WorldWideScience

Sample records for neural processing events

  1. ALADDIN: a neural model for event classification in dynamic processes

    International Nuclear Information System (INIS)

    Roverso, Davide

    1998-02-01

    ALADDIN is a prototype system which combines fuzzy clustering techniques and artificial neural network (ANN) models in a novel approach to the problem of classifying events in dynamic processes. The main motivation for the development of such a system derived originally from the problem of finding new principled methods to perform alarm structuring/suppression in a nuclear power plant (NPP) alarm system. One such method consists in basing the alarm structuring/suppression on a fast recognition of the event generating the alarms, so that a subset of alarms sufficient to efficiently handle the current fault can be selected to be presented to the operator, minimizing in this way the operator's workload in a potentially stressful situation. The scope of application of a system like ALADDIN goes however beyond alarm handling, to include diagnostic tasks in general. The eventual application of the system to domains other than NPPs was also taken into special consideration during the design phase. In this document we report on the first phase of the ALADDIN project which consisted mainly in a comparative study of a series of ANN-based approaches to event classification, and on the proposal of a first system prototype which is to undergo further tests and, eventually, be integrated in existing alarm, diagnosis, and accident management systems such as CASH, IDS, and CAMS. (author)

  2. Neural correlates of attentional and mnemonic processing in event-based prospective memory

    Directory of Open Access Journals (Sweden)

    Justin B Knight

    2010-02-01

    Full Text Available Prospective memory, or memory for realizing delayed intentions, was examined with an event-based paradigm while simultaneously measuring neural activity with high-density EEG recordings. Specifically, the neural substrates of monitoring for an event-based cue were examined, as well as those perhaps associated with the cognitive processes supporting detection of cues and fulfillment of intentions. Participants engaged in a baseline lexical decision task (LDT, followed by a LDT with an embedded prospective memory (PM component. Event-based cues were constituted by color and lexicality (red words. Behavioral data provided evidence that monitoring, or preparatory attentional processes, were used to detect cues. Analysis of the event-related potentials (ERP revealed visual attentional modulations at 140 and 220 ms post-stimulus associated with preparatory attentional processes. In addition, ERP components at 220, 350, and 400 ms post-stimulus were enhanced for intention-related items. Our results suggest preparatory attention may operate by selectively modulating processing of features related to a previously formed event-based intention, as well as provide further evidence for the proposal that dissociable component processes support the fulfillment of delayed intentions.

  3. Neural correlates of attentional and mnemonic processing in event-based prospective memory.

    Science.gov (United States)

    Knight, Justin B; Ethridge, Lauren E; Marsh, Richard L; Clementz, Brett A

    2010-01-01

    Prospective memory (PM), or memory for realizing delayed intentions, was examined with an event-based paradigm while simultaneously measuring neural activity with high-density EEG recordings. Specifically, the neural substrates of monitoring for an event-based cue were examined, as well as those perhaps associated with the cognitive processes supporting detection of cues and fulfillment of intentions. Participants engaged in a baseline lexical decision task (LDT), followed by a LDT with an embedded PM component. Event-based cues were constituted by color and lexicality (red words). Behavioral data provided evidence that monitoring, or preparatory attentional processes, were used to detect cues. Analysis of the event-related potentials (ERP) revealed visual attentional modulations at 140 and 220 ms post-stimulus associated with preparatory attentional processes. In addition, ERP components at 220, 350, and 400 ms post-stimulus were enhanced for intention-related items. Our results suggest preparatory attention may operate by selectively modulating processing of features related to a previously formed event-based intention, as well as provide further evidence for the proposal that dissociable component processes support the fulfillment of delayed intentions.

  4. Event-driven processing for hardware-efficient neural spike sorting

    Science.gov (United States)

    Liu, Yan; Pereira, João L.; Constandinou, Timothy G.

    2018-02-01

    Objective. The prospect of real-time and on-node spike sorting provides a genuine opportunity to push the envelope of large-scale integrated neural recording systems. In such systems the hardware resources, power requirements and data bandwidth increase linearly with channel count. Event-based (or data-driven) processing can provide here a new efficient means for hardware implementation that is completely activity dependant. In this work, we investigate using continuous-time level-crossing sampling for efficient data representation and subsequent spike processing. Approach. (1) We first compare signals (synthetic neural datasets) encoded with this technique against conventional sampling. (2) We then show how such a representation can be directly exploited by extracting simple time domain features from the bitstream to perform neural spike sorting. (3) The proposed method is implemented in a low power FPGA platform to demonstrate its hardware viability. Main results. It is observed that considerably lower data rates are achievable when using 7 bits or less to represent the signals, whilst maintaining the signal fidelity. Results obtained using both MATLAB and reconfigurable logic hardware (FPGA) indicate that feature extraction and spike sorting accuracies can be achieved with comparable or better accuracy than reference methods whilst also requiring relatively low hardware resources. Significance. By effectively exploiting continuous-time data representation, neural signal processing can be achieved in a completely event-driven manner, reducing both the required resources (memory, complexity) and computations (operations). This will see future large-scale neural systems integrating on-node processing in real-time hardware.

  5. Specific neural basis of Chinese idioms processing: an event-related functional MRI study

    International Nuclear Information System (INIS)

    Chen Shaoqi; Zhang Yanzhen; Xiao Zhuangwei; Zhang Xuexin

    2007-01-01

    Objective: To address the neural basis of Chinese idioms processing with different kinds of stimuli using an event-related fMRI design. Methods: Sixteen native Chinese speakers were asked to perform a semantic decision task during fMRI scanning. Three kinds of stimuli were used: Real idioms (Real-idiom condition); Literally plausible phrases (Pseudo-idiom condition, the last character of a real idiom was replaced by a character with similar meaning); Literally implausible strings (Non-idiom condition, the last character of a real idiom was replaced by a character with unrelated meaning). Reaction time and correct rate were recorded at the same time. Results: The error rate was 2.6%, 5.2% and 0.9% (F=3.51, P 0.05) for real idioms, pseudo-idioms and wrong idioms, respectively. Similar neural network was activated in all of the three conditions. However, the right hippocampus was only activated in the real idiom condition, and significant activations were found in anterior portion of left inferior frontal gyms (BA47) in real-and pseudo-idiom conditions, but not in non-idiom condition. Conclusion: The right hippocampus plays a specific role in the particular wording of the Chinese idioms. And the left anterior inferior frontal gyms (BA47) may be engaged in the semantic processing of Chinese idioms. The results support the notion that there were specific neural bases for Chinese idioms processing. (authors)

  6. Prediction of Increasing Production Activities using Combination of Query Aggregation on Complex Events Processing and Neural Network

    Directory of Open Access Journals (Sweden)

    Achmad Arwan

    2016-07-01

    Full Text Available AbstrakProduksi, order, penjualan, dan pengiriman adalah serangkaian event yang saling terkait dalam industri manufaktur. Selanjutnya hasil dari event tersebut dicatat dalam event log. Complex Event Processing adalah metode yang digunakan untuk menganalisis apakah terdapat pola kombinasi peristiwa tertentu (peluang/ancaman yang terjadi pada sebuah sistem, sehingga dapat ditangani secara cepat dan tepat. Jaringan saraf tiruan adalah metode yang digunakan untuk mengklasifikasi data peningkatan proses produksi. Hasil pencatatan rangkaian proses yang menyebabkan peningkatan produksi digunakan sebagai data latih untuk mendapatkan fungsi aktivasi dari jaringan saraf tiruan. Penjumlahan hasil catatan event log dimasukkan ke input jaringan saraf tiruan untuk perhitungan nilai aktivasi. Ketika nilai aktivasi lebih dari batas yang ditentukan, maka sistem mengeluarkan sinyal untuk meningkatkan produksi, jika tidak, sistem tetap memantau kejadian. Hasil percobaan menunjukkan bahwa akurasi dari metode ini adalah 77% dari 39 rangkaian aliran event.Kata kunci: complex event processing, event, jaringan saraf tiruan, prediksi peningkatan produksi, proses. AbstractProductions, orders, sales, and shipments are series of interrelated events within manufacturing industry. Further these events were recorded in the event log. Complex event processing is a method that used to analyze whether there are patterns of combinations of certain events (opportunities / threats that occur in a system, so it can be addressed quickly and appropriately. Artificial neural network is a method that we used to classify production increase activities. The series of events that cause the increase of the production used as a dataset to train the weight of neural network which result activation value. An aggregate stream of events inserted into the neural network input to compute the value of activation. When the value is over a certain threshold (the activation value results

  7. Internal mechanisms underlying anticipatory language processing: Evidence from event-related-potentials and neural oscillations.

    Science.gov (United States)

    Li, Xiaoqing; Zhang, Yuping; Xia, Jinyan; Swaab, Tamara Y

    2017-07-28

    Although numerous studies have demonstrated that the language processing system can predict upcoming content during comprehension, there is still no clear picture of the anticipatory stage of predictive processing. This electroencephalograph study examined the cognitive and neural oscillatory mechanisms underlying anticipatory processing during language comprehension, and the consequences of this prediction for bottom-up processing of predicted/unpredicted content. Participants read Mandarin Chinese sentences that were either strongly or weakly constraining and that contained critical nouns that were congruent or incongruent with the sentence contexts. We examined the effects of semantic predictability on anticipatory processing prior to the onset of the critical nouns and on integration of the critical nouns. The results revealed that, at the integration stage, the strong-constraint condition (compared to the weak-constraint condition) elicited a reduced N400 and reduced theta activity (4-7Hz) for the congruent nouns, but induced beta (13-18Hz) and theta (4-7Hz) power decreases for the incongruent nouns, indicating benefits of confirmed predictions and potential costs of disconfirmed predictions. More importantly, at the anticipatory stage, the strongly constraining context elicited an enhanced sustained anterior negativity and beta power decrease (19-25Hz), which indicates that strong prediction places a higher processing load on the anticipatory stage of processing. The differences (in the ease of processing and the underlying neural oscillatory activities) between anticipatory and integration stages of lexical processing were discussed with regard to predictive processing models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks.

    Science.gov (United States)

    Naveros, Francisco; Garrido, Jesus A; Carrillo, Richard R; Ros, Eduardo; Luque, Niceto R

    2017-01-01

    Modeling and simulating the neural structures which make up our central neural system is instrumental for deciphering the computational neural cues beneath. Higher levels of biological plausibility usually impose higher levels of complexity in mathematical modeling, from neural to behavioral levels. This paper focuses on overcoming the simulation problems (accuracy and performance) derived from using higher levels of mathematical complexity at a neural level. This study proposes different techniques for simulating neural models that hold incremental levels of mathematical complexity: leaky integrate-and-fire (LIF), adaptive exponential integrate-and-fire (AdEx), and Hodgkin-Huxley (HH) neural models (ranged from low to high neural complexity). The studied techniques are classified into two main families depending on how the neural-model dynamic evaluation is computed: the event-driven or the time-driven families. Whilst event-driven techniques pre-compile and store the neural dynamics within look-up tables, time-driven techniques compute the neural dynamics iteratively during the simulation time. We propose two modifications for the event-driven family: a look-up table recombination to better cope with the incremental neural complexity together with a better handling of the synchronous input activity. Regarding the time-driven family, we propose a modification in computing the neural dynamics: the bi-fixed-step integration method. This method automatically adjusts the simulation step size to better cope with the stiffness of the neural model dynamics running in CPU platforms. One version of this method is also implemented for hybrid CPU-GPU platforms. Finally, we analyze how the performance and accuracy of these modifications evolve with increasing levels of neural complexity. We also demonstrate how the proposed modifications which constitute the main contribution of this study systematically outperform the traditional event- and time-driven techniques under

  9. Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process

    Directory of Open Access Journals (Sweden)

    Hidetoshi Konno

    2018-01-01

    Full Text Available In neural spike counting experiments, it is known that there are two main features: (i the counting number has a fractional power-law growth with time and (ii the waiting time (i.e., the inter-spike-interval distribution has a heavy tail. The method of superstatistical Poisson processes (SSPPs is examined whether these main features are properly modeled. Although various mixed/compound Poisson processes are generated with selecting a suitable distribution of the birth-rate of spiking neurons, only the second feature (ii can be modeled by the method of SSPPs. Namely, the first one (i associated with the effect of long-memory cannot be modeled properly. Then, it is shown that the two main features can be modeled successfully by a class of fractional SSPP (FSSPP.

  10. Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process

    Science.gov (United States)

    Konno, Hidetoshi; Tamura, Yoshiyasu

    2018-01-01

    In neural spike counting experiments, it is known that there are two main features: (i) the counting number has a fractional power-law growth with time and (ii) the waiting time (i.e., the inter-spike-interval) distribution has a heavy tail. The method of superstatistical Poisson processes (SSPPs) is examined whether these main features are properly modeled. Although various mixed/compound Poisson processes are generated with selecting a suitable distribution of the birth-rate of spiking neurons, only the second feature (ii) can be modeled by the method of SSPPs. Namely, the first one (i) associated with the effect of long-memory cannot be modeled properly. Then, it is shown that the two main features can be modeled successfully by a class of fractional SSPP (FSSPP).

  11. Viewing brain processes as Critical State Transitions across levels of organization: Neural events in Cognition and Consciousness, and general principles.

    Science.gov (United States)

    Werner, Gerhard

    2009-04-01

    In this theoretical and speculative essay, I propose that insights into certain aspects of neural system functions can be gained from viewing brain function in terms of the branch of Statistical Mechanics currently referred to as "Modern Critical Theory" [Stanley, H.E., 1987. Introduction to Phase Transitions and Critical Phenomena. Oxford University Press; Marro, J., Dickman, R., 1999. Nonequilibrium Phase Transitions in Lattice Models. Cambridge University Press, Cambridge, UK]. The application of this framework is here explored in two stages: in the first place, its principles are applied to state transitions in global brain dynamics, with benchmarks of Cognitive Neuroscience providing the relevant empirical reference points. The second stage generalizes to suggest in more detail how the same principles could also apply to the relation between other levels of the structural-functional hierarchy of the nervous system and between neural assemblies. In this view, state transitions resulting from the processing at one level are the input to the next, in the image of a 'bucket brigade', with the content of each bucket being passed on along the chain, after having undergone a state transition. The unique features of a process of this kind will be discussed and illustrated.

  12. Processing of visual semantic information to concrete words : temporal dynamics and neural mechanisms indicated by event-related brain potentials

    NARCIS (Netherlands)

    van Schie, Hein T.; Wijers, Albertus A.; Mars, Rogier B.; Benjamins, Jeroen S.; Stowe, Laurie A.

    2005-01-01

    Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that

  13. Processing of visual semantic information to concrete words: temporal dynamics and neural mechanisms indicated by event-related brain potentials

    NARCIS (Netherlands)

    Schie, H.T. van; Wijers, A.A.; Mars, R.B.; Benjamins, J.S.; Stowe, L.A.

    2005-01-01

    Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that

  14. Social contexts modulate neural responses in the processing of others' pain: An event-related potential study.

    Science.gov (United States)

    Cui, Fang; Zhu, Xiangru; Luo, Yuejia

    2017-08-01

    Two hypotheses have been proposed regarding the response that is triggered by observing others' pain: the "empathizing hypothesis" and the "threat value of pain hypothesis." The former suggests that observing others' pain triggers an empathic response. The latter suggests that it activates the threat-detection system. In the present study, participants were instructed to observe pictures that showed an anonymous hand or foot in a painful or non-painful situation in a threatening or friendly social context. Event-related potentials were recorded when the participants passively observed these pictures in different contexts. We observed an interaction between context and picture in the early automatic N1 component, in which the painful pictures elicited a larger amplitude than the non-painful pictures only in the threatening context and not in the friendly context. We also observed an interaction between context and picture in the late P3 component, in which the painful pictures elicited a larger amplitude than the non-painful pictures only in the friendly context and not in the threatening context. These results indicate that specific social contexts can modulate the neural responses to observing others' pain. The "empathic hypothesis" and "threat value of pain hypothesis" are not mutually exclusive and do not contradict each other but rather work in different temporal stages.

  15. Processing of visual semantic information to concrete words: temporal dynamics and neural mechanisms indicated by event-related brain potentials( ).

    Science.gov (United States)

    van Schie, Hein T; Wijers, Albertus A; Mars, Rogier B; Benjamins, Jeroen S; Stowe, Laurie A

    2005-05-01

    Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that involved 5 s retention of simple 4-angled polygons (load 1), complex 10-angled polygons (load 2), and a no-load baseline condition. During the polygon retention interval subjects were presented with a lexical decision task to auditory presented concrete (imageable) and abstract (nonimageable) words, and pseudowords. ERP results are consistent with the use of object working memory for the visualisation of concrete words. Our data indicate a two-step processing model of visual semantics in which visual descriptive information of concrete words is first encoded in semantic memory (indicated by an anterior N400 and posterior occipital positivity), and is subsequently visualised via the network for object working memory (reflected by a left frontal positive slow wave and a bilateral occipital slow wave negativity). Results are discussed in the light of contemporary models of semantic memory.

  16. The neural basis of event simulation: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Yukihito Yomogida

    Full Text Available Event simulation (ES is the situational inference process in which perceived event features such as objects, agents, and actions are associated in the brain to represent the whole situation. ES provides a common basis for various cognitive processes, such as perceptual prediction, situational understanding/prediction, and social cognition (such as mentalizing/trait inference. Here, functional magnetic resonance imaging was used to elucidate the neural substrates underlying important subdivisions within ES. First, the study investigated whether ES depends on different neural substrates when it is conducted explicitly and implicitly. Second, the existence of neural substrates specific to the future-prediction component of ES was assessed. Subjects were shown contextually related object pictures implying a situation and performed several picture-word-matching tasks. By varying task goals, subjects were made to infer the implied situation implicitly/explicitly or predict the future consequence of that situation. The results indicate that, whereas implicit ES activated the lateral prefrontal cortex and medial/lateral parietal cortex, explicit ES activated the medial prefrontal cortex, posterior cingulate cortex, and medial/lateral temporal cortex. Additionally, the left temporoparietal junction plays an important role in the future-prediction component of ES. These findings enrich our understanding of the neural substrates of the implicit/explicit/predictive aspects of ES-related cognitive processes.

  17. Neural networks in signal processing

    International Nuclear Information System (INIS)

    Govil, R.

    2000-01-01

    Nuclear Engineering has matured during the last decade. In research and design, control, supervision, maintenance and production, mathematical models and theories are used extensively. In all such applications signal processing is embedded in the process. Artificial Neural Networks (ANN), because of their nonlinear, adaptive nature are well suited to such applications where the classical assumptions of linearity and second order Gaussian noise statistics cannot be made. ANN's can be treated as nonparametric techniques, which can model an underlying process from example data. They can also adopt their model parameters to statistical change with time. Algorithms in the framework of Neural Networks in Signal processing have found new applications potentials in the field of Nuclear Engineering. This paper reviews the fundamentals of Neural Networks in signal processing and their applications in tasks such as recognition/identification and control. The topics covered include dynamic modeling, model based ANN's, statistical learning, eigen structure based processing and generalization structures. (orig.)

  18. Event-driven simulation of neural population synchronization facilitated by electrical coupling.

    Science.gov (United States)

    Carrillo, Richard R; Ros, Eduardo; Barbour, Boris; Boucheny, Christian; Coenen, Olivier

    2007-02-01

    Most neural communication and processing tasks are driven by spikes. This has enabled the application of the event-driven simulation schemes. However the simulation of spiking neural networks based on complex models that cannot be simplified to analytical expressions (requiring numerical calculation) is very time consuming. Here we describe briefly an event-driven simulation scheme that uses pre-calculated table-based neuron characterizations to avoid numerical calculations during a network simulation, allowing the simulation of large-scale neural systems. More concretely we explain how electrical coupling can be simulated efficiently within this computation scheme, reproducing synchronization processes observed in detailed simulations of neural populations.

  19. Principles of neural information processing

    CERN Document Server

    Seelen, Werner v

    2016-01-01

    In this fundamental book the authors devise a framework that describes the working of the brain as a whole. It presents a comprehensive introduction to the principles of Neural Information Processing as well as recent and authoritative research. The books´ guiding principles are the main purpose of neural activity, namely, to organize behavior to ensure survival, as well as the understanding of the evolutionary genesis of the brain. Among the developed principles and strategies belong self-organization of neural systems, flexibility, the active interpretation of the world by means of construction and prediction as well as their embedding into the world, all of which form the framework of the presented description. Since, in brains, their partial self-organization, the lifelong adaptation and their use of various methods of processing incoming information are all interconnected, the authors have chosen not only neurobiology and evolution theory as a basis for the elaboration of such a framework, but also syst...

  20. Automatic Seismic-Event Classification with Convolutional Neural Networks.

    Science.gov (United States)

    Bueno Rodriguez, A.; Titos Luzón, M.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Active volcanoes exhibit a wide range of seismic signals, providing vast amounts of unlabelled volcano-seismic data that can be analyzed through the lens of artificial intelligence. However, obtaining high-quality labelled data is time-consuming and expensive. Deep neural networks can process data in their raw form, compute high-level features and provide a better representation of the input data distribution. These systems can be deployed to classify seismic data at scale, enhance current early-warning systems and build extensive seismic catalogs. In this research, we aim to classify spectrograms from seven different seismic events registered at "Volcán de Fuego" (Colima, Mexico), during four eruptive periods. Our approach is based on convolutional neural networks (CNNs), a sub-type of deep neural networks that can exploit grid structure from the data. Volcano-seismic signals can be mapped into a grid-like structure using the spectrogram: a representation of the temporal evolution in terms of time and frequency. Spectrograms were computed from the data using Hamming windows with 4 seconds length, 2.5 seconds overlapping and 128 points FFT resolution. Results are compared to deep neural networks, random forest and SVMs. Experiments show that CNNs can exploit temporal and frequency information, attaining a classification accuracy of 93%, similar to deep networks 91% but outperforming SVM and random forest. These results empirically show that CNNs are powerful models to classify a wide range of volcano-seismic signals, and achieve good generalization. Furthermore, volcano-seismic spectrograms contains useful discriminative information for the CNN, as higher layers of the network combine high-level features computed for each frequency band, helping to detect simultaneous events in time. Being at the intersection of deep learning and geophysics, this research enables future studies of how CNNs can be used in volcano monitoring to accurately determine the detection and

  1. Neural network real time event selection for the DIRAC experiment

    CERN Document Server

    Kokkas, P; Tauscher, Ludwig; Vlachos, S

    2001-01-01

    The neural network first level trigger for the DIRAC experiment at CERN is presented. Both the neural network algorithm used and its actual hardware implementation are described. The system uses the fast plastic scintillator information of the DIRAC spectrometer. In 210 ns it selects events with two particles having low relative momentum. Such events are selected with an efficiency of more than 0.94. The corresponding rate reduction for background events is a factor of 2.5. (10 refs).

  2. Features, Events, and Processes: Disruptive Events

    International Nuclear Information System (INIS)

    J. King

    2004-01-01

    The primary purpose of this analysis is to evaluate seismic- and igneous-related features, events, and processes (FEPs). These FEPs represent areas of natural system processes that have the potential to produce disruptive events (DE) that could impact repository performance and are related to the geologic processes of tectonism, structural deformation, seismicity, and igneous activity. Collectively, they are referred to as the DE FEPs. This evaluation determines which of the DE FEPs are excluded from modeling used to support the total system performance assessment for license application (TSPA-LA). The evaluation is based on the data and results presented in supporting analysis reports, model reports, technical information, or corroborative documents that are cited in the individual FEP discussions in Section 6.2 of this analysis report

  3. Features, Events, and Processes: Disruptive Events

    Energy Technology Data Exchange (ETDEWEB)

    J. King

    2004-03-31

    The primary purpose of this analysis is to evaluate seismic- and igneous-related features, events, and processes (FEPs). These FEPs represent areas of natural system processes that have the potential to produce disruptive events (DE) that could impact repository performance and are related to the geologic processes of tectonism, structural deformation, seismicity, and igneous activity. Collectively, they are referred to as the DE FEPs. This evaluation determines which of the DE FEPs are excluded from modeling used to support the total system performance assessment for license application (TSPA-LA). The evaluation is based on the data and results presented in supporting analysis reports, model reports, technical information, or corroborative documents that are cited in the individual FEP discussions in Section 6.2 of this analysis report.

  4. Event management for large scale event-driven digital hardware spiking neural networks.

    Science.gov (United States)

    Caron, Louis-Charles; D'Haene, Michiel; Mailhot, Frédéric; Schrauwen, Benjamin; Rouat, Jean

    2013-09-01

    The interest in brain-like computation has led to the design of a plethora of innovative neuromorphic systems. Individually, spiking neural networks (SNNs), event-driven simulation and digital hardware neuromorphic systems get a lot of attention. Despite the popularity of event-driven SNNs in software, very few digital hardware architectures are found. This is because existing hardware solutions for event management scale badly with the number of events. This paper introduces the structured heap queue, a pipelined digital hardware data structure, and demonstrates its suitability for event management. The structured heap queue scales gracefully with the number of events, allowing the efficient implementation of large scale digital hardware event-driven SNNs. The scaling is linear for memory, logarithmic for logic resources and constant for processing time. The use of the structured heap queue is demonstrated on a field-programmable gate array (FPGA) with an image segmentation experiment and a SNN of 65,536 neurons and 513,184 synapses. Events can be processed at the rate of 1 every 7 clock cycles and a 406×158 pixel image is segmented in 200 ms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Neural networks for event filtering at D/O/

    International Nuclear Information System (INIS)

    Cutts, D.; Hoftun, J.S.; Sornborger, A.; Johnson, C.R.; Zeller, R.T.

    1989-01-01

    Neural networks may provide important tools for pattern recognition in high energy physics. We discuss an initial exploration of these techniques, presenting the result of network simulations of several filter algorithms. The D0 data acquisition system, a MicroVAX farm, will perform critical event selection; we describe a possible implementation of neural network algorithms in this system. 7 refs., 4 figs

  6. A Hierarchical Convolutional Neural Network for vesicle fusion event classification.

    Science.gov (United States)

    Li, Haohan; Mao, Yunxiang; Yin, Zhaozheng; Xu, Yingke

    2017-09-01

    Quantitative analysis of vesicle exocytosis and classification of different modes of vesicle fusion from the fluorescence microscopy are of primary importance for biomedical researches. In this paper, we propose a novel Hierarchical Convolutional Neural Network (HCNN) method to automatically identify vesicle fusion events in time-lapse Total Internal Reflection Fluorescence Microscopy (TIRFM) image sequences. Firstly, a detection and tracking method is developed to extract image patch sequences containing potential fusion events. Then, a Gaussian Mixture Model (GMM) is applied on each image patch of the patch sequence with outliers rejected for robust Gaussian fitting. By utilizing the high-level time-series intensity change features introduced by GMM and the visual appearance features embedded in some key moments of the fusion process, the proposed HCNN architecture is able to classify each candidate patch sequence into three classes: full fusion event, partial fusion event and non-fusion event. Finally, we validate the performance of our method on 9 challenging datasets that have been annotated by cell biologists, and our method achieves better performances when comparing with three previous methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Handbook on neural information processing

    CERN Document Server

    Maggini, Marco; Jain, Lakhmi

    2013-01-01

    This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include:                         Deep architectures                         Recurrent, recursive, and graph neural networks                         Cellular neural networks                         Bayesian networks                         Approximation capabilities of neural networks                         Semi-supervised learning                         Statistical relational learning                         Kernel methods for structured data                         Multiple classifier systems                         Self organisation and modal learning                         Applications to ...

  8. Features, Events, and Processes: Disruptive Events

    Energy Technology Data Exchange (ETDEWEB)

    P. Sanchez

    2004-11-08

    The purpose of this analysis report is to evaluate and document the inclusion or exclusion of the disruptive events features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment for license application (TSPA-LA). A screening decision, either ''Included'' or ''Excluded,'' is given for each FEP, along with the technical basis for screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), and (f) [DIRS 156605]. The FEPs addressed in this report deal with both seismic and igneous disruptive events, such as fault displacements through the repository and an igneous intrusion into the repository. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded). Previous versions of this report were developed to support the total system performance assessments (TSPA) for various prior repository designs. This revision addresses the repository design for the license application (LA).

  9. Features, Events, and Processes: Disruptive Events

    International Nuclear Information System (INIS)

    P. Sanchez

    2004-01-01

    The purpose of this analysis report is to evaluate and document the inclusion or exclusion of the disruptive events features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment for license application (TSPA-LA). A screening decision, either ''Included'' or ''Excluded,'' is given for each FEP, along with the technical basis for screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), and (f) [DIRS 156605]. The FEPs addressed in this report deal with both seismic and igneous disruptive events, such as fault displacements through the repository and an igneous intrusion into the repository. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded). Previous versions of this report were developed to support the total system performance assessments (TSPA) for various prior repository designs. This revision addresses the repository design for the license application (LA)

  10. Neural overlap in processing music and speech.

    Science.gov (United States)

    Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L

    2015-03-19

    Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Neural overlap in processing music and speech

    Science.gov (United States)

    Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L.

    2015-01-01

    Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing. PMID:25646513

  12. Neural processing of reward in adolescent rodents

    Directory of Open Access Journals (Sweden)

    Nicholas W. Simon

    2015-02-01

    Full Text Available Immaturities in adolescent reward processing are thought to contribute to poor decision making and increased susceptibility to develop addictive and psychiatric disorders. Very little is known; however, about how the adolescent brain processes reward. The current mechanistic theories of reward processing are derived from adult models. Here we review recent research focused on understanding of how the adolescent brain responds to rewards and reward-associated events. A critical aspect of this work is that age-related differences are evident in neuronal processing of reward-related events across multiple brain regions even when adolescent rats demonstrate behavior similar to adults. These include differences in reward processing between adolescent and adult rats in orbitofrontal cortex and dorsal striatum. Surprisingly, minimal age related differences are observed in ventral striatum, which has been a focal point of developmental studies. We go on to discuss the implications of these differences for behavioral traits affected in adolescence, such as impulsivity, risk-taking, and behavioral flexibility. Collectively, this work suggests that reward-evoked neural activity differs as a function of age and that regions such as the dorsal striatum that are not traditionally associated with affective processing in adults may be critical for reward processing and psychiatric vulnerability in adolescents.

  13. A convolutional neural network neutrino event classifier

    International Nuclear Information System (INIS)

    Aurisano, A.; Sousa, A.; Radovic, A.; Vahle, P.; Rocco, D.; Pawloski, G.; Himmel, A.; Niner, E.; Messier, M.D.; Psihas, F.

    2016-01-01

    Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.

  14. Attending to global versus local stimulus features modulates neural processing of low versus high spatial frequencies: An analysis with event-related brain potentials.

    Directory of Open Access Journals (Sweden)

    Anastasia V Flevaris

    2014-04-01

    Full Text Available Spatial frequency (SF selection has long been recognized to play a role in global and local processing, though the nature of the relationship between SF processing and global/local perception is debated. Previous studies have shown that attention to relatively lower SFs facilitates global perception, and that attention to relatively higher SFs facilitates local perception. Here we recorded event-related brain potentials (ERPs to investigate whether processing of low versus high SFs is modulated automatically during global and local perception, and to examine the time course of any such effects. Participants compared bilaterally presented hierarchical letter stimuli and attended to either the global or local levels. Irrelevant SF grating probes flashed at the center of the display 200 ms after the onset of the hierarchical letter stimuli could either be low or high in SF. It was found that ERPs elicited by the SF grating probes differed as a function of attended level (global vs. local. ERPs elicited by low SF grating probes were more positive in the interval 196-236 ms during global than local attention, and this difference was greater over the right occipital scalp. In contrast, ERPs elicited by the high SF gratings were more positive in the interval 250-290 ms during local than global attention, and this difference was bilaterally distributed over the occipital scalp. These results indicate that directing attention to global versus local levels of a hierarchical display facilitates automatic perceptual processing of low versus high SFs, respectively, and this facilitation is not limited to the locations occupied by the hierarchical display. The relatively long latency of these attention-related ERP modulations suggests that initial (early SF processing is not affected by attention to hierarchical level, lending support to theories positing a higher level mechanism to underlie the relationship between SF processing and global versus local

  15. Rose or black-coloured glasses? Altered neural processing of positive events during memory formation is a trait marker of depression

    NARCIS (Netherlands)

    Arnold, J.F.; Fitzgerald, D.A.; Fernandez, G.S.E.; Rijpkema, M.J.P.; Rinck, M.; Eling, P.A.T.M.; Becker, E.S.; Speckens, A.E.M.; Tendolkar, I.

    2011-01-01

    Background - Valence-specific memory enhancement is one of the core cognitive functions that causes and maintains Major Depressive Disorder (MDD). While previous neuroimaging studies have elucidated the neural underpinnings of this emotional enhancement effect in depressed patients, this study aimed

  16. Rose or black-coloured glasses? Altered neural processing of positive events during memory formation is a trait marker of depression

    NARCIS (Netherlands)

    Arnold, J.F.; Fitzgerald, D.A.; Fernandez, G.S.E.; Rijpkema, M.J.P.; Rinck, M.; Eling, P.A.; Becker, E.S.; Speckens, A.E.M.; Tendolkar, I.

    2011-01-01

    BACKGROUND: Valence-specific memory enhancement is one of the core cognitive functions that causes and maintains Major Depressive Disorder (MDD). While previous neuroimaging studies have elucidated the neural underpinnings of this emotional enhancement effect in depressed patients, this study aimed

  17. Signal Processing and Neural Network Simulator

    Science.gov (United States)

    Tebbe, Dennis L.; Billhartz, Thomas J.; Doner, John R.; Kraft, Timothy T.

    1995-04-01

    The signal processing and neural network simulator (SPANNS) is a digital signal processing simulator with the capability to invoke neural networks into signal processing chains. This is a generic tool which will greatly facilitate the design and simulation of systems with embedded neural networks. The SPANNS is based on the Signal Processing WorkSystemTM (SPWTM), a commercial-off-the-shelf signal processing simulator. SPW provides a block diagram approach to constructing signal processing simulations. Neural network paradigms implemented in the SPANNS include Backpropagation, Kohonen Feature Map, Outstar, Fully Recurrent, Adaptive Resonance Theory 1, 2, & 3, and Brain State in a Box. The SPANNS was developed by integrating SAIC's Industrial Strength Neural Networks (ISNN) Software into SPW.

  18. Shindigs, brunches, and rodeos: the neural basis of event words.

    Science.gov (United States)

    Bedny, Marina; Dravida, Swethasri; Saxe, Rebecca

    2014-09-01

    Events (e.g., "running" or "eating") constitute a basic type within human cognition and human language. We asked whether thinking about events, as compared to other conceptual categories, depends on partially independent neural circuits. Indirect evidence for this hypothesis comes from previous studies showing elevated posterior temporal responses to verbs, which typically label events. Neural responses to verbs could, however, be driven either by their grammatical or by their semantic properties. In the present experiment, we separated the effects of grammatical class (verb vs. noun) and semantic category (event vs. object) by measuring neural responses to event nouns (e.g., "the hurricane"). Participants rated the semantic relatedness of event nouns, as well as of two categories of object nouns-animals (e.g., "the alligator") and plants (e.g., "the acorn")-and three categories of verbs-manner of motion (e.g., "to roll"), emission (e.g., "to sparkle"), and perception (e.g., "to gaze"). As has previously been observed, we found larger responses to verbs than to object nouns in the left posterior middle (LMTG) and superior (LSTG) temporal gyri. Crucially, we also found that the LMTG responds more to event than to object nouns. These data suggest that part of the posterior lateral temporal response to verbs is driven by their semantic properties. By contrast, a more superior region, at the junction of the temporal and parietal cortices, responded more to verbs than to all nouns, irrespective of their semantic category. We concluded that the neural mechanisms engaged when thinking about event and object categories are partially dissociable.

  19. Neural Correlates of Processing Negative and Sexually Arousing Pictures

    Science.gov (United States)

    Bailey, Kira; West, Robert; Mullaney, Kellie M.

    2012-01-01

    Recent work has questioned whether the negativity bias is a distinct component of affective picture processing. The current study was designed to determine whether there are different neural correlates of processing positive and negative pictures using event-related brain potentials. The early posterior negativity and late positive potential were greatest in amplitude for erotic pictures. Partial Least Squares analysis revealed one latent variable that distinguished erotic pictures from neutral and positive pictures and another that differentiated negative pictures from neutral and positive pictures. The effects of orienting task on the neural correlates of processing negative and erotic pictures indicate that affective picture processing is sensitive to both stimulus-driven, and attentional or decision processes. The current data, together with other recent findings from our laboratory, lead to the suggestion that there are distinct neural correlates of processing negative and positive stimuli during affective picture processing. PMID:23029071

  20. CRITICAL EVENTS IN CONSTRUCTION PROCESS

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten; Rasmussen, Grane Mikael Gregaard

    2009-01-01

    cause-effects of failures and defects in the construction industry by using an analytical approach (The bowtie model) which is developed in the accident research. Using this model clarifies the relationships within the chain of failures that causes critical events with undesirable consequences......Function failures, defects and poor communication are major problems in the construction industry. These failures and defects are caused by a row of critical events in the construction process. The purpose of this paper is to define “critical events” in the construction process and to investigate....... In this way the causes of failures and the relationships between various failures are rendered visible. A large construction site was observed from start to finish as the empirical element in the research. The research focuses on all kinds of critical events identified throughout every phase during...

  1. Forecasting solar proton event with artificial neural network

    Science.gov (United States)

    Gong, J.; Wang, J.; Xue, B.; Liu, S.; Zou, Z.

    Solar proton event (SPE), relatively rare but popular in solar maximum, can bring hazard situation to spacecraft. As a special event, SPE always accompanies flare, which is also called proton flare. To produce such an eruptive event, large amount energy must be accumulated within the active region. So we can investigate the character of the active region and its evolving trend, together with other such as cm radio emission and soft X-ray background to evaluate the potential of SEP in chosen area. In order to summarize the omen of SPEs in the active regions behind the observed parameters, we employed AI technology. Full connecting neural network was chosen to fulfil this job. After constructing the network, we train it with 13 parameters that was able to exhibit the character of active regions and their evolution trend. More than 80 sets of event parameter were defined to teach the neural network to identify whether an active region was potential of SPE. Then we test this model with a data base consisting SPE and non-SPE cases that was not used to train the neural network. The result showed that 75% of the choice by the model was right.

  2. Construction and Updating of Event Models in Auditory Event Processing

    Science.gov (United States)

    Huff, Markus; Maurer, Annika E.; Brich, Irina; Pagenkopf, Anne; Wickelmaier, Florian; Papenmeier, Frank

    2018-01-01

    Humans segment the continuous stream of sensory information into distinct events at points of change. Between 2 events, humans perceive an event boundary. Present theories propose changes in the sensory information to trigger updating processes of the present event model. Increased encoding effort finally leads to a memory benefit at event…

  3. Multi-modular neural networks for the classification of e+e- hadronic events

    International Nuclear Information System (INIS)

    Proriol, J.

    1994-01-01

    Some multi-modular neural network methods of classifying e + e - hadronic events are presented. We compare the performances of the following neural networks: MLP (multilayer perceptron), MLP and LVQ (learning vector quantization) trained sequentially, and MLP and RBF (radial basis function) trained sequentially. We introduce a MLP-RBF cooperative neural network. Our last study is a multi-MLP neural network. (orig.)

  4. Neural Correlates of Automatic and Controlled Auditory Processing in Schizophrenia

    Science.gov (United States)

    Morey, Rajendra A.; Mitchell, Teresa V.; Inan, Seniha; Lieberman, Jeffrey A.; Belger, Aysenil

    2009-01-01

    Individuals with schizophrenia demonstrate impairments in selective attention and sensory processing. The authors assessed differences in brain function between 26 participants with schizophrenia and 17 comparison subjects engaged in automatic (unattended) and controlled (attended) auditory information processing using event-related functional MRI. Lower regional neural activation during automatic auditory processing in the schizophrenia group was not confined to just the temporal lobe, but also extended to prefrontal regions. Controlled auditory processing was associated with a distributed frontotemporal and subcortical dysfunction. Differences in activation between these two modes of auditory information processing were more pronounced in the comparison group than in the patient group. PMID:19196926

  5. Neural correlates of processing "self-conscious" vs. "basic" emotions.

    Science.gov (United States)

    Gilead, Michael; Katzir, Maayan; Eyal, Tal; Liberman, Nira

    2016-01-29

    Self-conscious emotions are prevalent in our daily lives and play an important role in both normal and pathological behavior. Despite their immense significance, the neural substrates that are involved in the processing of such emotions are surprisingly under-studied. In light of this, we conducted an fMRI study in which participants thought of various personal events which elicited feelings of negative and positive self-conscious (i.e., guilt, pride) or basic (i.e., anger, joy) emotions. We performed a conjunction analysis to investigate the neural correlates associated with processing events that are related to self-conscious vs. basic emotions, irrespective of valence. The results show that processing self-conscious emotions resulted in activation within frontal areas associated with self-processing and self-control, namely, the mPFC extending to the dACC, and within the lateral-dorsal prefrontal cortex. Processing basic emotions resulted in activation throughout relatively phylogenetically-ancient regions of the cortex, namely in visual and tactile processing areas and in the insular cortex. Furthermore, self-conscious emotions differentially activated the mPFC such that the negative self-conscious emotion (guilt) was associated with a more dorsal activation, and the positive self-conscious emotion (pride) was associated with a more ventral activation. We discuss how these results shed light on the nature of mental representations and neural systems involved in self-reflective and affective processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Construction and updating of event models in auditory event processing.

    Science.gov (United States)

    Huff, Markus; Maurer, Annika E; Brich, Irina; Pagenkopf, Anne; Wickelmaier, Florian; Papenmeier, Frank

    2018-02-01

    Humans segment the continuous stream of sensory information into distinct events at points of change. Between 2 events, humans perceive an event boundary. Present theories propose changes in the sensory information to trigger updating processes of the present event model. Increased encoding effort finally leads to a memory benefit at event boundaries. Evidence from reading time studies (increased reading times with increasing amount of change) suggest that updating of event models is incremental. We present results from 5 experiments that studied event processing (including memory formation processes and reading times) using an audio drama as well as a transcript thereof as stimulus material. Experiments 1a and 1b replicated the event boundary advantage effect for memory. In contrast to recent evidence from studies using visual stimulus material, Experiments 2a and 2b found no support for incremental updating with normally sighted and blind participants for recognition memory. In Experiment 3, we replicated Experiment 2a using a written transcript of the audio drama as stimulus material, allowing us to disentangle encoding and retrieval processes. Our results indicate incremental updating processes at encoding (as measured with reading times). At the same time, we again found recognition performance to be unaffected by the amount of change. We discuss these findings in light of current event cognition theories. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Automatic Classification of volcano-seismic events based on Deep Neural Networks.

    Science.gov (United States)

    Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.

  8. Neural events that underlie remembering something that never happened.

    Science.gov (United States)

    Gonsalves, B; Paller, K A

    2000-12-01

    We induced people to experience a false-memory illusion by first asking them to visualize common objects when cued with the corresponding word; on some trials, a photograph of the object was presented 1800 ms after the cue word. We then tested their memory for the photographs. Posterior brain potentials in response to words at encoding were more positive if the corresponding object was later falsely remembered as a photograph. Similar brain potentials during the memory test were more positive for true than for false memories. These results implicate visual imagery in the generation of false memories and provide neural correlates of processing differences between true and false memories.

  9. A Markovian event-based framework for stochastic spiking neural networks.

    Science.gov (United States)

    Touboul, Jonathan D; Faugeras, Olivier D

    2011-11-01

    In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks.

  10. Convolutional neural networks for event-related potential detection: impact of the architecture.

    Science.gov (United States)

    Cecotti, H

    2017-07-01

    The detection of brain responses at the single-trial level in the electroencephalogram (EEG) such as event-related potentials (ERPs) is a difficult problem that requires different processing steps to extract relevant discriminant features. While most of the signal and classification techniques for the detection of brain responses are based on linear algebra, different pattern recognition techniques such as convolutional neural network (CNN), as a type of deep learning technique, have shown some interests as they are able to process the signal after limited pre-processing. In this study, we propose to investigate the performance of CNNs in relation of their architecture and in relation to how they are evaluated: a single system for each subject, or a system for all the subjects. More particularly, we want to address the change of performance that can be observed between specifying a neural network to a subject, or by considering a neural network for a group of subjects, taking advantage of a larger number of trials from different subjects. The results support the conclusion that a convolutional neural network trained on different subjects can lead to an AUC above 0.9 by using an appropriate architecture using spatial filtering and shift invariant layers.

  11. An application of neural networks to process and materials control

    International Nuclear Information System (INIS)

    Howell, J.A.; Whiteson, R.

    1991-01-01

    Process control consists of two basic elements: a model of the process and knowledge of the desired control algorithm. In some cases the level of the control algorithm is merely supervisory, as in an alarm-reporting or anomaly-detection system. If the model of the process is known, then a set of equations may often be solved explicitly to provide the control algorithm. Otherwise, the model has to be discovered through empirical studies. Neural networks have properties that make them useful in this application. They can learn (make internal models from experience or observations). The problem of anomaly detection in materials control systems fits well into this general control framework. To successfully model a process with a neutral network, a good set of observables must be chosen. These observables must in some sense adequately span the space of representable events, so that a signature metric can be built for normal operation. In this way, a non-normal event, one that does not fit within the signature, can be detected. In this paper, we discuss the issues involved in applying a neural network model to anomaly detection in materials control systems. These issues include data selection and representation, network architecture, prediction of events, the use of simulated data, and software tools. 10 refs., 4 figs., 1 tab

  12. Neural mechanisms of order information processing in working memory

    Directory of Open Access Journals (Sweden)

    Barbara Dolenc

    2013-11-01

    Full Text Available The ability to encode and maintain the exact order of short sequences of stimuli or events is often crucial to our ability for effective high-order planning. However, it is not yet clear which neural mechanisms underpin this process. Several studies suggest that in comparison with item recognition temporal order coding activates prefrontal and parietal brain regions. Results of various studies tend to favour the hypothesis that the order of the stimuli is represented and encoded on several stages, from primacy and recency estimates to the exact position of the item in a sequence. Different brain regions play a different role in this process. Dorsolateral prefrontal cortex has a more general role in attention, while the premotor cortex is more involved in the process of information grouping. Parietal lobe and hippocampus also play a significant role in order processing as they enable the representation of distance. Moreover, order maintenance is associated with the existence of neural oscillators that operate at different frequencies. Electrophysiological studies revealed that theta and alpha oscillations play an important role in the maintenance of temporal order information. Those EEG oscillations are differentially associated with processes that support the maintenance of order information and item recognition. Various studies suggest a link between prefrontal areas and memory for temporal order, implying that EEG neural oscillations in the prefrontal cortex may play a role in the maintenance of information on temporal order.

  13. Neural substrates of sublexical processing for spelling.

    Science.gov (United States)

    DeMarco, Andrew T; Wilson, Stephen M; Rising, Kindle; Rapcsak, Steven Z; Beeson, Pélagie M

    2017-01-01

    We used fMRI to examine the neural substrates of sublexical phoneme-grapheme conversion during spelling in a group of healthy young adults. Participants performed a writing-to-dictation task involving irregular words (e.g., choir), plausible nonwords (e.g., kroid), and a control task of drawing familiar geometric shapes (e.g., squares). Written production of both irregular words and nonwords engaged a left-hemisphere perisylvian network associated with reading/spelling and phonological processing skills. Effects of lexicality, manifested by increased activation during nonword relative to irregular word spelling, were noted in anterior perisylvian regions (posterior inferior frontal gyrus/operculum/precentral gyrus/insula), and in left ventral occipito-temporal cortex. In addition to enhanced neural responses within domain-specific components of the language network, the increased cognitive demands associated with spelling nonwords engaged domain-general frontoparietal cortical networks involved in selective attention and executive control. These results elucidate the neural substrates of sublexical processing during written language production and complement lesion-deficit correlation studies of phonological agraphia. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Synchronization of Switched Neural Networks With Communication Delays via the Event-Triggered Control.

    Science.gov (United States)

    Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen

    2017-10-01

    This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.

  15. The ATLAS Event Service: A New Approach to Event Processing

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00070566; De, Kaushik; Guan, Wen; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Panitkin, Sergey; Tsulaia, Vakhtang; van Gemmeren, Peter; Wenaus, Torre

    2015-01-01

    The ATLAS Event Service (ES) implements a new fine grained approach to HEP event processing, designed to be agile and efficient in exploiting transient, short-lived resources such as HPC hole-filling, spot market commercial clouds, and volunteer computing. Input and output control and data flows, bookkeeping, monitoring, and data storage are all managed at the event level in an implementation capable of supporting ATLAS-scale distributed processing throughputs (about 4M CPU-hours/day). Input data flows utilize remote data repositories with no data locality or pre­staging requirements, minimizing the use of costly storage in favor of strongly leveraging powerful networks. Object stores provide a highly scalable means of remotely storing the quasi-continuous, fine grained outputs that give ES based applications a very light data footprint on a processing resource, and ensure negligible losses should the resource suddenly vanish. We will describe the motivations for the ES system, its unique features and capabi...

  16. Buffer of Events as a Markovian Process

    International Nuclear Information System (INIS)

    Berdugo, J.; Casaus, J.; Mana, C.

    2001-01-01

    In Particle and Asro-Particle Physics experiments, the events which get trough the detectors are read and processes on-line before they are stored for a more detailed processing and future Physics analysis. Since the events are read and, usually, processed sequentially, the time involved in these operations can lead to a significant lose of events which is, to some extent, reduced by using buffers. We present an estimate of the optimum buffer size and the fraction of events lost for a simple experimental condition which serves as an introductory example to the use of Markow Chains.(Author)

  17. Buffer of Events as a Markovian Process

    Energy Technology Data Exchange (ETDEWEB)

    Berdugo, J.; Casaus, J.; Mana, C.

    2001-07-01

    In Particle and Asro-Particle Physics experiments, the events which get trough the detectors are read and processes on-line before they are stored for a more detailed processing and future Physics analysis. Since the events are read and, usually, processed sequentially, the time involved in these operations can lead to a significant lose of events which is, to some extent, reduced by using buffers. We present an estimate of the optimum buffer size and the fraction of events lost for a simple experimental condition which serves as an introductory example to the use of Markow Chains.(Author)

  18. Service Processes as a Sequence of Events

    NARCIS (Netherlands)

    P.C. Verhoef (Peter); G. Antonides (Gerrit); A.N. de Hoog

    2002-01-01

    textabstractIn this paper the service process is considered as a sequence of events. Using theory from economics and psychology a model is formulated that explains how the utility of each event affects the overall evaluation of the service process. In this model we especially account for the

  19. Third Dutch Process Security Control Event

    NARCIS (Netherlands)

    Luiijf, H.A.M.

    2009-01-01

    On June 4th, 2009, the third Dutch Process Control Security Event took place in Amsterdam. The event, organised by the Dutch National Infrastructure against Cybercrime (NICC), attracted both Dutch process control experts and members of the European SCADA and Control Systems Information Exchange

  20. Neural processing of emotional-intensity predicts emotion regulation choice.

    Science.gov (United States)

    Shafir, Roni; Thiruchselvam, Ravi; Suri, Gaurav; Gross, James J; Sheppes, Gal

    2016-12-01

    Emotional-intensity is a core characteristic of affective events that strongly determines how individuals choose to regulate their emotions. Our conceptual framework suggests that in high emotional-intensity situations, individuals prefer to disengage attention using distraction, which can more effectively block highly potent emotional information, as compared with engagement reappraisal, which is preferred in low emotional-intensity. However, existing supporting evidence remains indirect because prior intensity categorization of emotional stimuli was based on subjective measures that are potentially biased and only represent the endpoint of emotional-intensity processing. Accordingly, this study provides the first direct evidence for the role of online emotional-intensity processing in predicting behavioral regulatory-choices. Utilizing the high temporal resolution of event-related potentials, we evaluated online neural processing of stimuli's emotional-intensity (late positive potential, LPP) prior to regulatory-choices between distraction and reappraisal. Results showed that enhanced neural processing of intensity (enhanced LPP amplitudes) uniquely predicted (above subjective measures of intensity) increased tendency to subsequently choose distraction over reappraisal. Additionally, regulatory-choices led to adaptive consequences, demonstrated in finding that actual implementation of distraction relative to reappraisal-choice resulted in stronger attenuation of LPPs and self-reported arousal. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Not my future? Core values and the neural representation of future events.

    Science.gov (United States)

    Brosch, Tobias; Stussi, Yoann; Desrichard, Olivier; Sander, David

    2018-06-01

    Individuals with pronounced self-transcendence values have been shown to put greater weight on the long-term consequences of their actions when making decisions. Using functional magnetic resonance imaging, we investigated the neural mechanisms underlying the evaluation of events occurring several decades in the future as well as the role of core values in these processes. Thirty-six participants viewed a series of events, consisting of potential consequences of climate change, which could occur in the near future (around 2030), and thus would be experienced by the participants themselves, or in the far future (around 2080). We observed increased activation in anterior VMPFC (BA11), a region involved in encoding the personal significance of future events, when participants were envisioning far future events, demonstrating for the first time that the role of the VMPFC in future projection extends to the time scale of decades. Importantly, this activation increase was observed only in participants with pronounced self-transcendence values measured by self-report questionnaire, as shown by a statistically significant interaction of temporal distance and value structure. These findings suggest that future projection mechanisms are modulated by self-transcendence values to allow for a more extensive simulation of far future events. Consistent with this, these participants reported similar concern ratings for near and far future events, whereas participants with pronounced self-enhancement values were more concerned about near future events. Our findings provide a neural substrate for the tendency of individuals with pronounced self-transcendence values to consider the long-term consequences of their actions.

  2. Active voltammetric microsensors with neural signal processing.

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can

  3. Active voltammetric microsensors with neural signal processing

    Science.gov (United States)

    Vogt, Michael C.; Skubal, Laura R.

    1999-02-01

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical 'signatures' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration; the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  4. Mining process performance from event logs

    NARCIS (Netherlands)

    Adriansyah, A.; Buijs, J.C.A.M.; La Rosa, M.; Soffer, P.

    2013-01-01

    In systems where process executions are not strictly enforced by a predefined process model, obtaining reliable performance information is not trivial. In this paper, we analyzed an event log of a real-life process, taken from a Dutch financial institute, using process mining techniques. In

  5. Post-event processing in social anxiety.

    Science.gov (United States)

    Dannahy, Laura; Stopa, Lusia

    2007-06-01

    Clark and Wells' [1995. A cognitive model of social phobia. In: R. Heimberg, M. Liebowitz, D.A. Hope, & F.R. Schneier (Eds.) Social phobia: Diagnosis, assessment and treatment (pp. 69-93). New York: Guildford Press.] cognitive model of social phobia proposes that following a social event, individuals with social phobia will engage in post-event processing, during which they conduct a detailed review of the event. This study investigated the relationship between self-appraisals of performance and post-event processing in individuals high and low in social anxiety. Participants appraised their performance immediately after a conversation with an unknown individual and prior to an anticipated second conversation task 1 week later. The frequency and valence of post-event processing during the week following the conversation was also assessed. The study also explored differences in the metacognitive processes of high and low socially anxious participants. The high socially anxious group experienced more anxiety, predicted worse performance, underestimated their actual performance, and engaged in more post-event processing than low socially anxious participants. The degree of negative post-event processing was linked to the extent of social anxiety and negative appraisals of performance, both immediately after the conversation task and 1 week later. Differences were also observed in some metacognitive processes. The results are discussed in relation to current theory and previous research.

  6. The gamma model : a new neural network for temporal processing

    NARCIS (Netherlands)

    Vries, de B.

    1992-01-01

    In this paper we develop the gamma neural model, a new neural net architecture for processing of temporal patterns. Time varying patterns are normally segmented into a sequence of static patterns that are successively presented to a neural net. In the approach presented here segmentation is avoided.

  7. LHCb Online event processing and filtering

    Science.gov (United States)

    Alessio, F.; Barandela, C.; Brarda, L.; Frank, M.; Franek, B.; Galli, D.; Gaspar, C.; Herwijnen, E. v.; Jacobsson, R.; Jost, B.; Köstner, S.; Moine, G.; Neufeld, N.; Somogyi, P.; Stoica, R.; Suman, S.

    2008-07-01

    The first level trigger of LHCb accepts one million events per second. After preprocessing in custom FPGA-based boards these events are distributed to a large farm of PC-servers using a high-speed Gigabit Ethernet network. Synchronisation and event management is achieved by the Timing and Trigger system of LHCb. Due to the complex nature of the selection of B-events, which are the main interest of LHCb, a full event-readout is required. Event processing on the servers is parallelised on an event basis. The reduction factor is typically 1/500. The remaining events are forwarded to a formatting layer, where the raw data files are formed and temporarily stored. A small part of the events is also forwarded to a dedicated farm for calibration and monitoring. The files are subsequently shipped to the CERN Tier0 facility for permanent storage and from there to the various Tier1 sites for reconstruction. In parallel files are used by various monitoring and calibration processes running within the LHCb Online system. The entire data-flow is controlled and configured by means of a SCADA system and several databases. After an overview of the LHCb data acquisition and its design principles this paper will emphasize the LHCb event filter system, which is now implemented using the final hardware and will be ready for data-taking for the LHC startup. Control, configuration and security aspects will also be discussed.

