includes both the general education formalized and professionally significant knowledge and means of organizational and methodical ensuring educational process and means for their automated storage, accumulation and processing. Internet resources are designed to satisfy needs of the user for various aspects and spheres of educational activity. Quite often concrete resource includes several properties such difficult at once on structure and functioning of means what the Internet is. Use of the Internet allows to establish between the teacher and pupils feedback when performing independent works, allows to carry out mailing of materials and to conduct surveys. Occupations with use of resources of the Internet represent alloy of new information technologies with new pedagogical technologies.

  7. Application of improved PSO-RBF neural network in the synthetic ammonia decarbonization

    Directory of Open Access Journals (Sweden)

    Yongwei LI

    2017-12-01

    Full Text Available The synthetic ammonia decarbonization is a typical complex industrial process, which has the characteristics of time variation, nonlinearity and uncertainty, and the on-line control model is difficult to be established. An improved PSO-RBF neural network control algorithm is proposed to solve the problems of low precision and poor robustness in the complex process of the synthetic ammonia decarbonization. The particle swarm optimization algorithm and RBF neural network are combined. The improved particle swarm algorithm is used to optimize the RBF neural network's hidden layer primary function center, width and the output layer's connection value to construct the RBF neural network model optimized by the improved PSO algorithm. The improved PSO-RBF neural network control model is applied to the key carbonization process and compared with the traditional fuzzy neural network. The simulation results show that the improved PSO-RBF neural network control method used in the synthetic ammonia decarbonization process has higher control accuracy and system robustness, which provides an effective way to solve the modeling and optimization control of a complex industrial process.

  8. Available processing resources influence encoding-related brain activity before an event.

    Science.gov (United States)

    Galli, Giulia; Gebert, A Dorothea; Otten, Leun J

    2013-09-01

    Effective cognitive functioning not only relies on brain activity elicited by an event, but also on activity that precedes it. This has been demonstrated in a number of cognitive domains, including memory. Here, we show that brain activity that precedes the effective encoding of a word into long-term memory depends on the availability of sufficient processing resources. We recorded electrical brain activity from the scalps of healthy adult men and women while they memorized intermixed visual and auditory words for later recall. Each word was preceded by a cue that indicated the modality of the upcoming word. The degree to which processing resources were available before word onset was manipulated by asking participants to make an easy or difficult perceptual discrimination on the cue. Brain activity before word onset predicted later recall of the word, but only in the easy discrimination condition. These findings indicate that anticipatory influences on long-term memory are limited in capacity and sensitive to the degree to which attention is divided between tasks. Prestimulus activity that affects later encoding can only be engaged when the necessary cognitive resources can be allocated to the encoding process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. DETERMINATION OF PROCESSES OF USE, PRESERVING AND REPRODUCTION IN THE SYSTEM OF RENEWABLE NATURAL RESOURCES MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Mikhail Gazuda

    2015-11-01

    Full Text Available The purpose of the paper is to develop factor model of renewable natural resources management, specifying the assessment of the amount of resource, including the natural factor, consumption level and intensity of reproduction. Methodology. The survey is based on highlighting factors influencing the reproductive capacity of natural environment. It allows, on the base of taking into consideration reproductive abilities of resources and intensity of consumption, to substantiate three models for their use, including: heavy exploitation of renewable natural resources as the most commonly used model at the current level of development of society; model of reproductive use of natural resources, stipulating for the interference from the side of authorities and management, and the model of simple reproduction of renewable natural resources, at which the resource itself and the amount of its reproduction for the next period remain constant. Practical implications. The need is substantiated in implementation of the new model for determination of the processes of managing balanced use of natural resources, which will stipulate processes of reproduction in the sphere of natural management, form new approaches to environmental protection and promote the optimal ratio between the consumption and reproduction of natural resources. At this, the processes of natural reproduction are influenced by the amount of resource itself, intensity of its reproduction and level of consumption. The main objective of the managing bodies in the sphere of the use of renewable natural resources should be securing optimal ratio between consumption and reproduction of such natural resources. The efficiency of the implementation process and reproduction of natural resources presupposes providing their simple and extended reproduction, economic effectiveness and sustainability in allocation and use of such resources. This will have positive effect on ecological and economic security

  10. Different neural processes accompany self-recognition in photographs across the lifespan: an ERP study using dizygotic twins.

    Science.gov (United States)

    Butler, David L; Mattingley, Jason B; Cunnington, Ross; Suddendorf, Thomas

    2013-01-01

    Our appearance changes over time, yet we can recognize ourselves in photographs from across the lifespan. Researchers have extensively studied self-recognition in photographs and have proposed that specific neural correlates are involved, but few studies have examined self-recognition using images from different periods of life. Here we compared ERP responses to photographs of participants when they were 5-15, 16-25, and 26-45 years old. We found marked differences between the responses to photographs from these time periods in terms of the neural markers generally assumed to reflect (i) the configural processing of faces (i.e., the N170), (ii) the matching of the currently perceived face to a representation already stored in memory (i.e., the P250), and (iii) the retrieval of information about the person being recognized (i.e., the N400). There was no uniform neural signature of visual self-recognition. To test whether there was anything specific to self-recognition in these brain responses, we also asked participants to identify photographs of their dizygotic twins taken from the same time periods. Critically, this allowed us to minimize the confounding effects of exposure, for it is likely that participants have been similarly exposed to each other's faces over the lifespan. The same pattern of neural response emerged with only one exception: the neural marker reflecting the retrieval of mnemonic information (N400) differed across the lifespan for self but not for twin. These results, as well as our novel approach using twins and photographs from across the lifespan, have wide-ranging consequences for the study of self-recognition and the nature of our personal identity through time.

  11. Different neural processes accompany self-recognition in photographs across the lifespan: an ERP study using dizygotic twins.

    Directory of Open Access Journals (Sweden)

    David L Butler

    Full Text Available Our appearance changes over time, yet we can recognize ourselves in photographs from across the lifespan. Researchers have extensively studied self-recognition in photographs and have proposed that specific neural correlates are involved, but few studies have examined self-recognition using images from different periods of life. Here we compared ERP responses to photographs of participants when they were 5-15, 16-25, and 26-45 years old. We found marked differences between the responses to photographs from these time periods in terms of the neural markers generally assumed to reflect (i the configural processing of faces (i.e., the N170, (ii the matching of the currently perceived face to a representation already stored in memory (i.e., the P250, and (iii the retrieval of information about the person being recognized (i.e., the N400. There was no uniform neural signature of visual self-recognition. To test whether there was anything specific to self-recognition in these brain responses, we also asked participants to identify photographs of their dizygotic twins taken from the same time periods. Critically, this allowed us to minimize the confounding effects of exposure, for it is likely that participants have been similarly exposed to each other's faces over the lifespan. The same pattern of neural response emerged with only one exception: the neural marker reflecting the retrieval of mnemonic information (N400 differed across the lifespan for self but not for twin. These results, as well as our novel approach using twins and photographs from across the lifespan, have wide-ranging consequences for the study of self-recognition and the nature of our personal identity through time.

  12. Processes, Performance Drivers and ICT Tools in Human Resources Management

    OpenAIRE

    Oškrdal Václav; Pavlíček Antonín; Jelínková Petra

    2011-01-01

    This article presents an insight to processes, performance drivers and ICT tools in human resources (HR) management area. On the basis of a modern approach to HR management, a set of business processes that are handled by today’s HR managers is defined. Consequently, the concept of ICT-supported performance drivers and their relevance in the area of HR management as well as the relationship between HR business processes, performance drivers and ICT tools are defined. The theoretical outcomes ...

  13. The neural representation of typical and atypical experiences of negative images: comparing fear, disgust and morbid fascination

    Science.gov (United States)

    Lindquist, Kristen A.; Adebayo, Morenikeji; Barrett, Lisa Feldman

    2016-01-01

    Negative stimuli do not only evoke fear or disgust, but can also evoke a state of ‘morbid fascination’ which is an urge to approach and explore a negative stimulus. In the present neuroimaging study, we applied an innovative method to investigate the neural systems involved in typical and atypical conceptualizations of negative images. Participants received false feedback labeling their mental experience as fear, disgust or morbid fascination. This manipulation was successful; participants judged the false feedback correct for 70% of the trials on average. The neuroimaging results demonstrated differential activity within regions in the ‘neural reference space for discrete emotion’ depending on the type of feedback. We found robust differences in the ventrolateral prefrontal cortex, the dorsomedial prefrontal cortex and the lateral orbitofrontal cortex comparing morbid fascination to control feedback. More subtle differences in the dorsomedial prefrontal cortex and the lateral orbitofrontal cortex were also found between morbid fascination feedback and the other emotion feedback conditions. This study is the first to forward evidence about the neural representation of the experimentally unexplored state of morbid fascination. In line with a constructionist framework, our findings suggest that neural resources associated with the process of conceptualization contribute to the neural representation of this state. PMID:26180088

  14. Neural Networks Involved in Adolescent Reward Processing: An Activation Likelihood Estimation Meta-Analysis of Functional Neuroimaging Studies

    Science.gov (United States)