  8. LHCb Online event processing and filtering

    International Nuclear Information System (INIS)

    Alessio, F; Barandela, C; Brarda, L; Frank, M; Gaspar, C; Herwijnen, E v; Jacobsson, R; Jost, B; Koestner, S; Moine, G; Neufeld, N; Somogyi, P; Stoica, R; Suman, S; Franek, B; Galli, D

    2008-01-01

    The first level trigger of LHCb accepts one million events per second. After preprocessing in custom FPGA-based boards these events are distributed to a large farm of PC-servers using a high-speed Gigabit Ethernet network. Synchronisation and event management is achieved by the Timing and Trigger system of LHCb. Due to the complex nature of the selection of B-events, which are the main interest of LHCb, a full event-readout is required. Event processing on the servers is parallelised on an event basis. The reduction factor is typically 1/500. The remaining events are forwarded to a formatting layer, where the raw data files are formed and temporarily stored. A small part of the events is also forwarded to a dedicated farm for calibration and monitoring. The files are subsequently shipped to the CERN Tier0 facility for permanent storage and from there to the various Tier1 sites for reconstruction. In parallel files are used by various monitoring and calibration processes running within the LHCb Online system. The entire data-flow is controlled and configured by means of a SCADA system and several databases. After an overview of the LHCb data acquisition and its design principles this paper will emphasize the LHCb event filter system, which is now implemented using the final hardware and will be ready for data-taking for the LHC startup. Control, configuration and security aspects will also be discussed

  9. Identification of canonical neural events during continuous gameplay of an 8-bit style video game.

    Science.gov (United States)

    Cavanagh, James F; Castellanos, Joel

    2016-06-01

    Cognitive neuroscience suffers from a unique and pervasive problem of generalizability. Since neural findings are often interpreted in the context of a specific manipulation during a carefully controlled task, it is hard to transfer knowledge from one task to another. In this report we address problems of generalizability with two methodological advancements. First, we aimed to transcend status quo experimental procedures with a continuous, engaging task environment. To this end, we created a novel 8-bit style continuous space shooter video game that elicits a multitude of goal-oriented events, such as crashing into a wall or blowing up an enemy with a missile. Second, we aimed to objectively define the psychological significance of these events. To achieve this aim, we used pattern classification of EEG data to derive predictive weights from carefully controlled pre-game exemplar events (oddball target detection and gambling wins and losses) and transferred those weights to EEG activities during video game events. All major goal-oriented events (crashes into the wall, crashes into an enemy, missile hit on an enemy) had a significant between-task transfer bias towards oddball target weights in the time range of the canonical P3, indicating the presence of similar salience detection processes. Missile hits on an enemy were specifically identified as gambling wins, confirming the hypothesis that this goal-oriented event was appetitive. These findings suggest that it is possible to identify the contribution of canonical neural activities during otherwise ambiguous and uncontrolled task performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Neural Adaptation Effects in Conceptual Processing

    Directory of Open Access Journals (Sweden)

    Barbara F. M. Marino

    2015-07-01

    Full Text Available We investigated the conceptual processing of nouns referring to objects characterized by a highly typical color and orientation. We used a go/no-go task in which we asked participants to categorize each noun as referring or not to natural entities (e.g., animals after a selective adaptation of color-edge neurons in the posterior LV4 region of the visual cortex was induced by means of a McCollough effect procedure. This manipulation affected categorization: the green-vertical adaptation led to slower responses than the green-horizontal adaptation, regardless of the specific color and orientation of the to-be-categorized noun. This result suggests that the conceptual processing of natural entities may entail the activation of modality-specific neural channels with weights proportional to the reliability of the signals produced by these channels during actual perception. This finding is discussed with reference to the debate about the grounded cognition view.

  11. Historical events of the Chemical Processing Department

    Energy Technology Data Exchange (ETDEWEB)

    Lane, W.A.

    1965-11-12

    The purpose of this report is to summarize and document the significant historical events pertinent to the operation of the Chemical Processing facilities at Hanford. The report covers, in chronological order, the major construction activities and historical events from 1944 to September, 1965. Also included are the production records achieved and a history of the department`s unit cost performance.

  12. First Dutch Process Control Security Event

    NARCIS (Netherlands)

    Luiijf, H.A.M.

    2008-01-01

    On May 21st , 2008, the Dutch National Infrastructure against Cyber Crime (NICC) organised their first Process Control Security Event. Mrs. Annemarie Zielstra, the NICC programme manager, opened the event. She welcomed the over 100 representatives of key industry sectors. “Earlier studies in the

  13. Fourth Dutch Process Security Control Event

    NARCIS (Netherlands)

    Luiijf, H.A.M.; Zielstra, A.

    2010-01-01

    On December 1st, 2009, the fourth Dutch Process Control Security Event took place in Baarn, The Netherlands. The security event with the title ‘Manage IT!’ was organised by the Dutch National Infrastructure against Cybercrime (NICC). Mid of November, a group of over thirty people participated in the

  14. Theory of Neural Information Processing Systems

    International Nuclear Information System (INIS)

    Galla, Tobias

    2006-01-01

    It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 10 11 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kuehn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the

  15. LHCb Online event processing and filtering

    CERN Document Server

    Alessio, F; Brarda, L; Frank, M; Franek, B; Galli, D; Gaspar, C; Van Herwijnen, E; Jacobsson, R; Jost, B; Köstner, S; Moine, G; Neufeld, N; Somogyi, P; Stoica, R; Suman, S

    2008-01-01

    The first level trigger of LHCb accepts one million events per second. After preprocessing in custom FPGA-based boards these events are distributed to a large farm of PC-servers using a high-speed Gigabit Ethernet network. Synchronisation and event management is achieved by the Timing and Trigger system of LHCb. Due to the complex nature of the selection of B-events, which are the main interest of LHCb, a full event-readout is required. Event processing on the servers is parallelised on an event basis. The reduction factor is typically 1/500. The remaining events are forwarded to a formatting layer, where the raw data files are formed and temporarily stored. A small part of the events is also forwarded to a dedicated farm for calibration and monitoring. The files are subsequently shipped to the CERN Tier0 facility for permanent storage and from there to the various Tier1 sites for reconstruction. In parallel files are used by various monitoring and calibration processes running within the LHCb Online system. ...

  16. Recurrent process mining with live event data

    NARCIS (Netherlands)

    Syamsiyah, A.; van Dongen, B.F.; van der Aalst, W.M.P.; Teniente, E.; Weidlich, M.

    2018-01-01

    In organizations, process mining activities are typically performed in a recurrent fashion, e.g. once a week, an event log is extracted from the information systems and a process mining tool is used to analyze the process’ characteristics. Typically, process mining tools import the data from a

  17. The ATLAS Event Service: A new approach to event processing

    Science.gov (United States)

    Calafiura, P.; De, K.; Guan, W.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Tsulaia, V.; Van Gemmeren, P.; Wenaus, T.

    2015-12-01

    The ATLAS Event Service (ES) implements a new fine grained approach to HEP event processing, designed to be agile and efficient in exploiting transient, short-lived resources such as HPC hole-filling, spot market commercial clouds, and volunteer computing. Input and output control and data flows, bookkeeping, monitoring, and data storage are all managed at the event level in an implementation capable of supporting ATLAS-scale distributed processing throughputs (about 4M CPU-hours/day). Input data flows utilize remote data repositories with no data locality or pre-staging requirements, minimizing the use of costly storage in favor of strongly leveraging powerful networks. Object stores provide a highly scalable means of remotely storing the quasi-continuous, fine grained outputs that give ES based applications a very light data footprint on a processing resource, and ensure negligible losses should the resource suddenly vanish. We will describe the motivations for the ES system, its unique features and capabilities, its architecture and the highly scalable tools and technologies employed in its implementation, and its applications in ATLAS processing on HPCs, commercial cloud resources, volunteer computing, and grid resources. Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  18. Self-Exciting Point Process Modeling of Conversation Event Sequences

    Science.gov (United States)

    Masuda, Naoki; Takaguchi, Taro; Sato, Nobuo; Yano, Kazuo

    Self-exciting processes of Hawkes type have been used to model various phenomena including earthquakes, neural activities, and views of online videos. Studies of temporal networks have revealed that sequences of social interevent times for individuals are highly bursty. We examine some basic properties of event sequences generated by the Hawkes self-exciting process to show that it generates bursty interevent times for a wide parameter range. Then, we fit the model to the data of conversation sequences recorded in company offices in Japan. In this way, we can estimate relative magnitudes of the self excitement, its temporal decay, and the base event rate independent of the self excitation. These variables highly depend on individuals. We also point out that the Hawkes model has an important limitation that the correlation in the interevent times and the burstiness cannot be independently modulated.

  19. Event-Related Potentials and Emotion Processing in Child Psychopathology

    Directory of Open Access Journals (Sweden)

    Georgia eChronaki

    2016-04-01

    Full Text Available In recent years there has been increasing interest in the neural mechanisms underlying altered emotional processes in children and adolescents with psychopathology. This review provides a brief overview of the most up-to-date findings in the field of Event-Related Potentials (ERPs to facial and vocal emotional expressions in the most common child psychopathological conditions. In regards to externalising behaviour (i.e. ADHD, CD, ERP studies show enhanced early components to anger, reflecting enhanced sensory processing, followed by reductions in later components to anger, reflecting reduced cognitive-evaluative processing. In regards to internalising behaviour, research supports models of increased processing of threat stimuli especially at later more elaborate and effortful stages. Finally, in autism spectrum disorders abnormalities have been observed at early visual-perceptual stages of processing. An affective neuroscience framework for understanding child psychopathology can be valuable in elucidating underlying mechanisms and inform preventive intervention.

  20. Neural Parallel Engine: A toolbox for massively parallel neural signal processing.

    Science.gov (United States)

    Tam, Wing-Kin; Yang, Zhi

    2018-05-01

    Large-scale neural recordings provide detailed information on neuronal activities and can help elicit the underlying neural mechanisms of the brain. However, the computational burden is also formidable when we try to process the huge data stream generated by such recordings. In this study, we report the development of Neural Parallel Engine (NPE), a toolbox for massively parallel neural signal processing on graphical processing units (GPUs). It offers a selection of the most commonly used routines in neural signal processing such as spike detection and spike sorting, including advanced algorithms such as exponential-component-power-component (EC-PC) spike detection and binary pursuit spike sorting. We also propose a new method for detecting peaks in parallel through a parallel compact operation. Our toolbox is able to offer a 5× to 110× speedup compared with its CPU counterparts depending on the algorithms. A user-friendly MATLAB interface is provided to allow easy integration of the toolbox into existing workflows. Previous efforts on GPU neural signal processing only focus on a few rudimentary algorithms, are not well-optimized and often do not provide a user-friendly programming interface to fit into existing workflows. There is a strong need for a comprehensive toolbox for massively parallel neural signal processing. A new toolbox for massively parallel neural signal processing has been created. It can offer significant speedup in processing signals from large-scale recordings up to thousands of channels. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Fluid Intelligence and Automatic Neural Processes in Facial Expression Perception

    DEFF Research Database (Denmark)

    Liu, Tongran; Xiao, Tong; Li, Xiaoyan

    2015-01-01

    The relationship between human fluid intelligence and social-emotional abilities has been a topic of considerable interest. The current study investigated whether adolescents with different intellectual levels had different automatic neural processing of facial expressions. Two groups of adolescent...... males were enrolled: a high IQ group and an average IQ group. Age and parental socioeconomic status were matched between the two groups. Participants counted the numbers of the central cross changes while paired facial expressions were presented bilaterally in an oddball paradigm. There were two.......2). Participants were required to concentrate on the primary task of counting the central cross changes and to ignore the expressions to ensure that facial expression processing was automatic. Event-related potentials (ERPs) were obtained during the tasks. The visual mismatch negativity (vMMN) components were...

  2. Neural Indices of Semantic Processing in Early Childhood Distinguish Eventual Stuttering Persistence and Recovery

    Science.gov (United States)

    Kreidler, Kathryn; Wray, Amanda Hampton; Usler, Evan; Weber, Christine

    2017-01-01

    Purpose: Maturation of neural processes for language may lag in some children who stutter (CWS), and event-related potentials (ERPs) distinguish CWS who have recovered from those who have persisted. The current study explores whether ERPs indexing semantic processing may distinguish children who will eventually persist in stuttering…

  3. Introduction to spiking neural networks: Information processing, learning and applications.

    Science.gov (United States)

    Ponulak, Filip; Kasinski, Andrzej

    2011-01-01

    The concept that neural information is encoded in the firing rate of neurons has been the dominant paradigm in neurobiology for many years. This paradigm has also been adopted by the theory of artificial neural networks. Recent physiological experiments demonstrate, however, that in many parts of the nervous system, neural code is founded on the timing of individual action potentials. This finding has given rise to the emergence of a new class of neural models, called spiking neural networks. In this paper we summarize basic properties of spiking neurons and spiking networks. Our focus is, specifically, on models of spike-based information coding, synaptic plasticity and learning. We also survey real-life applications of spiking models. The paper is meant to be an introduction to spiking neural networks for scientists from various disciplines interested in spike-based neural processing.

  4. Towards a neural basis of processing musical semantics

    Science.gov (United States)

    Koelsch, Stefan

    2011-06-01

    Processing of meaning is critical for language perception, and therefore the majority of research on meaning processing has focused on the semantic, lexical, conceptual, and propositional processing of language. However, music is another a means of communication, and meaning also emerges from the interpretation of musical information. This article provides a framework for the investigation of the processing of musical meaning, and reviews neuroscience studies investigating this issue. These studies reveal two neural correlates of meaning processing, the N400 and the N5 (which are both components of the event-related electric brain potential). Here I argue that the N400 can be elicited by musical stimuli due to the processing of extra-musical meaning, whereas the N5 can be elicited due to the processing of intra-musical meaning. Notably, whereas the N400 can be elicited by both linguistic and musical stimuli, the N5 has so far only been observed for the processing of meaning in music. Thus, knowledge about both the N400 and the N5 can advance our understanding of how the human brain processes meaning information.

  5. Determining probabilities of geologic events and processes

    International Nuclear Information System (INIS)

    Hunter, R.L.; Mann, C.J.; Cranwell, R.M.

    1985-01-01

    The Environmental Protection Agency has recently published a probabilistic standard for releases of high-level radioactive waste from a mined geologic repository. The standard sets limits for contaminant releases with more than one chance in 100 of occurring within 10,000 years, and less strict limits for releases of lower probability. The standard offers no methods for determining probabilities of geologic events and processes, and no consensus exists in the waste-management community on how to do this. Sandia National Laboratories is developing a general method for determining probabilities of a given set of geologic events and processes. In addition, we will develop a repeatable method for dealing with events and processes whose probability cannot be determined. 22 refs., 4 figs

  6. From sensation to percept: the neural signature of auditory event-related potentials.

    Science.gov (United States)

    Joos, Kathleen; Gilles, Annick; Van de Heyning, Paul; De Ridder, Dirk; Vanneste, Sven

    2014-05-01

    An external auditory stimulus induces an auditory sensation which may lead to a conscious auditory perception. Although the sensory aspect is well known, it is still a question how an auditory stimulus results in an individual's conscious percept. To unravel the uncertainties concerning the neural correlates of a conscious auditory percept, event-related potentials may serve as a useful tool. In the current review we mainly wanted to shed light on the perceptual aspects of auditory processing and therefore we mainly focused on the auditory late-latency responses. Moreover, there is increasing evidence that perception is an active process in which the brain searches for the information it expects to be present, suggesting that auditory perception requires the presence of both bottom-up, i.e. sensory and top-down, i.e. prediction-driven processing. Therefore, the auditory evoked potentials will be interpreted in the context of the Bayesian brain model, in which the brain predicts which information it expects and when this will happen. The internal representation of the auditory environment will be verified by sensation samples of the environment (P50, N100). When this incoming information violates the expectation, it will induce the emission of a prediction error signal (Mismatch Negativity), activating higher-order neural networks and inducing the update of prior internal representations of the environment (P300). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Neural representations of emotion are organized around abstract event features.

    Science.gov (United States)

    Skerry, Amy E; Saxe, Rebecca

    2015-08-03

    Research on emotion attribution has tended to focus on the perception of overt expressions of at most five or six basic emotions. However, our ability to identify others' emotional states is not limited to perception of these canonical expressions. Instead, we make fine-grained inferences about what others feel based on the situations they encounter, relying on knowledge of the eliciting conditions for different emotions. In the present research, we provide convergent behavioral and neural evidence concerning the representations underlying these concepts. First, we find that patterns of activity in mentalizing regions contain information about subtle emotional distinctions conveyed through verbal descriptions of eliciting situations. Second, we identify a space of abstract situation features that well captures the emotion discriminations subjects make behaviorally and show that this feature space outperforms competing models in capturing the similarity space of neural patterns in these regions. Together, the data suggest that our knowledge of others' emotions is abstract and high dimensional, that brain regions selective for mental state reasoning support relatively subtle distinctions between emotion concepts, and that the neural representations in these regions are not reducible to more primitive affective dimensions such as valence and arousal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Cough event classification by pretrained deep neural network.

    Science.gov (United States)

    Liu, Jia-Ming; You, Mingyu; Wang, Zheng; Li, Guo-Zheng; Xu, Xianghuai; Qiu, Zhongmin

    2015-01-01

    Cough is an essential symptom in respiratory diseases. In the measurement of cough severity, an accurate and objective cough monitor is expected by respiratory disease society. This paper aims to introduce a better performed algorithm, pretrained deep neural network (DNN), to the cough classification problem, which is a key step in the cough monitor. The deep neural network models are built from two steps, pretrain and fine-tuning, followed by a Hidden Markov Model (HMM) decoder to capture tamporal information of the audio signals. By unsupervised pretraining a deep belief network, a good initialization for a deep neural network is learned. Then the fine-tuning step is a back propogation tuning the neural network so that it can predict the observation probability associated with each HMM states, where the HMM states are originally achieved by force-alignment with a Gaussian Mixture Model Hidden Markov Model (GMM-HMM) on the training samples. Three cough HMMs and one noncough HMM are employed to model coughs and noncoughs respectively. The final decision is made based on viterbi decoding algorihtm that generates the most likely HMM sequence for each sample. A sample is labeled as cough if a cough HMM is found in the sequence. The experiments were conducted on a dataset that was collected from 22 patients with respiratory diseases. Patient dependent (PD) and patient independent (PI) experimental settings were used to evaluate the models. Five criteria, sensitivity, specificity, F1, macro average and micro average are shown to depict different aspects of the models. From overall evaluation criteria, the DNN based methods are superior to traditional GMM-HMM based method on F1 and micro average with maximal 14% and 11% error reduction in PD and 7% and 10% in PI, meanwhile keep similar performances on macro average. They also surpass GMM-HMM model on specificity with maximal 14% error reduction on both PD and PI. In this paper, we tried pretrained deep neural network in

  9. Linking neural and symbolic representation and processing of conceptual structures

    NARCIS (Netherlands)

    van der Velde, Frank; Forth, Jamie; Nazareth, Deniece S.; Wiggins, Geraint A.

    2017-01-01

    We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like) structures. First is the Neural Blackboard Architecture (NBA), which aims to account for representation and processing of complex and combinatorial conceptual

  10. Tagging b quark events in ALEPH with neural networks

    International Nuclear Information System (INIS)

    Proriol, J.; Jousset, J.; Guicheney, C.; Falvard, A.; Henrard, P.; Pallin, D.; Perret, P.; Brandl, B.

    1991-01-01

    Comparison of different methods to tag b quark events are presented: multilayered perceptron (MLP), Learning Vector Quantization (LVQ), discriminant analysis, combination of any two of the above methods. The sample events come from the ALEPH Monte Carlo and data, from the 1990 ALEPH runs. (authors) 12 refs., 16 figs., 5 tabs

  11. Autocorrel I: A Neural Network Based Network Event Correlation Approach

    National Research Council Canada - National Science Library

    Japkowicz, Nathalie; Smith, Reuben

    2005-01-01

    .... We use the autoassociator to build prototype software to cluster network alerts generated by a Snort intrusion detection system, and discuss how the results are significant, and how they can be applied to other types of network events.

  12. DECISION WITH ARTIFICIAL NEURAL NETWORKS IN DISCRETE EVENT SIMULATION MODELS ON A TRAFFIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Marília Gonçalves Dutra da Silva

    2016-04-01

    Full Text Available ABSTRACT This work aims to demonstrate the use of a mechanism to be applied in the development of the discrete-event simulation models that perform decision operations through the implementation of an artificial neural network. Actions that involve complex operations performed by a human agent in a process, for example, are often modeled in simplified form with the usual mechanisms of simulation software. Therefore, it was chosen a traffic system controlled by a traffic officer with a flow of vehicles and pedestrians to demonstrate the proposed solution. From a module built in simulation software itself, it was possible to connect the algorithm for intelligent decision to the simulation model. The results showed that the model elaborated responded as expected when it was submitted to actions, which required different decisions to maintain the operation of the system with changes in the flow of people and vehicles.

  13. Neural network approach in multichannel auditory event-related potential analysis.

    Science.gov (United States)

    Wu, F Y; Slater, J D; Ramsay, R E

    1994-04-01

    Even though there are presently no clearly defined criteria for the assessment of P300 event-related potential (ERP) abnormality, it is strongly indicated through statistical analysis that such criteria exist for classifying control subjects and patients with diseases resulting in neuropsychological impairment such as multiple sclerosis (MS). We have demonstrated the feasibility of artificial neural network (ANN) methods in classifying ERP waveforms measured at a single channel (Cz) from control subjects and MS patients. In this paper, we report the results of multichannel ERP analysis and a modified network analysis methodology to enhance automation of the classification rule extraction process. The proposed methodology significantly reduces the work of statistical analysis. It also helps to standardize the criteria of P300 ERP assessment and facilitate the computer-aided analysis on neuropsychological functions.

  14. Diagnostic Classifiers: Revealing how Neural Networks Process Hierarchical Structure

    NARCIS (Netherlands)

    Veldhoen, S.; Hupkes, D.; Zuidema, W.

    2016-01-01

    We investigate how neural networks can be used for hierarchical, compositional semantics. To this end, we define the simple but nontrivial artificial task of processing nested arithmetic expressions and study whether different types of neural networks can learn to add and subtract. We find that

  15. Parametric models to relate spike train and LFP dynamics with neural information processing.

    Science.gov (United States)

    Banerjee, Arpan; Dean, Heather L; Pesaran, Bijan

    2012-01-01

    Spike trains and local field potentials (LFPs) resulting from extracellular current flows provide a substrate for neural information processing. Understanding the neural code from simultaneous spike-field recordings and subsequent decoding of information processing events will have widespread applications. One way to demonstrate an understanding of the neural code, with particular advantages for the development of applications, is to formulate a parametric statistical model of neural activity and its covariates. Here, we propose a set of parametric spike-field models (unified models) that can be used with existing decoding algorithms to reveal the timing of task or stimulus specific processing. Our proposed unified modeling framework captures the effects of two important features of information processing: time-varying stimulus-driven inputs and ongoing background activity that occurs even in the absence of environmental inputs. We have applied this framework for decoding neural latencies in simulated and experimentally recorded spike-field sessions obtained from the lateral intraparietal area (LIP) of awake, behaving monkeys performing cued look-and-reach movements to spatial targets. Using both simulated and experimental data, we find that estimates of trial-by-trial parameters are not significantly affected by the presence of ongoing background activity. However, including background activity in the unified model improves goodness of fit for predicting individual spiking events. Uncovering the relationship between the model parameters and the timing of movements offers new ways to test hypotheses about the relationship between neural activity and behavior. We obtained significant spike-field onset time correlations from single trials using a previously published data set where significantly strong correlation was only obtained through trial averaging. We also found that unified models extracted a stronger relationship between neural response latency and trial

  16. An algebra of discrete event processes

    Science.gov (United States)

    Heymann, Michael; Meyer, George

    1991-01-01

    This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.

  17. Neural Substrates for Processing Task-Irrelevant Sad Images in Adolescents

    Science.gov (United States)

    Wang, Lihong; Huettel, Scott; De Bellis, Michael D.

    2008-01-01

    Neural systems related to cognitive and emotional processing were examined in adolescents using event-related functional magnetic resonance imaging (fMRI). Ten healthy adolescents performed an emotional oddball task. Subjects detected infrequent circles (targets) within a continual stream of phase-scrambled images (standards). Sad and neutral…

  18. Dynamic Neural Processing of Linguistic Cues Related to Death

    Science.gov (United States)

    Ma, Yina; Qin, Jungang; Han, Shihui

    2013-01-01

    Behavioral studies suggest that humans evolve the capacity to cope with anxiety induced by the awareness of death’s inevitability. However, the neurocognitive processes that underlie online death-related thoughts remain unclear. Our recent functional MRI study found that the processing of linguistic cues related to death was characterized by decreased neural activity in human insular cortex. The current study further investigated the time course of neural processing of death-related linguistic cues. We recorded event-related potentials (ERP) to death-related, life-related, negative-valence, and neutral-valence words in a modified Stroop task that required color naming of words. We found that the amplitude of an early frontal/central negativity at 84–120 ms (N1) decreased to death-related words but increased to life-related words relative to neutral-valence words. The N1 effect associated with death-related and life-related words was correlated respectively with individuals’ pessimistic and optimistic attitudes toward life. Death-related words also increased the amplitude of a frontal/central positivity at 124–300 ms (P2) and of a frontal/central positivity at 300–500 ms (P3). However, the P2 and P3 modulations were observed for both death-related and negative-valence words but not for life-related words. The ERP results suggest an early inverse coding of linguistic cues related to life and death, which is followed by negative emotional responses to death-related information. PMID:23840787

  19. Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber

    International Nuclear Information System (INIS)

    Acciarri, R.; Adams, C.; An, R.; Asaadi, J.; Auger, M.

    2017-01-01

    Here, we present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. Lastly, we also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.

  20. Recognition of power quality events by using multiwavelet-based neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Kaewarsa, Suriya; Attakitmongcol, Kitti; Kulworawanichpong, Thanatchai [School of Electrical Engineering, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000 (Thailand)

    2008-05-15

    Recognition of power quality events by analyzing the voltage and current waveform disturbances is a very important task for the power system monitoring. This paper presents a novel approach for the recognition of power quality disturbances using multiwavelet transform and neural networks. The proposed method employs the multiwavelet transform using multiresolution signal decomposition techniques working together with multiple neural networks using a learning vector quantization network as a powerful classifier. Various transient events are tested, such as voltage sag, swell, interruption, notching, impulsive transient, and harmonic distortion show that the classifier can detect and classify different power quality signal types efficiency. (author)

  1. Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; Adams, C.; An, R.; Asaadi, J.; Auger, M.; Bagby, L.; Baller, B.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bugel, L.; Camilleri, L.; Caratelli, D.; Carls, B.; Fernandez, R. Castillo; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anad?n, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Sanchez, L. Escudero; Esquivel, J.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; James, C.; de Vries, J. Jan; Jen, C. -M.; Jiang, L.; Johnson, R. A.; Jones, B. J. P.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Caicedo, D. A. Martinez; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Snider, E. L.; Soderberg, M.; S?ldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y. -T.; Tufanli, S.; Usher, T.; Van de Water, R. G.; Viren, B.; Weber, M.; Weston, J.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2017-03-01

    We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.

  2. Doubly stochastic Poisson processes in artificial neural learning.

    Science.gov (United States)

    Card, H C

    1998-01-01

    This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.

  3. Hybrid digital signal processing and neural networks applications in PWRs

    International Nuclear Information System (INIS)

    Eryurek, E.; Upadhyaya, B.R.; Kavaklioglu, K.

    1991-01-01

    Signal validation and plant subsystem tracking in power and process industries require the prediction of one or more state variables. Both heteroassociative and auotassociative neural networks were applied for characterizing relationships among sets of signals. A multi-layer neural network paradigm was applied for sensor and process monitoring in a Pressurized Water Reactor (PWR). This nonlinear interpolation technique was found to be very effective for these applications

  4. Precision Scaling of Neural Networks for Efficient Audio Processing

    OpenAIRE

    Ko, Jong Hwan; Fromm, Josh; Philipose, Matthai; Tashev, Ivan; Zarar, Shuayb

    2017-01-01

    While deep neural networks have shown powerful performance in many audio applications, their large computation and memory demand has been a challenge for real-time processing. In this paper, we study the impact of scaling the precision of neural networks on the performance of two common audio processing tasks, namely, voice-activity detection and single-channel speech enhancement. We determine the optimal pair of weight/neuron bit precision by exploring its impact on both the performance and ...

  5. Social exclusion in middle childhood: rejection events, slow-wave neural activity, and ostracism distress.

    Science.gov (United States)

    Crowley, Michael J; Wu, Jia; Molfese, Peter J; Mayes, Linda C

    2010-01-01

    This study examined neural activity with event-related potentials (ERPs) in middle childhood during a computer-simulated ball-toss game, Cyberball. After experiencing fair play initially, children were ultimately excluded by the other players. We focused specifically on “not my turn” events within fair play and rejection events within social exclusion. Dense-array ERPs revealed that rejection events are perceived rapidly. Condition differences (“not my turn” vs. rejection) were evident in a posterior ERP peaking at 420 ms consistent, with a larger P3 effect for rejection events indicating that in middle childhood rejection events are differentiated in <500 ms. Condition differences were evident for slow-wave activity (500-900 ms) in the medial frontal cortical region and the posterior occipital-parietal region, with rejection events more negative frontally and more positive posteriorly. Distress from the rejection experience was associated with a more negative frontal slow wave and a larger late positive slow wave, but only for rejection events. Source modeling with Geosouce software suggested that slow-wave neural activity in cortical regions previously identified in functional imaging studies of ostracism, including subgenual cortex, ventral anterior cingulate cortex, and insula, was greater for rejection events vs. “not my turn” events. © 2010 Psychology Press

  6. Event classification with the electronic detectors of the OPERA experiment using neural networks

    International Nuclear Information System (INIS)

    Hierholzer, Martin C.

    2012-02-01

    The OPERA experiment searches for ν μ ν τ oscillations in appearance mode. It uses the emulsion cloud chamber (ECC) technique for a high spatial resolution combined with on-line components for event localisation and muon identification. The analysis of events in an ECC detector takes considerable time, especially in case of ν τ /ν e candidate events. A ranking of events by a probability for being a ν τ /ν e event can speed up the analysis of the OPERA experiment. An algorithm for such an event ranking based on a classification-type neural network is presented in this thesis. Almost all candidate events can be found within the first 30% of the analysed events if the described ranking is applied. This event ranking is currently applied for testing purposes by the OPERA collaboration, a decision on a full application for the whole analysis is pending. A similar neural network is used for discrimination between neutral and charged current events. This is used to observe neutrino oscillations in disappearance mode with the on-line components of the OPERA detector by measuring the energy dependence of the fraction of neutral current interactions. The confidence level of the observed oscillation effect is 87%. Assuming full mixing, the mass splitting has been determined to vertical stroke Δm 2 32 vertical stroke =2.8 -1.7 +1.4 .10 -3 eV 2 .

  7. Designing neural networks that process mean values of random variables

    International Nuclear Information System (INIS)

    Barber, Michael J.; Clark, John W.

    2014-01-01

    We develop a class of neural networks derived from probabilistic models posed in the form of Bayesian networks. Making biologically and technically plausible assumptions about the nature of the probabilistic models to be represented in the networks, we derive neural networks exhibiting standard dynamics that require no training to determine the synaptic weights, that perform accurate calculation of the mean values of the relevant random variables, that can pool multiple sources of evidence, and that deal appropriately with ambivalent, inconsistent, or contradictory evidence. - Highlights: • High-level neural computations are specified by Bayesian belief networks of random variables. • Probability densities of random variables are encoded in activities of populations of neurons. • Top-down algorithm generates specific neural network implementation of given computation. • Resulting “neural belief networks” process mean values of random variables. • Such networks pool multiple sources of evidence and deal properly with inconsistent evidence

  8. Designing neural networks that process mean values of random variables

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Michael J. [AIT Austrian Institute of Technology, Innovation Systems Department, 1220 Vienna (Austria); Clark, John W. [Department of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130 (United States); Centro de Ciências Matemáticas, Universidade de Madeira, 9000-390 Funchal (Portugal)

    2014-06-13

    We develop a class of neural networks derived from probabilistic models posed in the form of Bayesian networks. Making biologically and technically plausible assumptions about the nature of the probabilistic models to be represented in the networks, we derive neural networks exhibiting standard dynamics that require no training to determine the synaptic weights, that perform accurate calculation of the mean values of the relevant random variables, that can pool multiple sources of evidence, and that deal appropriately with ambivalent, inconsistent, or contradictory evidence. - Highlights: • High-level neural computations are specified by Bayesian belief networks of random variables. • Probability densities of random variables are encoded in activities of populations of neurons. • Top-down algorithm generates specific neural network implementation of given computation. • Resulting “neural belief networks” process mean values of random variables. • Such networks pool multiple sources of evidence and deal properly with inconsistent evidence.

  9. Features, Events, and Processes: System Level

    Energy Technology Data Exchange (ETDEWEB)

    D. McGregor

    2004-04-19

    The primary purpose of this analysis is to evaluate System Level features, events, and processes (FEPs). The System Level FEPs typically are overarching in nature, rather than being focused on a particular process or subsystem. As a result, they are best dealt with at the system level rather than addressed within supporting process-level or subsystem level analyses and models reports. The System Level FEPs also tend to be directly addressed by regulations, guidance documents, or assumptions listed in the regulations; or are addressed in background information used in development of the regulations. This evaluation determines which of the System Level FEPs are excluded from modeling used to support the total system performance assessment for license application (TSPA-LA). The evaluation is based on the information presented in analysis reports, model reports, direct input, or corroborative documents that are cited in the individual FEP discussions in Section 6.2 of this analysis report.

  10. Attention Modulates the Neural Processes Underlying Multisensory Integration of Emotion

    Directory of Open Access Journals (Sweden)

    Hao Tam Ho

    2011-10-01

    Full Text Available Integrating emotional information from multiple sensory modalities is generally assumed to be a pre-attentive process (de Gelder et al., 1999. This assumption, however, presupposes that the integrative process occurs independent of attention. Using event-potentials (ERP the present study investigated whether the neural processes underlying the integration of dynamic facial expression and emotional prosody is indeed unaffected by attentional manipulations. To this end, participants were presented with congruent and incongruent face-voice combinations (eg, an angry face combined with a neutral voice and performed different two-choice tasks in four consecutive blocks. Three of the tasks directed the participants' attention to emotion expressions in the face, the voice or both. The fourth task required participants to attend to the synchronicity between voice and lip movements. The results show divergent modulations of early ERP components by the different attentional manipulations. For example, when attention was directed to the face (or the voice, incongruent stimuli elicited a reduced N1 as compared to congruent stimuli. This effect was absent, when attention was diverted away from the emotionality in both face and voice suggesting that the detection of emotional incongruence already requires attention. Based on these findings, we question whether multisensory integration of emotion occurs indeed pre-attentively.

  11. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran; Ovcharenko, Oleg; Peter, Daniel

    2017-01-01

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset

  12. ENGINEERED BARRIER SYSTEM FEATURES, EVENTS AND PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Jaros, W.

    2005-08-30

    The purpose of this report is to evaluate and document the inclusion or exclusion of engineered barrier system (EBS) features, events, and processes (FEPs) with respect to models and analyses used to support the total system performance assessment for the license application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for exclusion screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs addressed in this report deal with those features, events, and processes relevant to the EBS focusing mainly on those components and conditions exterior to the waste package and within the rock mass surrounding emplacement drifts. The components of the EBS are the drip shield, waste package, waste form, cladding, emplacement pallet, emplacement drift excavated opening (also referred to as drift opening in this report), and invert. FEPs specific to the waste package, cladding, and drip shield are addressed in separate FEP reports: for example, ''Screening of Features, Events, and Processes in Drip Shield and Waste Package Degradation'' (BSC 2005 [DIRS 174995]), ''Clad Degradation--FEPs Screening Arguments (BSC 2004 [DIRS 170019]), and Waste-Form Features, Events, and Processes'' (BSC 2004 [DIRS 170020]). For included FEPs, this report summarizes the implementation of the FEP in the TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded). This report also documents changes to the EBS FEPs list that have occurred since the previous versions of this report. These changes have resulted due to a reevaluation of the FEPs for TSPA-LA as identified in Section 1.2 of this report and described in more detail in Section 6.1.1. This revision addresses updates in Yucca Mountain Project

  13. ENGINEERED BARRIER SYSTEM FEATURES, EVENTS AND PROCESSES

    International Nuclear Information System (INIS)

    Jaros, W.

    2005-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of engineered barrier system (EBS) features, events, and processes (FEPs) with respect to models and analyses used to support the total system performance assessment for the license application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for exclusion screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs addressed in this report deal with those features, events, and processes relevant to the EBS focusing mainly on those components and conditions exterior to the waste package and within the rock mass surrounding emplacement drifts. The components of the EBS are the drip shield, waste package, waste form, cladding, emplacement pallet, emplacement drift excavated opening (also referred to as drift opening in this report), and invert. FEPs specific to the waste package, cladding, and drip shield are addressed in separate FEP reports: for example, ''Screening of Features, Events, and Processes in Drip Shield and Waste Package Degradation'' (BSC 2005 [DIRS 174995]), ''Clad Degradation--FEPs Screening Arguments (BSC 2004 [DIRS 170019]), and Waste-Form Features, Events, and Processes'' (BSC 2004 [DIRS 170020]). For included FEPs, this report summarizes the implementation of the FEP in the TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded). This report also documents changes to the EBS FEPs list that have occurred since the previous versions of this report. These changes have resulted due to a reevaluation of the FEPs for TSPA-LA as identified in Section 1.2 of this report and described in more detail in Section 6.1.1. This revision addresses updates in Yucca Mountain Project (YMP) administrative procedures as they

  14. Optimization of blanking process using neural network simulation

    International Nuclear Information System (INIS)

    Hambli, R.

    2005-01-01

    The present work describes a methodology using the finite element method and neural network simulation in order to predict the optimum punch-die clearance during sheet metal blanking processes. A damage model is used in order to describe crack initiation and propagation into the sheet. The proposed approach combines predictive finite element and neural network modeling of the leading blanking parameters. Numerical results obtained by finite element computation including damage and fracture modeling were utilized to train the developed simulation environment based on back propagation neural network modeling. The comparative study between the numerical results and the experimental ones shows the good agreement. (author)

  15. Discrepancy of neural response between exogenous and endogenous task switching: an event-related potentials study.

    Science.gov (United States)

    Miyajima, Maki; Toyomaki, Atsuhito; Hashimoto, Naoki; Kusumi, Ichiro; Murohashi, Harumitsu; Koyama, Tsukasa

    2012-08-01

    Task switching is a well-known cognitive paradigm to explore task-set reconfiguration processes such as rule shifting. In particular, endogenous task switching is thought to differ qualitatively from stimulus-triggered exogenous task switching. However, no previous study has examined the neural substrate of endogenous task switching. The purpose of the present study is to explore the differences between event-related potential responses to exogenous and endogenous rule switching at cue stimulus. We modified two patterns of cued switching tasks: exogenous (bottom-up) rule switching and endogenous (top-down) rule switching. In each task cue stimulus was configured to induce switching or maintaining rule. In exogenous switching tasks, late positive deflection was larger in the switch rule condition than in the maintain rule condition. However, in endogenous switching tasks late positive deflection was unexpectedly larger in the maintain-rule condition than in the switch-rule condition. These results indicate that exogenous rule switching is explicit stimulus-driven processes, whereas endogenous rule switching is implicitly parallel processes independent of external stimulus.

  16. Neural network training by Kalman filtering in process system monitoring

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-03-01

    Kalman filtering approach for neural network training is described. Its extended form is used as an adaptive filter in a nonlinear environment of the form a feedforward neural network. Kalman filtering approach generally provides fast training as well as avoiding excessive learning which results in enhanced generalization capability. The network is used in a process monitoring application where the inputs are measurement signals. Since the measurement errors are also modelled in Kalman filter the approach yields accurate training with the implication of accurate neural network model representing the input and output relationships in the application. As the process of concern is a dynamic system, the input source of information to neural network is time dependent so that the training algorithm presents an adaptive form for real-time operation for the monitoring task. (orig.)

  17. Waste Form Features, Events, and Processes

    International Nuclear Information System (INIS)

    R. Schreiner

    2004-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the waste form features, events and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical bases for screening decisions. This information is required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs addressed in this report deal with the issues related to the degradation and potential failure of the waste form and the migration of the waste form colloids. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA, (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical bases for exclusion from TSPA-LA (i.e., why the FEP is excluded). This revision addresses the TSPA-LA FEP list (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). The primary purpose of this report is to identify and document the analyses and resolution of the features, events, and processes (FEPs) associated with the waste form performance in the repository. Forty FEPs were identified that are associated with the waste form performance. This report has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The analyses documented in this report are for the license application (LA) base case design (BSC 2004 [DIRS 168489]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 168489]). Each FEP may include one or more specific issues that are collectively described by a FEP name and a FEP description. The FEP description may encompass a single feature, process or event, or a few closely related or coupled processes if the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs are

  18. Waste Form Features, Events, and Processes

    Energy Technology Data Exchange (ETDEWEB)

    R. Schreiner

    2004-10-27

    The purpose of this report is to evaluate and document the inclusion or exclusion of the waste form features, events and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical bases for screening decisions. This information is required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs addressed in this report deal with the issues related to the degradation and potential failure of the waste form and the migration of the waste form colloids. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA, (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical bases for exclusion from TSPA-LA (i.e., why the FEP is excluded). This revision addresses the TSPA-LA FEP list (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). The primary purpose of this report is to identify and document the analyses and resolution of the features, events, and processes (FEPs) associated with the waste form performance in the repository. Forty FEPs were identified that are associated with the waste form performance. This report has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The analyses documented in this report are for the license application (LA) base case design (BSC 2004 [DIRS 168489]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 168489]). Each FEP may include one or more specific issues that are collectively described by a FEP name and a FEP description. The FEP description may encompass a single feature, process or event, or a few closely related or coupled processes if the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs are

  19. Explicit versus implicit neural processing of musical emotions

    OpenAIRE

    Bogert, Brigitte; Numminen-Kontti, Taru; Gold, Benjamin; Sams, Mikko; Numminen, Jussi; Burunat, Iballa; Lampinen, Jouko; Brattico, Elvira

    2016-01-01

    Music is often used to regulate emotions and mood. Typically, music conveys and induces emotions even when one does not attend to them. Studies on the neural substrates of musical emotions have, however, only examined brain activity when subjects have focused on the emotional content of the music. Here we address with functional magnetic resonance imaging (fMRI) the neural processing of happy, sad, and fearful music with a paradigm in which 56 subjects were instructed to either classify the e...

  20. Separation of quark and gluon gets in the direct photon production processes at the LHC using the neural network approach

    International Nuclear Information System (INIS)

    Bandurin, D.V.; Skachkov, N.B.

    2001-01-01

    A neural network technique is used to discriminate between quark and gluon jets produced in the qg→q+γ and qq bar → g+γ processes at the LHC. Considering the network as a trigger and using the PYTHIA event generator and the full event fast simulation CMSJET package for the CMS detector we obtain signal-to-background ratios

  1. Nonlinear signal processing using neural networks: Prediction and system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A.; Farber, R.

    1987-06-01

    The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.

  2. Exponential Synchronization of Networked Chaotic Delayed Neural Network by a Hybrid Event Trigger Scheme.

    Science.gov (United States)

    Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun; Zhongyang Fei; Chaoxu Guan; Huijun Gao; Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun

    2018-06-01

    This paper is concerned with the exponential synchronization for master-slave chaotic delayed neural network with event trigger control scheme. The model is established on a network control framework, where both external disturbance and network-induced delay are taken into consideration. The desired aim is to synchronize the master and slave systems with limited communication capacity and network bandwidth. In order to save the network resource, we adopt a hybrid event trigger approach, which not only reduces the data package sending out, but also gets rid of the Zeno phenomenon. By using an appropriate Lyapunov functional, a sufficient criterion for the stability is proposed for the error system with extended ( , , )-dissipativity performance index. Moreover, hybrid event trigger scheme and controller are codesigned for network-based delayed neural network to guarantee the exponential synchronization between the master and slave systems. The effectiveness and potential of the proposed results are demonstrated through a numerical example.

  3. Tagging b and c quark events in e+e- collisions with neural networks

    International Nuclear Information System (INIS)

    Proriol, J.; Falvard, A.; Henrard, P.; Jousset, J.; Brandl, B.

    1992-01-01

    High purity samples of b quark events and, if possible, of c quark events are attempted to produce, and the width of Γ(Z 0 → bb-bar) is measured. The different variables and the method to select the most discriminating variables are given. The physical results obtained with these methods are recalled, and new results are presented with variables connected with the impact parameter. Some neural networks used throughout this work and some results on c quark events selection are also presented. (K.A.) 9 refs.; 6 figs

  4. Disentangling the Attention Network Test: Behavioral, Event Related Potentials and neural source analyses.

    Directory of Open Access Journals (Sweden)

    Alejandro eGalvao-Carmona

    2014-10-01

    Full Text Available Background. The study of the attentional system remains a challenge for current neuroscience. The Attention Network Test (ANT was designed to study simultaneously three different attentional networks (alerting, orienting and executive based in subtraction of different experimental conditions. However, some studies recommend caution with these calculations due to the interactions between the attentional networks. In particular, it is highly relevant that several interpretations about attentional impairment have arisen from these calculations in diverse pathologies. Event Related Potentials (ERPs and neural source analysis can be applied to disentangle the relationships between these attentional networks not specifically shown by behavioural measures. Results. This study shows that there is a basic level of alerting (tonic alerting in the no cue condition, represented by a slow negative trend in the ERP trace prior to the onset of the target stimuli. A progressive increase in the CNV amplitude related to the amount of information provided by the cue conditions is also shown. Neural source analysis reveals specific modulations of the CNV related to a task-related expectancy presented in the no cue condition; a late modulation triggered by the central cue condition and probably representing a generic motor preparation; and an early and late modulation for spatial cue condition suggesting specific motor and sensory preactivation. Finally, the first component in the information processing of the target stimuli modulated by the interaction between orienting network and the executive system can be represented by N1. Conclusions. The ANT is useful as a paradigm to study specific attentional mechanisms and their interactions. However, calculation of network effects is based in subtractions with non-comparable experimental conditions, as evidenced by the present data, which can induce misinterpretations in the study of the attentional capacity in human

  5. Linking Neural and Symbolic Representation and Processing of Conceptual Structures

    Directory of Open Access Journals (Sweden)

    Frank van der Velde

    2017-08-01

    Full Text Available We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like structures. First is the Neural Blackboard Architecture (NBA, which aims to account for representation and processing of complex and combinatorial conceptual structures in the brain. Second is IDyOT (Information Dynamics of Thinking, which derives sentence-like structures by learning statistical sequential regularities over a suitable corpus. Although IDyOT is designed at a level more abstract than the neural, so it is a model of cognitive function, rather than neural processing, there are strong similarities between the composite structures developed in IDyOT and the NBA. We hypothesize that these similarities form the basis of a combined architecture in which the individual strengths of each architecture are integrated. We outline and discuss the characteristics of this combined architecture, emphasizing the representation and processing of conceptual structures.

  6. High level cognitive information processing in neural networks

    Science.gov (United States)

    Barnden, John A.; Fields, Christopher A.

    1992-01-01

    Two related research efforts were addressed: (1) high-level connectionist cognitive modeling; and (2) local neural circuit modeling. The goals of the first effort were to develop connectionist models of high-level cognitive processes such as problem solving or natural language understanding, and to understand the computational requirements of such models. The goals of the second effort were to develop biologically-realistic model of local neural circuits, and to understand the computational behavior of such models. In keeping with the nature of NASA's Innovative Research Program, all the work conducted under the grant was highly innovative. For instance, the following ideas, all summarized, are contributions to the study of connectionist/neural networks: (1) the temporal-winner-take-all, relative-position encoding, and pattern-similarity association techniques; (2) the importation of logical combinators into connection; (3) the use of analogy-based reasoning as a bridge across the gap between the traditional symbolic paradigm and the connectionist paradigm; and (4) the application of connectionism to the domain of belief representation/reasoning. The work on local neural circuit modeling also departs significantly from the work of related researchers. In particular, its concentration on low-level neural phenomena that could support high-level cognitive processing is unusual within the area of biological local circuit modeling, and also serves to expand the horizons of the artificial neural net field.

  7. Analysis of the Growth Process of Neural Cells in Culture Environment Using Image Processing Techniques

    Science.gov (United States)

    Mirsafianf, Atefeh S.; Isfahani, Shirin N.; Kasaei, Shohreh; Mobasheri, Hamid

    Here we present an approach for processing neural cells images to analyze their growth process in culture environment. We have applied several image processing techniques for: 1- Environmental noise reduction, 2- Neural cells segmentation, 3- Neural cells classification based on their dendrites' growth conditions, and 4- neurons' features Extraction and measurement (e.g., like cell body area, number of dendrites, axon's length, and so on). Due to the large amount of noise in the images, we have used feed forward artificial neural networks to detect edges more precisely.

  8. Event-Driven Process Chains (EPC)

    Science.gov (United States)

    Mendling, Jan

    This chapter provides a comprehensive overview of Event-driven Process Chains (EPCs) and introduces a novel definition of EPC semantics. EPCs became popular in the 1990s as a conceptual business process modeling language in the context of reference modeling. Reference modeling refers to the documentation of generic business operations in a model such as service processes in the telecommunications sector, for example. It is claimed that reference models can be reused and adapted as best-practice recommendations in individual companies (see [230, 168, 229, 131, 400, 401, 446, 127, 362, 126]). The roots of reference modeling can be traced back to the Kölner Integrationsmodell (KIM) [146, 147] that was developed in the 1960s and 1970s. In the 1990s, the Institute of Information Systems (IWi) in Saarbrücken worked on a project with SAP to define a suitable business process modeling language to document the processes of the SAP R/3 enterprise resource planning system. There were two results from this joint effort: the definition of EPCs [210] and the documentation of the SAP system in the SAP Reference Model (see [92, 211]). The extensive database of this reference model contains almost 10,000 sub-models: 604 of them non-trivial EPC business process models. The SAP Reference model had a huge impact with several researchers referring to it in their publications (see [473, 235, 127, 362, 281, 427, 415]) as well as motivating the creation of EPC reference models in further domains including computer integrated manufacturing [377, 379], logistics [229] or retail [52]. The wide-spread application of EPCs in business process modeling theory and practice is supported by their coverage in seminal text books for business process management and information systems in general (see [378, 380, 49, 384, 167, 240]). EPCs are frequently used in practice due to a high user acceptance [376] and extensive tool support. Some examples of tools that support EPCs are ARIS Toolset by IDS

  9. Features, Events, and Processes: system Level

    Energy Technology Data Exchange (ETDEWEB)

    D. McGregor

    2004-10-15

    The purpose of this analysis report is to evaluate and document the inclusion or exclusion of the system-level features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment for the license application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.113 (d, e, and f) (DIRS 156605). The system-level FEPs addressed in this report typically are overarching in nature, rather than being focused on a particular process or subsystem. As a result, they are best dealt with at the system level rather than addressed within supporting process-level or subsystem-level analyses and models reports. The system-level FEPs also tend to be directly addressed by regulations, guidance documents, or assumptions listed in the regulations; or are addressed in background information used in development of the regulations. For included FEPs, this analysis summarizes the implementation of the FEP in the TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from the TSPA-LA (i.e., why the FEP is excluded). The initial version of this report (Revision 00) was developed to support the total system performance assessment for site recommendation (TSPA-SR). This revision addresses the license application (LA) FEP List (DIRS 170760).

  10. Features, Events, and Processes: system Level

    International Nuclear Information System (INIS)

    D. McGregor

    2004-01-01

    The purpose of this analysis report is to evaluate and document the inclusion or exclusion of the system-level features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment for the license application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.113 (d, e, and f) (DIRS 156605). The system-level FEPs addressed in this report typically are overarching in nature, rather than being focused on a particular process or subsystem. As a result, they are best dealt with at the system level rather than addressed within supporting process-level or subsystem-level analyses and models reports. The system-level FEPs also tend to be directly addressed by regulations, guidance documents, or assumptions listed in the regulations; or are addressed in background information used in development of the regulations. For included FEPs, this analysis summarizes the implementation of the FEP in the TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from the TSPA-LA (i.e., why the FEP is excluded). The initial version of this report (Revision 00) was developed to support the total system performance assessment for site recommendation (TSPA-SR). This revision addresses the license application (LA) FEP List (DIRS 170760)

  11. ENGINEERED BARRIER SYSTEM FEATURES, EVENTS, AND PROCESSES

    International Nuclear Information System (INIS)

    2005-01-01

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the volcanic ash exposure scenario, and the development of dose factors for calculating inhalation dose during volcanic eruption. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1 - 1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed descriptions of the model input parameters, their development and the relationship between the parameters and specific features, events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the volcanic ash exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and from the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; and BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1 - 1). The objective of this analysis was to develop the BDCFs for the

  12. Neural correlates of successful semantic processing during propofol sedation

    NARCIS (Netherlands)

    Adapa, Ram M.; Davis, Matthew H.; Stamatakis, Emmanuel A.; Absalom, Anthony R.; Menon, David K.

    Sedation has a graded effect on brain responses to auditory stimuli: perceptual processing persists at sedation levels that attenuate more complex processing. We used fMRI in healthy volunteers sedated with propofol to assess changes in neural responses to spoken stimuli. Volunteers were scanned

  13. A fuzzy art neural network based color image processing and ...

    African Journals Online (AJOL)

    To improve the learning process from the input data, a new learning rule was suggested. In this paper, a new method is proposed to deal with the RGB color image pixels, which enables a Fuzzy ART neural network to process the RGB color images. The application of the algorithm was implemented and tested on a set of ...

  14. Applying Bayesian neural networks to separate neutrino events from backgrounds in reactor neutrino experiments

    International Nuclear Information System (INIS)

    Xu, Y; Meng, Y X; Xu, W W

    2008-01-01

    A toy detector has been designed to simulate central detectors in reactor neutrino experiments in the paper. The samples of neutrino events and three major backgrounds from the Monte-Carlo simulation of the toy detector are generated in the signal region. The Bayesian Neural Networks (BNN) are applied to separate neutrino events from backgrounds in reactor neutrino experiments. As a result, the most neutrino events and uncorrelated background events in the signal region can be identified with BNN, and the part events each of the fast neutron and 8 He/ 9 Li backgrounds in the signal region can be identified with BNN. Then, the signal to noise ratio in the signal region is enhanced with BNN. The neutrino discrimination increases with the increase of the neutrino rate in the training sample. However, the background discriminations decrease with the decrease of the background rate in the training sample

  15. Rule-Based Event Processing and Reaction Rules

    Science.gov (United States)

    Paschke, Adrian; Kozlenkov, Alexander

    Reaction rules and event processing technologies play a key role in making business and IT / Internet infrastructures more agile and active. While event processing is concerned with detecting events from large event clouds or streams in almost real-time, reaction rules are concerned with the invocation of actions in response to events and actionable situations. They state the conditions under which actions must be taken. In the last decades various reaction rule and event processing approaches have been developed, which for the most part have been advanced separately. In this paper we survey reaction rule approaches and rule-based event processing systems and languages.

  16. Event classification with the electronic detectors of the OPERA experiment using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hierholzer, Martin C.

    2012-02-15

    The OPERA experiment searches for {nu}{sub {mu}} <-> {nu}{sub {tau}} oscillations in appearance mode. It uses the emulsion cloud chamber (ECC) technique for a high spatial resolution combined with on-line components for event localisation and muon identification. The analysis of events in an ECC detector takes considerable time, especially in case of {nu}{sub {tau}}/{nu}{sub e} candidate events. A ranking of events by a probability for being a {nu}{sub {tau}}/{nu}{sub e} event can speed up the analysis of the OPERA experiment. An algorithm for such an event ranking based on a classification-type neural network is presented in this thesis. Almost all candidate events can be found within the first 30% of the analysed events if the described ranking is applied. This event ranking is currently applied for testing purposes by the OPERA collaboration, a decision on a full application for the whole analysis is pending. A similar neural network is used for discrimination between neutral and charged current events. This is used to observe neutrino oscillations in disappearance mode with the on-line components of the OPERA detector by measuring the energy dependence of the fraction of neutral current interactions. The confidence level of the observed oscillation effect is 87%. Assuming full mixing, the mass splitting has been determined to vertical stroke {delta}m{sup 2}{sub 32} vertical stroke =2.8{sub -1.7}{sup +1.4}.10{sup -3}eV{sup 2}.