    Silverman, Merav H.; Jedd, Kelly; Luciana, Monica

    2015-01-01

    Behavioral responses to, and the neural processing of, rewards change dramatically during adolescence and may contribute to observed increases in risk-taking during this developmental period. Functional MRI (fMRI) studies suggest differences between adolescents and adults in neural activation during reward processing, but findings are contradictory, and effects have been found in non-predicted directions. The current study uses an activation likelihood estimation (ALE) approach for quantitative meta-analysis of functional neuroimaging studies to: 1) confirm the network of brain regions involved in adolescents’ reward processing, 2) identify regions involved in specific stages (anticipation, outcome) and valence (positive, negative) of reward processing, and 3) identify differences in activation likelihood between adolescent and adult reward-related brain activation. Results reveal a subcortical network of brain regions involved in adolescent reward processing similar to that found in adults with major hubs including the ventral and dorsal striatum, insula, and posterior cingulate cortex (PCC). Contrast analyses find that adolescents exhibit greater likelihood of activation in the insula while processing anticipation relative to outcome and greater likelihood of activation in the putamen and amygdala during outcome relative to anticipation. While processing positive compared to negative valence, adolescents show increased likelihood for activation in the posterior cingulate cortex (PCC) and ventral striatum. Contrasting adolescent reward processing with the existing ALE of adult reward processing (Liu et al., 2011) reveals increased likelihood for activation in limbic, frontolimbic, and striatal regions in adolescents compared with adults. Unlike adolescents, adults also activate executive control regions of the frontal and parietal lobes. These findings support hypothesized elevations in motivated activity during adolescence. PMID:26254587

  15. Global Detection of Live Virtual Machine Migration Based on Cellular Neural Networks

    Directory of Open Access Journals (Sweden)

    Kang Xie

    2014-01-01

    Full Text Available In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM migration detection algorithm based on the cellular neural networks (CNNs, is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI implementation allowing the VM migration detection to be performed better.

  16. Global detection of live virtual machine migration based on cellular neural networks.

    Science.gov (United States)

    Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian

    2014-01-01

    In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better.

  17. Memristor-based neural networks

    International Nuclear Information System (INIS)

    Thomas, Andy

    2013-01-01

    The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them. (topical review)

  18. Adaptive neural reward processing during anticipation and receipt of monetary rewards in mindfulness meditators.

    Science.gov (United States)

    Kirk, Ulrich; Brown, Kirk Warren; Downar, Jonathan

    2015-05-01

    Reward seeking is ubiquitous and adaptive in humans. But excessive reward seeking behavior, such as chasing monetary rewards, may lead to diminished subjective well-being. This study examined whether individuals trained in mindfulness meditation show neural evidence of lower susceptibility to monetary rewards. Seventy-eight participants (34 meditators, 44 matched controls) completed the monetary incentive delay task while undergoing functional magnetic resonance imaging. The groups performed equally on the task, but meditators showed lower neural activations in the caudate nucleus during reward anticipation, and elevated bilateral posterior insula activation during reward anticipation. Meditators also evidenced reduced activations in the ventromedial prefrontal cortex during reward receipt compared with controls. Connectivity parameters between the right caudate and bilateral anterior insula were attenuated in meditators during incentive anticipation. In summary, brain regions involved in reward processing-both during reward anticipation and receipt of reward-responded differently in mindfulness meditators than in nonmeditators, indicating that the former are less susceptible to monetary incentives. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands.

    Science.gov (United States)

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too.

  20. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands

    Science.gov (United States)

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too. PMID:27656140

  1. A New Processing Method Combined with BP Neural Network for Francis Turbine Synthetic Characteristic Curve Research

    Directory of Open Access Journals (Sweden)

    Junyi Li

    2017-01-01

    Full Text Available A BP (backpropagation neural network method is employed to solve the problems existing in the synthetic characteristic curve processing of hydroturbine at present that most studies are only concerned with data in the high efficiency and large guide vane opening area, which can hardly meet the research requirements of transition process especially in large fluctuation situation. The principle of the proposed method is to convert the nonlinear characteristics of turbine to torque and flow characteristics, which can be used for real-time simulation directly based on neural network. Results show that obtained sample data can be extended successfully to cover working areas wider under different operation conditions. Another major contribution of this paper is the resampling technique proposed in the paper to overcome the limitation to sample period simulation. In addition, a detailed analysis for improvements of iteration convergence of the pressure loop is proposed, leading to a better iterative convergence during the head pressure calculation. Actual applications verify that methods proposed in this paper have better simulation results which are closer to the field and provide a new perspective for hydroturbine synthetic characteristic curve fitting and modeling.

  2. Natural resources and control processes

    CERN Document Server

    Wang, Mu-Hao; Hung, Yung-Tse; Shammas, Nazih

    2016-01-01

    This edited book has been designed to serve as a natural resources engineering reference book as well as a supplemental textbook. This volume is part of the Handbook of Environmental Engineering series, an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. It complements two other books in the series including Environmental and Natural Resources Engineering and Integrated Natural Resources Management that serve as a basis for advanced study or specialized investigation of the theory and analysis of various natural resources systems. This book covers the management of many waste sources including those from agricultural livestock, deep-wells, industries manufacturing dyes, and municipal solid waste incinerators. The purpose of this book is to thoroughly prepare the reader for understanding the sources, treatment and control methods of toxic wastes shown to have harmful effects on the environment. Chapters provide information ...

  3. Human resources management within the process management in small and medium-sized enterprises

    Directory of Open Access Journals (Sweden)

    Marie Duspivová

    2013-01-01

    Full Text Available Sector of small and medium-sized enterprises is regarded as the backbone of the economy and a driving force of innovation, employment and social integration. Development of the sector of small and medium-sized enterprises in the Czech Republic has a substantial impact on economic and social development of the country and its various regions. This article deals with the human resources management in small and medium-sized enterprises, because it is more than obvious recently that the prosperity of the organization is depended on human resources and management of them can determine not only whether the organizations succeed, but whether it will be able to survive in turbulent conditions in the present world. The main aim of this paper is to analytical describe the monitoring the process of human resources management in selected categories of enterprises by business activity and number of employees including statistical analysis of causal effects. Further to analytical describe the evaluation the process of human resources management and indicators of this process, which are monitored by small and medium-sized enterprises. To achieve this aim were used selected primary data collected in the project GAJU 068/2010/S titled “Process management and its possible implementation in small and medium-sized enterprises”.

  4. Neural plasticity and its initiating conditions in tinnitus.

    Science.gov (United States)

    Roberts, L E

    2018-03-01

    Deafferentation caused by cochlear pathology (which can be hidden from the audiogram) activates forms of neural plasticity in auditory pathways, generating tinnitus and its associated conditions including hyperacusis. This article discusses tinnitus mechanisms and suggests how these mechanisms may relate to those involved in normal auditory information processing. Research findings from animal models of tinnitus and from electromagnetic imaging of tinnitus patients are reviewed which pertain to the role of deafferentation and neural plasticity in tinnitus and hyperacusis. Auditory neurons compensate for deafferentation by increasing their input/output functions (gain) at multiple levels of the auditory system. Forms of homeostatic plasticity are believed to be responsible for this neural change, which increases the spontaneous and driven activity of neurons in central auditory structures in animals expressing behavioral evidence of tinnitus. Another tinnitus correlate, increased neural synchrony among the affected neurons, is forged by spike-timing-dependent neural plasticity in auditory pathways. Slow oscillations generated by bursting thalamic neurons verified in tinnitus animals appear to modulate neural plasticity in the cortex, integrating tinnitus neural activity with information in brain regions supporting memory, emotion, and consciousness which exhibit increased metabolic activity in tinnitus patients. The latter process may be induced by transient auditory events in normal processing but it persists in tinnitus, driven by phantom signals from the auditory pathway. Several tinnitus therapies attempt to suppress tinnitus through plasticity, but repeated sessions will likely be needed to prevent tinnitus activity from returning owing to deafferentation as its initiating condition.

  5. Does bilingualism contribute to cognitive reserve? Cognitive and neural perspectives.

    Science.gov (United States)

    Guzmán-Vélez, Edmarie; Tranel, Daniel

    2015-01-01

    Cognitive reserve refers to how individuals actively utilize neural resources to cope with neuropathology to maintain cognitive functioning. The present review aims to critically examine the literature addressing the relationship between bilingualism and cognitive reserve to elucidate whether bilingualism delays the onset of cognitive and behavioral manifestations of dementia. Potential neural mechanisms behind this relationship are discussed. PubMed and PsycINFO databases were searched (through January 2014) for original research articles in English or Spanish languages. The following search strings were used as keywords for study retrieval: "bilingual AND reserve," "reserve AND neural mechanisms," and "reserve AND multilingualism." Growing scientific evidence suggests that lifelong bilingualism contributes to cognitive reserve and delays the onset of Alzheimer's disease symptoms, allowing bilingual individuals affected by Alzheimer's disease to live an independent and richer life for a longer time than their monolingual counterparts. Lifelong bilingualism is related to more efficient use of brain resources that help individuals maintain cognitive functioning in the presence of neuropathology. We propose multiple putative neural mechanisms through which lifelong bilinguals cope with neuropathology. The roles of immigration status, education, age of onset, proficiency, and frequency of language use on the relationship between cognitive reserve and bilingualism are considered. Implications of these results for preventive practices and future research are discussed. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  6. Does Bilingualism Contribute to Cognitive Reserve? Cognitive and Neural Perspectives

    Science.gov (United States)

    Guzmán-Vélez, Edmarie; Tranel, Daniel

    2015-01-01

    Objective Cognitive reserve refers to how individuals actively utilize neural resources to cope with neuropathology in order to maintain cognitive functioning. The present review aims to critically examine the literature addressing the relationship between bilingualism and cognitive reserve in order to elucidate whether bilingualism delays the onset of cognitive and behavioral manifestations of dementia. Potential neural mechanisms behind this relationship are discussed. Method Pubmed and PsychINFO databases were searched (through January 2014) for original research articles in English or Spanish languages. The following search strings were employed as keywords for study retrieval: ‘bilingual AND reserve’, ‘reserve AND neural mechanisms’, and ‘reserve AND multilingualism’. Results Growing scientific evidence suggests that lifelong bilingualism contributes to cognitive reserve and delays the onset of Alzheimer's disease symptoms, allowing bilingual individuals affected by Alzheimer's disease to live an independent and richer life for a longer time than their monolingual counterparts. Lifelong bilingualism is related to more efficient use of brain resources that help individuals maintain cognitive functioning in the presence of neuropathology. We propose multiple putative neural mechanisms through which lifelong bilinguals cope with neuropathology. The roles of immigration status, education, age of onset, proficiency and frequency of language use on the relationship between cognitive reserve and bilingualism are considered. Conclusions Implications of these results for preventive practices and future research are discussed. PMID:24933492

  7. Program Helps Simulate Neural Networks

    Science.gov (United States)

    Villarreal, James; Mcintire, Gary

    1993-01-01

    Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.

  8. Differences in neural activity when processing emotional arousal and valence in autism spectrum disorders.

    Science.gov (United States)

    Tseng, Angela; Wang, Zhishun; Huo, Yuankai; Goh, Suzanne; Russell, James A; Peterson, Bradley S

    2016-02-01

    Individuals with autism spectrum disorders (ASD) often have difficulty recognizing and interpreting facial expressions of emotion, which may impair their ability to navigate and communicate successfully in their social, interpersonal environments. Characterizing specific differences between individuals with ASD and their typically developing (TD) counterparts in the neural activity subserving their experience of emotional faces may provide distinct targets for ASD interventions. Thus we used functional magnetic resonance imaging (fMRI) and a parametric experimental design to identify brain regions in which neural activity correlated with ratings of arousal and valence for a broad range of emotional faces. Participants (51 ASD, 84 TD) were group-matched by age, sex, IQ, race, and socioeconomic status. Using task-related change in blood-oxygen-level-dependent (BOLD) fMRI signal as a measure, and covarying for age, sex, FSIQ, and ADOS scores, we detected significant differences across diagnostic groups in the neural activity subserving the dimension of arousal but not valence. BOLD-signal in TD participants correlated inversely with ratings of arousal in regions associated primarily with attentional functions, whereas BOLD-signal in ASD participants correlated positively with arousal ratings in regions commonly associated with impulse control and default-mode activity. Only minor differences were detected between groups in the BOLD signal correlates of valence ratings. Our findings provide unique insight into the emotional experiences of individuals with ASD. Although behavioral responses to face-stimuli were comparable across diagnostic groups, the corresponding neural activity for our ASD and TD groups differed dramatically. The near absence of group differences for valence correlates and the presence of strong group differences for arousal correlates suggest that individuals with ASD are not atypical in all aspects of emotion-processing. Studying these similarities

  9. Neural changes associated with semantic processing in healthy aging despite intact behavioral performance.

    Science.gov (United States)

    Lacombe, Jacinthe; Jolicoeur, Pierre; Grimault, Stephan; Pineault, Jessica; Joubert, Sven

    2015-10-01

    Semantic memory recruits an extensive neural network including the left inferior prefrontal cortex (IPC) and the left temporoparietal region, which are involved in semantic control processes, as well as the anterior temporal lobe region (ATL) which is considered to be involved in processing semantic information at a central level. However, little is known about the underlying neuronal integrity of the semantic network in normal aging. Young and older healthy adults carried out a semantic judgment task while their cortical activity was recorded using magnetoencephalography (MEG). Despite equivalent behavioral performance, young adults activated the left IPC to a greater extent than older adults, while the latter group recruited the temporoparietal region bilaterally and the left ATL to a greater extent than younger adults. Results indicate that significant neuronal changes occur in normal aging, mainly in regions underlying semantic control processes, despite an apparent stability in performance at the behavioral level. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Perspectives of intellectual processing of large volumes of astronomical data using neural networks

    Science.gov (United States)

    Gorbunov, A. A.; Isaev, E. A.; Samodurov, V. A.

    2018-01-01

    In the process of astronomical observations vast amounts of data are collected. BSA (Big Scanning Antenna) LPI used in the study of impulse phenomena, daily logs 87.5 GB of data (32 TB per year). This data has important implications for both short-and long-term monitoring of various classes of radio sources (including radio transients of different nature), monitoring the Earth’s ionosphere, the interplanetary and the interstellar plasma, the search and monitoring of different classes of radio sources. In the framework of the studies discovered 83096 individual pulse events (in the interval of the study highlighted July 2012 - October 2013), which may correspond to pulsars, twinkling springs, and a rapid radio transients. Detected impulse events are supposed to be used to filter subsequent observations. The study suggests approach, using the creation of the multilayered artificial neural network, which processes the input raw data and after processing, by the hidden layer, the output layer produces a class of impulsive phenomena.

  11. Using Neural Pattern Classifiers to Quantify the Modularity of Conflict–Control Mechanisms in the Human Brain

    Science.gov (United States)

    Jiang, Jiefeng; Egner, Tobias

    2014-01-01

    Resolving conflicting sensory and motor representations is a core function of cognitive control, but it remains uncertain to what degree control over different sources of conflict is implemented by shared (domain general) or distinct (domain specific) neural resources. Behavioral data suggest conflict–control to be domain specific, but results from neuroimaging studies have been ambivalent. Here, we employed multivoxel pattern analyses that can decode a brain region's informational content, allowing us to distinguish incidental activation overlap from actual shared information processing. We trained independent sets of “searchlight” classifiers on functional magnetic resonance imaging data to decode control processes associated with stimulus-conflict (Stroop task) and ideomotor-conflict (Simon task). Quantifying the proportion of domain-specific searchlights (capable of decoding only one type of conflict) and domain-general searchlights (capable of decoding both conflict types) in each subject, we found both domain-specific and domain-general searchlights, though the former were more common. When mapping anatomical loci of these searchlights across subjects, neural substrates of stimulus- and ideomotor-specific conflict–control were found to be anatomically consistent across subjects, whereas the substrates of domain-general conflict–control were not. Overall, these findings suggest a hybrid neural architecture of conflict–control that entails both modular (domain specific) and global (domain general) components. PMID:23402762

  12. Nonequilibrium landscape theory of neural networks

    Science.gov (United States)

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-01-01

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451

  13. Nonequilibrium landscape theory of neural networks.

    Science.gov (United States)

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-11-05

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.

  14. Neural regions supporting lexical processing of objects and actions: A case series analysis

    Directory of Open Access Journals (Sweden)

    Bonnie L Breining

    2014-04-01

    Full Text Available Introduction. Linking semantic representations to lexical items is an important cognitive process for both producing and comprehending language. Past research has suggested that the bilateral anterior temporal lobes are critical for this process (e.g. Patterson, Nestor, & Rogers, 2007. However, the majority of studies focused on object concepts alone, ignoring actions. The few that considered actions suggest that the temporal poles are not critical for their processing (e.g. Kemmerer et al., 2010. In this case series, we investigated the neural substrates of linking object and action concepts to lexical labels by correlating the volume of defined regions of interest with behavioral performance on picture-word verification and picture naming tasks of individuals with primary progressive aphasia (PPA. PPA is a neurodegenerative condition with heterogeneous neuropathological causes, characterized by increasing language deficits for at least two years in the face of relatively intact cognitive function in other domains (Gorno-Tempini et al., 2011. This population displays appropriate heterogeneity of performance and focal atrophy for investigating the neural substrates involved in lexical semantic processing of objects and actions. Method. Twenty-one individuals with PPA participated in behavioral assessment within six months of high resolution anatomical MRI scans. Behavioral assessments consisted of four tasks: picture-word verification and picture naming of objects and actions. Performance on these assessments was correlated with brain volume measured using atlas-based analysis in twenty regions of interest that are commonly atrophied in PPA and implicated in language processing. Results. Impaired performance for all four tasks significantly correlated with atrophy in the right superior temporal pole, left anterior middle temporal gyrus, and left fusiform gyrus. No regions were identified in which volume correlated with performance for both

  15. Applications of neural networks to real-time data processing at the Environmental and Molecular Sciences Laboratory (EMSL)

    International Nuclear Information System (INIS)

    Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1993-06-01

    Detailed design of the Environmental and Molecular Sciences Laboratory (EMSL) at the Pacific Northwest Laboratory (PNL) is nearing completion and construction is scheduled to begin later this year. This facility will assist in the environmental restoration and waste management mission at the Hanford Site. This paper identifies several real-time data processing applications within the EMSL where neural networks can potentially be beneficial. These applications include real-time sensor data acquisition and analysis, spectral analysis, process control, theoretical modeling, and data compression

  16. Using Brain Stimulation to Disentangle Neural Correlates of Conscious Vision

    Directory of Open Access Journals (Sweden)

    Tom Alexander de Graaf

    2014-09-01

    Full Text Available Research into the neural correlates of consciousness (NCCs has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as fMRI or EEG do not always afford inference on the role these brain processes play in conscious vision. Such empirical neural correlates of consciousness could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical neural correlates of consciousness.