  17. The neural basis of temporal order processing in past and future thought.

    Science.gov (United States)

    D'Argembeau, Arnaud; Jeunehomme, Olivier; Majerus, Steve; Bastin, Christine; Salmon, Eric

    2015-01-01

    Although growing evidence has shown that remembering the past and imagining the future recruit a common core network of frontal-parietal-temporal regions, the extent to which these regions contribute to the temporal dimension of autobiographical thought remains unclear. In this fMRI study, we focused on the event-sequencing aspect of time and examined whether ordering past and future events involve common neural substrates. Participants had to determine which of two past (or future) events occurred (or would occur) before the other, and these order judgments were compared with a task requiring to think about the content of the same past or future events. For both past and future events, we found that the left posterior hippocampus was more activated when establishing the order of events, whereas the anterior hippocampus was more activated when representing their content. Aside from the hippocampus, most of the brain regions that were activated when thinking about temporal order (notably the intraparietal sulcus, dorsolateral pFC, dorsal anterior cingulate, and visual cortex) lied outside the core network and may reflect the involvement of controlled processes and visuospatial imagery to locate events in time. Collectively, these findings suggest (a) that the same processing operations are engaged for ordering past events and planned future events in time, (b) that anterior and posterior portions of the hippocampus are involved in processing different aspects of autobiographical thought, and (c) that temporal order is not necessarily an intrinsic property of memory or future thought but instead requires additional, controlled processes.

  18. Application of fuzzy neural network technologies in management of transport and logistics processes in Arctic

    Science.gov (United States)

    Levchenko, N. G.; Glushkov, S. V.; Sobolevskaya, E. Yu; Orlov, A. P.

    2018-05-01

    The method of modeling the transport and logistics process using fuzzy neural network technologies has been considered. The analysis of the implemented fuzzy neural network model of the information management system of transnational multimodal transportation of the process showed the expediency of applying this method to the management of transport and logistics processes in the Arctic and Subarctic conditions. The modular architecture of this model can be expanded by incorporating additional modules, since the working conditions in the Arctic and the subarctic themselves will present more and more realistic tasks. The architecture allows increasing the information management system, without affecting the system or the method itself. The model has a wide range of application possibilities, including: analysis of the situation and behavior of interacting elements; dynamic monitoring and diagnostics of management processes; simulation of real events and processes; prediction and prevention of critical situations.

  19. Identification of pp→K±π-+ K0(K0) events using artificial neural networks

    International Nuclear Information System (INIS)

    Pavlopoulos, P.; Polivka, G.; Vlachos, S.; Wendler, H.

    1995-01-01

    An artificial neural network classifier has been developed in order to separate on-line events containing a decaying neutral kaon. The proposed system performs better than classical selection methods in real-time applications. The biases due to the on-line selection are smaller than few per cent and are known. The system is robust against calibration variations and missing information. A hardware implementation of the algorithm allows an event selection in less than 40 μs and provides a considerable on-line rate reduction in tagged neutral kaon experiments. This classifier has been developed within the framework of the CPLEAR experiment. (orig.)

  20. ENGINEERED BARRIER SYSTEM FEATURES, EVENTS, AND PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    na

    2005-05-30

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the volcanic ash exposure scenario, and the development of dose factors for calculating inhalation dose during volcanic eruption. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1 - 1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed descriptions of the model input parameters, their development and the relationship between the parameters and specific features, events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the volcanic ash exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and from the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; and BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1 - 1). The

  1. Discrimination of panti p → tanti t events by a neural network classifier

    International Nuclear Information System (INIS)

    Cherubini, A.; Odorico, R.

    1992-01-01

    Neural network and conventional statistical techniques are compared in the problem of discriminating panti p→tanti t events, with top quarks decaying into anything, from the associated hadronic background at the energy of the Fermilab collider. The NN we develop for this sake is an improved version of Kohonen's learning vector quantization scheme. Performance of the NN as a tanti t event classifier is found to be less satisfactory than that achievable by statistical methods. We conclude that the probable reasons for that are: i) The NN approach presents advantages only when dealing with event distributions in the feature space which substantially differ from Gaussians; ii) NN's require much larger training sets of events than statistical discrimination in order to give comparable results. (orig.)

  2. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran

    2017-08-17

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset for event detection. The input features used include the average of absolute amplitudes, variance, energy-ratio and polarization rectilinearity. These features are calculated in a moving-window of same length for the entire waveform. The output is set as a user-specified relative probability curve, which provides a robust way of distinguishing between weak and strong events. An optimal network is selected by studying the weight-based saliency and effect of number of neurons on the predicted results. Using synthetic data examples, we demonstrate that this approach is effective in detecting weaker events and reduces the number of false positives.

  3. Combinatorial structures and processing in neural blackboard architectures

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, Frank; de Kamps, Marc; Besold, Tarek R.; d'Avila Garcez, Artur; Marcus, Gary F.; Miikkulainen, Risto

    2015-01-01

    We discuss and illustrate Neural Blackboard Architectures (NBAs) as the basis for variable binding and combinatorial processing the brain. We focus on the NBA for sentence structure. NBAs are based on the notion that conceptual representations are in situ, hence cannot be copied or transported.

  4. Recurrent Artificial Neural Networks and Finite State Natural Language Processing.

    Science.gov (United States)

    Moisl, Hermann

    It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…

  5. Music Signal Processing Using Vector Product Neural Networks

    Science.gov (United States)

    Fan, Z. C.; Chan, T. S.; Yang, Y. H.; Jang, J. S. R.

    2017-05-01

    We propose a novel neural network model for music signal processing using vector product neurons and dimensionality transformations. Here, the inputs are first mapped from real values into three-dimensional vectors then fed into a three-dimensional vector product neural network where the inputs, outputs, and weights are all three-dimensional values. Next, the final outputs are mapped back to the reals. Two methods for dimensionality transformation are proposed, one via context windows and the other via spectral coloring. Experimental results on the iKala dataset for blind singing voice separation confirm the efficacy of our model.

  6. A new neural framework for visuospatial processing.

    Science.gov (United States)

    Kravitz, Dwight J; Saleem, Kadharbatcha S; Baker, Chris I; Mishkin, Mortimer

    2011-04-01

    The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a 'What' pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception ('Where'), more recent accounts suggest it primarily serves non-conscious visually guided action ('How'). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively.

  7. Event Modeling in UML. Unified Modeling Language and Unified Process

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2002-01-01

    We show how events can be modeled in terms of UML. We view events as change agents that have consequences and as information objects that represent information. We show how to create object-oriented structures that represent events in terms of attributes, associations, operations, state charts......, and messages. We outline a run-time environment for the processing of events with multiple participants....

  8. Investigating source processes of isotropic events

    Science.gov (United States)

    Chiang, Andrea

    This dissertation demonstrates the utility of the complete waveform regional moment tensor inversion for nuclear event discrimination. I explore the source processes and associated uncertainties for explosions and earthquakes under the effects of limited station coverage, compound seismic sources, assumptions in velocity models and the corresponding Green's functions, and the effects of shallow source depth and free-surface conditions. The motivation to develop better techniques to obtain reliable source mechanism and assess uncertainties is not limited to nuclear monitoring, but they also provide quantitative information about the characteristics of seismic hazards, local and regional tectonics and in-situ stress fields of the region . This dissertation begins with the analysis of three sparsely recorded events: the 14 September 1988 US-Soviet Joint Verification Experiment (JVE) nuclear test at the Semipalatinsk test site in Eastern Kazakhstan, and two nuclear explosions at the Chinese Lop Nor test site. We utilize a regional distance seismic waveform method fitting long-period, complete, three-component waveforms jointly with first-motion observations from regional stations and teleseismic arrays. The combination of long period waveforms and first motion observations provides unique discrimination of these sparsely recorded events in the context of the Hudson et al. (1989) source-type diagram. We examine the effects of the free surface on the moment tensor via synthetic testing, and apply the moment tensor based discrimination method to well-recorded chemical explosions. These shallow chemical explosions represent rather severe source-station geometry in terms of the vanishing traction issues. We show that the combined waveform and first motion method enables the unique discrimination of these events, even though the data include unmodeled single force components resulting from the collapse and blowout of the quarry face immediately following the initial

  9. Neural Basis of Intrinsic Motivation: Evidence from Event-Related Potentials.

    Science.gov (United States)

    Jin, Jia; Yu, Liping; Ma, Qingguo

    2015-01-01

    Human intrinsic motivation is of great importance in human behavior. However, although researchers have focused on this topic for decades, its neural basis was still unclear. The current study employed event-related potentials to investigate the neural disparity between an interesting stop-watch (SW) task and a boring watch-stop task (WS) to understand the neural mechanisms of intrinsic motivation. Our data showed that, in the cue priming stage, the cue of the SW task elicited smaller N2 amplitude than that of the WS task. Furthermore, in the outcome feedback stage, the outcome of the SW task induced smaller FRN amplitude and larger P300 amplitude than that of the WS task. These results suggested that human intrinsic motivation did exist and that it can be detected at the neural level. Furthermore, intrinsic motivation could be quantitatively indexed by the amplitude of ERP components, such as N2, FRN, and P300, in the cue priming stage or feedback stage. Quantitative measurements would also be convenient for intrinsic motivation to be added as a candidate social factor in the construction of a machine learning model.

  10. Neural network connectivity and response latency modelled by stochastic processes

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano

    is connected to thousands of other neurons. The rst question is: how to model neural networks through stochastic processes? A multivariate Ornstein-Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the proposed answer. Obviously, dependencies between neurons imply dependencies......Stochastic processes and their rst passage times have been widely used to describe the membrane potential dynamics of single neurons and to reproduce neuronal spikes, respectively.However, cerebral cortex in human brains is estimated to contain 10-20 billions of neurons and each of them...... between their spike times. Therefore, the second question is: how to detect neural network connectivity from simultaneously recorded spike trains? Answering this question corresponds to investigate the joint distribution of sequences of rst passage times. A non-parametric method based on copulas...

  11. Adaptive Moving Object Tracking Integrating Neural Networks And Intelligent Processing

    Science.gov (United States)

    Lee, James S. J.; Nguyen, Dziem D.; Lin, C.

    1989-03-01

    A real-time adaptive scheme is introduced to detect and track moving objects under noisy, dynamic conditions including moving sensors. This approach integrates the adaptiveness and incremental learning characteristics of neural networks with intelligent reasoning and process control. Spatiotemporal filtering is used to detect and analyze motion, exploiting the speed and accuracy of multiresolution processing. A neural network algorithm constitutes the basic computational structure for classification. A recognition and learning controller guides the on-line training of the network, and invokes pattern recognition to determine processing parameters dynamically and to verify detection results. A tracking controller acts as the central control unit, so that tracking goals direct the over-all system. Performance is benchmarked against the Widrow-Hoff algorithm, for target detection scenarios presented in diverse FLIR image sequences. Efficient algorithm design ensures that this recognition and control scheme, implemented in software and commercially available image processing hardware, meets the real-time requirements of tracking applications.

  12. Psychological Processing in Chronic Pain: A Neural Systems Approach

    OpenAIRE

    Simons, Laura; Elman, Igor; Borsook, David

    2013-01-01

    Our understanding of chronic pain involves complex brain circuits that include sensory, emotional, cognitive and interoceptive processing. The feed-forward interactions between physical (e.g., trauma) and emotional pain and the consequences of altered psychological status on the expression of pain have made the evaluation and treatment of chronic pain a challenge in the clinic. By understanding the neural circuits involved in psychological processes, a mechanistic approach to the implementati...

  13. The underlying event in hard scattering processes

    International Nuclear Information System (INIS)

    Field, R.

    2002-01-01

    The authors study the behavior of the underlying event in hard scattering proton-antiproton collisions at 1.8 TeV and compare with the QCD Monte-Carlo models. The underlying event is everything except the two outgoing hard scattered jets and receives contributions from the beam-beam remnants plus initial and final-state radiation. The data indicate that neither ISAJET or HERWIG produce enough charged particles (with p T > 0.5 GeV/c) from the beam-beam remnant component and that ISAJET produces too many charged particles from initial-state radiation. PYTHIA which uses multiple parton scattering to enhance the underlying event does the best job describing the data

  14. Modeling of an industrial drying process by artificial neural networks

    Directory of Open Access Journals (Sweden)

    E. Assidjo

    2008-09-01

    Full Text Available A suitable method is needed to solve the nonquality problem in the grated coconut industry due to the poor control of product humidity during the process. In this study the possibility of using an artificial neural network (ANN, precisely a Multilayer Perceptron, for modeling the drying step of the production of grated coconut process is highlighted. Drying must confer to the product a final moisture of 3%. Unfortunately, under industrial conditions, this moisture varies from 1.9 to 4.8 %. In order to control this parameter and consequently reduce the proportion of the product that does not meet the humidity specification, a 9-4-1 neural network architecture was established using data gathered from an industrial plant. This Multilayer Perceptron can satisfactorily model the process with less bias, ranging from -0.35 to 0.34%, and can reduce the rate of rejected products from 92% to 3% during the first cycle of drying.

  15. The role of automaticity and attention in neural processes underlying empathy for happiness, sadness, and anxiety

    Directory of Open Access Journals (Sweden)

    Sylvia A. Morelli

    2013-05-01

    Full Text Available Although many studies have examined the neural basis of experiencing empathy, relatively little is known about how empathic processes are affected by different attentional conditions. Thus, we examined whether instructions to empathize might amplify responses in empathy-related regions and whether cognitive load would diminish the involvement of these regions. 32 participants completed a functional magnetic resonance imaging session assessing empathic responses to individuals experiencing happy, sad, and anxious events. Stimuli were presented under three conditions: watching naturally, while instructed to empathize, and under cognitive load. Across analyses, we found evidence for a core set of neural regions that support empathic processes (dorsomedial prefrontal cortex, DMPFC; medial prefrontal cortex, MPFC; temporoparietal junction, TPJ; amygdala; ventral anterior insula, AI; septal area, SA. Two key regions – the ventral AI and SA – were consistently active across all attentional conditions, suggesting that they are automatically engaged during empathy. In addition, watching versus empathizing with targets was not markedly different and instead led to similar subjective and neural responses to others’ emotional experiences. In contrast, cognitive load reduced the subjective experience of empathy and diminished neural responses in several regions related to empathy (DMPFC, MPFC, TPJ, amygdala and social cognition. The current results reveal how attention impacts empathic processes and provides insight into how empathy may unfold in everyday interactions.

  16. Cryogenic dark matter search (CDMS II): Application of neural networks and wavelets to event analysis

    Energy Technology Data Exchange (ETDEWEB)

    Attisha, Michael J. [Brown U.

    2006-01-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs) via their elastic scattering interactions with nuclei. This dissertation presents the CDMS detector technology and the commissioning of two towers of detectors at the deep underground site in Soudan, Minnesota. CDMS detectors comprise crystals of Ge and Si at temperatures of 20 mK which provide ~keV energy resolution and the ability to perform particle identification on an event by event basis. Event identification is performed via a two-fold interaction signature; an ionization response and an athermal phonon response. Phonons and charged particles result in electron recoils in the crystal, while neutrons and WIMPs result in nuclear recoils. Since the ionization response is quenched by a factor ~ 3(2) in Ge(Si) for nuclear recoils compared to electron recoils, the relative amplitude of the two detector responses allows discrimination between recoil types. The primary source of background events in CDMS arises from electron recoils in the outer 50 µm of the detector surface which have a reduced ionization response. We develop a quantitative model of this ‘dead layer’ effect and successfully apply the model to Monte Carlo simulation of CDMS calibration data. Analysis of data from the two tower run March-August 2004 is performed, resulting in the world’s most sensitive limits on the spin-independent WIMP-nucleon cross-section, with a 90% C.L. upper limit of 1.6 × 10-43 cm2 on Ge for a 60 GeV WIMP. An approach to performing surface event discrimination using neural networks and wavelets is developed. A Bayesian methodology to classifying surface events using neural networks is found to provide an optimized method based on minimization of the expected dark matter limit. The discrete wavelet analysis of CDMS phonon pulses improves surface event discrimination in conjunction with the neural

  17. An Event-related Brain Potential Study of English Morphosyntactic Processing in Japanese Learners of English

    OpenAIRE

    Tatsuta, Natsuko

    2014-01-01

    This dissertation investigated the neural mechanisms underlying English morphosyntactic processing in Case, subject-verb agreement, and past tense inflection in Japanese learners of English (JLEs) using event-related brain potentials (ERPs) in terms of the effects of the age of second language (L2) acquisition (the age of learning English), L2 proficiency level (the English proficiency level), and native/first language (L1) transfer. Researchers have debated for a number of years the question...

  18. Neural robust stabilization via event-triggering mechanism and adaptive learning technique.

    Science.gov (United States)

    Wang, Ding; Liu, Derong

    2018-06-01

    The robust control synthesis of continuous-time nonlinear systems with uncertain term is investigated via event-triggering mechanism and adaptive critic learning technique. We mainly focus on combining the event-triggering mechanism with adaptive critic designs, so as to solve the nonlinear robust control problem. This can not only make better use of computation and communication resources, but also conduct controller design from the view of intelligent optimization. Through theoretical analysis, the nonlinear robust stabilization can be achieved by obtaining an event-triggered optimal control law of the nominal system with a newly defined cost function and a certain triggering condition. The adaptive critic technique is employed to facilitate the event-triggered control design, where a neural network is introduced as an approximator of the learning phase. The performance of the event-triggered robust control scheme is validated via simulation studies and comparisons. The present method extends the application domain of both event-triggered control and adaptive critic control to nonlinear systems possessing dynamical uncertainties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Differences in the neural signature of remembering schema-congruent and schema-incongruent events.

    Science.gov (United States)

    Brod, Garvin; Lindenberger, Ulman; Werkle-Bergner, Markus; Shing, Yee Lee

    2015-08-15

    New experiences are remembered in relation to one's existing world knowledge or schema. Recent research suggests that the medial prefrontal cortex (mPFC) supports the retrieval of schema-congruent information. However, the neural mechanisms supporting memory for information violating a schema have remained elusive, presumably because incongruity is inherently ambiguous in tasks that rely on world knowledge. We present a novel paradigm that experimentally induces hierarchically structured knowledge to directly contrast neural correlates that contribute to the successful retrieval of schema-congruent versus schema-incongruent information. We hypothesize that remembering incongruent events engages source memory networks including the lateral PFC. In a sample of young adults, we observed enhanced activity in the dorsolateral PFC (DLPFC), in the posterior parietal cortex, and in the striatum when successfully retrieving incongruent events, along with enhanced connectivity between DLPFC and striatum. In addition, we found enhanced mPFC activity for successfully retrieved events that are congruent with the induced schema, presumably reflecting a role of the mPFC in biasing retrieval towards schema-congruent episodes. We conclude that medial and lateral PFC contributions to memory retrieval differ by schema congruency, and highlight the utility of the new experimental paradigm for addressing developmental research questions. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Second-order analysis of semiparametric recurrent event processes.

    Science.gov (United States)

    Guan, Yongtao

    2011-09-01

    A typical recurrent event dataset consists of an often large number of recurrent event processes, each of which contains multiple event times observed from an individual during a follow-up period. Such data have become increasingly available in medical and epidemiological studies. In this article, we introduce novel procedures to conduct second-order analysis for a flexible class of semiparametric recurrent event processes. Such an analysis can provide useful information regarding the dependence structure within each recurrent event process. Specifically, we will use the proposed procedures to test whether the individual recurrent event processes are all Poisson processes and to suggest sensible alternative models for them if they are not. We apply these procedures to a well-known recurrent event dataset on chronic granulomatous disease and an epidemiological dataset on meningococcal disease cases in Merseyside, United Kingdom to illustrate their practical value. © 2011, The International Biometric Society.

  1. Neural processes underlying cultural differences in cognitive persistence.

    Science.gov (United States)

    Telzer, Eva H; Qu, Yang; Lin, Lynda C

    2017-08-01

    Self-improvement motivation, which occurs when individuals seek to improve upon their competence by gaining new knowledge and improving upon their skills, is critical for cognitive, social, and educational adjustment. While many studies have delineated the neural mechanisms supporting extrinsic motivation induced by monetary rewards, less work has examined the neural processes that support intrinsically motivated behaviors, such as self-improvement motivation. Because cultural groups traditionally vary in terms of their self-improvement motivation, we examined cultural differences in the behavioral and neural processes underlying motivated behaviors during cognitive persistence in the absence of extrinsic rewards. In Study 1, 71 American (47 females, M=19.68 years) and 68 Chinese (38 females, M=19.37 years) students completed a behavioral cognitive control task that required cognitive persistence across time. In Study 2, 14 American and 15 Chinese students completed the same cognitive persistence task during an fMRI scan. Across both studies, American students showed significant declines in cognitive performance across time, whereas Chinese participants demonstrated effective cognitive persistence. These behavioral effects were explained by cultural differences in self-improvement motivation and paralleled by increasing activation and functional coupling between the inferior frontal gyrus (IFG) and ventral striatum (VS) across the task among Chinese participants, neural activation and coupling that remained low in American participants. These findings suggest a potential neural mechanism by which the VS and IFG work in concert to promote cognitive persistence in the absence of extrinsic rewards. Thus, frontostriatal circuitry may be a neurobiological signal representing intrinsic motivation for self-improvement that serves an adaptive function, increasing Chinese students' motivation to engage in cognitive persistence. Copyright © 2017 Elsevier Inc. All rights

  2. Component Neural Systems for the Creation of Emotional Memories during Free Viewing of a Complex, Real-World Event.

    Science.gov (United States)

    Botzung, Anne; Labar, Kevin S; Kragel, Philip; Miles, Amanda; Rubin, David C

    2010-01-01

    To investigate the neural systems that contribute to the formation of complex, self-relevant emotional memories, dedicated fans of rival college basketball teams watched a competitive game while undergoing functional magnetic resonance imaging (fMRI). During a subsequent recognition memory task, participants were shown video clips depicting plays of the game, stemming either from previously-viewed game segments (targets) or from non-viewed portions of the same game (foils). After an old-new judgment, participants provided emotional valence and intensity ratings of the clips. A data driven approach was first used to decompose the fMRI signal acquired during free viewing of the game into spatially independent components. Correlations were then calculated between the identified components and post-scanning emotion ratings for successfully encoded targets. Two components were correlated with intensity ratings, including temporal lobe regions implicated in memory and emotional functions, such as the hippocampus and amygdala, as well as a midline fronto-cingulo-parietal network implicated in social cognition and self-relevant processing. These data were supported by a general linear model analysis, which revealed additional valence effects in fronto-striatal-insular regions when plays were divided into positive and negative events according to the fan's perspective. Overall, these findings contribute to our understanding of how emotional factors impact distributed neural systems to successfully encode dynamic, personally-relevant event sequences.

  3. Component neural systems for the creation of emotional memories during free viewing of a complex, real-world event

    Directory of Open Access Journals (Sweden)

    Anne Botzung

    2010-05-01

    Full Text Available To investigate the neural systems that contribute to the formation of complex, self-relevant emotional memories, dedicated fans of rival college basketball teams watched a competitive game while undergoing functional magnetic resonance imaging (fMRI. During a subsequent recognition memory task, participants were shown video clips depicting plays of the game, stemming either from previously-viewed game segments (targets or from non-viewed portions of the same game (foils. After an old-new judgment, participants provided emotional valence and intensity ratings of the clips. A data driven approach was first used to decompose the fMRI signal acquired during free viewing of the game into spatially independent components. Correlations were then calculated between the identified components and post-scanning emotion ratings for successfully encoded targets. Two components were correlated with intensity ratings, including temporal lobe regions implicated in memory and emotional functions, such as the hippocampus and amygdala, as well as a midline fronto-cingulo-parietal network implicated in social cognition and self-relevant processing. These data were supported by a general linear model analysis, which revealed additional valence effects in fronto-striatal-insular regions when plays were divided into positive and negative events according to the fan’s perspective. Overall, these findings contribute to our understanding of how emotional factors impact distributed neural systems to successfully encode dynamic, personally-relevant event sequences.

  4. Alternating event processes during lifetimes: population dynamics and statistical inference.

    Science.gov (United States)

    Shinohara, Russell T; Sun, Yifei; Wang, Mei-Cheng

    2018-01-01

    In the literature studying recurrent event data, a large amount of work has been focused on univariate recurrent event processes where the occurrence of each event is treated as a single point in time. There are many applications, however, in which univariate recurrent events are insufficient to characterize the feature of the process because patients experience nontrivial durations associated with each event. This results in an alternating event process where the disease status of a patient alternates between exacerbations and remissions. In this paper, we consider the dynamics of a chronic disease and its associated exacerbation-remission process over two time scales: calendar time and time-since-onset. In particular, over calendar time, we explore population dynamics and the relationship between incidence, prevalence and duration for such alternating event processes. We provide nonparametric estimation techniques for characteristic quantities of the process. In some settings, exacerbation processes are observed from an onset time until death; to account for the relationship between the survival and alternating event processes, nonparametric approaches are developed for estimating exacerbation process over lifetime. By understanding the population dynamics and within-process structure, the paper provide a new and general way to study alternating event processes.

  5. Applying Bayesian neural networks to event reconstruction in reactor neutrino experiments

    International Nuclear Information System (INIS)

    Xu Ye; Xu Weiwei; Meng Yixiong; Zhu Kaien; Xu Wei

    2008-01-01

    A toy detector has been designed to simulate central detectors in reactor neutrino experiments in the paper. The electron samples from the Monte-Carlo simulation of the toy detector have been reconstructed by the method of Bayesian neural networks (BNNs) and the standard algorithm, a maximum likelihood method (MLD), respectively. The result of the event reconstruction using BNN has been compared with the one using MLD. Compared to MLD, the uncertainties of the electron vertex are not improved, but the energy resolutions are significantly improved using BNN. And the improvement is more obvious for the high energy electrons than the low energy ones

  6. Acoustic Event Detection in Multichannel Audio Using Gated Recurrent Neural Networks with High‐Resolution Spectral Features

    Directory of Open Access Journals (Sweden)

    Hyoung‐Gook Kim

    2017-12-01

    Full Text Available Recently, deep recurrent neural networks have achieved great success in various machine learning tasks, and have also been applied for sound event detection. The detection of temporally overlapping sound events in realistic environments is much more challenging than in monophonic detection problems. In this paper, we present an approach to improve the accuracy of polyphonic sound event detection in multichannel audio based on gated recurrent neural networks in combination with auditory spectral features. In the proposed method, human hearing perception‐based spatial and spectral‐domain noise‐reduced harmonic features are extracted from multichannel audio and used as high‐resolution spectral inputs to train gated recurrent neural networks. This provides a fast and stable convergence rate compared to long short‐term memory recurrent neural networks. Our evaluation reveals that the proposed method outperforms the conventional approaches.

  7. Neural PID Control Strategy for Networked Process Control

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2013-01-01

    Full Text Available A new method with a two-layer hierarchy is presented based on a neural proportional-integral-derivative (PID iterative learning method over the communication network for the closed-loop automatic tuning of a PID controller. It can enhance the performance of the well-known simple PID feedback control loop in the local field when real networked process control applied to systems with uncertain factors, such as external disturbance or randomly delayed measurements. The proposed PID iterative learning method is implemented by backpropagation neural networks whose weights are updated via minimizing tracking error entropy of closed-loop systems. The convergence in the mean square sense is analysed for closed-loop networked control systems. To demonstrate the potential applications of the proposed strategies, a pressure-tank experiment is provided to show the usefulness and effectiveness of the proposed design method in network process control systems.

  8. Opponent appetitive-aversive neural processes underlie predictive learning of pain relief.

    Science.gov (United States)

    Seymour, Ben; O'Doherty, John P; Koltzenburg, Martin; Wiech, Katja; Frackowiak, Richard; Friston, Karl; Dolan, Raymond

    2005-09-01

    Termination of a painful or unpleasant event can be rewarding. However, whether the brain treats relief in a similar way as it treats natural reward is unclear, and the neural processes that underlie its representation as a motivational goal remain poorly understood. We used fMRI (functional magnetic resonance imaging) to investigate how humans learn to generate expectations of pain relief. Using a pavlovian conditioning procedure, we show that subjects experiencing prolonged experimentally induced pain can be conditioned to predict pain relief. This proceeds in a manner consistent with contemporary reward-learning theory (average reward/loss reinforcement learning), reflected by neural activity in the amygdala and midbrain. Furthermore, these reward-like learning signals are mirrored by opposite aversion-like signals in lateral orbitofrontal cortex and anterior cingulate cortex. This dual coding has parallels to 'opponent process' theories in psychology and promotes a formal account of prediction and expectation during pain.

  9. Process for forming synapses in neural networks and resistor therefor

    Science.gov (United States)

    Fu, Chi Y.

    1996-01-01

    Customizable neural network in which one or more resistors form each synapse. All the resistors in the synaptic array are identical, thus simplifying the processing issues. Highly doped, amorphous silicon is used as the resistor material, to create extremely high resistances occupying very small spaces. Connected in series with each resistor in the array is at least one severable conductor whose uppermost layer has a lower reflectivity of laser energy than typical metal conductors at a desired laser wavelength.

  10. Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in φ-OTDR

    Science.gov (United States)

    Xu, Chengjin; Guan, Junjun; Bao, Ming; Lu, Jiangang; Ye, Wei

    2018-01-01

    Based on vibration signals detected by a phase-sensitive optical time-domain reflectometer distributed optical fiber sensing system, this paper presents an implement of time-frequency analysis and convolutional neural network (CNN), used to classify different types of vibrational events. First, spectral subtraction and the short-time Fourier transform are used to enhance time-frequency features of vibration signals and transform different types of vibration signals into spectrograms, which are input to the CNN for automatic feature extraction and classification. Finally, by replacing the soft-max layer in the CNN with a multiclass support vector machine, the performance of the classifier is enhanced. Experiments show that after using this method to process 4000 vibration signal samples generated by four different vibration events, namely, digging, walking, vehicles passing, and damaging, the recognition rates of vibration events are over 90%. The experimental results prove that this method can automatically make an effective feature selection and greatly improve the classification accuracy of vibrational events in distributed optical fiber sensing systems.

  11. Post-Event Processing in Children with Social Phobia

    Science.gov (United States)

    Schmitz, Julian; Kramer, Martina; Blechert, Jens; Tuschen-Caffier, Brunna

    2010-01-01

    In the aftermath of a distressing social event, adults with social phobia (SP) engage in a review of this event with a focus on its negative aspects. To date, little is known about this post-event processing (PEP) and its relationship with perceived performance in SP children. We measured PEP in SP children (n = 24) and healthy controls (HC; n =…

  12. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration

    OpenAIRE

    Addis, Donna Rose; Wong, Alana T.; Schacter, Daniel L.

    2006-01-01

    People can consciously re-experience past events and pre-experience possible future events. This fMRI study examined the neural regions mediating the construction and elaboration of past and future events. Participants were cued with a noun for 20 seconds and instructed to construct a past or future event within a specified time period (week, year, 5–20 years). Once participants had the event in mind, they made a button press and for the remainder of the 20 seconds elaborated on the event. Im...

  13. NEVESIM: event-driven neural simulation framework with a Python interface.

    Science.gov (United States)

    Pecevski, Dejan; Kappel, David; Jonke, Zeno

    2014-01-01

    NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is designed to decouple the simulation logic of communicating events (spikes) between the neurons at a network level from the implementation of the internal dynamics of individual neurons. In this paper we will present the simulation framework of NEVESIM, its concepts and features, as well as some aspects of the object-oriented design approaches and simulation strategies that were utilized to efficiently implement the concepts and functionalities of the framework. We will also give an overview of the Python user interface, its basic commands and constructs, and also discuss the benefits of integrating NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate exactly and efficiently networks of stochastic spiking neurons from the recently developed theoretical framework of neural sampling. This functionality was implemented as an extension on top of the basic NEVESIM framework. Altogether, the intended purpose of the NEVESIM framework is to provide a basis for further extensions that support simulation of various neural network models incorporating different neuron and synapse types that can potentially also use different simulation strategies.

  14. Engaged listeners: shared neural processing of powerful political speeches.

    Science.gov (United States)

    Schmälzle, Ralf; Häcker, Frank E K; Honey, Christopher J; Hasson, Uri

    2015-08-01

    Powerful speeches can captivate audiences, whereas weaker speeches fail to engage their listeners. What is happening in the brains of a captivated audience? Here, we assess audience-wide functional brain dynamics during listening to speeches of varying rhetorical quality. The speeches were given by German politicians and evaluated as rhetorically powerful or weak. Listening to each of the speeches induced similar neural response time courses, as measured by inter-subject correlation analysis, in widespread brain regions involved in spoken language processing. Crucially, alignment of the time course across listeners was stronger for rhetorically powerful speeches, especially for bilateral regions of the superior temporal gyri and medial prefrontal cortex. Thus, during powerful speeches, listeners as a group are more coupled to each other, suggesting that powerful speeches are more potent in taking control of the listeners' brain responses. Weaker speeches were processed more heterogeneously, although they still prompted substantially correlated responses. These patterns of coupled neural responses bear resemblance to metaphors of resonance, which are often invoked in discussions of speech impact, and contribute to the literature on auditory attention under natural circumstances. Overall, this approach opens up possibilities for research on the neural mechanisms mediating the reception of entertaining or persuasive messages. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Nonlinear identification of process dynamics using neural networks

    International Nuclear Information System (INIS)

    Parlos, A.G.; Atiya, A.F.; Chong, K.T.

    1992-01-01

    In this paper the nonlinear identification of process dynamics encountered in nuclear power plant components is addressed, in an input-output sense, using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the model structure to be identified. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard backpropagation learning algorithm is modified, and it is used for the supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The response of representative steam generator is predicted using a neural network, and it is compared to the response obtained from a sophisticated computer model based on first principles. The transient responses compare well, although further research is warranted to determine the predictive capabilities of these networks during more severe operational transients and accident scenarios

  16. Adaptive model predictive process control using neural networks

    Science.gov (United States)

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  17. Vicarious neural processing of outcomes during observational learning.

    Directory of Open Access Journals (Sweden)

    Elisabetta Monfardini

    Full Text Available Learning what behaviour is appropriate in a specific context by observing the actions of others and their outcomes is a key constituent of human cognition, because it saves time and energy and reduces exposure to potentially dangerous situations. Observational learning of associative rules relies on the ability to map the actions of others onto our own, process outcomes, and combine these sources of information. Here, we combined newly developed experimental tasks and functional magnetic resonance imaging (fMRI to investigate the neural mechanisms that govern such observational learning. Results show that the neural systems involved in individual trial-and-error learning and in action observation and execution both participate in observational learning. In addition, we identified brain areas that specifically activate for others' incorrect outcomes during learning in the posterior medial frontal cortex (pMFC, the anterior insula and the posterior superior temporal sulcus (pSTS.

  18. Vicarious neural processing of outcomes during observational learning.

    Science.gov (United States)

    Monfardini, Elisabetta; Gazzola, Valeria; Boussaoud, Driss; Brovelli, Andrea; Keysers, Christian; Wicker, Bruno

    2013-01-01

    Learning what behaviour is appropriate in a specific context by observing the actions of others and their outcomes is a key constituent of human cognition, because it saves time and energy and reduces exposure to potentially dangerous situations. Observational learning of associative rules relies on the ability to map the actions of others onto our own, process outcomes, and combine these sources of information. Here, we combined newly developed experimental tasks and functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms that govern such observational learning. Results show that the neural systems involved in individual trial-and-error learning and in action observation and execution both participate in observational learning. In addition, we identified brain areas that specifically activate for others' incorrect outcomes during learning in the posterior medial frontal cortex (pMFC), the anterior insula and the posterior superior temporal sulcus (pSTS).

  19. Acute Stress Influences Neural Circuits of Reward Processing

    Directory of Open Access Journals (Sweden)

    Anthony John Porcelli

    2012-11-01

    Full Text Available People often make decisions under aversive conditions such as acute stress. Yet, less is known about the process in which acute stress can influence decision-making. A growing body of research has established that reward-related information associated with the outcomes of decisions exerts a powerful influence over the choices people make and that an extensive network of brain regions, prominently featuring the striatum, is involved in the processing of this reward-related information. Thus, an important step in research on the nature of acute stress’ influence over decision-making is to examine how it may modulate responses to rewards and punishments within reward-processing neural circuitry. In the current experiment, we employed a simple reward processing paradigm – where participants received monetary rewards and punishments – known to evoke robust striatal responses. Immediately prior to performing each of two task runs, participants were exposed to acute stress (i.e., cold pressor or a no stress control procedure in a between-subjects fashion. No stress group participants exhibited a pattern of activity within the dorsal striatum and orbitofrontal cortex consistent with past research on outcome processing – specifically, differential responses for monetary rewards over punishments. In contrast, acute stress group participants’ dorsal striatum and orbitofrontal cortex demonstrated decreased sensitivity to monetary outcomes and a lack of differential activity. These findings provide insight into how neural circuits may process rewards and punishments associated with simple decisions under acutely stressful conditions.

  20. Modeling fMRI signals can provide insights into neural processing in the cerebral cortex.

    Science.gov (United States)

    Vanni, Simo; Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo

    2015-08-01

    Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. Copyright © 2015 the American Physiological Society.

  1. Using Dual Process Models to Examine Impulsivity Throughout Neural Maturation.

    Science.gov (United States)

    Leshem, Rotem

    2016-01-01

    The multivariate construct of impulsivity is examined through neural systems and connections that comprise the executive functioning system. It is proposed that cognitive and behavioral components of impulsivity can be divided into two distinct groups, mediated by (1) the cognitive control system: deficits in top-down cognitive control processes referred to as action/cognitive impulsivity and (2) the socioemotional system: related to bottom-up affective/motivational processes referred to as affective impulsivity. Examination of impulsivity from a developmental viewpoint can guide future research, potentially enabling the selection of more effective interventions for impulsive individuals, based on the cognitive components requiring improvement.

  2. Neural dynamics of event segmentation in music: converging evidence for dissociable ventral and dorsal networks.

    Science.gov (United States)

    Sridharan, Devarajan; Levitin, Daniel J; Chafe, Chris H; Berger, Jonathan; Menon, Vinod

    2007-08-02

    The real world presents our sensory systems with a continuous stream of undifferentiated information. Segmentation of this stream at event boundaries is necessary for object identification and feature extraction. Here, we investigate the neural dynamics of event segmentation in entire musical symphonies under natural listening conditions. We isolated time-dependent sequences of brain responses in a 10 s window surrounding transitions between movements of symphonic works. A strikingly right-lateralized network of brain regions showed peak response during the movement transitions when, paradoxically, there was no physical stimulus. Model-dependent and model-free analysis techniques provided converging evidence for activity in two distinct functional networks at the movement transition: a ventral fronto-temporal network associated with detecting salient events, followed in time by a dorsal fronto-parietal network associated with maintaining attention and updating working memory. Our study provides direct experimental evidence for dissociable and causally linked ventral and dorsal networks during event segmentation of ecologically valid auditory stimuli.

  3. A review for identification of initiating events in event tree development process on nuclear power plants

    International Nuclear Information System (INIS)

    Riyadi, Eko H.

    2014-01-01

    Initiating event is defined as any event either internal or external to the nuclear power plants (NPPs) that perturbs the steady state operation of the plant, if operating, thereby initiating an abnormal event such as transient or loss of coolant accident (LOCA) within the NPPs. These initiating events trigger sequences of events that challenge plant control and safety systems whose failure could potentially lead to core damage or large early release. Selection for initiating events consists of two steps i.e. first step, definition of possible events, such as by evaluating a comprehensive engineering, and by constructing a top level logic model. Then the second step, grouping of identified initiating event's by the safety function to be performed or combinations of systems responses. Therefore, the purpose of this paper is to discuss initiating events identification in event tree development process and to reviews other probabilistic safety assessments (PSA). The identification of initiating events also involves the past operating experience, review of other PSA, failure mode and effect analysis (FMEA), feedback from system modeling, and master logic diagram (special type of fault tree). By using the method of study for the condition of the traditional US PSA categorization in detail, could be obtained the important initiating events that are categorized into LOCA, transients and external events

  4. A review for identification of initiating events in event tree development process on nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Riyadi, Eko H., E-mail: e.riyadi@bapeten.go.id [Center for Regulatory Assessment of Nuclear Installation and Materials, Nuclear Energy Regulatory Agency (BAPETEN), Jl. Gajah Mada 8 Jakarta 10120 (Indonesia)

    2014-09-30

    Initiating event is defined as any event either internal or external to the nuclear power plants (NPPs) that perturbs the steady state operation of the plant, if operating, thereby initiating an abnormal event such as transient or loss of coolant accident (LOCA) within the NPPs. These initiating events trigger sequences of events that challenge plant control and safety systems whose failure could potentially lead to core damage or large early release. Selection for initiating events consists of two steps i.e. first step, definition of possible events, such as by evaluating a comprehensive engineering, and by constructing a top level logic model. Then the second step, grouping of identified initiating event's by the safety function to be performed or combinations of systems responses. Therefore, the purpose of this paper is to discuss initiating events identification in event tree development process and to reviews other probabilistic safety assessments (PSA). The identification of initiating events also involves the past operating experience, review of other PSA, failure mode and effect analysis (FMEA), feedback from system modeling, and master logic diagram (special type of fault tree). By using the method of study for the condition of the traditional US PSA categorization in detail, could be obtained the important initiating events that are categorized into LOCA, transients and external events.

  5. Processing of chromatic information in a deep convolutional neural network.

    Science.gov (United States)

    Flachot, Alban; Gegenfurtner, Karl R

    2018-04-01

    Deep convolutional neural networks are a class of machine-learning algorithms capable of solving non-trivial tasks, such as object recognition, with human-like performance. Little is known about the exact computations that deep neural networks learn, and to what extent these computations are similar to the ones performed by the primate brain. Here, we investigate how color information is processed in the different layers of the AlexNet deep neural network, originally trained on object classification of over 1.2M images of objects in their natural contexts. We found that the color-responsive units in the first layer of AlexNet learned linear features and were broadly tuned to two directions in color space, analogously to what is known of color responsive cells in the primate thalamus. Moreover, these directions are decorrelated and lead to statistically efficient representations, similar to the cardinal directions of the second-stage color mechanisms in primates. We also found, in analogy to the early stages of the primate visual system, that chromatic and achromatic information were segregated in the early layers of the network. Units in the higher layers of AlexNet exhibit on average a lower responsivity for color than units at earlier stages.

  6. Neural Mechanisms and Information Processing in Recognition Systems

    Directory of Open Access Journals (Sweden)

    Mamiko Ozaki

    2014-10-01

    Full Text Available Nestmate recognition is a hallmark of social insects. It is based on the match/mismatch of an identity signal carried by members of the society with that of the perceiving individual. While the behavioral response, amicable or aggressive, is very clear, the neural systems underlying recognition are not fully understood. Here we contrast two alternative hypotheses for the neural mechanisms that are responsible for the perception and information processing in recognition. We focus on recognition via chemical signals, as the common modality in social insects. The first, classical, hypothesis states that upon perception of recognition cues by the sensory system the information is passed as is to the antennal lobes and to higher brain centers where the information is deciphered and compared to a neural template. Match or mismatch information is then transferred to some behavior-generating centers where the appropriate response is elicited. An alternative hypothesis, that of “pre-filter mechanism”, posits that the decision as to whether to pass on the information to the central nervous system takes place in the peripheral sensory system. We suggest that, through sensory adaptation, only alien signals are passed on to the brain, specifically to an “aggressive-behavior-switching center”, where the response is generated if the signal is above a certain threshold.

  7. Neural network approach to the prediction of seismic events based on low-frequency signal monitoring of the Kuril-Kamchatka and Japanese regions

    Directory of Open Access Journals (Sweden)

    Irina Popova

    2013-08-01

    Full Text Available Very-low-frequency/ low-frequency (VLF/LF sub-ionospheric radiowave monitoring has been widely used in recent years to analyze earthquake preparatory processes. The connection between earthquakes with M ≥5.5 and nighttime disturbances of signal amplitude and phase has been established. Thus, it is possible to use nighttime anomalies of VLF/LF signals as earthquake precursors. Here, we propose a method for estimation of the VLF/LF signal sensitivity to seismic processes using a neural network approach. We apply the error back-propagation technique based on a three-level perceptron to predict a seismic event. The back-propagation technique involves two main stages to solve the problem; namely, network training, and recognition (the prediction itself. To train a neural network, we first create a so-called ‘training set’. The ‘teacher’ specifies the correspondence between the chosen input and the output data. In the present case, a representative database includes both the LF data received over three years of monitoring at the station in Petropavlovsk-Kamchatsky (2005-2007, and the seismicity parameters of the Kuril-Kamchatka and Japanese regions. At the first stage, the neural network established the relationship between the characteristic features of the LF signal (the mean and dispersion of a phase and an amplitude at nighttime for a few days before a seismic event and the corresponding level of correlation with a seismic event, or the absence of a seismic event. For the second stage, the trained neural network was applied to predict seismic events from the LF data using twelve time intervals in 2004, 2005, 2006 and 2007. The results of the prediction are discussed.

  8. Forecasting financial asset processes: stochastic dynamics via learning neural networks.

    Science.gov (United States)

    Giebel, S; Rainer, M

    2010-01-01

    Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.

  9. Temporal integration: intentional sound discrimination does not modulate stimulus-driven processes in auditory event synthesis.

    Science.gov (United States)

    Sussman, Elyse; Winkler, István; Kreuzer, Judith; Saher, Marieke; Näätänen, Risto; Ritter, Walter

    2002-12-01

    Our previous study showed that the auditory context could influence whether two successive acoustic changes occurring within the temporal integration window (approximately 200ms) were pre-attentively encoded as a single auditory event or as two discrete events (Cogn Brain Res 12 (2001) 431). The aim of the current study was to assess whether top-down processes could influence the stimulus-driven processes in determining what constitutes an auditory event. Electroencepholagram (EEG) was recorded from 11 scalp electrodes to frequently occurring standard and infrequently occurring deviant sounds. Within the stimulus blocks, deviants either occurred only in pairs (successive feature changes) or both singly and in pairs. Event-related potential indices of change and target detection, the mismatch negativity (MMN) and the N2b component, respectively, were compared with the simultaneously measured performance in discriminating the deviants. Even though subjects could voluntarily distinguish the two successive auditory feature changes from each other, which was also indicated by the elicitation of the N2b target-detection response, top-down processes did not modify the event organization reflected by the MMN response. Top-down processes can extract elemental auditory information from a single integrated acoustic event, but the extraction occurs at a later processing stage than the one whose outcome is indexed by MMN. Initial processes of auditory event-formation are fully governed by the context within which the sounds occur. Perception of the deviants as two separate sound events (the top-down effects) did not change the initial neural representation of the same deviants as one event (indexed by the MMN), without a corresponding change in the stimulus-driven sound organization.

  10. Out-of-order event processing in kinetic data structures

    DEFF Research Database (Denmark)

    Abam, Mohammad; de Berg, Mark; Agrawal, Pankaj

    2011-01-01

    ’s for the maintenance of several fundamental structures such as kinetic sorting and kinetic tournament trees, which overcome the difficulty by employing a refined event scheduling and processing technique. We prove that the new event scheduling mechanism leads to a KDS that is correct except for finitely many short......We study the problem of designing kinetic data structures (KDS’s for short) when event times cannot be computed exactly and events may be processed in a wrong order. In traditional KDS’s this can lead to major inconsistencies from which the KDS cannot recover. We present more robust KDS...

  11. Neural markers of opposite-sex bias in face processing

    Directory of Open Access Journals (Sweden)

    Alice Mado eProverbio

    2010-10-01

    Full Text Available Some behavioral and neuroimaging studies suggest that adults prefer to view attractive faces of the opposite sex more than attractive faces of the same sex. However, unlike the other-race face effect (ORE; Caldara et al., 2004, little is known regarding the existence of an opposite-/same-sex bias in face processing. In this study, the faces of 130 attractive male and female adults were foveally presented to 40 heterosexual university students (20 men and 20 women who were engaged in a secondary perceptual task (landscape detection. The automatic processing of face gender was investigated by recording ERPs from 128 scalp sites. Neural markers of opposite- vs. same-sex bias in face processing included larger and earlier centro-parietal N400s in response to faces of the opposite sex and a larger late positivity (LP to same-sex faces. Analysis of intra-cortical neural generators (swLORETA showed that facial processing-related (FG, BA37, BA20/21 and emotion-related brain areas (the right parahippocampal gyrus, BA35; uncus, BA36/38; and the cingulate gyrus, BA24 had higher activations in response to opposite- than same-sex faces. The results of this analysis, along with data obtained from ERP recordings, support the hypothesis that both genders process opposite-sex faces differently than same-sex faces. The data also suggest a hemispheric asymmetry in the processing of opposite-/same-sex faces, with the right hemisphere involved in processing same-sex faces and the left hemisphere involved in processing faces of the opposite sex. The data support previous literature suggesting a right lateralization for the representation of self-image and body awareness.

  12. Neural markers of opposite-sex bias in face processing.

    Science.gov (United States)

    Proverbio, Alice Mado; Riva, Federica; Martin, Eleonora; Zani, Alberto

    2010-01-01

    Some behavioral and neuroimaging studies suggest that adults prefer to view attractive faces of the opposite sex more than attractive faces of the same sex. However, unlike the other-race face effect (Caldara et al., 2004), little is known regarding the existence of an opposite-/same-sex bias in face processing. In this study, the faces of 130 attractive male and female adults were foveally presented to 40 heterosexual university students (20 men and 20 women) who were engaged in a secondary perceptual task (landscape detection). The automatic processing of face gender was investigated by recording ERPs from 128 scalp sites. Neural markers of opposite- vs. same-sex bias in face processing included larger and earlier centro-parietal N400s in response to faces of the opposite sex and a larger late positivity (LP) to same-sex faces. Analysis of intra-cortical neural generators (swLORETA) showed that facial processing-related (FG, BA37, BA20/21) and emotion-related brain areas (the right parahippocampal gyrus, BA35; uncus, BA36/38; and the cingulate gyrus, BA24) had higher activations in response to opposite- than same-sex faces. The results of this analysis, along with data obtained from ERP recordings, support the hypothesis that both genders process opposite-sex faces differently than same-sex faces. The data also suggest a hemispheric asymmetry in the processing of opposite-/same-sex faces, with the right hemisphere involved in processing same-sex faces and the left hemisphere involved in processing faces of the opposite sex. The data support previous literature suggesting a right lateralization for the representation of self-image and body awareness.

  13. Functional Roles of Neural Preparatory Processes in a Cued Stroop Task Revealed by Linking Electrophysiology with Behavioral Performance.

    Science.gov (United States)

    Wang, Chao; Ding, Mingzhou; Kluger, Benzi M

    2015-01-01

    It is well established that cuing facilitates behavioral performance and that different aspects of instructional cues evoke specific neural preparatory processes in cued task-switching paradigms. To deduce the functional role of these neural preparatory processes the majority of studies vary aspects of the experimental paradigm and describe how these variations alter markers of neural preparatory processes. Although these studies provide important insights, they also have notable limitations, particularly in terms of understanding the causal or functional relationship of neural markers to cognitive and behavioral processes. In this study, we sought to address these limitations and uncover the functional roles of neural processes by examining how variability in the amplitude of neural preparatory processes predicts behavioral performance to subsequent stimuli. To achieve this objective 16 young adults were recruited to perform a cued Stroop task while their brain activity was measured using high-density electroencephalography. Four temporally overlapping but functionally and topographically distinct cue-triggered event related potentials (ERPs) were identified: 1) A left-frontotemporal negativity (250-700 ms) that was positively associated with word-reading performance; 2) a midline-frontal negativity (450-800 ms) that was positively associated with color-naming and incongruent performance; 3) a left-frontal negativity (450-800 ms) that was positively associated with switch trial performance; and 4) a centroparietal positivity (450-800 ms) that was positively associated with performance for almost all trial types. These results suggest that at least four dissociable cognitive processes are evoked by instructional cues in the present task, including: 1) domain-specific task facilitation; 2) switch-specific task-set reconfiguration; 3) preparation for response conflict; and 4) proactive attentional control. Examining the relationship between ERPs and behavioral

  14. Functional Roles of Neural Preparatory Processes in a Cued Stroop Task Revealed by Linking Electrophysiology with Behavioral Performance.

    Directory of Open Access Journals (Sweden)

    Chao Wang

    Full Text Available It is well established that cuing facilitates behavioral performance and that different aspects of instructional cues evoke specific neural preparatory processes in cued task-switching paradigms. To deduce the functional role of these neural preparatory processes the majority of studies vary aspects of the experimental paradigm and describe how these variations alter markers of neural preparatory processes. Although these studies provide important insights, they also have notable limitations, particularly in terms of understanding the causal or functional relationship of neural markers to cognitive and behavioral processes. In this study, we sought to address these limitations and uncover the functional roles of neural processes by examining how variability in the amplitude of neural preparatory processes predicts behavioral performance to subsequent stimuli. To achieve this objective 16 young adults were recruited to perform a cued Stroop task while their brain activity was measured using high-density electroencephalography. Four temporally overlapping but functionally and topographically distinct cue-triggered event related potentials (ERPs were identified: 1 A left-frontotemporal negativity (250-700 ms that was positively associated with word-reading performance; 2 a midline-frontal negativity (450-800 ms that was positively associated with color-naming and incongruent performance; 3 a left-frontal negativity (450-800 ms that was positively associated with switch trial performance; and 4 a centroparietal positivity (450-800 ms that was positively associated with performance for almost all trial types. These results suggest that at least four dissociable cognitive processes are evoked by instructional cues in the present task, including: 1 domain-specific task facilitation; 2 switch-specific task-set reconfiguration; 3 preparation for response conflict; and 4 proactive attentional control. Examining the relationship between ERPs and behavioral

  15. Neural pulse frequency modulation of an exponentially correlated Gaussian process

    Science.gov (United States)

    Hutchinson, C. E.; Chon, Y.-T.

    1976-01-01

    The effect of NPFM (Neural Pulse Frequency Modulation) on a stationary Gaussian input, namely an exponentially correlated Gaussian input, is investigated with special emphasis on the determination of the average number of pulses in unit time, known also as the average frequency of pulse occurrence. For some classes of stationary input processes where the formulation of the appropriate multidimensional Markov diffusion model of the input-plus-NPFM system is possible, the average impulse frequency may be obtained by a generalization of the approach adopted. The results are approximate and numerical, but are in close agreement with Monte Carlo computer simulation results.

  16. MEG event-related desynchronization and synchronization deficits during basic somatosensory processing in individuals with ADHD

    Directory of Open Access Journals (Sweden)

    Wang Frank

    2008-02-01

    Full Text Available Abstract Background Attention-Deficit/Hyperactivity Disorder (ADHD is a prevalent, complex disorder which is characterized by symptoms of inattention, hyperactivity, and impulsivity. Convergent evidence from neurobiological studies of ADHD identifies dysfunction in fronto-striatal-cerebellar circuitry as the source of behavioural deficits. Recent studies have shown that regions governing basic sensory processing, such as the somatosensory cortex, show abnormalities in those with ADHD suggesting that these processes may also be compromised. Methods We used event-related magnetoencephalography (MEG to examine patterns of cortical rhythms in the primary (SI and secondary (SII somatosensory cortices in response to median nerve stimulation, in 9 adults with ADHD and 10 healthy controls. Stimuli were brief (0.2 ms non-painful electrical pulses presented to the median nerve in two counterbalanced conditions: unpredictable and predictable stimulus presentation. We measured changes in strength, synchronicity, and frequency of cortical rhythms. Results Healthy comparison group showed strong event-related desynchrony and synchrony in SI and SII. By contrast, those with ADHD showed significantly weaker event-related desynchrony and event-related synchrony in the alpha (8–12 Hz and beta (15–30 Hz bands, respectively. This was most striking during random presentation of median nerve stimulation. Adults with ADHD showed significantly shorter duration of beta rebound in both SI and SII except for when the onset of the stimulus event could be predicted. In this case, the rhythmicity of SI (but not SII in the ADHD group did not differ from that of controls. Conclusion Our findings suggest that somatosensory processing is altered in individuals with ADHD. MEG constitutes a promising approach to profiling patterns of neural activity during the processing of sensory input (e.g., detection of a tactile stimulus, stimulus predictability and facilitating our

  17. Can Intrinsic Fluctuations Increase Efficiency in Neural Information Processing?

    Science.gov (United States)

    Liljenström, Hans

    2003-05-01

    All natural processes are accompanied by fluctuations, characterized as noise or chaos. Biological systems, which have evolved during billions of years, are likely to have adapted, not only to cope with such fluctuations, but also to make use of them. We investigate how the complex dynamics of the brain, including oscillations, chaos and noise, can affect the efficiency of neural information processing. In particular, we consider the amplification and functional role of internal fluctuations. Using computer simulations of a neural network model of the olfactory cortex and hippocampus, we demonstrate how microscopic fluctuations can result in global effects at the network level. We show that the rate of information processing in associative memory tasks can be maximized for optimal noise levels, analogous to stochastic resonance phenomena. Noise can also induce transitions between different dynamical states, which could be of significance for learning and memory. A chaotic-like behavior, induced by noise or by an increase in neuronal excitability, can enhance system performance if it is transient and converges to a limit cycle memory state. We speculate whether this dynamical behavior perhaps could be related to (creative) thinking.