  17. Neural convergence for language comprehension and grammatical class production in highly proficient bilinguals is independent of age of acquisition.

    Science.gov (United States)

    Consonni, Monica; Cafiero, Riccardo; Marin, Dario; Tettamanti, Marco; Iadanza, Antonella; Fabbro, Franco; Perani, Daniela

    2013-05-01

    In bilinguals, native (L1) and second (L2) languages are processed by the same neural resources that can be modulated by age of second language acquisition (AOA), proficiency level, and daily language exposure and usage. AOA seems to particularly affect grammar processing, where a complete neural convergence has been shown only in bilinguals with parallel language acquisition from birth. Despite the fact that proficiency-related neuroanatomical differences have been well documented in language comprehension (LC) and production, few reports have addressed the influence of language exposure. A still unanswered question pertains to the role of AOA, when proficiency is comparably high across languages, with respect to its modulator effects both on LC and production. Here, we evaluated with fMRI during sentence comprehension and verb and noun production tasks, two groups of highly proficient bilinguals only differing in AOA. One group learned Italian and Friulian in parallel from birth, whereas the second group learned Italian between 3 and 6 years. All participants were highly exposed to both languages, but more to Italian than Friulian. The results indicate a complete overlap of neural activations for the comprehension of both languages, not only in bilinguals from birth, but also in late bilinguals. A slightly extra activation in the left thalamus for the less-exposed language confirms that exposure may affect language processing. Noteworthy, we report for the first time that, when proficiency and exposure are kept high, noun and verb production recruit the same neural networks for L1 and L2, independently of AOA. These results support the neural convergence hypothesis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Modulation of neural circuits underlying temporal production by facial expressions of pain.

    Science.gov (United States)

    Ballotta, Daniela; Lui, Fausta; Porro, Carlo Adolfo; Nichelli, Paolo Frigio; Benuzzi, Francesca

    2018-01-01

    According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a) whether observation of facial expressions of pain interferes with time production; and b) the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals) during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1) the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2) the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems.

  19. Neural markers of errors as endophenotypes in neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Dara S Manoach

    2013-07-01

    Full Text Available Learning from errors is fundamental to adaptive human behavior. It requires detecting errors, evaluating what went wrong, and adjusting behavior accordingly. These dynamic adjustments are at the heart of behavioral flexibility and accumulating evidence suggests that deficient error processing contributes to maladaptively rigid and repetitive behavior in a range of neuropsychiatric disorders. Neuroimaging and electrophysiological studies reveal highly reliable neural markers of error processing. In this review, we evaluate the evidence that abnormalities in these neural markers can serve as sensitive endophenotypes of neuropsychiatric disorders. We describe the behavioral and neural hallmarks of error processing, their mediation by common genetic polymorphisms, and impairments in schizophrenia, obsessive-compulsive disorder, and autism spectrum disorders. We conclude that neural markers of errors meet several important criteria as endophenotypes including heritability, established neuroanatomical and neurochemical substrates, association with neuropsychiatric disorders, presence in syndromally-unaffected family members, and evidence of genetic mediation. Understanding the mechanisms of error processing deficits in neuropsychiatric disorders may provide novel neural and behavioral targets for treatment and sensitive surrogate markers of treatment response. Treating error processing deficits may improve functional outcome since error signals provide crucial information for flexible adaptation to changing environments. Given the dearth of effective interventions for cognitive deficits in neuropsychiatric disorders, this represents a promising approach.

  20. Neural markers of errors as endophenotypes in neuropsychiatric disorders.

    Science.gov (United States)

    Manoach, Dara S; Agam, Yigal

    2013-01-01

    Learning from errors is fundamental to adaptive human behavior. It requires detecting errors, evaluating what went wrong, and adjusting behavior accordingly. These dynamic adjustments are at the heart of behavioral flexibility and accumulating evidence suggests that deficient error processing contributes to maladaptively rigid and repetitive behavior in a range of neuropsychiatric disorders. Neuroimaging and electrophysiological studies reveal highly reliable neural markers of error processing. In this review, we evaluate the evidence that abnormalities in these neural markers can serve as sensitive endophenotypes of neuropsychiatric disorders. We describe the behavioral and neural hallmarks of error processing, their mediation by common genetic polymorphisms, and impairments in schizophrenia, obsessive-compulsive disorder, and autism spectrum disorders. We conclude that neural markers of errors meet several important criteria as endophenotypes including heritability, established neuroanatomical and neurochemical substrates, association with neuropsychiatric disorders, presence in syndromally-unaffected family members, and evidence of genetic mediation. Understanding the mechanisms of error processing deficits in neuropsychiatric disorders may provide novel neural and behavioral targets for treatment and sensitive surrogate markers of treatment response. Treating error processing deficits may improve functional outcome since error signals provide crucial information for flexible adaptation to changing environments. Given the dearth of effective interventions for cognitive deficits in neuropsychiatric disorders, this represents a potentially promising approach.

  1. Introduction to Concepts in Artificial Neural Networks

    Science.gov (United States)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  2. Direct adaptive control using feedforward neural networks

    OpenAIRE

    Cajueiro, Daniel Oliveira; Hemerly, Elder Moreira

    2003-01-01

    ABSTRACT: This paper proposes a new scheme for direct neural adaptive control that works efficiently employing only one neural network, used for simultaneously identifying and controlling the plant. The idea behind this structure of adaptive control is to compensate the control input obtained by a conventional feedback controller. The neural network training process is carried out by using two different techniques: backpropagation and extended Kalman filter algorithm. Additionally, the conver...

  3. Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.

    Science.gov (United States)

    Wan, Ying; Cao, Jinde; Wen, Guanghui

    In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control

  4. Emotion processing in words: a test of the neural re-use hypothesis using surface and intracranial EEG.

    Science.gov (United States)

    Ponz, Aurélie; Montant, Marie; Liegeois-Chauvel, Catherine; Silva, Catarina; Braun, Mario; Jacobs, Arthur M; Ziegler, Johannes C

    2014-05-01

    This study investigates the spatiotemporal brain dynamics of emotional information processing during reading using a combination of surface and intracranial electroencephalography (EEG). Two different theoretical views were opposed. According to the standard psycholinguistic perspective, emotional responses to words are generated within the reading network itself subsequent to semantic activation. According to the neural re-use perspective, brain regions that are involved in processing emotional information contained in other stimuli (faces, pictures, smells) might be in charge of the processing of emotional information in words as well. We focused on a specific emotion-disgust-which has a clear locus in the brain, the anterior insula. Surface EEG showed differences between disgust and neutral words as early as 200 ms. Source localization suggested a cortical generator of the emotion effect in the left anterior insula. These findings were corroborated through the intracranial recordings of two epileptic patients with depth electrodes in insular and orbitofrontal areas. Both electrodes showed effects of disgust in reading as early as 200 ms. The early emotion effect in a brain region (insula) that responds to specific emotions in a variety of situations and stimuli clearly challenges classic sequential theories of reading in favor of the neural re-use perspective.

  5. Relationship of mindful awareness to neural processing of angry faces and impact of mindfulness training: A pilot investigation.

    Science.gov (United States)

    Lee, Athene K W; Gansler, David A; Zhang, Nanyin; Jerram, Matthew W; King, Jean A; Fulwiler, Carl

    2017-06-30

    Mindfulness is paying attention, non-judgmentally, to experience in the moment. Mindfulness training reduces depression and anxiety and influences neural processes in midline self-referential and lateralized somatosensory and executive networks. Although mindfulness benefits emotion regulation, less is known about its relationship to anger and the corresponding neural correlates. This study examined the relationship of mindful awareness and brain hemodynamics of angry face processing, and the impact of mindfulness training. Eighteen healthy volunteers completed an angry face processing fMRI paradigm and measurement of mindfulness and anger traits. Ten of these participants were recruited from a Mindfulness-Based Stress Reduction (MBSR) class and also completed imaging and other assessments post-training. Self-reported mindful awareness increased after MBSR, but trait anger did not change. Baseline mindful awareness was negatively related to left inferior parietal lobule activation to angry faces; trait anger was positively related to right middle frontal gyrus and bilateral angular gyrus. No significant pre-post changes in angry face processing were found, but changes in trait mindful awareness and anger were associated with sub-threshold differences in paralimbic activation. These preliminary and hypothesis-generating findings, suggest the analysis of possible impact of mindfulness training on anger may begin with individual differences in angry face processing. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. A phase transition in the first passage of a Brownian process through a fluctuating boundary with implications for neural coding.