  18. Multiscale neural connectivity during human sensory processing in the brain

    Science.gov (United States)

    Maksimenko, Vladimir A.; Runnova, Anastasia E.; Frolov, Nikita S.; Makarov, Vladimir V.; Nedaivozov, Vladimir; Koronovskii, Alexey A.; Pisarchik, Alexander; Hramov, Alexander E.

    2018-05-01

    Stimulus-related brain activity is considered using wavelet-based analysis of neural interactions between occipital and parietal brain areas in alpha (8-12 Hz) and beta (15-30 Hz) frequency bands. We show that human sensory processing related to the visual stimuli perception induces brain response resulted in different ways of parieto-occipital interactions in these bands. In the alpha frequency band the parieto-occipital neuronal network is characterized by homogeneous increase of the interaction between all interconnected areas both within occipital and parietal lobes and between them. In the beta frequency band the occipital lobe starts to play a leading role in the dynamics of the occipital-parietal network: The perception of visual stimuli excites the visual center in the occipital area and then, due to the increase of parieto-occipital interactions, such excitation is transferred to the parietal area, where the attentional center takes place. In the case when stimuli are characterized by a high degree of ambiguity, we find greater increase of the interaction between interconnected areas in the parietal lobe due to the increase of human attention. Based on revealed mechanisms, we describe the complex response of the parieto-occipital brain neuronal network during the perception and primary processing of the visual stimuli. The results can serve as an essential complement to the existing theory of neural aspects of visual stimuli processing.

  19. Statistical process control using optimized neural networks: a case study.

    Science.gov (United States)

    Addeh, Jalil; Ebrahimzadeh, Ata; Azarbad, Milad; Ranaee, Vahid

    2014-09-01

    The most common statistical process control (SPC) tools employed for monitoring process changes are control charts. A control chart demonstrates that the process has altered by generating an out-of-control signal. This study investigates the design of an accurate system for the control chart patterns (CCPs) recognition in two aspects. First, an efficient system is introduced that includes two main modules: feature extraction module and classifier module. In the feature extraction module, a proper set of shape features and statistical feature are proposed as the efficient characteristics of the patterns. In the classifier module, several neural networks, such as multilayer perceptron, probabilistic neural network and radial basis function are investigated. Based on an experimental study, the best classifier is chosen in order to recognize the CCPs. Second, a hybrid heuristic recognition system is introduced based on cuckoo optimization algorithm (COA) algorithm to improve the generalization performance of the classifier. The simulation results show that the proposed algorithm has high recognition accuracy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  20. A Process for Predicting Manhole Events in Manhattan

    OpenAIRE

    Isaac, Delfina F.; Ierome, Steve; Dutta, Haimonti; Radeva, Axinia; Passonneau, Rebecca J.; Rudin, Cynthia

    2009-01-01

    We present a knowledge discovery and data mining process developed as part of the Columbia/Con Edison project on manhole event prediction. This process can assist with real-world prioritization problems that involve raw data in the form of noisy documents requiring significant amounts of pre-processing. The documents are linked to a set of instances to be ranked according to prediction criteria. In the case of manhole event prediction, which is a new application for machine learning, the goal...

  1. A statistical framework for evaluating neural networks to predict recurrent events in breast cancer

    Science.gov (United States)

    Gorunescu, Florin; Gorunescu, Marina; El-Darzi, Elia; Gorunescu, Smaranda

    2010-07-01

    Breast cancer is the second leading cause of cancer deaths in women today. Sometimes, breast cancer can return after primary treatment. A medical diagnosis of recurrent cancer is often a more challenging task than the initial one. In this paper, we investigate the potential contribution of neural networks (NNs) to support health professionals in diagnosing such events. The NN algorithms are tested and applied to two different datasets. An extensive statistical analysis has been performed to verify our experiments. The results show that a simple network structure for both the multi-layer perceptron and radial basis function can produce equally good results, not all attributes are needed to train these algorithms and, finally, the classification performances of all algorithms are statistically robust. Moreover, we have shown that the best performing algorithm will strongly depend on the features of the datasets, and hence, there is not necessarily a single best classifier.

  2. Nicotine Withdrawal Induces Neural Deficits in Reward Processing.

    Science.gov (United States)

    Oliver, Jason A; Evans, David E; Addicott, Merideth A; Potts, Geoffrey F; Brandon, Thomas H; Drobes, David J

    2017-06-01

    Nicotine withdrawal reduces neurobiological responses to nonsmoking rewards. Insight into these reward deficits could inform the development of targeted interventions. This study examined the effect of withdrawal on neural and behavioral responses during a reward prediction task. Smokers (N = 48) attended two laboratory sessions following overnight abstinence. Withdrawal was manipulated by having participants smoke three regular nicotine (0.6 mg yield; satiation) or very low nicotine (0.05 mg yield; withdrawal) cigarettes. Electrophysiological recordings of neural activity were obtained while participants completed a reward prediction task that involved viewing four combinations of predictive and reward-determining stimuli: (1) Unexpected Reward; (2) Predicted Reward; (3) Predicted Punishment; (4) Unexpected Punishment. The task evokes a medial frontal negativity that mimics the phasic pattern of dopaminergic firing in ventral tegmental regions associated with reward prediction errors. Nicotine withdrawal decreased the amplitude of the medial frontal negativity equally across all trial types (p nicotine dependence (p Nicotine withdrawal had equivocal impact across trial types, suggesting reward processing deficits are unlikely to stem from changes in phasic dopaminergic activity during prediction errors. Effects on tonic activity may be more pronounced. Pharmacological interventions directly targeting the dopamine system and behavioral interventions designed to increase reward motivation and responsiveness (eg, behavioral activation) may aid in mitigating withdrawal symptoms and potentially improving smoking cessation outcomes. Findings from this study indicate nicotine withdrawal impacts reward processing signals that are observable in smokers' neural activity. This may play a role in the subjective aversive experience of nicotine withdrawal and potentially contribute to smoking relapse. Interventions that address abnormal responding to both pleasant and

  3. Process mining using BPMN: relating event logs and process models

    NARCIS (Netherlands)

    Kalenkova, A.A.; van der Aalst, W.M.P.; Lomazova, I.A.; Rubin, V.A.

    2017-01-01

    Process-aware information systems (PAIS) are systems relying on processes, which involve human and software resources to achieve concrete goals. There is a need to develop approaches for modeling, analysis, improvement and monitoring processes within PAIS. These approaches include process mining

  4. Process mining using BPMN : relating event logs and process models

    NARCIS (Netherlands)

    Kalenkova, A.A.; Aalst, van der W.M.P.; Lomazova, I.A.; Rubin, V.A.

    2015-01-01

    Process-aware information systems (PAIS) are systems relying on processes, which involve human and software resources to achieve concrete goals. There is a need to develop approaches for modeling, analysis, improvement and monitoring processes within PAIS. These approaches include process mining

  5. Event processing for business organizing the real-time enterprise

    CERN Document Server

    Luckham, David C

    2011-01-01

    Find out how Events Processing (EP) works and how it can workfor you Business Event Processing: An Introduction and StrategyGuide thoroughly describes what EP is, how to use it, and howit relates to other popular information technology architecturessuch as Service Oriented Architecture. Explains how sense and response architectures are being appliedwith tremendous results to businesses throughout the world andshows businesses how they can get started implementing EPShows how to choose business event processing technology tosuit your specific business needs and how to keep costs of adoptingit

  6. A digital pixel cell for address event representation image convolution processing

    Science.gov (United States)

    Camunas-Mesa, Luis; Acosta-Jimenez, Antonio; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabe

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number of neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate events according to their information levels. Neurons with more information (activity, derivative of activities, contrast, motion, edges,...) generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. AER technology has been used and reported for the implementation of various type of image sensors or retinae: luminance with local agc, contrast retinae, motion retinae,... Also, there has been a proposal for realizing programmable kernel image convolution chips. Such convolution chips would contain an array of pixels that perform weighted addition of events. Once a pixel has added sufficient event contributions to reach a fixed threshold, the pixel fires an event, which is then routed out of the chip for further processing. Such convolution chips have been proposed to be implemented using pulsed current mode mixed analog and digital circuit techniques. In this paper we present a fully digital pixel implementation to perform the weighted additions and fire the events. This way, for a given technology, there is a fully digital implementation reference against which compare the mixed signal implementations. We have designed, implemented and tested a fully digital AER convolution pixel. This pixel will be used to implement a full AER convolution chip for programmable kernel image convolution processing.

  7. Foundations for Streaming Model Transformations by Complex Event Processing.

    Science.gov (United States)

    Dávid, István; Ráth, István; Varró, Dániel

    2018-01-01

    Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.

  8. Neural networks in front-end processing and control

    International Nuclear Information System (INIS)

    Lister, J.B.; Schnurrenberger, H.; Staeheli, N.; Stockhammer, N.; Duperrex, P.A.; Moret, J.M.

    1992-01-01

    Research into neural networks has gained a large following in recent years. In spite of the long term timescale of this Artificial Intelligence research, the tools which the community is developing can already find useful applications to real practical problems in experimental research. One of the main advantages of the parallel algorithms being developed in AI is the structural simplicity of the required hardware implementation, and the simple nature of the calculations involved. This makes these techniques ideal for problems in which both speed and data volume reduction are important, the case for most front-end processing tasks. In this paper the authors illustrate the use of a particular neural network known as the Multi-Layer Perceptron as a method for solving several different tasks, all drawn from the field of Tokamak research. The authors also briefly discuss the use of the Multi-Layer Perceptron as a non-linear controller in a feedback loop. The authors outline the type of problem which can be usefully addressed by these techniques, even before the large-scale parallel processing hardware currently under development becomes cheaply available. The authors also present some of the difficulties encountered in applying these networks

  9. Neural networks in front-end processing and control

    International Nuclear Information System (INIS)

    Lister, J.B.; Schnurrenberger, H.; Staeheli, N.; Stockhammer, N.; Duperrex, P.A.; Moret, J.M.

    1991-07-01

    Research into neural networks has gained a large following in recent years. In spite of the long term timescale of this Artificial Intelligence research, the tools which the community is developing can already find useful applications to real practical problems in experimental research. One of the main advantages of the parallel algorithms being developed in AI is the structural simplicity of the required hardware implementation, and the simple nature of the calculations involved. This makes these techniques ideal for problems in which both speed and data volume reduction are important, the case for most front-end processing tasks. In this paper we illustrate the use of a particular neural network known as the Multi-Layer Perceptron as a method for solving several different tasks, all drawn from the field of Tokamak research. We also briefly discuss the use of the Multi-Layer Perceptron as a non-linear controller in a feedback loop. We outline the type of problem which can be usefully addressed by these techniques, even before the large-scale parallel processing hardware currently under development becomes cheaply available. We also present some of the difficulties encountered in applying these networks. (author) 13 figs., 9 refs

  10. USC orthogonal multiprocessor for image processing with neural networks

    Science.gov (United States)

    Hwang, Kai; Panda, Dhabaleswar K.; Haddadi, Navid

    1990-07-01

    This paper presents the architectural features and imaging applications of the Orthogonal MultiProcessor (OMP) system, which is under construction at the University of Southern California with research funding from NSF and assistance from several industrial partners. The prototype OMP is being built with 16 Intel i860 RISC microprocessors and 256 parallel memory modules using custom-designed spanning buses, which are 2-D interleaved and orthogonally accessed without conflicts. The 16-processor OMP prototype is targeted to achieve 430 MIPS and 600 Mflops, which have been verified by simulation experiments based on the design parameters used. The prototype OMP machine will be initially applied for image processing, computer vision, and neural network simulation applications. We summarize important vision and imaging algorithms that can be restructured with neural network models. These algorithms can efficiently run on the OMP hardware with linear speedup. The ultimate goal is to develop a high-performance Visual Computer (Viscom) for integrated low- and high-level image processing and vision tasks.

  11. Neural dynamics of motion processing and speed discrimination.

    Science.gov (United States)

    Chey, J; Grossberg, S; Mingolla, E

    1998-09-01

    A neural network model of visual motion perception and speed discrimination is presented. The model shows how a distributed population code of speed tuning, that realizes a size-speed correlation, can be derived from the simplest mechanisms whereby activations of multiple spatially short-range filters of different size are transformed into speed-turned cell responses. These mechanisms use transient cell responses to moving stimuli, output thresholds that covary with filter size, and competition. These mechanisms are proposed to occur in the V1-->MT cortical processing stream. The model reproduces empirically derived speed discrimination curves and simulates data showing how visual speed perception and discrimination can be affected by stimulus contrast, duration, dot density and spatial frequency. Model motion mechanisms are analogous to mechanisms that have been used to model 3-D form and figure-ground perception. The model forms the front end of a larger motion processing system that has been used to simulate how global motion capture occurs, and how spatial attention is drawn to moving forms. It provides a computational foundation for an emerging neural theory of 3-D form and motion perception.

  12. Using additional external inputs to forecast water quality with an artificial neural network for contamination event detection in source water

    Science.gov (United States)

    Schmidt, F.; Liu, S.

    2016-12-01

    Source water quality plays an important role for the safety of drinking water and early detection of its contamination is vital to taking appropriate countermeasures. However, compared to drinking water, it is more difficult to detect contamination events because its environment is less controlled and numerous natural causes contribute to a high variability of the background values. In this project, Artificial Neural Networks (ANNs) and a Contamination Event Detection Process (CED Process) were used to identify events in river water. The ANN models the response of basic water quality sensors obtained in laboratory experiments in an off-line learning stage and continuously forecasts future values of the time line in an on-line forecasting step. During this second stage, the CED Process compares the forecast to the measured value and classifies it as regular background or event value, which modifies the ANN's continuous learning and influences its forecasts. In addition to this basic setup, external information is fed to the CED Process: A so-called Operator Input (OI) is provided to inform about unusual water quality levels that are unrelated to the presence of contamination, for example due to cooling water discharge from a nearby power plant. This study's primary goal is to evaluate how well the OI fits into the design of the combined forecasting ANN and CED Process and to understand its effects on the online forecasting stage. To test this, data from laboratory experiments conducted previously at the School of Environment, Tsinghua University, have been used to perform simulations highlighting features and drawbacks of this method. Applying the OI has been shown to have a positive influence on the ANN's ability to handle a sudden change in background values, which is unrelated to contamination. However, it might also mask the presence of an event, an issue that underlines the necessity to have several instances of the algorithm run in parallel. Other difficulties

  13. Neural Correlates of Contrast and Humor: Processing Common Features of Verbal Irony

    Science.gov (United States)

    Obert, Alexandre; Gierski, Fabien; Calmus, Arnaud; Flucher, Aurélie; Portefaix, Christophe; Pierot, Laurent; Kaladjian, Arthur; Caillies, Stéphanie

    2016-01-01

    Irony is a kind of figurative language used by a speaker to say something that contrasts with the context and, to some extent, lends humor to a situation. However, little is known about the brain regions that specifically support the processing of these two common features of irony. The present study had two main aims: (i) investigate the neural basis of irony processing, by delivering short ironic spoken sentences (and their literal counterparts) to participants undergoing fMRI; and (ii) assess the neural effect of two irony parameters, obtained from normative studies: degree of contrast and humor appreciation. Results revealed activation of the bilateral inferior frontal gyrus (IFG), posterior part of the left superior temporal gyrus, medial frontal cortex, and left caudate during irony processing, suggesting the involvement of both semantic and theory-of-mind networks. Parametric models showed that contrast was specifically associated with the activation of bilateral frontal and subcortical areas, and that these regions were also sensitive to humor, as shown by a conjunction analysis. Activation of the bilateral IFG is consistent with the literature on humor processing, and reflects incongruity detection/resolution processes. Moreover, the activation of subcortical structures can be related to the reward processing of social events. PMID:27851821

  14. Real-time monitoring of clinical processes using complex event processing and transition systems.

    Science.gov (United States)

    Meinecke, Sebastian

    2014-01-01

    Dependencies between tasks in clinical processes are often complex and error-prone. Our aim is to describe a new approach for the automatic derivation of clinical events identified via the behaviour of IT systems using Complex Event Processing. Furthermore we map these events on transition systems to monitor crucial clinical processes in real-time for preventing and detecting erroneous situations.

  15. Musical intervention enhances infants' neural processing of temporal structure in music and speech.

    Science.gov (United States)

    Zhao, T Christina; Kuhl, Patricia K

    2016-05-10

    Individuals with music training in early childhood show enhanced processing of musical sounds, an effect that generalizes to speech processing. However, the conclusions drawn from previous studies are limited due to the possible confounds of predisposition and other factors affecting musicians and nonmusicians. We used a randomized design to test the effects of a laboratory-controlled music intervention on young infants' neural processing of music and speech. Nine-month-old infants were randomly assigned to music (intervention) or play (control) activities for 12 sessions. The intervention targeted temporal structure learning using triple meter in music (e.g., waltz), which is difficult for infants, and it incorporated key characteristics of typical infant music classes to maximize learning (e.g., multimodal, social, and repetitive experiences). Controls had similar multimodal, social, repetitive play, but without music. Upon completion, infants' neural processing of temporal structure was tested in both music (tones in triple meter) and speech (foreign syllable structure). Infants' neural processing was quantified by the mismatch response (MMR) measured with a traditional oddball paradigm using magnetoencephalography (MEG). The intervention group exhibited significantly larger MMRs in response to music temporal structure violations in both auditory and prefrontal cortical regions. Identical results were obtained for temporal structure changes in speech. The intervention thus enhanced temporal structure processing not only in music, but also in speech, at 9 mo of age. We argue that the intervention enhanced infants' ability to extract temporal structure information and to predict future events in time, a skill affecting both music and speech processing.

  16. Verification and Planning for Stochastic Processes with Asynchronous Events

    National Research Council Canada - National Science Library

    Younes, Hakan L

    2005-01-01

    .... The most common assumption is that of history-independence: the Markov assumption. In this thesis, the author considers the problems of verification and planning for stochastic processes with asynchronous events, without relying on the Markov assumption...

  17. Genetic Algorithms vs. Artificial Neural Networks in Economic Forecasting Process

    Directory of Open Access Journals (Sweden)

    Nicolae Morariu

    2008-01-01

    Full Text Available This paper aims to describe the implementa-tion of a neural network and a genetic algorithm system in order to forecast certain economic indicators of a free market economy. In a free market economy forecasting process precedes the economic planning (a management function, providing important information for the result of the last process. Forecasting represents a starting point in setting of target for a firm, an organization or even a branch of the economy. Thus, the forecasting method used can influence in a significant mode the evolution of an entity. In the following we will describe the forecasting of an economic indicator using two intelligent systems. The difference between the results obtained by this two systems are described in chapter IV.

  18. The principles of artificial neural network information processing

    International Nuclear Information System (INIS)

    Dai, Ru-Wei

    1993-01-01

    In this article, the basic structure of an artificial neuron is first introduced. In addition, principles of artificial neural network as well as several important artificial neural models such as perception, back propagation model, Hopfield net, and ART model are briefly discussed and analyzed. Finally the application of artificial neural network for Chinese character recognition is also given. (author)

  19. The principles of artificial neural network information processing

    International Nuclear Information System (INIS)

    Dai, Ru-Wei

    1993-01-01

    In this article, the basic structure of an artificial neuron is first introduced. In addition, principles of artificial neural network as well as several important artificial neural models such as Perceptron, Back propagation model, Hopfield net, and ART model are briefly discussed and analyzed. Finally, the application of artificial neural network for Chinese Character Recognition is also given. (author)

  20. Emotional sounds modulate early neural processing of emotional pictures

    Directory of Open Access Journals (Sweden)

    Antje B M Gerdes

    2013-10-01

    Full Text Available In our natural environment, emotional information is conveyed by converging visual and auditory information; multimodal integration is of utmost importance. In the laboratory, however, emotion researchers have mostly focused on the examination of unimodal stimuli. Few existing studies on multimodal emotion processing have focused on human communication such as the integration of facial and vocal expressions. Extending the concept of multimodality, the current study examines how the neural processing of emotional pictures is influenced by simultaneously presented sounds. Twenty pleasant, unpleasant, and neutral pictures of complex scenes were presented to 22 healthy participants. On the critical trials these pictures were paired with pleasant, unpleasant and neutral sounds. Sound presentation started 500 ms before picture onset and each stimulus presentation lasted for 2s. EEG was recorded from 64 channels and ERP analyses focused on the picture onset. In addition, valence, and arousal ratings were obtained. Previous findings for the neural processing of emotional pictures were replicated. Specifically, unpleasant compared to neutral pictures were associated with an increased parietal P200 and a more pronounced centroparietal late positive potential (LPP, independent of the accompanying sound valence. For audiovisual stimulation, increased parietal P100 and P200 were found in response to all pictures which were accompanied by unpleasant or pleasant sounds compared to pictures with neutral sounds. Most importantly, incongruent audiovisual pairs of unpleasant pictures and pleasant sounds enhanced parietal P100 and P200 compared to pairings with congruent sounds. Taken together, the present findings indicate that emotional sounds modulate early stages of visual processing and, therefore, provide an avenue by which multimodal experience may enhance perception.

  1. Alternative splicing events identified in human embryonic stem cells and neural progenitors.

    Directory of Open Access Journals (Sweden)

    Gene W Yeo

    2007-10-01

    Full Text Available Human embryonic stem cells (hESCs and neural progenitor (NP cells are excellent models for recapitulating early neuronal development in vitro, and are key to establishing strategies for the treatment of degenerative disorders. While much effort had been undertaken to analyze transcriptional and epigenetic differences during the transition of hESC to NP, very little work has been performed to understand post-transcriptional changes during neuronal differentiation. Alternative RNA splicing (AS, a major form of post-transcriptional gene regulation, is important in mammalian development and neuronal function. Human ESC, hESC-derived NP, and human central nervous system stem cells were compared using Affymetrix exon arrays. We introduced an outlier detection approach, REAP (Regression-based Exon Array Protocol, to identify 1,737 internal exons that are predicted to undergo AS in NP compared to hESC. Experimental validation of REAP-predicted AS events indicated a threshold-dependent sensitivity ranging from 56% to 69%, at a specificity of 77% to 96%. REAP predictions significantly overlapped sets of alternative events identified using expressed sequence tags and evolutionarily conserved AS events. Our results also reveal that focusing on differentially expressed genes between hESC and NP will overlook 14% of potential AS genes. In addition, we found that REAP predictions are enriched in genes encoding serine/threonine kinase and helicase activities. An example is a REAP-predicted alternative exon in the SLK (serine/threonine kinase 2 gene that is differentially included in hESC, but skipped in NP as well as in other differentiated tissues. Lastly, comparative sequence analysis revealed conserved intronic cis-regulatory elements such as the FOX1/2 binding site GCAUG as being proximal to candidate AS exons, suggesting that FOX1/2 may participate in the regulation of AS in NP and hESC. In summary, a new methodology for exon array analysis was introduced

  2. BOOK REVIEW: Theory of Neural Information Processing Systems

    Science.gov (United States)

    Galla, Tobias

    2006-04-01

    It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 1011 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kühn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the

  3. Identifying temporal and causal contributions of neural processes underlying the Implicit Association Test (IAT

    Directory of Open Access Journals (Sweden)

    Chad Edward Forbes

    2012-11-01

    Full Text Available The Implicit Association Test (IAT is a popular behavioral measure that assesses the associative strength between outgroup members and stereotypical and counterstereotypical traits. Less is known, however, about the degree to which the IAT reflects automatic processing. Two studies examined automatic processing contributions to a gender-IAT using a data driven, social neuroscience approach. Performance on congruent (e.g., categorizing male names with synonyms of strength and incongruent (e.g., categorizing female names with synonyms of strength IAT blocks were separately analyzed using EEG (event-related potentials, or ERPs, and coherence; Study 1 and lesion (Study 2 methodologies. Compared to incongruent blocks, performance on congruent IAT blocks was associated with more positive ERPs that manifested in frontal and occipital regions at automatic processing speeds, occipital regions at more controlled processing speeds and was compromised by volume loss in the anterior temporal lobe, insula and medial PFC. Performance on incongruent blocks was associated with volume loss in supplementary motor areas, cingulate gyrus and a region in medial PFC similar to that found for congruent blocks. Greater coherence was found between frontal and occipital regions to the extent individuals exhibited more bias. This suggests there are separable neural contributions to congruent and incongruent blocks of the IAT but there is also a surprising amount of overlap. Given the temporal and regional neural distinctions, these results provide converging evidence that stereotypic associative strength assessed by the IAT indexes automatic processing to a degree.

  4. Direct process estimation from tomographic data using artificial neural systems

    Science.gov (United States)

    Mohamad-Saleh, Junita; Hoyle, Brian S.; Podd, Frank J.; Spink, D. M.

    2001-07-01

    The paper deals with the goal of component fraction estimation in multicomponent flows, a critical measurement in many processes. Electrical capacitance tomography (ECT) is a well-researched sensing technique for this task, due to its low-cost, non-intrusion, and fast response. However, typical systems, which include practicable real-time reconstruction algorithms, give inaccurate results, and existing approaches to direct component fraction measurement are flow-regime dependent. In the investigation described, an artificial neural network approach is used to directly estimate the component fractions in gas-oil, gas-water, and gas-oil-water flows from ECT measurements. A 2D finite- element electric field model of a 12-electrode ECT sensor is used to simulate ECT measurements of various flow conditions. The raw measurements are reduced to a mutually independent set using principal components analysis and used with their corresponding component fractions to train multilayer feed-forward neural networks (MLFFNNs). The trained MLFFNNs are tested with patterns consisting of unlearned ECT simulated and plant measurements. Results included in the paper have a mean absolute error of less than 1% for the estimation of various multicomponent fractions of the permittivity distribution. They are also shown to give improved component fraction estimation compared to a well known direct ECT method.

  5. Experiencing Past and Future Personal Events: Functional Neuroimaging Evidence on the Neural Bases of Mental Time Travel

    Science.gov (United States)

    Botzung, Anne; Denkova, Ekaterina; Manning, Lilianne

    2008-01-01

    Functional MRI was used in healthy subjects to investigate the existence of common neural structures supporting re-experiencing the past and pre-experiencing the future. Past and future events evocation appears to involve highly similar patterns of brain activation including, in particular, the medial prefrontal cortex, posterior regions and the…

  6. Neural correlates of self-appraisals in the near and distant future: an event-related potential study.

    Directory of Open Access Journals (Sweden)

    Yangmei Luo

    Full Text Available To investigate perceptual and neural correlates of future self-appraisals as a function of temporal distance, event-related potentials (ERPs were recorded while participants (11 women, eight men made judgments about the applicability of trait adjectives to their near future selves (i.e., one month from now and their distant future selves (i.e., three years from now. Behavioral results indicated people used fewer positive adjectives, more negative adjectives, recalled more specific events coming to mind and felt more psychologically connected to the near future self than the distant future self. Electrophysiological results demonstrated that negative trait adjectives elicited more positive ERP deflections than did positive trait adjectives in the interval between 550 and 800 ms (late positive component within the near future self condition. However, within the same interval, there were no significant differences between negative and positive traits adjectives in the distant future self condition. The results suggest that negative emotional processing in future self-appraisals is modulated by temporal distance, consistent with predictions of construal level theory.

  7. Neural Signaling of Food Healthiness Associated with Emotion Processing.

    Science.gov (United States)

    Herwig, Uwe; Dhum, Matthias; Hittmeyer, Anna; Opialla, Sarah; Scherpiet, Sigrid; Keller, Carmen; Brühl, Annette B; Siegrist, Michael

    2016-01-01

    The ability to differentiate healthy from unhealthy foods is important in order to promote good health. Food, however, may have an emotional connotation, which could be inversely related to healthiness. The neurobiological background of differentiating healthy and unhealthy food and its relations to emotion processing are not yet well understood. We addressed the neural activations, particularly considering the single subject level, when one evaluates a food item to be of a higher, compared to a lower grade of healthiness with a particular view on emotion processing brain regions. Thirty-seven healthy subjects underwent functional magnetic resonance imaging while evaluating the healthiness of food presented as photographs with a subsequent rating on a visual analog scale. We compared individual evaluations of high and low healthiness of food items and also considered gender differences. We found increased activation when food was evaluated to be healthy in the left dorsolateral prefrontal cortex and precuneus in whole brain analyses. In ROI analyses, perceived and rated higher healthiness was associated with lower amygdala activity and higher ventral striatal and orbitofrontal cortex activity. Females exerted a higher activation in midbrain areas when rating food items as being healthy. Our results underline the close relationship between food and emotion processing, which makes sense considering evolutionary aspects. Actively evaluating and deciding whether food is healthy is accompanied by neural signaling associated with reward and self-relevance, which could promote salutary nutrition behavior. The involved brain regions may be amenable to mechanisms of emotion regulation in the context of psychotherapeutic regulation of food intake.

  8. The light-makeup advantage in facial processing: Evidence from event-related potentials

    OpenAIRE

    Tagai, Keiko; Shimakura, Hitomi; Isobe, Hiroko; Nittono, Hiroshi

    2017-01-01

    The effects of makeup on attractiveness have been evaluated using mainly subjective measures. In this study, event-related brain potentials (ERPs) were recorded from a total of 45 Japanese women (n = 23 and n = 22 for Experiment 1 and 2, respectively) to examine the neural processing of faces with no makeup, light makeup, and heavy makeup. To have the participants look at each face carefully, an identity judgement task was used: they were asked to judge whether the two faces presented in succ...

  9. Consequence Prioritization Process for Potential High Consequence Events (HCE)

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Sarah G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-10-31

    This document describes the process for Consequence Prioritization, the first phase of the Consequence-Driven Cyber-Informed Engineering (CCE) framework. The primary goal of Consequence Prioritization is to identify potential disruptive events that would significantly inhibit an organization’s ability to provide the critical services and functions deemed fundamental to their business mission. These disruptive events, defined as High Consequence Events (HCE), include both events that have occurred or could be realized through an attack of critical infrastructure owner assets. While other efforts have been initiated to identify and mitigate disruptive events at the national security level, such as Presidential Policy Directive 41 (PPD-41), this process is intended to be used by individual organizations to evaluate events that fall below the threshold for a national security. Described another way, Consequence Prioritization considers threats greater than those addressable by standard cyber-hygiene and includes the consideration of events that go beyond a traditional continuity of operations (COOP) perspective. Finally, Consequence Prioritization is most successful when organizations adopt a multi-disciplinary approach, engaging both cyber security and engineering expertise, as in-depth engineering perspectives are required to recognize and characterize and mitigate HCEs. Figure 1 provides a high-level overview of the prioritization process.

  10. Repetition-related reductions in neural activity reveal component processes of mental simulation.

    Science.gov (United States)

    Szpunar, Karl K; St Jacques, Peggy L; Robbins, Clifford A; Wig, Gagan S; Schacter, Daniel L

    2014-05-01

    In everyday life, people adaptively prepare for the future by simulating dynamic events about impending interactions with people, objects and locations. Previous research has consistently demonstrated that a distributed network of frontal-parietal-temporal brain regions supports this ubiquitous mental activity. Nonetheless, little is known about the manner in which specific regions of this network contribute to component features of future simulation. In two experiments, we used a functional magnetic resonance (fMR)-repetition suppression paradigm to demonstrate that distinct frontal-parietal-temporal regions are sensitive to processing the scenarios or what participants imagined was happening in an event (e.g., medial prefrontal, posterior cingulate, temporal-parietal and middle temporal cortices are sensitive to the scenarios associated with future social events), people (medial prefrontal cortex), objects (inferior frontal and premotor cortices) and locations (posterior cingulate/retrosplenial, parahippocampal and posterior parietal cortices) that typically constitute simulations of personal future events. This pattern of results demonstrates that the neural substrates of these component features of event simulations can be reliably identified in the context of a task that requires participants to simulate complex, everyday future experiences.

  11. Neural processing of auditory signals and modular neural control for sound tropism of walking machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Pasemann, Frank; Fischer, Joern

    2005-01-01

    and a neural preprocessing system together with a modular neural controller are used to generate a sound tropism of a four-legged walking machine. The neural preprocessing network is acting as a low-pass filter and it is followed by a network which discerns between signals coming from the left or the right....... The parameters of these networks are optimized by an evolutionary algorithm. In addition, a simple modular neural controller then generates the desired different walking patterns such that the machine walks straight, then turns towards a switched-on sound source, and then stops near to it....

  12. Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process.

    Science.gov (United States)

    Hamamé, Carlos M; Cosmelli, Diego; Henriquez, Rodrigo; Aboitiz, Francisco

    2011-04-26

    Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed. We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz) and alpha (8-14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing. We conclude that there are reorganizations in several neural processes that contribute differently to perceptual learning in a visual search task. We propose an integrative model of neural activity reorganization, whereby perceptual learning takes place as a two-stage phenomenon including perceptual, attentional and contextual processes.

  13. Image processing and analysis using neural networks for optometry area

    Science.gov (United States)

    Netto, Antonio V.; Ferreira de Oliveira, Maria C.

    2002-11-01

    In this work we describe the framework of a functional system for processing and analyzing images of the human eye acquired by the Hartmann-Shack technique (HS), in order to extract information to formulate a diagnosis of eye refractive errors (astigmatism, hypermetropia and myopia). The analysis is to be carried out using an Artificial Intelligence system based on Neural Nets, Fuzzy Logic and Classifier Combination. The major goal is to establish the basis of a new technology to effectively measure ocular refractive errors that is based on methods alternative those adopted in current patented systems. Moreover, analysis of images acquired with the Hartmann-Shack technique may enable the extraction of additional information on the health of an eye under exam from the same image used to detect refraction errors.

  14. Reconstruction of an engine combustion process with a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, P J; Gu, F; Ball, A D [School of Engineering, University of Manchester, Manchester (United Kingdom)

    1998-12-31

    The cylinder pressure waveform in an internal combustion engine is one of the most important parameters in describing the engine combustion process. It is used for a range of diagnostic tasks such as identification of ignition faults or mechanical wear in the cylinders. However, it is very difficult to measure this parameter directly. Never-the-less, the cylinder pressure may be inferred from other more readily obtainable parameters. In this presentation it is shown how a Radial Basis Function network, which may be regarded as a form of neural network, may be used to model the cylinder pressure as a function of the instantaneous crankshaft velocity, recorded with a simple magnetic sensor. The application of the model is demonstrated on a four cylinder DI diesel engine with data from a wide range of speed and load settings. The prediction capabilities of the model once trained are validated against measured data. (orig.) 4 refs.

  15. Reconstruction of an engine combustion process with a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, P.J.; Gu, F.; Ball, A.D. [School of Engineering, University of Manchester, Manchester (United Kingdom)

    1997-12-31

    The cylinder pressure waveform in an internal combustion engine is one of the most important parameters in describing the engine combustion process. It is used for a range of diagnostic tasks such as identification of ignition faults or mechanical wear in the cylinders. However, it is very difficult to measure this parameter directly. Never-the-less, the cylinder pressure may be inferred from other more readily obtainable parameters. In this presentation it is shown how a Radial Basis Function network, which may be regarded as a form of neural network, may be used to model the cylinder pressure as a function of the instantaneous crankshaft velocity, recorded with a simple magnetic sensor. The application of the model is demonstrated on a four cylinder DI diesel engine with data from a wide range of speed and load settings. The prediction capabilities of the model once trained are validated against measured data. (orig.) 4 refs.

  16. Unsupervised Neural Network Quantifies the Cost of Visual Information Processing.

    Science.gov (United States)

    Orbán, Levente L; Chartier, Sylvain

    2015-01-01

    Untrained, "flower-naïve" bumblebees display behavioural preferences when presented with visual properties such as colour, symmetry, spatial frequency and others. Two unsupervised neural networks were implemented to understand the extent to which these models capture elements of bumblebees' unlearned visual preferences towards flower-like visual properties. The computational models, which are variants of Independent Component Analysis and Feature-Extracting Bidirectional Associative Memory, use images of test-patterns that are identical to ones used in behavioural studies. Each model works by decomposing images of floral patterns into meaningful underlying factors. We reconstruct the original floral image using the components and compare the quality of the reconstructed image to the original image. Independent Component Analysis matches behavioural results substantially better across several visual properties. These results are interpreted to support a hypothesis that the temporal and energetic costs of information processing by pollinators served as a selective pressure on floral displays: flowers adapted to pollinators' cognitive constraints.

  17. Neural correlates of sublexical processing in phonological working memory.

    Science.gov (United States)

    McGettigan, Carolyn; Warren, Jane E; Eisner, Frank; Marshall, Chloe R; Shanmugalingam, Pradheep; Scott, Sophie K

    2011-04-01

    This study investigated links between working memory and speech processing systems. We used delayed pseudoword repetition in fMRI to investigate the neural correlates of sublexical structure in phonological working memory (pWM). We orthogonally varied the number of syllables and consonant clusters in auditory pseudowords and measured the neural responses to these manipulations under conditions of covert rehearsal (Experiment 1). A left-dominant network of temporal and motor cortex showed increased activity for longer items, with motor cortex only showing greater activity concomitant with adding consonant clusters. An individual-differences analysis revealed a significant positive relationship between activity in the angular gyrus and the hippocampus, and accuracy on pseudoword repetition. As models of pWM stipulate that its neural correlates should be activated during both perception and production/rehearsal [Buchsbaum, B. R., & D'Esposito, M. The search for the phonological store: From loop to convolution. Journal of Cognitive Neuroscience, 20, 762-778, 2008; Jacquemot, C., & Scott, S. K. What is the relationship between phonological short-term memory and speech processing? Trends in Cognitive Sciences, 10, 480-486, 2006; Baddeley, A. D., & Hitch, G. Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47-89). New York: Academic Press, 1974], we further assessed the effects of the two factors in a separate passive listening experiment (Experiment 2). In this experiment, the effect of the number of syllables was concentrated in posterior-medial regions of the supratemporal plane bilaterally, although there was no evidence of a significant response to added clusters. Taken together, the results identify the planum temporale as a key region in pWM; within this region, representations are likely to take the form of auditory or audiomotor "templates" or "chunks" at the level of the syllable

  18. Neural Processing of Emotional Musical and Nonmusical Stimuli in Depression.

    Directory of Open Access Journals (Sweden)

    Rebecca J Lepping

    Full Text Available Anterior cingulate cortex (ACC and striatum are part of the emotional neural circuitry implicated in major depressive disorder (MDD. Music is often used for emotion regulation, and pleasurable music listening activates the dopaminergic system in the brain, including the ACC. The present study uses functional MRI (fMRI and an emotional nonmusical and musical stimuli paradigm to examine how neural processing of emotionally provocative auditory stimuli is altered within the ACC and striatum in depression.Nineteen MDD and 20 never-depressed (ND control participants listened to standardized positive and negative emotional musical and nonmusical stimuli during fMRI scanning and gave subjective ratings of valence and arousal following scanning.ND participants exhibited greater activation to positive versus negative stimuli in ventral ACC. When compared with ND participants, MDD participants showed a different pattern of activation in ACC. In the rostral part of the ACC, ND participants showed greater activation for positive information, while MDD participants showed greater activation to negative information. In dorsal ACC, the pattern of activation distinguished between the types of stimuli, with ND participants showing greater activation to music compared to nonmusical stimuli, while MDD participants showed greater activation to nonmusical stimuli, with the greatest response to negative nonmusical stimuli. No group differences were found in striatum.These results suggest that people with depression may process emotional auditory stimuli differently based on both the type of stimulation and the emotional content of that stimulation. This raises the possibility that music may be useful in retraining ACC function, potentially leading to more effective and targeted treatments.

  19. Acoustic richness modulates the neural networks supporting intelligible speech processing.

    Science.gov (United States)

    Lee, Yune-Sang; Min, Nam Eun; Wingfield, Arthur; Grossman, Murray; Peelle, Jonathan E

    2016-03-01

    The information contained in a sensory signal plays a critical role in determining what neural processes are engaged. Here we used interleaved silent steady-state (ISSS) functional magnetic resonance imaging (fMRI) to explore how human listeners cope with different degrees of acoustic richness during auditory sentence comprehension. Twenty-six healthy young adults underwent scanning while hearing sentences that varied in acoustic richness (high vs. low spectral detail) and syntactic complexity (subject-relative vs. object-relative center-embedded clause structures). We manipulated acoustic richness by presenting the stimuli as unprocessed full-spectrum speech, or noise-vocoded with 24 channels. Importantly, although the vocoded sentences were spectrally impoverished, all sentences were highly intelligible. These manipulations allowed us to test how intelligible speech processing was affected by orthogonal linguistic and acoustic demands. Acoustically rich speech showed stronger activation than acoustically less-detailed speech in a bilateral temporoparietal network with more pronounced activity in the right hemisphere. By contrast, listening to sentences with greater syntactic complexity resulted in increased activation of a left-lateralized network including left posterior lateral temporal cortex, left inferior frontal gyrus, and left dorsolateral prefrontal cortex. Significant interactions between acoustic richness and syntactic complexity occurred in left supramarginal gyrus, right superior temporal gyrus, and right inferior frontal gyrus, indicating that the regions recruited for syntactic challenge differed as a function of acoustic properties of the speech. Our findings suggest that the neural systems involved in speech perception are finely tuned to the type of information available, and that reducing the richness of the acoustic signal dramatically alters the brain's response to spoken language, even when intelligibility is high. Copyright © 2015 Elsevier

  20. Designing and Securing an Event Processing System for Smart Spaces

    Science.gov (United States)

    Li, Zang

    2011-01-01

    Smart spaces, or smart environments, represent the next evolutionary development in buildings, banking, homes, hospitals, transportation systems, industries, cities, and government automation. By riding the tide of sensor and event processing technologies, the smart environment captures and processes information about its surroundings as well as…

  1. Software for event oriented processing on multiprocessor systems

    International Nuclear Information System (INIS)

    Fischler, M.; Areti, H.; Biel, J.; Bracker, S.; Case, G.; Gaines, I.; Husby, D.; Nash, T.

    1984-08-01

    Computing intensive problems that require the processing of numerous essentially independent events are natural customers for large scale multi-microprocessor systems. This paper describes the software required to support users with such problems in a multiprocessor environment. It is based on experience with and development work aimed at processing very large amounts of high energy physics data

  2. Neural correlates of gesture processing across human development.

    Science.gov (United States)

    Wakefield, Elizabeth M; James, Thomas W; James, Karin H

    2013-01-01

    Co-speech gesture facilitates learning to a greater degree in children than in adults, suggesting that the mechanisms underlying the processing of co-speech gesture differ as a function of development. We suggest that this may be partially due to children's lack of experience producing gesture, leading to differences in the recruitment of sensorimotor networks when comparing adults to children. Here, we investigated the neural substrates of gesture processing in a cross-sectional sample of 5-, 7.5-, and 10-year-old children and adults and focused on relative recruitment of a sensorimotor system that included the precentral gyrus (PCG) and the posterior middle temporal gyrus (pMTG). Children and adults were presented with videos in which communication occurred through different combinations of speech and gesture during a functional magnetic resonance imaging (fMRI) session. Results demonstrated that the PCG and pMTG were recruited to different extents in the two populations. We interpret these novel findings as supporting the idea that gesture perception (pMTG) is affected by a history of gesture production (PCG), revealing the importance of considering gesture processing as a sensorimotor process.

  3. Process cubes : slicing, dicing, rolling up and drilling down event data for process mining

    NARCIS (Netherlands)

    Aalst, van der W.M.P.

    2013-01-01

    Recent breakthroughs in process mining research make it possible to discover, analyze, and improve business processes based on event data. The growth of event data provides many opportunities but also imposes new challenges. Process mining is typically done for an isolated well-defined process in

  4. Neural bases of event knowledge and syntax integration in comprehension of complex sentences.

    Science.gov (United States)

    Malaia, Evie; Newman, Sharlene

    2015-01-01

    Comprehension of complex sentences is necessarily supported by both syntactic and semantic knowledge, but what linguistic factors trigger a readers' reliance on a specific system? This functional neuroimaging study orthogonally manipulated argument plausibility and verb event type to investigate cortical bases of the semantic effect on argument comprehension during reading. The data suggest that telic verbs facilitate online processing by means of consolidating the event schemas in episodic memory and by easing the computation of syntactico-thematic hierarchies in the left inferior frontal gyrus. The results demonstrate that syntax-semantics integration relies on trade-offs among a distributed network of regions for maximum comprehension efficiency.

  5. A neural model for transient identification in dynamic processes with 'don't know' response

    International Nuclear Information System (INIS)

    Mol, Antonio C. de A.; Martinez, Aquilino S.; Schirru, Roberto

    2003-01-01

    This work presents an approach for neural network based transient identification which allows either dynamic identification or a 'don't know' response. The approach uses two 'jump' multilayer neural networks (NN) trained with the backpropagation algorithm. The 'jump' network is used because it is useful to dealing with very complex patterns, which is the case of the space of the state variables during some abnormal events. The first one is responsible for the dynamic identification. This NN uses, as input, a short set (in a moving time window) of recent measurements of each variable avoiding the necessity of using starting events. The other one is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide a 'don't know' response. In order to validate the method, a Nuclear Power Plant (NPP) transient identification problem comprising 15 postulated accidents, simulated for a pressurized water reactor (PWR), was proposed in the validation process it has been considered noisy data in order to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. Another important point studied in this work is that the system has shown to be independent of a trigger signal which indicates the beginning of the transient, thus making it robust in relation to this limitation

  6. Discrimination Analysis of Earthquakes and Man-Made Events Using ARMA Coefficients Determination by Artificial Neural Networks

    International Nuclear Information System (INIS)

    AllamehZadeh, Mostafa

    2011-01-01

    A Quadratic Neural Networks (QNNs) model has been developed for identifying seismic source classification problem at regional distances using ARMA coefficients determination by Artificial Neural Networks (ANNs). We have devised a supervised neural system to discriminate between earthquakes and chemical explosions with filter coefficients obtained by windowed P-wave phase spectra (15 s). First, we preprocess the recording's signals to cancel out instrumental and attenuation site effects and obtain a compact representation of seismic records. Second, we use a QNNs system to obtain ARMA coefficients for feature extraction in the discrimination problem. The derived coefficients are then applied to the neural system to train and classification. In this study, we explore the possibility of using single station three-component (3C) covariance matrix traces from a priori-known explosion sites (learning) for automatically recognizing subsequent explosions from the same site. The results have shown that this feature extraction gives the best classifier for seismic signals and performs significantly better than other classification methods. The events have been tested, which include 36 chemical explosions at the Semipalatinsk test site in Kazakhstan and 61 earthquakes (mb = 5.0–6.5) recorded by the Iranian National Seismic Network (INSN). The 100% correct decisions were obtained between site explosions and some of non-site events. The above approach to event discrimination is very flexible as we can combine several 3C stations.

  7. Discrimination Analysis of Earthquakes and Man-Made Events Using ARMA Coefficients Determination by Artificial Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    AllamehZadeh, Mostafa, E-mail: dibaparima@yahoo.com [International Institute of Earthquake Engineering and Seismology (Iran, Islamic Republic of)

    2011-12-15

    A Quadratic Neural Networks (QNNs) model has been developed for identifying seismic source classification problem at regional distances using ARMA coefficients determination by Artificial Neural Networks (ANNs). We have devised a supervised neural system to discriminate between earthquakes and chemical explosions with filter coefficients obtained by windowed P-wave phase spectra (15 s). First, we preprocess the recording's signals to cancel out instrumental and attenuation site effects and obtain a compact representation of seismic records. Second, we use a QNNs system to obtain ARMA coefficients for feature extraction in the discrimination problem. The derived coefficients are then applied to the neural system to train and classification. In this study, we explore the possibility of using single station three-component (3C) covariance matrix traces from a priori-known explosion sites (learning) for automatically recognizing subsequent explosions from the same site. The results have shown that this feature extraction gives the best classifier for seismic signals and performs significantly better than other classification methods. The events have been tested, which include 36 chemical explosions at the Semipalatinsk test site in Kazakhstan and 61 earthquakes (mb = 5.0-6.5) recorded by the Iranian National Seismic Network (INSN). The 100% correct decisions were obtained between site explosions and some of non-site events. The above approach to event discrimination is very flexible as we can combine several 3C stations.

  8. Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model.

    Directory of Open Access Journals (Sweden)

    Guido Gigante

    2015-11-01

    Full Text Available Cortical networks, in-vitro as well as in-vivo, can spontaneously generate a variety of collective dynamical events such as network spikes, UP and DOWN states, global oscillations, and avalanches. Though each of them has been variously recognized in previous works as expression of the excitability of the cortical tissue and the associated nonlinear dynamics, a unified picture of the determinant factors (dynamical and architectural is desirable and not yet available. Progress has also been partially hindered by the use of a variety of statistical measures to define the network events of interest. We propose here a common probabilistic definition of network events that, applied to the firing activity of cultured neural networks, highlights the co-occurrence of network spikes, power-law distributed avalanches, and exponentially distributed 'quasi-orbits', which offer a third type of collective behavior. A rate model, including synaptic excitation and inhibition with no imposed topology, synaptic short-term depression, and finite-size noise, accounts for all these different, coexisting phenomena. We find that their emergence is largely regulated by the proximity to an oscillatory instability of the dynamics, where the non-linear excitable behavior leads to a self-amplification of activity fluctuations over a wide range of scales in space and time. In this sense, the cultured network dynamics is compatible with an excitation-inhibition balance corresponding to a slightly sub-critical regime. Finally, we propose and test a method to infer the characteristic time of the fatigue process, from the observed time course of the network's firing rate. Unlike the model, possessing a single fatigue mechanism, the cultured network appears to show multiple time scales, signalling the possible coexistence of different fatigue mechanisms.

  9. The application of neural networks with artificial intelligence technique in the modeling of industrial processes

    International Nuclear Information System (INIS)

    Saini, K. K.; Saini, Sanju

    2008-01-01

    Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

  10. Neural pathways in processing of sexual arousal: a dynamic causal modeling study.

    Science.gov (United States)

    Seok, J-W; Park, M-S; Sohn, J-H

    2016-09-01

    Three decades of research have investigated brain processing of visual sexual stimuli with neuroimaging methods. These researchers have found that sexual arousal stimuli elicit activity in a broad neural network of cortical and subcortical brain areas that are known to be associated with cognitive, emotional, motivational and physiological components. However, it is not completely understood how these neural systems integrate and modulated incoming information. Therefore, we identify cerebral areas whose activations were correlated with sexual arousal using event-related functional magnetic resonance imaging and used the dynamic causal modeling method for searching the effective connectivity about the sexual arousal processing network. Thirteen heterosexual males were scanned while they passively viewed alternating short trials of erotic and neutral pictures on a monitor. We created a subset of seven models based on our results and previous studies and selected a dominant connectivity model. Consequently, we suggest a dynamic causal model of the brain processes mediating the cognitive, emotional, motivational and physiological factors of human male sexual arousal. These findings are significant implications for the neuropsychology of male sexuality.

  11. Cardiovascular events in patients with mild autonomous cortisol secretion: analysis with artificial neural networks.

    Science.gov (United States)

    Morelli, Valentina; Palmieri, Serena; Lania, Andrea; Tresoldi, Alberto; Corbetta, Sabrina; Cairoli, Elisa; Eller-Vainicher, Cristina; Arosio, Maura; Copetti, Massimiliano; Grossi, Enzo; Chiodini, Iacopo

    2017-07-01

    The independent role of mild autonomous cortisol secretion (ACS) in influencing the cardiovascular event (CVE) occurrence is a topic of interest. We investigated the role of mild ACS in the CVE occurrence in patients with adrenal incidentaloma (AI) by standard statistics and artificial neural networks (ANNs). We analyzed a retrospective record of 518 AI patients. Data regarding cortisol levels after 1 mg dexamethasone suppression (1 mg DST) and the presence of obesity (OB), hypertension (AH), type-2 diabetes (T2DM), dyslipidemia (DL), familial CVE history, smoking habit and CVE were collected. The receiver-operating characteristic curve analysis suggested that 1 mg DST, at a cut-off of 1.8 µg/dL, had the best accuracy for detecting patients with increased CVE risk. In patients with 1 mg-DST ≥1.8 µg/dL (DST+, n  = 223), age and prevalence of AH, T2DM, DL and CVE (66 years, 74.5, 25.9, 41.4 and 26.8% respectively) were higher than that of patients with 1 mg-DST ≤1.8 µg/dL (61.9 years, 60.7, 18.5, 32.9 and 10%, respectively, P  Cortisol after 1 mg-DST is independently associated with the CVE occurrence. The ANNs might help for assessing the CVE risk in AI patients. © 2017 European Society of Endocrinology.

  12. Categorization of the processes contributing to ttH(H→bb) using deep neural networks with the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rath, Yannik; Erdmann, Martin; Fischer, Benjamin; Fischer, Robert; Heidemann, Fabian; Quast, Thorben; Rieger, Marcel [III. Physikalisches Institut A, RWTH Aachen University (Germany)

    2016-07-01

    In ttH(H→bb) analyses, event categorization is introduced to simultaneously constrain signal and background processes. A common procedure is to categorize events according to both their jet and b-tag multiplicities. The separation power of this approach is limited by the b-tagging efficiency. Especially ttH(H→bb) events with their high b-tag multiplicities suffer from migrations to background categories. In this presentation, we explore deep neural networks (DNNs) as a method of categorizing events according to their jet multiplicity and a DNN event class hypothesis. DNNs have the advantage of being able to learn discriminating features from low level variables, e.g. kinematic properties, and are naturally suited for multiclass classification problems. We compare the ttH signal separation achieved with the DNN method with that of a common categorization approach.

  13. Neural sensitivity to social deviance predicts attentive processing of peer-group judgment.

    Science.gov (United States)

    Schnuerch, Robert; Trautmann-Lengsfeld, Sina Alexa; Bertram, Mario; Gibbons, Henning

    2014-01-01

    The detection of one's deviance from social norms is an essential mechanism of individual adjustment to group behavior and, thus, for the perpetuation of norms within groups. It has been suggested that error signals in mediofrontal cortex provide the neural basis of such deviance detection, which contributes to later adjustment to the norm. In the present study, we used event-related potentials (ERPs) to demonstrate that, across participants, the strength of mediofrontal brain correlates of the detection of deviance from a peer group's norms was negatively related to attentive processing of the same group's judgments in a later task. We propose that an individual's perception of social deviance might bias basic cognitive processing during further interaction with the group. Strongly perceiving disagreement with a group could cause an individual to avoid or inhibit this group's judgments.

  14. Neural Temporal Dynamics of Social Exclusion Elicited by Averted Gaze: An Event-Related Potentials Study

    Directory of Open Access Journals (Sweden)

    Yue Leng

    2018-02-01

    Full Text Available Eye gaze plays a fundamental role in social communication. The averted eye gaze during social interaction, as the most common form of silent treatment, conveys a signal of social exclusion. In the present study, we examined the time course of brain response to social exclusion by using a modified version of Eye-gaze paradigm. The event-related potentials (ERPs data and the subjective rating data showed that the frontocentral P200 was positively correlated with negative mood of excluded events, whereas, the centroparietal late positive potential (LPP was positively correlated with the perceived ostracism intensity. Both the P200 and LPP were more positive-going for excluded events than for included events. These findings suggest that brain responses sensitive to social exclusion can be divided into the early affective processing stage, linking to the early pre-cognitive warning system; and the late higher-order processes stage, demanding attentional resources for elaborate stimuli evaluation and categorization generally not under specific situation.

  15. Use of neural networks in process engineering. Thermodynamics, diffusion, and process control and simulation applications

    International Nuclear Information System (INIS)

    Otero, F

    1998-01-01

    This article presents the current status of the use of Artificial Neural Networks (ANNs) in process engineering applications where common mathematical methods do not completely represent the behavior shown by experimental observations, results, and plant operating data. Three examples of the use of ANNs in typical process engineering applications such as prediction of activity in solvent-polymer binary systems, prediction of a surfactant self-diffusion coefficient of micellar systems, and process control and simulation are shown. These examples are important for polymerization applications, enhanced-oil recovery, and automatic process control

  16. Trait Rumination Influences Neural Correlates of the Anticipation but Not the Consumption Phase of Reward Processing

    Directory of Open Access Journals (Sweden)

    Natália Kocsel

    2017-05-01

    Full Text Available Cumulative evidence suggests that trait rumination can be defined as an abstract information processing mode, which leads people to constantly anticipate the likely impact of present events on future events and experiences. A previous study with remitted depressed patients suggested that enhanced rumination tendencies distort brain mechanisms of anticipatory processes associated with reward and loss cues. In the present study, we explored the impact of trait rumination on neural activity during reward and loss anticipation among never-depressed people. We analyzed the data of 37 healthy controls, who performed the monetary incentive delay (MID task which was designed for the simultaneous measurement of the anticipation (motivational and consumption (hedonic phase of reward processing, during functional magnetic resonance imaging (fMRI. Our results show that rumination—after controlling for age, gender, and current mood—significantly influenced neural responses to reward (win cues compared to loss cues. Blood-oxygenation-level-dependent (BOLD activity in the left inferior frontal gyrus (IFG triangularis, left anterior insula, and left rolandic operculum was positively related to Ruminative Response Scale (RRS scores. We did not detect any significant rumination-related activations associated with win-neutral or loss-neutral cues and with reward or loss consumption. Our results highlight the influence of trait rumination on reward anticipation in a non-depressed sample. They also suggest that for never-depressed ruminators rewarding cues are more salient than loss cues. BOLD response during reward consumption did not relate to rumination, suggesting that rumination mainly relates to processing of the motivational (wanting aspect of reward rather than the hedonic (liking aspect, at least in the absence of pathological mood.