    Science.gov (United States)

    Taillefumier, Thibaud; Magnasco, Marcelo O

    2013-04-16

    Finding the first time a fluctuating quantity reaches a given boundary is a deceptively simple-looking problem of vast practical importance in physics, biology, chemistry, neuroscience, economics, and industrial engineering. Problems in which the bound to be traversed is itself a fluctuating function of time include widely studied problems in neural coding, such as neuronal integrators with irregular inputs and internal noise. We show that the probability p(t) that a Gauss-Markov process will first exceed the boundary at time t suffers a phase transition as a function of the roughness of the boundary, as measured by its Hölder exponent H. The critical value occurs when the roughness of the boundary equals the roughness of the process, so for diffusive processes the critical value is Hc = 1/2. For smoother boundaries, H > 1/2, the probability density is a continuous function of time. For rougher boundaries, H probability is concentrated on a Cantor-like set of zero measure: the probability density becomes divergent, almost everywhere either zero or infinity. The critical point Hc = 1/2 corresponds to a widely studied case in the theory of neural coding, in which the external input integrated by a model neuron is a white-noise process, as in the case of uncorrelated but precisely balanced excitatory and inhibitory inputs. We argue that this transition corresponds to a sharp boundary between rate codes, in which the neural firing probability varies smoothly, and temporal codes, in which the neuron fires at sharply defined times regardless of the intensity of internal noise.

  7. Resource approach in providing health-saving process of future teachers training

    Directory of Open Access Journals (Sweden)

    Mykytiuk S.A.

    2012-12-01

    Full Text Available The mechanisms of realization of resource approach are exposed in organization of pedagogical education. There were defined the ways of providing health-saving teacher training, namely: assessment criteria of adjustment of social order and personal professional development needs, means of implementing the tasks of pedagogical education concept according to the resource approach. The methods of maintainance and strengthening of health of future teachers are specified in the process of professional preparation. It is marked that resource approach unites requirement to the competence of teacher, provides the account of age-dependent features of organism of student and periods of becoming of personality of student and teacher. Resource approach is given by possibility to take into account the specific of labour and level of knowledge, abilities and skills of every student. Resource approach harmonizes the actual aspects of complex of the modern scientific going near education of students and professional preparation of future teachers.

  8. In our own image? Emotional and neural processing differences when observing human-human vs human-robot interactions.

    Science.gov (United States)

    Wang, Yin; Quadflieg, Susanne

    2015-11-01

    Notwithstanding the significant role that human-robot interactions (HRI) will play in the near future, limited research has explored the neural correlates of feeling eerie in response to social robots. To address this empirical lacuna, the current investigation examined brain activity using functional magnetic resonance imaging while a group of participants (n = 26) viewed a series of human-human interactions (HHI) and HRI. Although brain sites constituting the mentalizing network were found to respond to both types of interactions, systematic neural variation across sites signaled diverging social-cognitive strategies during HHI and HRI processing. Specifically, HHI elicited increased activity in the left temporal-parietal junction indicative of situation-specific mental state attributions, whereas HRI recruited the precuneus and the ventromedial prefrontal cortex (VMPFC) suggestive of script-based social reasoning. Activity in the VMPFC also tracked feelings of eeriness towards HRI in a parametric manner, revealing a potential neural correlate for a phenomenon known as the uncanny valley. By demonstrating how understanding social interactions depends on the kind of agents involved, this study highlights pivotal sub-routes of impression formation and identifies prominent challenges in the use of humanoid robots. © The Author (2015). Published by Oxford University Press.

  9. Attentional states influence early neural responses associated with motivational processes: local vs. global attentional scope and N1 amplitude to appetitive stimuli.

    Science.gov (United States)

    Gable, Philip A; Harmon-Jones, Eddie

    2011-05-01

    Positive affects vary in the degree with which they are associated with approach motivation, the drive to approach an object or a goal. High approach-motivated positive affects cause a narrowing of attention, whereas low approach-motivated positive affects causes a broadening of attention. The current study was designed to extend this work by examining whether the relationship between motivation and attentional bias was bi-directional. Specifically, the experiment investigated whether a manipulated local attentional scope would cause greater approach motivational processing than a global attentional scope as measured by neural processes as early as 100 ms. As compared to a global attentional scope, a local attentional scope caused greater neural processing associated with approach motivation as measured by the N1 to appetitive pictures. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Attention training improves aberrant neural dynamics during working memory processing in veterans with PTSD.

    Science.gov (United States)

    McDermott, Timothy J; Badura-Brack, Amy S; Becker, Katherine M; Ryan, Tara J; Bar-Haim, Yair; Pine, Daniel S; Khanna, Maya M; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2016-12-01

    Posttraumatic stress disorder (PTSD) is associated with executive functioning deficits, including disruptions in working memory (WM). Recent studies suggest that attention training reduces PTSD symptomatology, but the underlying neural mechanisms are unknown. We used high-density magnetoencephalography (MEG) to evaluate whether attention training modulates brain regions serving WM processing in PTSD. Fourteen veterans with PTSD completed a WM task during a 306-sensor MEG recording before and after 8 sessions of attention training treatment. A matched comparison sample of 12 combat-exposed veterans without PTSD completed the same WM task during a single MEG session. To identify the spatiotemporal dynamics, each group's data were transformed into the time-frequency domain, and significant oscillatory brain responses were imaged using a beamforming approach. All participants exhibited activity in left hemispheric language areas consistent with a verbal WM task. Additionally, veterans with PTSD and combat-exposed healthy controls each exhibited oscillatory responses in right hemispheric homologue regions (e.g., right Broca's area); however, these responses were in opposite directions. Group differences in oscillatory activity emerged in the theta band (4-8 Hz) during encoding and in the alpha band (9-12 Hz) during maintenance and were significant in right prefrontal and right supramarginal and inferior parietal regions. Importantly, following attention training, these significant group differences were reduced or eliminated. This study provides initial evidence that attention training improves aberrant neural activity in brain networks serving WM processing.

  11. Emerging trends in neuro engineering and neural computation

    CERN Document Server

    Lee, Kendall; Garmestani, Hamid; Lim, Chee

    2017-01-01

    This book focuses on neuro-engineering and neural computing, a multi-disciplinary field of research attracting considerable attention from engineers, neuroscientists, microbiologists and material scientists. It explores a range of topics concerning the design and development of innovative neural and brain interfacing technologies, as well as novel information acquisition and processing algorithms to make sense of the acquired data. The book also highlights emerging trends and advances regarding the applications of neuro-engineering in real-world scenarios, such as neural prostheses, diagnosis of neural degenerative diseases, deep brain stimulation, biosensors, real neural network-inspired artificial neural networks (ANNs) and the predictive modeling of information flows in neuronal networks. The book is broadly divided into three main sections including: current trends in technological developments, neural computation techniques to make sense of the neural behavioral data, and application of these technologie...

  12. Risky decisions and their consequences: neural processing by boys with Antisocial Substance Disorder.

    Directory of Open Access Journals (Sweden)

    Thomas J Crowley

    2010-09-01

    Full Text Available Adolescents with conduct and substance problems ("Antisocial Substance Disorder" (ASD repeatedly engage in risky antisocial and drug-using behaviors. We hypothesized that, during processing of risky decisions and resulting rewards and punishments, brain activation would differ between abstinent ASD boys and comparison boys.We compared 20 abstinent adolescent male patients in treatment for ASD with 20 community controls, examining rapid event-related blood-oxygen-level-dependent (BOLD responses during functional magnetic resonance imaging. In 90 decision trials participants chose to make either a cautious response that earned one cent, or a risky response that would either gain 5 cents or lose 10 cents; odds of losing increased as the game progressed. We also examined those times when subjects experienced wins, or separately losses, from their risky choices. We contrasted decision trials against very similar comparison trials requiring no decisions, using whole-brain BOLD-response analyses of group differences, corrected for multiple comparisons. During decision-making ASD boys showed hypoactivation in numerous brain regions robustly activated by controls, including orbitofrontal and dorsolateral prefrontal cortices, anterior cingulate, basal ganglia, insula, amygdala, hippocampus, and cerebellum. While experiencing wins, ASD boys had significantly less activity than controls in anterior cingulate, temporal regions, and cerebellum, with more activity nowhere. During losses ASD boys had significantly more activity than controls in orbitofrontal cortex, dorsolateral prefrontal cortex, brain stem, and cerebellum, with less activity nowhere.Adolescent boys with ASD had extensive neural hypoactivity during risky decision-making, coupled with decreased activity during reward and increased activity during loss. These neural patterns may underlie the dangerous, excessive, sustained risk-taking of such boys. The findings suggest that the dysphoria, reward

  13. Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders.

    Science.gov (United States)

    Hou, Shaoping; Lu, Paul

    2016-01-01

    Direct reprogramming of somatic cells into neurons or neural stem cells is one of the most important frontier fields in current neuroscience research. Without undergoing the pluripotency stage, induced neurons or induced neural stem cells are a safer and timelier manner resource in comparison to those derived from induced pluripotent stem cells. In this prospective, we review the recent advances in generation of induced neurons and induced neural stem cells in vitro and in vivo and their potential treatments of neurological disorders.

  14. Research of processes of eutrophication of Teteriv river reservoir based on neural networks mass

    Directory of Open Access Journals (Sweden)

    Yelnikova T.A.

    2016-12-01

    Full Text Available Methods of process control of eutrophication in water are based on water sampling, handling them in the laboratory and calculation of indexes of pond ecosystem. However, these methods have some significant drawbacks associated with using manual labor. The method of determining of the geometric parameters of phytoplankton through the use of neural networks for processing water samples is developed. Due to this method eutrophic processes of reservoirs of river Teteriv are investigated. A comparative analysis of eutrophic processes of reservoirs "Denyshi" and “Vidsichne” intake during 2014-2015 years are given. The differences between qualitative and quantitative composition of phytoplankton algae in two reservoirs of the river Teteriv used for water supply of Zhitomir city area are found out. The influence of exogenous and endogenous factors on the expansion of phytoplankton is researched. Research results can be used for monitoring and forecasting of ecological state of water for household purposes, used for water supply of cities.