  17. Notification Event Architecture for Traveler Screening: Predictive Traveler Screening Using Event Driven Business Process Management

    Science.gov (United States)

    Lynch, John Kenneth

    2013-01-01

    Using an exploratory model of the 9/11 terrorists, this research investigates the linkages between Event Driven Business Process Management (edBPM) and decision making. Although the literature on the role of technology in efficient and effective decision making is extensive, research has yet to quantify the benefit of using edBPM to aid the…

  18. Aberrant Neural Connectivity during Emotional Processing Associated with Posttraumatic Stress.

    Science.gov (United States)

    Sadeh, Naomi; Spielberg, Jeffrey M; Warren, Stacie L; Miller, Gregory A; Heller, Wendy

    2014-11-01

    Given the complexity of the brain, characterizing relations among distributed brain regions is likely essential to describing the neural instantiation of posttraumatic stress symptoms. This study examined patterns of functional connectivity among key brain regions implicated in the pathophysiology of posttraumatic stress disorder (PTSD) in 35 trauma-exposed adults using an emotion-word Stroop task. PTSD symptom severity (particularly hyperarousal symptoms) moderated amygdala-mPFC coupling during the processing of unpleasant words, and this moderation correlated positively with reported real-world impairment and amygdala reactivity. Reexperiencing severity moderated hippocampus-insula coupling during pleasant and unpleasant words. Results provide evidence that PTSD symptoms differentially moderate functional coupling during emotional interference and underscore the importance of examining network connectivity in research on PTSD. They suggest that hyperarousal is associated with negative mPFC-amygdala coupling and that reexperiencing is associated with altered insula-hippocampus function, patterns of connectivity that may represent separable indicators of dysfunctional inhibitory control during affective processing.

  19. Neural correlates of distraction and conflict resolution for nonverbal auditory events.

    Science.gov (United States)

    Stewart, Hannah J; Amitay, Sygal; Alain, Claude

    2017-05-09

    In everyday situations auditory selective attention requires listeners to suppress task-irrelevant stimuli and to resolve conflicting information in order to make appropriate goal-directed decisions. Traditionally, these two processes (i.e. distractor suppression and conflict resolution) have been studied separately. In the present study we measured neuroelectric activity while participants performed a new paradigm in which both processes are quantified. In separate block of trials, participants indicate whether two sequential tones share the same pitch or location depending on the block's instruction. For the distraction measure, a positive component peaking at ~250 ms was found - a distraction positivity. Brain electrical source analysis of this component suggests different generators when listeners attended to frequency and location, with the distraction by location more posterior than the distraction by frequency, providing support for the dual-pathway theory. For the conflict resolution measure, a negative frontocentral component (270-450 ms) was found, which showed similarities with that of prior studies on auditory and visual conflict resolution tasks. The timing and distribution are consistent with two distinct neural processes with suppression of task-irrelevant information occurring before conflict resolution. This new paradigm may prove useful in clinical populations to assess impairments in filtering out task-irrelevant information and/or resolving conflicting information.

  20. Forward and Reverse Process Models for the Squeeze Casting Process Using Neural Network Based Approaches

    Directory of Open Access Journals (Sweden)

    Manjunath Patel Gowdru Chandrashekarappa

    2014-01-01

    Full Text Available The present research work is focussed to develop an intelligent system to establish the input-output relationship utilizing forward and reverse mappings of artificial neural networks. Forward mapping aims at predicting the density and secondary dendrite arm spacing (SDAS from the known set of squeeze cast process parameters such as time delay, pressure duration, squeezes pressure, pouring temperature, and die temperature. An attempt is also made to meet the industrial requirements of developing the reverse model to predict the recommended squeeze cast parameters for the desired density and SDAS. Two different neural network based approaches have been proposed to carry out the said task, namely, back propagation neural network (BPNN and genetic algorithm neural network (GA-NN. The batch mode of training is employed for both supervised learning networks and requires huge training data. The requirement of huge training data is generated artificially at random using regression equation derived through real experiments carried out earlier by the same authors. The performances of BPNN and GA-NN models are compared among themselves with those of regression for ten test cases. The results show that both models are capable of making better predictions and the models can be effectively used in shop floor in selection of most influential parameters for the desired outputs.

  1. Smokers exhibit biased neural processing of smoking and affective images.

    Science.gov (United States)

    Oliver, Jason A; Jentink, Kade G; Drobes, David J; Evans, David E

    2016-08-01

    There has been growing interest in the role that implicit processing of drug cues can play in motivating drug use behavior. However, the extent to which drug cue processing biases relate to the processing biases exhibited to other types of evocative stimuli is largely unknown. The goal of the present study was to determine how the implicit cognitive processing of smoking cues relates to the processing of affective cues using a novel paradigm. Smokers (n = 50) and nonsmokers (n = 38) completed a picture-viewing task, in which participants were presented with a series of smoking, pleasant, unpleasant, and neutral images while engaging in a distractor task designed to direct controlled resources away from conscious processing of image content. Electroencephalogram recordings were obtained throughout the task for extraction of event-related potentials (ERPs). Smokers exhibited differential processing of smoking cues across 3 different ERP indices compared with nonsmokers. Comparable effects were found for pleasant cues on 2 of these indices. Late cognitive processing of smoking and pleasant cues was associated with nicotine dependence and cigarette use. Results suggest that cognitive biases may extend across classes of stimuli among smokers. This raises important questions about the fundamental meaning of cognitive biases, and suggests the need to consider generalized cognitive biases in theories of drug use behavior and interventions based on cognitive bias modification. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Enhancing Business Process Automation by Integrating RFID Data and Events

    Science.gov (United States)

    Zhao, Xiaohui; Liu, Chengfei; Lin, Tao

    Business process automation is one of the major benefits for utilising Radio Frequency Identification (RFID) technology. Through readers to RFID middleware systems, the information and the movements of tagged objects can be used to trigger business transactions. These features change the way of business applications for dealing with the physical world from mostly quantity-based to object-based. Aiming to facilitate business process automation, this paper introduces a new method to model and incorporate business logics into RFID edge systems from an object-oriented perspective with emphasises on RFID's event-driven characteristics. A framework covering business rule modelling, event handling and system operation invocations is presented on the basis of the event calculus. In regard to the identified delayed effects in RFID-enabled applications, a two-block buffering mechanism is proposed to improve RFID query efficiency within the framework. The performance improvements are analysed with related experiments.

  3. Compliance with Environmental Regulations through Complex Geo-Event Processing

    Directory of Open Access Journals (Sweden)

    Federico Herrera

    2017-11-01

    Full Text Available In a context of e-government, there are usually regulatory compliance requirements that support systems must monitor, control and enforce. These requirements may come from environmental laws and regulations that aim to protect the natural environment and mitigate the effects of pollution on human health and ecosystems. Monitoring compliance with these requirements involves processing a large volume of data from different sources, which is a major challenge. This volume is also increased with data coming from autonomous sensors (e.g. reporting carbon emission in protected areas and from citizens providing information (e.g. illegal dumping in a voluntary way. Complex Event Processing (CEP technologies allow processing large amount of event data and detecting patterns from them. However, they do not provide native support for the geographic dimension of events which is essential for monitoring requirements which apply to specific geographic areas. This paper proposes a geospatial extension for CEP that allows monitoring environmental requirements considering the geographic location of the processed data. We extend an existing platform-independent, model-driven approach for CEP adding the geographic location to events and specifying patterns using geographic operators. The use and technical feasibility of the proposal is shown through the development of a case study and the implementation of a prototype.

  4. High school music classes enhance the neural processing of speech.

    Science.gov (United States)

    Tierney, Adam; Krizman, Jennifer; Skoe, Erika; Johnston, Kathleen; Kraus, Nina

    2013-01-01

    Should music be a priority in public education? One argument for teaching music in school is that private music instruction relates to enhanced language abilities and neural function. However, the directionality of this relationship is unclear and it is unknown whether school-based music training can produce these enhancements. Here we show that 2 years of group music classes in high school enhance the neural encoding of speech. To tease apart the relationships between music and neural function, we tested high school students participating in either music or fitness-based training. These groups were matched at the onset of training on neural timing, reading ability, and IQ. Auditory brainstem responses were collected to a synthesized speech sound presented in background noise. After 2 years of training, the neural responses of the music training group were earlier than at pre-training, while the neural timing of students in the fitness training group was unchanged. These results represent the strongest evidence to date that in-school music education can cause enhanced speech encoding. The neural benefits of musical training are, therefore, not limited to expensive private instruction early in childhood but can be elicited by cost-effective group instruction during adolescence.

  5. Intelligent Transportation Control based on Proactive Complex Event Processing

    OpenAIRE

    Wang Yongheng; Geng Shaofeng; Li Qian

    2016-01-01

    Complex Event Processing (CEP) has become the key part of Internet of Things (IoT). Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is p...

  6. Multidimensional analysis of the abnormal neural oscillations associated with lexical processing in schizophrenia.

    Science.gov (United States)

    Xu, Tingting; Stephane, Massoud; Parhi, Keshab K

    2013-04-01

    The neural mechanisms of language abnormalities, the core symptoms in schizophrenia, remain unclear. In this study, a new experimental paradigm, combining magnetoencephalography (MEG) techniques and machine intelligence methodologies, was designed to gain knowledge about the frequency, brain location, and time of occurrence of the neural oscillations that are associated with lexical processing in schizophrenia. The 248-channel MEG recordings were obtained from 12 patients with schizophrenia and 10 healthy controls, during a lexical processing task, where the patients discriminated correct from incorrect lexical stimuli that were visually presented. Event-related desynchronization/synchronization (ERD/ERS) was computed along the frequency, time, and space dimensions combined, that resulted in a large spectral-spatial-temporal ERD/ERS feature set. Machine intelligence techniques were then applied to select a small subset of oscillation patterns that are abnormal in patients with schizophrenia, according to their discriminating power in patient and control classification. Patients with schizophrenia showed abnormal ERD/ERS patterns during both lexical encoding and post-encoding periods. The top-ranked features were located at the occipital and left frontal-temporal areas, and covered a wide frequency range, including δ (1-4 Hz), α (8-12 Hz), β (12-32 Hz), and γ (32-48 Hz) bands. These top features could discriminate the patient group from the control group with 90.91% high accuracy, which demonstrates significant brain oscillation abnormalities in patients with schizophrenia at the specific frequency, time, and brain location indicated by these top features. As neural oscillation abnormality may be due to the mechanisms of the disease, the spectral, spatial, and temporal content of the discriminating features can offer useful information for helping understand the physiological basis of the language disorder in schizophrenia, as well as the pathology of the

  7. Theory of mind for processing unexpected events across contexts.

    Science.gov (United States)

    Dungan, James A; Stepanovic, Michael; Young, Liane

    2016-08-01

    Theory of mind, or mental state reasoning, may be particularly useful for making sense of unexpected events. Here, we investigated unexpected behavior across both social and non-social contexts in order to characterize the precise role of theory of mind in processing unexpected events. We used functional magnetic resonance imaging to examine how people respond to unexpected outcomes when initial expectations were based on (i) an object's prior behavior, (ii) an agent's prior behavior and (iii) an agent's mental states. Consistent with prior work, brain regions for theory of mind were preferentially recruited when people first formed expectations about social agents vs non-social objects. Critically, unexpected vs expected outcomes elicited greater activity in dorsomedial prefrontal cortex, which also discriminated in its spatial pattern of activity between unexpected and expected outcomes for social events. In contrast, social vs non-social events elicited greater activity in precuneus across both expected and unexpected outcomes. Finally, given prior information about an agent's behavior, unexpected vs expected outcomes elicited an especially robust response in right temporoparietal junction, and the magnitude of this difference across participants correlated negatively with autistic-like traits. Together, these findings illuminate the distinct contributions of brain regions for theory of mind for processing unexpected events across contexts. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Client-Side Event Processing for Personalized Web Advertisement

    Science.gov (United States)

    Stühmer, Roland; Anicic, Darko; Sen, Sinan; Ma, Jun; Schmidt, Kay-Uwe; Stojanovic, Nenad

    The market for Web advertisement is continuously growing and correspondingly, the number of approaches that can be used for realizing Web advertisement are increasing. However, current approaches fail to generate very personalized ads for a current Web user that is visiting a particular Web content. They mainly try to develop a profile based on the content of that Web page or on a long-term user's profile, by not taking into account current user's preferences. We argue that by discovering a user's interest from his current Web behavior we can support the process of ad generation, especially the relevance of an ad for the user. In this paper we present the conceptual architecture and implementation of such an approach. The approach is based on the extraction of simple events from the user interaction with a Web page and their combination in order to discover the user's interests. We use semantic technologies in order to build such an interpretation out of many simple events. We present results from preliminary evaluation studies. The main contribution of the paper is a very efficient, semantic-based client-side architecture for generating and combining Web events. The architecture ensures the agility of the whole advertisement system, by complexly processing events on the client. In general, this work contributes to the realization of new, event-driven applications for the (Semantic) Web.

  9. Dissociable neural processes underlying risky decisions for self versus other

    Directory of Open Access Journals (Sweden)

    Daehyun eJung

    2013-03-01

    Full Text Available Previous neuroimaging studies on decision making have mainly focused on decisions on behalf of oneself. Considering that people often make decisions on behalf of others, it is intriguing that there is little neurobiological evidence on how decisions for others differ from those for self. Thus, the present study focused on the direct comparison between risky decisions for self and those for other using functional magnetic resonance imaging (fMRI. Participants (N = 23 were asked to perform a gambling task for themselves (decision-for-self condition or for another person (decision-for-other condition while in the scanner. Their task was to choose between a low-risk option (i.e., win or lose 10 points and a high-risk option (i.e., win or lose 90 points. The winning probabilities of each option varied from 17% to 83%. Compared to choices for others, choices for self were more risk-averse at lower winning probability and more risk-seeking at higher winning probability, perhaps due to stronger affective process during risky decision for self compared to other. The brain activation pattern changed according to the target of the decision, such that reward-related regions were more active in the decision-for-self condition than in the decision-for-other condition, whereas brain regions related to the theory of mind (ToM showed greater activation in the decision-for-other condition than in the decision-for-self condition. A parametric modulation analysis reflecting each individual’s decision model revealed that activation of the amygdala and the dorsomedial prefrontal cortex (DMPFC were associated with value computation for self and for other, respectively, during a risky financial decision. The present study suggests that decisions for self and other may recruit fundamentally distinctive neural processes, which can be mainly characterized by dominant affective/impulsive and cognitive/regulatory processes, respectively.

  10. Dissociable Neural Processes Underlying Risky Decisions for Self Versus Other

    Science.gov (United States)

    Jung, Daehyun; Sul, Sunhae; Kim, Hackjin

    2013-01-01

    Previous neuroimaging studies on decision making have mainly focused on decisions on behalf of oneself. Considering that people often make decisions on behalf of others, it is intriguing that there is little neurobiological evidence on how decisions for others differ from those for oneself. The present study directly compared risky decisions for self with those for another person using functional magnetic resonance imaging (fMRI). Participants were asked to perform a gambling task on behalf of themselves (decision-for-self condition) or another person (decision-for-other condition) while in the scanner. Their task was to choose between a low-risk option (i.e., win or lose 10 points) and a high-risk option (i.e., win or lose 90 points) with variable levels of winning probability. Compared with choices regarding others, those regarding oneself were more risk-averse at lower winning probabilities and more risk-seeking at higher winning probabilities, perhaps due to stronger affective process during risky decisions for oneself compared with those for other. The brain-activation pattern changed according to the target, such that reward-related regions were more active in the decision-for-self condition than in the decision-for-other condition, whereas brain regions related to the theory of mind (ToM) showed greater activation in the decision-for-other condition than in the decision-for-self condition. Parametric modulation analysis using individual decision models revealed that activation of the amygdala and the dorsomedial prefrontal cortex (DMPFC) were associated with value computations for oneself and for another, respectively, during risky financial decisions. The results of the present study suggest that decisions for oneself and for other may recruit fundamentally distinct neural processes, which can be mainly characterized as dominant affective/impulsive and cognitive/regulatory processes, respectively. PMID:23519016

  11. Models of neural dynamics in brain information processing - the developments of 'the decade'

    International Nuclear Information System (INIS)

    Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B; Ivanitskii, Genrikh R

    2002-01-01

    Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)

  12. A novel neural-wavelet approach for process diagnostics and complex system modeling

    Science.gov (United States)

    Gao, Rong

    Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.

  13. The modulating effect of personality traits on neural error monitoring: evidence from event-related FMRI.

    Science.gov (United States)

    Sosic-Vasic, Zrinka; Ulrich, Martin; Ruchsow, Martin; Vasic, Nenad; Grön, Georg

    2012-01-01

    The present study investigated the association between traits of the Five Factor Model of Personality (Neuroticism, Extraversion, Openness for Experiences, Agreeableness, and Conscientiousness) and neural correlates of error monitoring obtained from a combined Eriksen-Flanker-Go/NoGo task during event-related functional magnetic resonance imaging in 27 healthy subjects. Individual expressions of personality traits were measured using the NEO-PI-R questionnaire. Conscientiousness correlated positively with error signaling in the left inferior frontal gyrus and adjacent anterior insula (IFG/aI). A second strong positive correlation was observed in the anterior cingulate gyrus (ACC). Neuroticism was negatively correlated with error signaling in the inferior frontal cortex possibly reflecting the negative inter-correlation between both scales observed on the behavioral level. Under present statistical thresholds no significant results were obtained for remaining scales. Aligning the personality trait of Conscientiousness with task accomplishment striving behavior the correlation in the left IFG/aI possibly reflects an inter-individually different involvement whenever task-set related memory representations are violated by the occurrence of errors. The strong correlations in the ACC may indicate that more conscientious subjects were stronger affected by these violations of a given task-set expressed by individually different, negatively valenced signals conveyed by the ACC upon occurrence of an error. Present results illustrate that for predicting individual responses to errors underlying personality traits should be taken into account and also lend external validity to the personality trait approach suggesting that personality constructs do reflect more than mere descriptive taxonomies.

  14. The modulating effect of personality traits on neural error monitoring: evidence from event-related FMRI.

    Directory of Open Access Journals (Sweden)

    Zrinka Sosic-Vasic

    Full Text Available The present study investigated the association between traits of the Five Factor Model of Personality (Neuroticism, Extraversion, Openness for Experiences, Agreeableness, and Conscientiousness and neural correlates of error monitoring obtained from a combined Eriksen-Flanker-Go/NoGo task during event-related functional magnetic resonance imaging in 27 healthy subjects. Individual expressions of personality traits were measured using the NEO-PI-R questionnaire. Conscientiousness correlated positively with error signaling in the left inferior frontal gyrus and adjacent anterior insula (IFG/aI. A second strong positive correlation was observed in the anterior cingulate gyrus (ACC. Neuroticism was negatively correlated with error signaling in the inferior frontal cortex possibly reflecting the negative inter-correlation between both scales observed on the behavioral level. Under present statistical thresholds no significant results were obtained for remaining scales. Aligning the personality trait of Conscientiousness with task accomplishment striving behavior the correlation in the left IFG/aI possibly reflects an inter-individually different involvement whenever task-set related memory representations are violated by the occurrence of errors. The strong correlations in the ACC may indicate that more conscientious subjects were stronger affected by these violations of a given task-set expressed by individually different, negatively valenced signals conveyed by the ACC upon occurrence of an error. Present results illustrate that for predicting individual responses to errors underlying personality traits should be taken into account and also lend external validity to the personality trait approach suggesting that personality constructs do reflect more than mere descriptive taxonomies.

  15. Unsupervised Neural Network Quantifies the Cost of Visual Information Processing.

    Directory of Open Access Journals (Sweden)

    Levente L Orbán

    Full Text Available Untrained, "flower-naïve" bumblebees display behavioural preferences when presented with visual properties such as colour, symmetry, spatial frequency and others. Two unsupervised neural networks were implemented to understand the extent to which these models capture elements of bumblebees' unlearned visual preferences towards flower-like visual properties. The computational models, which are variants of Independent Component Analysis and Feature-Extracting Bidirectional Associative Memory, use images of test-patterns that are identical to ones used in behavioural studies. Each model works by decomposing images of floral patterns into meaningful underlying factors. We reconstruct the original floral image using the components and compare the quality of the reconstructed image to the original image. Independent Component Analysis matches behavioural results substantially better across several visual properties. These results are interpreted to support a hypothesis that the temporal and energetic costs of information processing by pollinators served as a selective pressure on floral displays: flowers adapted to pollinators' cognitive constraints.

  16. Static Analysis for Event-Based XML Processing

    DEFF Research Database (Denmark)

    Møller, Anders

    2008-01-01

    Event-based processing of XML data - as exemplified by the popular SAX framework - is a powerful alternative to using W3C's DOM or similar tree-based APIs. The event-based approach is a streaming fashion with minimal memory consumption. This paper discusses challenges for creating program analyses...... for SAX applications. In particular, we consider the problem of statically guaranteeing the a given SAX program always produces only well-formed and valid XML output. We propose an analysis technique based on ecisting anglyses of Servlets, string operations, and XML graphs....

  17. Temporal and Location Based RFID Event Data Management and Processing

    Science.gov (United States)

    Wang, Fusheng; Liu, Peiya

    Advance of sensor and RFID technology provides significant new power for humans to sense, understand and manage the world. RFID provides fast data collection with precise identification of objects with unique IDs without line of sight, thus it can be used for identifying, locating, tracking and monitoring physical objects. Despite these benefits, RFID poses many challenges for data processing and management. RFID data are temporal and history oriented, multi-dimensional, and carrying implicit semantics. Moreover, RFID applications are heterogeneous. RFID data management or data warehouse systems need to support generic and expressive data modeling for tracking and monitoring physical objects, and provide automated data interpretation and processing. We develop a powerful temporal and location oriented data model for modeling and queryingRFID data, and a declarative event and rule based framework for automated complex RFID event processing. The approach is general and can be easily adapted for different RFID-enabled applications, thus significantly reduces the cost of RFID data integration.

  18. Neural Networks as a Tool for Georadar Data Processing

    Directory of Open Access Journals (Sweden)

    Szymczyk Piotr

    2015-12-01

    Full Text Available In this article a new neural network based method for automatic classification of ground penetrating radar (GPR traces is proposed. The presented approach is based on a new representation of GPR signals by polynomials approximation. The coefficients of the polynomial (the feature vector are neural network inputs for automatic classification of a special kind of geologic structure—a sinkhole. The analysis and results show that the classifier can effectively distinguish sinkholes from other geologic structures.

  19. Neural network post-processing of grayscale optical correlator

    Science.gov (United States)

    Lu, Thomas T; Hughlett, Casey L.; Zhoua, Hanying; Chao, Tien-Hsin; Hanan, Jay C.

    2005-01-01

    In this paper we present the use of a radial basis function neural network (RBFNN) as a post-processor to assist the optical correlator to identify the objects and to reject false alarms. Image plane features near the correlation peaks are extracted and fed to the neural network for analysis. The approach is capable of handling large number of object variations and filter sets. Preliminary experimental results are presented and the performance is analyzed.

  20. High school music classes enhance the neural processing of speech

    OpenAIRE

    Tierney, Adam; Krizman, Jennifer; Skoe, Erika; Johnston, Kathleen; Kraus, Nina

    2013-01-01

    Should music be a priority in public education? One argument for teaching music in school is that private music instruction relates to enhanced language abilities and neural function. However, the directionality of this relationship is unclear and it is unknown whether school-based music training can produce these enhancements. Here we show that two years of group music classes in high school enhance the subcortical encoding of speech. To tease apart the relationships between music and neural...

  1. Perspectives of intellectual processing of large volumes of astronomical data using neural networks

    Science.gov (United States)

    Gorbunov, A. A.; Isaev, E. A.; Samodurov, V. A.

    2018-01-01

    In the process of astronomical observations vast amounts of data are collected. BSA (Big Scanning Antenna) LPI used in the study of impulse phenomena, daily logs 87.5 GB of data (32 TB per year). This data has important implications for both short-and long-term monitoring of various classes of radio sources (including radio transients of different nature), monitoring the Earth’s ionosphere, the interplanetary and the interstellar plasma, the search and monitoring of different classes of radio sources. In the framework of the studies discovered 83096 individual pulse events (in the interval of the study highlighted July 2012 - October 2013), which may correspond to pulsars, twinkling springs, and a rapid radio transients. Detected impulse events are supposed to be used to filter subsequent observations. The study suggests approach, using the creation of the multilayered artificial neural network, which processes the input raw data and after processing, by the hidden layer, the output layer produces a class of impulsive phenomena.

  2. Processing ser and estar to locate objects and events

    Science.gov (United States)

    Dussias, Paola E.; Contemori, Carla; Román, Patricia

    2016-01-01

    In Spanish locative constructions, a different form of the copula is selected in relation to the semantic properties of the grammatical subject: sentences that locate objects require estar while those that locate events require ser (both translated in English as ‘to be’). In an ERP study, we examined whether second language (L2) speakers of Spanish are sensitive to the selectional restrictions that the different types of subjects impose on the choice of the two copulas. Twenty-four native speakers of Spanish and two groups of L2 Spanish speakers (24 beginners and 18 advanced speakers) were recruited to investigate the processing of ‘object/event + estar/ser’ permutations. Participants provided grammaticality judgments on correct (object + estar; event + ser) and incorrect (object + ser; event + estar) sentences while their brain activity was recorded. In line with previous studies (Leone-Fernández, Molinaro, Carreiras, & Barber, 2012; Sera, Gathje, & Pintado, 1999), the results of the grammaticality judgment for the native speakers showed that participants correctly accepted object + estar and event + ser constructions. In addition, while ‘object + ser’ constructions were considered grossly ungrammatical, ‘event + estar’ combinations were perceived as unacceptable to a lesser degree. For these same participants, ERP recording time-locked to the onset of the critical word ‘en’ showed a larger P600 for the ser predicates when the subject was an object than when it was an event (*La silla es en la cocina vs. La fiesta es en la cocina). This P600 effect is consistent with syntactic repair of the defining predicate when it does not fit with the adequate semantic properties of the subject. For estar predicates (La silla está en la cocina vs. *La fiesta está en la cocina), the findings showed a central-frontal negativity between 500–700 ms. Grammaticality judgment data for the L2 speakers of Spanish showed that beginners were significantly less

  3. Optimizing access to conditions data in ATLAS event data processing

    CERN Document Server

    Rinaldi, Lorenzo; The ATLAS collaboration

    2018-01-01

    The processing of ATLAS event data requires access to conditions data which is stored in database systems. This data includes, for example alignment, calibration, and configuration information that may be characterized by large volumes, diverse content, and/or information which evolves over time as refinements are made in those conditions. Additional layers of complexity are added by the need to provide this information across the world-wide ATLAS computing grid and the sheer number of simultaneously executing processes on the grid, each demanding a unique set of conditions to proceed. Distributing this data to all the processes that require it in an efficient manner has proven to be an increasing challenge with the growing needs and number of event-wise tasks. In this presentation, we briefly describe the systems in which we have collected information about the use of conditions in event data processing. We then proceed to explain how this information has been used to refine not only reconstruction software ...

  4. Risky decisions and their consequences: neural processing by boys with Antisocial Substance Disorder.

    Directory of Open Access Journals (Sweden)

    Thomas J Crowley

    2010-09-01

    Full Text Available Adolescents with conduct and substance problems ("Antisocial Substance Disorder" (ASD repeatedly engage in risky antisocial and drug-using behaviors. We hypothesized that, during processing of risky decisions and resulting rewards and punishments, brain activation would differ between abstinent ASD boys and comparison boys.We compared 20 abstinent adolescent male patients in treatment for ASD with 20 community controls, examining rapid event-related blood-oxygen-level-dependent (BOLD responses during functional magnetic resonance imaging. In 90 decision trials participants chose to make either a cautious response that earned one cent, or a risky response that would either gain 5 cents or lose 10 cents; odds of losing increased as the game progressed. We also examined those times when subjects experienced wins, or separately losses, from their risky choices. We contrasted decision trials against very similar comparison trials requiring no decisions, using whole-brain BOLD-response analyses of group differences, corrected for multiple comparisons. During decision-making ASD boys showed hypoactivation in numerous brain regions robustly activated by controls, including orbitofrontal and dorsolateral prefrontal cortices, anterior cingulate, basal ganglia, insula, amygdala, hippocampus, and cerebellum. While experiencing wins, ASD boys had significantly less activity than controls in anterior cingulate, temporal regions, and cerebellum, with more activity nowhere. During losses ASD boys had significantly more activity than controls in orbitofrontal cortex, dorsolateral prefrontal cortex, brain stem, and cerebellum, with less activity nowhere.Adolescent boys with ASD had extensive neural hypoactivity during risky decision-making, coupled with decreased activity during reward and increased activity during loss. These neural patterns may underlie the dangerous, excessive, sustained risk-taking of such boys. The findings suggest that the dysphoria, reward

  5. Process identification through modular neural networks and rule extraction (extended abstract)

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.; Blockeel, Hendrik; Denecker, Marc

    2002-01-01

    Monolithic neural networks may be trained from measured data to establish knowledge about the process. Unfortunately, this knowledge is not guaranteed to be found and – if at all – hard to extract. Modular neural networks are better suited for this purpose. Domain-ordered by topology, rule

  6. Impact of load-related neural processes on feature binding in visuospatial working memory.

    Directory of Open Access Journals (Sweden)

    Nicole A Kochan

    Full Text Available BACKGROUND: The capacity of visual working memory (WM is substantially limited and only a fraction of what we see is maintained as a temporary trace. The process of binding visual features has been proposed as an adaptive means of minimising information demands on WM. However the neural mechanisms underlying this process, and its modulation by task and load effects, are not well understood. OBJECTIVE: To investigate the neural correlates of feature binding and its modulation by WM load during the sequential phases of encoding, maintenance and retrieval. METHODS AND FINDINGS: 18 young healthy participants performed a visuospatial WM task with independent factors of load and feature conjunction (object identity and position in an event-related functional MRI study. During stimulus encoding, load-invariant conjunction-related activity was observed in left prefrontal cortex and left hippocampus. During maintenance, greater activity for task demands of feature conjunction versus single features, and for increased load was observed in left-sided regions of the superior occipital cortex, precuneus and superior frontal cortex. Where these effects were expressed in overlapping cortical regions, their combined effect was additive. During retrieval, however, an interaction of load and feature conjunction was observed. This modulation of feature conjunction activity under increased load was expressed through greater deactivation in medial structures identified as part of the default mode network. CONCLUSIONS AND SIGNIFICANCE: The relationship between memory load and feature binding qualitatively differed through each phase of the WM task. Of particular interest was the interaction of these factors observed within regions of the default mode network during retrieval which we interpret as suggesting that at low loads, binding processes may be 'automatic' but at higher loads it becomes a resource-intensive process leading to disengagement of activity in this

  7. Neural cascade of conflict processing: not just time-on-task

    Science.gov (United States)

    McKay, Cameron C.; van den Berg, Berry; Woldorff, Marty G.

    2017-01-01

    In visual conflict tasks (e.g., Stroop or flanker), response times (RTs) are generally longer on incongruent trials relative to congruent ones. Two event-related-potential (ERP) components classically associated with the processing of stimulus conflict are the fronto-central, incongruency-related negativity (Ninc) and the posterior late-positive complex (LPC), which are derived from the ERP difference waves for incongruent minus congruent trials. It has been questioned, however, whether these effects, or other neural measures of incongruency (e.g., fMRI responses in the anterior cingulate), reflect true conflict processing, or whether such effects derive mainly from differential time-on-task. To address this question, we leveraged high-temporal-resolution ERP measures of brain activity during two behavioral tasks. The first task, a modified Erikson flanker paradigm (with congruent and incongruent trials), was used to evoke the classic RT and ERP effects associated with conflict. In the second, a non-conflict comparison condition, participants visually discriminated a single stimulus (with easy and hard discrimination conditions). Behaviorally, the parameters were titrated to yield similar RT effects of conflict and difficulty (27 ms). Neurally, both within-task contrasts showed an initial fronto-central negative-polarity wave (N2-latency effect), but they then diverged. In the difficulty difference wave, the initial negativity led directly into the posterior LPC, whereas in the incongruency contrast the initial negativity was followed a by a second fronto-central negative peak (Ninc), which was then followed by a considerably longer-latency LPC. These results provide clear evidence that the longer processing for incongruent stimulus inputs do not just reflect time-on-task or difficulty, but include a true conflict-processing component. PMID:28017818

  8. Learning-induced neural plasticity of speech processing before birth.

    Science.gov (United States)

    Partanen, Eino; Kujala, Teija; Näätänen, Risto; Liitola, Auli; Sambeth, Anke; Huotilainen, Minna

    2013-09-10

    Learning, the foundation of adaptive and intelligent behavior, is based on plastic changes in neural assemblies, reflected by the modulation of electric brain responses. In infancy, auditory learning implicates the formation and strengthening of neural long-term memory traces, improving discrimination skills, in particular those forming the prerequisites for speech perception and understanding. Although previous behavioral observations show that newborns react differentially to unfamiliar sounds vs. familiar sound material that they were exposed to as fetuses, the neural basis of fetal learning has not thus far been investigated. Here we demonstrate direct neural correlates of human fetal learning of speech-like auditory stimuli. We presented variants of words to fetuses; unlike infants with no exposure to these stimuli, the exposed fetuses showed enhanced brain activity (mismatch responses) in response to pitch changes for the trained variants after birth. Furthermore, a significant correlation existed between the amount of prenatal exposure and brain activity, with greater activity being associated with a higher amount of prenatal speech exposure. Moreover, the learning effect was generalized to other types of similar speech sounds not included in the training material. Consequently, our results indicate neural commitment specifically tuned to the speech features heard before birth and their memory representations.

  9. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability qu...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem.......The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...

  10. High school music classes enhance the neural processing of speech

    Directory of Open Access Journals (Sweden)

    Adam eTierney

    2013-12-01

    Full Text Available Should music be a priority in public education? One argument for teaching music in school is that private music instruction relates to enhanced language abilities and neural function. However, the directionality of this relationship is unclear and it is unknown whether school-based music training can produce these enhancements. Here we show that two years of group music classes in high school enhance the subcortical encoding of speech. To tease apart the relationships between music and neural function, we tested high school students participating in either music or fitness-based training. These groups were matched at the onset of training on neural timing, reading ability, and IQ. Auditory brainstem responses were collected to a synthesized speech sound presented in background noise. After 2 years of training, the subcortical responses of the music training group were earlier than at pretraining, while the neural timing of students in the fitness training group was unchanged. These results represent the strongest evidence to date that in-school music education can cause enhanced speech encoding. The neural benefits of musical training are, therefore, not limited to expensive private instruction early in childhood but can be elicited by cost-effective group instruction during adolescence.

  11. Combining Neural Networks with Existing Methods to Estimate 1 in 100-Year Flood Event Magnitudes

    Science.gov (United States)

    Newson, A.; See, L.

    2005-12-01

    Over the last fifteen years artificial neural networks (ANN) have been shown to be advantageous for the solution of many hydrological modelling problems. The use of ANNs for flood magnitude estimation in ungauged catchments, however, is a relatively new and under researched area. In this paper ANNs are used to make estimates of the magnitude of the 100-year flood event (Q100) for a number of ungauged catchments. The data used in this study were provided by the Centre for Ecology and Hydrology's Flood Estimation Handbook (FEH), which contains information on catchments across the UK. Sixteen catchment descriptors for 719 catchments were used to train an ANN, which was split into a training, validation and test data set. The goodness-of-fit statistics on the test data set indicated good model performance, with an r-squared value of 0.8 and a coefficient of efficiency of 79 percent. Data for twelve ungauged catchments were then put through the trained ANN to produce estimates of Q100. Two other accepted methodologies were also employed: the FEH statistical method and the FSR (Flood Studies Report) design storm technique, both of which are used to produce flood frequency estimates. The advantage of developing an ANN model is that it provides a third figure to aid a hydrologist in making an accurate estimate. For six of the twelve catchments, there was a relatively low spread between estimates. In these instances, an estimate of Q100 could be made with a fair degree of certainty. Of the remaining six catchments, three had areas greater than 1000km2, which means the FSR design storm estimate cannot be used. Armed with the ANN model and the FEH statistical method the hydrologist still has two possible estimates to consider. For these three catchments, the estimates were also fairly similar, providing additional confidence to the estimation. In summary, the findings of this study have shown that an accurate estimation of Q100 can be made using the catchment descriptors of

  12. An Initial Investigation of the Neural Correlates of Word Processing in Preschoolers With Specific Language Impairment.

    Science.gov (United States)

    Haebig, Eileen; Leonard, Laurence; Usler, Evan; Deevy, Patricia; Weber, Christine

    2018-03-15

    Previous behavioral studies have found deficits in lexical-semantic abilities in children with specific language impairment (SLI), including reduced depth and breadth of word knowledge. This study explored the neural correlates of early emerging familiar word processing in preschoolers with SLI and typical development. Fifteen preschoolers with typical development and 15 preschoolers with SLI were presented with pictures followed after a brief delay by an auditory label that did or did not match. Event-related brain potentials were time locked to the onset of the auditory labels. Children provided verbal judgments of whether the label matched the picture. There were no group differences in the accuracy of identifying when pictures and labels matched or mismatched. Event-related brain potential data revealed that mismatch trials elicited a robust N400 in both groups, with no group differences in mean amplitude or peak latency. However, the typically developing group demonstrated a more robust late positive component, elicited by mismatch trials. These initial findings indicate that lexical-semantic access of early acquired words, indexed by the N400, does not differ between preschoolers with SLI and typical development when highly familiar words are presented in isolation. However, the typically developing group demonstrated a more mature profile of postlexical reanalysis and integration, indexed by an emerging late positive component. The findings lay the necessary groundwork for better understanding processing of newly learned words in children with SLI.

  13. Neural Correlates of Attentional Processing of Threat in Youth with and without Anxiety Disorders.

    Science.gov (United States)

    Bechor, Michele; Ramos, Michelle L; Crowley, Michael J; Silverman, Wendy K; Pettit, Jeremy W; Reeb-Sutherland, Bethany C

    2018-04-02

    Late-stage attentional processing of threatening stimuli, quantified through event-related potentials (ERPs), differentiates youth with and without anxiety disorders. It is unknown whether early-stage attentional processing of threatening stimuli differentiates these groups. Examining both early and late stage attentional processes in youth may advance knowledge and enhance efforts to identify biomarkers for translational prevention and treatment research. Twenty-one youth with primary DSM-IV-TR anxiety disorders (10 males, ages 8-15 years) and 21 typically developing Controls (15 males, ages 8-16 years) completed a dot probe task while electroencephalography (EEG) was recorded, and ERPs were examined. Youth with anxiety disorders showed significantly larger (more positive) P1 amplitudes for threatening stimuli than for neutral stimuli, and Controls showed the opposite pattern. Youth with anxiety showed larger (more negative) N170 amplitudes compared with Controls. Controls showed significantly larger (more positive) P2 and P3 amplitudes, regardless of stimuli valence, compared with youth with anxiety disorders. ERPs observed during the dot probe task indicate youth with anxiety disorders display distinct neural processing during early stage attentional orienting and processing of faces; this was not the case for Controls. Such results suggest these ERP components may have potential as biomarkers of anxiety disorders in youth.

  14. Thermomechanical Stresses Analysis of a Single Event Burnout Process

    Science.gov (United States)

    Tais, Carlos E.; Romero, Eduardo; Demarco, Gustavo L.

    2009-06-01

    This work analyzes the thermal and mechanical effects arising in a power Diffusion Metal Oxide Semiconductor (DMOS) during a Single Event Burnout (SEB) process. For studying these effects we propose a more detailed simulation structure than the previously used by other authors, solving the mathematical models by means of the Finite Element Method. We use a cylindrical heat generation region, with 5 W, 10 W, 50 W and 100 W for emulating the thermal phenomena occurring during SEB processes, avoiding the complexity of the mathematical treatment of the ion-semiconductor interaction.

  15. Intelligent Transportation Control based on Proactive Complex Event Processing

    Directory of Open Access Journals (Sweden)

    Wang Yongheng

    2016-01-01

    Full Text Available Complex Event Processing (CEP has become the key part of Internet of Things (IoT. Proactive CEP can predict future system states and execute some actions to avoid unwanted states which brings new hope to intelligent transportation control. In this paper, we propose a proactive CEP architecture and method for intelligent transportation control. Based on basic CEP technology and predictive analytic technology, a networked distributed Markov decision processes model with predicting states is proposed as sequential decision model. A Q-learning method is proposed for this model. The experimental evaluations show that this method works well when used to control congestion in in intelligent transportation systems.

  16. Emotional Granularity Effects on Event-Related Brain Potentials during Affective Picture Processing.

    Science.gov (United States)

    Lee, Ja Y; Lindquist, Kristen A; Nam, Chang S

    2017-01-01

    There is debate about whether emotional granularity , the tendency to label emotions in a nuanced and specific manner, is merely a product of labeling abilities, or a systematic difference in the experience of emotion during emotionally evocative events. According to the Conceptual Act Theory of Emotion (CAT) (Barrett, 2006), emotional granularity is due to the latter and is a product of on-going temporal differences in how individuals categorize and thus make meaning of their affective states. To address this question, the present study investigated the effects of individual differences in emotional granularity on electroencephalography-based brain activity during the experience of emotion in response to affective images. Event-related potentials (ERP) and event-related desynchronization and synchronization (ERD/ERS) analysis techniques were used. We found that ERP responses during the very early (60-90 ms), middle (270-300 ms), and later (540-570 ms) moments of stimulus presentation were associated with individuals' level of granularity. We also observed that highly granular individuals, compared to lowly granular individuals, exhibited relatively stable desynchronization of alpha power (8-12 Hz) and synchronization of gamma power (30-50 Hz) during the 3 s of stimulus presentation. Overall, our results suggest that emotional granularity is related to differences in neural processing throughout emotional experiences and that high granularity could be associated with access to executive control resources and a more habitual processing of affective stimuli, or a kind of "emotional complexity." Implications for models of emotion are also discussed.

  17. An Address Event Representation-Based Processing System for a Biped Robot

    Directory of Open Access Journals (Sweden)

    Uziel Jaramillo-Avila

    2016-02-01

    Full Text Available In recent years, several important advances have been made in the fields of both biologically inspired sensorial processing and locomotion systems, such as Address Event Representation-based cameras (or Dynamic Vision Sensors and in human-like robot locomotion, e.g., the walking of a biped robot. However, making these fields merge properly is not an easy task. In this regard, Neuromorphic Engineering is a fast-growing research field, the main goal of which is the biologically inspired design of hybrid hardware systems in order to mimic neural architectures and to process information in the manner of the brain. However, few robotic applications exist to illustrate them. The main goal of this work is to demonstrate, by creating a closed-loop system using only bio-inspired techniques, how such applications can work properly. We present an algorithm using Spiking Neural Networks (SNN for a biped robot equipped with a Dynamic Vision Sensor, which is designed to follow a line drawn on the floor. This is a commonly used method for demonstrating control techniques. Most of them are fairly simple to implement without very sophisticated components; however, it can still serve as a good test in more elaborate circumstances. In addition, the locomotion system proposed is able to coordinately control the six DOFs of a biped robot in switching between basic forms of movement. The latter has been implemented as a FPGA-based neuromorphic system. Numerical tests and hardware validation are presented.

  18. Event-Based Impulsive Control of Continuous-Time Dynamic Systems and Its Application to Synchronization of Memristive Neural Networks.

    Science.gov (United States)

    Zhu, Wei; Wang, Dandan; Liu, Lu; Feng, Gang

    2017-08-18

    This paper investigates exponential stabilization of continuous-time dynamic systems (CDSs) via event-based impulsive control (EIC) approaches, where the impulsive instants are determined by certain state-dependent triggering condition. The global exponential stability criteria via EIC are derived for nonlinear and linear CDSs, respectively. It is also shown that there is no Zeno-behavior for the concerned closed loop control system. In addition, the developed event-based impulsive scheme is applied to the synchronization problem of master and slave memristive neural networks. Furthermore, a self-triggered impulsive control scheme is developed to avoid continuous communication between the master system and slave system. Finally, two numerical simulation examples are presented to illustrate the effectiveness of the proposed event-based impulsive controllers.

  19. Altered neural processing of reward and punishment in adolescents with Major Depressive Disorder.

    Science.gov (United States)

    Landes, I; Bakos, S; Kohls, G; Bartling, J; Schulte-Körne, G; Greimel, E

    2018-05-01

    Altered reward and punishment function has been suggested as an important vulnerability factor for the development of Major Depressive Disorder (MDD). Prior ERP studies found evidence for neurophysiological dysfunctions in reinforcement processes in adults with MDD. To date, only few ERP studies have examined the neural underpinnings of reinforcement processing in adolescents diagnosed with MDD. The present event-related potential (ERP) study aimed to investigate neurophysiological mechanisms of anticipation and consumption of reward and punishment in adolescents with MDD in one comprehensive paradigm. During ERP recording, 25 adolescents with MDD and 29 healthy controls (12-17 years) completed a Monetary Incentive Delay Task comprising both a monetary reward and a monetary punishment condition. During anticipation, the cue-P3 signaling attentional allocation was recorded. During consumption, the feedback-P3 and Reward Positivity (RewP) were recorded to capture attentional allocation and outcome evaluation, respectively. Compared to controls, adolescents with MDD showed prolonged cue-P3 latencies to reward cues. Furthermore, unlike controls, adolescents with MDD displayed shorter feedback-P3 latencies in the reward versus punishment condition. RewPs did not differ between groups. It remains unanswered whether the observed alterations in adolescent MDD represent a state or trait. Delayed neural processing of reward cues corresponds to the clinical presentation of adolescent MDD with reduced motivational tendencies to obtain rewards. Relatively shorter feedback-P3 latencies in the reward versus punishment condition could indicate a high salience of performance-contingent reward. Frequent exposure of negatively biased adolescents with MDD to performance-contingent rewards might constitute a promising intervention approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Neural signal processing and closed-loop control algorithm design for an implanted neural recording and stimulation system.

    Science.gov (United States)

    Hamilton, Lei; McConley, Marc; Angermueller, Kai; Goldberg, David; Corba, Massimiliano; Kim, Louis; Moran, James; Parks, Philip D; Sang Chin; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed

  1. Neural Correlates of Feedback Processing in Decision Making under Risk

    Directory of Open Access Journals (Sweden)

    Beate eSchuermann

    2012-07-01

    Full Text Available Introduction. Event-related brain potentials (ERP provide important information about the sensitivity of the brain to process varying risks. The aim of the present study was to determine how different risk levels are reflected in decision-related ERPs, namely the feedback-related negativity (FRN and the P300. Material and Methods. 20 participants conducted a probabilistic two-choice gambling task while an electroencephalogram was recorded. Choices were provided between a low-risk option yielding low rewards and low losses and a high-risk option yielding high rewards and high losses. While options differed in expected risks, they were equal in expected values and in feedback probabilities. Results. At the behavioral level, participants were generally risk-averse but modulated their risk-taking behavior according to reward history. An early positivity (P200 was enhanced on negative feedbacks in high-risk compared to low-risk options. With regard to the FRN, there were significant amplitude differences between positive and negative feedbacks in high-risk options, but not in low-risk options. While the FRN on negative feedbacks did not vary with decision riskiness, reduced amplitudes were found for positive feedbacks in high-risk relative to low-risk choices. P300 amplitudes were larger in high-risk decisions, and in an additive way, after negative compared to positive feedback. Discussion. The present study revealed significant influences of risk and valence processing on ERPs. FRN findings suggest that the reward prediction error signal is increased after high-risk decisions. The increased P200 on negative feedback in risky decisions suggests that large negative prediction errors are processed as early as in the P200 time range. The later P300 amplitude is sensitive to feedback valence as well as to the risk of a decision. Thus, the P300 carries additional information for reward processing, mainly the enhanced motivational significance of risky

  2. Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation.

    Science.gov (United States)

    Xie, Jiaheng; Liu, Xiao; Dajun Zeng, Daniel

    2018-01-01

    Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers' e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media. Our deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network. Our Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed. Although the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Neural correlates of cued recall in young and older adults: an event-related potential study.

    Science.gov (United States)

    Angel, Lucie; Fay, Séverine; Bouazzaoui, Badiâa; Granjon, Lionel; Isingrini, Michel

    2009-01-07

    This experiment investigated age differences in electrophysiological correlates of retrieval success in a word-stem cued recall task. Young adults (M+/-SD: 21.4 years+/-1.9) performed this memory task more accurately than older participants (M+/-SD: 65.1 years+/-3.3). Robust event-related brain potential (ERP) old/new effects were identified in both age groups. The main age differences were observed in latency and lateralization of ERP effects. Young adults exhibited a parietal effect that became focused over left parietal electrodes, whereas no asymmetry was observed in older adults. Moreover, ERP effects were more delayed in the older group. Overall, these findings provide some evidence of the reduction of processing speed during aging and suggest that young and older adults may recruit distinct cerebral patterns during episodic cued recall.

  4. Emotionally anesthetized: media violence induces neural changes during emotional face processing.

    Science.gov (United States)

    Stockdale, Laura A; Morrison, Robert G; Kmiecik, Matthew J; Garbarino, James; Silton, Rebecca L

    2015-10-01

    Media violence exposure causes increased aggression and decreased prosocial behavior, suggesting that media violence desensitizes people to the emotional experience of others. Alterations in emotional face processing following exposure to media violence may result in desensitization to others' emotional states. This study used scalp electroencephalography methods to examine the link between exposure to violence and neural changes associated with emotional face processing. Twenty-five participants were shown a violent or nonviolent film clip and then completed a gender discrimination stop-signal task using emotional faces. Media violence did not affect the early visual P100 component; however, decreased amplitude was observed in the N170 and P200 event-related potentials following the violent film, indicating that exposure to film violence leads to suppression of holistic face processing and implicit emotional processing. Participants who had just seen a violent film showed increased frontal N200/P300 amplitude. These results suggest that media violence exposure may desensitize people to emotional stimuli and thereby require fewer cognitive resources to inhibit behavior. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Event processing in X-IFU detector onboard Athena.

    Science.gov (United States)

    Ceballos, M. T.; Cobos, B.; van der Kuurs, J.; Fraga-Encinas, R.

    2015-05-01

    The X-ray Observatory ATHENA was proposed in April 2014 as the mission to implement the science theme "The Hot and Energetic Universe" selected by ESA for L2 (the second Large-class mission in ESA's Cosmic Vision science programme). One of the two X-ray detectors designed to be onboard ATHENA is X-IFU, a cryogenic microcalorimeter based on Transition Edge Sensor (TES) technology that will provide spatially resolved high-resolution spectroscopy. X-IFU will be developed by a consortium of European research institutions currently from France (leadership), Italy, The Netherlands, Belgium, UK, Germany and Spain. From Spain, IFCA (CSIC-UC) is involved in the Digital Readout Electronics (DRE) unit of the X-IFU detector, in particular in the Event Processor Subsytem. We at IFCA are in charge of the development and implementation in the DRE unit of the Event Processing algorithms, designed to recognize, from a noisy signal, the intensity pulses generated by the absorption of the X-ray photons, and lately extract their main parameters (coordinates, energy, arrival time, grade, etc.) Here we will present the design and performance of the algorithms developed for the event recognition (adjusted derivative), and pulse grading/qualification as well as the progress in the algorithms designed to extract the energy content of the pulses (pulse optimal filtering). IFCA will finally have the responsibility of the implementation on board in the (TBD) FPGAs or micro-processors of the DRE unit, where this Event Processing part will take place, to fit into the limited telemetry of the instrument.

  6. Altered Neural Activity during Semantic Object Memory Retrieval in Amnestic Mild Cognitive Impairment as Measured by Event-Related Potentials.

    Science.gov (United States)

    Chiang, Hsueh-Sheng; Mudar, Raksha A; Pudhiyidath, Athula; Spence, Jeffrey S; Womack, Kyle B; Cullum, C Munro; Tanner, Jeremy A; Eroh, Justin; Kraut, Michael A; Hart, John

    2015-01-01

    Deficits in semantic memory in individuals with amnestic mild cognitive impairment (aMCI) have been previously reported, but the underlying neurobiological mechanisms remain to be clarified. We examined event-related potentials (ERPs) associated with semantic memory retrieval in 16 individuals with aMCI as compared to 17 normal controls using the Semantic Object Retrieval Task (EEG SORT). In this task, subjects judged whether pairs of words (object features) elicited retrieval of an object (retrieval trials) or not (non-retrieval trials). Behavioral findings revealed that aMCI subjects had lower accuracy scores and marginally longer reaction time compared to controls. We used a multivariate analytical technique (STAT-PCA) to investigate similarities and differences in ERPs between aMCI and control groups. STAT-PCA revealed a left fronto-temporal component starting at around 750 ms post-stimulus in both groups. However, unlike controls, aMCI subjects showed an increase in the frontal-parietal scalp potential that distinguished retrieval from non-retrieval trials between 950 and 1050 ms post-stimulus negatively correlated with the performance on the logical memory subtest of the Wechsler Memory Scale-III. Thus, individuals with aMCI were not only impaired in their behavioral performance on SORT relative to controls, but also displayed alteration in the corresponding ERPs. The altered neural activity in aMCI compared to controls suggests a more sustained and effortful search during object memory retrieval, which may be a potential marker indicating disease processes at the pre-dementia stage.

  7. Neural manufacturing: a novel concept for processing modeling, monitoring, and control

    Science.gov (United States)

    Fu, Chi Y.; Petrich, Loren; Law, Benjamin

    1995-09-01

    Semiconductor fabrication lines have become extremely costly, and achieving a good return from such a high capital investment requires efficient utilization of these expensive facilities. It is highly desirable to shorten processing development time, increase fabrication yield, enhance flexibility, improve quality, and minimize downtime. We propose that these ends can be achieved by applying recent advances in the areas of artificial neural networks, fuzzy logic, machine learning, and genetic algorithms. We use the term neural manufacturing to describe such applications. This paper describes our use of artificial neural networks to improve the monitoring and control of semiconductor process.

  8. Neural activity and emotional processing following military deployment: Effects of mild traumatic brain injury and posttraumatic stress disorder.

    Science.gov (United States)

    Zuj, Daniel V; Felmingham, Kim L; Palmer, Matthew A; Lawrence-Wood, Ellie; Van Hooff, Miranda; Lawrence, Andrew J; Bryant, Richard A; McFarlane, Alexander C

    2017-11-01

    Posttraumatic Stress Disorder (PTSD) and mild traumatic brain injury (mTBI) are common comorbidities during military deployment that affect emotional brain processing, yet few studies have examined the independent effects of mTBI and PTSD. The purpose of this study was to examine distinct differences in neural responses to emotional faces in mTBI and PTSD. Twenty-one soldiers reporting high PTSD symptoms were compared to 21 soldiers with low symptoms, and 16 soldiers who reported mTBI-consistent injury and symptoms were compared with 16 soldiers who did not sustain an mTBI. Participants viewed emotional face expressions while their neural activity was recorded (via event-related potentials) prior to and following deployment. The high-PTSD group displayed increased P1 and P2 amplitudes to threatening faces at post-deployment compared to the low-PTSD group. In contrast, the mTBI group displayed reduced face-specific processing (N170 amplitude) to all facial expressions compared to the no-mTBI group. Here, we identified distinctive neural patterns of emotional face processing, with attentional biases towards threatening faces in PTSD, and reduced emotional face processing in mTBI. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. FEATURES, EVENTS, AND PROCESSES: SYSTEM-LEVEL AND CRITICALITY

    International Nuclear Information System (INIS)

    D.L. McGregor

    2000-01-01

    The primary purpose of this Analysis/Model Report (AMR) is to identify and document the screening analyses for the features, events, and processes (FEPs) that do not easily fit into the existing Process Model Report (PMR) structure. These FEPs include the 3 1 FEPs designated as System-Level Primary FEPs and the 22 FEPs designated as Criticality Primary FEPs. A list of these FEPs is provided in Section 1.1. This AMR (AN-WIS-MD-000019) documents the Screening Decision and Regulatory Basis, Screening Argument, and Total System Performance Assessment (TSPA) Disposition for each of the subject Primary FEPs. This AMR provides screening information and decisions for the TSPA-SR report and provides the same information for incorporation into a project-specific FEPs database. This AMR may also assist reviewers during the licensing-review process

  10. FEATURES, EVENTS, AND PROCESSES: SYSTEM-LEVEL AND CRITICALITY

    Energy Technology Data Exchange (ETDEWEB)

    D.L. McGregor

    2000-12-20

    The primary purpose of this Analysis/Model Report (AMR) is to identify and document the screening analyses for the features, events, and processes (FEPs) that do not easily fit into the existing Process Model Report (PMR) structure. These FEPs include the 3 1 FEPs designated as System-Level Primary FEPs and the 22 FEPs designated as Criticality Primary FEPs. A list of these FEPs is provided in Section 1.1. This AMR (AN-WIS-MD-000019) documents the Screening Decision and Regulatory Basis, Screening Argument, and Total System Performance Assessment (TSPA) Disposition for each of the subject Primary FEPs. This AMR provides screening information and decisions for the TSPA-SR report and provides the same information for incorporation into a project-specific FEPs database. This AMR may also assist reviewers during the licensing-review process.

  11. Improving short-term forecasting during ramp events by means of Regime-Switching Artificial Neural Networks

    Science.gov (United States)

    Gallego, C.; Costa, A.; Cuerva, A.

    2010-09-01

    Since nowadays wind energy can't be neither scheduled nor large-scale storaged, wind power forecasting has been useful to minimize the impact of wind fluctuations. In particular, short-term forecasting (characterised by prediction horizons from minutes to a few days) is currently required by energy producers (in a daily electricity market context) and the TSO's (in order to keep the stability/balance of an electrical system). Within the short-term background, time-series based models (i.e., statistical models) have shown a better performance than NWP models for horizons up to few hours. These models try to learn and replicate the dynamic shown by the time series of a certain variable. When considering the power output of wind farms, ramp events are usually observed, being characterized by a large positive gradient in the time series (ramp-up) or negative (ramp-down) during relatively short time periods (few hours). Ramp events may be motivated by many different causes, involving generally several spatial scales, since the large scale (fronts, low pressure systems) up to the local scale (wind turbine shut-down due to high wind speed, yaw misalignment due to fast changes of wind direction). Hence, the output power may show unexpected dynamics during ramp events depending on the underlying processes; consequently, traditional statistical models considering only one dynamic for the hole power time series may be inappropriate. This work proposes a Regime Switching (RS) model based on Artificial Neural Nets (ANN). The RS-ANN model gathers as many ANN's as different dynamics considered (called regimes); a certain ANN is selected so as to predict the output power, depending on the current regime. The current regime is on-line updated based on a gradient criteria, regarding the past two values of the output power. 3 Regimes are established, concerning ramp events: ramp-up, ramp-down and no-ramp regime. In order to assess the skillness of the proposed RS-ANN model, a single

  12. Validation of the Revised Stressful Life Event Questionnaire Using a Hybrid Model of Genetic Algorithm and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Rasoul Sali

    2013-01-01

    Full Text Available Objectives. Stressors have a serious role in precipitating mental and somatic disorders and are an interesting subject for many clinical and community-based studies. Hence, the proper and accurate measurement of them is very important. We revised the stressful life event (SLE questionnaire by adding weights to the events in order to measure and determine a cut point. Methods. A total of 4569 adults aged between 18 and 85 years completed the SLE questionnaire and the general health questionnaire-12 (GHQ-12. A hybrid model of genetic algorithm (GA and artificial neural networks (ANNs was applied to extract the relation between the stressful life events (evaluated by a 6-point Likert scale and the GHQ score as a response variable. In this model, GA is used in order to set some parameter of ANN for achieving more accurate results. Results. For each stressful life event, the number is defined as weight. Among all stressful life events, death of parents, spouse, or siblings is the most important and impactful stressor in the studied population. Sensitivity of 83% and specificity of 81% were obtained for the cut point 100. Conclusion. The SLE-revised (SLE-R questionnaire despite simplicity is a high-performance screening tool for investigating the stress level of life events and its management in both community and primary care settings. The SLE-R questionnaire is user-friendly and easy to be self-administered. This questionnaire allows the individuals to be aware of their own health status.

  13. Neural correlates of encoding processes predicting subsequent cued recall and source memory.

    Science.gov (United States)

    Angel, Lucie; Isingrini, Michel; Bouazzaoui, Badiâa; Fay, Séverine

    2013-03-06

    In this experiment, event-related potentials were used to examine whether the neural correlates of encoding processes predicting subsequent successful recall differed from those predicting successful source memory retrieval. During encoding, participants studied lists of words and were instructed to memorize each word and the list in which it occurred. At test, they had to complete stems (the first four letters) with a studied word and then make a judgment of the initial temporal context (i.e. list). Event-related potentials recorded during encoding were segregated according to subsequent memory performance to examine subsequent memory effects (SMEs) reflecting successful cued recall (cued recall SME) and successful source retrieval (source memory SME). Data showed a cued recall SME on parietal electrode sites from 400 to 1200 ms and a late inversed cued recall SME on frontal sites in the 1200-1400 ms period. Moreover, a source memory SME was reported from 400 to 1400 ms on frontal areas. These findings indicate that patterns of encoding-related activity predicting successful recall and source memory are clearly dissociated.

  14. Application of neural networks to multiple alarm processing and diagnosis in nuclear power plants

    International Nuclear Information System (INIS)

    Cheon, Se Woo; Chang Soon Heung; Chung, Hak Yeong

    1992-01-01

    This paper presents feasibility studies of multiple alarm processing and diagnosis using neural networks. The back-propagation neural network model is applied to the training of multiple alarm patterns for the identification of failure in a reactor coolant pump (RCP) system. The general mapping capability of the neural network enables to identify a fault easily. The case studies are performed with emphasis on the applicability of the neural network to pattern recognition problems. It is revealed that the neural network model can identify the cause of multiple alarms properly, even when untrained or sensor-failed alarm symptoms are given. It is also shown that multiple failures are easily identified using the symptoms of multiple alarms

  15. Point process modeling and estimation: Advances in the analysis of dynamic neural spiking data

    Science.gov (United States)

    Deng, Xinyi

    2016-08-01

    A common interest of scientists in many fields is to understand the relationship between the dynamics of a physical system and the occurrences of discrete events within such physical system. Seismologists study the connection between mechanical vibrations of the Earth and the occurrences of earthquakes so that future earthquakes can be better predicted. Astrophysicists study the association between the oscillating energy of celestial regions and the emission of photons to learn the Universe's various objects and their interactions. Neuroscientists study the link between behavior and the millisecond-timescale spike patterns of neurons to understand higher brain functions. Such relationships can often be formulated within the framework of state-space models with point process observations. The basic idea is that the dynamics of the physical systems are driven by the dynamics of some stochastic state variables and the discrete events we observe in an interval are noisy observations with distributions determined by the state variables. This thesis proposes several new methodological developments that advance the framework of state-space models with point process observations at the intersection of statistics and neuroscience. In particular, we develop new methods 1) to characterize the rhythmic spiking activity using history-dependent structure, 2) to model population spike activity using marked point process models, 3) to allow for real-time decision making, and 4) to take into account the need for dimensionality reduction for high-dimensional state and observation processes. We applied these methods to a novel problem of tracking rhythmic dynamics in the spiking of neurons in the subthalamic nucleus of Parkinson's patients with the goal of optimizing placement of deep brain stimulation electrodes. We developed a decoding algorithm that can make decision in real-time (for example, to stimulate the neurons or not) based on various sources of information present in

  16. Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers

    International Nuclear Information System (INIS)

    Mikulandrić, Robert; Lončar, Dražen; Böhning, Dorith; Böhme, Rene; Beckmann, Michael

    2014-01-01

    Highlights: • 2 Different equilibrium models are developed and their performance is analysed. • Neural network prediction models for 2 different fixed bed gasifier types are developed. • The influence of different input parameters on neural network model performance is analysed. • Methodology for neural network model development for different gasifier types is described. • Neural network models are verified for various operating conditions based on measured data. - Abstract: The number of the small and middle-scale biomass gasification combined heat and power plants as well as syngas production plants has been significantly increased in the last decade mostly due to extensive incentives. However, existing issues regarding syngas quality, process efficiency, emissions and environmental standards are preventing biomass gasification technology to become more economically viable. To encounter these issues, special attention is given to the development of mathematical models which can be used for a process analysis or plant control purposes. The presented paper analyses possibilities of neural networks to predict process parameters with high speed and accuracy. After a related literature review and measurement data analysis, different modelling approaches for the process parameter prediction that can be used for an on-line process control were developed and their performance were analysed. Neural network models showed good capability to predict biomass gasification process parameters with reasonable accuracy and speed. Measurement data for the model development, verification and performance analysis were derived from biomass gasification plant operated by Technical University Dresden

  17. Features, events and processes evaluation catalogue for argillaceous media

    International Nuclear Information System (INIS)

    Mazurek, M.; Pearson, F.J.; Volckaert, G.; Bock, H.

    2003-01-01

    The OECD/NEA Working Group on the Characterisation, the Understanding and the Performance of Argillaceous Rocks as Repository Host Formations for the disposal of radioactive waste (known as the 'Clay Club') launched a project called FEPCAT (Features, Events and Processes Catalogue for argillaceous media) in late 1998. The present report provides the results of work performed by an expert group to develop a FEPs database related to argillaceous formations, whether soft or indurated. It describes the methodology used for the work performed, provides a list of relevant FEPs and summarises the knowledge on each of them. It also provides general conclusions and identifies priorities for future work. (authors)

  18. Neural correlates of economic value and valuation context: an event-related potential study.

    Science.gov (United States)

    Tyson-Carr, John; Kokmotou, Katerina; Soto, Vicente; Cook, Stephanie; Fallon, Nicholas; Giesbrecht, Timo; Stancak, Andrej

    2018-05-01

    The value of environmental cues and internal states is continuously evaluated by the human brain, and it is this subjective value that largely guides decision making. The present study aimed to investigate the initial value attribution process, specifically the spatiotemporal activation patterns associated with values and valuation context, using electroencephalographic event-related potentials (ERPs). Participants completed a stimulus rating task in which everyday household items marketed up to a price of £4 were evaluated with respect to their desirability or material properties. The subjective values of items were evaluated as willingness to pay (WTP) in a Becker-DeGroot-Marschak auction. On the basis of the individual's subjective WTP values, the stimuli were divided into high- and low-value items. Source dipole modeling was applied to estimate the cortical sources underlying ERP components modulated by subjective values (high vs. low WTP) and the evaluation condition (value-relevant vs. value-irrelevant judgments). Low-WTP items and value-relevant judgments both led to a more pronounced N2 visual evoked potential at right frontal scalp electrodes. Source activity in right anterior insula and left orbitofrontal cortex was larger for low vs. high WTP at ∼200 ms. At a similar latency, source activity in right anterior insula and right parahippocampal gyrus was larger for value-relevant vs. value-irrelevant judgments. A stronger response for low- than high-value items in anterior insula and orbitofrontal cortex appears to reflect aversion to low-valued item acquisition, which in an auction experiment would be perceived as a relative loss. This initial low-value bias occurs automatically irrespective of the valuation context. NEW & NOTEWORTHY We demonstrate the spatiotemporal characteristics of the brain valuation process using event-related potentials and willingness to pay as a measure of subjective value. The N2 component resolves values of objects with a

  19. SYNAPTIC DEPRESSION IN DEEP NEURAL NETWORKS FOR SPEECH PROCESSING.

    Science.gov (United States)

    Zhang, Wenhao; Li, Hanyu; Yang, Minda; Mesgarani, Nima

    2016-03-01

    A characteristic property of biological neurons is their ability to dynamically change the synaptic efficacy in response to variable input conditions. This mechanism, known as synaptic depression, significantly contributes to the formation of normalized representation of speech features. Synaptic depression also contributes to the robust performance of biological systems. In this paper, we describe how synaptic depression can be modeled and incorporated into deep neural network architectures to improve their generalization ability. We observed that when synaptic depression is added to the hidden layers of a neural network, it reduces the effect of changing background activity in the node activations. In addition, we show that when synaptic depression is included in a deep neural network trained for phoneme classification, the performance of the network improves under noisy conditions not included in the training phase. Our results suggest that more complete neuron models may further reduce the gap between the biological performance and artificial computing, resulting in networks that better generalize to novel signal conditions.

  20. The impact of high trait social anxiety on neural processing of facial emotion expressions in females.

    Science.gov (United States)

    Felmingham, Kim L; Stewart, Laura F; Kemp, Andrew H; Carr, Andrea R

    2016-05-01

    A cognitive model of social anxiety predicts that an early attentional bias leads to greater cognitive processing of social threat signals, whereas the vigilance-avoidance model predicts there will be subsequent reduction in cognitive processing. This study tests these models by examining neural responses to social threat stimuli using Event-related potentials (ERP). 19 women with high trait social anxiety and 19 women with low trait social anxiety viewed emotional expressions (angry, disgusted, happy and neutral) in a passive viewing task whilst ERP responses were recorded. The HSA group revealed greater automatic attention, or hypervigilance, to all facial expressions, as indexed by greater N1 amplitude compared to the LSA group. They also showed greater sustained attention and elaborative processing of all facial expressions, indexed by significantly increased P2 and P3 amplitudes compared to the LSA group. These results support cognitive models of social anxiety, but are not consistent with predictions of the vigilance-avoidance model. Copyright © 2016. Published by Elsevier B.V.

  1. Neural Temporal Dynamics of Facial Emotion Processing: Age Effects and Relationship to Cognitive Function

    Directory of Open Access Journals (Sweden)

    Xiaoyan Liao

    2017-06-01

    Full Text Available This study used event-related potentials (ERPs to investigate the effects of age on neural temporal dynamics of processing task-relevant facial expressions and their relationship to cognitive functions. Negative (sad, afraid, angry, and disgusted, positive (happy, and neutral faces were presented to 30 older and 31 young participants who performed a facial emotion categorization task. Behavioral and ERP indices of facial emotion processing were analyzed. An enhanced N170 for negative faces, in addition to intact right-hemispheric N170 for positive faces, was observed in older adults relative to their younger counterparts. Moreover, older adults demonstrated an attenuated within-group N170 laterality effect for neutral faces, while younger adults showed the opposite pattern. Furthermore, older adults exhibited sustained temporo-occipital negativity deflection over the time range of 200–500 ms post-stimulus, while young adults showed posterior positivity and subsequent emotion-specific frontal negativity deflections. In older adults, decreased accuracy for labeling negative faces was positively correlated with Montreal Cognitive Assessment Scores, and accuracy for labeling neutral faces was negatively correlated with age. These findings suggest that older people may exert more effort in structural encoding for negative faces and there are different response patterns for the categorization of different facial emotions. Cognitive functioning may be related to facial emotion categorization deficits observed in older adults. This may not be attributable to positivity effects: it may represent a selective deficit for the processing of negative facial expressions in older adults.

  2. Common and dissociable neural correlates associated with component processes of inductive reasoning.

    Science.gov (United States)

    Jia, Xiuqin; Liang, Peipeng; Lu, Jie; Yang, Yanhui; Zhong, Ning; Li, Kuncheng

    2011-06-15

    The ability to draw numerical inductive reasoning requires two key cognitive processes, identification and extrapolation. This study aimed to identify the neural correlates of both component processes of numerical inductive reasoning using event-related fMRI. Three kinds of tasks: rule induction (RI), rule induction and application (RIA), and perceptual judgment (Jud) were solved by twenty right-handed adults. Our results found that the left superior parietal lobule (SPL) extending into the precuneus and left dorsolateral prefrontal cortex (DLPFC) were commonly recruited in the two components. It was also observed that the fronto-parietal network was more specific to identification, whereas the striatal-thalamic network was more specific to extrapolation. The findings suggest that numerical inductive reasoning is mediated by the coordination of multiple brain areas including the prefrontal, parietal, and subcortical regions, of which some are more specific to demands on only one of these two component processes, whereas others are sensitive to both. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Responses of diatom communities to hydrological processes during rainfall events

    Science.gov (United States)

    Wu, Naicheng; Faber, Claas; Ulrich, Uta; Fohrer, Nicola

    2015-04-01

    The importance of diatoms as a tracer of hydrological processes has been recently recognized (Pfister et al. 2009, Pfister et al. 2011, Tauro et al. 2013). However, diatom variations in a short-term scale (e.g., sub-daily) during rainfall events have not been well documented yet. In this study, rainfall event-based diatom samples were taken at the outlet of the Kielstau catchment (50 km2), a lowland catchment in northern Germany. A total of nine rainfall events were caught from May 2013 to April 2014. Non-metric multidimensional scaling (NMDS) revealed that diatom communities of different events were well separated along NMDS axis I and II, indicating a remarkable temporal variation. By correlating water level (a proxy of discharge) and different diatom indices, close relationships were found. For example, species richness, biovolume (μm3), Shannon diversity and moisture index01 (%, classified according to van Dam et al. 1994) were positively related with water level at the beginning phase of the rainfall (i.e. increasing limb of discharge peak). However, in contrast, during the recession limb of the discharge peak, diatom indices showed distinct responses to water level declines in different rainfall events. These preliminary results indicate that diatom indices are highly related to hydrological processes. The next steps will include finding out the possible mechanisms of the above phenomena, and exploring the contributions of abiotic variables (e.g., hydrologic indices, nutrients) to diatom community patterns. Based on this and ongoing studies (Wu et al. unpublished data), we will incorporate diatom data into End Member Mixing Analysis (EMMA) and select the tracer set that is best suited for separation of different runoff components in our study catchment. Keywords: Diatoms, Rainfall event, Non-metric multidimensional scaling, Hydrological process, Indices References: Pfister L, McDonnell JJ, Wrede S, Hlúbiková D, Matgen P, Fenicia F, Ector L, Hoffmann L

  4. How right is left? Handedness modulates neural responses during morphosyntactic processing.

    Science.gov (United States)

    Grey, Sarah; Tanner, Darren; van Hell, Janet G

    2017-08-15

    Most neurocognitive models of language processing generally assume population-wide homogeneity in the neural mechanisms used during language comprehension, yet individual differences are known to influence these neural mechanisms. In this study, we focus on handedness as an individual difference hypothesized to affect language comprehension. Left-handers and right-handers with a left-handed blood relative, or familial sinistrals, are hypothesized to process language differently than right-handers with no left-handed relatives (Hancock and Bever, 2013; Ullman, 2004). Yet, left-handers are often excluded from neurocognitive language research, and familial sinistrality in right-handers is often not taken into account. In the current study we used event-related potentials to test morphosyntactic processing in three groups that differed in their handedness profiles: left-handers (LH), right-handers with a left-handed blood relative (RH FS+), and right-handers with no reported left-handed blood relative (RH FS-; both right-handed groups were previously tested by Tanner and Van Hell, 2014). Results indicated that the RH FS- group showed only P600 responses during morphosyntactic processing whereas the LH and RH FS+ groups showed biphasic N400-P600 patterns. N400s in LH and RH FS+ groups are consistent with theories that associate left-handedness (self or familial) with increased reliance on lexical/semantic mechanisms during language processing. Inspection of individual-level results illustrated that variability in RH FS- individuals' morphosyntactic processing was remarkably low: most individuals were P600-dominant. In contrast, LH and RH FS+ individuals showed marked variability in brain responses, which was similar for both groups: half of individuals were N400-dominant and half were P600-dominant. Our findings have implications for neurocognitive models of language that have been largely formulated around data from only right-handers without accounting for familial

  5. Features, Events and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    P. Persoff

    2005-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  6. Features, Events, and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    Persoff, P.

    2004-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA

  7. Features, Events and Processes in UZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    P. Persoff

    2005-08-04

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  8. Emotional expectations influence neural sensitivity to fearful faces in humans:An event-related potential study

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The present study tested whether neural sensitivity to salient emotional facial expressions was influenced by emotional expectations induced by a cue that validly predicted the expression of a subsequently presented target face. Event-related potentials (ERPs) elicited by fearful and neutral faces were recorded while participants performed a gender discrimination task under cued (‘expected’) and uncued (‘unexpected’) conditions. The behavioral results revealed that accuracy was lower for fearful compared with neutral faces in the unexpected condition, while accuracy was similar for fearful and neutral faces in the expected condition. ERP data revealed increased amplitudes in the P2 component and 200–250 ms interval for unexpected fearful versus neutral faces. By contrast, ERP responses were similar for fearful and neutral faces in the expected condition. These findings indicate that human neural sensitivity to fearful faces is modulated by emotional expectations. Although the neural system is sensitive to unpredictable emotionally salient stimuli, sensitivity to salient stimuli is reduced when these stimuli are predictable.

  9. Reconstruction of t anti tH (H → bb) events using deep neural networks with the CMS detector

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, Marcel; Erdmann, Martin; Fischer, Benjamin; Fischer, Robert; Heidemann, Fabian; Quast, Thorben; Rath, Yannik [III. Physikalisches Institut A, RWTH Aachen University (Germany)

    2016-07-01

    The measurement of Higgs boson production in association with top-quark pairs (t anti tH) is an important goal of Run 2 of the LHC as it allows for a direct measurement of the underlying Yukawa coupling. Due to the complex final state, however, the analysis of semi-leptonic t anti tH events with the Higgs boson decaying into a pair of bottom-quarks is challenging. A promising method for tackling jet parton associations are Deep Neural Networks (DNN). While being a widely spread machine learning algorithm in modern industry, DNNs are on the way to becoming established in high energy physics. We present a study on the reconstruction of the final state using DNNs, comparing to Boosted Decision Trees (BDT) as benchmark scenario. This is accomplished by generating permutations of simulated events and comparing them with truth information to extract reconstruction efficiencies.

  10. Neural Activations of Guided Imagery and Music in Negative Emotional Processing: A Functional MRI Study.

    Science.gov (United States)

    Lee, Sang Eun; Han, Yeji; Park, HyunWook

    2016-01-01

    The Bonny Method of Guided Imagery and Music uses music and imagery to access and explore personal emotions associated with episodic memories. Understanding the neural mechanism of guided imagery and music (GIM) as combined stimuli for emotional processing informs clinical application. We performed functional magnetic resonance imaging (fMRI) to demonstrate neural mechanisms of GIM for negative emotional processing when personal episodic memory is recalled and re-experienced through GIM processes. Twenty-four healthy volunteers participated in the study, which used classical music and verbal instruction stimuli to evoke negative emotions. To analyze the neural mechanism, activated regions associated with negative emotional and episodic memory processing were extracted by conducting volume analyses for the contrast between GIM and guided imagery (GI) or music (M). The GIM stimuli showed increased activation over the M-only stimuli in five neural regions associated with negative emotional and episodic memory processing, including the left amygdala, left anterior cingulate gyrus, left insula, bilateral culmen, and left angular gyrus (AG). Compared with GI alone, GIM showed increased activation in three regions associated with episodic memory processing in the emotional context, including the right posterior cingulate gyrus, bilateral parahippocampal gyrus, and AG. No neural regions related to negative emotional and episodic memory processing showed more activation for M and GI than for GIM. As a combined multimodal stimulus, GIM may increase neural activations related to negative emotions and episodic memory processing. Findings suggest a neural basis for GIM with personal episodic memories affecting cortical and subcortical structures and functions. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. From Imitation to Prediction, Data Compression vs Recurrent Neural Networks for Natural Language Processing

    Directory of Open Access Journals (Sweden)

    Juan Andres Laura

    2018-03-01

    Full Text Available In recent studies Recurrent Neural Networks were used for generative processes and their surprising performance can be explained by their ability to create good predictions. In addition, Data Compression is also based on prediction. What the problem comes down to is whether a data compressor could be used to perform as well as recurrent neural networks in the natural language processing tasks of sentiment analysis and automatic text generation. If this is possible, then the problem comes down to determining if a compression algorithm is even more intelligent than a neural network in such tasks. In our journey, a fundamental difference between a Data Compression Algorithm and Recurrent Neural Networks has been discovered.

  12. Neural activity, neural connectivity, and the processing of emotionally valenced information in older adults: links with life satisfaction.

    Science.gov (United States)

    Waldinger, Robert J; Kensinger, Elizabeth A; Schulz, Marc S

    2011-09-01

    This study examines whether differences in late-life well-being are linked to how older adults encode emotionally valenced information. Using fMRI with 39 older adults varying in life satisfaction, we examined how viewing positive and negative images would affect activation and connectivity of an emotion-processing network. Participants engaged most regions within this network more robustly for positive than for negative images, but within the PFC this effect was moderated by life satisfaction, with individuals higher in satisfaction showing lower levels of activity during the processing of positive images. Participants high in satisfaction showed stronger correlations among network regions-particularly between the amygdala and other emotion processing regions-when viewing positive, as compared with negative, images. Participants low in satisfaction showed no valence effect. Findings suggest that late-life satisfaction is linked with how emotion-processing regions are engaged and connected during processing of valenced information. This first demonstration of a link between neural recruitment and late-life well-being suggests that differences in neural network activation and connectivity may account for the preferential encoding of positive information seen in some older adults.

  13. An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data

    Directory of Open Access Journals (Sweden)

    Evangelos Stromatias

    2017-06-01

    Full Text Available This paper introduces a novel methodology for training an event-driven classifier within a Spiking Neural Network (SNN System capable of yielding good classification results when using both synthetic input data and real data captured from Dynamic Vision Sensor (DVS chips. The proposed supervised method uses the spiking activity provided by an arbitrary topology of prior SNN layers to build histograms and train the classifier in the frame domain using the stochastic gradient descent algorithm. In addition, this approach can cope with leaky integrate-and-fire neuron models within the SNN, a desirable feature for real-world SNN applications, where neural activation must fade away after some time in the absence of inputs. Consequently, this way of building histograms captures the dynamics of spikes immediately before the classifier. We tested our method on the MNIST data set using different synthetic encodings and real DVS sensory data sets such as N-MNIST, MNIST-DVS, and Poker-DVS using the same network topology and feature maps. We demonstrate the effectiveness of our approach by achieving the highest classification accuracy reported on the N-MNIST (97.77% and Poker-DVS (100% real DVS data sets to date with a spiking convolutional network. Moreover, by using the proposed method we were able to retrain the output layer of a previously reported spiking neural network and increase its performance by 2%, suggesting that the proposed classifier can be used as the output layer in works where features are extracted using unsupervised spike-based learning methods. In addition, we also analyze SNN performance figures such as total event activity and network latencies, which are relevant for eventual hardware implementations. In summary, the paper aggregates unsupervised-trained SNNs with a supervised-trained SNN classifier, combining and applying them to heterogeneous sets of benchmarks, both synthetic and from real DVS chips.

  14. An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data.

    Science.gov (United States)

    Stromatias, Evangelos; Soto, Miguel; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabé

    2017-01-01

    This paper introduces a novel methodology for training an event-driven classifier within a Spiking Neural Network (SNN) System capable of yielding good classification results when using both synthetic input data and real data captured from Dynamic Vision Sensor (DVS) chips. The proposed supervised method uses the spiking activity provided by an arbitrary topology of prior SNN layers to build histograms and train the classifier in the frame domain using the stochastic gradient descent algorithm. In addition, this approach can cope with leaky integrate-and-fire neuron models within the SNN, a desirable feature for real-world SNN applications, where neural activation must fade away after some time in the absence of inputs. Consequently, this way of building histograms captures the dynamics of spikes immediately before the classifier. We tested our method on the MNIST data set using different synthetic encodings and real DVS sensory data sets such as N-MNIST, MNIST-DVS, and Poker-DVS using the same network topology and feature maps. We demonstrate the effectiveness of our approach by achieving the highest classification accuracy reported on the N-MNIST (97.77%) and Poker-DVS (100%) real DVS data sets to date with a spiking convolutional network. Moreover, by using the proposed method we were able to retrain the output layer of a previously reported spiking neural network and increase its performance by 2%, suggesting that the proposed classifier can be used as the output layer in works where features are extracted using unsupervised spike-based learning methods. In addition, we also analyze SNN performance figures such as total event activity and network latencies, which are relevant for eventual hardware implementations. In summary, the paper aggregates unsupervised-trained SNNs with a supervised-trained SNN classifier, combining and applying them to heterogeneous sets of benchmarks, both synthetic and from real DVS chips.

  15. Filtering and spectral processing of 1-D signals using cellular neural networks

    NARCIS (Netherlands)

    Moreira-Tamayo, O.; Pineda de Gyvez, J.

    1996-01-01

    This paper presents cellular neural networks (CNN) for one-dimensional discrete signal processing. Although CNN has been extensively used in image processing applications, little has been done for 1-dimensional signal processing. We propose a novel CNN architecture to carry out these tasks. This

  16. Breakout Prediction Based on BP Neural Network in Continuous Casting Process

    Directory of Open Access Journals (Sweden)

    Zhang Ben-guo

    2016-01-01

    Full Text Available An improved BP neural network model was presented by modifying the learning algorithm of the traditional BP neural network, based on the Levenberg-Marquardt algorithm, and was applied to the breakout prediction system in the continuous casting process. The results showed that the accuracy rate of the model for the temperature pattern of sticking breakout was 96.43%, and the quote rate was 100%, that verified the feasibility of the model.

  17. The Neural Correlates of the Body-Object Interaction Effect in Semantic Processing

    Directory of Open Access Journals (Sweden)

    Ian Scott Hargreaves

    2012-02-01

    Full Text Available The semantic richness dimension referred to as body-object interaction (BOI measures perceptions of the ease with which people can physically interact with words’ referents. Previous studies have shown facilitated lexical and semantic processing for words rated high in BOI (e.g., belt than for words rated low in BOI (e.g., sun (e.g., Siakaluk, Pexman, Sears, Wilson, Locheed, & Owen, 2008b. These BOI effects have been taken as evidence that embodied information is relevant to word recognition. However, to date there is no evidence linking BOI manipulations to differences in the utilization of perceptual or sensorimotor areas of the brain. The current study used event-related fMRI to examine the neural correlates of BOI in a semantic categorization task (SCT. Sixteen healthy adults participated. Results showed that high BOI words were associated with activation in the left inferior parietal lobule (supramarginal gyrus, BA 40, a sensory association area involved in kinesthetic memory. These results provide evidence that the BOI dimension captures sensorimotor information, and that this contributes to semantic processing.

  18. Neural correlates of face and object perception in an awake chimpanzee (Pan troglodytes examined by scalp-surface event-related potentials.

    Directory of Open Access Journals (Sweden)

    Hirokata Fukushima

    Full Text Available BACKGROUND: The neural system of our closest living relative, the chimpanzee, is a topic of increasing research interest. However, electrophysiological examinations of neural activity during visual processing in awake chimpanzees are currently lacking. METHODOLOGY/PRINCIPAL FINDINGS: In the present report, skin-surface event-related brain potentials (ERPs were measured while a fully awake chimpanzee observed photographs of faces and objects in two experiments. In Experiment 1, human faces and stimuli composed of scrambled face images were displayed. In Experiment 2, three types of pictures (faces, flowers, and cars were presented. The waveforms evoked by face stimuli were distinguished from other stimulus types, as reflected by an enhanced early positivity appearing before 200 ms post stimulus, and an enhanced late negativity after 200 ms, around posterior and occipito-temporal sites. Face-sensitive activity was clearly observed in both experiments. However, in contrast to the robustly observed face-evoked N170 component in humans, we found that faces did not elicit a peak in the latency range of 150-200 ms in either experiment. CONCLUSIONS/SIGNIFICANCE: Although this pilot study examined a single subject and requires further examination, the observed scalp voltage patterns suggest that selective processing of faces in the chimpanzee brain can be detected by recording surface ERPs. In addition, this non-invasive method for examining an awake chimpanzee can be used to extend our knowledge of the characteristics of visual cognition in other primate species.

  19. Study on algorithm of process neural network for soft sensing in sewage disposal system

    Science.gov (United States)

    Liu, Zaiwen; Xue, Hong; Wang, Xiaoyi; Yang, Bin; Lu, Siying

    2006-11-01

    A new method of soft sensing based on process neural network (PNN) for sewage disposal system is represented in the paper. PNN is an extension of traditional neural network, in which the inputs and outputs are time-variation. An aggregation operator is introduced to process neuron, and it makes the neuron network has the ability to deal with the information of space-time two dimensions at the same time, so the data processing enginery of biological neuron is imitated better than traditional neuron. Process neural network with the structure of three layers in which hidden layer is process neuron and input and output are common neurons for soft sensing is discussed. The intelligent soft sensing based on PNN may be used to fulfill measurement of the effluent BOD (Biochemical Oxygen Demand) from sewage disposal system, and a good training result of soft sensing was obtained by the method.

  20. D-FNN Based Modeling and BP Neural Network Decoupling Control of PVC Stripping Process

    Directory of Open Access Journals (Sweden)

    Shu-zhi Gao

    2014-01-01

    Full Text Available PVC stripping process is a kind of complicated industrial process with characteristics of highly nonlinear and time varying. Aiming at the problem of establishing the accurate mathematics model due to the multivariable coupling and big time delay, the dynamic fuzzy neural network (D-FNN is adopted to establish the PVC stripping process model based on the actual process operation datum. Then, the PVC stripping process is decoupled by the distributed neural network decoupling module to obtain two single-input-single-output (SISO subsystems (slurry flow to top tower temperature and steam flow to bottom tower temperature. Finally, the PID controller based on BP neural networks is used to control the decoupled PVC stripper system. Simulation results show the effectiveness of the proposed integrated intelligent control method.

  1. Automatic processing of semantic relations in fMRI: neural activation during semantic priming of taxonomic and thematic categories.

    Science.gov (United States)

    Sachs, Olga; Weis, Susanne; Zellagui, Nadia; Huber, Walter; Zvyagintsev, Mikhail; Mathiak, Klaus; Kircher, Tilo

    2008-07-07

    Most current models of knowledge organization are based on hierarchical or taxonomic categories (animals, tools). Another important organizational pattern is thematic categorization, i.e. categories held together by external relations, a unifying scene or event (car and garage). The goal of this study was to compare the neural correlates of these categories under automatic processing conditions that minimize strategic influences. We used fMRI to examine neural correlates of semantic priming for category members with a short stimulus onset asynchrony (SOA) of 200 ms as subjects performed a lexical decision task. Four experimental conditions were compared: thematically related words (car-garage); taxonomically related (car-bus); unrelated (car-spoon); non-word trials (car-derf). We found faster reaction times for related than for unrelated prime-target pairs for both thematic and taxonomic categories. However, the size of the thematic priming effect was greater than that of the taxonomic. The imaging data showed signal changes for the taxonomic priming effects in the right precuneus, postcentral gyrus, middle frontal and superior frontal gyri and thematic priming effects in the right middle frontal gyrus and anterior cingulate. The contrast of neural priming effects showed larger signal changes in the right precuneus associated with the taxonomic but not with thematic priming response. We suggest that the greater involvement of precuneus in the processing of taxonomic relations indicates their reduced salience in the knowledge structure compared to more prominent thematic relations.

  2. Strategies to Automatically Derive a Process Model from a Configurable Process Model Based on Event Data

    Directory of Open Access Journals (Sweden)

    Mauricio Arriagada-Benítez

    2017-10-01

    Full Text Available Configurable process models are frequently used to represent business workflows and other discrete event systems among different branches of large organizations: they unify commonalities shared by all branches and describe their differences, at the same time. The configuration of such models is usually done manually, which is challenging. On the one hand, when the number of configurable nodes in the configurable process model grows, the size of the search space increases exponentially. On the other hand, the person performing the configuration may lack the holistic perspective to make the right choice for all configurable nodes at the same time, since choices influence each other. Nowadays, information systems that support the execution of business processes create event data reflecting how processes are performed. In this article, we propose three strategies (based on exhaustive search, genetic algorithms and a greedy heuristic that use event data to automatically derive a process model from a configurable process model that better represents the characteristics of the process in a specific branch. These strategies have been implemented in our proposed framework and tested in both business-like event logs as recorded in a higher educational enterprise resource planning system and a real case scenario involving a set of Dutch municipalities.

  3. Evidence for a neural dual-process account for adverse effects of cognitive control.

    Science.gov (United States)

    Zink, Nicolas; Stock, Ann-Kathrin; Colzato, Lorenza; Beste, Christian

    2018-06-09

    Advantageous effects of cognitive control are well-known, but cognitive control may also have adverse effects, for example when it suppresses the implicit processing of stimulus-response (S-R) bindings that could benefit task performance. Yet, the neurophysiological and functional neuroanatomical structures associated with adverse effects of cognitive control are poorly understood. We used an extreme group approach to compare individuals who exhibit adverse effects of cognitive control to individuals who do not by combining event-related potentials (ERPs), source localization, time-frequency analysis and network analysis methods. While neurophysiological correlates of cognitive control (i.e. N2, N450, theta power and theta-mediated neuronal network efficiency) and task-set updating (P3) both reflect control demands and implicit information processing, differences in the degree of adverse cognitive control effects are associated with two independent neural mechanisms: Individuals, who show adverse behavioral effects of cognitive control, show reduced small-world properties and thus reduced efficiency in theta-modulated networks when they fail to effectively process implicit information. In contrast to this, individuals who do not display adverse control effects show enhanced task-set updating mechanism when effectively processing implicit information, which is reflected by the P3 ERP component and associated with the temporo-parietal junction (TPJ, BA 40) and medial frontal gyrus (MFG; BA 8). These findings suggest that implicit S-R contingencies, which benefit response selection without cognitive control, are always 'picked up', but may fail to be integrated with task representations to guide response selection. This provides evidence for a neurophysiological and functional neuroanatomical "dual-process" account of adverse cognitive control effects.

  4. Predictions of SEP events by means of a linear filter and layer-recurrent neural network

    Czech Academy of Sciences Publication Activity Database

    Valach, F.; Revallo, M.; Hejda, Pavel; Bochníček, Josef

    2011-01-01

    Roč. 69, č. 9-10 (2011), s. 758-766 ISSN 0094-5765 R&D Projects: GA AV ČR(CZ) IAA300120608; GA MŠk OC09070 Grant - others:VEGA(SK) 2/0015/11; VEGA(SK) 2/0022/11 Institutional research plan: CEZ:AV0Z30120515 Keywords : coronal mass ejection * X-ray flare * solar energetic particles * artificial neural network Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.614, year: 2011

  5. Neural processing of amplitude and formant rise time in dyslexia.

    Science.gov (United States)

    Peter, Varghese; Kalashnikova, Marina; Burnham, Denis

    2016-06-01

    This study aimed to investigate how children with dyslexia weight amplitude rise time (ART) and formant rise time (FRT) cues in phonetic discrimination. Passive mismatch responses (MMR) were recorded for a/ba/-/wa/contrast in a multiple deviant odd-ball paradigm to identify the neural response to cue weighting in 17 children with dyslexia and 17 age-matched control children. The deviant stimuli had either partial or full ART or FRT cues. The results showed that ART did not generate an MMR in either group, whereas both partial and full FRT cues generated MMR in control children while only full FRT cues generated MMR in children with dyslexia. These findings suggest that children, both controls and those with dyslexia, discriminate speech based on FRT cues and not ART cues. However, control children have greater sensitivity to FRT cues in speech compared to children with dyslexia. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Two multichannel integrated circuits for neural recording and signal processing.

    Science.gov (United States)

    Obeid, Iyad; Morizio, James C; Moxon, Karen A; Nicolelis, Miguel A L; Wolf, Patrick D

    2003-02-01

    We have developed, manufactured, and tested two analog CMOS integrated circuit "neurochips" for recording from arrays of densely packed neural electrodes. Device A is a 16-channel buffer consisting of parallel noninverting amplifiers with a gain of 2 V/V. Device B is a 16-channel two-stage analog signal processor with differential amplification and high-pass filtering. It features selectable gains of 250 and 500 V/V as well as reference channel selection. The resulting amplifiers on Device A had a mean gain of 1.99 V/V with an equivalent input noise of 10 microV(rms). Those on Device B had mean gains of 53.4 and 47.4 dB with a high-pass filter pole at 211 Hz and an equivalent input noise of 4.4 microV(rms). Both devices were tested in vivo with electrode arrays implanted in the somatosensory cortex.

  7. An RNA-binding protein, Qki5, regulates embryonic neural stem cells through pre-mRNA processing in cell adhesion signaling.

    Science.gov (United States)

    Hayakawa-Yano, Yoshika; Suyama, Satoshi; Nogami, Masahiro; Yugami, Masato; Koya, Ikuko; Furukawa, Takako; Zhou, Li; Abe, Manabu; Sakimura, Kenji; Takebayashi, Hirohide; Nakanishi, Atsushi; Okano, Hideyuki; Yano, Masato

    2017-09-15

    Cell type-specific transcriptomes are enabled by the action of multiple regulators, which are frequently expressed within restricted tissue regions. In the present study, we identify one such regulator, Quaking 5 (Qki5), as an RNA-binding protein (RNABP) that is expressed in early embryonic neural stem cells and subsequently down-regulated during neurogenesis. mRNA sequencing analysis in neural stem cell culture indicates that Qki proteins play supporting roles in the neural stem cell transcriptome and various forms of mRNA processing that may result from regionally restricted expression and subcellular localization. Also, our in utero electroporation gain-of-function study suggests that the nuclear-type Qki isoform Qki5 supports the neural stem cell state. We next performed in vivo transcriptome-wide protein-RNA interaction mapping to search for direct targets of Qki5 and elucidate how Qki5 regulates neural stem cell function. Combined with our transcriptome analysis, this mapping analysis yielded a bona fide map of Qki5-RNA interaction at single-nucleotide resolution, the identification of 892 Qki5 direct target genes, and an accurate Qki5-dependent alternative splicing rule in the developing brain. Last, our target gene list provides the first compelling evidence that Qki5 is associated with specific biological events; namely, cell-cell adhesion. This prediction was confirmed by histological analysis of mice in which Qki proteins were genetically ablated, which revealed disruption of the apical surface of the lateral wall in the developing brain. These data collectively indicate that Qki5 regulates communication between neural stem cells by mediating numerous RNA processing events and suggest new links between splicing regulation and neural stem cell states. © 2017 Hayakawa-Yano et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Features, Events, and Processes in UZ and Transport

    Energy Technology Data Exchange (ETDEWEB)

    P. Persoff

    2004-11-06

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  9. Neural Language Processing in Adolescent First-Language Learners: Longitudinal Case Studies in American Sign Language.

    Science.gov (United States)

    Ferjan Ramirez, Naja; Leonard, Matthew K; Davenport, Tristan S; Torres, Christina; Halgren, Eric; Mayberry, Rachel I

    2016-03-01

    One key question in neurolinguistics is the extent to which the neural processing system for language requires linguistic experience during early life to develop fully. We conducted a longitudinal anatomically constrained magnetoencephalography (aMEG) analysis of lexico-semantic processing in 2 deaf adolescents who had no sustained language input until 14 years of age, when they became fully immersed in American Sign Language. After 2 to 3 years of language, the adolescents' neural responses to signed words were highly atypical, localizing mainly to right dorsal frontoparietal regions and often responding more strongly to semantically primed words (Ferjan Ramirez N, Leonard MK, Torres C, Hatrak M, Halgren E, Mayberry RI. 2014. Neural language processing in adolescent first-language learners. Cereb Cortex. 24 (10): 2772-2783). Here, we show that after an additional 15 months of language experience, the adolescents' neural responses remained atypical in terms of polarity. While their responses to less familiar signed words still showed atypical localization patterns, the localization of responses to highly familiar signed words became more concentrated in the left perisylvian language network. Our findings suggest that the timing of language experience affects the organization of neural language processing; however, even in adolescence, language representation in the human brain continues to evolve with experience. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Autonomous dynamics in neural networks: the dHAN concept and associative thought processes

    Science.gov (United States)

    Gros, Claudius

    2007-02-01

    The neural activity of the human brain is dominated by self-sustained activities. External sensory stimuli influence this autonomous activity but they do not drive the brain directly. Most standard artificial neural network models are however input driven and do not show spontaneous activities. It constitutes a challenge to develop organizational principles for controlled, self-sustained activity in artificial neural networks. Here we propose and examine the dHAN concept for autonomous associative thought processes in dense and homogeneous associative networks. An associative thought-process is characterized, within this approach, by a time-series of transient attractors. Each transient state corresponds to a stored information, a memory. The subsequent transient states are characterized by large associative overlaps, which are identical to acquired patterns. Memory states, the acquired patterns, have such a dual functionality. In this approach the self-sustained neural activity has a central functional role. The network acquires a discrimination capability, as external stimuli need to compete with the autonomous activity. Noise in the input is readily filtered-out. Hebbian learning of external patterns occurs coinstantaneous with the ongoing associative thought process. The autonomous dynamics needs a long-term working-point optimization which acquires within the dHAN concept a dual functionality: It stabilizes the time development of the associative thought process and limits runaway synaptic growth, which generically occurs otherwise in neural networks with self-induced activities and Hebbian-type learning rules.

  11. The time course of implicit processing of erotic pictures: an event-related potential study.

    Science.gov (United States)

    Feng, Chunliang; Wang, Lili; Wang, Naiyi; Gu, Ruolei; Luo, Yue-Jia

    2012-12-13

    The current study investigated the time course of the implicit processing of erotic stimuli using event-related potentials (ERPs). ERPs elicited by erotic pictures were compared with those by three other types of pictures: non-erotic positive, negative, and neutral pictures. We observed that erotic pictures evoked enhanced neural responses compared with other pictures at both early (P2/N2) and late (P3/positive slow wave) temporal stages. These results suggested that erotic pictures selectively captured individuals' attention at early stages and evoked deeper processing at late stages. More importantly, the amplitudes of P2, N2, and P3 only discriminated between erotic and non-erotic (i.e., positive, neutral, and negative) pictures. That is, no difference was revealed among non-erotic pictures, although these pictures differed in both valence and arousal. Thus, our results suggest that the erotic picture processing is beyond the valence and arousal. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Emotional processing and psychopathic traits in male college students: An event-related potential study.

    Science.gov (United States)

    Medina, Amy L; Kirilko, Elvira; Grose-Fifer, Jillian

    2016-08-01

    Emotional processing deficits are often considered a hallmark of psychopathy. However, there are relatively few studies that have investigated how the late positive potential (LPP) elicited by both positive and negative emotional stimuli is modulated by psychopathic traits, especially in undergraduates. Attentional deficits have also been posited to be associated with emotional blunting in psychopathy, consequently, results from previous studies may have been influenced by task demands. Therefore, we investigated the relationship between the neural correlates of emotional processing and psychopathic traits by measuring event-related potentials (ERPs) during a task with a relatively low cognitive load. A group of male undergraduates were classified as having either high or low levels of psychopathic traits according to their total scores on the Psychopathic Personality Inventory - Revised (PPI-R). A subgroup of these participants then passively viewed complex emotional and neutral images from the International Affective Picture System (IAPS) while their EEGs were recorded. As hypothesized, in general the late LPP elicited by emotional pictures was found to be significantly reduced for participants with high Total PPI-R scores relative to those with low scores, especially for pictures that were rated as less emotionally arousing. Our data suggest that male undergraduates with high, but subclinical levels of psychopathic traits did not maintain continued higher-order processing of affective information, especially when it was perceived to be less arousing in nature. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Neural Dynamics of Multiple Object Processing in Mild Cognitive Impairment and Alzheimer's Disease: Future Early Diagnostic Biomarkers?

    Science.gov (United States)

    Bagattini, Chiara; Mazza, Veronica; Panizza, Laura; Ferrari, Clarissa; Bonomini, Cristina; Brignani, Debora

    2017-01-01

    The aim of this study was to investigate the behavioral and electrophysiological dynamics of multiple object processing (MOP) in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and to test whether its neural signatures may represent reliable diagnostic biomarkers. Behavioral performance and event-related potentials [N2pc and contralateral delay activity (CDA)] were measured in AD, MCI, and healthy controls during a MOP task, which consisted in enumerating a variable number of targets presented among distractors. AD patients showed an overall decline in accuracy for both small and large target quantities, whereas in MCI patients, only enumeration of large quantities was impaired. N2pc, a neural marker of attentive individuation, was spared in both AD and MCI patients. In contrast, CDA, which indexes visual short term memory abilities, was altered in both groups of patients, with a non-linear pattern of amplitude modulation along the continuum of the disease: a reduction in AD and an increase in MCI. These results indicate that AD pathology shows a progressive decline in MOP, which is associated to the decay of visual short-term memory mechanisms. Crucially, CDA may be considered as a useful neural signature both to distinguish between healthy and pathological aging and to characterize the different stages along the AD continuum, possibly becoming a reliable candidate for an early diagnostic biomarker of AD pathology.

  14. The neural basis of love as a subliminal prime: an event-related functional magnetic resonance imaging study.

    Science.gov (United States)

    Ortigue, S; Bianchi-Demicheli, F; Hamilton, A F de C; Grafton, S T

    2007-07-01

    Throughout the ages, love has been defined as a motivated and goal-directed mechanism with explicit and implicit mechanisms. Recent evidence demonstrated that the explicit representation of love recruits subcorticocortical pathways mediating reward, emotion, and motivation systems. However, the neural basis of the implicit (unconscious) representation of love remains unknown. To assess this question, we combined event-related functional magnetic resonance imaging (fMRI) with a behavioral subliminal priming paradigm embedded in a lexical decision task. In this task, the name of either a beloved partner, a neutral friend, or a passionate hobby was subliminally presented before a target stimulus (word, nonword, or blank), and participants were required to decide if the target was a word or not. Behavioral results showed that subliminal presentation of either a beloved's name (love prime) or a passion descriptor (passion prime) enhanced reaction times in a similar fashion. Subliminal presentation of a friend's name (friend prime) did not show any beneficial effects. Functional results showed that subliminal priming with a beloved's name (as opposed to either a friend's name or a passion descriptor) specifically recruited brain areas involved in abstract representations of others and the self, in addition to motivation circuits shared with other sources of passion. More precisely, love primes recruited the fusiform and angular gyri. Our findings suggest that love, as a subliminal prime, involves a specific neural network that surpasses a dopaminergic-motivation system.

  15. Signal Processing, Pattern Formation and Adaptation in Neural Oscillators

    Science.gov (United States)

    2016-11-29

    rhythmic patterns. As such, our models are appropriate for describing various phenomena in the auditory system, including critical nonlinear...several distinct intrinsic behaviors available near a Hopf bifurcation or a Bautin (a.k.a. double limit cycle) bifurcation. Stability analysis shows...example the perception of pitch at event timescales (Meddis & O’Mard, 2006) and the perception of pulse and meter at rhythmic timescales (Large

  16. Search for supersymmetry in events with opposite-sign dileptons and missing transverse energy using an artificial neural network

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Vilela Pereira, Antonio; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Mahrous, Ayman; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Florent, Alice; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Brochet, Sébastien; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sgandurra, Louis; Sordini, Viola; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Leonard, Jessica; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Nowak, Friederike; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Vanelderen, Lukas; Barth, Christian; Berger, Joram; Böser, Christian; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Hauth, Thomas; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Lobelle Pardo, Patricia; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Tosi, Silvano; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Seixas, Joao; Varela, Joao; Vischia, Pietro; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Shreyber, Irina; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jorda, Clara; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; Dabrowski, Anne; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Gundacker, Stefan; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lee, Yen-Jie; Lenzi, Piergiulio; Lourenco, Carlos; Magini, Nicolo; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Musella, Pasquale; Nesvold, Erik; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hits, Dmitry; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Asavapibhop, Burin; Srimanobhas, Norraphat; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Stoye, Markus; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Pellett, Dave; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Schlein, Peter; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Golf, Frank; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Veverka, Jan; Wilkinson, Richard; Xie, Si; Yang, Yong; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Park, Myeonghun; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Yumiceva, Francisco; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Griffiths, Scott; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Peterman, Alison; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Kim, Yongsun; Klute, Markus; Krajczar, Krisztian; Levin, Andrew; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Cooper, Seth; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Snow, Gregory R; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Akgun, Bora; Boulahouache, Chaouki; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Walker, Matthew; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Palmonari, Francesco; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2013-04-02

    In this paper, a search for supersymmetry (SUSY) is presented in events with two opposite-sign isolated leptons in the final state, accompanied by hadronic jets and missing transverse energy. An artificial neural network is employed to discriminate possible SUSY signals from standard model background. The analysis uses a data sample collected with the CMS detector during the 2011 LHC run, corresponding to an integrated luminosity of 4.98 inverse femtobarns of proton-proton collisions at the center of mass energy of 7 TeV. Compared to other CMS analyses, this one uses relaxed criteria on missing transverse energy (missing ET > 40 GeV) and total hadronic transverse energy (HT > 120 GeV), thus probing different regions of parameter space. Agreement is found between standard model expectation and observation, yielding limits in the context of the constrained mininal supersymmetric standard model and on a set of simplified models.

  17. Neural information processing in cognition: we start to understand the orchestra, but where is the conductor?

    Directory of Open Access Journals (Sweden)

    Guenther ePalm

    2016-01-01

    Full Text Available Research in neural information processing has been successful in the past, providing useful approaches both to practical problems in computer science and to computational models in neuroscience. Recent developments in the area of cognitive neuroscience present new challenges for a computational or theoretical understanding asking for neural information processing models that fulfill criteria or constraints from cognitive psychology, neuroscience and computational efficiency. The most important of these criteria for the evaluation of present and future contributions to this new emerging field are listed at the end of this article.

  18. Neural Information Processing in Cognition: We Start to Understand the Orchestra, but Where is the Conductor?

    Science.gov (United States)

    Palm, Günther

    2016-01-01

    Research in neural information processing has been successful in the past, providing useful approaches both to practical problems in computer science and to computational models in neuroscience. Recent developments in the area of cognitive neuroscience present new challenges for a computational or theoretical understanding asking for neural information processing models that fulfill criteria or constraints from cognitive psychology, neuroscience and computational efficiency. The most important of these criteria for the evaluation of present and future contributions to this new emerging field are listed at the end of this article. PMID:26858632

  19. Neural bases for basic processes in heuristic problem solving: Take solving Sudoku puzzles as an example.

    Science.gov (United States)

    Qin, Yulin; Xiang, Jie; Wang, Rifeng; Zhou, Haiyan; Li, Kuncheng; Zhong, Ning

    2012-12-01

    Newell and Simon postulated that the basic steps in human problem-solving involve iteratively applying operators to transform the state of the problem to eventually achieve a goal. To check the neural basis of this framework, the present study focused on the basic processes in human heuristic problem-solving that the participants identified the current problem state and then recalled and applied the corresponding heuristic rules to change the problem state. A new paradigm, solving simplified Sudoku puzzles, was developed for an event-related functional magnetic resonance imaging (fMRI) study in problem solving. Regions of interest (ROIs), including the left prefrontal cortex, the bilateral posterior parietal cortex, the anterior cingulated cortex, the bilateral caudate nuclei, the bilateral fusiform, as well as the bilateral frontal eye fields, were found to be involved in the task. To obtain convergent evidence, in addition to traditional statistical analysis, we used the multivariate voxel classification method to check the accuracy of the predictions for the condition of the task from the blood oxygen level dependent (BOLD) response of the ROIs, using a new classifier developed in this study for fMRI data. To reveal the roles that the ROIs play in problem solving, we developed an ACT-R computational model of the information-processing processes in human problem solving, and tried to predict the BOLD response of the ROIs from the task. Advances in human problem-solving research after Newell and Simon are then briefly discussed. © 2012 The Institute of Psychology, Chinese Academy of Sciences and Blackwell Publishing Asia Pty Ltd.

  20. Real-time complex event processing for cloud resources

    Science.gov (United States)

    Adam, M.; Cordeiro, C.; Field, L.; Giordano, D.; Magnoni, L.

    2017-10-01

    The ongoing integration of clouds into the WLCG raises the need for detailed health and performance monitoring of the virtual resources in order to prevent problems of degraded service and interruptions due to undetected failures. When working in scale, the existing monitoring diversity can lead to a metric overflow whereby the operators need to manually collect and correlate data from several monitoring tools and frameworks, resulting in tens of different metrics to be constantly interpreted and analyzed per virtual machine. In this paper we present an ESPER based standalone application which is able to process complex monitoring events coming from various sources and automatically interpret data in order to issue alarms upon the resources’ statuses, without interfering with the actual resources and data sources. We will describe how this application has been used with both commercial and non-commercial cloud activities, allowing the operators to quickly be alarmed and react to misbehaving VMs and LHC experiments’ workflows. We will present the pattern analysis mechanisms being used, as well as the surrounding Elastic and REST API interfaces where the alarms are collected and served to users.

  1. Features, Events, and Processes in SZ Flow and Transport

    International Nuclear Information System (INIS)

    Economy, K.

    2004-01-01

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  2. Features, Events, and Processes in SZ Flow and Transport

    International Nuclear Information System (INIS)

    S. Kuzio

    2005-01-01

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded)

  3. Features, Events, and Processes in SZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    K. Economy

    2004-11-16

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  4. Features, Events, and Processes in SZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    S. Kuzio

    2005-08-20

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  5. Neural correlates of face processing in etiologically-distinct 12-month-old infants at high-risk of autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Maggie W. Guy

    2018-01-01

    Full Text Available Neural correlates of face processing were examined in 12-month-olds at high-risk for autism spectrum disorder (ASD, including 21 siblings of children with ASD (ASIBs and 15 infants with fragile X syndrome (FXS, as well as 21 low-risk (LR controls. Event-related potentials were recorded to familiar and novel face and toy stimuli. All infants demonstrated greater N290 amplitude to faces than toys. At the Nc component, LR infants showed greater amplitude to novel stimuli than to their mother’s face and own toy, whereas infants with FXS showed the opposite pattern of responses and ASIBs did not differentiate based on familiarity. These results reflect developing face specialization across high- and low-risk infants and reveal neural patterns that distinguish between groups at high-risk for ASD. Keywords: Event-related potentials, Infancy, Face processing, Autism spectrum disorders

  6. A process-oriented event-based programming language

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas; Zanitti, Francesco

    2012-01-01

    Vi præsenterer den første version af PEPL, et deklarativt Proces-orienteret, Event-baseret Programmeringssprog baseret på den fornyligt introducerede Dynamic Condition Response (DCR) Graphs model. DCR Graphs tillader specifikation, distribuerede udførsel og verifikation af pervasive event...