  15. Neural correlates of face processing in etiologically-distinct 12-month-old infants at high-risk of autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Maggie W. Guy

    2018-01-01

    Full Text Available Neural correlates of face processing were examined in 12-month-olds at high-risk for autism spectrum disorder (ASD, including 21 siblings of children with ASD (ASIBs and 15 infants with fragile X syndrome (FXS, as well as 21 low-risk (LR controls. Event-related potentials were recorded to familiar and novel face and toy stimuli. All infants demonstrated greater N290 amplitude to faces than toys. At the Nc component, LR infants showed greater amplitude to novel stimuli than to their mother’s face and own toy, whereas infants with FXS showed the opposite pattern of responses and ASIBs did not differentiate based on familiarity. These results reflect developing face specialization across high- and low-risk infants and reveal neural patterns that distinguish between groups at high-risk for ASD. Keywords: Event-related potentials, Infancy, Face processing, Autism spectrum disorders

  16. Real-time process optimization based on grey-box neural models

    Directory of Open Access Journals (Sweden)

    F. A. Cubillos

    2007-09-01

    Full Text Available This paper investigates the feasibility of using grey-box neural models (GNM in Real Time Optimization (RTO. These models are based on a suitable combination of fundamental conservation laws and neural networks, being used in at least two different ways: to complement available phenomenological knowledge with empirical information, or to reduce dimensionality of complex rigorous physical models. We have observed that the benefits of using these simple adaptable models are counteracted by some difficulties associated with the solution of the optimization problem. Nonlinear Programming (NLP algorithms failed in finding the global optimum due to the fact that neural networks can introduce multimodal objective functions. One alternative considered to solve this problem was the use of some kind of evolutionary algorithms, like Genetic Algorithms (GA. Although these algorithms produced better results in terms of finding the appropriate region, they took long periods of time to reach the global optimum. It was found that a combination of genetic and nonlinear programming algorithms can be use to fast obtain the optimum solution. The proposed approach was applied to the Williams-Otto reactor, considering three different GNM models of increasing complexity. Results demonstrated that the use of GNM models and mixed GA/NLP optimization algorithms is a promissory approach for solving dynamic RTO problems.

  17. Supervised Learning with Complex-valued Neural Networks

    CERN Document Server

    Suresh, Sundaram; Savitha, Ramasamy

    2013-01-01

    Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks.  Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computati...

  18. The Executive Process, Grade Eight. Resource Unit (Unit III).

    Science.gov (United States)

    Minnesota Univ., Minneapolis. Project Social Studies Curriculum Center.

    This resource unit, developed by the University of Minnesota's Project Social Studies, introduces eighth graders to the executive process. The unit uses case studies of presidential decision making such as the decision to drop the atomic bomb on Hiroshima, the Cuba Bay of Pigs and quarantine decisions, and the Little Rock decision. A case study of…

  19. Neural Networks Relating Alloy Composition, Microstructure, and Tensile Properties of α/ β-Processed TIMETAL 6-4

    Science.gov (United States)

    Collins, Peter C.; Koduri, Santhosh; Welk, Brian; Tiley, Jaimie; Fraser, Hamish L.

    2013-03-01

    Bayesian neural networks have been developed, which relate composition, microstructure, and tensile properties of the alloy TIMETAL 6-4 (nominal composition: Ti-6Al-4V (wt pct) after thermomechanical processing (TMP) in the two-phase ( α + β)-phase field. The developed networks are able to make interpolative predictions of properties within the ranges of composition and microstructural features that are in the population of the database used for training and testing of the networks. In addition, the neural networks have been used to conduct virtual experiments which permit the functional dependencies of properties on composition and microstructural features to be determined. In this way, it is shown that in the microstructural condition resulting from TMP in the two-phase ( α + β) phase field, the most significant contribution to strength is from solid solution strengthening, with microstructural features apparently influencing the balance of a number of properties.

  20. High content screening of defined chemical libraries using normal and glioma-derived neural stem cell lines.

    Science.gov (United States)

    Danovi, Davide; Folarin, Amos A; Baranowski, Bart; Pollard, Steven M

    2012-01-01

    Small molecules with potent biological effects on the fate of normal and cancer-derived stem cells represent both useful research tools and new drug leads for regenerative medicine and oncology. Long-term expansion of mouse and human neural stem cells is possible using adherent monolayer culture. These cultures represent a useful cellular resource to carry out image-based high content screening of small chemical libraries. Improvements in automated microscopy, desktop computational power, and freely available image processing tools, now means that such chemical screens are realistic to undertake in individual academic laboratories. Here we outline a cost effective and versatile time lapse imaging strategy suitable for chemical screening. Protocols are described for the handling and screening of human fetal Neural Stem (NS) cell lines and their malignant counterparts, Glioblastoma-derived neural stem cells (GNS). We focus on identification of cytostatic and cytotoxic "hits" and discuss future possibilities and challenges for extending this approach to assay lineage commitment and differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Differential Neural Processing of Social Exclusion and Inclusion in Adolescents with Non-Suicidal Self-Injury and Young Adults with Borderline Personality Disorder

    Directory of Open Access Journals (Sweden)

    Rebecca C. Brown

    2017-11-01

    Full Text Available IntroductionNon-suicidal self-injury (NSSI is a symptom of borderline personality disorder (BPD. However, NSSI often occurs independently of BPD. Altered neural processing of social exclusion has been shown in adolescents with NSSI and adults with BPD with additional alterations during social inclusion in BPD patients. Aims of this study were to investigate differences in neural processing of social inclusion and exclusion situations between adolescents with NSSI and young adults with BPD and NSSI.MethodsUsing fMRI, neural processing of positive and negative social situations (paradigm: “Cyberball” was explored. Participants were 14 adolescents with NSSI, but without BPD (Mage = 15.4; SD = 1.9, 15 adults with BPD and NSSI (Mage = 23.3; SD = 4.1, as well as 15 healthy adolescents (Mage = 14.5; SD = 1.7, and 16 healthy adults (Mage = 23.2; SD = 4.4.ResultsBehavioral results showed enhanced feelings of social exclusion in both patient groups as compared to healthy controls but only the NSSI group showed enhanced activation during social exclusion versus inclusion compared to the other groups. While both NSSI and BPD groups showed enhanced activation in the ventral anterior cingulate cortex during social exclusion as compared to their age-matched controls, enhanced activation during social inclusion as compared to a passive watching condition was mainly observed in the BPD group in the dorsolateral and dorsomedial prefrontal cortex, and the anterior insula.DiscussionWhile neural processing of social exclusion was pronounced in adolescents with NSSI, BPD patients also showed increased activity in a per se positive social situation. These results might point toward a higher responsiveness to social exclusion in adolescents with NSSI, which might then develop into a generalized increased sensitivity to all kinds of social situations in adults with BPD.

  2. Differential Neural Processing of Social Exclusion and Inclusion in Adolescents with Non-Suicidal Self-Injury and Young Adults with Borderline Personality Disorder.

    Science.gov (United States)

    Brown, Rebecca C; Plener, Paul L; Groen, Georg; Neff, Dominik; Bonenberger, Martina; Abler, Birgit

    2017-01-01

    Non-suicidal self-injury (NSSI) is a symptom of borderline personality disorder (BPD). However, NSSI often occurs independently of BPD. Altered neural processing of social exclusion has been shown in adolescents with NSSI and adults with BPD with additional alterations during social inclusion in BPD patients. Aims of this study were to investigate differences in neural processing of social inclusion and exclusion situations between adolescents with NSSI and young adults with BPD and NSSI. Using fMRI, neural processing of positive and negative social situations (paradigm: "Cyberball") was explored. Participants were 14 adolescents with NSSI, but without BPD (M age  = 15.4; SD = 1.9), 15 adults with BPD and NSSI (M age  = 23.3; SD = 4.1), as well as 15 healthy adolescents (M age  = 14.5; SD = 1.7), and 16 healthy adults (M age  = 23.2; SD = 4.4). Behavioral results showed enhanced feelings of social exclusion in both patient groups as compared to healthy controls but only the NSSI group showed enhanced activation during social exclusion versus inclusion compared to the other groups. While both NSSI and BPD groups showed enhanced activation in the ventral anterior cingulate cortex during social exclusion as compared to their age-matched controls, enhanced activation during social inclusion as compared to a passive watching condition was mainly observed in the BPD group in the dorsolateral and dorsomedial prefrontal cortex, and the anterior insula. While neural processing of social exclusion was pronounced in adolescents with NSSI, BPD patients also showed increased activity in a per se positive social situation. These results might point toward a higher responsiveness to social exclusion in adolescents with NSSI, which might then develop into a generalized increased sensitivity to all kinds of social situations in adults with BPD.

  3. Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks.