  7. Modeling of an industrial process of pleuromutilin fermentation using feed-forward neural networks

    Directory of Open Access Journals (Sweden)

    L. Khaouane

    2013-03-01

    Full Text Available This work investigates the use of artificial neural networks in modeling an industrial fermentation process of Pleuromutilin produced by Pleurotus mutilus in a fed-batch mode. Three feed-forward neural network models characterized by a similar structure (five neurons in the input layer, one hidden layer and one neuron in the output layer are constructed and optimized with the aim to predict the evolution of three main bioprocess variables: biomass, substrate and product. Results show a good fit between the predicted and experimental values for each model (the root mean squared errors were 0.4624% - 0.1234 g/L and 0.0016 mg/g respectively. Furthermore, the comparison between the optimized models and the unstructured kinetic models in terms of simulation results shows that neural network models gave more significant results. These results encourage further studies to integrate the mathematical formulae extracted from these models into an industrial control loop of the process.

  8. Erythropoietin reduces neural and cognitive processing of fear in human models of antidepressant drug action

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla; O'Sullivan, Ursula; Harmer, Catherine J

    2007-01-01

    with reduced attention to fear. Erythropoietin additionally reduced recognition of fearful facial expressions without affecting recognition of other emotional expressions. These actions occurred in the absence of changes in hematological parameters. CONCLUSIONS: The present study demonstrates that Epo directly......) versus saline on the neural processing of happy and fearful faces in 23 healthy volunteers. Facial expression recognition was assessed outside the scanner. RESULTS: One week after administration, Epo reduced neural response to fearful versus neutral faces in the occipito-parietal cortex consistent...... study aimed to explore the effects of Epo on neural and behavioral measures of emotional processing relevant for depression and the effects of conventional antidepressant medication. METHODS: In the present study, we used functional magnetic resonance imaging to explore the effects of Epo (40,000 IU...

  9. Neural correlates of olfactory processing in congenital blindness

    DEFF Research Database (Denmark)

    Kupers, R; Beaulieu-Lefebvre, M; Schneider, F C

    2011-01-01

    Adaptive neuroplastic changes have been well documented in congenitally blind individuals for the processing of tactile and auditory information. By contrast, very few studies have investigated olfactory processing in the absence of vision. There is ample evidence that the olfactory system...... magnetic resonance imaging to measure changes in the blood-oxygenation level-dependent signal in congenitally blind and blindfolded sighted control subjects during a simple odor detection task. We found several group differences in task-related activations. Compared to sighted controls, congenitally blind......, linking it also to olfactory processing in addition to tactile and auditory processing....

  10. The light-makeup advantage in facial processing: Evidence from event-related potentials.

    Science.gov (United States)

    Tagai, Keiko; Shimakura, Hitomi; Isobe, Hiroko; Nittono, Hiroshi

    2017-01-01

    The effects of makeup on attractiveness have been evaluated using mainly subjective measures. In this study, event-related brain potentials (ERPs) were recorded from a total of 45 Japanese women (n = 23 and n = 22 for Experiment 1 and 2, respectively) to examine the neural processing of faces with no makeup, light makeup, and heavy makeup. To have the participants look at each face carefully, an identity judgement task was used: they were asked to judge whether the two faces presented in succession were of the same person or not. The ERP waveforms in response to the first faces were analyzed. In two experiments with different stimulus probabilities, the amplitudes of N170 and vertex positive potential (VPP) were smaller for faces with light makeup than for faces with heavy makeup or no makeup. The P1 amplitude did not differ between facial types. In a subsequent rating phase, faces with light makeup were rated as more attractive than faces with heavy makeup and no makeup. The results suggest that the processing fluency of faces with light makeup is one of the reasons why light makeup is preferred to heavy makeup and no makeup in daily life.

  11. Feedback processing in adolescence: an event-related potential study of age and gender differences.

    Science.gov (United States)

    Grose-Fifer, Jillian; Migliaccio, Renee; Zottoli, Tina M

    2014-01-01

    Adolescence has frequently been characterized as a period of increased risk taking, which may be largely driven by maturational changes in neural areas that process incentives. To investigate age- and gender-related differences in reward processing, we recorded event-related potentials (ERPs) from 80 participants in a gambling game, in which monetary wins and losses were either large or small. We measured two ERP components: the feedback-related negativity (FRN) and the feedback P3 (fP3). The FRN was sensitive to the size of a win in both adult (aged 23-35 years) and adolescent (aged 13-17 years) males, but not in females. Small wins appeared to be less rewarding for males than for females, which may in part explain more approach-driven behavior in males in general. Furthermore, adolescent boys showed both delayed FRNs to high losses and less differentiation in FRN amplitude between wins and losses in comparison to girls. The fP3, which is thought to index the salience of the feedback at a more conscious level than the FRN, was also larger in boys than in girls. Taken together, these results imply that higher levels of risk taking that are commonly reported in adolescent males may be driven both by hypersensitivity to high rewards and insensitivity to punishment or losses. © 2014 S. Karger AG, Basel.

  12. Prediction of ferric iron precipitation in bioleaching process using partial least squares and artificial neural network

    Directory of Open Access Journals (Sweden)

    Golmohammadi Hassan

    2013-01-01

    Full Text Available A quantitative structure-property relationship (QSPR study based on partial least squares (PLS and artificial neural network (ANN was developed for the prediction of ferric iron precipitation in bioleaching process. The leaching temperature, initial pH, oxidation/reduction potential (ORP, ferrous concentration and particle size of ore were used as inputs to the network. The output of the model was ferric iron precipitation. The optimal condition of the neural network was obtained by adjusting various parameters by trial-and-error. After optimization and training of the network according to back-propagation algorithm, a 5-5-1 neural network was generated for prediction of ferric iron precipitation. The root mean square error for the neural network calculated ferric iron precipitation for training, prediction and validation set are 32.860, 40.739 and 35.890, respectively, which are smaller than those obtained by PLS model (180.972, 165.047 and 149.950, respectively. Results obtained reveal the reliability and good predictivity of neural network model for the prediction of ferric iron precipitation in bioleaching process.

  13. Predictive business process monitoring with LSTM neural networks

    NARCIS (Netherlands)

    Tax, N.; Verenich, I.; La Rosa, M.; Dumas, M.; Pohl, Klaus; Dubois, Eric

    2017-01-01

    Predictive business process monitoring methods exploit logs of completed cases of a process in order to make predictions about running cases thereof. Existing methods in this space are tailor-made for specific prediction tasks. Moreover, their relative accuracy is highly sensitive to the dataset at

  14. Effects of alexithymia and empathy on the neural processing of social and monetary rewards.

    Science.gov (United States)

    Goerlich, Katharina Sophia; Votinov, Mikhail; Lammertz, Sarah E; Winkler, Lina; Spreckelmeyer, Katja N; Habel, Ute; Gründer, Gerhard; Gossen, Anna

    2017-07-01

    Empathy has been found to affect the neural processing of social and monetary rewards. Alexithymia, a subclinical condition showing a close inverse relationship with empathy is linked to dysfunctions of socio-emotional processing in the brain. Whether alexithymia alters the neural processing of rewards, which is currently unknown. Here, we investigated the influence of both alexithymia and empathy on reward processing using a social incentive delay (SID) task and a monetary incentive delay (MID) task in 45 healthy men undergoing functional magnetic resonance imaging. Controlling for temperament-character dimensions and rejection sensitivity, the relationship of alexithymia and empathy with neural activity in several a priori regions of interest (ROIs) was examined by means of partial correlations, while participants anticipated and received social and monetary rewards. Results were considered significant if they survived Holm-Bonferroni correction for multiple comparisons. Alexithymia modulated neural activity in several ROIs of the emotion and reward network, both during the anticipation of social and monetary rewards and in response to the receipt of monetary rewards. In contrast, empathy did not affect reward anticipation and modulated ROI activity only in response to the receipt of social rewards. These results indicate a significant influence of alexithymia on the processing of social and monetary rewards in the healthy brain.

  15. A preferential design approach for energy-efficient and robust implantable neural signal processing hardware.

    Science.gov (United States)

    Narasimhan, Seetharam; Chiel, Hillel J; Bhunia, Swarup

    2009-01-01

    For implantable neural interface applications, it is important to compress data and analyze spike patterns across multiple channels in real time. Such a computational task for online neural data processing requires an innovative circuit-architecture level design approach for low-power, robust and area-efficient hardware implementation. Conventional microprocessor or Digital Signal Processing (DSP) chips would dissipate too much power and are too large in size for an implantable system. In this paper, we propose a novel hardware design approach, referred to as "Preferential Design" that exploits the nature of the neural signal processing algorithm to achieve a low-voltage, robust and area-efficient implementation using nanoscale process technology. The basic idea is to isolate the critical components with respect to system performance and design them more conservatively compared to the noncritical ones. This allows aggressive voltage scaling for low power operation while ensuring robustness and area efficiency. We have applied the proposed approach to a neural signal processing algorithm using the Discrete Wavelet Transform (DWT) and observed significant improvement in power and robustness over conventional design.

  16. Neural processing of high and low spatial frequency information in faces changes across development: qualitative changes in face processing during adolescence.

    Science.gov (United States)

    Peters, Judith C; Vlamings, Petra; Kemner, Chantal

    2013-05-01

    Face perception in adults depends on skilled processing of interattribute distances ('configural' processing), which is disrupted for faces presented in inverted orientation (face inversion effect or FIE). Children are not proficient in configural processing, and this might relate to an underlying immaturity to use facial information in low spatial frequency (SF) ranges, which capture the coarse information needed for configural processing. We hypothesized that during adolescence a shift from use of high to low SF information takes place. Therefore, we studied the influence of SF content on neural face processing in groups of children (9-10 years), adolescents (14-15 years) and young adults (21-29 years) by measuring event-related potentials (ERPs) to upright and inverted faces which varied in SF content. Results revealed that children show a neural FIE in early processing stages (i.e. P1; generated in early visual areas), suggesting a superficial, global facial analysis. In contrast, ERPs of adults revealed an FIE at later processing stages (i.e. N170; generated in face-selective, higher visual areas). Interestingly, adolescents showed FIEs in both processing stages, suggesting a hybrid developmental stage. Furthermore, adolescents and adults showed FIEs for stimuli containing low SF information, whereas such effects were driven by both low and high SF information in children. These results indicate that face processing has a protracted maturational course into adolescence, and is dependent on changes in SF processing. During adolescence, sensitivity to configural cues is developed, which aids the fast and holistic processing that is so special for faces. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. A novel joint-processing adaptive nonlinear equalizer using a modular recurrent neural network for chaotic communication systems.

    Science.gov (United States)

    Zhao, Haiquan; Zeng, Xiangping; Zhang, Jiashu; Liu, Yangguang; Wang, Xiaomin; Li, Tianrui

    2011-01-01

    To eliminate nonlinear channel distortion in chaotic communication systems, a novel joint-processing adaptive nonlinear equalizer based on a pipelined recurrent neural network (JPRNN) is proposed, using a modified real-time recurrent learning (RTRL) algorithm. Furthermore, an adaptive amplitude RTRL algorithm is adopted to overcome the deteriorating effect introduced by the nesting process. Computer simulations illustrate that the proposed equalizer outperforms the pipelined recurrent neural network (PRNN) and recurrent neural network (RNN) equalizers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Neural basis of uncertain cue processing in trait anxiety.

    Science.gov (United States)

    Zhang, Meng; Ma, Chao; Luo, Yanyan; Li, Ji; Li, Qingwei; Liu, Yijun; Ding, Cody; Qiu, Jiang

    2016-02-19

    Individuals with high trait anxiety form a non-clinical group with a predisposition for an anxiety-related bias in emotional and cognitive processing that is considered by some to be a prerequisite for psychiatric disorders. Anxious individuals tend to experience more worry under uncertainty, and processing uncertain information is an important, but often overlooked factor in anxiety. So, we decided to explore the brain correlates of processing uncertain information in individuals with high trait anxiety using the learn-test paradigm. Behaviorally, the percentages on memory test and the likelihood ratios of identifying novel stimuli under uncertainty were similar to the certain fear condition, but different from the certain neutral condition. The brain results showed that the visual cortex, bilateral fusiform gyrus, and right parahippocampal gyrus were active during the processing of uncertain cues. Moreover, we found that trait anxiety was positively correlated with the BOLD signal of the right parahippocampal gyrus during the processing of uncertain cues. No significant results were found in the amygdala during uncertain cue processing. These results suggest that memory retrieval is associated with uncertain cue processing, which is underpinned by over-activation of the right parahippocampal gyrus, in individuals with high trait anxiety.

  19. Ethanol production from steam exploded rapeseed straw and the process simulation using artificial neural networks

    DEFF Research Database (Denmark)

    Talebnia, Farid; Mighani, Moein; Rahimnejad, Mostafa

    2015-01-01

    and 67% of maximum theoretical value. Next, data of the experimental runs were exploited for modeling the processes by artificial neural networks (ANNs) and performance of the developed models was evaluated. The ANN-based models showed a great potential for time-course prediction of the studied processes....... Efficiency of the joint network for simulating the whole process was also determined and promising results were obtained....

  20. Features, Events and Processes for the Used Fuel Disposition Campaign

    International Nuclear Information System (INIS)

    Blink, J.A.; Greenberg, H.R.; Caporuscio, F.A.; Houseworth, J.E.; Freeze, G.A.; Mariner, P.; Cunnane, J.C.

    2010-01-01

    The Used Fuel Disposition (UFD) Campaign within DOE-NE is evaluating storage and disposal options for a range of waste forms and a range of geologic environments. To assess the potential performance of conceptual repository designs for the combinations of waste form and geologic environment, a master set of Features, Events, and Processes (FEPs) has been developed and evaluated. These FEPs are based on prior lists developed by the Yucca Mountain Project (YMP) and the international repository community. The objective of the UFD FEPs activity is to identify and categorize FEPs that are important to disposal system performance for a variety of disposal alternatives (i.e., combinations of waste forms, disposal concepts, and geologic environments). FEP analysis provides guidance for the identification of (1) important considerations in disposal system design, and (2) gaps in the technical bases. The UFD FEPs also support the development of performance assessment (PA) models to evaluate the long-term performance of waste forms in the engineered and geologic environments of candidate disposal system alternatives. For the UFD FEP development, five waste form groups and seven geologic settings are being considered. A total of 208 FEPs have been identified, categorized by the physical components of the waste disposal system as well as cross-cutting physical phenomena. The combination of 35 waste-form/geologic environments and 208 FEPs is large; however, some FEP evaluations can cut across multiple waste/environment combinations, and other FEPs can be categorized as not-applicable for some waste/environment combinations, making the task of FEP evaluation more tractable. A FEP status tool has been developed to document progress. The tool emphasizes three major areas that can be statused numerically. FEP Applicability documents whether the FEP is pertinent to a waste/environment combination. FEP Completion Status documents the progress of the evaluation for the FEP

  1. Understanding human visual processing with Deep Neural Networks

    OpenAIRE

    Thorat, Sushrut

    2016-01-01

    This presentation has 2 parts:1. An introduction to the vision processing - neuroscience, and machine vision.2. Discussion of one of the first papers relating Deep Networks to the visual ventral stream. (Khaligh-Razavi, 2014)

  2. Cellular Neural Network for Real Time Image Processing

    International Nuclear Information System (INIS)

    Vagliasindi, G.; Arena, P.; Fortuna, L.; Mazzitelli, G.; Murari, A.

    2008-01-01

    Since their introduction in 1988, Cellular Nonlinear Networks (CNNs) have found a key role as image processing instruments. Thanks to their structure they are able of processing individual pixels in a parallel way providing fast image processing capabilities that has been applied to a wide range of field among which nuclear fusion. In the last years, indeed, visible and infrared video cameras have become more and more important in tokamak fusion experiments for the twofold aim of understanding the physics and monitoring the safety of the operation. Examining the output of these cameras in real-time can provide significant information for plasma control and safety of the machines. The potentiality of CNNs can be exploited to this aim. To demonstrate the feasibility of the approach, CNN image processing has been applied to several tasks both at the Frascati Tokamak Upgrade (FTU) and the Joint European Torus (JET)

  3. The neural bases of spatial frequency processing during scene perception

    Science.gov (United States)

    Kauffmann, Louise; Ramanoël, Stephen; Peyrin, Carole

    2014-01-01

    Theories on visual perception agree that scenes are processed in terms of spatial frequencies. Low spatial frequencies (LSF) carry coarse information whereas high spatial frequencies (HSF) carry fine details of the scene. However, how and where spatial frequencies are processed within the brain remain unresolved questions. The present review addresses these issues and aims to identify the cerebral regions differentially involved in low and high spatial frequency processing, and to clarify their attributes during scene perception. Results from a number of behavioral and neuroimaging studies suggest that spatial frequency processing is lateralized in both hemispheres, with the right and left hemispheres predominantly involved in the categorization of LSF and HSF scenes, respectively. There is also evidence that spatial frequency processing is retinotopically mapped in the visual cortex. HSF scenes (as opposed to LSF) activate occipital areas in relation to foveal representations, while categorization of LSF scenes (as opposed to HSF) activates occipital areas in relation to more peripheral representations. Concomitantly, a number of studies have demonstrated that LSF information may reach high-order areas rapidly, allowing an initial coarse parsing of the visual scene, which could then be sent back through feedback into the occipito-temporal cortex to guide finer HSF-based analysis. Finally, the review addresses spatial frequency processing within scene-selective regions areas of the occipito-temporal cortex. PMID:24847226

  4. Event-Based Computation of Motion Flow on a Neuromorphic Analog Neural Platform.

    Science.gov (United States)

    Giulioni, Massimiliano; Lagorce, Xavier; Galluppi, Francesco; Benosman, Ryad B

    2016-01-01

    Estimating the speed and direction of moving objects is a crucial component of agents behaving in a dynamic world. Biological organisms perform this task by means of the neural connections originating from their retinal ganglion cells. In artificial systems the optic flow is usually extracted by comparing activity of two or more frames captured with a vision sensor. Designing artificial motion flow detectors which are as fast, robust, and efficient as the ones found in biological systems is however a challenging task. Inspired by the architecture proposed by Barlow and Levick in 1965 to explain the spiking activity of the direction-selective ganglion cells in the rabbit's retina, we introduce an architecture for robust optical flow extraction with an analog neuromorphic multi-chip system. The task is performed by a feed-forward network of analog integrate-and-fire neurons whose inputs are provided by contrast-sensitive photoreceptors. Computation is supported by the precise time of spike emission, and the extraction of the optical flow is based on time lag in the activation of nearby retinal neurons. Mimicking ganglion cells our neuromorphic detectors encode the amplitude and the direction of the apparent visual motion in their output spiking pattern. Hereby we describe the architectural aspects, discuss its latency, scalability, and robustness properties and demonstrate that a network of mismatched delicate analog elements can reliably extract the optical flow from a simple visual scene. This work shows how precise time of spike emission used as a computational basis, biological inspiration, and neuromorphic systems can be used together for solving specific tasks.

  5. Features, Events, and Processes in UZ Flow and Transport

    Energy Technology Data Exchange (ETDEWEB)

    J.E. Houseworth

    2001-04-10

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS M&O 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow and

  6. Features, Events, and Processes in UZ Flow and Transport

    International Nuclear Information System (INIS)

    Houseworth, J.E.

    2001-01-01

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS MandO 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow

  7. Prediction of deformations of steel plate by artificial neural network in forming process with induction heating

    International Nuclear Information System (INIS)

    Nguyen, Truong Thinh; Yang, Young Soo; Bae, Kang Yul; Choi, Sung Nam

    2009-01-01

    To control a heat source easily in the forming process of steel plate with heating, the electro-magnetic induction process has been used as a substitute of the flame heating process. However, only few studies have analyzed the deformation of a workpiece in the induction heating process by using a mathematical model. This is mainly due to the difficulty of modeling the heat flux from the inductor traveling on the conductive plate during the induction process. In this study, the heat flux distribution over a steel plate during the induction process is first analyzed by a numerical method with the assumption that the process is in a quasi-stationary state around the inductor and also that the heat flux itself greatly depends on the temperature of the workpiece. With the heat flux, heat flow and thermo-mechanical analyses on the plate to obtain deformations during the heating process are then performed with a commercial FEM program for 34 combinations of heating parameters. An artificial neural network is proposed to build a simplified relationship between deformations and heating parameters that can be easily utilized to predict deformations of steel plate with a wide range of heating parameters in the heating process. After its architecture is optimized, the artificial neural network is trained with the deformations obtained from the FEM analyses as outputs and the related heating parameters as inputs. The predicted outputs from the neural network are compared with those of the experiments and the numerical results. They are in good agreement

  8. Automated Detection of Obstructive Sleep Apnea Events from a Single-Lead Electrocardiogram Using a Convolutional Neural Network.

    Science.gov (United States)

    Urtnasan, Erdenebayar; Park, Jong-Uk; Joo, Eun-Yeon; Lee, Kyoung-Joung

    2018-04-23

    In this study, we propose a method for the automated detection of obstructive sleep apnea (OSA) from a single-lead electrocardiogram (ECG) using a convolutional neural network (CNN). A CNN model was designed with six optimized convolution layers including activation, pooling, and dropout layers. One-dimensional (1D) convolution, rectified linear units (ReLU), and max pooling were applied to the convolution, activation, and pooling layers, respectively. For training and evaluation of the CNN model, a single-lead ECG dataset was collected from 82 subjects with OSA and was divided into training (including data from 63 patients with 34,281 events) and testing (including data from 19 patients with 8571 events) datasets. Using this CNN model, a precision of 0.99%, a recall of 0.99%, and an F 1 -score of 0.99% were attained with the training dataset; these values were all 0.96% when the CNN was applied to the testing dataset. These results show that the proposed CNN model can be used to detect OSA accurately on the basis of a single-lead ECG. Ultimately, this CNN model may be used as a screening tool for those suspected to suffer from OSA.

  9. Balboa: A Framework for Event-Based Process Data Analysis

    National Research Council Canada - National Science Library

    Cook, Jonathan E; Wolf, Alexander L

    1998-01-01

    .... We have built Balboa as a bridge between the data collection and the analysis tools, facilitating the gathering and management of event data, and simplifying the construction of tools to analyze the data...

  10. Level of Processing Modulates the Neural Correlates of Emotional Memory Formation

    Science.gov (United States)

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2011-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on…

  11. Specific and Nonspecific Neural Activity during Selective Processing of Visual Representations in Working Memory

    Science.gov (United States)

    Oh, Hwamee; Leung, Hoi-Chung

    2010-01-01

    In this fMRI study, we investigated prefrontal cortex (PFC) and visual association regions during selective information processing. We recorded behavioral responses and neural activity during a delayed recognition task with a cue presented during the delay period. A specific cue ("Face" or "Scene") was used to indicate which one of the two…

  12. Is There Neural Evidence for an Evidence Accumulation Process in Memory Decisions?

    NARCIS (Netherlands)

    van Vugt, Marieke K; Beulen, Marijke A; Taatgen, Niels A

    2016-01-01

    Models of evidence accumulation have been very successful at describing human decision making behavior. Recent years have also seen the first reports of neural correlates of this accumulation process. However, these studies have mostly focused on perceptual decision making tasks, ignoring the role

  13. Neural reward processing is modulated by approach- and avoidance-related personality traits

    NARCIS (Netherlands)

    Simon, J.J.; Walther, S.; Fiebach, C.J.; Friederich, H.C.; Stippich, C.; Weisbrod, M.; Kaiser, S.

    2009-01-01

    The neural processing of reward can be differentiated into two sub-components with different functions, "wanting" (i.e., the expectation of a reward which includes appetitive and motivational components) and "liking" (i.e., the hedonic impact experienced during the receipt of a reward), involving

  14. Yucca Mountain Feature, Event, and Process (FEP) Analysis

    International Nuclear Information System (INIS)

    Freeze, G.

    2005-01-01

    A Total System Performance Assessment (TSPA) model was developed for the U.S. Department of Energy (DOE) Yucca Mountain Project (YMP) to help demonstrate compliance with applicable postclosure regulatory standards and support the License Application (LA). Two important precursors to the development of the TSPA model were (1) the identification and screening of features, events, and processes (FEPs) that might affect the Yucca Mountain disposal system (i.e., FEP analysis), and (2) the formation of scenarios from screened in (included) FEPs to be evaluated in the TSPA model (i.e., scenario development). YMP FEP analysis and scenario development followed a five-step process: (1) Identify a comprehensive list of FEPs potentially relevant to the long-term performance of the disposal system. (2) Screen the FEPs using specified criteria to identify those FEPs that should be included in the TSPA analysis and those that can be excluded from the analysis. (3) Form scenarios from the screened in (included) FEPs. (4) Screen the scenarios using the same criteria applied to the FEPs to identify any scenarios that can be excluded from the TSPA, as appropriate. (5) Specify the implementation of the scenarios in the computational modeling for the TSPA, and document the treatment of included FEPs. This paper describes the FEP analysis approach (Steps 1 and 2) for YMP, with a brief discussion of scenario formation (Step 3). Details of YMP scenario development (Steps 3 and 4) and TSPA modeling (Step 5) are beyond scope of this paper. The identification and screening of the YMP FEPs was an iterative process based on site-specific information, design, and regulations. The process was iterative in the sense that there were multiple evaluation and feedback steps (e.g., separate preliminary, interim, and final analyses). The initial YMP FEP list was compiled from an existing international list of FEPs from other radioactive waste disposal programs and was augmented by YMP site- and design

  15. Sadness is unique: Neural processing of emotions in speech prosody in musicians and non-musicians

    Directory of Open Access Journals (Sweden)

    Mona ePark

    2015-01-01

    Full Text Available Musical training has been shown to have positive effects on several aspects of speech processing, however, the effects of musical training on the neural processing of speech prosody conveying distinct emotions are yet to be better understood. We used functional magnetic resonance imaging (fMRI to investigate whether the neural responses to speech prosody conveying happiness, sadness, and fear differ between musicians and non-musicians. Differences in processing of emotional speech prosody between the two groups were only observed when sadness was expressed. Musicians showed increased activation in the middle frontal gyrus, the anterior medial prefrontal cortex, the posterior cingulate cortex and the retrosplenial cortex. Our results suggest an increased sensitivity of emotional processing in musicians with respect to sadness expressed in speech, possibly reflecting empathic processes.

  16. Neural signal processing for identifying failed fuel rods in nuclear reactors

    International Nuclear Information System (INIS)

    Seixas, Jose M. de; Soares Filho, William; Pereira, Wagner C.A.; Teles, Claudio C.B.

    2002-01-01

    Ultrasonic pulses were used for automatic detection of failed nuclear fuel rods. For experimental tests of the proposed method, an assembly prototype of 16 x 16 rods was built by using genuine rods but without fuel inside (just air). Some rods were partially filled with water to simulate cracked rods. Using neural signal processing on the received echoes of the emitted ultrasonic pulses, a detection efficiency of 97% was obtained. Neural detection is shown to outperform other classical discriminating methods and can also reveal important features of the signal structure of the received echoes. (author)

  17. Event-Triggered Asynchronous Guaranteed Cost Control for Markov Jump Discrete-Time Neural Networks With Distributed Delay and Channel Fading.

    Science.gov (United States)

    Yan, Huaicheng; Zhang, Hao; Yang, Fuwen; Zhan, Xisheng; Peng, Chen

    2017-08-18

    This paper is concerned with the guaranteed cost control problem for a class of Markov jump discrete-time neural networks (NNs) with event-triggered mechanism, asynchronous jumping, and fading channels. The Markov jump NNs are introduced to be close to reality, where the modes of the NNs and guaranteed cost controller are determined by two mutually independent Markov chains. The asynchronous phenomenon is considered, which increases the difficulty of designing required mode-dependent controller. The event-triggered mechanism is designed by comparing the relative measurement error with the last triggered state at the process of data transmission, which is used to eliminate dispensable transmission and reduce the networked energy consumption. In addition, the signal fading is considered for the effect of signal reflection and shadow in wireless networks, which is modeled by the novel Rice fading models. Some novel sufficient conditions are obtained to guarantee that the closed-loop system reaches a specified cost value under the designed jumping state feedback control law in terms of linear matrix inequalities. Finally, some simulation results are provided to illustrate the effectiveness of the proposed method.

  18. Neural analysis of bovine ovaries ultrasound images in the identification process of the corpus luteum

    Science.gov (United States)

    Górna, K.; Jaśkowski, B. M.; Okoń, P.; Czechlowski, M.; Koszela, K.; Zaborowicz, M.; Idziaszek, P.

    2017-07-01

    The aim of the paper is to shown the neural image analysis as a method useful for identifying the development stage of the domestic bovine corpus luteum on digital USG (UltraSonoGraphy) images. Corpus luteum (CL) is a transient endocrine gland that develops after ovulation from the follicle secretory cells. The aim of CL is the production of progesterone, which regulates many reproductive functions. In the presented studies, identification of the corpus luteum was carried out on the basis of information contained in ultrasound digital images. Development stage of the corpus luteum was considered in two aspects: just before and middle of domination phase and luteolysis and degradation phase. Prior to the classification, the ultrasound images have been processed using a GLCM (Gray Level Co-occurence Matrix). To generate a classification model, a Neural Networks module implemented in the STATISTICA was used. Five representative parameters describing the ultrasound image were used as learner variables. On the output of the artificial neural network was generated information about the development stage of the corpus luteum. Results of this study indicate that neural image analysis combined with GLCM texture analysis may be a useful tool for identifying the bovine corpus luteum in the context of its development phase. Best-generated artificial neural network model was the structure of MLP (Multi Layer Perceptron) 5:5-17-1:1.

  19. Hybrid digital signal processing and neural networks for automated diagnostics using NDE methods

    International Nuclear Information System (INIS)

    Upadhyaya, B.R.; Yan, W.

    1993-11-01

    The primary purpose of the current research was to develop an integrated approach by combining information compression methods and artificial neural networks for the monitoring of plant components using nondestructive examination data. Specifically, data from eddy current inspection of heat exchanger tubing were utilized to evaluate this technology. The focus of the research was to develop and test various data compression methods (for eddy current data) and the performance of different neural network paradigms for defect classification and defect parameter estimation. Feedforward, fully-connected neural networks, that use the back-propagation algorithm for network training, were implemented for defect classification and defect parameter estimation using a modular network architecture. A large eddy current tube inspection database was acquired from the Metals and Ceramics Division of ORNL. These data were used to study the performance of artificial neural networks for defect type classification and for estimating defect parameters. A PC-based data preprocessing and display program was also developed as part of an expert system for data management and decision making. The results of the analysis showed that for effective (low-error) defect classification and estimation of parameters, it is necessary to identify proper feature vectors using different data representation methods. The integration of data compression and artificial neural networks for information processing was established as an effective technique for automation of diagnostics using nondestructive examination methods

  20. Neural correlates of the processing of self-referent emotional information in bulimia nervosa.

    Science.gov (United States)

    Pringle, A; Ashworth, F; Harmer, C J; Norbury, R; Cooper, M J

    2011-10-01

    There is increasing interest in understanding the roles of distorted beliefs about the self, ostensibly unrelated to eating, weight and shape, in eating disorders (EDs), but little is known about their neural correlates. We therefore used functional magnetic resonance imaging to investigate the neural correlates of self-referent emotional processing in EDs. During the scan, unmedicated patients with bulimia nervosa (n=11) and healthy controls (n=16) responded to personality words previously found to be related to negative self beliefs in EDs and depression. Rating of the negative personality descriptors resulted in reduced activation in patients compared to controls in parietal, occipital and limbic areas including the amygdala. There was no evidence that reduced activity in patients was secondary to increased cognitive control. Different patterns of neural activation between patients and controls may be the result of either habituation to personally relevant negative self beliefs or of emotional blunting in patients. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Fault detection and diagnosis for complex multivariable processes using neural networks

    International Nuclear Information System (INIS)

    Weerasinghe, M.

    1998-06-01

    Development of a reliable fault diagnosis method for large-scale industrial plants is laborious and often difficult to achieve due to the complexity of the targeted systems. The main objective of this thesis is to investigate the application of neural networks to the diagnosis of non-catastrophic faults in an industrial nuclear fuel processing plant. The proposed methods were initially developed by application to a simulated chemical process prior to further validation on real industrial data. The diagnosis of faults at a single operating point is first investigated. Statistical data conditioning methods of data scaling and principal component analysis are investigated to facilitate fault classification and reduce the complexity of neural networks. Successful fault diagnosis was achieved with significantly smaller networks than using all process variables as network inputs. Industrial processes often manufacture at various operating points, but demonstrated applications of neural networks for fault diagnosis usually only consider a single (primary) operating point. Developing a standard neural network scheme for fault diagnosis at all operating points would be usually impractical due to the unavailability of suitable training data for less frequently used (secondary) operating points. To overcome this problem, the application of a single neural network for the diagnosis of faults operating at different points is investigated. The data conditioning followed the same techniques as used for the fault diagnosis of a single operating point. The results showed that a single neural network could be successfully used to diagnose faults at operating points other than that it is trained for, and the data conditioning significantly improved the classification. Artificial neural networks have been shown to be an effective tool for process fault diagnosis. However, a main criticism is that details of the procedures taken to reach the fault diagnosis decisions are embedded in

  2. Neural processing associated with cognitive and affective Theory of Mind in adolescents and adults.

    Science.gov (United States)

    Sebastian, Catherine L; Fontaine, Nathalie M G; Bird, Geoffrey; Blakemore, Sarah-Jayne; Brito, Stephane A De; McCrory, Eamon J P; Viding, Essi

    2012-01-01

    Theory of Mind (ToM) is the ability to attribute thoughts, intentions and beliefs to others. This involves component processes, including cognitive perspective taking (cognitive ToM) and understanding emotions (affective ToM). This study assessed the distinction and overlap of neural processes involved in these respective components, and also investigated their development between adolescence and adulthood. While data suggest that ToM develops between adolescence and adulthood, these populations have not been compared on cognitive and affective ToM domains. Using fMRI with 15 adolescent (aged 11-16 years) and 15 adult (aged 24-40 years) males, we assessed neural responses during cartoon vignettes requiring cognitive ToM, affective ToM or physical causality comprehension (control). An additional aim was to explore relationships between fMRI data and self-reported empathy. Both cognitive and affective ToM conditions were associated with neural responses in the classic ToM network across both groups, although only affective ToM recruited medial/ventromedial PFC (mPFC/vmPFC). Adolescents additionally activated vmPFC more than did adults during affective ToM. The specificity of the mPFC/vmPFC response during affective ToM supports evidence from lesion studies suggesting that vmPFC may integrate affective information during ToM. Furthermore, the differential neural response in vmPFC between adult and adolescent groups indicates developmental changes in affective ToM processing.

  3. Long-Term Alterations in Neural and Endocrine Processes Induced by Motherhood

    Science.gov (United States)

    Bridges, Robert S.

    2015-01-01

    The reproductive experience of pregnancy, lactation and motherhood can significantly remodel the female’s biological state, affecting endocrine, neuroendocrine, neural, and immunological processes. The brain, pituitary gland, liver, thymus, and mammary tissue are among the structures that are modified by reproductive experience. The present review that focuses on rodent research, but also includes pertinent studies in sheep and other species, identifies specific changes in these processes brought about by the biological states of pregnancy, parturition, and lactation and how the components of reproductive experience contribute to the remodeling of the maternal brain and organ systems. Findings indicate that prior parity alters key circulating hormone levels and neural receptor gene expression. Moreover, reproductive experience results in modifications in neural processes and glial support. The possible role of pregnancy-induced neurogenesis is considered in the context of neuroplasticity and behavior, and the effects of reproductive experience on maternal memory, i.e. the retention of maternal behavior, together with anxiety and learning are presented. Together, these sets of findings support the concept that the neural and biological state of the adult female is significantly and dramatically altered on a long-term basis by the experiences of parity and motherhood. Remodeling of the maternal brain and other biological systems is posited to help facilitate adaptations to environmental/ecological challenges as the female raises young and ages. PMID:26388065

  4. Effect of short-term escitalopram treatment on neural activation during emotional processing.

    Science.gov (United States)

    Maron, Eduard; Wall, Matt; Norbury, Ray; Godlewska, Beata; Terbeck, Sylvia; Cowen, Philip; Matthews, Paul; Nutt, David J

    2016-01-01

    Recent functional magnetic resonance (fMRI) imaging studies have revealed that subchronic medication with escitalopram leads to significant reduction in both amygdala and medial frontal gyrus reactivity during processing of emotional faces, suggesting that escitalopram may have a distinguishable modulatory effect on neural activation as compared with other serotonin-selective antidepressants. In this fMRI study we aimed to explore whether short-term medication with escitalopram in healthy volunteers is associated with reduced neural response to emotional processing, and whether this effect is predicted by drug plasma concentration. The neural response to fearful and happy faces was measured before and on day 7 of treatment with escitalopram (10mg) in 15 healthy volunteers and compared with those in a control unmedicated group (n=14). Significantly reduced activation to fearful, but not to happy facial expressions was observed in the bilateral amygdala, cingulate and right medial frontal gyrus following escitalopram medication. This effect was not correlated with plasma drug concentration. In accordance with previous data, we showed that escitalopram exerts its rapid direct effect on emotional processing via attenuation of neural activation in pathways involving medial frontal gyrus and amygdala, an effect that seems to be distinguishable from that of other SSRIs. © The Author(s) 2015.

  5. Neural correlates of audiovisual speech processing in a second language.

    Science.gov (United States)

    Barrós-Loscertales, Alfonso; Ventura-Campos, Noelia; Visser, Maya; Alsius, Agnès; Pallier, Christophe; Avila Rivera, César; Soto-Faraco, Salvador

    2013-09-01

    Neuroimaging studies of audiovisual speech processing have exclusively addressed listeners' native language (L1). Yet, several behavioural studies now show that AV processing plays an important role in non-native (L2) speech perception. The current fMRI study measured brain activity during auditory, visual, audiovisual congruent and audiovisual incongruent utterances in L1 and L2. BOLD responses to congruent AV speech in the pSTS were stronger than in either unimodal condition in both L1 and L2. Yet no differences in AV processing were expressed according to the language background in this area. Instead, the regions in the bilateral occipital lobe had a stronger congruency effect on the BOLD response (congruent higher than incongruent) in L2 as compared to L1. According to these results, language background differences are predominantly expressed in these unimodal regions, whereas the pSTS is similarly involved in AV integration regardless of language dominance. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Evaluating and predicting overall process risk using event logs

    NARCIS (Netherlands)

    Pika, A.; Van Der Aalst, W.M.P.; Wynn, M.T.; Fidge, C.J.; Ter Hofstede, A.H.M.

    2016-01-01

    Companies standardise and automate their business processes in order to improve process efficiency and minimise operational risks. However, it is difficult to eliminate all process risks during the process design stage due to the fact that processes often run in complex and changeable environments

  7. Artificial neural networks in variable process control: application in particleboard manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, L. G.; Garcia Fernandez, F.; Palacios, P. de; Conde, M.

    2009-07-01

    Artificial neural networks are an efficient tool for modelling production control processes using data from the actual production as well as simulated or design of experiments data. In this study two artificial neural networks were combined with the control process charts and it was checked whether the data obtained by the networks were valid for variable process control in particleboard manufacture. The networks made it possible to obtain the mean and standard deviation of the internal bond strength of the particleboard within acceptable margins using known data of thickness, density, moisture content, swelling and absorption. The networks obtained met the acceptance criteria for test values from non-standard test methods, as well as the criteria for using these values in statistical process control. (Author) 47 refs.

  8. Financial Incentives Differentially Regulate Neural Processing of Positive and Negative Emotions during Value-Based Decision-Making

    Directory of Open Access Journals (Sweden)

    Anne M. Farrell

    2018-02-01

    Full Text Available Emotional and economic incentives often conflict in decision environments. To make economically desirable decisions then, deliberative neural processes must be engaged to regulate automatic emotional reactions. In this functional magnetic resonance imaging (fMRI study, we evaluated how fixed wage (FW incentives and performance-based (PB financial incentives, in which pay is proportional to outcome, differentially regulate positive and negative emotional reactions to hypothetical colleagues that conflicted with the economics of available alternatives. Neural activity from FW to PB incentive contexts decreased for positive emotional stimuli but increased for negative stimuli in middle temporal, insula, and medial prefrontal regions. In addition, PB incentives further induced greater responses to negative than positive emotional decisions in the frontal and anterior cingulate regions involved in emotion regulation. Greater response to positive than negative emotional features in these regions also correlated with lower frequencies of economically desirable choices. Our findings suggest that whereas positive emotion regulation involves a reduction of responses in valence representation regions, negative emotion regulation additionally engages brain regions for deliberative processing and signaling of incongruous events.

  9. Financial Incentives Differentially Regulate Neural Processing of Positive and Negative Emotions during Value-Based Decision-Making.

    Science.gov (United States)

    Farrell, Anne M; Goh, Joshua O S; White, Brian J

    2018-01-01

    Emotional and economic incentives often conflict in decision environments. To make economically desirable decisions then, deliberative neural processes must be engaged to regulate automatic emotional reactions. In this functional magnetic resonance imaging (fMRI) study, we evaluated how fixed wage (FW) incentives and performance-based (PB) financial incentives, in which pay is proportional to outcome, differentially regulate positive and negative emotional reactions to hypothetical colleagues that conflicted with the economics of available alternatives. Neural activity from FW to PB incentive contexts decreased for positive emotional stimuli but increased for negative stimuli in middle temporal, insula, and medial prefrontal regions. In addition, PB incentives further induced greater responses to negative than positive emotional decisions in the frontal and anterior cingulate regions involved in emotion regulation. Greater response to positive than negative emotional features in these regions also correlated with lower frequencies of economically desirable choices. Our findings suggest that whereas positive emotion regulation involves a reduction of responses in valence representation regions, negative emotion regulation additionally engages brain regions for deliberative processing and signaling of incongruous events.

  10. Why Rules Matter in Complex Event Processing...and Vice Versa

    Science.gov (United States)

    Vincent, Paul

    Many commercial and research CEP solutions are moving beyond simple stream query languages to more complete definitions of "process" and thence to "decisions" and "actions". And as capabilities increase in event processing capabilities, there is an increasing realization that the humble "rule" is as relevant to the event cloud as it is to specific services. Less obvious is how much event processing has to offer the process and rule execution and management technologies. Does event processing change the way we should manage businesses, processes and services, together with their embedded (and hopefully managed) rulesets?

  11. Neural processing of musical meter in musicians and non-musicians.

    Science.gov (United States)

    Zhao, T Christina; Lam, H T Gloria; Sohi, Harkirat; Kuhl, Patricia K

    2017-11-01

    Musical sounds, along with speech, are the most prominent sounds in our daily lives. They are highly dynamic, yet well structured in the temporal domain in a hierarchical manner. The temporal structures enhance the predictability of musical sounds. Western music provides an excellent example: while time intervals between musical notes are highly variable, underlying beats can be realized. The beat-level temporal structure provides a sense of regular pulses. Beats can be further organized into units, giving the percept of alternating strong and weak beats (i.e. metrical structure or meter). Examining neural processing at the meter level offers a unique opportunity to understand how the human brain extracts temporal patterns, predicts future stimuli and optimizes neural resources for processing. The present study addresses two important questions regarding meter processing, using the mismatch negativity (MMN) obtained with electroencephalography (EEG): 1) how tempo (fast vs. slow) and type of metrical structure (duple: two beats per unit vs. triple: three beats per unit) affect the neural processing of metrical structure in non-musically trained individuals, and 2) how early music training modulates the neural processing of metrical structure. Metrical structures were established by patterns of consecutive strong and weak tones (Standard) with occasional violations that disrupted and reset the structure (Deviant). Twenty non-musicians listened passively to these tones while their neural activities were recorded. MMN indexed the neural sensitivity to the meter violations. Results suggested that MMNs were larger for fast tempo and for triple meter conditions. Further, 20 musically trained individuals were tested using the same methods and the results were compared to the non-musicians. While tempo and meter type similarly influenced MMNs in both groups, musicians overall exhibited significantly reduced MMNs, compared to their non-musician counterparts. Further analyses

  12. PROCESSING THE INFORMATION CONTENT ON THE BASIS OF FUZZY NEURAL MODEL OF DECISION MAKING

    Directory of Open Access Journals (Sweden)

    Nina V. Komleva

    2013-01-01

    Full Text Available The article is devoted to the issues of mathematical modeling of the decision-making process of information content processing based on the fuzzy neural network TSK. Integral rating assessment of the content, which is necessary for taking a decision about its further usage, is made depended on varying characteristics. Mechanism for building individual trajectory and forming individual competence is provided to make the intellectual content search.

  13. Emotionally anesthetized: media violence induces neural changes during emotional face processing

    OpenAIRE

    Stockdale, Laura A.; Morrison, Robert G.; Kmiecik, Matthew J.; Garbarino, James; Silton, Rebecca L.

    2015-01-01

    Media violence exposure causes increased aggression and decreased prosocial behavior, suggesting that media violence desensitizes people to the emotional experience of others. Alterations in emotional face processing following exposure to media violence may result in desensitization to others’ emotional states. This study used scalp electroencephalography methods to examine the link between exposure to violence and neural changes associated with emotional face processing. Twenty-five particip...

  14. Level of processing modulates the neural correlates of emotional memory formation

    OpenAIRE

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2010-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study employed a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under ...

  15. Control System Design for Cylindrical Tank Process Using Neural Model Predictive Control Technique

    Directory of Open Access Journals (Sweden)

    M. Sridevi

    2010-10-01

    Full Text Available Chemical manufacturing and process industry requires innovative technologies for process identification. This paper deals with model identification and control of cylindrical process. Model identification of the process was done using ARMAX technique. A neural model predictive controller was designed for the identified model. The performance of the controllers was evaluated using MATLAB software. The performance of NMPC controller was compared with Smith Predictor controller and IMC controller based on rise time, settling time, overshoot and ISE and it was found that the NMPC controller is better suited for this process.

  16. Self-Referential Processing in Adolescents: Stability of Behavioral and Event-Related Potential Markers

    Science.gov (United States)

    Auerbach, Randy P.; Bondy, Erin; Stanton, Colin H.; Webb, Christian A.; Shankman, Stewart A.; Pizzagalli, Diego A.

    2016-01-01

    The self-referential encoding task (SRET)—an implicit measure of self-schema—has been used widely to probe cognitive biases associated with depression, including among adolescents. However, research testing the stability of behavioral and electrocortical effects is sparse. Therefore, the current study sought to evaluate the stability of behavioral markers and event-related potentials (ERP) elicited from the SRET over time in healthy, female adolescents (n = 31). At baseline, participants were administered a diagnostic interview and a self-report measure of depression severity. In addition, they completed the SRET while 128-channel event-related potential (ERP) data were recorded to examine early (P1) and late (late positive potential [LPP]) ERPs. Three months later, participants were re-administered the depression self-report measure and the SRET in conjunction with ERPs. Results revealed that healthy adolescents endorsed, recalled, and recognized more positive and fewer negative words at each assessment, and these effects were stable over time (rs = 0.44–0.83). Similarly, they reported a faster reaction time when endorsing self-relevant positive words, as opposed to negative words, at both the initial and follow-up assessment (r = 0.82). Second, ERP responses, specifically potentiated P1 and late LPP positivity to positive versus negative words, were consistent over time (rs = 0.56–0.83), and the internal reliability of ERPs were robust at each time point (rs = 0.52–0.80). As a whole, these medium-to-large effects suggest that the SRET is a reliable behavioral and neural probe of self-referential processing. PMID:27302282

  17. Disrupted neural processing of emotional faces in psychopathy.

    Science.gov (United States)

    Contreras-Rodríguez, Oren; Pujol, Jesus; Batalla, Iolanda; Harrison, Ben J; Bosque, Javier; Ibern-Regàs, Immaculada; Hernández-Ribas, Rosa; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Pifarré, Josep; Menchón, José M; Cardoner, Narcís

    2014-04-01

    Psychopaths show a reduced ability to recognize emotion facial expressions, which may disturb the interpersonal relationship development and successful social adaptation. Behavioral hypotheses point toward an association between emotion recognition deficits in psychopathy and amygdala dysfunction. Our prediction was that amygdala dysfunction would combine deficient activation with disturbances in functional connectivity with cortical regions of the face-processing network. Twenty-two psychopaths and 22 control subjects were assessed and functional magnetic resonance maps were generated to identify both brain activation and task-induced functional connectivity using psychophysiological interaction analysis during an emotional face-matching task. Results showed significant amygdala activation in control subjects only, but differences between study groups did not reach statistical significance. In contrast, psychopaths showed significantly increased activation in visual and prefrontal areas, with this latest activation being associated with psychopaths' affective-interpersonal disturbances. Psychophysiological interaction analyses revealed a reciprocal reduction in functional connectivity between the left amygdala and visual and prefrontal cortices. Our results suggest that emotional stimulation may evoke a relevant cortical response in psychopaths, but a disruption in the processing of emotional faces exists involving the reciprocal functional interaction between the amygdala and neocortex, consistent with the notion of a failure to integrate emotion into cognition in psychopathic individuals.

  18. Neural substrate of the late positive potential in emotional processing

    Science.gov (United States)

    Liu, Yuelu; Huang, Haiqing; McGinnis, Menton; Keil, Andreas; Ding, Mingzhou

    2012-01-01

    The late positive potential (LPP) is a reliable electrophysiological index of emotional perception in humans. Despite years of research the brain structures that contribute to the generation and modulation of LPP are not well understood. Recording EEG and fMRI simultaneously, and applying a recently proposed single-trial ERP analysis method, we addressed the problem by correlating the single-trial LPP amplitude evoked by affective pictures with the blood-oxygen-level-dependent (BOLD) activity. Three results were found. First, relative to neutral pictures, pleasant and unpleasant pictures elicited enhanced LPP, as well as heightened BOLD activity in both visual cortices and emotion-processing structures such as amygdala and prefrontal cortex, consistent with previous findings. Second, the LPP amplitude across three picture categories was significantly correlated with BOLD activity in visual cortices, temporal cortices, amygdala, orbitofrontal cortex, and insula. Third, within each picture category, LPP-BOLD coupling revealed category-specific differences. For pleasant pictures, the LPP amplitude was coupled with BOLD in occipitotemporal junction, medial prefrontal cortex, amygdala, and precuneus, whereas for unpleasant pictures, significant LPP-BOLD correlation was observed in ventrolateral prefrontal cortex, insula, and posterior cingulate cortex. These results suggest that LPP is generated and modulated by an extensive brain network comprised of both cortical and subcortical structures associated with visual and emotional processing and the degree of contribution by each of these structures to the LPP modulation is valence-specific. PMID:23077042

  19. Young Adults with Autism Spectrum Disorder Show Early Atypical Neural Activity during Emotional Face Processing

    Directory of Open Access Journals (Sweden)

    Rachel C. Leung

    2018-02-01

    Full Text Available Social cognition is impaired in autism spectrum disorder (ASD. The ability to perceive and interpret affect is integral to successful social functioning and has an extended developmental course. However, the neural mechanisms underlying emotional face processing in ASD are unclear. Using magnetoencephalography (MEG, the present study explored neural activation during implicit emotional face processing in young adults with and without ASD. Twenty-six young adults with ASD and 26 healthy controls were recruited. Participants indicated the location of a scrambled pattern (target that was presented alongside a happy or angry face. Emotion-related activation sources for each emotion were estimated using the Empirical Bayes Beamformer (pcorr ≤ 0.001 in Statistical Parametric Mapping 12 (SPM12. Emotional faces elicited elevated fusiform, amygdala and anterior insula and reduced anterior cingulate cortex (ACC activity in adults with ASD relative to controls. Within group comparisons revealed that angry vs. happy faces elicited distinct neural activity in typically developing adults; there was no distinction in young adults with ASD. Our data suggest difficulties in affect processing in ASD reflect atypical recruitment of traditional emotional processing areas. These early differences may contribute to difficulties in deriving social reward from faces, ascribing salience to faces, and an immature threat processing system, which collectively could result in deficits in emotional face processing.

  20. Tuning to the significant: neural and genetic processes underlying affective enhancement of visual perception and memory.

    Science.gov (United States)

    Markovic, Jelena; Anderson, Adam K; Todd, Rebecca M

    2014-02-01

    Emotionally arousing events reach awareness more easily and evoke greater visual cortex activation than more mundane events. Recent studies have shown that they are also perceived more vividly and that emotionally enhanced perceptual vividness predicts memory vividness. We propose that affect-biased attention (ABA) - selective attention to emotionally salient events - is an endogenous attentional system tuned by an individual's history of reward and punishment. We present the Biased Attention via Norepinephrine (BANE) model, which unifies genetic, neuromodulatory, neural and behavioural evidence to account for ABA. We review evidence supporting BANE's proposal that a key mechanism of ABA is locus coeruleus-norepinephrine (LC-NE) activity, which interacts with activity in hubs of affective salience networks to modulate visual cortex activation and heighten the subjective vividness of emotionally salient stimuli. We further review literature on biased competition and look at initial evidence for its potential as a neural mechanism behind ABA. We also review evidence supporting the role of the LC-NE system as a driving force of ABA. Finally, we review individual differences in ABA and memory including differences in sensitivity to stimulus category and valence. We focus on differences arising from a variant of the ADRA2b gene, which codes for the alpha2b adrenoreceptor as a way of investigating influences of NE availability on ABA in humans. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Modulated neural processing of Western harmony in folk musicians.

    Science.gov (United States)

    Brattico, Elvira; Tupala, Tiina; Glerean, Enrico; Tervaniemi, Mari

    2013-07-01

    A chord deviating from the conventions of Western tonal music elicits an early right anterior negativity (ERAN) in inferofrontal brain regions. Here, we tested whether the ERAN is modulated by expertise in more than one music culture, as typical of folk musicians. Finnish folk musicians and nonmusicians participated in electroencephalography recordings. The cadences consisted of seven chords. In incongruous cadences, the third, fifth, or seventh chord was a Neapolitan. The ERAN to the Neapolitans was enhanced in folk musicians compared to nonmusicians. Folk musicians showed an enhanced P3a for the ending Neapolitan. The Neapolitan at the fifth position was perceived differently and elicited a late enhanced ERAN in folk musicians. Hence, expertise in more than one music culture seems to modify chord processing by enhancing the ERAN to ambivalent chords and the P3a to incongruous chords, and by altering their perceptual attributes. Copyright © 2013 Society for Psychophysiological Research.

  2. Neural correlates of affect processing and aggression in methamphetamine dependence.

    Science.gov (United States)

    Payer, Doris E; Lieberman, Matthew D; London, Edythe D

    2011-03-01

    Methamphetamine abuse is associated with high rates of aggression but few studies have addressed the contributing neurobiological factors. To quantify aggression, investigate function in the amygdala and prefrontal cortex, and assess relationships between brain function and behavior in methamphetamine-dependent individuals. In a case-control study, aggression and brain activation were compared between methamphetamine-dependent and control participants. Participants were recruited from the general community to an academic research center. Thirty-nine methamphetamine-dependent volunteers (16 women) who were abstinent for 7 to 10 days and 37 drug-free control volunteers (18 women) participated in the study; subsets completed self-report and behavioral measures. Functional magnetic resonance imaging (fMRI) was performed on 25 methamphetamine-dependent and 23 control participants. We measured self-reported and perpetrated aggression and self-reported alexithymia. Brain activation was assessed using fMRI during visual processing of facial affect (affect matching) and symbolic processing (affect labeling), the latter representing an incidental form of emotion regulation. Methamphetamine-dependent participants self-reported more aggression and alexithymia than control participants and escalated perpetrated aggression more following provocation. Alexithymia scores correlated with measures of aggression. During affect matching, fMRI showed no differences between groups in amygdala activation but found lower activation in methamphetamine-dependent than control participants in the bilateral ventral inferior frontal gyrus. During affect labeling, participants recruited the dorsal inferior frontal gyrus and exhibited decreased amygdala activity, consistent with successful emotion regulation; there was no group difference in this effect. The magnitude of decrease in amygdala activity during affect labeling correlated inversely with self-reported aggression in control participants

  3. Models of neural dynamics in brain information processing - the developments of 'the decade'

    Energy Technology Data Exchange (ETDEWEB)

    Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B [Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation); Ivanitskii, Genrikh R [Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation)

    2002-10-31

    Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)

  4. What Can Psychiatric Disorders Tell Us about Neural Processing of the Self?

    Science.gov (United States)

    Zhao, Weihua; Luo, Lizhu; Li, Qin; Kendrick, Keith M

    2013-01-01

    Many psychiatric disorders are associated with abnormal self-processing. While these disorders also have a wide-range of complex, and often heterogeneous sets of symptoms involving different cognitive, emotional, and motor domains, an impaired sense of self can contribute to many of these. Research investigating self-processing in healthy subjects has facilitated identification of changes in specific neural circuits which may cause altered self-processing in psychiatric disorders. While there is evidence for altered self-processing in many psychiatric disorders, here we will focus on four of the most studied ones, schizophrenia, autism spectrum disorder (ASD), major depression, and borderline personality disorder (BPD). We review evidence for dysfunction in two different neural systems implicated in self-processing, namely the cortical midline system (CMS) and the mirror neuron system (MNS), as well as contributions from altered inter-hemispheric connectivity (IHC). We conclude that while abnormalities in frontal-parietal activity and/or connectivity in the CMS are common to all four disorders there is more disruption of integration between frontal and parietal regions resulting in a shift toward parietal control in schizophrenia and ASD which may contribute to the greater severity and delusional aspects of their symptoms. Abnormalities in the MNS and in IHC are also particularly evident in schizophrenia and ASD and may lead to disturbances in sense of agency and the physical self in these two disorders. A better future understanding of how changes in the neural systems sub-serving self-processing contribute to different aspects of symptom abnormality in psychiatric disorders will require that more studies carry out detailed individual assessments of altered self-processing in conjunction with measurements of neural functioning.