    Science.gov (United States)

    Khanali, Majid; Mobli, Hossein; Hosseinzadeh-Bandbafha, Homa

    2017-12-01

    In this study, an artificial neural network (ANN) model was developed for predicting the yield and life cycle environmental impacts based on energy inputs required in processing of black tea, green tea, and oolong tea in Guilan province of Iran. A life cycle assessment (LCA) approach was used to investigate the environmental impact categories of processed tea based on the cradle to gate approach, i.e., from production of input materials using raw materials to the gate of tea processing units, i.e., packaged tea. Thus, all the tea processing operations such as withering, rolling, fermentation, drying, and packaging were considered in the analysis. The initial data were obtained from tea processing units while the required data about the background system was extracted from the EcoInvent 2.2 database. LCA results indicated that diesel fuel and corrugated paper box used in drying and packaging operations, respectively, were the main hotspots. Black tea processing unit caused the highest pollution among the three processing units. Three feed-forward back-propagation ANN models based on Levenberg-Marquardt training algorithm with two hidden layers accompanied by sigmoid activation functions and a linear transfer function in output layer, were applied for three types of processed tea. The neural networks were developed based on energy equivalents of eight different input parameters (energy equivalents of fresh tea leaves, human labor, diesel fuel, electricity, adhesive, carton, corrugated paper box, and transportation) and 11 output parameters (yield, global warming, abiotic depletion, acidification, eutrophication, ozone layer depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, and photochemical oxidation). The results showed that the developed ANN models with R 2 values in the range of 0.878 to 0.990 had excellent performance in predicting all the output variables based on inputs. Energy consumption for

  4. A Pontine Region is a Neural Correlate of the Human Affective Processing Network

    Directory of Open Access Journals (Sweden)

    Tatia M.C. Lee

    2015-11-01

    Full Text Available The in vivo neural activity of the pons during the perception of affective stimuli has not been studied despite the strong implications of its role in affective processing. To examine the activity of the pons during the viewing of affective stimuli, and to verify its functional and structural connectivity with other affective neural correlates, a multimodal magnetic resonance imaging methodology was employed in this study. We observed the in vivo activity of the pons when viewing affective stimuli. Furthermore, small-world connectivity indicated that the functional connectivity (FC between the pons and the cortico-limbic affective regions was meaningful, with the coefficient λ being positively associated with self-reported emotional reactivity. The FC between the pons and the cortico-limbic-striatal areas was related to self-reported negative affect. Corroborating this finding was the observation that the tract passing through the pons and the left hippocampus was negatively related to self-reported positive affect and positively correlated with emotional reactivity. Our findings support the framework that the pons works conjunctively with the distributed cortico-limbic-striatal systems in shaping individuals' affective states and reactivity. Our work paves the path for future research on the contribution of the pons to the precipitation and maintenance of affective disorders.

  5. The role of fluid intelligence and learning in analogical reasoning: How to become neurally efficient?

    Science.gov (United States)

    Dix, Annika; Wartenburger, Isabell; van der Meer, Elke

    2016-10-01

    This study on analogical reasoning evaluates the impact of fluid intelligence on adaptive changes in neural efficiency over the course of an experiment and specifies the underlying cognitive processes. Grade 10 students (N=80) solved unfamiliar geometric analogy tasks of varying difficulty. Neural efficiency was measured by the event-related desynchronization (ERD) in the alpha band, an indicator of cortical activity. Neural efficiency was defined as a low amount of cortical activity accompanying high performance during problem-solving. Students solved the tasks faster and more accurately the higher their FI was. Moreover, while high FI led to greater cortical activity in the first half of the experiment, high FI was associated with a neurally more efficient processing (i.e., better performance but same amount of cortical activity) in the second half of the experiment. Performance in difficult tasks improved over the course of the experiment for all students while neural efficiency increased for students with higher but decreased for students with lower fluid intelligence. Based on analyses of the alpha sub-bands, we argue that high fluid intelligence was associated with a stronger investment of attentional resource in the integration of information and the encoding of relations in this unfamiliar task in the first half of the experiment (lower-2 alpha band). Students with lower fluid intelligence seem to adapt their applied strategies over the course of the experiment (i.e., focusing on task-relevant information; lower-1 alpha band). Thus, the initially lower cortical activity and its increase in students with lower fluid intelligence might reflect the overcoming of mental overload that was present in the first half of the experiment. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Neural Networks through Shared Maps in Mobile Devices

    Directory of Open Access Journals (Sweden)

    William Raveane

    2014-12-01

    Full Text Available We introduce a hybrid system composed of a convolutional neural network and a discrete graphical model for image recognition. This system improves upon traditional sliding window techniques for analysis of an image larger than the training data by effectively processing the full input scene through the neural network in less time. The final result is then inferred from the neural network output through energy minimization to reach a more precize localization than what traditional maximum value class comparisons yield. These results are apt for applying this process in a mobile device for real time image recognition.

  7. Automatic processing of semantic relations in fMRI: neural activation during semantic priming of taxonomic and thematic categories.

    Science.gov (United States)

    Sachs, Olga; Weis, Susanne; Zellagui, Nadia; Huber, Walter; Zvyagintsev, Mikhail; Mathiak, Klaus; Kircher, Tilo

    2008-07-07

    Most current models of knowledge organization are based on hierarchical or taxonomic categories (animals, tools). Another important organizational pattern is thematic categorization, i.e. categories held together by external relations, a unifying scene or event (car and garage). The goal of this study was to compare the neural correlates of these categories under automatic processing conditions that minimize strategic influences. We used fMRI to examine neural correlates of semantic priming for category members with a short stimulus onset asynchrony (SOA) of 200 ms as subjects performed a lexical decision task. Four experimental conditions were compared: thematically related words (car-garage); taxonomically related (car-bus); unrelated (car-spoon); non-word trials (car-derf). We found faster reaction times for related than for unrelated prime-target pairs for both thematic and taxonomic categories. However, the size of the thematic priming effect was greater than that of the taxonomic. The imaging data showed signal changes for the taxonomic priming effects in the right precuneus, postcentral gyrus, middle frontal and superior frontal gyri and thematic priming effects in the right middle frontal gyrus and anterior cingulate. The contrast of neural priming effects showed larger signal changes in the right precuneus associated with the taxonomic but not with thematic priming response. We suggest that the greater involvement of precuneus in the processing of taxonomic relations indicates their reduced salience in the knowledge structure compared to more prominent thematic relations.

  8. Reconstruction of an engine combustion process with a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, P J; Gu, F; Ball, A D [School of Engineering, University of Manchester, Manchester (United Kingdom)

    1998-12-31

    The cylinder pressure waveform in an internal combustion engine is one of the most important parameters in describing the engine combustion process. It is used for a range of diagnostic tasks such as identification of ignition faults or mechanical wear in the cylinders. However, it is very difficult to measure this parameter directly. Never-the-less, the cylinder pressure may be inferred from other more readily obtainable parameters. In this presentation it is shown how a Radial Basis Function network, which may be regarded as a form of neural network, may be used to model the cylinder pressure as a function of the instantaneous crankshaft velocity, recorded with a simple magnetic sensor. The application of the model is demonstrated on a four cylinder DI diesel engine with data from a wide range of speed and load settings. The prediction capabilities of the model once trained are validated against measured data. (orig.) 4 refs.

  9. Reconstruction of an engine combustion process with a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, P.J.; Gu, F.; Ball, A.D. [School of Engineering, University of Manchester, Manchester (United Kingdom)

    1997-12-31

    The cylinder pressure waveform in an internal combustion engine is one of the most important parameters in describing the engine combustion process. It is used for a range of diagnostic tasks such as identification of ignition faults or mechanical wear in the cylinders. However, it is very difficult to measure this parameter directly. Never-the-less, the cylinder pressure may be inferred from other more readily obtainable parameters. In this presentation it is shown how a Radial Basis Function network, which may be regarded as a form of neural network, may be used to model the cylinder pressure as a function of the instantaneous crankshaft velocity, recorded with a simple magnetic sensor. The application of the model is demonstrated on a four cylinder DI diesel engine with data from a wide range of speed and load settings. The prediction capabilities of the model once trained are validated against measured data. (orig.) 4 refs.

  10. Unsupervised Neural Network Quantifies the Cost of Visual Information Processing.

    Directory of Open Access Journals (Sweden)

    Levente L Orbán

    Full Text Available Untrained, "flower-naïve" bumblebees display behavioural preferences when presented with visual properties such as colour, symmetry, spatial frequency and others. Two unsupervised neural networks were implemented to understand the extent to which these models capture elements of bumblebees' unlearned visual preferences towards flower-like visual properties. The computational models, which are variants of Independent Component Analysis and Feature-Extracting Bidirectional Associative Memory, use images of test-patterns that are identical to ones used in behavioural studies. Each model works by decomposing images of floral patterns into meaningful underlying factors. We reconstruct the original floral image using the components and compare the quality of the reconstructed image to the original image. Independent Component Analysis matches behavioural results substantially better across several visual properties. These results are interpreted to support a hypothesis that the temporal and energetic costs of information processing by pollinators served as a selective pressure on floral displays: flowers adapted to pollinators' cognitive constraints.