  5. Focused process improvement events: sustainability of impact on process and performance in an academic radiology department.

    Science.gov (United States)

    Rosenkrantz, Andrew B; Lawson, Kirk; Ally, Rosina; Chen, David; Donno, Frank; Rittberg, Steven; Rodriguez, Joan; Recht, Michael P

    2015-01-01

    To evaluate sustainability of impact of rapid, focused process improvement (PI) events on process and performance within an academic radiology department. Our department conducted PI during 2011 and 2012 in CT, MRI, ultrasound, breast imaging, and research billing. PI entailed participation by all stakeholders, facilitation by the department chair, collection of baseline data, meetings during several weeks, definition of performance metrics, creation of an improvement plan, and prompt implementation. We explore common themes among PI events regarding initial impact and durability of changes. We also assess performance in each area pre-PI, immediately post-PI, and at the time of the current study. All PI events achieved an immediate improvement in performance metrics, often entailing both examination volumes and on-time performance. IT-based solutions, process standardization, and redefinition of staff responsibilities were often central in these changes, and participants consistently expressed improved internal leadership and problem-solving ability. Major environmental changes commonly occurred after PI, including a natural disaster with equipment loss, a change in location or services offered, and new enterprise-wide electronic medical record system incorporating new billing and radiology informatics systems, requiring flexibility in the PI implementation plan. Only one PI team conducted regular post-PI follow-up meetings. Sustained improvement was frequently, but not universally, observed: in the long-term following initial PI, measures of examination volume showed continued progressive improvements, whereas measures of operational efficiency remained stable or occasionally declined. Focused PI is generally effective in achieving performance improvement, although a changing environment influences the sustainability of impact. Thus, continued process evaluation and ongoing workflow modifications are warranted. Copyright © 2015 American College of Radiology

  6. Neural processing of speech in children is influenced by bilingual experience

    Science.gov (United States)

    Krizman, Jennifer; Slater, Jessica; Skoe, Erika; Marian, Viorica; Kraus, Nina

    2014-01-01

    Language experience fine-tunes how the auditory system processes sound. For example, bilinguals, relative to monolinguals, have more robust evoked responses to speech that manifest as stronger neural encoding of the fundamental frequency (F0) and greater across-trial consistency. However, it is unknown whether such enhancements increase with increasing second language experience. We predict that F0 amplitude and neural consistency scale with dual-language experience during childhood, such that more years of bilingual experience leads to more robust F0 encoding and greater neural consistency. To test this hypothesis, we recorded auditory brainstem responses to the synthesized syllables ‘ba’ and ‘ga’ in two groups of bilingual children who were matched for age at test (8.4+/−0.67 years) but differed in their age of second language acquisition. One group learned English and Spanish simultaneously from birth (n=13), while the second group learned the two languages sequentially (n=15), spending on average their first four years as monolingual Spanish speakers. We find that simultaneous bilinguals have a larger F0 response to ‘ba’ and ‘ga’ and a more consistent response to ‘ba’ compared to sequential bilinguals. We also demonstrate that these neural enhancements positively relate with years of bilingual experience. These findings support the notion that bilingualism enhances subcortical auditory processing. PMID:25445377

  7. Using the artificial neural network to control the steam turbine heating process

    International Nuclear Information System (INIS)

    Nowak, Grzegorz; Rusin, Andrzej

    2016-01-01

    Highlights: • Inverse Artificial Neural Network has a potential to control the start-up process of a steam turbine. • Two serial neural networks made it possible to model the rotor stress based of steam parameters. • An ANN with feedback enables transient stress modelling with good accuracy. - Abstract: Due to the significant share of renewable energy sources (RES) – wind farms in particular – in the power sector of many countries, power generation systems become sensitive to variable weather conditions. Under unfavourable changes in weather, ensuring required energy supplies involves hasty start-ups of conventional steam power units whose operation should be characterized by higher and higher flexibility. Controlling the process of power engineering machinery operation requires fast predictive models that will make it possible to analyse many parallel scenarios and select the most favourable one. This approach is employed by the algorithm for the inverse neural network control presented in this paper. Based on the current thermal state of the turbine casing, the algorithm controls the steam temperature at the turbine inlet to keep both the start-up rate and the safety of the machine at the allowable level. The method used herein is based on two artificial neural networks (ANN) working in series.

  8. The neural basis of analogical reasoning: an event-related potential study.

    Science.gov (United States)

    Qiu, Jiang; Li, Hong; Chen, Antao; Zhang, Qinglin

    2008-10-01

    The spatiotemporal analysis of brain activation during the execution of easy analogy (EA) and difficult analogy (DA) tasks was investigated using high-density event-related brain potentials (ERPs). Results showed that reasoning tasks (schema induction) elicited a more negative ERP deflection (N500-1000) than did the baseline task (BS) between 500 and 1000 ms. Dipole source analysis of difference waves (EA-BS and DA-BS) indicated that the negative components were both localized near the left thalamus, possibly associated with the retrieval of alphabetical information. Furthermore, DA elicited a more positive ERP component (P600-1000) than did EA in the same time window. Two generators of P600-1000 were located in the medial prefrontal cortex (BA10) and the left frontal cortex (BA6) which was possibly involved in integrating information in schema abstraction. In the stage of analogy mapping, a greater negativity (N400-600) in the reasoning tasks as compared to BS was found over fronto-central scalp regions. A generator of this effect was located in the left fusiform gyrus and was possibly related to associative memory and activation of schema. Then, a greater negativity in the reasoning tasks, in comparison to BS task, developed between 900-1200 ms (LNC1) and 2000-2500 ms (LNC2). Dipole source analysis (EA-BS) localized the generator of LNC1 in the left prefrontal cortex (BA 10) which was possibly related to mapping the schema to the target problem, and the generator of LNC2 in the left prefrontal cortex (BA 9) which was possibly related to deciding whether a conclusion correctly follows from the schema.

  9. Diminished Neural Processing of Aversive and Rewarding Stimuli During Selective Serotonin Reuptake Inhibitor Treatment

    Science.gov (United States)

    McCabe, Ciara; Mishor, Zevic; Cowen, Philip J.; Harmer, Catherine J.

    2010-01-01

    Background Selective serotonin reuptake inhibitors (SSRIs) are popular medications for anxiety and depression, but their effectiveness, particularly in patients with prominent symptoms of loss of motivation and pleasure, has been questioned. There are few studies of the effect of SSRIs on neural reward mechanisms in humans. Methods We studied 45 healthy participants who were randomly allocated to receive the SSRI citalopram, the noradrenaline reuptake inhibitor reboxetine, or placebo for 7 days in a double-blind, parallel group design. We used functional magnetic resonance imaging to measure the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (sight of moldy strawberries and/or an unpleasant strawberry taste) on the final day of drug treatment. Results Citalopram reduced activation to the chocolate stimuli in the ventral striatum and the ventral medial/orbitofrontal cortex. In contrast, reboxetine did not suppress ventral striatal activity and in fact increased neural responses within medial orbitofrontal cortex to reward. Citalopram also decreased neural responses to the aversive stimuli conditions in key “punishment” areas such as the lateral orbitofrontal cortex. Reboxetine produced a similar, although weaker effect. Conclusions Our findings are the first to show that treatment with SSRIs can diminish the neural processing of both rewarding and aversive stimuli. The ability of SSRIs to decrease neural responses to reward might underlie the questioned efficacy of SSRIs in depressive conditions characterized by decreased motivation and anhedonia and could also account for the experience of emotional blunting described by some patients during SSRI treatment. PMID:20034615

  10. Integrating natural language processing expertise with patient safety event review committees to improve the analysis of medication events.

    Science.gov (United States)

    Fong, Allan; Harriott, Nicole; Walters, Donna M; Foley, Hanan; Morrissey, Richard; Ratwani, Raj R

    2017-08-01

    Many healthcare providers have implemented patient safety event reporting systems to better understand and improve patient safety. Reviewing and analyzing these reports is often time consuming and resource intensive because of both the quantity of reports and length of free-text descriptions in the reports. Natural language processing (NLP) experts collaborated with clinical experts on a patient safety committee to assist in the identification and analysis of medication related patient safety events. Different NLP algorithmic approaches were developed to identify four types of medication related patient safety events and the models were compared. Well performing NLP models were generated to categorize medication related events into pharmacy delivery delays, dispensing errors, Pyxis discrepancies, and prescriber errors with receiver operating characteristic areas under the curve of 0.96, 0.87, 0.96, and 0.81 respectively. We also found that modeling the brief without the resolution text generally improved model performance. These models were integrated into a dashboard visualization to support the patient safety committee review process. We demonstrate the capabilities of various NLP models and the use of two text inclusion strategies at categorizing medication related patient safety events. The NLP models and visualization could be used to improve the efficiency of patient safety event data review and analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Suprathreshold stochastic resonance in neural processing tuned by correlation.

    Science.gov (United States)

    Durrant, Simon; Kang, Yanmei; Stocks, Nigel; Feng, Jianfeng

    2011-07-01

    Suprathreshold stochastic resonance (SSR) is examined in the context of integrate-and-fire neurons, with an emphasis on the role of correlation in the neuronal firing. We employed a model based on a network of spiking neurons which received synaptic inputs modeled by Poisson processes stimulated by a stepped input signal. The smoothed ensemble firing rate provided an output signal, and the mutual information between this signal and the input was calculated for networks with different noise levels and different numbers of neurons. It was found that an SSR effect was present in this context. We then examined a more biophysically plausible scenario where the noise was not controlled directly, but instead was tuned by the correlation between the inputs. The SSR effect remained present in this scenario with nonzero noise providing improved information transmission, and it was found that negative correlation between the inputs was optimal. Finally, an examination of SSR in the context of this model revealed its connection with more traditional stochastic resonance and showed a trade-off between supratheshold and subthreshold components. We discuss these results in the context of existing empirical evidence concerning correlations in neuronal firing.

  12. Beyond the evoked/intrinsic neural process dichotomy

    Directory of Open Access Journals (Sweden)

    Taylor Bolt

    2018-03-01

    Full Text Available Contemporary functional neuroimaging research has increasingly focused on characterization of intrinsic or “spontaneous” brain activity. Analysis of intrinsic activity is often contrasted with analysis of task-evoked activity that has traditionally been the focus of cognitive neuroscience. But does this evoked/intrinsic dichotomy adequately characterize human brain function? Based on empirical data demonstrating a close functional interdependence between intrinsic and task-evoked activity, we argue that the dichotomy between intrinsic and task-evoked activity as unobserved contributions to brain activity is artificial. We present an alternative picture of brain function in which the brain’s spatiotemporal dynamics do not consist of separable intrinsic and task-evoked components, but reflect the enaction of a system of mutual constraints to move the brain into and out of task-appropriate functional configurations. According to this alternative picture, cognitive neuroscientists are tasked with describing both the temporal trajectory of brain activity patterns across time, and the modulation of this trajectory by task states, without separating this process into intrinsic and task-evoked components. We argue that this alternative picture of brain function is best captured in a novel explanatory framework called enabling constraint. Overall, these insights call for a reconceptualization of functional brain activity, and should drive future methodological and empirical efforts.

  13. A quantum theoretical approach to information processing in neural networks

    Science.gov (United States)

    Barahona da Fonseca, José; Barahona da Fonseca, Isabel; Suarez Araujo, Carmen Paz; Simões da Fonseca, José

    2000-05-01

    A reinterpretation of experimental data on learning was used to formulate a law on data acquisition similar to the Hamiltonian of a mechanical system. A matrix of costs in decision making specifies values attributable to a barrier that opposed to hypothesis formation about decision making. The interpretation of the encoding costs as frequencies of oscillatory phenomena leads to a quantum paradigm based in the models of photoelectric effect as well as of a particle against a potential barrier. Cognitive processes are envisaged as complex phenomena represented by structures linked by valence bounds. This metaphor is used to find some prerequisites to certain types of conscious experience as well as to find an explanation for some pathological distortions of cognitive operations as they are represented in the context of the isolobal model. Those quantum phenomena are understood as representing an analogue programming for specific special purpose computations. The formation of complex chemical structures within the context of isolobal theory is understood as an analog quantum paradigm for complex cognitive computations.

  14. From IHE Audit Trails to XES Event Logs Facilitating Process Mining.

    Science.gov (United States)

    Paster, Ferdinand; Helm, Emmanuel

    2015-01-01

    Recently Business Intelligence approaches like process mining are applied to the healthcare domain. The goal of process mining is to gain process knowledge, compliance and room for improvement by investigating recorded event data. Previous approaches focused on process discovery by event data from various specific systems. IHE, as a globally recognized basis for healthcare information systems, defines in its ATNA profile how real-world events must be recorded in centralized event logs. The following approach presents how audit trails collected by the means of ATNA can be transformed to enable process mining. Using the standardized audit trails provides the ability to apply these methods to all IHE based information systems.

  15. Effect of task complexity on intelligence and neural efficiency in children: an event-related potential study.

    Science.gov (United States)

    Zhang, Qiong; Shi, Jiannong; Luo, Yuejia; Liu, Sainan; Yang, Jie; Shen, Mowei

    2007-10-08

    The present study investigates the effects of task complexity, intelligence and neural efficiency on children's performance on an Elementary Cognitive Task. Twenty-three children were divided into two groups on the basis of their Raven Progressive Matrix scores and were then asked to complete a choice reaction task with two test conditions. We recorded the electroencephalogram and calculated the peak latencies and amplitudes for anteriorly distributed P225, N380 and late positive component. Our results suggested shorter late positive component latencies in brighter children, possibly reflecting a higher processing speed in these individuals. Increased P225 amplitude and increased N380 amplitudes for brighter children may indicate a more efficient allocation of attention for brighter children. No moderating effect of task complexity on brain-intelligence relationship was found.

  16. Eigenanalysis of a neural network for optic flow processing

    International Nuclear Information System (INIS)

    Weber, F; Eichner, H; Borst, A; Cuntz, H

    2008-01-01

    Flies gain information about self-motion during free flight by processing images of the environment moving across their retina. The visual course control center in the brain of the blowfly contains, among others, a population of ten neurons, the so-called vertical system (VS) cells that are mainly sensitive to downward motion. VS cells are assumed to encode information about rotational optic flow induced by self-motion (Krapp and Hengstenberg 1996 Nature 384 463-6). Recent evidence supports a connectivity scheme between the VS cells where neurons with neighboring receptive fields are connected to each other by electrical synapses at the axonal terminals, whereas the boundary neurons in the network are reciprocally coupled via inhibitory synapses (Haag and Borst 2004 Nat. Neurosci. 7 628-34; Farrow et al 2005 J. Neurosci. 25 3985-93; Cuntz et al 2007 Proc. Natl Acad. Sci. USA). Here, we investigate the functional properties of the VS network and its connectivity scheme by reducing a biophysically realistic network to a simplified model, where each cell is represented by a dendritic and axonal compartment only. Eigenanalysis of this model reveals that the whole population of VS cells projects the synaptic input provided from local motion detectors on to its behaviorally relevant components. The two major eigenvectors consist of a horizontal and a slanted line representing the distribution of vertical motion components across the fly's azimuth. They are, thus, ideally suited for reliably encoding translational and rotational whole-field optic flow induced by respective flight maneuvers. The dimensionality reduction compensates for the contrast and texture dependence of the local motion detectors of the correlation-type, which becomes particularly pronounced when confronted with natural images and their highly inhomogeneous contrast distribution

  17. Knowing what, where, and when: event comprehension in language processing.

    Science.gov (United States)

    Kukona, Anuenue; Altmann, Gerry T M; Kamide, Yuki

    2014-10-01

    We investigated the retrieval of location information, and the deployment of attention to these locations, following (described) event-related location changes. In two visual world experiments, listeners viewed arrays with containers like a bowl, jar, pan, and jug, while hearing sentences like "The boy will pour the sweetcorn from the bowl into the jar, and he will pour the gravy from the pan into the jug. And then, he will taste the sweetcorn". At the discourse-final "sweetcorn", listeners fixated context-relevant "Target" containers most (jar). Crucially, we also observed two forms of competition: listeners fixated containers that were not directly referred to but associated with "sweetcorn" (bowl), and containers that played the same role as Targets (goals of moving events; jug), more than distractors (pan). These results suggest that event-related location changes are encoded across representations that compete for comprehenders' attention, such that listeners retrieve, and fixate, locations that are not referred to in the unfolding language, but related to them via object or role information. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effects of loss aversion on neural responses to loss outcomes: An event-related potential study.

    Science.gov (United States)

    Kokmotou, Katerina; Cook, Stephanie; Xie, Yuxin; Wright, Hazel; Soto, Vicente; Fallon, Nicholas; Giesbrecht, Timo; Pantelous, Athanasios; Stancak, Andrej

    2017-05-01

    Loss aversion is the tendency to prefer avoiding losses over acquiring gains of the same amount. To shed light on the spatio-temporal processes underlying loss aversion, we analysed the associations between individual loss aversion and electrophysiological responses to loss and gain outcomes in a monetary gamble task. Electroencephalographic feedback-related negativity (FRN) was computed in 29 healthy participants as the difference in electrical potentials between losses and gains. Loss aversion was evaluated using non-linear parametric fitting of choices in a separate gamble task. Loss aversion correlated positively with FRN amplitude (233-263ms) at electrodes covering the lower face. Feedback related potentials were modelled by five equivalent source dipoles. From these dipoles, stronger activity in a source located in the orbitofrontal cortex was associated with loss aversion. The results suggest that loss aversion implemented during risky decision making is related to a valuation process in the orbitofrontal cortex, which manifests during learning choice outcomes. Copyright © 2017. Published by Elsevier B.V.

  19. Optical Calibration Process Developed for Neural-Network-Based Optical Nondestructive Evaluation Method

    Science.gov (United States)

    Decker, Arthur J.

    2004-01-01

    A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation

  20. Energy-efficient neural information processing in individual neurons and neuronal networks.

    Science.gov (United States)

    Yu, Lianchun; Yu, Yuguo

    2017-11-01

    Brains are composed of networks of an enormous number of neurons interconnected with synapses. Neural information is carried by the electrical signals within neurons and the chemical signals among neurons. Generating these electrical and chemical signals is metabolically expensive. The fundamental issue raised here is whether brains have evolved efficient ways of developing an energy-efficient neural code from the molecular level to the circuit level. Here, we summarize the factors and biophysical mechanisms that could contribute to the energy-efficient neural code for processing input signals. The factors range from ion channel kinetics, body temperature, axonal propagation of action potentials, low-probability release of synaptic neurotransmitters, optimal input and noise, the size of neurons and neuronal clusters, excitation/inhibition balance, coding strategy, cortical wiring, and the organization of functional connectivity. Both experimental and computational evidence suggests that neural systems may use these factors to maximize the efficiency of energy consumption in processing neural signals. Studies indicate that efficient energy utilization may be universal in neuronal systems as an evolutionary consequence of the pressure of limited energy. As a result, neuronal connections may be wired in a highly economical manner to lower energy costs and space. Individual neurons within a network may encode independent stimulus components to allow a minimal number of neurons to represent whole stimulus characteristics efficiently. This basic principle may fundamentally change our view of how billions of neurons organize themselves into complex circuits to operate and generate the most powerful intelligent cognition in nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Automated processing of measuring information and control processes of eutrophication in water for household purpose, based on artificial neural networks

    Directory of Open Access Journals (Sweden)

    О.М. Безвесільна

    2006-04-01

    Full Text Available  The possibilities of application  informational-computer technologies for automated handling of a measuring information about development of seaweed (evtrofication in household reservoirs are considered. The input data’s for a research of processes evtrofication are videoimages of tests of water, which are used for the definition of geometric characteristics, number and biomass of seaweed. For handling a measuring information the methods of digital handling videoimages and mathematical means of artificial neural networks are offered.

  2. Altered neural reward and loss processing and prediction error signalling in depression

    Science.gov (United States)

    Ubl, Bettina; Kuehner, Christine; Kirsch, Peter; Ruttorf, Michaela

    2015-01-01

    Dysfunctional processing of reward and punishment may play an important role in depression. However, functional magnetic resonance imaging (fMRI) studies have shown heterogeneous results for reward processing in fronto-striatal regions. We examined neural responsivity associated with the processing of reward and loss during anticipation and receipt of incentives and related prediction error (PE) signalling in depressed individuals. Thirty medication-free depressed persons and 28 healthy controls performed an fMRI reward paradigm. Regions of interest analyses focused on neural responses during anticipation and receipt of gains and losses and related PE-signals. Additionally, we assessed the relationship between neural responsivity during gain/loss processing and hedonic capacity. When compared with healthy controls, depressed individuals showed reduced fronto-striatal activity during anticipation of gains and losses. The groups did not significantly differ in response to reward and loss outcomes. In depressed individuals, activity increases in the orbitofrontal cortex and nucleus accumbens during reward anticipation were associated with hedonic capacity. Depressed individuals showed an absence of reward-related PEs but encoded loss-related PEs in the ventral striatum. Depression seems to be linked to blunted responsivity in fronto-striatal regions associated with limited motivational responses for rewards and losses. Alterations in PE encoding might mirror blunted reward- and enhanced loss-related associative learning in depression. PMID:25567763

  3. Hidden sources of joy, fear, and sadness: Explicit versus implicit neural processing of musical emotions.

    Science.gov (United States)

    Bogert, Brigitte; Numminen-Kontti, Taru; Gold, Benjamin; Sams, Mikko; Numminen, Jussi; Burunat, Iballa; Lampinen, Jouko; Brattico, Elvira

    2016-08-01

    Music is often used to regulate emotions and mood. Typically, music conveys and induces emotions even when one does not attend to them. Studies on the neural substrates of musical emotions have, however, only examined brain activity when subjects have focused on the emotional content of the music. Here we address with functional magnetic resonance imaging (fMRI) the neural processing of happy, sad, and fearful music with a paradigm in which 56 subjects were instructed to either classify the emotions (explicit condition) or pay attention to the number of instruments playing (implicit condition) in 4-s music clips. In the implicit vs. explicit condition, stimuli activated bilaterally the inferior parietal lobule, premotor cortex, caudate, and ventromedial frontal areas. The cortical dorsomedial prefrontal and occipital areas activated during explicit processing were those previously shown to be associated with the cognitive processing of music and emotion recognition and regulation. Moreover, happiness in music was associated with activity in the bilateral auditory cortex, left parahippocampal gyrus, and supplementary motor area, whereas the negative emotions of sadness and fear corresponded with activation of the left anterior cingulate and middle frontal gyrus and down-regulation of the orbitofrontal cortex. Our study demonstrates for the first time in healthy subjects the neural underpinnings of the implicit processing of brief musical emotions, particularly in frontoparietal, dorsolateral prefrontal, and striatal areas of the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Efficient rare-event simulation for multiple jump events in regularly varying random walks and compound Poisson processes

    NARCIS (Netherlands)

    B. Chen (Bohan); J. Blanchet; C.H. Rhee (Chang-Han); A.P. Zwart (Bert)

    2017-01-01

    textabstractWe propose a class of strongly efficient rare event simulation estimators for random walks and compound Poisson processes with a regularly varying increment/jump-size distribution in a general large deviations regime. Our estimator is based on an importance sampling strategy that hinges

  5. Models of neural networks temporal aspects of coding and information processing in biological systems

    CERN Document Server

    Hemmen, J; Schulten, Klaus

    1994-01-01

    Since the appearance of Vol. 1 of Models of Neural Networks in 1991, the theory of neural nets has focused on two paradigms: information coding through coherent firing of the neurons and functional feedback. Information coding through coherent neuronal firing exploits time as a cardinal degree of freedom. This capacity of a neural network rests on the fact that the neuronal action potential is a short, say 1 ms, spike, localized in space and time. Spatial as well as temporal correlations of activity may represent different states of a network. In particular, temporal correlations of activity may express that neurons process the same "object" of, for example, a visual scene by spiking at the very same time. The traditional description of a neural network through a firing rate, the famous S-shaped curve, presupposes a wide time window of, say, at least 100 ms. It thus fails to exploit the capacity to "bind" sets of coherently firing neurons for the purpose of both scene segmentation and figure-ground segregatio...

  6. Predicting tool life in turning operations using neural networks and image processing

    Science.gov (United States)

    Mikołajczyk, T.; Nowicki, K.; Bustillo, A.; Yu Pimenov, D.

    2018-05-01

    A two-step method is presented for the automatic prediction of tool life in turning operations. First, experimental data are collected for three cutting edges under the same constant processing conditions. In these experiments, the parameter of tool wear, VB, is measured with conventional methods and the same parameter is estimated using Neural Wear, a customized software package that combines flank wear image recognition and Artificial Neural Networks (ANNs). Second, an ANN model of tool life is trained with the data collected from the first two cutting edges and the subsequent model is evaluated on two different subsets for the third cutting edge: the first subset is obtained from the direct measurement of tool wear and the second is obtained from the Neural Wear software that estimates tool wear using edge images. Although the complete-automated solution, Neural Wear software for tool wear recognition plus the ANN model of tool life prediction, presented a slightly higher error than the direct measurements, it was within the same range and can meet all industrial requirements. These results confirm that the combination of image recognition software and ANN modelling could potentially be developed into a useful industrial tool for low-cost estimation of tool life in turning operations.

  7. Attention - Control in the Frequentistic Processing of Multidimensional Event Streams.

    Science.gov (United States)

    1980-07-01

    Human memory. Annual Review of Psychology, 1979, 30, 63-702. Craik , F. I. M., & Lockhart , R. S. Levels of processing : A framework for memory research...1979; Jacoby & Craik , 1979). Thus, the notions of memora- bility (or retrievability) and levels of processing are tied closely in the sense that the...differing levels and degrees of elaborateness (Jacoby & Craik , 1979). Decisions as to which attributes receive elaborated processing and how they are

  8. Cascade of neural events leading from error commission to subsequent awareness revealed using EEG source imaging.

    Directory of Open Access Journals (Sweden)

    Monica Dhar

    Full Text Available The goal of the present study was to shed light on the respective contributions of three important action monitoring brain regions (i.e. cingulate cortex, insula, and orbitofrontal cortex during the conscious detection of response errors. To this end, fourteen healthy adults performed a speeded Go/Nogo task comprising Nogo trials of varying levels of difficulty, designed to elicit aware and unaware errors. Error awareness was indicated by participants with a second key press after the target key press. Meanwhile, electromyogram (EMG from the response hand was recorded in addition to high-density scalp electroencephalogram (EEG. In the EMG-locked grand averages, aware errors clearly elicited an error-related negativity (ERN reflecting error detection, and a later error positivity (Pe reflecting conscious error awareness. However, no Pe was recorded after unaware errors or hits. These results are in line with previous studies suggesting that error awareness is associated with generation of the Pe. Source localisation results confirmed that the posterior cingulate motor area was the main generator of the ERN. However, inverse solution results also point to the involvement of the left posterior insula during the time interval of the Pe, and hence error awareness. Moreover, consecutive to this insular activity, the right orbitofrontal cortex (OFC was activated in response to aware and unaware errors but not in response to hits, consistent with the implication of this area in the evaluation of the value of an error. These results reveal a precise sequence of activations in these three non-overlapping brain regions following error commission, enabling a progressive differentiation between aware and unaware errors as a function of time elapsed, thanks to the involvement first of interoceptive or proprioceptive processes (left insula, later leading to the detection of a breach in the prepotent response mode (right OFC.

  9. Events

    Directory of Open Access Journals (Sweden)

    Igor V. Karyakin

    2016-02-01

    Full Text Available The 9th ARRCN Symposium 2015 was held during 21st–25th October 2015 at the Novotel Hotel, Chumphon, Thailand, one of the most favored travel destinations in Asia. The 10th ARRCN Symposium 2017 will be held during October 2017 in the Davao, Philippines. International Symposium on the Montagu's Harrier (Circus pygargus «The Montagu's Harrier in Europe. Status. Threats. Protection», organized by the environmental organization «Landesbund für Vogelschutz in Bayern e.V.» (LBV was held on November 20-22, 2015 in Germany. The location of this event was the city of Wurzburg in Bavaria.

  10. Social anhedonia is associated with neural abnormalities during face emotion processing.

    Science.gov (United States)

    Germine, Laura T; Garrido, Lucia; Bruce, Lori; Hooker, Christine

    2011-10-01

    Human beings are social organisms with an intrinsic desire to seek and participate in social interactions. Social anhedonia is a personality trait characterized by a reduced desire for social affiliation and reduced pleasure derived from interpersonal interactions. Abnormally high levels of social anhedonia prospectively predict the development of schizophrenia and contribute to poorer outcomes for schizophrenia patients. Despite the strong association between social anhedonia and schizophrenia, the neural mechanisms that underlie individual differences in social anhedonia have not been studied and are thus poorly understood. Deficits in face emotion recognition are related to poorer social outcomes in schizophrenia, and it has been suggested that face emotion recognition deficits may be a behavioral marker for schizophrenia liability. In the current study, we used functional magnetic resonance imaging (fMRI) to see whether there are differences in the brain networks underlying basic face emotion processing in a community sample of individuals low vs. high in social anhedonia. We isolated the neural mechanisms related to face emotion processing by comparing face emotion discrimination with four other baseline conditions (identity discrimination of emotional faces, identity discrimination of neutral faces, object discrimination, and pattern discrimination). Results showed a group (high/low social anhedonia) × condition (emotion discrimination/control condition) interaction in the anterior portion of the rostral medial prefrontal cortex, right superior temporal gyrus, and left somatosensory cortex. As predicted, high (relative to low) social anhedonia participants showed less neural activity in face emotion processing regions during emotion discrimination as compared to each control condition. The findings suggest that social anhedonia is associated with abnormalities in networks responsible for basic processes associated with social cognition, and provide a

  11. Remote Sensing of Surficial Process Responses to Extreme Meteorological Events

    Science.gov (United States)

    Brakenridge, G. Robert

    1997-01-01

    Changes in the frequency and magnitude of extreme meteorological events are associated with changing environmental means. Such events are important in human affairs, and can also be investigated by orbital remote sensing. During the course of this project, we applied ERS-1, ERS-2, Radarsat, and an airborne sensor (AIRSAR-TOPSAR) to measure flood extents, flood water surface profiles, and flood depths. We established a World Wide Web site (the Dartmouth Flood Observatory) for publishing remote sensing-based maps of contemporary floods worldwide; this is also an online "active archive" that presently constitutes the only global compilation of extreme flood events. We prepared an article for EOS concerning SAR imaging of the Mississippi Valley flood; an article for the International Journal of Remote Sensing on measurement of a river flood wave using ERS-2, began work on an article (since completed and published) on the Flood Observatory for a Geoscience Information Society Proceedings volume, and presented lectures at several Geol. Soc. of America Natl. Meetings, an Assoc. of Amer. Geographers Natl. Meeting, and a Binghamton Geomorphology Symposium (all on SAR remote sensing of the Mississippi Valley flood). We expanded in-house modeling capabilities by installing the latest version of the Army Corps of Engineers RMA two-dimensional hydraulics software and BYU Engineering Graphics Lab's Surface Water Modeling System (finite elements based pre- and post-processors for RMA work) and also added watershed modeling software. We are presently comparing the results of the 2-d flow models with SAR image data. The grant also supported several important upgrades of pc-based remote sensing infrastructure at Dartmouth. During work on this grant, we collaborated with several workers at the U.S. Army Corps of Engineers, Remote Sensing/GIS laboratory (for flood inundation mapping and modeling; particularly of the Illinois River using the AIRSAR/TOPSAR/ERS-2 combined data), with Dr

  12. Neural and Behavioral Evidence for an Online Resetting Process in Visual Working Memory.

    Science.gov (United States)

    Balaban, Halely; Luria, Roy

    2017-02-01

    Visual working memory (VWM) guides behavior by holding a set of active representations and modifying them according to changes in the environment. This updating process relies on a unique mapping between each VWM representation and an actual object in the environment. Here, we destroyed this mapping by either presenting a coherent object but then breaking it into independent parts or presenting an object but then abruptly replacing it with a different object. This allowed us to introduce the neural marker and behavioral consequence of an online resetting process in humans' VWM. Across seven experiments, we demonstrate that this resetting process involves abandoning the old VWM contents because they no longer correspond to the objects in the environment. Then, VWM encodes the novel information and reestablishes the correspondence between the new representations and the objects. The resetting process was marked by a unique neural signature: a sharp drop in the amplitude of the electrophysiological index of VWM contents (the contralateral delay activity), presumably indicating the loss of the existent object-to-representation mappings. This marker was missing when an updating process occurred. Moreover, when tracking moving items, VWM failed to detect salient changes in the object's shape when these changes occurred during the resetting process. This happened despite the object being fully visible, presumably because the mapping between the object and a VWM representation was lost. Importantly, we show that resetting, its neural marker, and the behavioral cost it entails, are specific to situations that involve a destruction of the objects-to-representations correspondence. Visual working memory (VWM) maintains task-relevant information in an online state. Previous studies showed that VWM representations are accessed and modified after changes in the environment. Here, we show that this updating process critically depends on an ongoing mapping between the

  13. Event-related potential evidence for the processing efficiency theory.

    Science.gov (United States)

    Murray, N P; Janelle, C M

    2007-01-15

    The purpose of this study was to examine the central tenets of the processing efficiency theory using psychophysiological measures of attention and effort. Twenty-eight participants were divided equally into either a high or low trait anxiety group. They were then required to perform a simulated driving task while responding to one of four target light-emitting diodes. Cortical activity and dual task performance were recorded under two conditions -- baseline and competition -- with cognitive anxiety being elevated in the competitive session by an instructional set. Although driving speed was similar across sessions, a reduction in P3 amplitude to cue onset in the light detection task occurred for both groups during the competitive session, suggesting a reduction in processing efficiency as participants became more state anxious. Our findings provide more comprehensive and mechanistic evidence for processing efficiency theory, and confirm that increases in cognitive anxiety can result in a reduction of processing efficiency with little change in performance effectiveness.

  14. Negative mood state enhances the susceptibility to unpleasant events: neural correlates from a music-primed emotion classification task.

    Directory of Open Access Journals (Sweden)

    Jiajin Yuan

    Full Text Available BACKGROUND: Various affective disorders are linked with enhanced processing of unpleasant stimuli. However, this link is likely a result of the dominant negative mood derived from the disorder, rather than a result of the disorder itself. Additionally, little is currently known about the influence of mood on the susceptibility to emotional events in healthy populations. METHOD: Event-Related Potentials (ERP were recorded for pleasant, neutral and unpleasant pictures while subjects performed an emotional/neutral picture classification task during positive, neutral, or negative mood induced by instrumental Chinese music. RESULTS: Late Positive Potential (LPP amplitudes were positively related to the affective arousal of pictures. The emotional responding to unpleasant pictures, indicated by the unpleasant-neutral differences in LPPs, was enhanced during negative compared to neutral and positive moods in the entire LPP time window (600-1000 ms. The magnitude of this enhancement was larger with increasing self-reported negative mood. In contrast, this responding was reduced during positive compared to neutral mood in the 800-1000 ms interval. Additionally, LPP reactions to pleasant stimuli were similar across positive, neutral and negative moods except those in the 800-900 ms interval. IMPLICATIONS: Negative mood intensifies the humans' susceptibility to unpleasant events in healthy individuals. In contrast, music-induced happy mood is effective in reducing the susceptibility to these events. Practical implications of these findings were discussed.

  15. Noun and verb processing in aphasia: Behavioural profiles and neural correlates

    Directory of Open Access Journals (Sweden)

    Reem S.W. Alyahya

    Full Text Available The behavioural and neural processes underpinning different word classes, particularly nouns and verbs, have been a long-standing area of interest in psycholinguistic, neuropsychology and aphasiology research. This topic has theoretical implications concerning the organisation of the language system, as well as clinical consequences related to the management of patients with language deficits. Research findings, however, have diverged widely, which might, in part, reflect methodological differences, particularly related to controlling the psycholinguistic variations between nouns and verbs. The first aim of this study, therefore, was to develop a set of neuropsychological tests that assessed single-word production and comprehension with a matched set of nouns and verbs. Secondly, the behavioural profiles and neural correlates of noun and verb processing were explored, based on these novel tests, in a relatively large cohort of 48 patients with chronic post-stroke aphasia. A data-driven approach, principal component analysis (PCA, was also used to determine how noun and verb production and comprehension were related to the patients' underlying fundamental language domains. The results revealed no performance differences between noun and verb production and comprehension once matched on multiple psycholinguistic features including, most critically, imageability. Interestingly, the noun-verb differences found in previous studies were replicated in this study once un-matched materials were used. Lesion-symptom mapping revealed overlapping neural correlates of noun and verb processing along left temporal and parietal regions. These findings support the view that the neural representation of noun and verb processing at single-word level are jointly-supported by distributed cortical regions. The PCA generated five fundamental language and cognitive components of aphasia: phonological production, phonological recognition, semantics, fluency, and

  16. A neural model for transient identification in dynamic processes with 'don't know' response

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Antonio C. de A. E-mail: mol@ien.gov.br; Martinez, Aquilino S. E-mail: aquilino@lmp.ufrj.br; Schirru, Roberto E-mail: schirru@lmp.ufrj.br

    2003-09-01

    This work presents an approach for neural network based transient identification which allows either dynamic identification or a 'don't know' response. The approach uses two 'jump' multilayer neural networks (NN) trained with the backpropagation algorithm. The 'jump' network is used because it is useful to dealing with very complex patterns, which is the case of the space of the state variables during some abnormal events. The first one is responsible for the dynamic identification. This NN uses, as input, a short set (in a moving time window) of recent measurements of each variable avoiding the necessity of using starting events. The other one is used to validate the instantaneous identification (from the first net) through the validation of each variable. This net is responsible for allowing the system to provide a 'don't know' response. In order to validate the method, a Nuclear Power Plant (NPP) transient identification problem comprising 15 postulated accidents, simulated for a pressurized water reactor (PWR), was proposed in the validation process it has been considered noisy data in order to evaluate the method robustness. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. Another important point studied in this work is that the system has shown to be independent of a trigger signal which indicates the beginning of the transient, thus making it robust in relation to this limitation.

  17. The neural correlates of implicit self-relevant processing in low self-esteem: an ERP study.

    Science.gov (United States)

    Yang, Juan; Guan, Lili; Dedovic, Katarina; Qi, Mingming; Zhang, Qinglin

    2012-08-30

    Previous neuroimaging studies have shown that implicit and explicit processing of self-relevant (schematic) material elicit activity in many of the same brain regions. Electrophysiological studies on the neural processing of explicit self-relevant cues have generally supported the view that P300 is an index of attention to self-relevant stimuli; however, there has been no study to date investigating the temporal course of implicit self-relevant processing. The current study seeks to investigate the time course involved in implicit self-processing by comparing processing of self-relevant with non-self-relevant words while subjects are making a judgment about color of the words in an implicit attention task. Sixteen low self-esteem participants were examined using event-related potentials technology (ERP). We hypothesized that this implicit attention task would involve P2 component rather than the P300 component. Indeed, P2 component has been associated with perceptual analysis and attentional allocation and may be more likely to occur in unconscious conditions such as this task. Results showed that latency of P2 component, which indexes the time required for perceptual analysis, was more prolonged in processing self-relevant words compared to processing non-self-relevant words. Our results suggested that the judgment of the color of the word interfered with automatic processing of self-relevant information and resulted in less efficient processing of self-relevant word. Together with previous ERP studies examining processing of explicit self-relevant cues, these findings suggest that the explicit and the implicit processing of self-relevant information would not elicit the same ERP components. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Abnormal neural hierarchy in processing of verbal information in patients with schizophrenia.

    Science.gov (United States)

    Lerner, Yulia; Bleich-Cohen, Maya; Solnik-Knirsh, Shimrit; Yogev-Seligmann, Galit; Eisenstein, Tamir; Madah, Waheed; Shamir, Alon; Hendler, Talma; Kremer, Ilana

    2018-01-01

    Previous research indicates abnormal comprehension of verbal information in patients with schizophrenia. Yet the neural mechanism underlying the breakdown of verbal information processing in schizophrenia is poorly understood. Imaging studies in healthy populations have shown a network of brain areas involved in hierarchical processing of verbal information over time. Here, we identified critical aspects of this hierarchy, examining patients with schizophrenia. Using functional magnetic resonance imaging, we examined various levels of information comprehension elicited by naturally presented verbal stimuli; from a set of randomly shuffled words to an intact story. Specifically, patients with first episode schizophrenia ( N  = 15), their non-manifesting siblings ( N  = 14) and healthy controls ( N  = 15) listened to a narrated story and randomly scrambled versions of it. To quantify the degree of dissimilarity between the groups, we adopted an inter-subject correlation (inter-SC) approach, which estimates differences in synchronization of neural responses within and between groups. The temporal topography found in healthy and siblings groups were consistent with our previous findings - high synchronization in responses from early sensory toward high order perceptual and cognitive areas. In patients with schizophrenia, stimuli with short and intermediate temporal scales evoked a typical pattern of reliable responses, whereas story condition (long temporal scale) revealed robust and widespread disruption of the inter-SCs. In addition, the more similar the neural activity of patients with schizophrenia was to the average response in the healthy group, the less severe the positive symptoms of the patients. Our findings suggest that system-level neural indication of abnormal verbal information processing in schizophrenia reflects disease manifestations.

  19. Neural Correlates of Hostile Jokes: Cognitive and Motivational Processes in Humor Appreciation

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chan

    2016-10-01

    Full Text Available Hostile jokes provide aggressive catharsis and a feeling of superiority. Behavioral research has found that hostile jokes are perceived as funnier than non-hostile jokes. The purpose of the present study was to identify the neural correlates of the interaction between type and humor by comparing hostile jokes (HJs, non-hostile jokes (NJs, and their corresponding hostile sentences (HSs and non-hostile sentences (NSs. Hostile jokes primarily showed activation in the dorsomedial prefrontal cortex (dmPFC and midbrain compared with the corresponding hostile baseline. Conversely, non-hostile jokes primarily revealed activation in the ventromedial PFC (vmPFC, amygdala, midbrain, ventral anterior cingulate cortex, and nucleus accumbens (NAcc compared with the corresponding non-hostile baseline. These results support the critical role of the medial prefrontal cortex (mPFC for the neural correlates of social cognition and socio-emotional processing in response to different types of jokes. Moreover, the processing of hostile jokes showed increased activation in the dmPFC, which suggested cognitive operations of social motivation, whereas the processing of non-hostile jokes displayed increased activation in the vmPFC, which suggested social-affective engagement. Hostile jokes versus non-hostile jokes primarily showed increased activation in the dmPFC and midbrain, whereas non-hostile jokes versus hostile jokes primarily displayed greater activation in the amygdala and midbrain. The psychophysiological interaction (PPI analysis demonstrated functional coupling of the dmPFC-dlPFC and midbrain-dmPFC for hostile jokes and functional coupling of the vmPFC-midbrain and amygdala-midbrain-NAcc for non-hostile jokes. Surprisingly, the neural correlates of hostile jokes were not perceived as funnier than non-hostile jokes. Future studies could further investigate the neural correlates of potentially important traits of high-hostility tendencies in humor appreciation

  20. Abnormal neural hierarchy in processing of verbal information in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Yulia Lerner

    2018-01-01

    Full Text Available Previous research indicates abnormal comprehension of verbal information in patients with schizophrenia. Yet the neural mechanism underlying the breakdown of verbal information processing in schizophrenia is poorly understood. Imaging studies in healthy populations have shown a network of brain areas involved in hierarchical processing of verbal information over time. Here, we identified critical aspects of this hierarchy, examining patients with schizophrenia. Using functional magnetic resonance imaging, we examined various levels of information comprehension elicited by naturally presented verbal stimuli; from a set of randomly shuffled words to an intact story. Specifically, patients with first episode schizophrenia (N = 15, their non-manifesting siblings (N = 14 and healthy controls (N = 15 listened to a narrated story and randomly scrambled versions of it. To quantify the degree of dissimilarity between the groups, we adopted an inter-subject correlation (inter-SC approach, which estimates differences in synchronization of neural responses within and between groups. The temporal topography found in healthy and siblings groups were consistent with our previous findings – high synchronization in responses from early sensory toward high order perceptual and cognitive areas. In patients with schizophrenia, stimuli with short and intermediate temporal scales evoked a typical pattern of reliable responses, whereas story condition (long temporal scale revealed robust and widespread disruption of the inter-SCs. In addition, the more similar the neural activity of patients with schizophrenia was to the average response in the healthy group, the less severe the positive symptoms of the patients. Our findings suggest that system-level neural indication of abnormal verbal information processing in schizophrenia reflects disease manifestations.

  1. An analysis of post-event processing in social anxiety disorder.

    Science.gov (United States)

    Brozovich, Faith; Heimberg, Richard G

    2008-07-01

    Research has demonstrated that self-focused thoughts and negative affect have a reciprocal relationship [Mor, N., Winquist, J. (2002). Self-focused attention and negative affect: A meta-analysis. Psychological Bulletin, 128, 638-662]. In the anxiety disorder literature, post-event processing has emerged as a specific construction of repetitive self-focused thoughts that pertain to social anxiety disorder. Post-event processing can be defined as an individual's repeated consideration and potential reconstruction of his performance following a social situation. Post-event processing can also occur when an individual anticipates a social or performance event and begins to brood about other, past social experiences. The present review examined the post-event processing literature in an attempt to organize and highlight the significant results. The methodologies employed to study post-event processing have included self-report measures, daily diaries, social or performance situations created in the laboratory, and experimental manipulations of post-event processing or anticipation of an upcoming event. Directions for future research on post-event processing are discussed.

  2. Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.

    Science.gov (United States)

    Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming

    2018-05-01

    The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.

  3. The neural basis of sublexical speech and corresponding nonspeech processing: a combined EEG-MEG study.

    Science.gov (United States)

    Kuuluvainen, Soila; Nevalainen, Päivi; Sorokin, Alexander; Mittag, Maria; Partanen, Eino; Putkinen, Vesa; Seppänen, Miia; Kähkönen, Seppo; Kujala, Teija

    2014-03-01

    We addressed the neural organization of speech versus nonspeech sound processing by investigating preattentive cortical auditory processing of changes in five features of a consonant-vowel syllable (consonant, vowel, sound duration, frequency, and intensity) and their acoustically matched nonspeech counterparts in a simultaneous EEG-MEG recording of mismatch negativity (MMN/MMNm). Overall, speech-sound processing was enhanced compared to nonspeech sound processing. This effect was strongest for changes which affect word meaning (consonant, vowel, and vowel duration) in the left and for the vowel identity change in the right hemisphere also. Furthermore, in the right hemisphere, speech-sound frequency and intensity changes were processed faster than their nonspeech counterparts, and there was a trend for speech-enhancement in frequency processing. In summary, the results support the proposed existence of long-term memory traces for speech sounds in the auditory cortices, and indicate at least partly distinct neural substrates for speech and nonspeech sound processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Histological characterization and quantification of cellular events following neural and fibroblast(-like) stem cell grafting in healty and demyelinated CNS tissue

    OpenAIRE

    Praet, J.; SANTERMANS, Eva; Reekmans, K.; de Vocht, N.; Le Blon, D.; Hoornaert, C.; Daans, J.; Goossens, H.; Berneman, Z.; HENS, Niel; Van der Linden, A.; Ponsaerts, P.

    2014-01-01

    Preclinical animal studies involving intracerebral (stem) cell grafting are gaining popularity in many laboratories due to the reported beneficial effects of cell grafting on various diseases or traumata of the central nervous system (CNS). In this chapter, we describe a histological workflow to characterize and quantify cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue. First, we provide standardized protocols to isolate and cult...

  5. Can Older Adults Resist the Positivity Effect in Neural Responding: The Impact of Verbal Framing on Event-Related Brain Potentials Elicited by Emotional Images

    OpenAIRE

    Rehmert, Andrea E.; Kisley, Michael A.

    2013-01-01

    Older adults have demonstrated an avoidance of negative information presumably with a goal of greater emotional satisfaction. Understanding whether avoidance of negative information is a voluntary, motivated choice, or an involuntary, automatic response will be important to differentiate, as decision-making often involves emotional factors. With the use of an emotional framing event-related potential (ERP) paradigm, the present study investigated whether older adults could alter neural respon...

  6. Event Processing and Variable Part of Sample Period Determining in Combined Systems Using GA

    Science.gov (United States)

    Strémy, Maximilián; Závacký, Pavol; Jedlička, Martin

    2011-01-01

    This article deals with combined dynamic systems and usage of modern techniques in dealing with these systems, focusing particularly on sampling period design, cyclic processing tasks and related processing algorithms in the combined event management systems using genetic algorithms.

  7. The neural processing of foreign-accented speech and its relationship to listener bias

    Directory of Open Access Journals (Sweden)

    Han-Gyol eYi

    2014-10-01

    Full Text Available Foreign-accented speech often presents a challenging listening condition. In addition to deviations from the target speech norms related to the inexperience of the nonnative speaker, listener characteristics may play a role in determining intelligibility levels. We have previously shown that an implicit visual bias for associating East Asian faces and foreignness predicts the listeners’ perceptual ability to process Korean-accented English audiovisual speech (Yi et al., 2013. Here, we examine the neural mechanism underlying the influence of listener bias to foreign faces on speech perception. In a functional magnetic resonance imaging (fMRI study, native English speakers listened to native- and Korean-accented English sentences, with or without faces. The participants’ Asian-foreign association was measured using an implicit association test (IAT, conducted outside the scanner. We found that foreign-accented speech evoked greater activity in the bilateral primary auditory cortices and the inferior frontal gyri, potentially reflecting greater computational demand. Higher IAT scores, indicating greater bias, were associated with increased BOLD response to foreign-accented speech with faces in the primary auditory cortex, the early node for spectrotemporal analysis. We conclude the following: (1 foreign-accented speech perception places greater demand on the neural systems underlying speech perception; (2 face of the talker can exaggerate the perceived foreignness of foreign-accented speech; (3 implicit Asian-foreign association is associated with decreased neural efficiency in early spectrotemporal processing.

  8. Event-related potential studies of outcome processing and feedback-guided learning

    Directory of Open Access Journals (Sweden)

    René eSan Martín

    2012-11-01

    Full Text Available In order to control behavior in an adaptive manner the brain has to learn how some situations and actions predict positive or negative outcomes. During the last decade cognitive neuroscientists have shown that the brain is able to evaluate and learn from outcomes within a few hundred milliseconds of their occurrence. This research has been primarily focused on the feedback-related negativity (FRN and the P3, two event-related potential (ERP components that are elicited by outcomes. The FRN is a frontally distributed negative-polarity ERP component that typically reaches its maximal amplitude 250 ms after outcome presentation and tends to be larger for negative than for positive outcomes. The FRN has been associated with activity in the anterior cingulate cortex. The P3 (~300-600 ms is a parietally distributed positive-polarity ERP component that tends to be larger for large magnitude than for small magnitude outcomes. The neural sources of the P3 are probably distributed over different regions of the cortex. This paper examines the theories that have been proposed to explain the functional role of these two ERP components during outcome processing. Special attention is paid to extant literature addressing how these ERP components are modulated by outcome valence (negative vs. positive, outcome magnitude (large vs. small, outcome probability (unlikely vs. likely and behavioral adjustment. The literature offers few generalizable conclusions, but is beset with a number of inconsistencies across studies. This paper discusses the potential reasons for these inconsistencies and points out some challenges that will shape the field over the next decade.

  9. Profiling event logs to configure risk indicators for process delays

    NARCIS (Netherlands)

    Pika, A.; Aalst, van der W.M.P.; Fidge, C.J.; Hofstede, ter A.H.M.; Wynn, M.T.; Salinesi, C.; Norrie, M.C.; Pastor, O.

    2013-01-01

    Risk identification is one of the most challenging stages in the risk management process. Conventional risk management approaches provide little guidance and companies often rely on the knowledge of experts for risk identification. In this paper we demonstrate how risk indicators can be used to

  10. Neural and Computational Mechanisms of Action Processing: Interaction between Visual and Motor Representations.

    Science.gov (United States)

    Giese, Martin A; Rizzolatti, Giacomo

    2015-10-07

    Action recognition has received enormous interest in the field of neuroscience over the last two decades. In spite of this interest, the knowledge in terms of fundamental neural mechanisms that provide constraints for underlying computations remains rather limited. This fact stands in contrast with a wide variety of speculative theories about how action recognition might work. This review focuses on new fundamental electrophysiological results in monkeys, which provide constraints for the detailed underlying computations. In addition, we review models for action recognition and processing that have concrete mathematical implementations, as opposed to conceptual models. We think that only such implemented models can be meaningfully linked quantitatively to physiological data and have a potential to narrow down the many possible computational explanations for action recognition. In addition, only concrete implementations allow judging whether postulated computational concepts have a feasible implementation in terms of realistic neural circuits. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Programmable neural processing on a smartdust for brain-computer interfaces.

    Science.gov (United States)

    Yuwen Sun; Shimeng Huang; Oresko, Joseph J; Cheng, Allen C

    2010-10-01

    Brain-computer interfaces (BCIs) offer tremendous promise for improving the quality of life for disabled individuals. BCIs use spike sorting to identify the source of each neural firing. To date, spike sorting has been performed by either using off-chip analysis, which requires a wired connection penetrating the skull to a bulky external power/processing unit, or via custom application-specific integrated circuits that lack the programmability to perform different algorithms and upgrades. In this research, we propose and test the feasibility of performing on-chip, real-time spike sorting on a programmable smartdust, including feature extraction, classification, compression, and wireless transmission. A detailed power/performance tradeoff analysis using DVFS is presented. Our experimental results show that the execution time and power density meet the requirements to perform real-time spike sorting and wireless transmission on a single neural channel.

  12. Artificial neural network approach to modeling of alcoholic fermentation of thick juice from sugar beet processing

    Directory of Open Access Journals (Sweden)

    Jokić Aleksandar I.

    2012-01-01

    Full Text Available In this paper the bioethanol production in batch culture by free Saccharomyces cerevisiae cells from thick juice as intermediate product of sugar beet processing was examined. The obtained results suggest that it is possible to decrease fermentation time for the cultivation medium based on thick juice with starting sugar content of 5-15 g kg-1. For the fermentation of cultivation medium based on thick juice with starting sugar content of 20 and 25 g kg-1 significant increase in ethanol content was attained during the whole fermentation process, resulting in 12.51 and 10.95 dm3 m-3 ethanol contents after 48 h, respectively. Other goals of this work were to investigate the possibilities for experimental results prediction using artificial neural networks (ANNs and to find its optimal topology. A feed-forward back-propagation artificial neural network was used to test the hypothesis. As input variables fermentation time and starting sugar content were used. Neural networks had one output value, ethanol content, yeast cell number or sugar content. There was one hidden layer and the optimal number of neurons was found to be nine for all selected network outputs. In this study transfer function was tansig and the selected learning rule was Levenberg-Marquardt. Results suggest that artificial neural networks are good prediction tool for selected network outputs. It was found that experimental results are in very good agreement with computed ones. The coefficient of determination (the R-squared was found to be 0.9997, 0.9997 and 0.9999 for ethanol content, yeast cell number and sugar content, respectively.

  13. Neural correlates of treatment response in depressed bipolar adolescents during emotion processing.

    Science.gov (United States)

    Diler, Rasim Somer; Ladouceur, Cecile D; Segreti, Annamaria; Almeida, Jorge R C; Birmaher, Boris; Axelson, David A; Phillips, Mary L; Pan, Lisa A

    2013-06-01

    Depressive mood in adolescents with bipolar disorder (BDd) is associated with significant morbidity and mortality, but we have limited information about neural correlates of depression and treatment response in BDd. Ten adolescents with BDd (8 females, mean age = 15.6 ± 0.9) completed two (fearful and happy) face gender labeling fMRI experiments at baseline and after 6-weeks of open treatment. Whole-brain analysis was used at baseline to compare their neural activity with those of 10 age and sex-matched healthy controls (HC). For comparisons of the neural activity at baseline and after treatment of youth with BDd, region of interest analysis for dorsal/ventral prefrontal, anterior cingulate, and amygdala activity, and significant regions identified by wholebrain analysis between BDd and HC were analyzed. There was significant improvement in depression scores (mean percentage change on the Child Depression Rating Sc