  11. Unsupervised Neural Network Quantifies the Cost of Visual Information Processing.

    Science.gov (United States)

    Orbán, Levente L; Chartier, Sylvain

    2015-01-01

    Untrained, "flower-naïve" bumblebees display behavioural preferences when presented with visual properties such as colour, symmetry, spatial frequency and others. Two unsupervised neural networks were implemented to understand the extent to which these models capture elements of bumblebees' unlearned visual preferences towards flower-like visual properties. The computational models, which are variants of Independent Component Analysis and Feature-Extracting Bidirectional Associative Memory, use images of test-patterns that are identical to ones used in behavioural studies. Each model works by decomposing images of floral patterns into meaningful underlying factors. We reconstruct the original floral image using the components and compare the quality of the reconstructed image to the original image. Independent Component Analysis matches behavioural results substantially better across several visual properties. These results are interpreted to support a hypothesis that the temporal and energetic costs of information processing by pollinators served as a selective pressure on floral displays: flowers adapted to pollinators' cognitive constraints.

  12. A Chip for an Implantable Neural Stimulator

    DEFF Research Database (Denmark)

    Gudnason, Gunnar; Bruun, Erik; Haugland, Morten

    2000-01-01

    This paper describes a chip for a multichannel neural stimulator for functional electrical stimulation (FES). The purpose of FES is to restore muscular control in disabled patients. The chip performs all the signal processing required in an implanted neural stimulator. The power and digital data...

  13. Neurosecurity: security and privacy for neural devices.

    Science.gov (United States)

    Denning, Tamara; Matsuoka, Yoky; Kohno, Tadayoshi

    2009-07-01

    An increasing number of neural implantable devices will become available in the near future due to advances in neural engineering. This discipline holds the potential to improve many patients' lives dramatically by offering improved-and in some cases entirely new-forms of rehabilitation for conditions ranging from missing limbs to degenerative cognitive diseases. The use of standard engineering practices, medical trials, and neuroethical evaluations during the design process can create systems that are safe and that follow ethical guidelines; unfortunately, none of these disciplines currently ensure that neural devices are robust against adversarial entities trying to exploit these devices to alter, block, or eavesdrop on neural signals. The authors define "neurosecurity"-a version of computer science security principles and methods applied to neural engineering-and discuss why neurosecurity should be a critical consideration in the design of future neural devices.

  14. How do small rural food-processing firms compete?A resource-based approach to competitive strategies

    Directory of Open Access Journals (Sweden)

    S. FORSMAN

    2008-12-01

    Full Text Available The study was concerned with the competitive strategies of small food-processing firms in rural Finland and their ability to achieve and maintain a competitively advantaged position in relation to larger food companies in the dynamic and mature food market. Competitive strategies were approached from the resource-based view (RBV that emphasises internal firm factors as sources of competitive advantage and long-term success. As strategic choices, differentiation was specifically considered. The main objective was to explain the relationships between resources, competitive advantage and firm success. To understand the ambiguous nature of the resources in the small-scale food production context, the study introduced a distinction between strategic resources and basic resources and the strategic relationship between them. The empirical part of the study was based on quantitative analyses of the survey data collected from 238 small (less than 20 persons, food-processing firms in rural Finland. The sample firms represented different branches of the food industry and 39% of them operated in connection with a farm. The linkage between resources, competitive advantage and firm success was investigated by means of cluster analysis, mean comparisons and LISREL modelling. The results demonstrated that there are some typical features relating to small-scale food production in Finland. The results also revealed that small-scale, rural food processing firms do not constitute a homogenous group of their own, but that different strategies among small firms can be identified as well. The analyses proved that a linkage between resources, competitive advantage and firm success can be identified, which is consistent with resource-based logic. However, according to the findings, following a particular strategy does not automatically ensure that a firm will achieve success. The analysis also showed that strategic resources and basic resources are strongly interlinked

  15. Individual differences in speech-in-noise perception parallel neural speech processing and attention in preschoolers

    Science.gov (United States)

    Thompson, Elaine C.; Carr, Kali Woodruff; White-Schwoch, Travis; Otto-Meyer, Sebastian; Kraus, Nina

    2016-01-01

    From bustling classrooms to unruly lunchrooms, school settings are noisy. To learn effectively in the unwelcome company of numerous distractions, children must clearly perceive speech in noise. In older children and adults, speech-in-noise perception is supported by sensory and cognitive processes, but the correlates underlying this critical listening skill in young children (3–5 year olds) remain undetermined. Employing a longitudinal design (two evaluations separated by ~12 months), we followed a cohort of 59 preschoolers, ages 3.0–4.9, assessing word-in-noise perception, cognitive abilities (intelligence, short-term memory, attention), and neural responses to speech. Results reveal changes in word-in-noise perception parallel changes in processing of the fundamental frequency (F0), an acoustic cue known for playing a role central to speaker identification and auditory scene analysis. Four unique developmental trajectories (speech-in-noise perception groups) confirm this relationship, in that improvements and declines in word-in-noise perception couple with enhancements and diminishments of F0 encoding, respectively. Improvements in word-in-noise perception also pair with gains in attention. Word-in-noise perception does not relate to strength of neural harmonic representation or short-term memory. These findings reinforce previously-reported roles of F0 and attention in hearing speech in noise in older children and adults, and extend this relationship to preschool children. PMID:27864051

  16. A Parallel Strategy for Convolutional Neural Network Based on Heterogeneous Cluster for Mobile Information System

    Directory of Open Access Journals (Sweden)

    Jilin Zhang

    2017-01-01

    Full Text Available With the development of the mobile systems, we gain a lot of benefits and convenience by leveraging mobile devices; at the same time, the information gathered by smartphones, such as location and environment, is also valuable for business to provide more intelligent services for customers. More and more machine learning methods have been used in the field of mobile information systems to study user behavior and classify usage patterns, especially convolutional neural network. With the increasing of model training parameters and data scale, the traditional single machine training method cannot meet the requirements of time complexity in practical application scenarios. The current training framework often uses simple data parallel or model parallel method to speed up the training process, which is why heterogeneous computing resources have not been fully utilized. To solve these problems, our paper proposes a delay synchronization convolutional neural network parallel strategy, which leverages the heterogeneous system. The strategy is based on both synchronous parallel and asynchronous parallel approaches; the model training process can reduce the dependence on the heterogeneous architecture in the premise of ensuring the model convergence, so the convolution neural network framework is more adaptive to different heterogeneous system environments. The experimental results show that the proposed delay synchronization strategy can achieve at least three times the speedup compared to the traditional data parallelism.

  17. Shades of grey; Assessing the contribution of the magno- and parvocellular systems to neural processing of the retinal input in the human visual system from the influence of neural population size and its discharge activity on the VEP.

    Science.gov (United States)

    Marcar, Valentine L; Baselgia, Silvana; Lüthi-Eisenegger, Barbara; Jäncke, Lutz

    2018-03-01

    Retinal input processing in the human visual system involves a phasic and tonic neural response. We investigated the role of the magno- and parvocellular systems by comparing the influence of the active neural population size and its discharge activity on the amplitude and latency of four VEP components. We recorded the scalp electric potential of 20 human volunteers viewing a series of dartboard images presented as a pattern reversing and pattern on-/offset stimulus. These patterns were designed to vary both neural population size coding the temporal- and spatial luminance contrast property and the discharge activity of the population involved in a systematic manner. When the VEP amplitude reflected the size of the neural population coding the temporal luminance contrast property of the image, the influence of luminance contrast followed the contrast response function of the parvocellular system. When the VEP amplitude reflected the size of the neural population responding to the spatial luminance contrast property the image, the influence of luminance contrast followed the contrast response function of the magnocellular system. The latencies of the VEP components examined exhibited the same behavior across our stimulus series. This investigation demonstrates the complex interplay of the magno- and parvocellular systems on the neural response as captured by the VEP. It also demonstrates a linear relationship between stimulus property, neural response, and the VEP and reveals the importance of feedback projections in modulating the ongoing neural response. In doing so, it corroborates the conclusions of our previous study.

  18. Bio-processing of solid wastes and secondary resources for metal extraction - A review.

    Science.gov (United States)

    Lee, Jae-Chun; Pandey, Banshi Dhar

    2012-01-01

    Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Is Neural Processing of Negative Stimuli Altered in Addiction Independent of Drug Effects? Findings From Drug-Naïve Youth with Internet Gaming Disorder.

    Science.gov (United States)

    Yip, Sarah W; Gross, James J; Chawla, Megha; Ma, Shan-Shan; Shi, Xing-Hui; Liu, Lu; Yao, Yuan-Wei; Zhu, Lei; Worhunsky, Patrick D; Zhang, Jintao

    2018-05-01

    Difficulties in emotion regulation are commonly reported among individuals with alcohol and drug addictions and contribute to the acquisition and maintenance of addictive behaviors. Alterations in neural processing of negative affective stimuli have further been demonstrated among individuals with addictions. However, it is unclear whether these alterations are a general feature of addictions or are a result of prolonged exposure to drugs of abuse. To test the hypothesis of altered negative affect processing independent of drug effects, this study assessed neural function among drug-naïve youth with a behavioral addiction-Internet gaming disorder (IGD). Fifty-six young adults (28 with IGD, 28 matched controls) participated in fMRI scanning during performance of a well-validated emotion regulation task. Between-group differences in neural activity during task performance were assessed using a whole-brain, mixed-effects ANOVA with correction for multiple comparisons at currently recommended thresholds (voxel-level peffects.

  20. Dynamic training algorithm for dynamic neural networks

    International Nuclear Information System (INIS)

    Tan, Y.; Van Cauwenberghe, A.; Liu, Z.

    1996-01-01

    The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper