WorldWideScience

Sample records for neural pitch strength

  1. Pitch strength of normal and dysphonic voices

    OpenAIRE

    Shrivastav, Rahul; Eddins, David A.; Anand, Supraja

    2012-01-01

    Two sounds with the same pitch may vary from each other based on saliency of their pitch sensation. This perceptual attribute is called “pitch strength.” The study of voice pitch strength may be important in quantifying of normal and pathological qualities. The present study investigated how pitch strength varies across normal and dysphonic voices. A set of voices (vowel /a/) selected from the Kay Elemetrics Disordered Voice Database served as the stimuli. These stimuli demonstrated a wide ra...

  2. Modeling of Breathy Voice Quality Using Pitch-strength Estimates.

    Science.gov (United States)

    Eddins, David A; Anand, Supraja; Camacho, Arturo; Shrivastav, Rahul

    2016-11-01

    The characteristic voice quality of a speaker conveys important linguistic, paralinguistic, and vocal health-related information. Pitch strength refers to the salience of pitch sensation in a sound and was recently reported to be strongly correlated with the magnitude of perceived breathiness based on a small number of voice stimuli. The current study examined the relationship between perceptual judgments of breathiness and computational estimates of pitch strength based on the Aud-SWIPE (P-NP) algorithm for a large number of voice stimuli (330 synthetic and 57 natural). Similar to the earlier study, the current results confirm a strong relationship between estimated pitch strength and listener judgments of breathiness such that low pitch-strength values are associated with voices that have high perceived breathiness. Based on this result, a model was developed for the perception of breathy voice quality using a pitch-strength estimator. Regression functions derived between the pitch-strength estimates and perceptual judgments of breathiness obtained from matching task revealed a linear relationship for a subset of the natural stimuli. We then used this function to obtain predicted breathiness values for the synthetic and the remaining natural stimuli. Predicted breathiness values from our model were highly correlated with the perceptual data for both types of stimuli. Systematic differences between the breathiness of natural and synthetic stimuli are discussed. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  3. Pitch Strength as an Outcome Measure for Treatment of Dysphonia.

    Science.gov (United States)

    Kopf, Lisa M; Jackson-Menaldi, Cristina; Rubin, Adam D; Skeffington, Jean; Hunter, Eric J; Skowronski, Mark D; Shrivastav, Rahul

    2017-03-16

    Measurement of treatment outcomes is critical for the spectrum of voice treatments (ie, surgical, behavioral, or pharmacological). Outcome measures typically include visual (eg, stroboscopic data), auditory (eg, Consensus Auditory-Perceptual Evaluation of Voice; Grade, Roughness, Breathiness, Asthenia, Strain), and objective correlates of vocal fold vibratory characteristics, such as acoustic signals (eg, harmonics-to-noise ratio, cepstral peak prominence) or patient self-reported questionnaires (eg, Voice Handicap Index, Voice-Related Quality of Life). Subjective measures often show high variability, whereas most acoustic measures of voice are only valid for signals where some degree of periodicity can be assumed. However, this assumption is often invalid for dysphonic voices where signal periodicity is suspect. Furthermore, many of these measures are not useful in isolation for diagnostic purposes. We evaluated a recently developed algorithm (Auditory Sawtooth Waveform Inspired Pitch Estimator-Prime [Auditory-SWIPE']) for estimating pitch and pitch strength for dysphonic voices. Whereas fundamental frequency is a physical attribute of a signal, pitch is its psychophysical correlate. As such, the perception of pitch can extend to most signals irrespective of their periodicity. Post hoc analyses were conducted for three groups of patients evaluated and treated for voice problems at a major voice center: (1) muscle tension dysphonia/functional dysphonia, (2) vocal fold mass(es), and (3) presbyphonia. All patients were recorded before and after surgical/behavioral treatment for voice disorders. Pitch and pitch strength for each speaker were computed with the Auditory-SWIPE' algorithm. Comparison of pre- and posttreatment data provides support for pitch strength as a measure of treatment outcomes for dysphonic voices. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Glenohumeral rotational motion and strength and baseball pitching biomechanics.

    Science.gov (United States)

    Hurd, Wendy J; Kaufman, Kenton R

    2012-01-01

    Addressing loss of shoulder range of motion and rotator cuff weakness in injury-prevention programs might be an effective strategy for preventing throwing arm injuries in baseball pitchers. However, the influence of these clinical measures on pitching biomechanics is unclear. To evaluate the relationships among clinical measures of shoulder rotational motion and strength and 3-dimensional pitching biomechanics and to evaluate the presence of coupling between the shoulder and the elbow during pitching to provide insight into the influence of clinical shoulder characteristics on elbow biomechanics. Cross-sectional study. Biomechanics laboratory. A total of 27 uninjured male high school baseball pitchers (age = 16 ± 1.1 years, height = 183 ± 7 cm, mass = 83 ± 12 kg). Clinical measures included shoulder internal- and external-rotation range of motion and peak isometric internal- and external-rotator strength. Three-dimensional upper extremity biomechanics were assessed as participants threw from an indoor pitching mound to a target at regulation distance. Linear regressions were used to assess the influence of clinical measures on the peak shoulder internal and external rotation moments and the peak elbow-adduction moment. We found a positive relationship between clinically measured internal-rotator strength and shoulder external-rotation moment (R(2) = 0.181, P = .04) during pitching. We also noted an inverse relationship between clinically measured external-rotation motion and the elbow-adduction moment (R(2) = 0.160, P = .04) and shoulder internal-rotation moment (R(2) = 0.250, P = .008) during pitching. We found a positive relationship between peak shoulder internal-rotation moment and the peak elbow-adduction moment (R(2) = 0.815, P biomechanics and how these clinical measures might contribute to throwing arm injuries in the baseball pitcher. A relationship also was identified between peak shoulder and elbow moments in the throwing arm during pitching

  5. Neural mechanisms underlying melodic perception and memory for pitch.

    Science.gov (United States)

    Zatorre, R J; Evans, A C; Meyer, E

    1994-04-01

    The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the first two notes of the same set of melodies, and (4) comparing the pitch of the first and last notes of the melodies. The latter two conditions were designed to investigate short-term pitch retention under low or high memory load, respectively. Subtraction of the obtained PET images, superimposed on matched MRI scans, provides anatomical localization of CBF changes associated with specific cognitive functions. Listening to melodies, relative to acoustically matched noise sequences, resulted in CBF increases in the right superior temporal and right occipital cortices. Pitch judgments of the first two notes of each melody, relative to passive listening to the same stimuli, resulted in right frontal-lobe activation. Analysis of the high memory load condition relative to passive listening revealed the participation of a number of cortical and subcortical regions, notably in the right frontal and right temporal lobes, as well as in parietal and insular cortex. Both pitch judgment conditions also revealed CBF decreases within the left primary auditory cortex. We conclude that specialized neural systems in the right superior temporal cortex participate in perceptual analysis of melodies; pitch comparisons are effected via a neural network that includes right prefrontal cortex, but active retention of pitch involves the interaction of right temporal and frontal cortices.

  6. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks.

    Directory of Open Access Journals (Sweden)

    Nafise Erfanian Saeedi

    2016-04-01

    Full Text Available Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons' action potentials (spikes as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy.

  7. Neural mechanism for binaural pitch perception via ghost stochastic resonance

    Science.gov (United States)

    Balenzuela, Pablo; García-Ojalvo, Jordi

    2005-06-01

    We present a physiologically plausible binaural mechanism for the perception of the pitch of complex sounds via ghost stochastic resonance. In this scheme, two neurons are driven by noise and a different periodic signal each (with frequencies f1=kf0 and f2=(k+1)f0, where k >1), and their outputs (plus noise) are applied synaptically to a third neuron. Our numerical results, using the Morris-Lecar neuron model with chemical synapses explicitly considered, show that intermediate noise levels enhance the response of the third neuron at frequencies close to f0, as in the cases previously described of ghost resonance. For the case of an inharmonic combination of inputs (f1=kf0+Δf and f2=(k+1)f0+Δf) noise is also seen to enhance the rates of most probable spiking for the third neuron at a frequency fr=f0+[Δf/(k+1/2)]. In addition, we show that similar resonances can be observed as a function of the synaptic time constant. The suggested ghost-resonance-based stochastic mechanism can thus arise either at the peripheral level or at a higher level of neural processing in the perception of pitch.

  8. Neural Mechanisms Underlying Musical Pitch Perception and Clinical Applications Including Developmental Dyslexia.

    Science.gov (United States)

    Yuskaitis, Christopher J; Parviz, Mahsa; Loui, Psyche; Wan, Catherine Y; Pearl, Phillip L

    2015-08-01

    Music production and perception invoke a complex set of cognitive functions that rely on the integration of sensorimotor, cognitive, and emotional pathways. Pitch is a fundamental perceptual attribute of sound and a building block for both music and speech. Although the cerebral processing of pitch is not completely understood, recent advances in imaging and electrophysiology have provided insight into the functional and anatomical pathways of pitch processing. This review examines the current understanding of pitch processing and behavioral and neural variations that give rise to difficulties in pitch processing, and potential applications of music education for language processing disorders such as dyslexia.

  9. Neural Mechanisms Underlying Musical Pitch Perception and Clinical Applications including Developmental Dyselxia

    Science.gov (United States)

    Yuskaitis, Christopher J.; Parviz, Mahsa; Loui, Psyche; Wan, Catherine Y.; Pearl, Phillip L.

    2017-01-01

    Music production and perception invoke a complex set of cognitive functions that rely on the integration of sensory-motor, cognitive, and emotional pathways. Pitch is a fundamental perceptual attribute of sound and a building block for both music and speech. Although the cerebral processing of pitch is not completely understood, recent advances in imaging and electrophysiology have provided insight into the functional and anatomical pathways of pitch processing. This review examines the current understanding of pitch processing, behavioral and neural variations that give rise to difficulties in pitch processing, and potential applications of music education for language processing disorders such as dyslexia. PMID:26092314

  10. Differential effects of perturbation direction and magnitude on the neural processing of voice pitch feedback.

    Science.gov (United States)

    Liu, Hanjun; Meshman, Michelle; Behroozmand, Roozbeh; Larson, Charles R

    2011-05-01

    The present study examined the differential effects of voice auditory feedback perturbation direction and magnitude on voice fundamental frequency (F(0)) responses and event-related potentials (ERPs) from EEG electrodes on the scalp. The voice F(0) responses and N1 and P2 components of ERPs were examined from 12 right-handed speakers when they sustained a vowel phonation and their mid-utterance voice pitch feedback was shifted ±100, ±200, and ±500 cents with 200 ms duration. Downward voice pitch feedback perturbations led to larger voice F(0) responses than upward perturbations. The amplitudes of N1 and P2 components were larger for downward compared with upward pitch-shifts for 200 and 500 cents stimulus magnitudes. Shorter N1 and P2 latencies were also associated with larger magnitudes of pitch feedback perturbations. Corresponding changes in vocal and neural responses to upward and downward voice pitch feedback perturbations suggest that the N1 and P2 components of ERPs reflect neural concomitants of the vocal responses. The findings of interactive effects between the magnitude and direction of voice feedback pitch perturbation on N1 and P2 ERP components indicate that the neural mechanisms underlying error detection and correction in voice pitch auditory feedback are differentially sensitive to both the magnitude and direction of pitch perturbations. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Neural adaptations to electrical stimulation strength training

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Maffiuletti, Nicola A.

    2011-01-01

    This review provides evidence for the hypothesis that electrostimulation strength training (EST) increases the force of a maximal voluntary contraction (MVC) through neural adaptations in healthy skeletal muscle. Although electrical stimulation and voluntary effort activate muscle differently, there

  12. Changes in pitch height elicit both language-universal and language-dependent changes in neural representation of pitch in the brainstem and auditory cortex.

    Science.gov (United States)

    Krishnan, Ananthanarayan; Suresh, Chandan H; Gandour, Jackson T

    2017-03-27

    Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on (i) neural responses to variations in pitch height, (ii) presence of asymmetry in cortical pitch representation, and (iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na-Pb and Pb-Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na-Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. An auditory neural correlate suggests a mechanism underlying holistic pitch perception.

    Directory of Open Access Journals (Sweden)

    Daryl Wile

    Full Text Available Current theories of auditory pitch perception propose that cochlear place (spectral and activity timing pattern (temporal information are somehow combined within the brain to produce holistic pitch percepts, yet the neural mechanisms for integrating these two kinds of information remain obscure. To examine this process in more detail, stimuli made up of three pure tones whose components are individually resolved by the peripheral auditory system, but that nonetheless elicit a holistic, "missing fundamental" pitch percept, were played to human listeners. A technique was used to separate neural timing activity related to individual components of the tone complexes from timing activity related to an emergent feature of the complex (the envelope, and the region of the tonotopic map where information could originate from was simultaneously restricted by masking noise. Pitch percepts were mirrored to a very high degree by a simple combination of component-related and envelope-related neural responses with similar timing that originate within higher-frequency regions of the tonotopic map where stimulus components interact. These results suggest a coding scheme for holistic pitches whereby limited regions of the tonotopic map (spectral places carrying envelope- and component-related activity with similar timing patterns selectively provide a key source of neural pitch information. A similar mechanism of integration between local and emergent object properties may contribute to holistic percepts in a variety of sensory systems.

  14. EXPERIMENTAL ANALYSIS OF FLEXURAL STRENGTH ON GLASS FIBER SANDWICH COMPOSITE BY VARYING Z-PINS PITCHES

    OpenAIRE

    Pravin*, Jeyapratha

    2016-01-01

    This paper ambit to evaluate the flexural strength of glass fiber sandwich panels with varying z-pins pitches. Failure of sandwich panel are delamination and core shear, to minimize the crack propagation, pins are inserted in z-direction, by varying pitches through its thickness. During the insertion of pin, may cause the material some damage. Despite the damage, flexural property does not affected due interpolation of pins. Although the experiment were pull out with a phenomenal results of z...

  15. Harmonic Training and the formation of pitch representation in a neural network model of the auditory brain

    Directory of Open Access Journals (Sweden)

    Nasir eAhmad

    2016-03-01

    Full Text Available Attempting to explain the perceptual qualities of pitch has proven to be, and remains, a difficult problem. The wide range of sounds which illicit pitch and a lack of agreement across neurophysiological studies on how pitch is encoded by the brain have made this attempt more difficult. In describing the potential neural mechanisms by which pitch may be processed, a number of neural networks have been proposed and implemented. However, no unsupervised neural networks with biologically accurate cochlear inputs have yet been demonstrated. This paper proposes a simplified system in which pitch representing neurons are easily produced under a highly biological setting. Purely unsupervised regimes of neural network learning are implemented and these prove to be sufficient in identifying the pitch of sounds with a variety of spectral profiles, including missing fundamental sounds.

  16. The neural changes in connectivity of the voice network during voice pitch perturbation

    OpenAIRE

    Flagmeier, Sabina G.; Ray, Kimberly L.; Parkinson, Amy L.; Li, Karl; Vargas, Robert; Price, Larry R.; Laird, Angela R.; Charles R Larson; Robin, Donald A.

    2014-01-01

    Voice control is critical to communication. To date, studies have used behavioral, electrophysiological and functional data to investigate the neural correlates of voice control using perturbation tasks, but have yet to examine the interactions of these neural regions. The goal of this study was to use structural equation modeling of functional neuroimaging data to examine network properties of voice with and without perturbation. Results showed that the presence of a pitch shift, which was p...

  17. The neural changes in connectivity of the voice network during voice pitch perturbation.

    Science.gov (United States)

    Flagmeier, Sabina G; Ray, Kimberly L; Parkinson, Amy L; Li, Karl; Vargas, Robert; Price, Larry R; Laird, Angela R; Larson, Charles R; Robin, Donald A

    2014-05-01

    Voice control is critical to communication. To date, studies have used behavioral, electrophysiological and functional data to investigate the neural correlates of voice control using perturbation tasks, but have yet to examine the interactions of these neural regions. The goal of this study was to use structural equation modeling of functional neuroimaging data to examine network properties of voice with and without perturbation. Results showed that the presence of a pitch shift, which was processed as an error in vocalization, altered connections between right STG and left STG. Other regions that revealed differences in connectivity during error detection and correction included bilateral inferior frontal gyrus, and the primary and pre motor cortices. Results indicated that STG plays a critical role in voice control, specifically, during error detection and correction. Additionally, pitch perturbation elicits changes in the voice network that suggest the right hemisphere is critical to pitch modulation. Published by Elsevier Inc.

  18. Stability and plasticity in neural encoding of linguistically relevant pitch patterns.

    Science.gov (United States)

    Xie, Zilong; Reetzke, Rachel; Chandrasekaran, Bharath

    2017-03-01

    While lifelong language experience modulates subcortical encoding of pitch patterns, there is emerging evidence that short-term training introduced in adulthood also shapes subcortical pitch encoding. Here we use a cross-language design to examine the stability of language experience-dependent subcortical plasticity over multiple days. We then examine the extent to which behavioral relevance induced by sound-to-category training leads to plastic changes in subcortical pitch encoding in adulthood relative to adolescence, a period of ongoing maturation of subcortical and cortical auditory processing. Frequency-following responses (FFRs), which reflect phase-locked activity from subcortical neural ensembles, were elicited while participants passively listened to pitch patterns reflective of Mandarin tones. In experiment 1 , FFRs were recorded across three consecutive days from native Chinese-speaking ( n = 10) and English-speaking ( n = 10) adults. In experiment 2 , FFRs were recorded from native English-speaking adolescents ( n = 20) and adults ( n = 15) before, during, and immediately after a session of sound-to-category training, as well as a day after training ceased. Experiment 1 demonstrated the stability of language experience-dependent subcortical plasticity in pitch encoding across multiple days of passive exposure to linguistic pitch patterns. In contrast, experiment 2 revealed an enhancement in subcortical pitch encoding that emerged a day after the sound-to-category training, with some developmental differences observed. Taken together, these findings suggest that behavioral relevance is a critical component for the observation of plasticity in the subcortical encoding of pitch. NEW & NOTEWORTHY We examine the timescale of experience-dependent auditory plasticity to linguistically relevant pitch patterns. We find extreme stability in lifelong experience-dependent plasticity. We further demonstrate that subcortical function in adolescents and adults is

  19. You Can’t Think and Hit at the Same Time: Neural Correlates of Baseball Pitch Classification

    Directory of Open Access Journals (Sweden)

    Jason eSherwin

    2012-12-01

    Full Text Available Hitting a baseball is often described as the most difficult thing to do in sports. A key aptitude of a good hitter is the ability to determine which pitch is coming. This rapid decision requires the batter to make a judgment in a fraction of a second based largely on the trajectory and spin of the ball. When does this decision occur relative to the ball’s trajectory and is it possible to identify neural correlates that represent how the decision evolves over a split second? Using single-trial analysis of electroencephalography (EEG we address this question within the context of subjects discriminating three types of pitches (fastball, curveball, slider based on pitch trajectories. We find clear neural signatures of pitch classification and, using signal detection theory, we identify the times of discrimination on a trial-to-trial basis. Based on these neural signatures we estimate neural discrimination distributions as a function of the distance the ball is from the plate. We find all three pitches yield unique distributions, namely the timing of the discriminating neural signatures relative to the position of the ball in its trajectory. For instance, fastballs are discriminated at the earliest points in their trajectory, relative to the two other pitches, which is consistent with the need for some constant time to generate and execute the motor plan for the swing (or inhibition of the swing. We also find incorrect discrimination of a pitch (errors yields neural sources in Brodmann Area 10 (BA 10, which has been implicated in prospective memory, recall and task difficulty. In summary, we show that single-trial analysis of EEG yields informative distributions of the relative point in a baseball’s trajectory when the batter makes a decision on which pitch is coming.

  20. Native experience with a tone language enhances pitch discrimination and the timing of neural responses to pitch change.

    Science.gov (United States)

    Giuliano, Ryan J; Pfordresher, Peter Q; Stanley, Emily M; Narayana, Shalini; Wicha, Nicole Y Y

    2011-01-01

    Native tone language experience has been linked with alterations in the production and perception of pitch in language, as well as with the brain response to linguistic and non-linguistic tones. Here we use two experiments to address whether these changes apply to the discrimination of simple pitch changes and pitch intervals. Event related potentials (ERPs) were recorded from native Mandarin speakers and a control group during a same/different task with pairs of pure tones differing only in pitch height, and with pure tone pairs differing only in interval distance. Behaviorally, Mandarin speakers were more accurate than controls at detecting both pitch and interval changes, showing a sensitivity to small pitch changes and interval distances that was absent in the control group. Converging evidence from ERPs obtained during the same tasks revealed an earlier response to change relative to no-change trials in Mandarin speakers, as well as earlier differentiation of trials by change direction relative to controls. These findings illustrate the cross-domain influence of language experience on the perception of pitch, suggesting that the native use of tonal pitch contours in language leads to a general enhancement in the acuity of pitch representations.

  1. Vocal and Neural Responses to Unexpected Changes in Voice Pitch Auditory Feedback During Register Transitions.

    Science.gov (United States)

    Patel, Sona; Lodhavia, Anjli; Frankford, Saul; Korzyukov, Oleg; Larson, Charles R

    2016-11-01

    It is known that singers are able to control their voice to maintain a relatively constant vocal quality while transitioning between vocal registers; however, the neural mechanisms underlying this effect are not understood. It was hypothesized that greater attention to the acoustical feedback of the voice and increased control of the vocal musculature during register transitions compared with singing within a register would be represented as neurological differences in event-related potentials. Nine singers sang musical notes at the high end of the modal register (the boundary between the modal and the head/falsetto registers) and at the low end (the boundary between the modal and the fry/pulse registers). While singing, the pitch of the voice auditory feedback was unexpectedly shifted either into the adjacent register ("toward" the register boundary) or within the modal register ("away from" the boundary). Singers were instructed to maintain a constant pitch and ignore any changes to their voice feedback. Vocal response latencies and magnitude of the accompanying N1 and P2 event-related potentials were greatest at the lower (modal-to-fry) boundary when the pitch shift carried the subjects' voices into the fry register as opposed to remaining within the modal register. These findings suggest that when a singer lowers the pitch of his or her voice such that it enters the fry register from the modal register, there is increased sensory-motor control of the voice, reflected as increased magnitude of the neural potentials to help minimize qualitative changes in the voice. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Vocal and neural responses to unexpected changes in voice pitch auditory feedback during register transitions

    Science.gov (United States)

    Patel, Sona; Lodhavia, Anjli; Frankford, Saul; Korzyukov, Oleg; Larson, Charles R.

    2016-01-01

    Objective/Hypothesis It is known that singers are able to control their voice to maintain a relatively constant vocal quality while transitioning between vocal registers; however, the neural mechanisms underlying this effect are not understood. It was hypothesized that greater attention to the acoustical feedback of the voice and increased control of the vocal musculature during register transitions compared to singing within a register would be represented as neurological differences in event-related potentials (ERPs). Study Design/Methods Nine singers sang musical notes at the high end of the modal register (the boundary between the modal and head/falsetto registers) and at the low end (the boundary between the modal and fry/pulse registers). While singing, the pitch of the voice auditory feedback was unexpectedly shifted either into the adjacent register (“toward” the register boundary) or within the modal register (“away from” the boundary). Singers were instructed to maintain a constant pitch and ignore any changes to their voice feedback. Results Vocal response latencies and magnitude of the accompanying N1 and P2 ERPs were greatest at the lower (modal-fry) boundary when the pitch shift carried the subjects’ voices into the fry register as opposed to remaining within the modal register. Conclusions These findings suggest that when a singer lowers the pitch of their voice such that it enters the fry register from the modal register, there is increased sensory-motor control of the voice, reflected as increased magnitude of the neural potentials to help minimize qualitative changes in the voice. PMID:26739860

  3. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm.

    Science.gov (United States)

    Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour

    2012-09-01

    In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Neural coding and perception of pitch in the normal and impaired human auditory system

    DEFF Research Database (Denmark)

    Santurette, Sébastien

    2011-01-01

    for a variety of basic auditory tasks, indicating that it may be a crucial measure to consider for hearing-loss characterization. In contrast to hearing-impaired listeners, adults with dyslexia showed no deficits in binaural pitch perception, suggesting intact low-level auditory mechanisms. The second part...... into the fundamental auditory mechanisms underlying pitch perception, and may have implications for future pitch-perception models, as well as strategies for auditory-profile characterization and restoration of accurate pitch perception in impaired hearing.......Pitch is an important attribute of hearing that allows us to perceive the musical quality of sounds. Besides music perception, pitch contributes to speech communication, auditory grouping, and perceptual segregation of sound sources. In this work, several aspects of pitch perception in humans were...

  5. A Neural Network Approach for Identifying Particle Pitch Angle Distributions in Van Allen Probes Data

    Science.gov (United States)

    Souza, V. M.; Vieira, L. E. A.; Medeiros, C.; Da Silva, L. A.; Alves, L. R.; Koga, D.; Sibeck, D. G.; Walsh, B. M.; Kanekal, S. G.; Jauer, P. R.; hide

    2016-01-01

    Analysis of particle pitch angle distributions (PADs) has been used as a means to comprehend a multitude of different physical mechanisms that lead to flux variations in the Van Allen belts and also to particle precipitation into the upper atmosphere. In this work we developed a neural network-based data clustering methodology that automatically identifies distinct PAD types in an unsupervised way using particle flux data. One can promptly identify and locate three well-known PAD types in both time and radial distance, namely, 90deg peaked, butterfly, and flattop distributions. In order to illustrate the applicability of our methodology, we used relativistic electron flux data from the whole month of November 2014, acquired from the Relativistic Electron-Proton Telescope instrument on board the Van Allen Probes, but it is emphasized that our approach can also be used with multiplatform spacecraft data. Our PAD classification results are in reasonably good agreement with those obtained by standard statistical fitting algorithms. The proposed methodology has a potential use for Van Allen belt's monitoring.

  6. A Neural Network Controller for Variable-Speed Variable-Pitch Wind Energy Conversion Systems Using Generalized Minimum Entropy Criterion

    Directory of Open Access Journals (Sweden)

    Mifeng Ren

    2014-01-01

    Full Text Available This paper considers the neural network controller design problem for variable pitch wind energy conversion systems (WECS with non-Gaussian wind speed disturbances in the stochastic distribution control framework. The approach here is used to directly model the unknown control law based on a fixed neural network (the number of layers and nodes in a neural network is fixed without the need to construct a separate model for the WECS. In order to characterize the randomness of the WECS, a generalized minimum entropy criterion is established to train connection weights of the neural network. For the train purpose, both kernel density estimation method and sliding window technique are adopted to estimate the PDF of tracking error and entropies. Due to the unknown process dynamics, the gradient of the objective function in a gradient-descent-type algorithm is estimated using an incremental perturbation method. The proposed approach is illustrated on a simulated WECS with non-Gaussian wind speed.

  7. Neural Mechanisms Underlying Musical Pitch Perception and Clinical Applications Including Developmental Dyslexia

    OpenAIRE

    Yuskaitis, Christopher J.; Parviz, Mahsa; Loui, Psyche; Wan, Catherine Y.; Pearl, Phillip L.

    2017-01-01

    Music production and perception invoke a complex set of cognitive functions that rely on the integration of sensorimotor, cognitive, and emotional pathways. Pitch is a fundamental perceptual attribute of sound and a building block for both music and speech. Although the cerebral processing of pitch is not completely understood, recent advances in imaging and electrophysiology have provided insight into the functional and anatomical pathways of pitch processing. This review examines the curren...

  8. Estimation of concrete compressive strength using artificial neural network

    Directory of Open Access Journals (Sweden)

    Kostić Srđan

    2015-01-01

    Full Text Available In present paper, concrete compressive strength is evaluated using back propagation feed-forward artificial neural network. Training of neural network is performed using Levenberg-Marquardt learning algorithm for four architectures of artificial neural networks, one, three, eight and twelve nodes in a hidden layer in order to avoid the occurrence of overfitting. Training, validation and testing of neural network is conducted for 75 concrete samples with distinct w/c ratio and amount of superplasticizer of melamine type. These specimens were exposed to different number of freeze/thaw cycles and their compressive strength was determined after 7, 20 and 32 days. The obtained results indicate that neural network with one hidden layer and twelve hidden nodes gives reasonable prediction accuracy in comparison to experimental results (R=0.965, MSE=0.005. These results of the performed analysis are further confirmed by calculating the standard statistical errors: the chosen architecture of neural network shows the smallest value of mean absolute percentage error (MAPE=, variance absolute relative error (VARE and median absolute error (MEDAE, and the highest value of variance accounted for (VAF.

  9. Absolute Pitch and Synesthesia: Two Sides of the Same Coin? Shared and Distinct Neural Substrates of Music Listening

    Science.gov (United States)

    Loui, Psyche; Zamm, Anna; Schlaug, Gottfried

    2013-01-01

    People with Absolute Pitch can categorize musical pitches without a reference, whereas people with tone-color synesthesia can see colors when hearing music. Both of these special populations perceive music in an above-normal manner. In this study we asked whether AP possessors and tone-color synesthetes might recruit specialized neural mechanisms during music listening. Furthermore, we tested the degree to which neural substrates recruited for music listening may be shared between these special populations. AP possessors, tone-color synesthetes, and matched controls rated the perceived arousal levels of musical excerpts in a sparse-sampled fMRI study. Both APs and synesthetes showed enhanced superior temporal gyrus (STG, secondary auditory cortex) activation relative to controls during music listening, with left-lateralized enhancement in the APs and right-lateralized enhancement in the synesthetes. When listening to highly arousing excerpts, AP possessors showed additional activation in the left STG whereas synesthetes showed enhanced activity in the bilateral lingual gyrus and inferior temporal gyrus (late visual areas). Results support both shared and distinct neural enhancements in AP and synesthesia: common enhancements in early cortical mechanisms of perceptual analysis, followed by relative specialization in later association and categorization processes that support the unique behaviors of these special populations during music listening. PMID:23508195

  10. Neural adaptations underlying cross-education after unilateral strength training.

    Science.gov (United States)

    Fimland, Marius S; Helgerud, Jan; Solstad, Gerd Marie; Iversen, Vegard Moe; Leivseth, Gunnar; Hoff, Jan

    2009-12-01

    The purpose of this study was to investigate the effects of 4-week (16 sessions) unilateral, maximal isometric strength training on contralateral neural adaptations. Subjects were randomised to a strength training group (TG, n = 15) or to a control group (CG, n = 11). Both legs of both groups were tested for plantar flexion maximum voluntary isometric contractions (MVCs), surface electromyogram (EMG), H-reflexes and V-waves in the soleus (SOL) and gastrocnemius medialis (GM) superimposed during MVC and normalised by the M-wave (EMG/M(SUP), H(SUP)/M(SUP), V/M(SUP), respectively), before and after the training period. For the untrained leg, the TG increased compared to the CG for MVC torque (33%, P cross-education of strength.

  11. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

    Science.gov (United States)

    Habibi, Hamed; Rahimi Nohooji, Hamed; Howard, Ian

    2017-09-01

    Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.

  12. Enhanced neural responses to self-triggered voice pitch feedback perturbations.

    Science.gov (United States)

    Liu, Hanjun; Behroozmand, Roozbeh; Larson, Charles R

    2010-05-12

    This study investigated the effect of self-triggered voice fundamental frequency (F0) feedback perturbation on auditory event-related potentials (ERPs) during vocalization and listening. Auditory ERPs were examined in response to self-triggered and computer-triggered -200 cents pitch-shift stimuli while participants vocalized or listened to the playback of their self-vocalizations. The stimuli were either presented with a delay of 500-1000 ms after the participants pressed a button or delivered by a computer with an interstimulus interval of 500-1000 ms. Results showed that self-triggered stimuli elicited larger ERPs compared with computer-triggered stimuli during both vocalization and listening conditions. These findings suggest that self-triggered perturbation of self-vocalization auditory feedback may enhance auditory responses to voice feedback pitch perturbation during vocalization and listening.

  13. Pitch expertise is not created equal: Cross-domain effects of musicianship and tone language experience on neural and behavioural discrimination of speech and music.

    Science.gov (United States)

    Hutka, Stefanie; Bidelman, Gavin M; Moreno, Sylvain

    2015-05-01

    Psychophysiological evidence supports a music-language association, such that experience in one domain can impact processing required in the other domain. We investigated the bidirectionality of this association by measuring event-related potentials (ERPs) in native English-speaking musicians, native tone language (Cantonese) nonmusicians, and native English-speaking nonmusician controls. We tested the degree to which pitch expertise stemming from musicianship or tone language experience similarly enhances the neural encoding of auditory information necessary for speech and music processing. Early cortical discriminatory processing for music and speech sounds was characterized using the mismatch negativity (MMN). Stimuli included 'large deviant' and 'small deviant' pairs of sounds that differed minimally in pitch (fundamental frequency, F0; contrastive musical tones) or timbre (first formant, F1; contrastive speech vowels). Behavioural F0 and F1 difference limen tasks probed listeners' perceptual acuity for these same acoustic features. Musicians and Cantonese speakers performed comparably in pitch discrimination; only musicians showed an additional advantage on timbre discrimination performance and an enhanced MMN responses to both music and speech. Cantonese language experience was not associated with enhancements on neural measures, despite enhanced behavioural pitch acuity. These data suggest that while both musicianship and tone language experience enhance some aspects of auditory acuity (behavioural pitch discrimination), musicianship confers farther-reaching enhancements to auditory function, tuning both pitch and timbre-related brain processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Melodic pitch expectation interacts with neural responses to syntactic but not semantic violations.

    Science.gov (United States)

    Carrus, Elisa; Pearce, Marcus T; Bhattacharya, Joydeep

    2013-09-01

    Current behavioural and electrophysiological evidence suggests that music and language syntactic processing depends on at least partly shared neural resources. Existing studies using a simultaneous presentation paradigm are limited to the effects of violations of harmonic structure in Western tonal music on processing of single syntactic or semantic violations. Because melody is a universal property of music as it is emphasized also by non-western musical traditions, it is fundamental to investigate interactions between melodic expectation and language processing. The present study investigates the effect of melodically unexpected notes on neural responses elicited by linguistic violations. Sentences with or without a violation in the last word were presented on screen simultaneously with melodies whose last note had a high- or low-probability, as estimated by a computational model of melodic expectation. Violations in language could be syntactic, semantic or combined. The electroencephalogram (EEG) was recorded while participants occasionally responded to language stimuli. Confirming previous studies, low-probability notes elicited an enhanced N1 compared to high-probability notes. Further, syntactic violations elicited a left anterior negativity (LAN) and P600 component, and semantic violations elicited an N400. Combined violations elicited components which resembled neural responses to both syntactic and semantic incongruities. The LAN amplitude was decreased when language syntactic violations were presented simultaneously with low-probability notes compared to when they were presented with high-probability notes. The N400 was not influenced by the note-probability. These findings show support for the neural interaction between language and music processing, including novel evidence for melodic processing which can be incorporated in a computational framework of melodic expectation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Functional Ear (A)Symmetry in Brainstem Neural Activity Relevant to Encoding of Voice Pitch: A Precursor for Hemispheric Specialization?

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Bidelman, Gavin M.; Smalt, Christopher J.

    2011-01-01

    Pitch processing is lateralized to the right hemisphere; linguistic pitch is further mediated by left cortical areas. This experiment investigates whether ear asymmetries vary in brainstem representation of pitch depending on linguistic status. Brainstem frequency-following responses (FFRs) were elicited by monaural stimulation of the left and…

  16. Artificial Neural Network Model for Low Strength RC Beam Shear ...

    African Journals Online (AJOL)

    This research was to investigate how the shear strength prediction of low strength reinforced concrete beams will improve under an ANN model. An existing database of 310 reinforced concrete beams without web reinforcement was divided into three sets of training, validation and testing. A total of 224 different architectural ...

  17. Early maturation of frequency-following responses to voice pitch in infants with normal hearing.

    Science.gov (United States)

    Jeng, Fuh-Cherng; Schnabel, Elizabeth A; Dickman, Brenda M; Hu, Jiong; Li, Ximing; Lin, Chia-Der; Chung, Hsiung-Kwang

    2010-12-01

    Neural plasticity of pitch processing mechanisms at the human brainstem, as reflected by the scalp-recorded frequency-following response (FFR) to voice pitch, has been reported for normal-hearing adults. Characteristics and maturation of such a response during the first year of life have remained unclear. The purpose of this study was to examine the characteristics of FFR to voice pitch in normal-hearing infants and to make a direct comparison with adults using the same stimulus and recording parameters. 9 infants and 9 adults were recruited. A Chinese monosyllable that mimics the English vowel /i/ with a rising pitch was used to elicit the FFR to voice pitch. The results demonstrated that infant FFRs showed slightly larger Pitch Strength but comparable Frequency Error, Slope Error, and Tracking Accuracy to those obtained from adults. Early maturation of FFRs was also observed in the infants starting from 1 to 3 mo. of age.

  18. Prediction of Concrete Compressive Strength by Evolutionary Artificial Neural Networks

    National Research Council Canada - National Science Library

    Nikoo, Mehdi; Torabian Moghadam, Farshid; Sadowski, Łukasz

    2015-01-01

    ...) in determining the compressive strength of concrete [1-9]. It is proper to note that there were mostly conventional applications of ANNs not disrupted in facing inaccurate data and information...

  19. Neural differences between the processing of musical meaning conveyed by direction of pitch change and natural music in congenital amusia.

    Science.gov (United States)

    Zhou, Linshu; Liu, Fang; Jing, Xiaoyi; Jiang, Cunmei

    2017-02-01

    Music is a unique communication system for human beings. Iconic musical meaning is one dimension of musical meaning, which emerges from musical information resembling sounds of objects, qualities of objects, or qualities of abstract concepts. The present study investigated whether congenital amusia, a disorder of musical pitch perception, impacts the processing of iconic musical meaning. With a cross-modal semantic priming paradigm, target images were primed by semantically congruent or incongruent musical excerpts, which were characterized by direction (upward or downward) of pitch change (Experiment 1), or were selected from natural music (Experiment 2). Twelve Mandarin-speaking amusics and 12 controls performed a recognition (implicit) and a semantic congruency judgment (explicit) task while their EEG waveforms were recorded. Unlike controls, amusics failed to elicit an N400 effect when musical meaning was represented by direction of pitch change, regardless of the nature of the tasks (implicit versus explicit). However, the N400 effect in response to musical meaning in natural musical excerpts was observed for both the groups in both types of tasks. These results indicate that amusics are able to process iconic musical meaning through multiple acoustic cues in natural musical excerpts, but not through the direction of pitch change. This is the first study to investigate the processing of musical meaning in congenital amusia, providing evidence in support of the "melodic contour deafness hypothesis" with regard to iconic musical meaning processing in this disorder. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Perceiving pitch absolutely: comparing absolute and relative pitch possessors in a pitch memory task

    National Research Council Canada - National Science Library

    Schulze, Katrin; Gaab, Nadine; Schlaug, Gottfried

    2009-01-01

    .... The aim of this fMRI study was to examine the neural network underlying AP using a pitch memory experiment and contrasting two groups of musicians with each other, those that have AP and those that do...

  1. Neural adaptations to strength training: moving beyond transcranial magnetic stimulation and reflex studies.

    Science.gov (United States)

    Carroll, T J; Selvanayagam, V S; Riek, S; Semmler, J G

    2011-06-01

    It has long been believed that training for increased strength not only affects muscle tissue, but also results in adaptive changes in the central nervous system. However, only in the last 10 years has the use of methods to study the neurophysiological details of putative neural adaptations to training become widespread. There are now many published reports that have used single motor unit recordings, electrical stimulation of peripheral nerves, and non-invasive stimulation of the human brain [i.e. transcranial magnetic stimulation (TMS)] to study neural responses to strength training. In this review, we aim to summarize what has been learned from single motor unit, reflex and TMS studies, and identify the most promising avenues to advance our conceptual understanding with these methods. We also consider the few strength training studies that have employed alternative neurophysiological techniques such as functional magnetic resonance imaging and electroencephalography. The nature of the information that these techniques can provide, as well as their major technical and conceptual pitfalls, are briefly described. The overall conclusion of the review is that the current evidence regarding neural adaptations to strength training is inconsistent and incomplete. In order to move forward in our understanding, it will be necessary to design studies that are based on a rigorous consideration of the limitations of the available techniques, and that are specifically targeted to address important conceptual questions. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  2. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals.

    Science.gov (United States)

    Kim, Junkyeong; Lee, Chaggil; Park, Seunghee

    2017-06-07

    Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.

  3. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks.

    Science.gov (United States)

    Trtnik, Gregor; Kavcic, Franci; Turk, Goran

    2009-01-01

    Ultrasonic pulse velocity technique is one of the most popular non-destructive techniques used in the assessment of concrete properties. However, it is very difficult to accurately evaluate the concrete compressive strength with this method since the ultrasonic pulse velocity values are affected by a number of factors, which do not necessarily influence the concrete compressive strength in the same way or to the same extent. This paper deals with the analysis of such factors on the velocity-strength relationship. The relationship between ultrasonic pulse velocity, static and dynamic Young's modulus and shear modulus was also analyzed. The influence of aggregate, initial concrete temperature, type of cement, environmental temperature, and w/c ratio was determined by our own experiments. Based on the experimental results, a numerical model was established within the Matlab programming environment. The multi-layer feed-forward neural network was used for this purpose. The paper demonstrates that artificial neural networks can be successfully used in modelling the velocity-strength relationship. This model enables us to easily and reliably estimate the compressive strength of concrete by using only the ultrasonic pulse velocity value and some mix parameters of concrete.

  4. Volatility Degree Forecasting of Stock Market by Stochastic Time Strength Neural Network

    Directory of Open Access Journals (Sweden)

    Haiyan Mo

    2013-01-01

    Full Text Available In view of the applications of artificial neural networks in economic and financial forecasting, a stochastic time strength function is introduced in the backpropagation neural network model to predict the fluctuations of stock price changes. In this model, stochastic time strength function gives a weight for each historical datum and makes the model have the effect of random movement, and then we investigate and forecast the behavior of volatility degrees of returns for the Chinese stock market indexes and some global market indexes. The empirical research is performed in testing the prediction effect of SSE, SZSE, HSI, DJIA, IXIC, and S&P 500 with different selected volatility degrees in the established model.

  5. Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training.

    Science.gov (United States)

    Balshaw, Thomas G; Massey, Garry J; Maden-Wilkinson, Thomas M; Tillin, Neale A; Folland, Jonathan P

    2016-06-01

    Training specificity is considered important for strength training, although the functional and underpinning physiological adaptations to different types of training, including brief explosive contractions, are poorly understood. This study compared the effects of 12 wk of explosive-contraction (ECT, n = 13) vs. sustained-contraction (SCT, n = 16) strength training vs. control (n = 14) on the functional, neural, hypertrophic, and intrinsic contractile characteristics of healthy young men. Training involved 40 isometric knee extension repetitions (3 times/wk): contracting as fast and hard as possible for ∼1 s (ECT) or gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT). Torque and electromyography during maximum and explosive contractions, torque during evoked octet contractions, and total quadriceps muscle volume (QUADSVOL) were quantified pre and post training. MVT increased more after SCT than ECT [23 vs. 17%; effect size (ES) = 0.69], with similar increases in neural drive, but greater QUADSVOL changes after SCT (8.1 vs. 2.6%; ES = 0.74). ECT improved explosive torque at all time points (17-34%; 0.54 ≤ ES ≤ 0.76) because of increased neural drive (17-28%), whereas only late-phase explosive torque (150 ms, 12%; ES = 1.48) and corresponding neural drive (18%) increased after SCT. Changes in evoked torque indicated slowing of the contractile properties of the muscle-tendon unit after both training interventions. These results showed training-specific functional changes that appeared to be due to distinct neural and hypertrophic adaptations. ECT produced a wider range of functional adaptations than SCT, and given the lesser demands of ECT, this type of training provides a highly efficient means of increasing function. Copyright © 2016 the American Physiological Society.

  6. Temporal Coding of Periodicity Pitch in the Auditory System: An Overview

    Directory of Open Access Journals (Sweden)

    Peter Cariani

    1999-01-01

    Population-wide inter-spike interval distributions are constructed by summing together intervals from the observed responses of many single Type I auditory nerve fibers. Features in such distributions correspond closely with pitches that are heard by human listeners. The most common all-order interval present in the auditory nerve array almost invariably corresponds to the pitch frequency, whereas the relative fraction of pitchrelated intervals amongst all others qualitatively corresponds to the strength of the pitch. Consequently, many diverse aspects of pitch perception are explained in terms of such temporal representations. Similar stimulus-driven temporal discharge patterns are observed in major neuronal populations of the cochlear nucleus. Population-interval distributions constitute an alternative time-domain strategy for representing sensory information that complements spatially organized sensory maps. Similar autocorrelation-like representations are possible in other sensory systems, in which neural discharges are time-locked to stimulus waveforms.

  7. Prediction of Compressive Strength of Concrete Using Artificial Neural Network and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Palika Chopra

    2016-01-01

    Full Text Available An effort has been made to develop concrete compressive strength prediction models with the help of two emerging data mining techniques, namely, Artificial Neural Networks (ANNs and Genetic Programming (GP. The data for analysis and model development was collected at 28-, 56-, and 91-day curing periods through experiments conducted in the laboratory under standard controlled conditions. The developed models have also been tested on in situ concrete data taken from literature. A comparison of the prediction results obtained using both the models is presented and it can be inferred that the ANN model with the training function Levenberg-Marquardt (LM for the prediction of concrete compressive strength is the best prediction tool.

  8. Neural substrate for brain stimulation reward in the rat: cathodal and anodal strength-duration properties.

    Science.gov (United States)

    Matthews, G

    1977-08-01

    The trade-off between current strength and duration of a stimulating pulse was studied for the rewarding and priming effects of brain stimulation reward (BSR). With cathodal pulses, strenght-duration functions for BSR had chronaxies of .8-3 msec. No differences were observed between the results for rewarding and priming effects. With anodal pulses. strength-duration curves were parallel to the cathodal curves at pulse durations of .1-5 msec, but at pulse durations greater than 5 msec the anodal curves showed a greater drop in required current intensity than did the cathodal curves. The parallel portion of the anodal curves was interpreted as due to anode-make excitation, and the drop at longer pulse durations was interpreted as due to anode-break excitation. Cathodal strength-duration functions for the motor effect elicited through the BSR electrodes had chronaxies of .15-.48 msec. Measurements of the latency of the muscle twitch confirmed that anode-make and anode-break excitation occurred, the latter becoming evident at pulse durations as brief as .3-.4 msec. The results provide quantitative characterization of cathodal and anodal strength-duration properties of the neural substrate for BSR and are discussed in terms of their value in guiding electrophysiological investigation of that substrate.

  9. Effect of Rivet Pitch upon the Fatigue Strength of Single-row Riveted Joints of 0.025- to 0.025-inch 24S-T Alclad

    Science.gov (United States)

    Seliger, Victor

    1943-01-01

    S-N curves at the range ratio of 0.2 were experimentally obtained for each of the following values of rivet pitch P as used in a single-row lap joint of 0.025- to 0.025-inch 24S-T alclad with one-eight AN430 round-head rivets: p=0.5, 0.75, 1.0, 1.5. Families of constant rivet pitch curves, which define the fatigue life for specimens studied, were developed. Curves showing the variation of the effective stress concentration factor in fatigue with rivet pitch and maximum load per rivet were also established.

  10. Voice Pitch Elicited Frequency Following Response in Chinese Elderlies.

    Science.gov (United States)

    Wang, Shuo; Hu, Jiong; Dong, Ruijuan; Liu, Dongxin; Chen, Jing; Musacchia, Gabriella; Liu, Bo

    2016-01-01

    Background: Perceptual and electrophysiological studies have found reduced speech discrimination in quiet and noisy environment, delayed neural timing, decreased neural synchrony, and decreased temporal processing ability in elderlies, even those with normal hearing. However, recent studies have also demonstrated that language experience and auditory training enhance the temporal dynamics of sound encoding in the auditory brainstem response (ABR). The purpose of this study was to explore the pitch processing ability at the brainstem level in an aging population that has a tonal language background. Method: Mandarin speaking younger (n = 12) and older (n = 12) adults were recruited for this study. All participants had normal audiometric test results and normal suprathreshold click-evoked ABR. To record frequency following responses (FFRs) elicited by Mandarin lexical tones, two Mandarin Chinese syllables with different fundamental frequency pitch contours (Flat Tone and Falling Tone) were presented at 70 dB SPL. Fundamental frequencies (f0) of both the stimulus and the responses were extracted and compared to individual brainstem responses. Two indices were used to examine different aspects of pitch processing ability at the brainstem level: Pitch Strength and Pitch Correlation. Results: Lexical tone elicited FFR were overall weaker in the older adult group compared to their younger adult counterpart. Measured by Pitch Strength and Pitch Correlation, statistically significant group differences were only found when the tone with a falling f0 (Falling Tone) were used as the stimulus. Conclusion: Results of this study demonstrated that in a tonal language speaking population, pitch processing ability at the brainstem level of older adults are not as strong and robust as their younger counterparts. Findings of this study are consistent with previous reports on brainstem responses of older adults whose native language is English. On the other hand, lexical tone elicited

  11. Voice Pitch Elicited Frequency Following Response in Chinese Elderlies

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2016-11-01

    Full Text Available Background: Perceptual and electrophysiological studies have found reduced speech discrimination in quiet and noisy environment, delayed neural timing, decreased neural synchrony, and decreased temporal processing ability in elderlies, even those with normal hearing. However, recent studies have also demonstrated that language experience and auditory training enhance the temporal dynamics of sound encoding in the auditory brainstem response. The purpose of this study was to explore the pitch processing ability at the brainstem level in an aging population that has a tonal language background.Method: Mandarin speaking younger (n=12 and older (n=12 adults were recruited for this study. All participants had normal audiometric test results and normal suprathreshold click-evoked auditory brainstem responses (ABR. To record Frequency Following Responses (FFR elicited by Mandarin lexical tones, two Mandarin Chinese syllables with different fundamental frequency pitch contours (Flat Tone and Falling Tone were presented at 70 dB SPL. Fundamental frequencies (f0 of both the stimulus and the responses were extracted and compared to individual brainstem responses. Two indices were used to examine different aspects of pitch processing ability at the brainstem level: Pitch Strength and Pitch Correlation. Results: Lexical tone elicited FFR were overall weaker in the older adult group compared to their younger adult counterpart. Measured by Pitch Strength and Pitch Correlation, statistically significant group differences were only found when the tone with a falling f0 (Falling Tone were used as the stimulus.Conclusion: Results of this study demonstrated that in a tonal language speaking population, pitch processing ability at the brainstem level of older adults are not as strong and robust as their younger counterparts. Findings of this study are consistent with previous reports on brainstem responses of older adults whose native language is English. On the

  12. Pitch perception beyond the traditional existence region of pitch

    DEFF Research Database (Denmark)

    Oxenham, Andrew J.; Micheyl, Christophe; Keebler, Michael V.

    2011-01-01

    Humans’ ability to recognize musical melodies is generally limited to pure-tone frequencies below 4 or 5 kHz. This limit coincides with the highest notes on modern musical instruments and is widely believed to reflect the upper limit of precise stimulusdriven spike timing in the auditory nerve. We...... tested the upper limits of pitch and melody perception in humans using pure and harmonic complex tones, such as those produced by the human voice and musical instruments, in melody recognition and pitchmatching tasks. We found that robust pitch perception can be elicited by harmonic complex tones...... with fundamental frequencies below 2 kHz, even when all of the individual harmonics are above 6 kHz—well above the currently accepted existence region of pitch and above the currently accepted limits of neural phase locking. The results suggest that the perception of musical pitch at high frequencies...

  13. Cortical pitch response components index stimulus onset/offset and dynamic features of pitch contours

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Vijayaraghavan, Venkatakrishnan

    2014-01-01

    Voice pitch is an important information-bearing component of language that is subject to experience dependent plasticity at both early cortical and subcortical stages of processing. We’ve already demonstrated that pitch onset component (Na) of the cortical pitch response (CPR) is sensitive to flat pitch and its salience. In regards to dynamic pitch, we do not yet know whether the multiple pitch-related transient components of the CPR reflect specific temporal attributes of such stimuli. Here we examine the sensitivity of the multiple transient components of CPR to changes in pitch acceleration associated with the Mandarin high rising lexical tone. CPR responses from Chinese listeners were elicited by three citation forms varying in pitch acceleration and duration. Results showed that the pitch onset component (Na) was invariant to changes in acceleration. In contrast, Na-Pb and Pb-Nb showed a systematic increase in the interpeak latency and decrease in amplitude with increase in pitch acceleration that followed the time course of pitch change across the three stimuli. A strong correlation with pitch acceleration was observed for these two components only – a putative index of pitch-relevant neural activity associated with the more rapidly-changing portions of the pitch contour. Pc-Nc marks unambiguously the stimulus offset. We therefore propose that in the early stages of cortical sensory processing, a series of neural markers flag different temporal attributes of a dynamic pitch contour: onset of temporal regularity (Na); changes in temporal regularity between onset and offset (Na-Pb, Pb-Nb); and offset of temporal regularity (Pc-Nc). At the temporal electrode sites, the stimulus with the most gradual change in pitch acceleration evoked a rightward asymmetry. Yet within the left hemisphere, stimuli with more gradual change were indistinguishable. These findings highlight the emergence of early hemispheric preferences and their functional roles as related to

  14. Strength training-induced responses in older adults: attenuation of descending neural drive with age.

    Science.gov (United States)

    Unhjem, Runar; Lundestad, Raymond; Fimland, Marius Steiro; Mosti, Mats Peder; Wang, Eivind

    2015-06-01

    Although reductions in resting H-reflex responses and maximal firing frequency suggest that reduced efferent drive may limit muscle strength in elderly, there are currently no reports of V-wave measurements in elderly, reflecting the magnitude of efferent output to the muscle during maximal contraction. Furthermore, it is uncertain whether potential age-related neural deficiencies can be restored by resistance training. We assessed evoked reflex recordings in the triceps surae muscles during rest and maximal voluntary contraction (MVC), rate of force development (RFD), and muscle mass in seven elderly (74 ± 6 years) males before and after 8 weeks of heavy resistance training, contrasted by seven young (24 ± 4 years) male controls. At baseline, m. soleus (SOL) V/M ratio (0.124 ± 0.082 vs. 0.465 ± 0.197, p elderly compared to young. Also, SOL H-reflex latency (33.29 ± 2.41 vs. 30.29 ± 0.67 ms, p elderly. The reduced neural drive was, despite similar leg muscle mass (10.7 ± 1.2 vs. 11.5 ± 1.4 kg), mirrored by lower MVC (158 ± 48 vs. 240 ± 54 Nm, p elderly. In response to training SOL V/M ratio (0.184 ± 0.092, p elderly, yet only to a level ~40 % of the young. This was accompanied by increased MVC (190 ± 70 Nm, p muscle strength. Furthermore, this motor system impairment can to some extent be improved by heavy resistance training.

  15. Prediction of zeolite-cement-sand unconfined compressive strength using polynomial neural network

    Science.gov (United States)

    MolaAbasi, H.; Shooshpasha, I.

    2016-04-01

    The improvement of local soils with cement and zeolite can provide great benefits, including strengthening slopes in slope stability problems, stabilizing problematic soils and preventing soil liquefaction. Recently, dosage methodologies are being developed for improved soils based on a rational criterion as it exists in concrete technology. There are numerous earlier studies showing the possibility of relating Unconfined Compressive Strength (UCS) and Cemented sand (CS) parameters (voids/cement ratio) as a power function fits. Taking into account the fact that the existing equations are incapable of estimating UCS for zeolite cemented sand mixture (ZCS) well, artificial intelligence methods are used for forecasting them. Polynomial-type neural network is applied to estimate the UCS from more simply determined index properties such as zeolite and cement content, porosity as well as curing time. In order to assess the merits of the proposed approach, a total number of 216 unconfined compressive tests have been done. A comparison is carried out between the experimentally measured UCS with the predictions in order to evaluate the performance of the current method. The results demonstrate that generalized polynomial-type neural network has a great ability for prediction of the UCS. At the end sensitivity analysis of the polynomial model is applied to study the influence of input parameters on model output. The sensitivity analysis reveals that cement and zeolite content have significant influence on predicting UCS.

  16. Pitch Fork

    DEFF Research Database (Denmark)

    Williams, Peter Leslie; Overholt, Daniel

    2017-01-01

    Pitch Fork is a prototype of an alternate, actuated digital musical instrument (DMI). It uses 5 infra-red and 4 piezoelectric sensors to control an additive synthesis engine. Iron bars are used as the physical point of contact in interaction with the aim of using this materials natural acoustic p...... properties as a control signal for aspects of the digitally produced sound. This choice of material was also chosen to affect player experience. Sensor readings are relayed to a Macbook via an Arduino Mega. Mappings and audio output signal is carried out with Pure Data Extended....

  17. Predicting manual arm strength: A direct comparison between artificial neural network and multiple regression approaches.

    Science.gov (United States)

    La Delfa, Nicholas J; Potvin, Jim R

    2016-02-29

    In ergonomics, strength prediction has typically been accomplished using linked-segment biomechanical models, and independent estimates of strength about each axis of the wrist, elbow and shoulder joints. It has recently been shown that multiple regression approaches, using the simple task-relevant inputs of hand location and force direction, may be a better method for predicting manual arm strength (MAS) capabilities. Artificial neural networks (ANNs) also serve as a powerful data fitting approach, but their application to occupational biomechanics and ergonomics is limited. Therefore, the purpose of this study was to perform a direct comparison between ANN and regression models, by evaluating their ability to predict MAS with identical sets of development and validation MAS data. Multi-directional MAS data were obtained from 95 healthy female participants at 36 hand locations within the reach envelope. ANN and regression models were developed using a random, but identical, sample of 85% of the MAS data (n=456). The remaining 15% of the data (n=80) were used to validate the two approaches. When compared to the development data, the ANN predictions had a much higher explained variance (90.2% vs. 66.5%) and much lower RMSD (9.3N vs. 17.2N), vs. the regression model. The ANN also performed better with the independent validation data (r(2)=78.6%, RMSD=15.1) compared to the regression approach (r(2)=65.3%, RMSD=18.6N). These results suggest that ANNs provide a more accurate and robust alternative to regression approaches, and should be considered more often in biomechanics and ergonomics evaluations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Relative power of harmonics in human frequency-following responses associated with voice pitch in American and Chinese adults.

    Science.gov (United States)

    Jeng, Fuh-Cherng; Costilow, Cassie E; Stangherlin, Daniela P; Lin, Chia-Der

    2011-08-01

    When the fundamental frequency (f0) is removed from a complex stimulus, the pitch of the f0 is still perceived by the listener. Through the use of the scalp-recorded frequency-following response, this study examined the relative contributions of thef0 and its harmonics in pitch processing by systematically manipulating the speech stimulus to remove component frequencies. 12 American and 12 Chinese adults were recruited. There were statistically significant effects of pitch strength and frequency error for the experimental-condition factor. There were significantly larger responses to the harmonics-only conditions than those obtained in the f0-only and control conditions. No statistically significant difference was observed between the two groups of participants. These findings indicate that neural responses associated with individual harmonics dominate the pitch processing in the human brainstem, irrespective of whether the listener's native language is nontonal or tonal.

  19. Plasticity in central neural drive with short-term disuse and recovery - effects on muscle strength and influence of aging.

    Science.gov (United States)

    Hvid, L G; Aagaard, P; Ørtenblad, N; Kjaer, M; Suetta, C

    2018-02-21

    While short-term disuse negatively affects mechanical muscle function (e.g. isometric muscle strength) little is known of the relative contribution of adaptions in central neural drive and peripheral muscle contractility. The present study investigated the relative contribution of adaptations in central neural drive and peripheral muscle contractility on changes in isometric muscle strength following short-term unilateral disuse (4 days, knee brace) and subsequent active recovery (7 days, one session of resistance training) in young (n = 11, 24 yrs) and old healthy men (n = 11, 67 yrs). Maximal isometric knee extensor strength (MVC) (isokinetic dynamometer), voluntary muscle activation (superimposed twitch technique), and electrically evoked muscle twitch force (single and doublet twitch stimulation) were assessed prior to and after disuse, and after recovery. Following disuse, relative decreases in MVC did not differ statistically between old (16.4 ± 3.7%, p plasticity in voluntary muscle activation (~central neural drive) is a dominant mechanism affecting short-term disuse- and recovery-induced changes in muscle strength in older adults. Copyright © 2017. Published by Elsevier Inc.

  20. Implications of movement-related cortical potential for understanding neural adaptations in muscle strength tasks

    Science.gov (United States)

    2014-01-01

    This systematic review aims to provide information about the implications of the movement-related cortical potential (MRCP) in acute and chronic responses to the counter resistance training. The structuring of the methods of this study followed the proposals of the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses). It was performed an electronically search in Pubmed/Medline and ISI Web of Knowledge data bases, from 1987 to 2013, besides the manual search in the selected references. The following terms were used: Bereitschaftspotential, MRCP, strength and force. The logical operator “AND” was used to combine descriptors and terms used to search publications. At the end, 11 studies attended all the eligibility criteria and the results demonstrated that the behavior of MRCP is altered because of different factors such as: force level, rate of force development, fatigue induced by exercise, and the specific phase of muscular action, leading to an increase in the amplitude in eccentric actions compared to concentric actions, in acute effects. The long-term adaptations demonstrated that the counter resistance training provokes an attenuation in the amplitude in areas related to the movement, which may be caused by neural adaptation occurred in the motor cortex. PMID:24602228

  1. able utilizando redes neuronales artificiales; UTILIZATION OF ARTIFICIAL NEURAL NETWORK IN THE SIMULATION AND CONTROL OF WIND TURBINE GENERATORS WITH VARIABLE SPEED AND VARIABLE PITCH.

    Directory of Open Access Journals (Sweden)

    Osley López González

    2011-02-01

    , considered as a whole, must be able of respond with anadequate precision and speed in response to the randomness and variability of the wind.The relationship between the wind speed, the blade pitch and the generator speed in order to produce themaximum power and also be able to limit the output power for large wind speeds is a very complicated oneand it is very difficult to find its mathematical function.In this paper, the authors, utilizing the MATLABSIMULINK toolboxes, propose representing this functional relation by means of an Artificial Neural Network(ANN. The parameters and characteristics of an existing wind turbine generator are utilized and it isdemonstrated that it is possible to use an ANN in the simulation and control of a variable speed, variablepitch wind turbine that capture the maximum power from the wind.

  2. The increase in surface EMG could be a misleading measure of neural adaptation during the early gains in strength.

    Science.gov (United States)

    Arabadzhiev, Todor I; Dimitrov, Vladimir G; Dimitrov, George V

    2014-08-01

    To test the validity of using the increase in surface EMG as a measure of neural adaptation during the early gains in strength. Simulation of EMG signals detected by surface bipolar electrode with 20-mm inter-pole distance at different radial distances from the muscle and longitudinal distances from the end-plate area. The increases in the root mean square (RMS) of the EMG signal due to possible alteration in the neural drive or elevation of the intracellular negative after-potentials, detected in fast fatigable muscle fibres during post-tetanic potentiation and assumed to accompany post-activation potentiation, were compared. Lengthening of the intracellular action potential (IAP) profile due to elevation of the negative after-potentials could affect amplitude characteristics of surface EMG detected at any axial distance stronger than alteration in the neural drive. This was irrespective of the fact that the elevation of IAP negative after-potential was applied to fast fatigable motor units (MUs) only, while changes in frequency of activation (simulating neural drive changes) were applied to all MUs. In deeper muscles, where the fibre-electrode distance was larger, the peripheral effect was more pronounced. The normalization of EMG amplitude characteristics to an M-wave one could result only in partial elimination of peripheral factor influence The increase in RMS of surface EMG during the early gains in strength should not be directly related to the changes in the neural drive. The relatively small but long-lasting elevated free resting calcium after high-resistance strength training could result in force potentiation and EMG increase.

  3. Optimizing the Flexural Strength of Beams Reinforced with Fiber Reinforced Polymer Bars Using Back-Propagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Bahman O. Taha

    2015-06-01

    Full Text Available The reinforced concrete with fiber reinforced polymer (FRP bars (carbon, aramid, basalt and glass is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP bars.

  4. Sensitivity of the cortical pitch onset response to height, time-variance, and directionality of dynamic pitch.

    Science.gov (United States)

    Bidelman, Gavin M

    2015-08-31

    Event-related brain potentials (ERPs) demonstrate that human auditory cortical responses are sensitive to changes in static pitch as indexed by the pitch onset response (POR), a negativity generated at the initiation of acoustic periodicity. Yet, it is still unclear if this brain signature is sensitive to dynamic, time-varying properties of pitch more characteristic of those found in naturalistic speech and music. Neuroelectric PORs were recorded in response to contrastive pitch patterns differing in their pitch height, time-variance, and directionality (i.e., rise vs. fall). Broadband noise followed by contiguous iterated rippled noise (producing salient pitch sweeps) was used to temporally separate neural activity coding the onset of acoustic energy from the onset of time-varying pitch. Analysis of PORs revealed distinct modulations in response latency that distinguished static from time-varying pitch contours (steady-statepitch height (highpitch sweeps (rise=fall). Our findings suggest that the POR signature provides a useful neural index of auditory cortical pitch processing for some, but not all pitch-evoking stimuli. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. A perceptual pitch boundary in a non-human primate

    Directory of Open Access Journals (Sweden)

    Olivier eJoly

    2014-09-01

    Full Text Available Pitch is an auditory percept critical to the perception of music and speech, and for these harmonic sounds, pitch is closely related to the repetition rate of the acoustic wave. This paper reports a test of the assumption that non-human primates and especially rhesus monkeys perceive the pitch of these harmonic sounds much as humans do. A new procedure was developed to train macaques to discriminate the pitch of harmonic sounds and thereby demonstrate that the lower limit for pitch perception in macaques is close to 30 Hz, as it is in humans. Moreover, when the phases of successive harmonics are alternated to cause a pseudo-doubling of the repetition rate, the lower pitch boundary in macaques decreases substantially, as it does in humans. The results suggest that both species use neural firing times to discriminate pitch, at least for sounds with relatively low repetition rates.

  6. Pitch and pitch variation in lesbian women.

    Science.gov (United States)

    Van Borsel, John; Vandaele, Jana; Corthals, Paul

    2013-09-01

    The purpose of this study was to investigate to what extent lesbian women demonstrate pitch and pitch variation that is different from that of heterosexual women. Static group comparison. The average pitch and pitch variation of a group of 34 self-identified lesbian women and an age-matched group of 68 heterosexual women were compared. The speech sample consisted of read speech. Acoustic analysis was performed by means of PRAAT. Mean fundamental frequency in the group of lesbian women was significantly lower than that of the group of heterosexual women. The lesbian woman also showed significantly less pitch variation. Lesbian women tend to demonstrate a lower average pitch and less pitch variation than heterosexual women, but this does not mean a confirmation of the popular stereotype that lesbian women are masculine women. In their assessment of clients with voice disorders, clinicians should reckon with the sociophonetic variation that is associated with sexual orientation. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  7. Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression

    Directory of Open Access Journals (Sweden)

    Neela Deshpande

    2014-12-01

    Full Text Available In the recent past Artificial Neural Networks (ANN have emerged out as a promising technique for predicting compressive strength of concrete. In the present study back propagation was used to predict the 28 day compressive strength of recycled aggregate concrete (RAC along with two other data driven techniques namely Model Tree (MT and Non-linear Regression (NLR. Recycled aggregate is the current need of the hour owing to its environmental friendly aspect of re-use of the construction waste. The study observed that, prediction of 28 day compressive strength of RAC was done better by ANN than NLR and MT. The input parameters were cubic meter proportions of Cement, Natural fine aggregate, Natural coarse Aggregates, recycled aggregates, Admixture and Water (also called as raw data. The study also concluded that ANN performs better when non-dimensional parameters like Sand–Aggregate ratio, Water–total materials ratio, Aggregate–Cement ratio, Water–Cement ratio and Replacement ratio of natural aggregates by recycled aggregates, were used as additional input parameters. Study of each network developed using raw data and each non dimensional parameter facilitated in studying the impact of each parameter on the performance of the models developed using ANN, MT and NLR as well as performance of the ANN models developed with limited number of inputs. The results indicate that ANN learn from the examples and grasp the fundamental domain rules governing strength of concrete.

  8. Effect of anatomical variability on neural stimulation strength and focality in electroconvulsive therapy (ECT) and magnetic seizure therapy (MST).

    Science.gov (United States)

    Deng, Zhi-De; Lisanby, Sarah H; Peterchev, Angel V

    2009-01-01

    We present a quantitative comparison of two metrics-neural stimulation strength and focality-in electrocon-vulsive therapy (ECT) and magnetic seizure therapy (MST) using finite-element method (FEM) simulation in a spherical head model. Five stimulation modalities were modeled, including bilateral ECT, unilateral ECT, focal electrically administered seizure therapy (FEAST), and MST with circular and double-cone coils, with stimulation parameters identical to those applied in clinical practice. We further examine the effect on the stimulation metrics of individual-, sex- and age-related variability in tissue layer thickness and conductivity. Neural stimulation by MST is shown to be more focal and superficial than ECT. This result suggests that it may be advantageous to reduce the current used in ECT. The stimulation strength in MST is also less sensitive to variations in head geometry and tissue conductivity than in ECT. Individualization of pulse amplitude in both ECT and MST could compensate for anatomical variability, which could lead to more consistent clinical outcomes.

  9. Perceiving pitch absolutely: Comparing absolute and relative pitch possessors in a pitch memory task

    Directory of Open Access Journals (Sweden)

    Schlaug Gottfried

    2009-08-01

    Full Text Available Abstract Background The perceptual-cognitive mechanisms and neural correlates of Absolute Pitch (AP are not fully understood. The aim of this fMRI study was to examine the neural network underlying AP using a pitch memory experiment and contrasting two groups of musicians with each other, those that have AP and those that do not. Results We found a common activation pattern for both groups that included the superior temporal gyrus (STG extending into the adjacent superior temporal sulcus (STS, the inferior parietal lobule (IPL extending into the adjacent intraparietal sulcus (IPS, the posterior part of the inferior frontal gyrus (IFG, the pre-supplementary motor area (pre-SMA, and superior lateral cerebellar regions. Significant between-group differences were seen in the left STS during the early encoding phase of the pitch memory task (more activation in AP musicians and in the right superior parietal lobule (SPL/intraparietal sulcus (IPS during the early perceptual phase (ITP 0–3 and later working memory/multimodal encoding phase of the pitch memory task (more activation in non-AP musicians. Non-significant between-group trends were seen in the posterior IFG (more in AP musicians and the IPL (more anterior activations in the non-AP group and more posterior activations in the AP group. Conclusion Since the increased activation of the left STS in AP musicians was observed during the early perceptual encoding phase and since the STS has been shown to be involved in categorization tasks, its activation might suggest that AP musicians involve categorization regions in tonal tasks. The increased activation of the right SPL/IPS in non-AP musicians indicates either an increased use of regions that are part of a tonal working memory (WM network, or the use of a multimodal encoding strategy such as the utilization of a visual-spatial mapping scheme (i.e., imagining notes on a staff or using a spatial coding for their relative pitch height for pitch

  10. Timing matters: the processing of pitch relations

    Science.gov (United States)

    Weise, Annekathrin; Grimm, Sabine; Trujillo-Barreto, Nelson J.; Schröger, Erich

    2014-01-01

    The human central auditory system can automatically extract abstract regularities from a variant auditory input. To this end, temporarily separated events need to be related. This study tested whether the timing between events, falling either within or outside the temporal window of integration (~350 ms), impacts the extraction of abstract feature relations. We utilized tone pairs for which tones within but not across pairs revealed a constant pitch relation (e.g., pitch of second tone of a pair higher than pitch of first tone, while absolute pitch values varied across pairs). We measured the mismatch negativity (MMN; the brain’s error signal to auditory regularity violations) to second tones that rarely violated the pitch relation (e.g., pitch of second tone lower). A Short condition in which tone duration (90 ms) and stimulus onset asynchrony between the tones of a pair were short (110 ms) was compared to two conditions, where this onset asynchrony was long (510 ms). In the Long Gap condition, the tone durations were identical to Short (90 ms), but the silent interval was prolonged by 400 ms. In Long Tone, the duration of the first tone was prolonged by 400 ms, while the silent interval was comparable to Short (20 ms). Results show a frontocentral MMN of comparable amplitude in all conditions. Thus, abstract pitch relations can be extracted even when the within-pair timing exceeds the integration period. Source analyses indicate MMN generators in the supratemporal cortex. Interestingly, they were located more anterior in Long Gap than in Short and Long Tone. Moreover, frontal generator activity was found for Long Gap and Long Tone. Thus, the way in which the system automatically registers irregular abstract pitch relations depends on the timing of the events to be linked. Pending that the current MMN data mirror established abstract rule representations coding the regular pitch relation, neural processes building these templates vary with timing. PMID:24966823

  11. Timing matters: The processing of pitch relations

    Directory of Open Access Journals (Sweden)

    Annekathrin eWeise

    2014-06-01

    Full Text Available The human central auditory system can automatically extract abstract regularities from a variant auditory input. To this end, temporarily separated events need to be related. This study tested whether the timing between events, falling either within or outside the temporal window of integration (~350 ms, impacts the extraction of abstract feature relations. We utilized tone pairs for which tones within but not across pairs revealed a constant pitch relation (e.g. pitch of 2nd tone of a pair higher than pitch of 1st tone, while absolute pitch values varied across pairs. We measured the Mismatch Negativity (MMN; the brain’s error signal to auditory regularity violations to 2nd tones that rarely violated the pitch relation (e.g. pitch of 2nd tone lower. A Short condition in which tone duration (90 ms and stimulus onset asynchrony between the tones of a pair were short (110 ms was compared to two conditions, where this onset asynchrony was long (510 ms. In the Long Gap condition the tone durations were identical to Short (90 ms, but the silent interval was prolonged by 400 ms. In Long Tone the duration of the first tone was prolonged by 400 ms, while the silent interval was comparable to Short (20 ms. Results show a frontocentral MMN of comparable amplitude in all conditions. Thus, abstract pitch relations can be extracted even when the within-pair timing exceeds the integration period. Source analyses indicate MMN generators in the supratemporal cortex. Interestingly, they were located more anterior in Long Gap than in Short and Long Tone. Moreover, frontal generator activity was found for Long Gap and Long Tone. Thus, the way in which the system automatically registers irregular abstract pitch relations depends on the timing of the events to be linked. Pending that the current MMN data mirror established abstract rule representations coding the regular pitch relation, neural processes building these templates vary with timing.

  12. Cross-linguistic comparison of frequency-following responses to voice pitch in American and Chinese neonates and adults.

    Science.gov (United States)

    Jeng, Fuh-Cherng; Hu, Jiong; Dickman, Brenda; Montgomery-Reagan, Karen; Tong, Meiling; Wu, Guangqiang; Lin, Chia-Der

    2011-01-01

    Cross-language studies, as reflected by the scalp-recorded frequency-following response (FFR) to voice pitch, have shown the influence of dominant linguistic environments on the encoding of voice pitch at the brainstem level in normal-hearing adults. Research questions that remained unanswered included the characteristics of the FFR to voice pitch in neonates during their immediate postnatal period and the relative contributions of the biological capacities present at birth versus the influence of the listener's postnatal linguistic experience. The purpose of this study was to investigate the characteristics of FFR to voice pitch in neonates during their first few days of life and to examine the relative contributions of the "biological capacity" versus "linguistic experience" influences on pitch processing in the human brainstem. Twelve American neonates (five males, 1-3 days old) and 12 Chinese neonates (seven males, 1-3 days old) were recruited to examine the characteristics of the FFRs during their immediate postnatal days of life. Twelve American adults (three males; age: mean ± SD = 24.6 ± 3.0 yr) and 12 Chinese adults (six males; age: mean ± SD = 25.3 ± 2.6 yr) were also recruited to determine the relative contributions of biological and linguistic influences. A Chinese monosyllable that mimics the English vowel /i/ with a rising pitch (117-166 Hz) was used to elicit the FFR to voice pitch in all participants. Two-way analysis of variance (i.e., the language [English versus Chinese] and age [neonate versus adult] factors) showed a significant difference in Pitch Strength for language (p = 0.035, F = 4.716). A post hoc Tukey-Kramer analysis further demonstrated that Chinese adults had significantly larger Pitch Strength values than Chinese neonates (p = 0.024). This finding, coupled with the fact that American neonates and American adults had comparable Pitch Strength values, supported the linguistic experience model. On the other hand, Pitch Strength

  13. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch.

    Science.gov (United States)

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A; Larson, Charles R

    2014-02-01

    The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. artificial neural network model for low strength rc beam shear capacity

    African Journals Online (AJOL)

    User

    not be adequate in predicting the shear capacity of such concrete members. Work by other re- searchers using artificial intelligence to im- prove on theoretical shear modeling did not consider low strength concrete beams made from both conventional and non-conventional aggregates. Such beams are mostly slender with.

  15. artificial neural network model for low strength rc beam shear capacity

    African Journals Online (AJOL)

    User

    searchers using artificial intelligence to im- prove on theoretical shear modeling did not consider low strength concrete beams made from both conventional and non-conventional aggregates. Such beams are mostly slender with effective depths up to 600mm and percent lon- gitudinal reinforcement up to 3%. This research ...

  16. Effects of culture on musical pitch perception.

    Science.gov (United States)

    Wong, Patrick C M; Ciocca, Valter; Chan, Alice H D; Ha, Louisa Y Y; Tan, Li-Hai; Peretz, Isabelle

    2012-01-01

    The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association--the influence of linguistic background on music pitch processing and disorders--remains elusive. Because languages differ in their usage of elements (e.g., pitch) that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic) comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm) processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada) were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means 'teacher' and 'to try' when spoken in a high and mid pitch pattern, respectively). Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages). This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population), we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of culture

  17. Effects of culture on musical pitch perception.

    Directory of Open Access Journals (Sweden)

    Patrick C M Wong

    Full Text Available The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association--the influence of linguistic background on music pitch processing and disorders--remains elusive. Because languages differ in their usage of elements (e.g., pitch that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means 'teacher' and 'to try' when spoken in a high and mid pitch pattern, respectively. Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages. This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population, we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of

  18. Dial A440 for absolute pitch: absolute pitch memory by non-absolute pitch possessors.

    Science.gov (United States)

    Smith, Nicholas A; Schmuckler, Mark A

    2008-04-01

    Listeners without absolute (or "perfect") pitch have difficulty identifying or producing isolated musical pitches from memory. Instead, they process the relative pattern of pitches, which remains invariant across pitch transposition. Musically untrained non-absolute pitch possessors demonstrated absolute pitch memory for the telephone dial tone, a stimulus that is always heard at the same absolute frequency. Listeners accurately classified pitch-shifted versions of the dial tone as "normal," "higher than normal" or "lower than normal." However, the role of relative pitch processing was also evident, in that listeners' pitch judgments were also sensitive to the frequency range of stimuli.

  19. Perfect pitch reconsidered.

    Science.gov (United States)

    Moulton, Calum

    2014-10-01

    Perfect pitch, or absolute pitch (AP), is defined as the ability to identify or produce the pitch of a sound without need for a reference pitch, and is generally regarded as a valuable asset to the musician. However, there has been no recent review of the literature examining its aetiology and its utility taking into account emerging scientific advances in AP research, notably in functional imaging. This review analyses the key empirical research on AP, focusing on genetic and neuroimaging studies. The review concludes that: AP probably has a genetic predisposition, although this is based on limited evidence; early musical training is almost certainly essential for AP acquisition; and, although there is evidence that it may be relevant to speech processing, AP can interfere with relative pitch, an ability on which humans rely to communicate effectively. The review calls into question the value of AP to musicians and non-musicians alike. © 2014 Royal College of Physicians.

  20. Octave Bias in Pitch Perception: The Influence of Pitch Height on Pitch Class Identification.

    Science.gov (United States)

    Prpic, Valter; Murgia, Mauro; De Tommaso, Matteo; Boschetti, Giulia; Galmonte, Alessandra; Agostini, Tiziano

    2016-09-01

    Pitch height and pitch class are different, but strictly related, percepts of music tones. To investigate the influence of pitch height in a pitch class identification task, we systematically analyzed the errors-in terms of direction and amount-committed by a group of musicians. The aim of our study was to verify the existence of constant errors in the identification of pitch classes across consecutive octaves. Stimuli were single piano tones from the C major scale executed in two consecutive octaves. Participants showed different response patterns in the two octaves. The direction of errors revealed a constant tendency to underestimate pitch classes in the lowest octave and to overestimate pitch classes in the highest octave. Thus, pitch height showed to influence pitch class identification. We called this bias "pitch class polarization", since the same pitch class was judged to be respectively lower and higher, depending on relatively low or high pitch height. © The Author(s) 2016.

  1. High-Intensity Progressive Resistance Training Increases Strength With No Change in Cardiovascular Function and Autonomic Neural Regulation in Older Adults.

    Science.gov (United States)

    Kanegusuku, Hélcio; Queiroz, Andréia C; Silva, Valdo J; de Mello, Marco T; Ugrinowitsch, Carlos; Forjaz, Cláudia L

    2015-07-01

    The effects of high-intensity progressive resistance training (HIPRT) on cardiovascular function and autonomic neural regulation in older adults are unclear. To investigate this issue, 25 older adults were randomly divided into two groups: control (CON, N = 13, 63 ± 4 years; no training) and HIPRT (N = 12, 64 ± 4 years; 2 sessions/week, 7 exercises, 2–4 sets, 10–4 RM). Before and after four months, maximal strength, quadriceps cross-sectional area (QCSA), clinic and ambulatory blood pressures (BP), systemic hemodynamics, and cardiovascular autonomic modulation were measured. Maximal strength and QCSA increased in the HIPRT group and did not change in the CON group. Clinic and ambulatory BP, cardiac output, systemic vascular resistance, stroke volume, heart rate, and cardiac sympathovagal balance did not change in the HIPRT group or the CON group. In conclusion, HIPRT was effective at increasing muscle mass and strength without promoting changes in cardiovascular function or autonomic neural regulation.

  2. Target pitch angle for the microburst escape maneuver

    Science.gov (United States)

    Mulgund, Sandeep S.; Stengel, Robert F.

    1992-01-01

    Recovery performance of a commuter-type aircraft in a microburst encounter is studied using a constant-pitch-attitude strategy and flight path optimization. Results obtained indicate that the pitch attitude which maximized climb rate in a wind shear condition is strongly dependent on whether the aircraft is subjected to a horizontal shear or a downdraft. The pitch attitude which maximizes ground clearance depends on the altitude of the encounter, the strength of the microburst, and the initial position of the aircraft with respect to the downburst core. Best results are obtained at relatively low target pitch angles, in severe wind shear encounters at very low altitudes. A technique for maximizing ground clearance involves maintaining a low pitch attitude early in the encounter, followed by a gradual pitch-up that ceases when the wind shear has been excited.

  3. Repetition suppression in auditory-motor regions to pitch and temporal structure in music.

    Science.gov (United States)

    Brown, Rachel M; Chen, Joyce L; Hollinger, Avrum; Penhune, Virginia B; Palmer, Caroline; Zatorre, Robert J

    2013-02-01

    Music performance requires control of two sequential structures: the ordering of pitches and the temporal intervals between successive pitches. Whether pitch and temporal structures are processed as separate or integrated features remains unclear. A repetition suppression paradigm compared neural and behavioral correlates of mapping pitch sequences and temporal sequences to motor movements in music performance. Fourteen pianists listened to and performed novel melodies on an MR-compatible piano keyboard during fMRI scanning. The pitch or temporal patterns in the melodies either changed or repeated (remained the same) across consecutive trials. We expected decreased neural response to the patterns (pitch or temporal) that repeated across trials relative to patterns that changed. Pitch and temporal accuracy were high, and pitch accuracy improved when either pitch or temporal sequences repeated over trials. Repetition of either pitch or temporal sequences was associated with linear BOLD decrease in frontal-parietal brain regions including dorsal and ventral premotor cortex, pre-SMA, and superior parietal cortex. Pitch sequence repetition (in contrast to temporal sequence repetition) was associated with linear BOLD decrease in the intraparietal sulcus (IPS) while pianists listened to melodies they were about to perform. Decreased BOLD response in IPS also predicted increase in pitch accuracy only when pitch sequences repeated. Thus, behavioral performance and neural response in sensorimotor mapping networks were sensitive to both pitch and temporal structure, suggesting that pitch and temporal structure are largely integrated in auditory-motor transformations. IPS may be involved in transforming pitch sequences into spatial coordinates for accurate piano performance.

  4. Modelling and Predicting the Breaking Strength and Mass Irregularity of Cotton Rotor-Spun Yarns Containing Cotton Fiber Recovered from Ginning Process by Using Artificial Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Mohsen Shanbeh

    2011-01-01

    Full Text Available One of the main methods to reduce the production costs is waste recycling which is the most important challenge for the future. Cotton wastes collected from ginning process have desirable properties which could be used during spinning process. The purpose of this study was to develop predictive models of breaking strength and mass irregularity (CV% of cotton waste rotor-spun yarns containing cotton waste collected from ginning process by using the artificial neural network trained with backpropagation algorithm. Artificial neural network models have been developed based on rotor diameter, rotor speed, navel type, opener roller speed, ginning waste proportion and yarn linear density as input parameters. The parameters of artificial neural network model, namely, learning, and momentum rate, number of hidden layers and number of hidden processing elements (neurons were optimized to get the best predictive models. The findings showed that the breaking strength and mass irregularity of rotor spun yarns could be predicted satisfactorily by artificial neural network. The maximum error in predicting the breaking strength and mass irregularity of testing data was 8.34% and 6.65%, respectively.

  5. Consonance and pitch.

    Science.gov (United States)

    McLachlan, Neil; Marco, David; Light, Maria; Wilson, Sarah

    2013-11-01

    To date, no consensus exists in the literature as to theories of consonance and dissonance. Experimental data collected over the last century have raised questions about the dominant theories that are based on frequency relationships between the harmonics of music chords. This study provides experimental evidence that strongly challenges these theories and suggests a new theory of dissonance based on relationships between pitch perception and recognition. Experiment 1 shows that dissonance does not increase with increasing numbers of harmonics in chords as predicted by Helmholtz's (1863/1954) roughness theory, nor does it increase with fewer pitch-matching errors as predicted by Stumpf's (1898) tonal fusion theory. Dissonance was strongly correlated with pitch-matching error for chords, which in turn was reduced by chord familiarity and greater music training. This led to the proposition that long-term memory templates for common chords assist the perception of pitches in chords by providing an estimate of the chord intervals from spectral information. When recognition mechanisms based on these templates fail, the spectral pitch estimate is inconsistent with the period of the waveform, leading to cognitive incongruence and the negative affect of dissonance. The cognitive incongruence theory of dissonance was rigorously tested in Experiment 2, in which nonmusicians were trained to match the pitches of a random selection of 2-pitch chords. After 10 training sessions, they rated the chords they had learned to pitch match as less dissonant than the unlearned chords, irrespective of their tuning, providing strong support for a cognitive mechanism of dissonance. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  6. Pitch-Responsive Cortical Regions in Congenital Amusia.

    Science.gov (United States)

    Norman-Haignere, Sam V; Albouy, Philippe; Caclin, Anne; McDermott, Josh H; Kanwisher, Nancy G; Tillmann, Barbara

    2016-03-09

    Congenital amusia is a lifelong deficit in music perception thought to reflect an underlying impairment in the perception and memory of pitch. The neural basis of amusic impairments is actively debated. Some prior studies have suggested that amusia stems from impaired connectivity between auditory and frontal cortex. However, it remains possible that impairments in pitch coding within auditory cortex also contribute to the disorder, in part because prior studies have not measured responses from the cortical regions most implicated in pitch perception in normal individuals. We addressed this question by measuring fMRI responses in 11 subjects with amusia and 11 age- and education-matched controls to a stimulus contrast that reliably identifies pitch-responsive regions in normal individuals: harmonic tones versus frequency-matched noise. Our findings demonstrate that amusic individuals with a substantial pitch perception deficit exhibit clusters of pitch-responsive voxels that are comparable in extent, selectivity, and anatomical location to those of control participants. We discuss possible explanations for why amusics might be impaired at perceiving pitch relations despite exhibiting normal fMRI responses to pitch in their auditory cortex: (1) individual neurons within the pitch-responsive region might exhibit abnormal tuning or temporal coding not detectable with fMRI, (2) anatomical tracts that link pitch-responsive regions to other brain areas (e.g., frontal cortex) might be altered, and (3) cortical regions outside of pitch-responsive cortex might be abnormal. The ability to identify pitch-responsive regions in individual amusic subjects will make it possible to ask more precise questions about their role in amusia in future work. Copyright © 2016 the authors 0270-6474/16/362986-09$15.00/0.

  7. Prediction of Tensile Strength of Friction Stir Weld Joints with Adaptive Neuro-Fuzzy Inference System (ANFIS) and Neural Network

    Science.gov (United States)

    Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.

    2015-01-01

    Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.

  8. Pitch-Responsive Cortical Regions in Congenital Amusia

    OpenAIRE

    Albouy, Philippe; Tillmann, Barbara; Caclin, Anne; Norman-Haignere, Samuel Victor; McDermott, Joshua H.; Kanwisher, Nancy

    2015-01-01

    Congenital amusia is a lifelong deficit in music perception thought to reflect an underlying impairment in the perception and memory of pitch. The neural basis of amusic impairments is actively debated. Some prior studies have suggested that amusia stems from impaired connectivity between auditory and frontal cortex. However, it remains possible that impairments in pitch coding within auditory cortex also contribute to the disorder, in part because prior studies have not measured responses fr...

  9. Predicting model on ultimate compressive strength of Al2O3-ZrO2 ceramic foam filter based on BP neural network

    Directory of Open Access Journals (Sweden)

    Yu Jingyuan

    2011-08-01

    Full Text Available In present study, BP neural network model was proposed for the prediction of ultimate compressive strength of Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting. The inputs of the BP neural network model were the applied load on the epispastic polystyrene template (F, centrifugal acceleration (v and sintering temperature (T, while the only output was the ultimate compressive strength (σ. According to the registered BP model, the effects of F, v, T on σ were analyzed. The predicted results agree with the actual data within reasonable experimental error, indicating that the BP model is practically a very useful tool in property prediction and process parameter design of the Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting.

  10. Lower extremity muscle activation during baseball pitching.

    Science.gov (United States)

    Campbell, Brian M; Stodden, David F; Nixon, Megan K

    2010-04-01

    The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.

  11. Exponential modeling of human frequency-following responses to voice pitch.

    Science.gov (United States)

    Jeng, Fuh-Cherng; Chung, Hsiung-Kwang; Lin, Chia-Der; Dickman, Brenda; Hu, Jiong

    2011-09-01

    Recent studies have shown that the frequency-following response (FFR) to voice pitch can be a useful method to evaluate the signal-processing mechanisms and neural plasticity in the human brainstem. The purpose of this study was to examine the quantitative properties of the FFR trends with an exponential curve-fitting model. FFR trends obtained with increasing number of sweeps (up to 8000 sweeps) at three stimulus intensities (30, 45, and 60 dB nHL) were fit to an exponential model that consisted of estimates of background noise amplitude, asymptotic response amplitude, and a time constant. Five objective indices (Frequency Error, Slope Error, Tracking Accuracy, Pitch Strength and RMS Ratio) were used to represent different perspectives of pitch processing in the human brainstem. Twenty-three native speakers (16 males; age = 24.7 ± 2.1 years) of Mandarin Chinese were recruited. The results demonstrated that the exponential model provided a good fit (r(2) = 0.89 ± 0.10) to the FFR trends with increasing number of sweeps for the five objective indices. The exponential model, combined with the five objective indices, can be used for difficult-to-test patients and may prove to be useful as an assessment and diagnostic method in both clinical and basic research efforts.

  12. Pitch Based Sound Classification

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai; Kjems, U

    2006-01-01

    -max output function. Both linear and quadratic inputs are used. The model is trained on 2 hours of sound and tested on publicly available data. A test classification error below 0.05 with 1 s classification windows is achieved. Further more it is shown that linear input performs as well as a quadratic......A sound classification model is presented that can classify signals into music, noise and speech. The model extracts the pitch of the signal using the harmonic product spectrum. Based on the pitch estimate and a pitch error measure, features are created and used in a probabilistic model with soft......, and that even though classification gets marginally better, not much is achieved by increasing the window size beyond 1 s....

  13. Wind turbine pitch optimization

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Juelsgaard, Morten; Stoustrup, Jakob

    2011-01-01

    We consider a static wind model for a three-bladed, horizontal-axis, pitch-controlled wind turbine. When placed in a wind field, the turbine experiences several mechanical loads, which generate power but also create structural fatigue. We address the problem of finding blade pitch profiles......% compared to any constant pitch profile while sacrificing at most 7% of the maximum attainable output power. Using iterative learning, we show that very similar performance can be achieved by using only load measurements, with no knowledge of the wind field or wind turbine model....... for maximizing power production while simultaneously minimizing fatigue loads. In this paper, we show how this problem can be approximately solved using convex optimization. When there is full knowledge of the wind field, numerical simulations show that force and torque RMS variation can be reduced by over 96...

  14. Pitch memory and exposure effects.

    Science.gov (United States)

    Ben-Haim, Moshe Shay; Eitan, Zohar; Chajut, Eran

    2014-02-01

    Recent studies indicate that the ability to represent absolute pitch values in long-term memory, long believed to be the possession of a small minority of trained musicians endowed with "absolute pitch," is in fact shared to some extent by a considerable proportion of the population. The current study examined whether this newly discovered ability affects aspects of music and auditory cognition, particularly pitch learning and evaluation. Our starting points are two well-established premises: (1) frequency of occurrence has an influence on the way we process stimuli; (2) in Western music, some pitches and musical keys are much more frequent than others. Based on these premises, we hypothesize that if absolute pitch values are indeed represented in long-term memory, pitch frequency of occurrence in music would significantly affect cognitive processes, in particular pitch learning and evaluation. Two experiments were designed to test this hypothesis in participants with no absolute pitch, most with little or no musical training. Experiment 1 demonstrated a faster response and a learning advantage for frequent pitches over infrequent pitches in an identification task. In Experiment 2, participants evaluated infrequent pitches as more pleasing than frequent pitches when presented in isolation. These results suggest that absolute pitch representation in memory may play a substantial, hitherto unacknowledged role in auditory (and specifically musical) cognition. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Vocal Pitch Shift in Congenital Amusia (Pitch Deafness)

    Science.gov (United States)

    Hutchins, Sean; Peretz, Isabelle

    2013-01-01

    We tested whether congenital amusics, who exhibit pitch perception deficits, nevertheless adjust the pitch of their voice in response to a sudden pitch shift applied to vocal feedback. Nine amusics and matched controls imitated their own previously-recorded speech or singing, while the online feedback they received was shifted mid-utterance by 25…

  16. Norwegian Pitched Roof Defects

    Directory of Open Access Journals (Sweden)

    Lars Gullbrekken

    2016-06-01

    Full Text Available The building constructions investigated in this work are pitched wooden roofs with exterior vertical drainpipes and wooden load-bearing system. The aim of this research is to further investigate the building defects of pitched wooden roofs and obtain an overview of typical roof defects. The work involves an analysis of the building defect archive from the research institute SINTEF Building and Infrastructure. The findings from the SINTEF archive show that moisture is a dominant exposure factor, especially in roof constructions. In pitched wooden roofs, more than half of the defects are caused by deficiencies in design, materials, or workmanship, where these deficiencies allow moisture from precipitation or indoor moisture into the structure. Hence, it is important to increase the focus on robust and durable solutions to avoid defects both from exterior and interior moisture sources in pitched wooden roofs. Proper design of interior ventilation and vapour retarders seem to be the main ways to control entry from interior moisture sources into attic and roof spaces.

  17. Microstructure and properties of pitch-based carbon composites

    Science.gov (United States)

    Blanco; Santamaria; Bermejo; Bonhomme; Menendez

    1999-11-01

    Pitches prepared in the laboratory by thermal treatment and air-blowing of a commercial coal-tar pitch were used as matrix precursors of carbon composites using granular petroleum coke, foundry coke, amorphous graphite and anthracite. Pitches were characterized by standard procedures (elemental analysis, softening point, solubility tests and carbon yield) and light microscopy (mesophase content). Pitch pyrolysis behaviour was monitored by thermogravimetric analysis and from the optical texture of cokes. Pitch wettability to the different carbons, at different temperatures, was also studied. Experimental conditions selected for the preparation of composites were based on pitch composition and properties. The main microstructural features of composites were determined by light microscopy and scanning electron microscopy. Composite properties were described in terms of their density, porosity and compressive strength, and related to composite microstructure and the characteristics of the precursors. Thermal treatment and air-blowing of pitch improved carbon composite structure and properties. The lowest porosities and best mechanical properties were observed in those composites obtained with the thermally treated pitches combined with foundry coke and anthracite.

  18. Pitch height modulates visual and haptic bisection performance in musicians

    Directory of Open Access Journals (Sweden)

    Carlotta eLega

    2014-04-01

    Full Text Available Consistent evidence suggests that pitch height may be represented in a spatial format, having both a vertical and an horizontal representation. The spatial representation of pitch height results into response compatibility effects for which high pitch tones are preferentially associated to up-right responses, and low pitch tones are preferentially associated to down-left responses (i.e., the SMARC effect, with the strength of these associations depending on individuals’ musical skills. In this study we investigated whether listening to tones of different pitch affects the representation of external space, as assessed in a visual and haptic line bisection paradigm, in musicians and non musicians. Low and high pitch tones affected the bisection performance in musicians differently, both when pitch was relevant and irrelevant for the task, and in both the visual and the haptic modality. No effect of pitch height was observed on the bisection performance of non musicians. Moreover, our data also show that musicians present a (supramodal rightward bisection bias in both the visual and the haptic modality, extending previous findings limited to the visual modality, and consistent with the idea that intense practice with musical notation and bimanual instrument training affects hemispheric lateralization.

  19. The neurocognitive components of pitch processing: insights from absolute pitch.

    Science.gov (United States)

    Wilson, Sarah J; Lusher, Dean; Wan, Catherine Y; Dudgeon, Paul; Reutens, David C

    2009-03-01

    The natural variability of pitch naming ability in the population (known as absolute pitch or AP) provides an ideal method for investigating individual differences in pitch processing and auditory knowledge formation and representation. We have demonstrated the involvement of different cognitive processes in AP ability that reflects varying skill expertise in the presence of similar early age of onset of music tuition. These processes were related to different regions of brain activity, including those involved in pitch working memory (right prefrontal cortex) and the long-term representation of pitch (superior temporal gyrus). They reflected expertise through the use of context dependent pitch cues and the level of automaticity of pitch naming. They impart functional significance to structural asymmetry differences in the planum temporale of musicians and establish a neurobiological basis for an AP template. More generally, they indicate variability of knowledge representation in the presence of environmental fostering of early cognitive development that translates to differences in cognitive ability.

  20. Subcortical and cortical correlates of pitch discrimination: Evidence for two levels of neuroplasticity in musicians

    DEFF Research Database (Denmark)

    Bianchi, Federica; Hjortkjær, Jens; Santurette, Sébastien

    2017-01-01

    in pitch discrimination across all participants, but not within the musicians group alone. Only neural activity in the right auditory cortex scaled with the fine pitch-discrimination thresholds within the musicians. These findings suggest two levels of neuroplasticity in musicians, whereby training...

  1. ERP Correlates of Language-Specific Processing of Auditory Pitch Feedback during Self-Vocalization

    Science.gov (United States)

    Chen, Zhaocong; Liu, Peng; Wang, Emily Q.; Larson, Charles R.; Huang, Dongfeng; Liu, Hanjun

    2012-01-01

    The present study investigated whether the neural correlates for auditory feedback control of vocal pitch can be shaped by tone language experience. Event-related potentials (P2/N1) were recorded from adult native speakers of Mandarin and Cantonese who heard their voice auditory feedback shifted in pitch by -50, -100, -200, or -500 cents when they…

  2. Pitch Processing in Tonal-Language-Speaking Children with Autism: An Event-Related Potential Study

    Science.gov (United States)

    Yu, Luodi; Fan, Yuebo; Deng, Zhizhou; Huang, Dan; Wang, Suiping; Zhang, Yang

    2015-01-01

    The present study investigated pitch processing in Mandarin-speaking children with autism using event-related potential measures. Two experiments were designed to test how acoustic, phonetic and semantic properties of the stimuli contributed to the neural responses for pitch change detection and involuntary attentional orienting. In comparison…

  3. Discriminating male and female voices: differentiating pitch and gender.

    Science.gov (United States)

    Latinus, Marianne; Taylor, Margot J

    2012-04-01

    Gender is salient, socially critical information obtained from faces and voices, yet the brain processes underlying gender discrimination have not been well studied. We investigated neural correlates of gender processing of voices in two ERP studies. In the first, ERP differences were seen between female and male voices starting at 87 ms, in both spatial-temporal and peak analyses, particularly the fronto-central N1 and P2. As pitch differences may drive gender differences, the second study used normal, high- and low-pitch voices. The results of these studies suggested that differences in pitch produced early effects (27-63 ms). Gender effects were seen on N1 (120 ms) with implicit pitch processing (study 1), but were not seen with manipulations of pitch (study 2), demonstrating that N1 was modulated by attention. P2 (between 170 and 230 ms) discriminated male from female voices, independent of pitch. Thus, these data show that there are two stages in voice gender processing; a very early pitch or frequency discrimination and a later more accurate determination of gender at the P2 latency.

  4. Complex-tone pitch representations in the human auditory system

    DEFF Research Database (Denmark)

    Bianchi, Federica

    enhanced relative to the non-musicians for both resolved and unresolved harmonics in the right auditory cortex, right frontal regions and inferior colliculus. However, the increase in neural activation in the right auditory cortex of musicians was predictive of the increased pitch......Understanding how the human auditory system processes the physical properties of an acoustical stimulus to give rise to a pitch percept is a fascinating aspect of hearing research. Since most natural sounds are harmonic complex tones, this work focused on the nature of pitch-relevant cues...... of training, which seemed to be specific to the stimuli containing resolved harmonics. Finally, a functional magnetic resonance imaging paradigm was used to examine the response of the auditory cortex to resolved and unresolved harmonics in musicians and non-musicians. The neural responses in musicians were...

  5. Discriminating the occurrence of pitch canker fungus in Pinus ...

    African Journals Online (AJOL)

    ... paper explores the utility of transformed high spatial resolution QuickBird imagery and artificial neural networks for the detection and mapping of pitch canker disease. Individual tree crowns were delineated using an automated segmentation and classification approach within an object-based image analysis environment.

  6. Modeling and analysis of porosity and compressive strength of gradient Al2O3-ZrO2 ceramic filter using BP neural network

    Directory of Open Access Journals (Sweden)

    Li Qiang

    2013-07-01

    Full Text Available BP neural network was used in this study to model the porosity and the compressive strength of a gradient Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting. The influences of the load applied on the epispastic polystyrene template (F, the centrifugal acceleration (v and sintering temperature (T on the porosity (P and compressive strength (σ of the sintered products were studied by using the registered three-layer BP model. The accuracy of the model was verified by comparing the BP model predicted results with the experimental ones. Results show that the model prediction agrees with the experimental data within a reasonable experimental error, indicating that the three-layer BP network based modeling is effective in predicting both the properties and processing parameters in designing the gradient Al2O3-ZrO2 ceramic foam filter. The prediction results show that the porosity percentage increases and compressive strength decreases with an increase in the applied load on epispastic polystyrene template. As for the influence of sintering temperature, the porosity percentage decreases monotonically with an increase in sintering temperature, yet the compressive strength first increases and then decreases slightly in a given temperature range. Furthermore, the porosity percentage changes little but the compressive strength first increases and then decreases when the centrifugal acceleration increases.

  7. Neuromagnetic brain activities associated with perceptual categorization and sound-content incongruency: a comparison between monosyllabic words and pitch names

    Directory of Open Access Journals (Sweden)

    Chen-Gia eTsai

    2015-08-01

    Full Text Available In human cultures, the perceptual categorization of musical pitches relies on pitch-naming systems. A sung pitch name concurrently holds the information of fundamental frequency and pitch name. These two aspects may be either congruent or incongruent with regard to pitch categorization. The present study aimed to compare the neuromagnetic responses to musical and verbal stimuli for congruency judgments, for example a congruent pair for the pitch C4 sung with the pitch name do in a C-major context (the pitch-semantic task or for the meaning of a word to match the speaker’s identity (the voice-semantic task. Both the behavioral data and neuromagnetic data showed that congruency detection of the speaker’s identity and word meaning was slower than that of the pitch and pitch name. Congruency effects of musical stimuli revealed that pitch categorization and semantic processing of pitch information were associated with P2m and N400m, respectively. For verbal stimuli, P2m and N400m did not show any congruency effect. In both the pitch-semantic task and the voice-semantic task, we found that incongruent stimuli evoked stronger slow waves with the latency of 500-600 ms than congruent stimuli. These findings shed new light on the neural mechanisms underlying pitch-naming processes.

  8. Neuromagnetic brain activities associated with perceptual categorization and sound-content incongruency: a comparison between monosyllabic words and pitch names

    Science.gov (United States)

    Tsai, Chen-Gia; Chen, Chien-Chung; Wen, Ya-Chien; Chou, Tai-Li

    2015-01-01

    In human cultures, the perceptual categorization of musical pitches relies on pitch-naming systems. A sung pitch name concurrently holds the information of fundamental frequency and pitch name. These two aspects may be either congruent or incongruent with regard to pitch categorization. The present study aimed to compare the neuromagnetic responses to musical and verbal stimuli for congruency judgments, for example a congruent pair for the pitch C4 sung with the pitch name do in a C-major context (the pitch-semantic task) or for the meaning of a word to match the speaker’s identity (the voice-semantic task). Both the behavioral data and neuromagnetic data showed that congruency detection of the speaker’s identity and word meaning was slower than that of the pitch and pitch name. Congruency effects of musical stimuli revealed that pitch categorization and semantic processing of pitch information were associated with P2m and N400m, respectively. For verbal stimuli, P2m and N400m did not show any congruency effect. In both the pitch-semantic task and the voice-semantic task, we found that incongruent stimuli evoked stronger slow waves with the latency of 500–600 ms than congruent stimuli. These findings shed new light on the neural mechanisms underlying pitch-naming processes. PMID:26347638

  9. Cooperative effect of random and time-periodic coupling strength on synchronization transitions in one-way coupled neural system: mean field approach.

    Science.gov (United States)

    Jiancheng, Shi; Min, Luo; Chusheng, Huang

    2017-08-01

    The cooperative effect of random coupling strength and time-periodic coupling strengh on synchronization transitions in one-way coupled neural system has been investigated by mean field approach. Results show that cooperative coupling strength (CCS) plays an active role for the enhancement of synchronization transitions. There exist an optimal frequency of CCS which makes the system display the best CCS-induced synchronization transitions, a critical frequency of CCS which can not further affect the CCS-induced synchronization transitions, and a critical amplitude of CCS which can not occur the CCS-induced synchronization transitions. Meanwhile, noise intensity plays a negative role for the CCS-induced synchronization transitions. Furthermore, it is found that the novel CCS amplitude-induced synchronization transitions and CCS frequency-induced synchronization transitions are found.

  10. FAST INdiCATE Trial protocol. Clinical efficacy of functional strength training for upper limb motor recovery early after stroke: neural correlates and prognostic indicators.

    Science.gov (United States)

    Pomeroy, Valerie M; Ward, Nick S; Johansen-Berg, Heidi; van Vliet, Paulette; Burridge, Jane; Hunter, Susan M; Lemon, Roger N; Rothwell, John; Weir, Christopher J; Wing, Alan; Walker, Andrew A; Kennedy, Niamh; Barton, Garry; Greenwood, Richard J; McConnachie, Alex

    2014-02-01

    Functional strength training in addition to conventional physical therapy could enhance upper limb recovery early after stroke more than movement performance therapy plus conventional physical therapy. To determine (a) the relative clinical efficacy of conventional physical therapy combined with functional strength training and conventional physical therapy combined with movement performance therapy for upper limb recovery; (b) the neural correlates of response to conventional physical therapy combined with functional strength training and conventional physical therapy combined with movement performance therapy; (c) whether any one or combination of baseline measures predict motor improvement in response to conventional physical therapy combined with functional strength training or conventional physical therapy combined with movement performance therapy. Randomized, controlled, observer-blind trial. The sample will consist of 288 participants with upper limb paresis resulting from a stroke that occurred within the previous 60 days. All will be allocated to conventional physical therapy combined with functional strength training or conventional physical therapy combined with movement performance therapy. Functional strength training and movement performance therapy will be undertaken for up to 1·5 h/day, five-days/week for six-weeks. Measurements will be undertaken before randomization, six-weeks thereafter, and six-months after stroke. Primary efficacy outcome will be the Action Research Arm Test. Explanatory measurements will include voxel-wise estimates of brain activity during hand movement, brain white matter integrity (fractional anisotropy), and brain-muscle connectivity (e.g. latency of motor evoked potentials). The primary clinical efficacy analysis will compare treatment groups using a multilevel normal linear model adjusting for stratification variables and for which therapist administered the treatment. Effect of conventional physical therapy combined

  11. Tune That Beer! Listening for the Pitch of Beer

    Directory of Open Access Journals (Sweden)

    Felipe Reinoso Carvalho

    2016-11-01

    Full Text Available We report two experiments designed to assess the key sensory drivers underlying people’s association of a specific auditory pitch with Belgian beer. In particular, we assessed if people would rely mostly on the differences between beers in terms of their relative alcohol strength, or on the contrast between the most salient taste attributes of the different beers. In Experiment 1, the participants rated three bitter beers (differing in alcohol content, using a narrow range of pitch choices (50–500 Hz. The results revealed that the beers were all rated around the same pitch (Mean = 232 Hz, SD = 136 Hz. In Experiment 2, a wider range of pitch choices (50–1500 Hz, along with the addition of a much sweeter beer, revealed that people mostly tend to match beers with bitter-range profiles at significantly lower pitch ranges when compared to the average pitch of a much sweeter beer. These results therefore demonstrate that clear differences in taste attributes lead to distinctly different matches in terms of pitch. Having demonstrated the robustness of the basic crossmodal matching, future research should aim to uncover the basis for such matches and better understand the perceptual effects of matching/non-matching tones on the multisensory drinking experience.

  12. Difficulties with pitch discrimination influences pitch memory performance: evidence from congenital amusia

    National Research Council Canada - National Science Library

    Jiang, Cunmei; Lim, Vanessa K; Wang, Hang; Hamm, Jeff P

    2013-01-01

    Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases...

  13. Performance Demands in Softball Pitching: A Comprehensive Muscle Fatigue Study.

    Science.gov (United States)

    Corben, Jeffrey S; Cerrone, Sara A; Soviero, Julie E; Kwiecien, Susan Y; Nicholas, Stephen J; McHugh, Malachy P

    2015-08-01

    Monitoring pitch count is standard practice in minor league baseball but not in softball because of the perception that fast-pitch softball pitching is a less stressful motion. To examine muscle fatigue after fast-pitch softball performances to provide an assessment of performance demand. Descriptive laboratory study. Bilateral strength measurements (handheld dynamometer) were made on 19 female softball pitchers (mean age [±SD], 15.2 ± 1.2 years) before and after pitching a game (mean number of pitches, 99 ± 21; mean innings pitched, 5 ± 1). A total of 20 tests were performed on the dominant and nondominant sides: forearm (grip, wrist flexion/extension, pronation/supination, elbow flexion/extension), shoulder (flexion, abduction/adduction, external/internal rotation, empty can test), scapula (middle/lower trapezius, rhomboid), and hip (hip flexion/extension, abduction/adduction). Fatigue (percentage strength loss) was categorized based on bilateral versus unilateral presentation using paired t tests: bilateral symmetric (significant on dominant and nondominant and not different between sides), bilateral asymmetric (significant on dominant and nondominant but significantly greater on dominant), unilateral asymmetric (significant on dominant only and significantly greater than nondominant), or unilateral equivocal (significant on dominant only but not different from nondominant). Bilateral symmetric fatigue was evident for all hip (dominant, 19.3%; nondominant, 15.2%) and scapular tests (dominant, 19.2%; nondominant, 19.3%). In general, shoulder tests exhibited bilateral asymmetric fatigue (dominant, 16.9%; nondominant, 11.6%). Forearm tests were more variable, with bilateral symmetric fatigue in the elbow flexors (dominant, 22.5%; nondominant, 19.2%), and wrist flexors (dominant, 21.6%; nondominant, 19.0%), bilateral asymmetric fatigue in the supinators (dominant, 21.8%; nondominant, 15.5%), unilateral asymmetric fatigue in the elbow extensors (dominant, 22

  14. Spiral model of pitch

    Science.gov (United States)

    Miller, James D.

    2003-10-01

    A spiral model of pitch interrelates tone chroma, tone height, equal temperament scales, and a cochlear map. Donkin suggested in 1870 that the pitch of tones could be well represented by an equiangular spiral. More recently, the cylindrical helix has been popular for representing tone chroma and tone height. Here it is shown that tone chroma, tone height, and cochlear position can be conveniently related to tone frequency via a planar spiral. For this ``equal-temperament spiral,'' (ET Spiral) tone chroma is conceived as a circular array with semitones at 30° intervals. The frequency of sound on the cent scale (re 16.351 Hz) is represented by the radius of the spiral defined by r=(1200/2π)θr, where θr is in radians. By these definitions, one revolution represents one octave, 1200 cents, 30° represents a semitone, the radius relates θ to cents in accordance with equal temperament (ET) tuning, and the arclength of the spiral matches the mapping of sound frequency to the basilar membrane. Thus, the ET Spiral gives tone chroma as θ, tone height as the cent scale, and the cochlear map as the arclength. The possible implications and directions for further work are discussed.

  15. Pitch-Perfect: How Do Flies Control Their Pitch Angle During Aerial Stumbles?

    Science.gov (United States)

    Whitehead, Samuel; Canale, Luca; Beatus, Tsevi; Cohen, Itai

    2014-11-01

    The successful flight of flapping-wing insects is contingent upon a complex and beautiful relationship between sensory input, neural response, and muscular actuation. In particular, the inherent instabilities of flapping-wing flight require insects like D. melanogaster to constantly sense, process, and adjust for in-flight stumbles. Here we present an analysis of the mechanisms for pitch control in D. melanogaster. By gluing small ferromagnetic pins to the backs of the flies and applying an external magnetic field, we induce torques along the flies' pitch axis during free flight. Using an automated hull reconstruction technique developed in the lab, we analyze these torque events and the flies' subsequent recoveries in order to characterize the flies' response to external perturbations. Ultimately, we aim to develop a reduced-order controller model that will capture the salient aspects of the flies' recovery mechanism.

  16. The phase difference between neural drives to antagonist muscles in essential tremor is associated with the relative strength of supraspinal and afferent input.

    Science.gov (United States)

    Gallego, Juan A; Dideriksen, Jakob L; Holobar, Ales; Ibáñez, Jaime; Glaser, Vojko; Romero, Juan P; Benito-León, Julián; Pons, José L; Rocon, Eduardo; Farina, Dario

    2015-06-10

    The pathophysiology of essential tremor (ET), the most common movement disorder, is not fully understood. We investigated which factors determine the variability in the phase difference between neural drives to antagonist muscles, a long-standing observation yet unexplained. We used a computational model to simulate the effects of different levels of voluntary and tremulous synaptic input to antagonistic motoneuron pools on the tremor. We compared these simulations to data from 11 human ET patients. In both analyses, the neural drive to muscle was represented as the pooled spike trains of several motor units, which provides an accurate representation of the common synaptic input to motoneurons. The simulations showed that, for each voluntary input level, the phase difference between neural drives to antagonist muscles is determined by the relative strength of the supraspinal tremor input to the motoneuron pools. In addition, when the supraspinal tremor input to one muscle was weak or absent, Ia afferents provided significant common tremor input due to passive stretch. The simulations predicted that without a voluntary drive (rest tremor) the neural drives would be more likely in phase, while a concurrent voluntary input (postural tremor) would lead more frequently to an out-of-phase pattern. The experimental results matched these predictions, showing a significant change in phase difference between postural and rest tremor. They also indicated that the common tremor input is always shared by the antagonistic motoneuron pools, in agreement with the simulations. Our results highlight that the interplay between supraspinal input and spinal afferents is relevant for tremor generation. Copyright © 2015 the authors 0270-6474/15/358925-13$15.00/0.

  17. Enhanced brainstem encoding predicts musicians' perceptual advantages with pitch.

    Science.gov (United States)

    Bidelman, Gavin M; Krishnan, Ananthanarayan; Gandour, Jackson T

    2011-02-01

    Important to Western tonal music is the relationship between pitches both within and between musical chords; melody and harmony are generated by combining pitches selected from the fixed hierarchical scales of music. It is of critical importance that musicians have the ability to detect and discriminate minute deviations in pitch in order to remain in tune with other members of their ensemble. Event-related potentials indicate that cortical mechanisms responsible for detecting mistuning and violations in pitch are more sensitive and accurate in musicians as compared with non-musicians. The aim of the present study was to address whether this superiority is also present at a subcortical stage of pitch processing. Brainstem frequency-following responses were recorded from musicians and non-musicians in response to tuned (i.e. major and minor) and detuned (± 4% difference in frequency) chordal arpeggios differing only in the pitch of their third. Results showed that musicians had faster neural synchronization and stronger brainstem encoding for defining characteristics of musical sequences regardless of whether they were in or out of tune. In contrast, non-musicians had relatively strong representation for major/minor chords but showed diminished responses for detuned chords. The close correspondence between the magnitude of brainstem responses and performance on two behavioral pitch discrimination tasks supports the idea that musicians' enhanced detection of chordal mistuning may be rooted at pre-attentive, sensory stages of processing. Findings suggest that perceptually salient aspects of musical pitch are not only represented at subcortical levels but that these representations are also enhanced by musical experience. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  18. Absolute Pitch in Naturalistic Singing: A Commentary on Olthof et al. (2015

    Directory of Open Access Journals (Sweden)

    Andrea Halpern

    2015-12-01

    Full Text Available The parent article looks at pitch stability in an archive of folksongs recorded over several decades. Some evidence for pitch stability was found. Here, I consider some additional aspects of the archive that could be examined, offer some extensions to relevant laboratory studies, and consider some inherent strengths and limitations of the naturalistic, archival approach.

  19. Ethnicity effects in relative pitch.

    Science.gov (United States)

    Hove, Michael J; Sutherland, Mary Elizabeth; Krumhansl, Carol L

    2010-06-01

    Absolute pitch (AP), the rare ability to identify a musical pitch, occurs at a higher rate among East Asian musicians. This has stimulated considerable research on the comparative contributions of genetic and environmental factors. Two studies examined whether a similar ethnicity effect is found for relative pitch (RP), identifying the distance or interval between two tones. Nonmusicians (n = 103) were trained to label musical intervals and were subsequently tested on interval identification. We establish similar ethnicity effects: Chinese and Korean participants consistently outperformed other participants in RP tasks, but not in a "relative rhythm" control task. This effect is not driven by previous musical or tone-language experience. The parallel with the East Asian advantage for AP suggests that enhanced perceptual-cognitive processing of pitch is more general and is not limited to highly trained musicians. This effect opens up many research questions concerning the environmental and genetic contributions related to this more general pitch-based ability.

  20. Functional Strength Training and Movement Performance Therapy for Upper Limb Recovery Early Poststroke—Efficacy, Neural Correlates, Predictive Markers, and Cost-Effectiveness: FAST-INdiCATE Trial

    Directory of Open Access Journals (Sweden)

    Susan M. Hunter

    2018-01-01

    Full Text Available BackgroundVariation in physiological deficits underlying upper limb paresis after stroke could influence how people recover and to which physical therapy they best respond.ObjectivesTo determine whether functional strength training (FST improves upper limb recovery more than movement performance therapy (MPT. To identify: (a neural correlates of response and (b whether pre-intervention neural characteristics predict response.DesignExplanatory investigations within a randomised, controlled, observer-blind, and multicentre trial. Randomisation was computer-generated and concealed by an independent facility until baseline measures were completed. Primary time point was outcome, after the 6-week intervention phase. Follow-up was at 6 months after stroke.ParticipantsWith some voluntary muscle contraction in the paretic upper limb, not full dexterity, when recruited up to 60 days after an anterior cerebral circulation territory stroke.InterventionsConventional physical therapy (CPT plus either MPT or FST for up to 90 min-a-day, 5 days-a-week for 6 weeks. FST was “hands-off” progressive resistive exercise cemented into functional task training. MPT was “hands-on” sensory/facilitation techniques for smooth and accurate movement.OutcomesThe primary efficacy measure was the Action Research Arm Test (ARAT. Neural measures: fractional anisotropy (FA corpus callosum midline; asymmetry of corticospinal tracts FA; and resting motor threshold (RMT of motor-evoked potentials.AnalysisCovariance models tested ARAT change from baseline. At outcome: correlation coefficients assessed relationship between change in ARAT and neural measures; an interaction term assessed whether baseline neural characteristics predicted response.Results288 Participants had: mean age of 72.2 (SD 12.5 years and mean ARAT 25.5 (18.2. For 240 participants with ARAT at baseline and outcome the mean change was 9.70 (11.72 for FST + CPT and 7.90 (9.18 for MPT

  1. Back-propagation neural network-based approximate analysis of true stress-strain behaviors of high-strength metallic material

    Energy Technology Data Exchange (ETDEWEB)

    Doh, Jaeh Yeok; Lee, Jong Soo [Yonsei University, Seoul (Korea, Republic of); Lee, Seung Uk [Gyeongbuk Hybrid Technology Institute, Yeongcheon (Korea, Republic of)

    2016-03-15

    In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material's behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity's effect on the material property through a first-order sensitivity analysis.

  2. Pitch Perfect: How Fruit Flies Control their Body Pitch Angle

    CERN Document Server

    Whitehead, Samuel C; Canale, Luca; Cohen, Itai

    2015-01-01

    Flapping insect flight is a complex and beautiful phenomenon that relies on fast, active control mechanisms to counter aerodynamic instability. To directly investigate how freely-flying D. melanogaster control their body pitch angle against such instability, we perturb them using impulsive mechanical torques and film their corrective maneuvers with high-speed video. Combining experimental observations and numerical simulation, we find that flies correct for pitch deflections of up to 40 degrees in 29 +/- 8 ms by bilaterally modulating their wings' front-most stroke angle in a manner well-described by a linear proportional-integral (PI) controller. Flies initiate this corrective process after only 10 +/- 2 ms, indicating that pitch stabilization involves a fast reflex response. Remarkably, flies can also correct for very large-amplitude pitch perturbations--greater than 150 degrees--providing a regime in which to probe the limits of the linear-response framework. Together with previous studies regarding yaw an...

  3. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates.

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

    2008-09-01

    The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in

  4. Pitch-related auditory skills in children with cochlear implants: The role of auditory working memory, attention and music

    OpenAIRE

    Torppa, Ritva

    2015-01-01

    The cochlear implant (CI) provides a sensation of hearing for deaf-born children. However, many CI children show poor language outcomes, which may be related to the deficiency of CIs in delivering pitch. This thesis studies the development of those neural processes and behavioural skills linked to the perception of pitch which may play a role in language acquisition. We measured with event-related brain potentials (ERPs) the neural discrimination of and attention shift to changes in music, th...

  5. High-frequency complex pitch

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2012-01-01

    Harmonics in a complex tone are typically considered unresolved when they interact with neighboring harmonics in the cochlea and cannot be heard out separately. Recent studies have suggested that the low pitch evoked by unresolved high-frequency harmonics may be coded via temporal fine-structure ......Harmonics in a complex tone are typically considered unresolved when they interact with neighboring harmonics in the cochlea and cannot be heard out separately. Recent studies have suggested that the low pitch evoked by unresolved high-frequency harmonics may be coded via temporal fine......-structure cues. However, these conclusions rely on the assumptions that combination tones were properly masked and that the ability of listeners to hear out individual partials provides an adequate measure of resolvability. Those assumptions were tested by measuring the audibility of combination tones...... and their effects on pitch matches, the effects of relative component phases and of dichotic presentation, and listeners' ability to hear out individual partials. The results confirmed that combination tones affected pitch, but pitch remained salient when they were masked. The lack of dependence of pitch...

  6. Bioelectrical brain effects of one's own voice identification in pitch of voice auditory feedback.

    Science.gov (United States)

    Korzyukov, Oleg; Bronder, Alexander; Lee, Yunseon; Patel, Sona; Larson, Charles R

    2017-07-01

    Control of voice fundamental frequency (F0) relies in part on comparison of the intended F0 level and auditory feedback. This comparison impacts "sense of agency", or SoA, commonly defined as being the agent of one's own actions and plays a key role for self-awareness and social interactions. SoA is aberrant in several psychiatric disorders. Knowledge about brain activity reflecting SoA can be used in clinical practice for these disorders. It was shown that perception of voice feedback as one's own voice, reflecting the recognition of SoA, alters auditory sensory processing. Using a voice perturbation paradigm we contrasted vocal and bioelectrical brain responses to auditory stimuli that differed in magnitude: 100 and 400 cents. Results suggest the different magnitudes were perceived as a pitch error in self-vocalization (100 cents) or as a pitch shift generated externally (400 cents). Vocalizations and neural responses to changes in pitch of self-vocalization were defined as those made to small magnitude pitch-shifts (100 cents) and which did not show differential neural responses to upward versus downward changes in voice pitch auditory feedback. Vocal responses to large magnitude pitch shifts (400 cents) were smaller than those made to small pitch shifts, and neural responses differed according to upwards versus downward changes in pitch. Our results suggest that the presence of SoA for self-produced sounds may modify bioelectrical brain responses reflecting differences in auditory processing of the direction of a pitch shift. We suggest that this modification of bioelectrical response can be used as a biological index of SoA. Possible neuronal mechanisms of this modification of bioelectrical brain response are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Impaired memory for pitch in congenital amusia.

    Science.gov (United States)

    Gosselin, Nathalie; Jolicoeur, Pierre; Peretz, Isabelle

    2009-07-01

    We examined memory for pitch in congenital amusia in two tasks. In one task, we varied the pitch distance between the target and comparison tone from 4 to 9 semitones and inserted either a silence or 6 interpolated tones between the tones to be compared. In a second task, we manipulated the number of pitches to be retained in sequences of length 1, 3, or 5. Amusics' sensitivity to pitch distance was exacerbated by the presence of interpolated tones, and amusics' performance was more strongly affected by the number of pitches to maintain in memory than controls. A pitch perception deficit could not account for the pitch memory deficit of amusics.

  8. Tone-language speakers show hemispheric specialization and differential cortical processing of contour and interval cues for pitch.

    Science.gov (United States)

    Bidelman, G M; Chung, W-L

    2015-10-01

    Electrophysiological studies demonstrate that the neural coding of pitch is modulated by language experience and the linguistic relevance of the auditory input; both rightward and leftward asymmetries have been observed in the hemispheric specialization for pitch. In music, pitch is encoded using two primary features: contour (patterns of rises and falls) and interval (frequency separation between tones) cues. Recent evoked potential studies demonstrate that these "global" (contour) and "local" (interval) aspects of pitch are processed automatically (but bilaterally) in trained musicians. Here, we examined whether alternate forms of pitch expertise, namely, tone-language experience (i.e., Chinese), influence the early detection of contour and intervallic deviations within ongoing pitch sequences. Neuroelectric mismatch negativity (MMN) potentials were recorded in Chinese speakers and English-speaking nonmusicians in response to continuous pitch sequences with occasional global or local deviations in the ongoing melodic stream. This paradigm allowed us to explore potential cross-language differences in the hemispheric weighting for contour and interval processing of pitch. Chinese speakers showed differential pitch encoding between hemispheres not observed in English listeners; Chinese MMNs revealed a rightward bias for contour processing but a leftward hemispheric laterality for interval processing. In contrast, no asymmetries were observed in the English group. Collectively, our findings suggest tone-language experience sensitizes auditory brain mechanisms for the detection of subtle global/local pitch changes in the ongoing auditory stream and exaggerates functional asymmetries in pitch processing between cerebral hemispheres. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. ERP correlates of pitch error detection in complex tone and voice auditory feedback with missing fundamental.

    Science.gov (United States)

    Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R

    2012-04-11

    Previous studies have shown that the pitch of a sound is perceived in the absence of its fundamental frequency (F0), suggesting that a distinct mechanism may resolve pitch based on a pattern that exists between harmonic frequencies. The present study investigated whether such a mechanism is active during voice pitch control. ERPs were recorded in response to +200 cents pitch shifts in the auditory feedback of self-vocalizations and complex tones with and without the F0. The absence of the fundamental induced no difference in ERP latencies. However, a right-hemisphere difference was found in the N1 amplitudes with larger responses to complex tones that included the fundamental compared to when it was missing. The P1 and N1 latencies were shorter in the left hemisphere, and the N1 and P2 amplitudes were larger bilaterally for pitch shifts in voice and complex tones compared with pure tones. These findings suggest hemispheric differences in neural encoding of pitch in sounds with missing fundamental. Data from the present study suggest that the right cortical auditory areas, thought to be specialized for spectral processing, may utilize different mechanisms to resolve pitch in sounds with missing fundamental. The left hemisphere seems to perform faster processing to resolve pitch based on the rate of temporal variations in complex sounds compared with pure tones. These effects indicate that the differential neural processing of pitch in the left and right hemispheres may enable the audio-vocal system to detect temporal and spectral variations in the auditory feedback for vocal pitch control. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Pitch perfect: how fruit flies control their body pitch angle.

    Science.gov (United States)

    Whitehead, Samuel C; Beatus, Tsevi; Canale, Luca; Cohen, Itai

    2015-11-01

    Flapping insect flight is a complex and beautiful phenomenon that relies on fast, active control mechanisms to counter aerodynamic instability. To directly investigate how freely flying Drosophila melanogaster control their body pitch angle against such instability, we perturbed them using impulsive mechanical torques and filmed their corrective maneuvers with high-speed video. Combining experimental observations and numerical simulation, we found that flies correct for pitch deflections of up to 40 deg in 29±8 ms by bilaterally modulating their wings' front-most stroke angle in a manner well described by a linear proportional-integral (PI) controller. Flies initiate this corrective process only 10±2 ms after the perturbation onset, indicating that pitch stabilization involves a fast reflex response. Remarkably, flies can also correct for very large-amplitude pitch perturbations--greater than 150 deg--providing a regime in which to probe the limits of the linear-response framework. Together with previous studies regarding yaw and roll control, our results on pitch show that flies' stabilization of each of these body angles is consistent with PI control. © 2015. Published by The Company of Biologists Ltd.

  11. Finger forces in fastball baseball pitching.

    Science.gov (United States)

    Kinoshita, Hiroshi; Obata, Satoshi; Nasu, Daiki; Kadota, Koji; Matsuo, Tomoyuki; Fleisig, Glenn S

    2017-08-01

    Forces imparted by the fingers onto a baseball are the final, critical aspects for pitching, however these forces have not been quantified previously as no biomechanical technology was available. In this study, an instrumented baseball was developed for direct measurement of ball reaction force by individual fingers and used to provide fundamental information on the forces during a fastball pitch. A tri-axial force transducer with a cable having an easily-detachable connector were installed in an official baseball. Data were collected from 11 pitchers who placed the fingertip of their index, middle, ring, or thumb on the transducer, and threw four-seam fastballs to a target cage from a flat mound. For the index and middle fingers, resultant ball reaction force exhibited a bimodal pattern with initial and second peaks at 38-39ms and 6-7ms before ball release, and their amplitudes were around 97N each. The ring finger and thumb produced single-peak forces of approximately 50 and 83N, respectively. Shear forces for the index and middle fingers formed distinct peak at 4-5ms before release, and the peaks summed to 102N; a kinetic source for backspin on the ball. An additional experiment with submaximal pitching effort showed a linear relationship of peak forces with ball velocity. The peak ball reaction force for fastballs exceeded 80% of maximum finger strength measured, suggesting that strengthening of the distal muscles is important both for enhancing performance and for avoiding injuries. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Preparation and Characterization of Mesophase Pitch via Co-Carbonization of Waste Polyethylene]Petroleum Pitch

    National Research Council Canada - National Science Library

    Youliang Cheng Lu Yang Tao Luo Changqing Fang Jian Su Jian Hui

    2015-01-01

    The low-cost petroleum pitch and waste polyethylene (WPE) were used as raw materials to prepare the mesophase pitch by co-carbonization method and the forming mechanization of mesophase pitch was also investigated...

  13. Ball Speed and Release Consistency Predict Pitching Success in Major League Baseball.

    Science.gov (United States)

    Whiteside, David; Martini, Douglas N; Zernicke, Ronald F; Goulet, Grant C

    2016-07-01

    Whiteside, D, Martini, DN, Zernicke, RF, and Goulet, GC. Ball speed and release consistency predict pitching success in Major League Baseball. J Strength Cond Res XX(X): 000-000, 2015-This study aimed to quantify how ball flight kinematics (i.e., ball speed and movement), release location, and variations therein relate to pitching success in Major League Baseball (MLB). One hundred ninety starting MLB pitchers met the inclusion criteria for this study. Ball trajectory information was collected for 76,000 pitches and inserted into a forward stepwise multiple regression model, which examined how (a) pitch selection, (b) ball speed, (c) ball movement (horizontal and lateral), (d) release location (horizontal and lateral), (e) variation in pitch speed, (f) variation in ball movement, and (g) variation in release location related to pitching success (as measured by fielding independent pitching-FIP). Pitch speed, release location variability, variation in pitch speed, and horizontal release location were significant predictors of FIP and, collectively, accounted for 24% of the variance in FIP. These findings suggest that (a) maximizing ball speed, (b) refining a consistent spatial release location, and (c) using varied pitch speeds should be primary foci for the pitching coach. However, between-pitcher variations underline how training interventions should be administered at the individual level, with consideration given to the pitcher's injury history. Finally, despite offering significant predictors of success, these three factors explained only 22% of the variance in FIP and should not be considered the only, or preeminent, indicators of a pitcher's effectiveness. Evidently, traditional pitching metrics only partly account for a pitcher's effectiveness, and future research is necessary to uncover the remaining contributors to success.

  14. The musical environment and auditory plasticity: Hearing the pitch of percussion

    Directory of Open Access Journals (Sweden)

    Neil M Mclachlan

    2013-10-01

    Full Text Available Although musical skills clearly improve with training, pitch processing has generally been believed to be biologically determined by the behavior of brain stem neural mechanisms. Two main classes of pitch models have emerged over the last 50 years. Harmonic template models have been used to explain cross-channel integration of frequency information, and waveform periodicity models have been used to explain pitch discrimination that is much finer than the resolution of the auditory nerve. It has been proposed that harmonic templates are learnt from repeated exposure to voice, and so it may also be possible to learn inharmonic templates from repeated exposure to inharmonic music instruments. This study investigated whether pitch-matching accuracy for inharmonic percussion instruments was better in people who have trained on these instruments and could reliably recognize their timbre. We found that adults who had trained with Indonesian gamelan instruments were better at recognizing and pitch-matching gamelan instruments than people with similar levels of music training, but no prior exposure to these instruments. These findings suggest that gamelan musicians were able to use inharmonic templates to support accurate pitch processing for these instruments. We suggest that recognition mechanisms based on spectrotemporal patterns of afferent auditory excitation in the early stages of pitch processing allow rapid priming of the lowest frequency partial of inharmonic timbres, explaining how music training can adapt pitch processing to different musical genres and instruments.

  15. Disorders of pitch production in tone deafness

    Directory of Open Access Journals (Sweden)

    Simone eDalla Bella

    2011-07-01

    Full Text Available Singing is as natural as speaking for the majority of people. Yet some individuals (i.e., 10-15% are inaccurate singers, typically performing or imitating pitches and melodies inaccurately. This condition, commonly referred to as tone deafness, has been observed both in the presence and absence of deficient pitch perception. In this article we review the existing literature concerning normal singing, poor-pitch singing, and, briefly, the sources of this condition. Considering that pitch plays a prominent role in the structure of both music and speech we also focus on the possibility that pitch production (or imitation is similarly impaired in poor-pitch singers. Preliminary evidence from our laboratory on poor-pitch singing suggests that pitch imitation may be selectively inaccurate in the music domain without being affected in speech. This finding points to separability of mechanisms subserving pitch production in music and language.

  16. Musical Activity Tunes Up Absolute Pitch Ability

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Ribe, Lars Riisgaard

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce pitches of musical tones without an external reference. Active AP (i.e., pitch production or pitch adjustment) and passive AP (i.e., pitch identification) are considered to not necessarily coincide, although no study has properly compared...... these abilities. Using a novel computerized pitch adjustment test, we investigated active AP ability in musicians with and without AP (ages 18-43). We found a significant correlation between active and passive AP indicating that AP possessors (APs) identify and produce pitch equally well. Furthermore, we found...... that APs generally undershoot when adjusting musical pitch, a tendency that decreases when musical activity increases. Finally, APs are less accurate when adjusting the pitch to black key targets than to white key targets. Hence, AP ability may be partly practice-dependent and we speculate that APs may...

  17. Surface Electromyography of the Forearm Musculature During the Windmill Softball Pitch.

    Science.gov (United States)

    Remaley, D Trey; Fincham, Bryce; McCullough, Bryan; Davis, Kirk; Nofsinger, Charles; Armstrong, Charles; Stausmire, Julie M

    2015-01-01

    Previous studies investigating the windmill softball pitch have focused primarily on shoulder musculature and function, collecting limited data on elbow and forearm musculature. Little information is available in the literature regarding the forearm. This study documents forearm muscle electromyographic (EMG) activity that has not been previously published. Elbow and upper extremity overuse injuries are on the rise in fast-pitch softball pitchers. This study attempts to describe forearm muscle activity in softball pitchers during the windmill softball pitch. Overuse injuries can be prevented if a better understanding of mechanics is defined. Descriptive laboratory study. Surface EMG and high-speed videography was used to study forearm muscle activation patterns during the windmill softball pitch on 10 female collegiate-level pitchers. Maximum voluntary isometric contraction of each muscle was used as a normalizing value. Each subject was tested during a single laboratory session per pitcher. Data included peak muscle activation, average muscle activation, and time to peak activation for 6 pitch types: fastball, changeup, riseball, curveball, screwball, and dropball. During the first 4 phases, muscle activity (seen as signal strength on the EMG recordings) was limited and static in nature. The greatest activation occurred in phases 5 and 6, with increased signal strength, evidence of stretch-shortening cycle, and different muscle characteristics with each pitch style. These 2 phases of the windmill pitch are where the arm is placed in the 6 o'clock position and then at release of the ball. The flexor carpi ulnaris signal strength was significantly greater than the other forearm flexors. Timing of phases 1 through 5 was successively shorter for each pitch. There was a secondary pattern of activation in the flexor carpi ulnaris in phase 4 for all pitches except the fastball and riseball. During the 6 pitches, the greatest muscular activity was in phases 5 and 6

  18. Decoding the dynamic representation of musical pitch from human brain activity.

    Science.gov (United States)

    Sankaran, N; Thompson, W F; Carlile, S; Carlson, T A

    2018-01-16

    In music, the perception of pitch is governed largely by its tonal function given the preceding harmonic structure of the music. While behavioral research has advanced our understanding of the perceptual representation of musical pitch, relatively little is known about its representational structure in the brain. Using Magnetoencephalography (MEG), we recorded evoked neural responses to different tones presented within a tonal context. Multivariate Pattern Analysis (MVPA) was applied to "decode" the stimulus that listeners heard based on the underlying neural activity. We then characterized the structure of the brain's representation using decoding accuracy as a proxy for representational distance, and compared this structure to several well established perceptual and acoustic models. The observed neural representation was best accounted for by a model based on the Standard Tonal Hierarchy, whereby differences in the neural encoding of musical pitches correspond to their differences in perceived stability. By confirming that perceptual differences honor those in the underlying neuronal population coding, our results provide a crucial link in understanding the cognitive foundations of musical pitch across psychological and neural domains.

  19. Reliable Fluid Power Pitch Systems

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; Soltani, Mohsen

    2015-01-01

    The key objectives of wind turbine manufactures and buyers are to reduce the Total Cost of Ownership and Total Cost of Energy. Among others, low downtime of a wind turbine is important to increase the amount of energy produced during its lifetime. Historical data indicate that pitch systems accou...

  20. Absolute Pitch Twin Study and Segregation Analysis

    National Research Council Canada - National Science Library

    Theusch, Elizabeth; Gitschier, Jane

    2011-01-01

    Absolute pitch is a rare pitch-naming ability with unknown etiology. Some scientists maintain that its manifestation depends solely on environmental factors, while others suggest that genetic factors contribute...

  1. Transformasi Pitch Suara Manusia Menggunakan Metode PSOLA

    Directory of Open Access Journals (Sweden)

    SUSETYO BAGAS BHASKORO

    2016-02-01

    Full Text Available Abstrak Kemampuan pengubahan suara yang dilakukan Dubber untuk beragam bentuk suara menjadi perhatian khusus dengan melakukan rekayasa suara, di dalam perkembangan teknologi di kenal sebuah teknikpitch shifting yang digunakan untuk mengubah suara manusia di bagian timbre dan pitch. Penelitian ini menggunakan metodepitch shifting PSOLA (Pitch Synchronous Overlap Add untuk merubah pitch sekaligus timbre suara. Proses yang dilakukan meliputi perekaman suara sehingga didapatkan sinyal suara. Sinyal hasil perekaman kemudian diolah untuk menemukan posisi pitch dari sinyal pada domain waktu. Setelah posisi pitch diketahui, jarak antar pitch akan dikalikan dengan bilangan skala pergeseran yang sudah ditentukan. Hasil dari perkalian tersebut adalah perubahan pada pitch suara, sehingga menghasilkan suara yang lebih tinggi atau lebih rendah. Perubahan juga terjadi pada timbre sehingga menghasilkan karakter suara yang berbeda dengan suara aselinya.Hasil pengujian pitch dan timbre dengan menggunakan metode PSOLA menunjukkan keberhasilan mencapai 98% berdasarkan sinyal sinus. Kata kunci: Pitch, Timbre,Pitch Shifting, PSOLA. Abstract The ability of converts sound done in various forms of a dubber sound, becomes a special attention in doing an engineering design sound. In the development of technology the pitch of shifting know a technique that is used to turn the human voice in the timbre and  pitch. This study using methods  pitch  shifting psola (pitch synchronous overlap add to change the pitch as well as the timbre sound. The process was about recording a sound so obtained up a noise. Recording signals then processed the results to find the position of the pitch signals on the domain of time. After the position of the pitch known, the distance between the pitch will be multiplied by the number of the scale of a shift that had been determined. The result of the multiplication of the sound is a change in pitch , so producing a higher or lower, Also

  2. Relating pitch awareness to phonemic awareness in children: implications for tone-deafness and dyslexia.

    Science.gov (United States)

    Loui, Psyche; Kroog, Kenneth; Zuk, Jennifer; Winner, Ellen; Schlaug, Gottfried

    2011-01-01

    Language and music are complex cognitive and neural functions that rely on awareness of one's own sound productions. Information on the awareness of vocal pitch, and its relation to phonemic awareness which is crucial for learning to read, will be important for understanding the relationship between tone-deafness and developmental language disorders such as dyslexia. Here we show that phonemic awareness skills are positively correlated with pitch perception-production skills in children. Children between the ages of seven and nine were tested on pitch perception and production, phonemic awareness, and IQ. Results showed a significant positive correlation between pitch perception-production and phonemic awareness, suggesting that the relationship between musical and linguistic sound processing is intimately linked to awareness at the level of pitch and phonemes. Since tone-deafness is a pitch-related impairment and dyslexia is a deficit of phonemic awareness, we suggest that dyslexia and tone-deafness may have a shared and/or common neural basis.

  3. Relating Pitch Awareness to Phonemic Awareness in Children: Implications for Tone-Deafness and Dyslexia

    Directory of Open Access Journals (Sweden)

    Psyche eLoui

    2011-05-01

    Full Text Available Language and music are complex cognitive and neural functions that rely on awareness of one’s own sound productions. Information on the awareness of vocal pitch, and its relation to phonemic awareness which is crucial for learning to read, will be important for understanding the relationship between tone-deafness and developmental language disorders such as dyslexia. Here we show that phonemic awareness skills are positively correlated with pitch perception-production skills in children. Children between the ages of 7 and 9 were tested on pitch perception and production, phonemic awareness, and IQ. Results showed a significant positive correlation between pitch perception-production and phonemic awareness, suggesting that the relationship between musical and linguistic sound processing is intimately linked to awareness at the level of pitch and phonemes. Since tone-deafness is a pitch-related impairment and dyslexia is a deficit of phonemic awareness, we suggest that dyslexia and tone-deafness may have a shared and/or common neural basis.

  4. Encoding pitch contours using current steering

    OpenAIRE

    Luo, Xin; Landsberger, David M.; Padilla, Monica; Srinivasan, Arthi G.

    2010-01-01

    This study investigated cochlear implant (CI) users’ ability to perceive pitch cues from time-varying virtual channels (VCs) to identify pitch contours. Seven CI users were tested on apical, medial, and basal electrode pairs with stimulus durations from 100 to 1000 ms. In one stimulus set, 9 pitch contours were created by steering current between the component electrodes and the VC halfway between the electrodes. Another stimulus set only contained 3 pitch contours (flat, falling, and rising)...

  5. Effects of voice harmonic complexity on ERP responses to pitch-shifted auditory feedback.

    Science.gov (United States)

    Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R

    2011-12-01

    The present study investigated the neural mechanisms of voice pitch control for different levels of harmonic complexity in the auditory feedback. Event-related potentials (ERPs) were recorded in response to+200 cents pitch perturbations in the auditory feedback of self-produced natural human vocalizations, complex and pure tone stimuli during active vocalization and passive listening conditions. During active vocal production, ERP amplitudes were largest in response to pitch shifts in the natural voice, moderately large for non-voice complex stimuli and smallest for the pure tones. However, during passive listening, neural responses were equally large for pitch shifts in voice and non-voice complex stimuli but still larger than that for pure tones. These findings suggest that pitch change detection is facilitated for spectrally rich sounds such as natural human voice and non-voice complex stimuli compared with pure tones. Vocalization-induced increase in neural responses for voice feedback suggests that sensory processing of naturally-produced complex sounds such as human voice is enhanced by means of motor-driven mechanisms (e.g. efference copies) during vocal production. This enhancement may enable the audio-vocal system to more effectively detect and correct for vocal errors in the feedback of natural human vocalizations to maintain an intended vocal output for speaking. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. From tone to pitch in Sepedi

    CSIR Research Space (South Africa)

    Barnard, E

    2010-05-01

    Full Text Available " or "low". Automatic pitch extraction was then used to estimate the fundamental frequencies of the voiced segments of each of these syllables. Statistical analysis of the resulting pitch contours confirms that the mean pitch frequencies of the syllabic...

  7. Cross-Cultural Perspectives on Pitch Memory

    Science.gov (United States)

    Trehub, Sandra E.; Schellenberg, E. Glenn; Nakata, Takayuki

    2008-01-01

    We examined effects of age and culture on children's memory for the pitch level of familiar music. Canadian 9- and 10-year-olds distinguished the original pitch level of familiar television theme songs from foils that were pitch-shifted by one semitone, whereas 5- to 8-year-olds failed to do so (Experiment 1). In contrast, Japanese 5- and…

  8. When high pitches sound low: Children’s acquisition of space-pitch metaphors

    NARCIS (Netherlands)

    Dolscheid, S.J.; Hunnius, S.; Majid, A.; Noelle, D.C.; Dale, R.; Warlaumont, A.S.; Yoshimi, J.; Matlock, T.; Jennings, C.D.; Maglio, P.P.

    2015-01-01

    Some languages describe musical pitch in terms of spatial height; others in terms of thickness. Differences in pitch metaphors also shape adults’ nonlinguistic space-pitch representations. At the same time, 4-month-old infants have both types of space-pitch mappings available. This tension between

  9. Pitch and Plasticity: Insights from the Pitch Matching of Chords by Musicians with Absolute and Relative Pitch

    Directory of Open Access Journals (Sweden)

    Neil M. McLachlan

    2013-12-01

    Full Text Available Absolute pitch (AP is a form of sound recognition in which musical note names are associated with discrete musical pitch categories. The accuracy of pitch matching by non-AP musicians for chords has recently been shown to depend on stimulus familiarity, pointing to a role of spectral recognition mechanisms in the early stages of pitch processing. Here we show that pitch matching accuracy by AP musicians was also dependent on their familiarity with the chord stimulus. This suggests that the pitch matching abilities of both AP and non-AP musicians for concurrently presented pitches are dependent on initial recognition of the chord. The dual mechanism model of pitch perception previously proposed by the authors suggests that spectral processing associated with sound recognition primes waveform processing to extract stimulus periodicity and refine pitch perception. The findings presented in this paper are consistent with the dual mechanism model of pitch, and in the case of AP musicians, the formation of nominal pitch categories based on both spectral and periodicity information.

  10. Attention matters: pitch vs. pattern processing in adolescence

    Directory of Open Access Journals (Sweden)

    Elyse S Sussman

    2013-06-01

    Full Text Available From the moment we wake up, we are flooded with more sensory inputs than we can possibly process. Selective attention mechanisms serve to limit the sensory onslaught, while facilitating the ability to perform everyday tasks. However, not much is known about the typical development of selective attention mechanisms during childhood even though impairments of attention are commonly noted in neurodevelopmental disorders. The current study focuses on a transitional time in child development, adolescence, to determine in what way specific auditory tasks have a modulatory effect on underlying brain activity to facilitate behavioral goals. Neural mechanisms of selective attention were tested through auditory pitch and pattern perception, using a measure of event-related brain potentials (ERPs called the mismatch negativity (MMN. Sounds with a regular five-tone pattern were presented in three conditions. The conditions differed only in how participants were instructed to listen to the sounds. Focus was either on the pitch of the sounds, the pattern of the sounds, or on a close-captioned movie. Even though the sound input was identical in all conditions, task-specific modifications were manifest in the MMN evoked by the deviant sounds embedded in the test sequences. The results demonstrate that in adolescence, as in adults, selective attention alters neural activity specific to performance goals, thus indicating specific neural adaptation modulated by behavior.

  11. Pitch Memory in Nonmusicians and Musicians: Revealing Functional Differences Using Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Schaal, N K; Krause, V; Lange, K; Banissy, M J; Williamson, V J; Pollok, B

    2015-09-01

    For music and language processing, memory for relative pitches is highly important. Functional imaging studies have shown activation of a complex neural system for pitch memory. One region that has been shown to be causally involved in the process for nonmusicians is the supramarginal gyrus (SMG). The present study aims at replicating this finding and at further examining the role of the SMG for pitch memory in musicians. Nonmusicians and musicians received cathodal transcranial direct current stimulation (tDCS) over the left SMG, right SMG, or sham stimulation, while completing a pitch recognition, pitch recall, and visual memory task. Cathodal tDCS over the left SMG led to a significant decrease in performance on both pitch memory tasks in nonmusicians. In musicians, cathodal stimulation over the left SMG had no effect, but stimulation over the right SMG impaired performance on the recognition task only. Furthermore, the results show a more pronounced deterioration effect for longer pitch sequences indicating that the SMG is involved in maintaining higher memory load. No stimulation effect was found in both groups on the visual control task. These findings provide evidence for a causal distinction of the left and right SMG function in musicians and nonmusicians. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Processing pitch in a non-human mammal (Chinchilla laniger)

    Science.gov (United States)

    Shofner, William P.; Chaney, Megan

    2013-01-01

    Whether the mechanisms giving rise to pitch reflect spectral or temporal processing has long been debated. Generally, sounds having strong harmonic structures in their spectra have strong periodicities in their temporal structures. We found that when a wideband harmonic tone complex is passed through a noise vocoder, the resulting sound can have a harmonic structure with a large peak-to-valley ratio, but with little or no periodicity in the temporal structure. To test the role of harmonic structure in pitch perception for a non-human mammal, we measured behavioral responses to noise-vocoded tone complexes in chinchillas using a stimulus generalization paradigm. Animals discriminated either a harmonic tone complex or an iterated rippled noise from a 1-channel vocoded version of the tone complex. When tested with vocoded versions generated with 8, 16, 32, 64 and 128 channels, responses were similar to those of the 1-channel version. Behavioral responses could not be accounted for based on harmonic peak-to-valley ratio as the acoustic cue, but could be accounted for based on temporal properties of the autocorrelation functions such as periodicity strength or the height of the first peak. The results suggest that pitch perception does not arise through spectral processing in non-human mammals, but rather through temporal processing. The conclusion that spectral processing contributes little to pitch in non-human mammals may reflect broader cochlear tuning than that described in humans. PMID:22985274

  13. Processing pitch in a nonhuman mammal (Chinchilla laniger).

    Science.gov (United States)

    Shofner, William P; Chaney, Megan

    2013-05-01

    Whether the mechanisms giving rise to pitch reflect spectral or temporal processing has long been debated. Generally, sounds having strong harmonic structures in their spectra have strong periodicities in their temporal structures. We found that when a wideband harmonic tone complex is passed through a noise vocoder, the resulting sound can have a harmonic structure with a large peak-to-valley ratio, but with little or no periodicity in the temporal structure. To test the role of harmonic structure in pitch perception for a nonhuman mammal, we measured behavioral responses to noise-vocoded tone complexes in chinchillas (Chinchilla laniger) using a stimulus generalization paradigm. Chinchillas discriminated either a harmonic tone complex or an iterated rippled noise from a 1-channel vocoded version of the tone complex. When tested with vocoded versions generated with 8, 16, 32, 64, and 128 channels, responses were similar to those of the 1-channel version. Behavioral responses could not be accounted for based on harmonic peak-to-valley ratio as the acoustic cue, but could be accounted for based on temporal properties of the autocorrelation functions such as periodicity strength or the height of the first peak. The results suggest that pitch perception does not arise through spectral processing in nonhuman mammals but rather through temporal processing. The conclusion that spectral processing contributes little to pitch in nonhuman mammals may reflect broader cochlear tuning than that described in humans.

  14. Experience-dependent enhancement of pitch-specific responses in the auditory cortex is limited to acceleration rates in normal voice range.

    Science.gov (United States)

    Krishnan, A; Gandour, J T; Suresh, C H

    2015-09-10

    The aim of this study is to determine how pitch acceleration rates within and outside the normal pitch range may influence latency and amplitude of cortical pitch-specific responses (CPR) as a function of language experience (Chinese, English). Responses were elicited from a set of four pitch stimuli chosen to represent a range of acceleration rates (two each inside and outside the normal voice range) imposed on the high rising Mandarin Tone 2. Pitch-relevant neural activity, as reflected in the latency and amplitude of scalp-recorded CPR components, varied depending on language-experience and pitch acceleration of dynamic, time-varying pitch contours. Peak latencies of CPR components were shorter in the Chinese than the English group across stimuli. Chinese participants showed greater amplitude than English for CPR components at both frontocentral and temporal electrode sites in response to pitch contours with acceleration rates inside the normal voice pitch range as compared to pitch contours with acceleration rates that exceed the normal range. As indexed by CPR amplitude at the temporal sites, a rightward asymmetry was observed for the Chinese group only. Only over the right temporal site was amplitude greater in the Chinese group relative to the English. These findings may suggest that the neural mechanism(s) underlying processing of pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to acceleration in just those rising pitch contours that fall within the bounds of one's native language. More broadly, enhancement of native pitch stimuli and stronger rightward asymmetry of CPR components in the Chinese group is consistent with the notion that long-term experience shapes adaptive, distributed hierarchical pitch processing in the auditory cortex, and reflects an interaction with higher order, extrasensory processes beyond the sensory memory trace. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Pitch Processing in Tonal-Language-Speaking Children with Autism: An Event-Related Potential Study.

    Science.gov (United States)

    Yu, Luodi; Fan, Yuebo; Deng, Zhizhou; Huang, Dan; Wang, Suiping; Zhang, Yang

    2015-11-01

    The present study investigated pitch processing in Mandarin-speaking children with autism using event-related potential measures. Two experiments were designed to test how acoustic, phonetic and semantic properties of the stimuli contributed to the neural responses for pitch change detection and involuntary attentional orienting. In comparison with age-matched (6-12 years) typically developing controls (16 participants in Experiment 1, 18 in Experiment 2), children with autism (18 participants in Experiment 1, 16 in Experiment 2) showed enhanced neural discriminatory sensitivity in the nonspeech conditions but not for speech stimuli. The results indicate domain specificity of enhanced pitch processing in autism, which may interfere with lexical tone acquisition and language development for children who speak a tonal language.

  16. Sensory-motor interactions for vocal pitch monitoring in non-primary human auditory cortex.

    Directory of Open Access Journals (Sweden)

    Jeremy D W Greenlee

    Full Text Available The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (-100 cents pitch perturbations in their voice auditory feedback (speaking task. ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP and event-related band power (ERBP responses, primarily in the high gamma (70-150 Hz range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG. The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control.

  17. Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training

    DEFF Research Database (Denmark)

    Aagaard, Per; Simonsen, E.B.; Andersen, J.L.

    2000-01-01

    neuromuscular activation, muscle strength, neural efferent drive, eccentric activation deficiency, force inhibition......neuromuscular activation, muscle strength, neural efferent drive, eccentric activation deficiency, force inhibition...

  18. Smart pitch control strategy for wind generation system using doubly fed induction generator

    Science.gov (United States)

    Raza, Syed Ahmed

    A smart pitch control strategy for a variable speed doubly fed wind generation system is presented in this thesis. A complete dynamic model of DFIG system is developed. The model consists of the generator, wind turbine, aerodynamic and the converter system. The strategy proposed includes the use of adaptive neural network to generate optimized controller gains for pitch control. This involves the generation of controller parameters of pitch controller making use of differential evolution intelligent technique. Training of the back propagation neural network has been carried out for the development of an adaptive neural network. This tunes the weights of the network according to the system states in a variable wind speed environment. Four cases have been taken to test the pitch controller which includes step and sinusoidal changes in wind speeds. The step change is composed of both step up and step down changes in wind speeds. The last case makes use of scaled wind data collected from the wind turbine installed at King Fahd University beach front. Simulation studies show that the differential evolution based adaptive neural network is capable of generating the appropriate control to deliver the maximum possible aerodynamic power available from wind to the generator in an efficient manner by minimizing the transients.

  19. Tone language fluency impairs pitch discrimination

    Directory of Open Access Journals (Sweden)

    Isabelle ePeretz

    2011-07-01

    Full Text Available Here we present evidence that native speakers of a tone language, in which pitch contributes to word meaning, are impaired in the discrimination of falling pitches in tone sequences, as compared to speakers of a non-tone language. Both groups were presented with monotonic and isochronous sequences of five tones (i.e., constant pitch and intertone interval. They were required to detect when the fourth tone was displaced in pitch or time. While speakers of a tone language performed more poorly in the detection of downward pitch changes, they did not differ from non-tone language speakers in their perception of upward pitch changes or in their perception of subtle time changes. Moreover, this impairment cannot be attributed to low musical aptitude since the impairment remains unchanged when individual differences in musical pitch-based processing is taken into account. Thus, the impairment appears highly specific and may reflect the influence of statistical regularities of tone languages.

  20. Aerodynamic control with passively pitching wings

    Science.gov (United States)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  1. Variable Pitch Darrieus Water Turbines

    Science.gov (United States)

    Kirke, Brian; Lazauskas, Leo

    In recent years the Darrieus wind turbine concept has been adapted for use in water, either as a hydrokinetic turbine converting the kinetic energy of a moving fluid in open flow like an underwater wind turbine, or in a low head or ducted arrangement where flow is confined, streamtube expansion is controlled and efficiency is not subject to the Betz limit. Conventional fixed pitch Darrieus turbines suffer from two drawbacks, (i) low starting torque and (ii) shaking due to cyclical variations in blade angle of attack. Ventilation and cavitation can also cause problems in water turbines when blade velocities are high. Shaking can be largely overcome by the use of helical blades, but these do not produce large starting torque. Variable pitch can produce high starting torque and high efficiency, and by suitable choice of pitch regime, shaking can be minimized but not entirely eliminated. Ventilation can be prevented by avoiding operation close to a free surface, and cavitation can be prevented by limiting blade velocities. This paper summarizes recent developments in Darrieus water turbines, some problems and some possible solutions.

  2. Superior time perception for lower musical pitch explains why bass-ranged instruments lay down musical rhythms.

    Science.gov (United States)

    Hove, Michael J; Marie, Céline; Bruce, Ian C; Trainor, Laurel J

    2014-07-15

    The auditory environment typically contains several sound sources that overlap in time, and the auditory system parses the complex sound wave into streams or voices that represent the various sound sources. Music is also often polyphonic. Interestingly, the main melody (spectral/pitch information) is most often carried by the highest-pitched voice, and the rhythm (temporal foundation) is most often laid down by the lowest-pitched voice. Previous work using electroencephalography (EEG) demonstrated that the auditory cortex encodes pitch more robustly in the higher of two simultaneous tones or melodies, and modeling work indicated that this high-voice superiority for pitch originates in the sensory periphery. Here, we investigated the neural basis of carrying rhythmic timing information in lower-pitched voices. We presented simultaneous high-pitched and low-pitched tones in an isochronous stream and occasionally presented either the higher or the lower tone 50 ms earlier than expected, while leaving the other tone at the expected time. EEG recordings revealed that mismatch negativity responses were larger for timing deviants of the lower tones, indicating better timing encoding for lower-pitched compared with higher-pitch tones at the level of auditory cortex. A behavioral motor task revealed that tapping synchronization was more influenced by the lower-pitched stream. Results from a biologically plausible model of the auditory periphery suggest that nonlinear cochlear dynamics contribute to the observed effect. The low-voice superiority effect for encoding timing explains the widespread musical practice of carrying rhythm in bass-ranged instruments and complements previously established high-voice superiority effects for pitch and melody.

  3. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  4. Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control.

    Science.gov (United States)

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A; Larson, Charles R

    2015-01-01

    The answer to the question of how the brain incorporates sensory feedback and links it with motor function to achieve goal-directed movement during vocalization remains unclear. We investigated the mechanisms of voice pitch motor control by examining the spectro-temporal dynamics of EEG signals when non-musicians (NM), relative pitch (RP), and absolute pitch (AP) musicians maintained vocalizations of a vowel sound and received randomized ± 100 cents pitch-shift stimuli in their auditory feedback. We identified a phase-synchronized (evoked) fronto-central activation within the theta band (5-8 Hz) that temporally overlapped with compensatory vocal responses to pitch-shifted auditory feedback and was significantly stronger in RP and AP musicians compared with non-musicians. A second component involved a non-phase-synchronized (induced) frontal activation within the delta band (1-4 Hz) that emerged at approximately 1 s after the stimulus onset. The delta activation was significantly stronger in the NM compared with RP and AP groups and correlated with the pitch rebound error (PRE), indicating the degree to which subjects failed to re-adjust their voice pitch to baseline after the stimulus offset. We propose that the evoked theta is a neurophysiological marker of enhanced pitch processing in musicians and reflects mechanisms by which humans incorporate auditory feedback to control their voice pitch. We also suggest that the delta activation reflects adaptive neural processes by which vocal production errors are monitored and used to update the state of sensory-motor networks for driving subsequent vocal behaviors. This notion is corroborated by our findings showing that larger PREs were associated with greater delta band activity in the NM compared with RP and AP groups. These findings provide new insights into the neural mechanisms of auditory feedback processing for vocal pitch motor control.

  5. Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control

    Directory of Open Access Journals (Sweden)

    Roozbeh eBehroozmand

    2015-03-01

    Full Text Available The answer to the question of how the brain incorporates sensory feedback and links it with motor function to achieve goal-directed movement during vocalization remains unclear. We investigated the mechanisms of voice pitch motor control by examining the spectro-temporal dynamics of EEG signals when non-musicians (NM, relative pitch (RP and absolute pitch (AP musicians maintained vocalizations of a vowel sound and received randomized ±100 cents pitch-shift stimuli in their auditory feedback. We identified a phase-synchronized (evoked fronto-central activation within the theta band (5-8 Hz that temporally overlapped with compensatory vocal responses to pitch-shifted auditory feedback and was significantly stronger in RP and AP musicians compared with non-musicians. A second component involved a non-phase-synchronized (induced frontal activation within the delta band (1-4 Hz that emerged at approximately 1 second after the stimulus onset. The delta activation was significantly stronger in the NM compared with RP and AP groups and correlated with the pitch rebound error (PRE, indicating the degree to which subjects failed to re-adjust their voice pitch to baseline after the stimulus offset. We propose that the evoked theta is a neurophysiological marker of enhanced pitch processing in musicians and reflects mechanisms by which humans incorporate auditory feedback to control their voice pitch. We also suggest that the delta activation reflects adaptive neural processes by which vocal production errors are monitored and used to update the state of sensory-motor networks for driving subsequent vocal behaviors. This notion is corroborated by our findings showing that larger PREs were associated with greater delta band activity in the NM compared with RP and AP groups. These findings provide new insights into the neural mechanisms of auditory feedback processing for vocal pitch motor control.

  6. Re-examining the pitch/coke wetting and penetration test

    Science.gov (United States)

    Cao, Jinan; Buckley, Alan N.; Tomsett, Alan

    2002-02-01

    To produce structurally soundcarbon anodes for use in aluminum smelting, a strong bond between filler and binder coke is necessary. Bond strength results from mechanical interlocking and adhesion of the binder coke to the filler coke. Critical for creating such bonds is the ability of the pitch to wet the coke surface and penetrate the coke porosity during mixing and forming. Wettability is normally assessed from the pitch behavior during the initial stages of a penetration test. In the test, the observed contact angle between a pitch droplet and a bed of fine coke particles is recorded as the temperature is increased. The temperature at which this contact angle becomes 90° is referred to as the wetting temperature of the pitch. The penetration test may be useful to identify pitch and coke combinations that are unlikely to produce baked anodes of acceptable quality with standard paste preparation conditions. It does not, however, provide a measure of the true wettability of a coke by a pitch. The isothermal penetration experiments reported here demonstrate that the observed contact angle of a pitch against a coke bed changes continuously from >90° to <90°, even to 0‡, at a temperature much lower than the wetting temperature derived from the penetration test. The requirements for the measurement of a true contact angle and the difference between the concepts of adhesion and wetting are discussed.

  7. Difficulties with pitch discrimination influences pitch memory performance: evidence from congenital amusia.

    Science.gov (United States)

    Jiang, Cunmei; Lim, Vanessa K; Wang, Hang; Hamm, Jeff P

    2013-01-01

    Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to create conditions where two pitches (the standard and the comparison tones) differed by 1x, 2x, and 3x the threshold setting. For comparison with the literature a condition that employed a constant pitch difference of four semitones was also included. The results showed that pitch memory performance improved as the discrimination between the standard and the comparison tones was made easier for both amusic and control groups, and more importantly, that amusics did not show any pitch retention deficits when the discrimination difficulty was equated. In contrast, consistent with previous literature, amusics performed worse than controls when the physical pitch distance was held constant at four semitones. This impaired performance has been interpreted as evidence for pitch memory impairment in the past. However, employing a constant pitch distance always makes the difference closer to the discrimination threshold for the amusic group than for the control group. Therefore, reduced performance in this condition may simply reflect differences in the perceptual difficulty of the discrimination. The findings indicate the importance of equating the discrimination difficulty when investigating memory.

  8. Difficulties with pitch discrimination influences pitch memory performance: evidence from congenital amusia.

    Directory of Open Access Journals (Sweden)

    Cunmei Jiang

    Full Text Available Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to create conditions where two pitches (the standard and the comparison tones differed by 1x, 2x, and 3x the threshold setting. For comparison with the literature a condition that employed a constant pitch difference of four semitones was also included. The results showed that pitch memory performance improved as the discrimination between the standard and the comparison tones was made easier for both amusic and control groups, and more importantly, that amusics did not show any pitch retention deficits when the discrimination difficulty was equated. In contrast, consistent with previous literature, amusics performed worse than controls when the physical pitch distance was held constant at four semitones. This impaired performance has been interpreted as evidence for pitch memory impairment in the past. However, employing a constant pitch distance always makes the difference closer to the discrimination threshold for the amusic group than for the control group. Therefore, reduced performance in this condition may simply reflect differences in the perceptual difficulty of the discrimination. The findings indicate the importance of equating the discrimination difficulty when investigating memory.

  9. Nozzle designs with pitch precursor ablatives

    Science.gov (United States)

    Blevins, H. R.; Bedard, R. J.

    1976-01-01

    Recent developments in carbon phenolic ablatives for solid rocket motor nozzles have yielded a pitch precursor carbon fiber offering significant raw material availability and cost saving advantages as compared to conventional rayon precursor material. This paper discusses the results of an experimental program conducted to assess the thermal performance and characterize the thermal properties of pitch precursor carbon phenolic ablatives. The end result of this program is the complete thermal characterization of pitch fabric, pitch mat, hybrid pitch/rayon fabric and pitch mat molding compound. With these properties determined an analytic capability now exists for predicting the thermal performance of these materials in rocket nozzle liner applications. Further planned efforts to verify material performance and analytical prediction procedures through actual rocket motor firings are also discussed.

  10. Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control.

    Science.gov (United States)

    Behroozmand, Roozbeh; Korzyukov, Oleg; Sattler, Lindsey; Larson, Charles R

    2012-10-01

    The present study describes a technique for analysis of vocal responses to auditory feedback pitch perturbations in which individual trials are first sorted according to response direction and then separately averaged in groups of upward or downward responses. In experiment 1, the stimulus direction was predictable (all upward) but magnitude was randomized between +100, +200, or +500 cents (unpredictable). Results showed that pitch-shift stimuli (PSS) of +100 and +200 cents elicited significantly larger opposing (compensatory) responses than +500 cent stimuli, but no such effect was observed for "following" responses. In experiment 2, subjects were tested in three blocks of trials where for the first two, PSS magnitude and direction were predictable (block 1+100 and block 2-100 cents), and in block 3, the magnitude was predictable (±100 cents) but direction was randomized (upward or downward). Results showed there were slightly more opposing than following responses for predictable PSS direction, but randomized directions led to significantly more opposing than following responses. Results suggest that predictability of stimulus direction and magnitude can modulate vocal responses to feedback pitch perturbations. The function and causes of the opposing and following responses are unknown, but there may be two different neural mechanisms involved in their production.

  11. Heavy vehicle pitch dynamics and suspension tuning

    OpenAIRE

    Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi

    2008-01-01

    The influence of suspension tuning of passenger cars on bounce and pitch ride performance has been explored in a number of studies, while only minimal efforts have been made for establishing similar rules for heavy vehicles. This study aims to explore pitch dynamics and suspension tunings of a two-axle heavy vehicle with unconnected suspension, which could also provide valuable information for heavy vehicles with coupled suspensions. Based on a generalised pitch-plane model of a two-axle heav...

  12. Upgrading mild gasification liquids to produce electrode binder pitch: Final technical report, September 1, 1993--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.A. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-12-31

    The objective of this program is to investigate the production of electrode binder pitch, valued at $250--$300/ton, from mild gasification liquids. In the IGT MILDGAS process, the 400 C+ distillation residue (crude pitch) comprises up to 20 wt% of maf feed coal. The largest market for pitch made from coal liquids is the aluminum industry, which uses it to make carbon anodes for electrolytic furnaces. In this project, crude MILDGAS pitch is being modified by flash thermocracking to achieve binder pitch specifications. A 1-kg/h continuous unit has been built for operation up to 900 C at 2.5 atm, and parametric tests were conducted in N{sub 2}, H{sub 2} and 50% H{sub 2}/N{sub 2}. In general, thermocracking at 750--850 C in N{sub 2} resulted in a pitch which meets binder pitch requirements for QI, TI, softening point, and C:H ratio. Further improvements in density and sulfur content are required. Test anodes were prepared by Alcoa using the upgraded mild gasification pitch. All of the key anode properties (density, strength, resistivity, thermal properties, permeability, and reactivity) compared very favorably with those of electrodes made from a standard pitch binder.

  13. Neural bases of congenital amusia in tonal language speakers.

    Science.gov (United States)

    Zhang, Caicai; Peng, Gang; Shao, Jing; Wang, William S-Y

    2017-03-01

    Congenital amusia is a lifelong neurodevelopmental disorder of fine-grained pitch processing. In this fMRI study, we examined the neural bases of congenial amusia in speakers of a tonal language - Cantonese. Previous studies on non-tonal language speakers suggest that the neural deficits of congenital amusia lie in the music-selective neural circuitry in the right inferior frontal gyrus (IFG). However, it is unclear whether this finding can generalize to congenital amusics in tonal languages. Tonal language experience has been reported to shape the neural processing of pitch, which raises the question of how tonal language experience affects the neural bases of congenital amusia. To investigate this question, we examined the neural circuitries sub-serving the processing of relative pitch interval in pitch-matched Cantonese level tone and musical stimuli in 11 Cantonese-speaking amusics and 11 musically intact controls. Cantonese-speaking amusics exhibited abnormal brain activities in a widely distributed neural network during the processing of lexical tone and musical stimuli. Whereas the controls exhibited significant activation in the right superior temporal gyrus (STG) in the lexical tone condition and in the cerebellum regardless of the lexical tone and music conditions, no activation was found in the amusics in those regions, which likely reflects a dysfunctional neural mechanism of relative pitch processing in the amusics. Furthermore, the amusics showed abnormally strong activation of the right middle frontal gyrus and precuneus when the pitch stimuli were repeated, which presumably reflect deficits of attending to repeated pitch stimuli or encoding them into working memory. No significant group difference was found in the right IFG in either the whole-brain analysis or region-of-interest analysis. These findings imply that the neural deficits in tonal language speakers might differ from those in non-tonal language speakers, and overlap partly with the

  14. The effect of intensity on relative pitch.

    Science.gov (United States)

    Thompson, William Forde; Peter, Varghese; Olsen, Kirk N; Stevens, Catherine J

    2012-01-01

    In two experiments, we examined the effect of intensity and intensity change on judgements of pitch differences or interval size. In Experiment 1, 39 musically untrained participants rated the size of the interval spanned by two pitches within individual gliding tones. Tones were presented at high intensity, low intensity, looming intensity (up-ramp), and fading intensity (down-ramp) and glided between two pitches spanning either 6 or 7 semitones (a tritone or a perfect fifth interval). The pitch shift occurred in either ascending or descending directions. Experiment 2 repeated the conditions of Experiment 1 but the shifts in pitch and intensity occurred across two discrete tones (i.e., a melodic interval). Results indicated that participants were sensitive to the differences in interval size presented: Ratings were significantly higher when two pitches differed by 7 semitones than when they differed by 6 semitones. However, ratings were also dependent on whether the interval was high or low in intensity, whether it increased or decreased in intensity across the two pitches, and whether the interval was ascending or descending in pitch. Such influences illustrate that the perception of pitch relations does not always adhere to a logarithmic function as implied by their musical labels, but that identical intervals are perceived as substantially different in size depending on other attributes of the sound source.

  15. Parasites pitched against nature: Pitch Lake water protects guppies (Poecilia reticulata) from microbial and gyrodactylid infections.

    Science.gov (United States)

    Schelkle, Bettina; Mohammed, Ryan S; Coogan, Michael P; McMullan, Mark; Gillingham, Emma L; VAN Oosterhout, Cock; Cable, Joanne

    2012-11-01

    SUMMARY The enemy release hypothesis proposes that in parasite depleted habitats, populations will experience relaxed selection and become more susceptible (or less tolerant) to pathogenic infections. Here, we focus on a population of guppies (Poecilia reticulata) that are found in an extreme environment (the Pitch Lake, Trinidad) and examine whether this habitat represents a refuge from parasites. We investigated the efficacy of pitch in preventing microbial infections in Pitch Lake guppies, by exposing them to dechlorinated water, and reducing gyrodactylid infections on non-Pitch Lake guppies by transferring them to Pitch Lake water. We show that (i) natural prevalence of ectoparasites in the Pitch Lake is low compared to reference populations, (ii) Pitch Lake guppies transferred into aquarium water develop microbial infections, and (iii) experimentally infected guppies are cured of their gyrodactylid infections both by natural Pitch Lake water and by dechlorinated water containing solid pitch. These results indicate a role for Pitch Lake water in the defence of guppies from their parasites and suggest that Pitch Lake guppies might have undergone enemy release in this extreme environment. The Pitch Lake provides an ideal ecosystem for studies on immune gene evolution in the absence of parasites and long-term evolutionary implications of hydrocarbon pollution for vertebrates.

  16. Prediction of Welded Joint Strength in Plasma Arc Welding: A Comparative Study Using Back-Propagation and Radial Basis Neural Networks

    Science.gov (United States)

    Srinivas, Kadivendi; Vundavilli, Pandu R.; Manzoor Hussain, M.; Saiteja, M.

    2016-09-01

    Welding input parameters such as current, gas flow rate and torch angle play a significant role in determination of qualitative mechanical properties of weld joint. Traditionally, it is necessary to determine the weld input parameters for every new welded product to obtain a quality weld joint which is time consuming. In the present work, the effect of plasma arc welding parameters on mild steel was studied using a neural network approach. To obtain a response equation that governs the input-output relationships, conventional regression analysis was also performed. The experimental data was constructed based on Taguchi design and the training data required for neural networks were randomly generated, by varying the input variables within their respective ranges. The responses were calculated for each combination of input variables by using the response equations obtained through the conventional regression analysis. The performances in Levenberg-Marquardt back propagation neural network and radial basis neural network (RBNN) were compared on various randomly generated test cases, which are different from the training cases. From the results, it is interesting to note that for the above said test cases RBNN analysis gave improved training results compared to that of feed forward back propagation neural network analysis. Also, RBNN analysis proved a pattern of increasing performance as the data points moved away from the initial input values.

  17. Objective correlates of pitch salience using pupillometry

    DEFF Research Database (Denmark)

    Bianchi, Federica; Santurette, Sébastien; Wendt, Dorothea

    2014-01-01

    Although objective correlates of pitch salience have been investigated in several neuroimaging studies, the results remain controversial. In the present study, a novel approach to objectively estimate pitch salience was used. Pupil dilation was measured as an indicator of the required effort in p...

  18. Individual Pitch Control Using LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    2012-01-01

    In this work the problem of individual pitch control of a variable-speed variable-pitch wind turbine in the full load region is considered. Model predictive control (MPC) is used to solve the problem. However as the plant is nonlinear and time varying, a new approach is proposed to simplify...

  19. Learning Novel Musical Pitch via Distributional Learning

    Science.gov (United States)

    Ong, Jia Hoong; Burnham, Denis; Stevens, Catherine J.

    2017-01-01

    Because different musical scales use different sets of intervals and, hence, different musical pitches, how do music listeners learn those that are in their native musical system? One possibility is that musical pitches are acquired in the same way as phonemes, that is, via distributional learning, in which learners infer knowledge from the…

  20. Microstructure and mechanical properties of coal tar pitch-based 2D-C/C composites with a filler addition

    Energy Technology Data Exchange (ETDEWEB)

    Chollon, G.; Siron, O.; Takahashi, J.; Yamauchi, H.; Maeda, K.; Kosaka, K. [University of Bordeaux 1, Pessac (France)

    2001-07-01

    In order to improve the flexural and the inter-laminar shear strength of coal tar pitch-based 2D-C/C composites, fillers (carbon blacks and colloidal graphite) were introduced between the UD layers before the first infiltration of pitch. Matrix parts made of the filler/pitch-based cokes showed fine mosaic microtextures. They were found at the interface between the layers. Whereas the tensile strength is not affected, the flexural strength and the ILSS were significantly increased by the addition of fillers. The original structure of the inter-layer matrix parts and the decrease of the number of flaws were found to be responsible for the improvement of the shear strength of the 0/90 degrees UD layers.

  1. Convolutional Pitch Target Approximation Model for Speech Synthesis

    OpenAIRE

    Na, Xingyu; Garner, Philip N.

    2013-01-01

    In this paper, we investigate pitch contour modelling in speech synthesis based on segmental units. A convolutional pitch target approximation model is proposed. This model allows jointly stochastic modelling of framewise pitch and pitch contour of longer units, of which the intuitive relations are revealed by a convolutional target approximation filter. The pitch contour is stylized by a linear representation called pitch target. In synthesis stage, the likelihood of the framewise model and ...

  2. Integrating cues of social interest and voice pitch in men's preferences for women's voices.

    Science.gov (United States)

    Jones, Benedict C; Feinberg, David R; Debruine, Lisa M; Little, Anthony C; Vukovic, Jovana

    2008-04-23

    Most previous studies of vocal attractiveness have focused on preferences for physical characteristics of voices such as pitch. Here we examine the content of vocalizations in interaction with such physical traits, finding that vocal cues of social interest modulate the strength of men's preferences for raised pitch in women's voices. Men showed stronger preferences for raised pitch when judging the voices of women who appeared interested in the listener than when judging the voices of women who appeared relatively disinterested in the listener. These findings show that voice preferences are not determined solely by physical properties of voices and that men integrate information about voice pitch and the degree of social interest expressed by women when forming voice preferences. Women's preferences for raised pitch in women's voices were not modulated by cues of social interest, suggesting that the integration of cues of social interest and voice pitch when men judge the attractiveness of women's voices may reflect adaptations that promote efficient allocation of men's mating effort.

  3. Sensory Processing: Advances in Understanding Structure and Function of Pitch-Shifted Auditory Feedback in Voice Control

    Directory of Open Access Journals (Sweden)

    Charles R Larson

    2016-02-01

    Full Text Available The pitch-shift paradigm has become a widely used method for studying the role of voice pitch auditory feedback in voice control. This paradigm introduces small, brief pitch shifts in voice auditory feedback to vocalizing subjects. The perturbations trigger a reflexive mechanism that counteracts the change in pitch. The underlying mechanisms of the vocal responses are thought to reflect a negative feedback control system that is similar to constructs developed to explain other forms of motor control. Another use of this technique requires subjects to voluntarily change the pitch of their voice when they hear a pitch shift stimulus. Under these conditions, short latency responses are produced that change voice pitch to match that of the stimulus. The pitch-shift technique has been used with magnetoencephalography (MEG and electroencephalography (EEG recordings, and has shown that at vocal onset there is normally a suppression of neural activity related to vocalization. However, if a pitch-shift is also presented at voice onset, there is a cancellation of this suppression, which has been interpreted to mean that one way in which a person distinguishes self-vocalization from vocalization of others is by a comparison of the intended voice and the actual voice. Studies of the pitch shift reflex in the fMRI environment show that the superior temporal gyrus (STG plays an important role in the process of controlling voice F0 based on auditory feedback. Additional studies using fMRI for effective connectivity modeling show that the left and right STG play critical roles in correcting for an error in voice production. While both the left and right STG are involved in this process, a feedback loop develops between left and right STG during perturbations, in which the left to right connection becomes stronger, and a new negative right to left connection emerges along with the emergence of other feedback loops within the cortical network tested.

  4. Multi-impregnating pitch-bonded Egyptian dolomite refractory brick for application in ladle furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Rabah, M.; Ewais, E.M.M. [CMRDI, Cairo (Egypt)

    2009-03-15

    A method of preparation of multi-impregnated pitch-bonded Egyptian dolomite refractory brick for ladle furnace is described. Brick samples were prepared from blend of calcined dolomite mineral and coal tar pitch. The blend was hot mixed and pressed under a compression force up to 151 MPa. Green bricks were baked for 2 h at temperatures up to 1000 {sup o}C. Voids in the baked bodies were filled with carbon by multiple impregnations using low-softening point coal tar pitch. Each impregnation step (30 min) was followed by calcination at 1000 degrees C. Brick samples containing 8-12 wt.% coal tar pitch binder and pressed under 108-151 MPa acquired quantify crushing strength. However, multi-impregnating favored the mechanical strength of the baked brick samples and improved their hydration resistance (>45 days). Dolomite brick samples containing 10 wt.% coal tar pitch and pressed at 108 MPa gave high hydration resistance (more than 60 days in normal condition) compared to the hydration resistance of the commercial bricks (30 days). The prepared brick samples have acceptable density, chemical stability, outstanding resistance and good mechanical properties would meet the requirements of Ladle furnace (LF) for steel making industry. In addition, estimation of production cost of the brick indicates it is competitive with the market price based on durability and service life time aspects.

  5. Encoding pitch contours using current steering.

    Science.gov (United States)

    Luo, Xin; Landsberger, David M; Padilla, Monica; Srinivasan, Arthi G

    2010-09-01

    This study investigated cochlear implant (CI) users' ability to perceive pitch cues from time-varying virtual channels (VCs) to identify pitch contours. Seven CI users were tested on apical, medial, and basal electrode pairs with stimulus durations from 100 to 1000 ms. In one stimulus set, 9 pitch contours were created by steering current between the component electrodes and the VC halfway between the electrodes. Another stimulus set only contained 3 pitch contours (flat, falling, and rising). VC discrimination was also tested on the same electrodes. The total current level of dual-electrode stimuli was linearly interpolated between those of single-electrode stimuli to minimize loudness changes. The results showed that pitch contour identification (PCI) scores were similar across electrode locations, and significantly improved at longer durations. For durations longer than 300 ms, 2 subjects had nearly perfect 9-contour identification, and 5 subjects perfectly identified the 3 basic contours. Both PCI and VC discrimination varied greatly across subjects. Cumulative d(') values for VC discrimination were significantly correlated with 100-, 200-, and 500-ms PCI scores. These results verify the feasibility of encoding pitch contours using current steering, and suggest that identification of such pitch contours strongly relies on CI users' sensitivity to VCs.

  6. Intracortical myelination in musicians with absolute pitch: Quantitative morphometry using 7‐T MRI

    Science.gov (United States)

    Knösche, Thomas R.

    2016-01-01

    Abstract Absolute pitch (AP) is known as the ability to recognize and label the pitch chroma of a given tone without external reference. Known brain structures and functions related to AP are mainly of macroscopic aspects. To shed light on the underlying neural mechanism of AP, we investigated the intracortical myeloarchitecture in musicians with and without AP using the quantitative mapping of the longitudinal relaxation rates with ultra‐high‐field magnetic resonance imaging at 7 T. We found greater intracortical myelination for AP musicians in the anterior region of the supratemporal plane, particularly the medial region of the right planum polare (PP). In the same region of the right PP, we also found a positive correlation with a behavioral index of AP performance. In addition, we found a positive correlation with a frequency discrimination threshold in the anterolateral Heschl's gyrus in the right hemisphere, demonstrating distinctive neural processes of absolute recognition and relative discrimination of pitch. Regarding possible effects of local myelination in the cortex and the known importance of the anterior superior temporal gyrus/sulcus for the identification of auditory objects, we argue that pitch chroma may be processed as an identifiable object property in AP musicians. Hum Brain Mapp 37:3486–3501, 2016. © 2016 Wiley Periodicals, Inc. PMID:27160707

  7. Intracortical myelination in musicians with absolute pitch: Quantitative morphometry using 7-T MRI.

    Science.gov (United States)

    Kim, Seung-Goo; Knösche, Thomas R

    2016-10-01

    Absolute pitch (AP) is known as the ability to recognize and label the pitch chroma of a given tone without external reference. Known brain structures and functions related to AP are mainly of macroscopic aspects. To shed light on the underlying neural mechanism of AP, we investigated the intracortical myeloarchitecture in musicians with and without AP using the quantitative mapping of the longitudinal relaxation rates with ultra-high-field magnetic resonance imaging at 7 T. We found greater intracortical myelination for AP musicians in the anterior region of the supratemporal plane, particularly the medial region of the right planum polare (PP). In the same region of the right PP, we also found a positive correlation with a behavioral index of AP performance. In addition, we found a positive correlation with a frequency discrimination threshold in the anterolateral Heschl's gyrus in the right hemisphere, demonstrating distinctive neural processes of absolute recognition and relative discrimination of pitch. Regarding possible effects of local myelination in the cortex and the known importance of the anterior superior temporal gyrus/sulcus for the identification of auditory objects, we argue that pitch chroma may be processed as an identifiable object property in AP musicians. Hum Brain Mapp 37:3486-3501, 2016. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  8. Effects of harmonic roving on pitch discrimination

    DEFF Research Database (Denmark)

    Santurette, Sébastien; de Kérangal, Mathilde le Gal; Joshi, Suyash Narendra

    2015-01-01

    external noise in the physical stimulus (Lu and Dosher, 2008). The present study used this approach to attempt to quantify the “internal noise” involved in pitch coding of harmonic complex tones by estimating the amount of harmonic roving required to impair pitch discrimination performance. It remains...... performance may help clarify pitch coding mechanisms. As training on frequency discrimination tasks has been found to result in a reduction of internal noise (Jones et al., 2013), it was also investigated whether the effect of harmonic roving varied with musical training...

  9. Cortical pitch representations of complex tones in musicians and non-musicians

    DEFF Research Database (Denmark)

    Bianchi, Federica; Hjortkjær, Jens; Santurette, Sébastien

    enhancement. In a previous behavioral study, musicians showed an increased pitch-discrimination performance for both resolved and unresolved complex tones suggesting an enhanced neural representation of pitch at central stages of the auditory system. The aim of this study was to clarify whether musicians show...... (i) differential neural activation in response to complex tones as compared to non-musicians and/or (ii) finer fundamental frequency (F0) representation in the auditory cortex. Assuming that the right auditory cortex is specialized in processing fine spectral changes, we hypothesized that an enhanced...... F0 representation in musicians would be associated with a stronger right-lateralized response to complex tones compared to non-musicians. Fundamental frequency (F0) discrimination thresholds were obtained for harmonic complex tones with F0s of 100 and 500 Hz, filtered in either a low or a high...

  10. Examining pitch and numerical magnitude processing in congenital amusia: A quasi-experimental pilot study.

    Science.gov (United States)

    Nunes-Silva, Marilia; Moura, Ricardo; Lopes-Silva, Júlia Beatriz; Haase, Vitor Geraldi

    2016-08-01

    Congenital amusia is a developmental disorder associated with deficits in pitch height discrimination or in integrating pitch sequences into melodies. This quasi-experimental pilot study investigated whether there is an association between pitch and numerical processing deficits in congenital amusia. Since pitch height discrimination is considered a form of magnitude processing, we investigated whether individuals with amusia present an impairment in numerical magnitude processing, which would reflect damage to a generalized magnitude system. Alternatively, we investigated whether the numerical processing deficit would reflect a disconnection between nonsymbolic and symbolic number representations. This study was conducted with 11 adult individuals with congenital amusia and a control comparison group of 6 typically developing individuals. Participants performed nonsymbolic and symbolic magnitude comparisons and number line tasks. Results were available from previous testing using the Montreal Battery of Evaluation of Amusia (MBEA) and a pitch change detection task (PCD). Compared to the controls, individuals with amusia exhibited no significant differences in their performance on both the number line and the nonsymbolic magnitude tasks. Nevertheless, they showed significantly worse performance on the symbolic magnitude task. Moreover, individuals with congenital amusia, who presented worse performance in the Meter subtest, also presented less precise nonsymbolic numerical representation. The relationship between meter and nonsymbolic numerical discrimination could indicate a general ratio processing deficit. The finding of preserved nonsymbolic numerical magnitude discrimination and mental number line representations, with impaired symbolic number processing, in individuals with congenital amusia indicates that (a) pitch height and numerical magnitude processing may not share common neural representations, and (b) in addition to pitch processing, individuals with

  11. The role of the auditory brainstem in processing musically-relevant pitch

    Directory of Open Access Journals (Sweden)

    Gavin M. Bidelman

    2013-05-01

    Full Text Available Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically-relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain.

  12. The Role of the Auditory Brainstem in Processing Musically Relevant Pitch

    Science.gov (United States)

    Bidelman, Gavin M.

    2013-01-01

    Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority) are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain. PMID:23717294

  13. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    In contemporary consciousness studies the phenomenon of neural plasticity has received little attention despite the fact that neural plasticity is of still increased interest in neuroscience. We will, however, argue that neural plasticity could be of great importance to consciousness studies....... If consciousness is related to neural processes it seems, at least prima facie, that the ability of the neural structures to change should be reflected in a theory of this relationship "Neural plasticity" refers to the fact that the brain can change due to its own activity. The brain is not static but rather...... a dynamic entity, which physical structure changes according to its use and environment. This change may take the form of growth of new neurons, the creation of new networks and structures, and change within network structures, that is, changes in synaptic strengths. Plasticity raises questions about...

  14. Common parietal activation in musical mental transformations across pitch and time.

    Science.gov (United States)

    Foster, Nicholas E V; Halpern, Andrea R; Zatorre, Robert J

    2013-07-15

    We previously observed that mental manipulation of the pitch level or temporal organization of melodies results in functional activation in the human intraparietal sulcus (IPS), a region also associated with visuospatial transformation and numerical calculation. Two outstanding questions about these musical transformations are whether pitch and time depend on separate or common processing in IPS, and whether IPS recruitment in melodic tasks varies depending upon the degree of transformation required (as it does in mental rotation). In the present study we sought to answer these questions by applying functional magnetic resonance imaging while musicians performed closely matched mental transposition (pitch transformation) and melody reversal (temporal transformation) tasks. A voxel-wise conjunction analysis showed that in individual subjects, both tasks activated overlapping regions in bilateral IPS, suggesting that a common neural substrate subserves both types of mental transformation. Varying the magnitude of mental pitch transposition resulted in variation of IPS BOLD signal in correlation with the musical key-distance of the transposition, but not with the pitch distance, indicating that the cognitive metric relevant for this type of operation is an abstract one, well described by music-theoretic concepts. These findings support a general role for the IPS in systematically transforming auditory stimulus representations in a nonspatial context. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Pitch representations in the auditory nerve: two concurrent complex tones.

    Science.gov (United States)

    Larsen, Erik; Cedolin, Leonardo; Delgutte, Bertrand

    2008-09-01

    Pitch differences between concurrent sounds are important cues used in auditory scene analysis and also play a major role in music perception. To investigate the neural codes underlying these perceptual abilities, we recorded from single fibers in the cat auditory nerve in response to two concurrent harmonic complex tones with missing fundamentals and equal-amplitude harmonics. We investigated the efficacy of rate-place and interspike-interval codes to represent both pitches of the two tones, which had fundamental frequency (F0) ratios of 15/14 or 11/9. We relied on the principle of scaling invariance in cochlear mechanics to infer the spatiotemporal response patterns to a given stimulus from a series of measurements made in a single fiber as a function of F0. Templates created by a peripheral auditory model were used to estimate the F0s of double complex tones from the inferred distribution of firing rate along the tonotopic axis. This rate-place representation was accurate for F0s greater, similar900 Hz. Surprisingly, rate-based F0 estimates were accurate even when the two-tone mixture contained no resolved harmonics, so long as some harmonics were resolved prior to mixing. We also extended methods used previously for single complex tones to estimate the F0s of concurrent complex tones from interspike-interval distributions pooled over the tonotopic axis. The interval-based representation was accurate for F0s less, similar900 Hz, where the two-tone mixture contained no resolved harmonics. Together, the rate-place and interval-based representations allow accurate pitch perception for concurrent sounds over the entire range of human voice and cat vocalizations.

  16. Voice Pitch Influences Perceptions of Sexual Infidelity

    National Research Council Canada - National Science Library

    O'Connor, Jillian J.M; Re, Daniel E; Feinberg, David R

    2011-01-01

    .... Among men, testosterone is inversely related to voice pitch, relationship and offspring investment, and is positively related to the pursuit of short-term relationships, including extra-pair sex...

  17. Major League Baseball pitch velocity and pitch type associated with risk of ulnar collateral ligament injury.

    Science.gov (United States)

    Keller, Robert A; Marshall, Nathan E; Guest, John-Michael; Okoroha, Kelechi R; Jung, Edward K; Moutzouros, Vasilios

    2016-04-01

    The number of Major League Baseball (MLB) pitchers requiring ulnar collateral ligament (UCL) reconstructions is increasing. Recent literature has attempted to correlate specific stresses placed on the throwing arm to risk for UCL injury, with limited results. Eighty-three MLB pitchers who underwent primary UCL reconstruction were evaluated. Pitching velocity and percent of pitch type thrown (fastball, curve ball, slider, and change-up) were evaluated 2 years before and after surgery. Data were compared with control pitchers matched for age, position, size, innings pitched, and experience. The evaluation of pitch velocity compared with matched controls found no differences in pre-UCL reconstruction pitch velocities for fastballs (91.5 vs. 91.2 miles per hour [mph], P = .69), curveballs (78.2 vs. 77.9 mph, P = .92), sliders (83.3 vs. 83.5 mph, P = .88), or change-ups (83.9 vs. 83.8 mph, P = .96). When the percentage of pitches thrown was evaluated, UCL reconstructed pitchers pitch significantly more fastballs than controls (46.7% vs. 39.4%, P = .035). This correlated to a 2% increase in risk for UCL injury for every 1% increase in fastballs thrown. Pitching more than 48% fastballs was a significant predictor of UCL injury, because pitchers over this threshold required reconstruction (P = .006). MLB pitchers requiring UCL reconstruction do not pitch at higher velocities than matched controls, and pitch velocity does not appear to be a risk factor for UCL reconstruction. However, MLB pitchers who pitch a high percentage of fastballs may be at increased risk for UCL injury because pitching a higher percent of fastballs appears to be a risk factor for UCL reconstruction. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  18. Separate mechanisms for audio-tactile pitch and loudness interactions

    Directory of Open Access Journals (Sweden)

    Jeffrey M Yau

    2010-10-01

    Full Text Available A major goal in perceptual neuroscience is to understand how signals from different sensory modalities are combined to produce stable and coherent representations. We previously investigated interactions between audition and touch, motivated by the fact that both modalities are sensitive to environmental oscillations. In our earlier study, we characterized the effect of auditory distractors on tactile frequency and intensity perception. Here, we describe the converse experiments examining the effect of tactile distractors on auditory processing. Because the two studies employ the same psychophysical paradigm, we combined their results for a comprehensive view of how auditory and tactile signals interact and how these interactions depend on the perceptual task. Together, our results show that temporal frequency representations are perceptually linked regardless of the attended modality. In contrast, audio-tactile loudness interactions depend on the attended modality: Tactile distractors influence judgments of auditory intensity, but judgments of tactile intensity are impervious to auditory distraction. Lastly, we show that audio-tactile loudness interactions depend critically on stimulus timing, while pitch interactions do not. These results reveal that auditory and tactile inputs are combined differently depending on the perceptual task. That distinct rules govern the integration of auditory and tactile signals in pitch and loudness perception implies that the two are mediated by separate neural mechanisms. These findings underscore the complexity and specificity of multisensory interactions.

  19. Interaural pitch perception difference: dependence upon internal and external factors.

    Science.gov (United States)

    Mürbe, D; Kevanishvili, Z; Kuhlisch, E; Hofmann, G; Zahnert, Th

    2007-03-01

    Tone pulses were presented consecutively to one and the other ear in normally hearing musicians. The frequency of pulses in one, reference ear was fixed. That in the other, test ear varied to achieve the same pitch of tones in both ears. The frequency deviation of the test tone from the reference one was judged as the interaural pitch perception difference, IPPD. No dissimilarities in IPPDs were found between females and males. On the other hand, in both genders the IPPD scores were greater at higher than at medium and, especially, at lower tone frequencies, 2000, 1000, and 500 Hz, respectively. Also, the IPPDs displayed greater values when the reference tone was administered to the left ear, while the right ear served for the application of the test tone, LrRt, than when the reference tone was delivered to the right ear, while the test tone was applied to the left ear, RrLt. The IPPD differences under LrRt and RrLt stimulus presentations modes were prominent just at higher than at medium and, especially, at lower tone frequencies. The results are interpreted proceeding from the peculiar coding of low- and high-frequency acoustic information into brain auditory structures. Correspondingly, the IPPD is considered to be a consequence of central neural rather than of peripheral receptor events.

  20. Pitch matching psychometrics in electric acoustic stimulation.

    Science.gov (United States)

    Baumann, Uwe; Rader, Tobias; Helbig, Silke; Bahmer, Andreas

    2011-01-01

    Combined electric-acoustic stimulation (EAS) is a therapeutic option for patients with severe to profound mid- and high-frequency hearing loss while low-frequency hearing is mostly unaffected. The present study investigates bimodal pitch matching in EAS users as a function of the angular placement of electrodes. Results are compared with data obtained from previous pitch matching studies. Knowledge of electric and acoustic pitch mapping may be important for effective fitting to control the frequency range of acoustic and electric processing. Pitch adjustment experiments were conducted in eight subjects with residual hearing in the opposite ear as well as in the implanted ear. Four subjects received a standard 31.5-mm electrode array and four subjects received the shorter, more flexible 24-mm FLEX electrode array (PULSARCI100 or SONATATI100 stimulator, MED-EL, Innsbruck, Austria). The subjects' task was to listen to single-electrode stimuli presented at a fixed rate (800 pulses per second) via the cochlear implant and to adjust the frequency of the acoustic stimulus until the perceived pitch matched the perception of the electrically conveyed stimulus. Two to four of the most apical electrodes were tested depending on the range of the individual's residual hearing. Postoperative x rays (modified Stenver's view) were analyzed to compare individual pitch matching data in terms of the electrode arrays' insertion angle. The average mean frequency match for the most apical electrode 1 in EAS subjects implanted with the FLEX array was 583 Hz, while for the two subjects with a deep insertion of the 31.5-mm standard electrode array, the matches were 128 and 223 Hz. Because the residual hearing in the EAS subgroup was rather limited in the high-frequency range, a limited number of basal electrodes were assessed to determine the slope of the electric place/pitch function. A considerable variation in terms of the individual pitch function was observed. The slope of the pitch

  1. Pitch synchronous transform warping in voice conversion

    OpenAIRE

    Vích, R. (Robert); Vondra, M. (Martin)

    2012-01-01

    In this paper a new voice conversion algorithm is presented, which transforms the utterance of a source speaker into the utterance of a target speaker. The voice conversion approach is based on pitch synchronous speech analysis, Discrete Cosine Transform (DCT), nonlinear spectral warping with spectrum interpolation and pitch synchronous speech synthesis with overlapping using the speech production model. The DCT speech model contains also information about the phase properties of the modeled ...

  2. Determination of football pitch locations from video footage and official pitch markings.

    Science.gov (United States)

    Alcock, Alison; Hunter, Adam; Brown, Nicholas

    2009-06-01

    The ability to determine a specific location on a football (soccer) pitch from television footage would provide a cost-effective method of obtaining competition-specific information on many professional and international teams. This study presents the accuracy and reliability of a new method of calculating ball location from simulated television coverage and known pitch markings. The coordinates of 99 markers of known location on a football pitch were digitized from video. An intersection point was determined from the equations of two lines that form pitch markings and the relationship from this point to other known pitch coordinates was calculated using a curve-fitting based method. Average error between known and reconstructed measures was 0.21 m for pitch width and 0.11 m for pitch length from a view simulating television coverage. Inter- and intra-rater reliability analyses showed researchers could consistently reconstruct pitch locations to within less than half a metre. The accuracy and reliability of this method will be sufficient for most practical uses in an applied sport environment, although the level of accuracy required will depend on the specific application. This method could be applied to other sports to determine specific locations on a pitch or court or to improve current competition analysis systems.

  3. Perceptual Pitch Deficits Coexist with Pitch Production Difficulties in Music but Not Mandarin Speech

    Directory of Open Access Journals (Sweden)

    Wu-xia eYang

    2014-01-01

    Full Text Available Congenital amusia is a musical disorder that mainly affects pitch perception. Among Mandarin speakers, some amusics also have difficulties in processing lexical tones (tone agnosics. To examine to what extent these perceptual deficits may be related to pitch production impairments in music and Mandarin speech, 8 amusics, 8 tone agnosics, and 12 age- and IQ-matched normal native Mandarin speakers were asked to imitate music note sequences and Mandarin words of comparable lengths. The results indicated that both the amusics and tone agnosics underperformed the controls on musical pitch production. However, tone agnosics performed no worse than the amusics, suggesting that lexical tone perception deficits may not aggravate musical pitch production difficulties. Moreover, these three groups were all able to imitate lexical tones with perfect intelligibility. Taken together, the current study shows that perceptual musical pitch and lexical tone deficits might coexist with musical pitch production difficulties. But at the same time these perceptual pitch deficits might not affect lexical tone production or the intelligibility of the speech words that were produced. The perception-production relationship for pitch among individuals with perceptual pitch deficits may be, therefore, domain-dependent.

  4. Perceptual pitch deficits coexist with pitch production difficulties in music but not Mandarin speech.

    Science.gov (United States)

    Yang, Wu-Xia; Feng, Jie; Huang, Wan-Ting; Zhang, Cheng-Xiang; Nan, Yun

    2013-01-01

    Congenital amusia is a musical disorder that mainly affects pitch perception. Among Mandarin speakers, some amusics also have difficulties in processing lexical tones (tone agnosics). To examine to what extent these perceptual deficits may be related to pitch production impairments in music and Mandarin speech, eight amusics, eight tone agnosics, and 12 age- and IQ-matched normal native Mandarin speakers were asked to imitate music note sequences and Mandarin words of comparable lengths. The results indicated that both the amusics and tone agnosics underperformed the controls on musical pitch production. However, tone agnosics performed no worse than the amusics, suggesting that lexical tone perception deficits may not aggravate musical pitch production difficulties. Moreover, these three groups were all able to imitate lexical tones with perfect intelligibility. Taken together, the current study shows that perceptual musical pitch and lexical tone deficits might coexist with musical pitch production difficulties. But at the same time these perceptual pitch deficits might not affect lexical tone production or the intelligibility of the speech words that were produced. The perception-production relationship for pitch among individuals with perceptual pitch deficits may be, therefore, domain-dependent.

  5. Multi-pitch Estimation using Semidefinite Programming

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Vandenberghe, Lieven

    2017-01-01

    Multi-pitch estimation concerns the problem of estimating the fundamental frequencies (pitches) and amplitudes/phases of multiple superimposed harmonic signals with application in music, speech, vibration analysis etc. In this paper we formulate a complex-valued multi-pitch estimator via a semide......Multi-pitch estimation concerns the problem of estimating the fundamental frequencies (pitches) and amplitudes/phases of multiple superimposed harmonic signals with application in music, speech, vibration analysis etc. In this paper we formulate a complex-valued multi-pitch estimator via...... a semidefinite programming representation of an atomic decomposition over a continuous dictionary of complex exponentials and extend this to real-valued data via a real semidefinite pro-ram with the same dimensions (i.e. half the size). We further impose a continuous frequency constraint naturally occurring from...... assuming a Nyquist sampled signal by adding an additional semidefinite constraint. We show that the proposed estimator has superior performance compared to state- of-the-art methods for separating two closely spaced fundamentals and approximately achieves the asymptotic Cramér-Rao lower bound....

  6. On the Perceptual Subprocess of Absolute Pitch

    Directory of Open Access Journals (Sweden)

    Seung-Goo Kim

    2017-10-01

    Full Text Available Absolute pitch (AP is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label. In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC or based on absolute pitch memory (APM. A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM, only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them.

  7. Thermal Reactivity and Structure of Carbonized Binder Pitches

    OpenAIRE

    Madshus, Stian

    2005-01-01

    Pitches are used on a large scale in the manufacture of carbon anodes for the production of primary aluminium. The role of the pitch is to act as a binder between the petroleum coke grains. The structure of the carbonized pitch binder (pitch coke) has an important impact on the overall performance of the anode. Even though the binder pitch is the minor constituent in an anode, it is impossible to make a good quality anode without a good quality binder pitch. Pitch is an extremely complex ...

  8. Individual differences in sound-in-noise perception are related to the strength of short-latency neural responses to noise.

    Directory of Open Access Journals (Sweden)

    Ekaterina Vinnik

    Full Text Available Important sounds can be easily missed or misidentified in the presence of extraneous noise. We describe an auditory illusion in which a continuous ongoing tone becomes inaudible during a brief, non-masking noise burst more than one octave away, which is unexpected given the frequency resolution of human hearing. Participants strongly susceptible to this illusory discontinuity did not perceive illusory auditory continuity (in which a sound subjectively continues during a burst of masking noise when the noises were short, yet did so at longer noise durations. Participants who were not prone to illusory discontinuity showed robust early electroencephalographic responses at 40-66 ms after noise burst onset, whereas those prone to the illusion lacked these early responses. These data suggest that short-latency neural responses to auditory scene components reflect subsequent individual differences in the parsing of auditory scenes.

  9. Sensorimotor Mismapping in Poor-pitch Singing.

    Science.gov (United States)

    He, Hao; Zhang, Wei-Dong

    2017-09-01

    This study proposes that there are two types of sensorimotor mismapping in poor-pitch singing: erroneous mapping and no mapping. We created operational definitions for the two types of mismapping based on the precision of pitch-matching and predicted that in the two types of mismapping, phonation differs in terms of accuracy and the dependence on the articulation consistency between the target and the intended vocal action. The study aimed to test this hypothesis by examining the reliability and criterion-related validity of the operational definitions. A within-subject design was used in this study. Thirty-two participants identified as poor-pitch singers were instructed to vocally imitate pure tones and to imitate their own vocal recordings with the same articulation as self-targets and with different articulation from self-targets. Definitions of the types of mismapping were demonstrated to be reliable with the split-half approach and to have good criterion-related validity with findings that pitch-matching with no mapping was less accurate and more dependent on the articulation consistency between the target and the intended vocal action than pitch-matching with erroneous mapping was. Furthermore, the precision of pitch-matching was positively associated with its accuracy and its dependence on articulation consistency when mismapping was analyzed on a continuum. Additionally, the data indicated that the self-imitation advantage was a function of articulation consistency. Types of sensorimotor mismapping lead to pitch-matching that differs in accuracy and its dependence on the articulation consistency between the target and the intended vocal action. Additionally, articulation consistency produces the self-advantage. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  10. Memory for pitch in congenital amusia: beyond a fine-grained pitch discrimination problem.

    Science.gov (United States)

    Williamson, Victoria Jane; Stewart, Lauren

    2010-08-01

    Congenital amusia is a disorder that affects the perception and production of music. While amusia has been associated with deficits in pitch discrimination, several reports suggest that memory deficits also play a role. The present study investigated short-term memory span for pitch-based and verbal information in 14 individuals with amusia and matched controls. Analogous adaptive-tracking procedures were used to generate tone and digit spans using stimuli that exceeded psychophysically measured pitch perception thresholds. Individuals with amusia had significantly smaller tone spans, whereas their digits spans were a similar size to those of controls. An automated operation span task was used to determine working memory capacity. Working memory deficits were seen in only a small subgroup of individuals with amusia. These findings support the existence of a pitch-specific component within short-term memory and suggest that congenital amusia is more than a disorder of fine-grained pitch discrimination.

  11. Pitch perception deficits in nonverbal learning disability.

    Science.gov (United States)

    Fernández-Prieto, I; Caprile, C; Tinoco-González, D; Ristol-Orriols, B; López-Sala, A; Póo-Argüelles, P; Pons, F; Navarra, J

    2016-12-01

    The nonverbal learning disability (NLD) is a neurological dysfunction that affects cognitive functions predominantly related to the right hemisphere such as spatial and abstract reasoning. Previous evidence in healthy adults suggests that acoustic pitch (i.e., the relative difference in frequency between sounds) is, under certain conditions, encoded in specific areas of the right hemisphere that also encode the spatial elevation of external objects (e.g., high vs. low position). Taking this evidence into account, we explored the perception of pitch in preadolescents and adolescents with NLD and in a group of healthy participants matched by age, gender, musical knowledge and handedness. Participants performed four speeded tests: a stimulus detection test and three perceptual categorization tests based on colour, spatial position and pitch. Results revealed that both groups were equally fast at detecting visual targets and categorizing visual stimuli according to their colour. In contrast, the NLD group showed slower responses than the control group when categorizing space (direction of a visual object) and pitch (direction of a change in sound frequency). This pattern of results suggests the presence of a subtle deficit at judging pitch in NLD along with the traditionally-described difficulties in spatial processing. Copyright © 2016. Published by Elsevier Ltd.

  12. Modulation of auditory cortex response to pitch variation following training with microtonal melodies.

    Science.gov (United States)

    Zatorre, Robert J; Delhommeau, Karine; Zarate, Jean Mary

    2012-01-01

    We tested changes in cortical functional response to auditory patterns in a configural learning paradigm. We trained 10 human listeners to discriminate micromelodies (consisting of smaller pitch intervals than normally used in Western music) and measured covariation in blood oxygenation signal to increasing pitch interval size in order to dissociate global changes in activity from those specifically associated with the stimulus feature that was trained. A psychophysical staircase procedure with feedback was used for training over a 2-week period. Behavioral tests of discrimination ability performed before and after training showed significant learning on the trained stimuli, and generalization to other frequencies and tasks; no learning occurred in an untrained control group. Before training the functional MRI data showed the expected systematic increase in activity in auditory cortices as a function of increasing micromelody pitch interval size. This function became shallower after training, with the maximal change observed in the right posterior auditory cortex. Global decreases in activity in auditory regions, along with global increases in frontal cortices also occurred after training. Individual variation in learning rate was related to the hemodynamic slope to pitch interval size, such that those who had a higher sensitivity to pitch interval variation prior to learning achieved the fastest learning. We conclude that configural auditory learning entails modulation in the response of auditory cortex to the trained stimulus feature. Reduction in blood oxygenation response to increasing pitch interval size suggests that fewer computational resources, and hence lower neural recruitment, is associated with learning, in accord with models of auditory cortex function, and with data from other modalities.

  13. Modulation of auditory cortex response to pitch variation following training with microtonal melodies

    Directory of Open Access Journals (Sweden)

    Robert J Zatorre

    2012-12-01

    Full Text Available We tested changes in cortical functional response to auditory configural learning by training ten human listeners to discriminate micromelodies (consisting of smaller pitch intervals than normally used in Western music. We measured covariation in blood oxygenation signal to increasing pitch-interval size in order to dissociate global changes in activity from those specifically associated with the stimulus feature of interest. A psychophysical staircase procedure with feedback was used for training over a two-week period. Behavioral tests of discrimination ability performed before and after training showed significant learning on the trained stimuli, and generalization to other frequencies and tasks; no learning occurred in an untrained control group. Before training the functional MRI data showed the expected systematic increase in activity in auditory cortices as a function of increasing micromelody pitch-interval size. This function became shallower after training, with the maximal change observed in the right posterior auditory cortex. Global decreases in activity in auditory regions, along with global increases in frontal cortices also occurred after training. Individual variation in learning rate was related to the hemodynamic slope to pitch-interval size, such that those who had a higher sensitivity to pitch-interval variation prior to learning achieved the fastest learning. We conclude that configural auditory learning entails modulation in the response of auditory cortex specifically to the trained stimulus feature. Reduction in blood oxygenation response to increasing pitch-interval size suggests that fewer computational resources, and hence lower neural recruitment, is associated with learning, in accord with models of auditory cortex function, and with data from other modalities.

  14. Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network.

    Science.gov (United States)

    De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico

    2016-11-10

    A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.

  15. Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Luigi Alberto Ciro De Filippis

    2016-11-01

    Full Text Available A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable and the mechanical properties (output responses of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls. The simulation model was based on the adoption of the Artificial Neural Networks (ANNs characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.

  16. Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network

    Science.gov (United States)

    De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico

    2016-01-01

    A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration. PMID:28774035

  17. The mental space of pitch height.

    Science.gov (United States)

    Rusconi, Elena; Kwan, Bonnie; Giordano, Bruno; Umiltà, Carlo; Butterworth, Brian

    2005-12-01

    Through stimulus-response compatibility we tested whether sound frequency (pitch height) elicits a mental spatial representation. Musically untrained and, mostly, trained participants were shown a stimulus-response compatibility effect (Spatial-Musical Association of Response Codes or SMARC effect). When response alternatives were either vertically or horizontally aligned, performance was better when the lower (or leftward) button had to be pressed in response to a low sound and the upper (or rightward) button had to be pressed in response to a high sound, even when pitch height was irrelevant to the task.

  18. Absolute pitch in Costa Rica: Distribution of pitch identification ability and implications for its genetic basis.

    Science.gov (United States)

    Chavarria-Soley, Gabriela

    2016-08-01

    Absolute pitch is the unusual ability to recognize a pitch without an external reference. The current view is that both environmental and genetic factors are involved in the acquisition of the trait. In the present study, 127 adult musicians were subjected to a musical tone identification test. Subjects were university music students and volunteers who responded to a newspaper article. The test consisted of the identification of 40 piano and 40 pure tones. Subjects were classified in three categories according to their pitch naming ability: absolute pitch (AP), high accuracy of tone identification (HA), and non-absolute pitch (non-AP). Both the percentage of correct responses and the mean absolute deviation showed a statistically significant variation between categories. A very clear pattern of higher accuracy for white than for black key notes was observed for the HA and the non-AP groups. Meanwhile, the AP group had an almost perfect pitch naming accuracy for both kinds of tones. Each category presented a very different pattern of deviation around the correct response. The age at the beginning of musical training did not differ between categories. The distribution of pitch identification ability in this study suggests a complex inheritance of the trait.

  19. Vocal perfection in yodelling--pitch stabilities and transition times.

    Science.gov (United States)

    Echternach, Matthias; Richter, Bernhard

    2010-04-01

    Yodelling is a special kind of vocal performance in traditional music which consists of rapid and repeated changes in pitch. It is assumed that these pitch changes are accompanied by register changes. We analysed, using the laryngograph, yodelling on different vowels by four professional yodelling teachers (two male, two female), four professional classically trained singers, and four untrained voices. Results reveal that pitch changes in yodelling are associated with decrease of electroglottograpgic (EGG) contact quotient for the upper pitch, indicating a register shift. Furthermore, in contrast to untrained voices, for the yodellers lower and upper pitches were more stable with respect to fundamental frequency and perturbation values, and the pitch transitions were faster.

  20. The neural mobilization technique modulates the expression of endogenous opioids in the periaqueductal gray and improves muscle strength and mobility in rats with neuropathic pain.

    Science.gov (United States)

    Santos, Fabio Martinez; Grecco, Leandro Henrique; Pereira, Marcelo Gomes; Oliveira, Mara Evany; Rocha, Priscila Abreu; Silva, Joyce Teixeira; Martins, Daniel Oliveira; Miyabara, Elen Haruka; Chacur, Marucia

    2014-05-13

    The neural mobilization (NM) technique is a noninvasive method that has been proven to be clinically effective in reducing pain; however, the molecular mechanisms involved remain poorly understood. The aim of this study was to analyze whether NM alters the expression of the mu-opioid receptor (MOR), the delta-opioid receptor (DOR) and the Kappa-opioid receptor (KOR) in the periaqueductal gray (PAG) and improves locomotion and muscle force after chronic constriction injury (CCI) in rats. The CCI was imposed on adult male rats followed by 10 sessions of NM every other day, starting 14 days after the CCI injury. At the end of the sessions, the PAG was analyzed using Western blot assays for opioid receptors. Locomotion was analyzed by the Sciatic functional index (SFI), and muscle force was analyzed by the BIOPAC system. An improvement in locomotion was observed in animals treated with NM compared with injured animals. Animals treated with NM showed an increase in maximal tetanic force of the tibialis anterior muscle of 172% (p < 0.001) compared with the CCI group. We also observed a decrease of 53% (p < 0.001) and 23% (p < 0.05) in DOR and KOR levels, respectively, after CCI injury compared to those from naive animals and an increase of 17% (p < 0.05) in KOR expression only after NM treatment compared to naive animals. There were no significant changes in MOR expression in the PAG. These data provide evidence that a non-pharmacological NM technique facilitates pain relief by endogenous analgesic modulation.

  1. [Discrimination of musical pitch with cochlear implants].

    Science.gov (United States)

    Haumann, S; Mühler, R; Ziese, M; von Specht, H

    2007-08-01

    Numerous people with cochlear implants (CI) report difficulties in listening to music even though they understand speech quite well. One reason for this is a limited perception of pitch and timbre. In this study ability of adult CI subjects to discriminate musical pitch is investigated. In two psychoacoustic experiments, each conducted in 10 adult CI subjects provided with MED-EL Combi 40+ cochlear implant devices and a control group of subjects with normal hearing, individual discrimination abilities for musical pitch perception were determined. To investigate the influence of the group of instruments on discrimination ability, stimuli representing four different groups of instruments were used: woodwind (clarinet), brass (trumpet), strings (violin) and keyboard instruments (piano). The discrimination thresholds determined varied between individual CI subjects, and on average they were significantly higher for the piano than for the other three instruments. The results show that in subjects with CI pitch perception differs from instrument to instrument and is in general worse than in persons with normal hearing.

  2. Individual blade pitch for yaw control

    NARCIS (Netherlands)

    Navalkar, S.T.; Van Wingerden, J.W.; Van Kuik, G.A.M.

    2014-01-01

    Individual pitch control (IPC) for reducing blade loads has been investigated and proven successful in recent literature. For IPC, the multi-blade co-ordinate (MBC) transformation is used to process the blade load signals from the rotating to a stationary frame of reference. In the stationary frame

  3. Multi-Channel Maximum Likelihood Pitch Estimation

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    In this paper, a method for multi-channel pitch estimation is proposed. The method is a maximum likelihood estimator and is based on a parametric model where the signals in the various channels share the same fundamental frequency but can have different amplitudes, phases, and noise characteristi...

  4. Silvical characteristics of pitch pine (Pinus rigida)

    Science.gov (United States)

    S. Little

    1959-01-01

    Pitch pine (Pinus rigida Mill.) grows over a wide geographical range - from central Maine to New York and extreme southeastern Ontario, south to Virginia and southern Ohio, and in the mountains to eastern Tennessee, northern Georgia, and western South Carolina. Because it grows mostly on the poorer soils, its distribution is spotty.

  5. Establishment of expanded and streamlined pipeline of PITCh knock-in - a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO.

    Science.gov (United States)

    Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Nakade, Shota; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi

    2017-05-04

    The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer ( http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html ), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively.

  6. Evaluation of two algorithms for detecting human frequency-following responses to voice pitch.

    Science.gov (United States)

    Jeng, Fuh-Cherng; Hu, Jiong; Dickman, Brenda; Lin, Ching-Yu; Lin, Chia-Der; Wang, Ching-Yuan; Chung, Hsiung-Kwang; Li, Ximing

    2011-01-01

    Voice pitch carries important cues for speech perception in humans. Recent studies have shown the feasibility of recording the frequency-following response (FFR) to voice pitch in normal-hearing listeners. The presence of such a response, however, has been dependent on subjective interpretation of experimenters. The purpose of this study was to develop and test an automated procedure including a control-experimental protocol and response-threshold criteria suitable for extracting FFRs to voice pitch, and compare the results to human judgments. A set of four Mandarin tones (Tone 1 flat; Tone 2 rising; Tone 3 dipping; and Tone 4 falling) were prepared to reflect the four contrastive pitch contours. Two distinctive algorithms, short-term autocorrelation in the time domain and narrow-band spectrogram in the frequency domain, were used to estimate the Frequency Error, Slope Error, Tracking Accuracy, Pitch Strength and Pitch-Noise Ratio of the recordings from individual listeners as well as the power and false-positive rates of each algorithm. Eleven native speakers (five males; age: mean ± SD = 31.4 ± 4.7 years) of Mandarin Chinese were recruited. The results demonstrated that both algorithms were suitable for extracting FFRs and the objective measures showed comparable results to human judgments. The automated procedure used in this study, including the use of the control-experimental protocol and response thresholds used for each of the five objective indices, can be used for difficult-to-test patients and may prove to be useful as an assessment and diagnostic method in both clinical and basic research efforts.

  7. Two LQRI based Blade Pitch Controls for Wind Turbines

    National Research Council Canada - National Science Library

    Park, Sungsu; Nam, Yoonsu

    2012-01-01

    ..., we present a separate set of collective and individual pitch control algorithms. Both pitch control algorithms use the LQR control technique with integral action (LQRI), and utilize Kalman filters t...

  8. Gray- and white-matter anatomy of absolute pitch possessors

    National Research Council Canada - National Science Library

    Dohn, Anders; Garza-Villarreal, Eduardo A; Chakravarty, M Mallar; Hansen, Mads; Lerch, Jason P; Vuust, Peter

    2015-01-01

    Absolute pitch (AP), the ability to identify a musical pitch without a reference, has been examined behaviorally in numerous studies for more than a century, yet only a few studies have examined the neuroanatomical correlates of AP...

  9. Pitch-verticality and pitch-size cross-modal interactions

    DEFF Research Database (Denmark)

    Bonetti, Leonardo; Costa, Marco

    2017-01-01

    Two studies were conducted on cross-modal matching between pitch and sound source localization on the vertical axis, and pitch and size. In the first study 100 Hz, 200 Hz, 600 Hz, and 800 Hz tones were emitted by a loudspeaker positioned 60 cm above or below to the participant’s ear level. Using...... a speeded classification task, 30 participants had to indicate the sound source, in 160 trials. Both reaction times and errors were analyzed. The results showed that in the congruent condition of high-pitched tones emitted from the upper loudspeaker, reaction times were significantly faster and the number...... of errors was significantly lower. Pitch is mapped on the vertical axis for sound localization. A main effect for sound source direction was also found. Tones coming from the upper loudspeaker were recognized faster and more accurately. Males were faster than females in identifying sound source direction...

  10. Musicians' and nonmusicians' short-term memory for verbal and musical sequences: comparing phonological similarity and pitch proximity.

    Science.gov (United States)

    Williamson, Victoria J; Baddeley, Alan D; Hitch, Graham J

    2010-03-01

    Language-music comparative studies have highlighted the potential for shared resources or neural overlap in auditory short-term memory. However, there is a lack of behavioral methodologies for comparing verbal and musical serial recall. We developed a visual grid response that allowed both musicians and nonmusicians to perform serial recall of letter and tone sequences. The new method was used to compare the phonological similarity effect with the impact of an operationalized musical equivalent-pitch proximity. Over the course of three experiments, we found that short-term memory for tones had several similarities to verbal memory, including limited capacity and a significant effect of pitch proximity in nonmusicians. Despite being vulnerable to phonological similarity when recalling letters, however, musicians showed no effect of pitch proximity, a result that we suggest might reflect strategy differences. Overall, the findings support a limited degree of correspondence in the way that verbal and musical sounds are processed in auditory short-term memory.

  11. Perceptual pitch deficits coexist with pitch production difficulties in music but not Mandarin speech

    OpenAIRE

    Yang, Wu-xia; Feng, Jie; Huang, Wan-ting; Zhang, Cheng-xiang; Nan, Yun

    2014-01-01

    Congenital amusia is a musical disorder that mainly affects pitch perception. Among Mandarin speakers, some amusics also have difficulties in processing lexical tones (tone agnosics). To examine to what extent these perceptual deficits may be related to pitch production impairments in music and Mandarin speech, eight amusics, eight tone agnosics, and 12 age- and IQ-matched normal native Mandarin speakers were asked to imitate music note sequences and Mandarin words of comparable lengths. The ...

  12. Octave bias in an absolute pitch identification task

    OpenAIRE

    Boschetti, Giulia; Prpic, Valter; De Tommaso, Matteo; Murgia, Mauro; Agostini, Tiziano

    2014-01-01

    Octave errors are common within musicians, even among absolute pitch possessors. Overall, evidence shows pitch class and octave to be perceived in a different way, even if they are highly connected. We investigated whether pitch class perception, in an absolute pitch identification task, can be influenced by the octave context, examined among two consecutive octaves. Participants, all musicians with formal musical education, showed different response patterns in the tw...

  13. Contour identification with pitch and loudness cues using cochlear implants

    OpenAIRE

    Luo, Xin; Masterson, Megan E.; Wu, Ching-Chih

    2013-01-01

    Different from speech, pitch and loudness cues may or may not co-vary in music. Cochlear implant (CI) users with poor pitch perception may use loudness contour cues more than normal-hearing (NH) listeners. Contour identification was tested in CI users and NH listeners; the five-note contours contained either pitch cues alone, loudness cues alone, or both. Results showed that NH listeners' contour identification was better with pitch cues than with loudness cues; CI users performed similarly w...

  14. Hydraulic Motor Driving Variable-Pitch System for Wind Turbine

    OpenAIRE

    Ye HUANG; JiBao QI

    2013-01-01

    The present hydraulic variable-pitch mechanism of wind turbine uses three hydraulic cylinders to drive three crank and connecting rod mechanisms respectively; the blades are moved with the cranks. The hydraulic variable-pitch mechanism has complex structure, occupies a lot of space and its maintenance is trouble. In order to make up for the shortcomings of hydraulic cylinder variable-pitch system, the present hydraulic variable-pitch mechanism should be changed as follows: hydraulic motors ar...

  15. Impaired pitch identification as a potential marker for depression

    OpenAIRE

    Schwenzer Michael; Zattarin Eva; Grözinger Michael; Mathiak Klaus

    2012-01-01

    Abstract Background Impaired auditory performance has been considered as marker for depression. The present study tested whether pitch perception is affected in depression and whether the impairment is task-specific or reflects global dysfunction. Methods Twelve depressive in-patients and 12 non-depressive participants, half of the sample women, volunteered. The participants performed pitch identification using a four-choice reaction task, pitch contour perception, and pitch discrimination. R...

  16. Neural Representation of Concurrent Vowels in Macaque Primary Auditory Cortex.

    Science.gov (United States)

    Fishman, Yonatan I; Micheyl, Christophe; Steinschneider, Mitchell

    2016-01-01

    Successful speech perception in real-world environments requires that the auditory system segregate competing voices that overlap in frequency and time into separate streams. Vowels are major constituents of speech and are comprised of frequencies (harmonics) that are integer multiples of a common fundamental frequency (F0). The pitch and identity of a vowel are determined by its F0 and spectral envelope (formant structure), respectively. When two spectrally overlapping vowels differing in F0 are presented concurrently, they can be readily perceived as two separate "auditory objects" with pitches at their respective F0s. A difference in pitch between two simultaneous vowels provides a powerful cue for their segregation, which in turn, facilitates their individual identification. The neural mechanisms underlying the segregation of concurrent vowels based on pitch differences are poorly understood. Here, we examine neural population responses in macaque primary auditory cortex (A1) to single and double concurrent vowels (/a/ and /i/) that differ in F0 such that they are heard as two separate auditory objects with distinct pitches. We find that neural population responses in A1 can resolve, via a rate-place code, lower harmonics of both single and double concurrent vowels. Furthermore, we show that the formant structures, and hence the identities, of single vowels can be reliably recovered from the neural representation of double concurrent vowels. We conclude that A1 contains sufficient spectral information to enable concurrent vowel segregation and identification by downstream cortical areas.

  17. Commentary on William Thomson's "Pitch Frames as Melodic Archetypes"

    Directory of Open Access Journals (Sweden)

    David Temperley

    2006-09-01

    Full Text Available While the concept of the perceptual “pitch frame” resembles leading theories of pitch structure in music in some respects, it contains some innovative elements that are discussed in this commentary. Additionally, the commentary focuses on the question of whether the “pitch frame” is a temporal or atemporal construct.

  18. Spatial Representation of Pitch Height: The SMARC Effect

    Science.gov (United States)

    Rusconi, Elena; Kwan, Bonnie; Giordano, Bruno L.; Umilta, Carlo; Butterworth, Brian

    2006-01-01

    Through the preferential pairing of response positions to pitch, here we show that the internal representation of pitch height is spatial in nature and affects performance, especially in musically trained participants, when response alternatives are either vertically or horizontally aligned. The finding that our cognitive system maps pitch height…

  19. Acquisition of pitch in Chinese by Danish learners

    NARCIS (Netherlands)

    Sloos, Marjoleine; Liang, Jie; Yan, Mengzhu; Zhang, Chun

    2016-01-01

    Native speakers recognize a second language accent mainly by prosodic features. Pitch, pitch range, and pitch variability are language-specific and have to be acquired in L2 acquisition (usually without explicit teaching). Until now, results remain inconclusive as to whether L2 speakers are able to

  20. Memory for Melody: Infants Use a Relative Pitch Code

    Science.gov (United States)

    Plantinga, Judy; Trainor, Laurel J.

    2005-01-01

    Pitch perception is fundamental to melody in music and prosody in speech. Unlike many animals, the vast majority of human adults store melodic information primarily in terms of relative not absolute pitch, and readily recognize a melody whether rendered in a high or a low pitch range. We show that at 6 months infants are also primarily relative…

  1. Size matters : Pitch dimensions constrain interactive team behaviour in soccer

    NARCIS (Netherlands)

    Frencken, W.; Van der Plaats, J.; Visscher, C.; Lemmink, K.

    2013-01-01

    Pitch size varies in official soccer matches and differently sized pitches are adopted for tactical purposes in small-sided training games. Since interactive team behaviour emerges under constraints, the authors evaluate the effect of pitch size (task) manipulations on interactive team behaviour in

  2. Size matters : Pitch dimensions constrain interactive team behaviour in soccer

    NARCIS (Netherlands)

    Frencken, Wouter; Van der Plaats, Jorrit; Visscher, Chris; Lemmink, Koen

    Pitch size varies in official soccer matches and differently sized pitches are adopted for tactical purposes in small-sided training games. Since interactive team behaviour emerges under constraints, the authors evaluate the effect of pitch size (task) manipulations on interactive team behaviour in

  3. Relating binaural pitch perception to the individual listener's auditory profile.

    Science.gov (United States)

    Santurette, Sébastien; Dau, Torsten

    2012-04-01

    The ability of eight normal-hearing listeners and fourteen listeners with sensorineural hearing loss to detect and identify pitch contours was measured for binaural-pitch stimuli and salience-matched monaurally detectable pitches. In an effort to determine whether impaired binaural pitch perception was linked to a specific deficit, the auditory profiles of the individual listeners were characterized using measures of loudness perception, cognitive ability, binaural processing, temporal fine structure processing, and frequency selectivity, in addition to common audiometric measures. Two of the listeners were found not to perceive binaural pitch at all, despite a clear detection of monaural pitch. While both binaural and monaural pitches were detectable by all other listeners, identification scores were significantly lower for binaural than for monaural pitch. A total absence of binaural pitch sensation coexisted with a loss of a binaural signal-detection advantage in noise, without implying reduced cognitive function. Auditory filter bandwidths did not correlate with the difference in pitch identification scores between binaural and monaural pitches. However, subjects with impaired binaural pitch perception showed deficits in temporal fine structure processing. Whether the observed deficits stemmed from peripheral or central mechanisms could not be resolved here, but the present findings may be useful for hearing loss characterization.

  4. Passive cyclic pitch control for horizontal axis wind turbines

    Science.gov (United States)

    Bottrell, G. W.

    1981-01-01

    A flexible rotor concept, called the balanced pitch rotor, is described. The system provides passive adjustment of cyclic pitch in response to unbalanced pitching moments across the rotor disk. Various applications are described and performance predictions are made for wind shear and cross wind operating conditions. Comparisons with the teetered hub are made and significant cost savings are predicted.

  5. Impaired pitch identification as a potential marker for depression.

    Science.gov (United States)

    Schwenzer, Michael; Zattarin, Eva; Grözinger, Michael; Mathiak, Klaus

    2012-04-19

    Impaired auditory performance has been considered as marker for depression. The present study tested whether pitch perception is affected in depression and whether the impairment is task-specific or reflects global dysfunction. Twelve depressive in-patients and 12 non-depressive participants, half of the sample women, volunteered. The participants performed pitch identification using a four-choice reaction task, pitch contour perception, and pitch discrimination. During pitch identification but not during pitch contour perception or pitch discrimination, depressive patients responded less accurate than non-depressive participants (F = 3.3, p = 0.047). An analysis of covariates revealed that only female but not male depressive patients identified pitches poorly (Z = -2.2, p = 0.025) and inaccurate pitch identification correlated with high scores in the Beck Depression Inventory in women (r = -0.8, p = 0.001) but not in men (r = -0.1, p = 0.745). Patients did not differ from controls in reaction time or responsiveness. Impaired pitch perception in depression is task-specific. Therefore, cognitive deficits in depression are circumscribed and not global. Reduced pitch identification in depression was associated with female sex. We suggest that impaired pitch identification merits attention as a potential marker for depression in women.

  6. Impaired pitch identification as a potential marker for depression

    Directory of Open Access Journals (Sweden)

    Schwenzer Michael

    2012-04-01

    Full Text Available Abstract Background Impaired auditory performance has been considered as marker for depression. The present study tested whether pitch perception is affected in depression and whether the impairment is task-specific or reflects global dysfunction. Methods Twelve depressive in-patients and 12 non-depressive participants, half of the sample women, volunteered. The participants performed pitch identification using a four-choice reaction task, pitch contour perception, and pitch discrimination. Results During pitch identification but not during pitch contour perception or pitch discrimination, depressive patients responded less accurate than non-depressive participants (F = 3.3, p = 0.047. An analysis of covariates revealed that only female but not male depressive patients identified pitches poorly (Z = −2.2, p = 0.025 and inaccurate pitch identification correlated with high scores in the Beck Depression Inventory in women (r = −0.8, p = 0.001 but not in men (r = −0.1, p = 0.745. Patients did not differ from controls in reaction time or responsiveness. Conclusions Impaired pitch perception in depression is task-specific. Therefore, cognitive deficits in depression are circumscribed and not global. Reduced pitch identification in depression was associated with female sex. We suggest that impaired pitch identification merits attention as a potential marker for depression in women.

  7. Analysis of pitch system data for condition monitoring

    DEFF Research Database (Denmark)

    Nielsen, Jannie Sønderkær; van de Pieterman, René P.; Sørensen, John Dalsgaard

    2014-01-01

    at a constant pitch velocity, but the 10 min maximum values are only approximately proportional, because the maximum values occur during acceleration and not simultaneously. These findings are important to consider, if using the pitch motor current or torque as an indicator for the pitch system health...

  8. Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli.

    Science.gov (United States)

    Hertrich, Ingo; Mathiak, Klaus; Lutzenberger, Werner; Ackermann, Hermann

    2004-01-01

    To delineate the time course and processing stages of pitch encoding at the level of the supratemporal plane, the present study recorded evoked magnetic fields in response to rippled noise (RN) stimuli. RN largely masks simple tonotopic representations and addresses pitch processing within the temporal domain (periodicity encoding). Four dichotic stimulus types (111 or 133 Hz RN at one ear, white noise to the other one) were applied in randomized order during either visual distraction or selective auditory attention. Strictly periodic signals, noise-like events, and mixtures of both signals served as control conditions. (1) Attention-dependent ear x hemisphere interactions were observed within the time domain of the M50 field, indicating early streaming of auditory information. (2) M100 responses to strictly periodic stimuli were found lateralized to the right hemisphere. Furthermore, the higher-pitched stimuli yielded enhanced activation as compared to the lower-pitch signals (pitch scaling), conceivably reflecting sensory memory operations. (3) Besides right-hemisphere pitch scaling, the relatively late M100 component in association with the RN condition (latency = 136 ms) showed significantly stronger field strengths over the left hemisphere. Control experiments revealed this lateralization effect to be related to noise rather than pitch processing. Furthermore, subtle noise variations interacted with signal periodicity. Obviously, thus, complex task demands such as RN encoding give rise to functional segregation of auditory processing across the two hemispheres (left hemisphere: noise, right hemisphere: periodicity representation). The observed noise/periodicity interactions, furthermore, might reflect pitch-synchronous spectral evaluation at the level of the left supratemporal plane, triggered by right-hemisphere representation of signal periodicity. Copyright 2004 Elsevier Ltd.

  9. Rapid pitch correction in choir singers.

    Science.gov (United States)

    Grell, Anke; Sundberg, Johan; Ternström, Sten; Ptok, Martin; Altenmüller, Eckart

    2009-07-01

    Highly and moderately skilled choral singers listened to a perfect fifth reference, with the instruction to complement the fifth such that a major triad resulted. The fifth was suddenly and unexpectedly shifted in pitch, and the singers' task was to shift the fundamental frequency of the sung tone accordingly. The F0 curves during the transitions often showed two phases, an initial quick and large change followed by a slower and smaller change, apparently intended to fine-tune voice F0 to complement the fifth. Anesthetizing the vocal folds of moderately skilled singers tended to delay the reaction. The means of the response times varied in the range 197- 259 ms depending on direction and size of the pitch shifts, as well as on skill and anesthetization.

  10. Relating binaural pitch perception to the individual listener's auditory profile

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2012-01-01

    The ability of eight normal-hearing listeners and fourteen listeners with sensorineural hearing loss to detect and identify pitch contours was measured for binaural-pitch stimuli and salience-matched monaurally detectable pitches. In an effort to determine whether impaired binaural pitch perception...... sensation coexisted with a loss of a binaural signal-detection advantage in noise, without implying reduced cognitive function. Auditory filter bandwidths did not correlate with the difference in pitch identification scores between binaural and monaural pitches. However, subjects with impaired binaural...... pitch perception showed deficits in temporal fine structure processing. Whether the observed deficits stemmed from peripheral or central mechanisms could not be resolved here, but the present findings may be useful for hearing loss characterization. (C) 2012 Acoustical Society of America. [http...

  11. Review of the windmill pitch: biomechanics and injuries.

    Science.gov (United States)

    Doyle, Faith M

    2004-01-01

    To review the literature of the biomechanics of the windmill fast-pitch and its implications for injury. This information may be utilized in treating youth windmill pitchers. A MEDLINE search was conducted to retrieve articles regarding the windmill pitch. Key terms were then taken from the pilot search and used to conduct a systematic search and review of the literature. Articles containing information on the windmill pitch and injuries associated with the motion were reviewed. Additional information pertaining to the overhand baseball pitch and overuse injuries in youth were analyzed and synthesized into the body of information. A complex sequence of actions is required to successfully perform the windmill pitch. Overuse injuries are common in windmill pitchers. A well-designed conditioning schedule and the regulation of the frequency and volume of pitching in youth fast-pitch may assist with managing injury associated with this activity. Further investigation of specific treatment methods is needed.

  12. Pitched Blade Turbine Efficiency at Particle Suspension

    Directory of Open Access Journals (Sweden)

    D. Ceres

    2010-01-01

    Full Text Available Mixing suspensions is a very important hydraulic operation. The pitched six-blade turbine is a widely-used axial-flow impeller. This paper deals with effect relative impeller size and particle content on theefficiency of a pitched six-blade turbine at particle suspension. Two pitched six-blade turbines were used in model measurements of just suspension impeller speed. The ratios of the vessel to agitator diameter D/d were 3 and 4.5. The measurements were carried out in a dish-bottomed vessel 300 mm in diameter. The just suspension impeller speeds were measured using an electrochemical method, and were checked visually. A 2.5 % NaCl water solution was used as the liquid phase, and glass particles with four equivalent diameters between 0.18 and 0.89 mmand volumetric concentration from 2.5 % to 40% were usedasthesolid phase. The criterion values πs=Po√Fr'3(d/D7 were calculated from the particle suspension and power consumption measurements. The dependencies of πs on particle content cv show that larger agitators are more efficient for higher particle content.

  13. Individual blade pitch for yaw control

    Science.gov (United States)

    Navalkar, S. T.; van Wingerden, J. W.; van Kuik, G. A. M.

    2014-06-01

    Individual pitch control (IPC) for reducing blade loads has been investigated and proven successful in recent literature. For IPC, the multi-blade co-ordinate (MBC) transformation is used to process the blade load signals from the rotating to a stationary frame of reference. In the stationary frame of reference, the yaw error of a turbine can be appended to generate IPC actions that are able to achieve turbine yaw control for a turbine in free yaw. In this paper, IPC for yaw control is tested on a high-fidelity numerical model of a commercially produced wind turbine in free yaw. The tests show that yaw control using IPC has the distinct advantage that the yaw system loads and support structure loading are substantially reduced. However, IPC for yaw control also shows a reduction in IPC blade load reduction potential and causes a slight increase in pitch activity. Thus, the key contribution of this paper is the concept demonstration of IPC for yaw control. Further, using IPC for yaw as a tuning parameter, it is shown how the best trade-off between blade loading, pitch activity and support structure loading can be achieved for wind turbine design.

  14. Voice Pitch Influences Perceptions of Sexual Infidelity

    Directory of Open Access Journals (Sweden)

    Jillian J.M. O'Connor

    2011-01-01

    Full Text Available Sexual infidelity can be costly to members of both the extra-pair and the paired couple. Thus, detecting infidelity risk is potentially adaptive if it aids in avoiding cuckoldry or loss of parental and relationship investment. Among men, testosterone is inversely related to voice pitch, relationship and offspring investment, and is positively related to the pursuit of short-term relationships, including extra-pair sex. Among women, estrogen is positively related to voice pitch, attractiveness, and the likelihood of extra-pair involvement. Although prior work has demonstrated a positive relationship between men's testosterone levels and infidelity, this study is the first to investigate attributions of infidelity as a function of sexual dimorphism in male and female voices. We found that men attributed high infidelity risk to feminized women's voices, but not significantly more often than did women. Women attributed high infidelity risk to masculinized men's voices at significantly higher rates than did men. These data suggest that voice pitch is used as an indicator of sexual strategy in addition to underlying mate value. The aforementioned attributions may be adaptive if they prevent cuckoldry and/or loss of parental and relationship investment via avoidance of partners who may be more likely to be unfaithful.

  15. Voice pitch influences perceptions of sexual infidelity.

    Science.gov (United States)

    O'Connor, Jillian J M; Re, Daniel E; Feinberg, David R

    2011-02-28

    Sexual infidelity can be costly to members of both the extra-pair and the paired couple. Thus, detecting infidelity risk is potentially adaptive if it aids in avoiding cuckoldry or loss of parental and relationship investment. Among men, testosterone is inversely related to voice pitch, relationship and offspring investment, and is positively related to the pursuit of short-term relationships, including extra-pair sex. Among women, estrogen is positively related to voice pitch, attractiveness, and the likelihood of extra-pair involvement. Although prior work has demonstrated a positive relationship between men's testosterone levels and infidelity, this study is the first to investigate attributions of infidelity as a function of sexual dimorphism in male and female voices. We found that men attributed high infidelity risk to feminized women's voices, but not significantly more often than did women. Women attributed high infidelity risk to masculinized men's voices at significantly higher rates than did men. These data suggest that voice pitch is used as an indicator of sexual strategy in addition to underlying mate value. The aforementioned attributions may be adaptive if they prevent cuckoldry and/or loss of parental and relationship investment via avoidance of partners who may be more likely to be unfaithful.

  16. Biomechanics of youth windmill softball pitching.

    Science.gov (United States)

    Werner, Sherry L; Guido, John A; McNeice, Ryan P; Richardson, Jasper L; Delude, Neil A; Stewart, Gregory W

    2005-04-01

    Limited research attention has been paid to the potentially harmful windmill softball pitch. No information is available regarding lower extremity kinetics in softball pitching. The stresses on the throwing arm of youth windmill pitchers are clinically significant and similar to those found for college softball pitchers. Descriptive laboratory study. Three-dimensional, high-speed (240-Hz) video and stride foot force plate (1200 Hz) data were collected on fastballs from 53 youth softball pitchers. Kinematic parameters related to pitching mechanics and resultant kinetics on the throwing-arm elbow and shoulder joints were calculated. Kinetic parameters were compared to those reported for baseball pitchers. Elbow and shoulder joint loads were similar to those found for baseball pitchers and college softball pitchers. Shoulder distraction stress averaged 94% body weight for the youth pitchers. Stride foot ground reaction force patterns were not similar to those reported for baseball pitchers. Vertical and braking force components under the stride foot were in excess of body weight. Excessive distraction stress and joint torques at the throwing-arm elbow and shoulder are similar to those found in baseball pitchers, which suggests that windmill softball pitchers are at risk for overuse injuries. Normative information regarding upper and lower extremity kinematics and kinetics for 12- to 19-year-old softball pitchers has been established.

  17. Strength Training

    Science.gov (United States)

    ... big difference between strength training, powerlifting, and competitive bodybuilding! Strength training uses resistance methods like free weights, ... a person can lift at one time. Competitive bodybuilding involves evaluating muscle definition and symmetry, as well ...

  18. The lateralized arcuate fasciculus in developmental pitch disorders among mandarin amusics: left for speech and right for music.

    Science.gov (United States)

    Chen, Xizhuo; Zhao, Yanxin; Zhong, Suyu; Cui, Zaixu; Li, Jiaqi; Gong, Gaolang; Dong, Qi; Nan, Yun

    2018-01-10

    The arcuate fasciculus (AF) is a neural fiber tract that is critical to speech and music development. Although the predominant role of the left AF in speech development is relatively clear, how the AF engages in music development is not understood. Congenital amusia is a special neurodevelopmental condition, which not only affects musical pitch but also speech tone processing. Using diffusion tensor tractography, we aimed at understanding the role of AF in music and speech processing by examining the neural connectivity characteristics of the bilateral AF among thirty Mandarin amusics. Compared to age- and intelligence quotient (IQ)-matched controls, amusics demonstrated increased connectivity as reflected by the increased fractional anisotropy in the right posterior AF but decreased connectivity as reflected by the decreased volume in the right anterior AF. Moreover, greater fractional anisotropy in the left direct AF was correlated with worse performance in speech tone perception among amusics. This study is the first to examine the neural connectivity of AF in the neurodevelopmental condition of amusia as a result of disrupted music pitch and speech tone processing. We found abnormal white matter structural connectivity in the right AF for the amusic individuals. Moreover, we demonstrated that the white matter microstructural properties of the left direct AF is modulated by lexical tone deficits among the amusic individuals. These data support the notion of distinctive pitch processing systems between music and speech.

  19. Vowel identity between note labels confuses pitch identification in non-absolute pitch possessors.

    Directory of Open Access Journals (Sweden)

    Alfredo Brancucci

    Full Text Available The simplest and likeliest assumption concerning the cognitive bases of absolute pitch (AP is that at its origin there is a particularly skilled function which matches the height of the perceived pitch to the verbal label of the musical tone. Since there is no difference in sound frequency resolution between AP and non-AP (NAP musicians, the hypothesis of the present study is that the failure of NAP musicians in pitch identification relies mainly in an inability to retrieve the correct verbal label to be assigned to the perceived musical note. The primary hypothesis is that, when asked to identify tones, NAP musicians confuse the verbal labels to be attached to the stimulus on the basis of their phonetic content. Data from two AP tests are reported, in which subjects had to respond in the presence or in the absence of visually presented verbal note labels (fixed Do solmization. Results show that NAP musicians confuse more frequently notes having a similar vowel in the note label. They tend to confuse e.g. a 261 Hz tone (Do more often with Sol than, e.g., with La. As a second goal, we wondered whether this effect is lateralized, i.e. whether one hemisphere is more responsible than the other in the confusion of notes with similar labels. This question was addressed by observing pitch identification during dichotic listening. Results showed that there is a right hemispheric disadvantage, in NAP but not AP musicians, in the retrieval of the verbal label to be assigned to the perceived pitch. The present results indicate that absolute pitch has strong verbal bases, at least from a cognitive point of view.

  20. Diminished whole-brain but enhanced peri-sylvian connectivity in absolute pitch musicians.

    Science.gov (United States)

    Jäncke, Lutz; Langer, Nicolas; Hänggi, Jürgen

    2012-06-01

    Several anatomical studies have identified specific anatomical features within the peri-sylvian brain system of absolute pitch (AP) musicians. In this study we used graph theoretical analysis of cortical thickness covariations (as indirect indicator of connectivity) to examine whether AP musicians differ from relative pitch musicians and nonmusicians in small-world network characteristics. We measured "local connectedness" (local clustering = γ), "global efficiency of information transfer" (path length = λ), "small-worldness" (σ = γ/λ), and "degree" centrality as measures of connectivity. Although all groups demonstrated typical small-world features, AP musicians showed significant small-world alterations. "Degree" as a measure of interconnectedness was globally significantly decreased in AP musicians. These differences let us suggest that AP musicians demonstrate diminished neural integration (less connections) among distant brain regions. In addition, AP musicians demonstrated significantly increased local connectivity in peri-sylvian language areas of which the planum temporale, planum polare, Heschl's gyrus, lateral aspect of the superior temporal gyrus, STS, pars triangularis, and pars opercularis were hub regions. All of these brain areas are known to be involved in higher-order auditory processing, working or semantic memory processes. Taken together, whereas AP musicians demonstrate decreased global interconnectedness, the local connectedness in peri-sylvian brain areas is significantly higher than for relative pitch musicians and nonmusicians.

  1. How to pitch a brilliant idea.

    Science.gov (United States)

    Elsbach, Kimberly D

    2003-09-01

    Coming up with creative ideas is easy; selling them to strangers is hard. Entrepreneurs, sales executives, and marketing managers often go to great lengths to demonstrate how their new concepts are practical and profitable--only to be rejected by corporate decision makers who don't seem to understand the value of the ideas. Why does this happen? Having studied Hollywood executives who assess screenplay pitches, the author says the person on the receiving end--the "catcher"--tends to gauge the pitcher's creativity as well as the proposal itself. An impression of the pitcher's ability to come up with workable ideas can quickly and permanently overshadow the catcher's feelings about an idea's worth. To determine whether these observations apply to business settings beyond Hollywood, the author attended product design, marketing, and venture-capital pitch sessions and conducted interviews with executives responsible for judging new ideas. The results in those environments were similar to her observations in Hollywood, she says. Catchers subconsciously categorize successful pitchers as showrunners (smooth and professional), artists (quirky and unpolished), or neophytes (inexperienced and naive). The research also reveals that catchers tend to respond well when they believe they are participating in an idea's development. As Oscar-winning writer, director, and producer Oliver Stone puts it, screen-writers pitching an idea should "pull back and project what he needs onto your idea in order to make the story whole for him." To become a successful pitcher, portray yourself as one of the three creative types and engage your catchers in the creative process. By finding ways to give your catchers a chance to shine, you sell yourself as a likable collaborator.

  2. Brain activity is related to individual differences in the number of items stored in auditory short-term memory for pitch: evidence from magnetoencephalography.

    Science.gov (United States)

    Grimault, Stephan; Nolden, Sophie; Lefebvre, Christine; Vachon, François; Hyde, Krista; Peretz, Isabelle; Zatorre, Robert; Robitaille, Nicolas; Jolicoeur, Pierre

    2014-07-01

    We used magnetoencephalography (MEG) to examine brain activity related to the maintenance of non-verbal pitch information in auditory short-term memory (ASTM). We focused on brain activity that increased with the number of items effectively held in memory by the participants during the retention interval of an auditory memory task. We used very simple acoustic materials (i.e., pure tones that varied in pitch) that minimized activation from non-ASTM related systems. MEG revealed neural activity in frontal, temporal, and parietal cortices that increased with a greater number of items effectively held in memory by the participants during the maintenance of pitch representations in ASTM. The present results reinforce the functional role of frontal and temporal cortices in the retention of pitch information in ASTM. This is the first MEG study to provide both fine spatial localization and temporal resolution on the neural mechanisms of non-verbal ASTM for pitch in relation to individual differences in the capacity of ASTM. This research contributes to a comprehensive understanding of the mechanisms mediating the representation and maintenance of basic non-verbal auditory features in the human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Testing native language neural commitment at the brainstem level: A cross-linguistic investigation of the association between frequency-following response and speech perception.

    Science.gov (United States)

    Yu, Luodi; Zhang, Yang

    2017-12-12

    A current topic in auditory neurophysiology is how brainstem sensory coding contributes to higher-level perceptual, linguistic and cognitive skills. This cross-language study was designed to compare frequency following responses (FFRs) for lexical tones in tonal (Mandarin Chinese) and non-tonal (English) language users and test the correlational strength between FFRs and behavior as a function of language experience. The behavioral measures were obtained in the Garner paradigm to assess how lexical tones might interfere with vowel category and duration judgement. The FFR results replicated previous findings about between-group differences, showing enhanced pitch tracking responses in the Chinese subjects. The behavioral data from the two subject groups showed that lexical tone variation in the vowel stimuli significantly interfered with vowel identification with a greater effect in the Chinese group. Moreover, the FFRs for lexical tone contours were significantly correlated with the behavioral interference only in the Chinese group. This pattern of language-specific association between speech perception and brainstem-level neural phase-locking of linguistic pitch information provides evidence for a possible native language neural commitment at the subcortical level, highlighting the role of experience-dependent brainstem tuning in influencing subsequent linguistic processing in the adult brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Analysis of Pitch Gear Deterioration using Indicators

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    . This deterioration is expected to cause larger loads, because increased play causes dynamic loads. At some point, the increased loads can be expected to cause a failure somewhere in the pitch system. If the loads increase with the size of the damage, the loads can be used as indicators of the size of the damage....... This hypothesis was supported by results from a measurement campaign where measurements were available both before and after maintenance was performed. The loads dramatically decreased after the maintenance. However, after a few more months of measurements, and by including data from the SCADA system, it became...

  5. Effects of harmonic roving on pitch discrimination

    DEFF Research Database (Denmark)

    Santurette, Sébastien; de Kérangal, Mathilde le Gal; Joshi, Suyash Narendra

    2015-01-01

    to impair pitch discrimination performance. Fundamental-frequency difference limens (F0DLs) were obtained in normal-hearing listeners with and without musical training for complex tones filtered between 1.5 and 3.5 kHz with F0s of 300 Hz (resolved harmonics) and 75 Hz (unresolved harmonics). The harmonicity...... of the tone complexes was varied by systematically roving the frequency of individual harmonics, which was taken from a Gaussian distribution centered on the nominal frequency in every stimulus presentation. The amount of roving was determined by the standard deviation of this distribution, which varied...

  6. [The perfect pitch. Birth, delights and death].

    Science.gov (United States)

    Zwang, G

    1990-01-01

    The absolute pitch, AP, is the capacity of identifying and/or producing (singing) exact music notes without any prior indication. It appears in prone subjects owing to the assiduous practice of music, and is ruled by the temperament and diapason. It provides an incomparable subjective self-realization and makes it much easier to listen to, understand, write and read music. The false 415 compass, which spread widely as the baroque style became fashionable, stresses the subjects gifted with AP and prevents its appearance in children. This should be a cause of alarm for the medical, as well as administrative, authorities.

  7. Kinematics and constraints associated with swashplate blade pitch control

    Science.gov (United States)

    Leyland, Jane A.

    1993-01-01

    An important class of techniques to reduce helicopter vibration is based on using a Higher Harmonic controller to optimally define the Higher Harmonic blade pitch. These techniques typically require solution of a general optimization problem requiring the determination of a control vector which minimizes a performance index where functions of the control vector are subject to inequality constraints. Six possible constraint functions associated with swashplate blade pitch control were identified and defined. These functions constrain: (1) blade pitch Fourier Coefficients expressed in the Rotating System, (2) blade pitch Fourier Coefficients expressed in the Nonrotating System, (3) stroke of the individual actuators expressed in the Nonrotating System, (4) blade pitch expressed as a function of blade azimuth and actuator stroke, (5) time rate-of-change of the aforementioned parameters, and (6) required actuator power. The aforementioned constraints and the associated kinematics of swashplate blade pitch control by means of the strokes of the individual actuators are documented.

  8. A developmental study of latent absolute pitch memory.

    Science.gov (United States)

    Jakubowski, Kelly; Müllensiefen, Daniel; Stewart, Lauren

    2017-03-01

    The ability to recall the absolute pitch level of familiar music (latent absolute pitch memory) is widespread in adults, in contrast to the rare ability to label single pitches without a reference tone (overt absolute pitch memory). The present research investigated the developmental profile of latent absolute pitch (AP) memory and explored individual differences related to this ability. In two experiments, 288 children from 4 to12 years of age performed significantly above chance at recognizing the absolute pitch level of familiar melodies. No age-related improvement or decline, nor effects of musical training, gender, or familiarity with the stimuli were found in regard to latent AP task performance. These findings suggest that latent AP memory is a stable ability that is developed from as early as age 4 and persists into adulthood.

  9. Voice pitch predicts reproductive success in male hunter-gatherers.

    Science.gov (United States)

    Apicella, C L; Feinberg, D R; Marlowe, F W

    2007-12-22

    The validity of evolutionary explanations of vocal sexual dimorphism hinges upon whether or not individuals with more sexually dimorphic voices have higher reproductive success than individuals with less dimorphic voices. However, due to modern birth control methods, these data are rarely described, and mating success is often used as a second-rate proxy. Here, we test whether voice pitch predicts reproductive success, number of children born and child mortality in an evolutionarily relevant population of hunter-gatherers. While we find that voice pitch is not related to reproductive outcomes in women, we find that men with low voice pitch have higher reproductive success and more children born to them. However, voice pitch in men does not predict child mortality. These findings suggest that the association between voice pitch and reproductive success in men is mediated by differential access to fecund women. Furthermore, they show that there is currently selection pressure for low-pitch voices in men.

  10. Processing of Binaural Pitch Stimuli in Hearing-Impaired Listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2009-01-01

    Binaural pitch is a tonal sensation produced by introducing a frequency-dependent interaural phase shift in binaurally presented white noise. As no spectral cues are present in the physical stimulus, binaural pitch perception is assumed to rely on accurate temporal fine structure coding and intact...... binaural integration mechanisms. This study investigated to what extent basic auditory measures of binaural processing as well as cognitive abilities are correlated with the ability of hearing-impaired listeners to perceive binaural pitch. Subjects from three groups (1: normal-hearing; 2: cochlear...... hearingloss; 3: retro-cochlear impairment) were asked to identify the pitch contour of series of five notes of equal duration, ranging from 523 to 784 Hz, played either with Huggins’ binaural pitch stimuli (BP) or perceptually similar, but monaurally detectable, pitches (MP). All subjects from groups 1 and 2...

  11. Robust Pitch Estimation Using an Optimal Filter on Frequency Estimates

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2014-01-01

    In many scenarios, a periodic signal of interest is often contaminated by different types of noise that may render many existing pitch estimation methods suboptimal, e.g., due to an incorrect white Gaussian noise assumption. In this paper, a method is established to estimate the pitch of such sig......In many scenarios, a periodic signal of interest is often contaminated by different types of noise that may render many existing pitch estimation methods suboptimal, e.g., due to an incorrect white Gaussian noise assumption. In this paper, a method is established to estimate the pitch...... against different noise situations. The simulation results confirm that the proposed MVDR method outperforms the state-of-the-art weighted least squares (WLS) pitch estimator in colored noise and has robust pitch estimates against missing harmonics in some time-frames....

  12. Prosodic Transfer: From Chinese Lexical tone to English Pitch Accent

    Directory of Open Access Journals (Sweden)

    Marie Ploquin

    2013-01-01

    Full Text Available Chinese tones are associated with a syllable to convey meaning, English pitch accents are prominence markers associated with stressed syllables.  As both are created by pitch modulation, their pitch contours can be quite similar.  The experiment reported here examines whether native speakers of Chinese produce, when speaking English, the Chinese tone whose phonetic contour most closely matches the contour of the intended English pitch accent.  Six native speakers of Chinese recorded English and Chinese sentences, all including the segment [fan].  Results show that the subjects produced a Chinese tone 2 where a rising pitch accents was required and thus that speakers of Chinese rely on their lexical tones inventory to produce English prosody. The results obtained with falling pitch accents are much less conclusive partly because of the difficulty in measuring tone 3 due to the high level of creak that accompanies it.

  13. Chatter Prediction for Variable Pitch and Variable Helix Milling

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2015-01-01

    Full Text Available Regenerative chatter is a self-excited vibration that can occur during milling, which shortens the lifetime of the tool and results in unacceptable surface quality. In this paper, an improved semidiscretization method for modeling and simulation with variable pitch and variable helix milling is proposed. Because the delay between each flute varies along the axial depth of the tool in milling, the cutting tool is discrete into some axial layers to simplify calculation. A comparison of the predicted and observed performance of variable pitch and variable helix against uniform pitch and uniform helix milling is presented. It is shown that variable pitch and variable helix milling can obtain larger stable cutting area than uniform pitch and uniform helix milling. Thus, it is concluded that variable pitch and variable helix milling are an effective way for suppressing chatter.

  14. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  15. Musical training shapes neural responses to melodic and prosodic expectation.

    Science.gov (United States)

    Zioga, Ioanna; Di Bernardi Luft, Caroline; Bhattacharya, Joydeep

    2016-11-01

    Current research on music processing and syntax or semantics in language suggests that music and language share partially overlapping neural resources. Pitch also constitutes a common denominator, forming melody in music and prosody in language. Further, pitch perception is modulated by musical training. The present study investigated how music and language interact on pitch dimension and whether musical training plays a role in this interaction. For this purpose, we used melodies ending on an expected or unexpected note (melodic expectancy being estimated by a computational model) paired with prosodic utterances which were either expected (statements with falling pitch) or relatively unexpected (questions with rising pitch). Participants' (22 musicians, 20 nonmusicians) ERPs and behavioural responses in a statement/question discrimination task were recorded. Participants were faster for simultaneous expectancy violations in the melodic and linguistic stimuli. Further, musicians performed better than nonmusicians, which may be related to their increased pitch tracking ability. At the neural level, prosodic violations elicited a front-central positive ERP around 150ms after the onset of the last word/note, while musicians presented reduced P600 in response to strong incongruities (questions on low-probability notes). Critically, musicians' P800 amplitudes were proportional to their level of musical training, suggesting that expertise might shape the pitch processing of language. The beneficial aspect of expertise could be attributed to its strengthening effect of general executive functions. These findings offer novel contributions to our understanding of shared higher-order mechanisms between music and language processing on pitch dimension, and further demonstrate a potential modulation by musical expertise. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Perception and Modeling of Affective Qualities of Musical Instrument Sounds across Pitch Registers.

    Science.gov (United States)

    McAdams, Stephen; Douglas, Chelsea; Vempala, Naresh N

    2017-01-01

    Composers often pick specific instruments to convey a given emotional tone in their music, partly due to their expressive possibilities, but also due to their timbres in specific registers and at given dynamic markings. Of interest to both music psychology and music informatics from a computational point of view is the relation between the acoustic properties that give rise to the timbre at a given pitch and the perceived emotional quality of the tone. Musician and nonmusician listeners were presented with 137 tones produced at a fixed dynamic marking (forte) playing tones at pitch class D# across each instrument's entire pitch range and with different playing techniques for standard orchestral instruments drawn from the brass, woodwind, string, and pitched percussion families. They rated each tone on six analogical-categorical scales in terms of emotional valence (positive/negative and pleasant/unpleasant), energy arousal (awake/tired), tension arousal (excited/calm), preference (like/dislike), and familiarity. Linear mixed models revealed interactive effects of musical training, instrument family, and pitch register, with non-linear relations between pitch register and several dependent variables. Twenty-three audio descriptors from the Timbre Toolbox were computed for each sound and analyzed in two ways: linear partial least squares regression (PLSR) and nonlinear artificial neural net modeling. These two analyses converged in terms of the importance of various spectral, temporal, and spectrotemporal audio descriptors in explaining the emotion ratings, but some differences also emerged. Different combinations of audio descriptors make major contributions to the three emotion dimensions, suggesting that they are carried by distinct acoustic properties. Valence is more positive with lower spectral slopes, a greater emergence of strong partials, and an amplitude envelope with a sharper attack and earlier decay. Higher tension arousal is carried by brighter sounds

  17. Statistically Efficient Methods for Pitch and DOA Estimation

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2013-01-01

    Traditionally, direction-of-arrival (DOA) and pitch estimation of multichannel, periodic sources have been considered as two separate problems. Separate estimation may render the task of resolving sources with similar DOA or pitch impossible, and it may decrease the estimation accuracy. Therefore......, it was recently considered to estimate the DOA and pitch jointly. In this paper, we propose two novel methods for DOA and pitch estimation. They both yield maximum-likelihood estimates in white Gaussian noise scenar- ios, where the SNR may be different across channels, as opposed to state-of-the-art methods...

  18. Stochastic wind turbine modeling for individual pitch control

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2009-01-01

    By pitching the blades of a wind turbine individually it is possible to attenuate the asymmetric loads caused by a non-uniform wind field - this is denoted individual pitch control. In this work we investigate how to set up a simplified stochastic and deterministic description of the wind...... and a simplified description of the aerodynamics with sufficient detail to design model-based individual pitch controllers. Combined with a simplified model of the wind turbine, we exemplify how to use the model elements to systematically design an individual pitch controller. The design is investigated...

  19. Pitch discrimination associated with phonological awareness: Evidence from congenital amusia

    Science.gov (United States)

    Sun, Yanan; Lu, Xuejing; Ho, Hao Tam; Thompson, William Forde

    2017-01-01

    Research suggests that musical skills are associated with phonological abilities. To further investigate this association, we examined whether phonological impairments are evident in individuals with poor music abilities. Twenty individuals with congenital amusia and 20 matched controls were assessed on a pure-tone pitch discrimination task, a rhythm discrimination task, and four phonological tests. Amusic participants showed deficits in discriminating pitch and discriminating rhythmic patterns that involve a regular beat. At a group level, these individuals performed similarly to controls on all phonological tests. However, eight amusics with severe pitch impairment, as identified by the pitch discrimination task, exhibited significantly worse performance than all other participants in phonological awareness. A hierarchical regression analysis indicated that pitch discrimination thresholds predicted phonological awareness beyond that predicted by phonological short-term memory and rhythm discrimination. In contrast, our rhythm discrimination task did not predict phonological awareness beyond that predicted by pitch discrimination thresholds. These findings suggest that accurate pitch discrimination is critical for phonological processing. We propose that deficits in early-stage pitch discrimination may be associated with impaired phonological awareness and we discuss the shared role of pitch discrimination for processing music and speech. PMID:28287166

  20. Perception of words and pitch patterns in song and speech

    Directory of Open Access Journals (Sweden)

    Julia eMerrill

    2012-03-01

    Full Text Available This fMRI study examines shared and distinct cortical areas involved in the auditory perception of song and speech at the level of their underlying constituents: words, pitch and rhythm. Univariate and multivariate analyses were performed on the brain activity patterns of six conditions, arranged in a subtractive hierarchy: sung sentences including words, pitch and rhythm; hummed speech prosody and song melody containing only pitch patterns and rhythm; as well as the pure musical or speech rhythm.Systematic contrasts between these balanced conditions following their hierarchical organization showed a great overlap between song and speech at all levels in the bilateral temporal lobe, but suggested a differential role of the inferior frontal gyrus (IFG and intraparietal sulcus (IPS in processing song and speech. The left IFG was involved in word- and pitch-related processing in speech, the right IFG in processing pitch in song.Furthermore, the IPS showed sensitivity to discrete pitch relations in song as opposed to the gliding pitch in speech. Finally, the superior temporal gyrus and premotor cortex coded for general differences between words and pitch patterns, irrespective of whether they were sung or spoken. Thus, song and speech share many features which are reflected in a fundamental similarity of brain areas involved in their perception. However, fine-grained acoustic differences on word and pitch level are reflected in the activity of IFG and IPS.

  1. Wind turbine pitch control using ICPSO-PID algorithm

    DEFF Research Database (Denmark)

    Xu, Chang; Tian, Qiangqiang; Shen, Wen Zhong

    2013-01-01

    For the traditional simplified first-order pitch-control system model, it is difficult to describe a real dynamic characteristic of a variable pitch action system, thus a complete high order mathematical model has to be developed for the pitch control of wind turbine generation (WTG). In the paper...... controller parameters quickly; and the feed-forward controller for wind speed can improve dynamics of a pitch-control system; additionally the power controller can allow a wind turbine to have a constant power output as a wind speed is over the rated one. Compared with a conventional PID, the controller...

  2. Impaired short-term memory for pitch in congenital amusia.

    Science.gov (United States)

    Tillmann, Barbara; Lévêque, Yohana; Fornoni, Lesly; Albouy, Philippe; Caclin, Anne

    2016-06-01

    Congenital amusia is a neuro-developmental disorder of music perception and production. The hypothesis is that the musical deficits arise from altered pitch processing, with impairments in pitch discrimination (i.e., pitch change detection, pitch direction discrimination and identification) and short-term memory. The present review article focuses on the deficit of short-term memory for pitch. Overall, the data discussed here suggest impairments at each level of processing in short-term memory tasks; starting with the encoding of the pitch information and the creation of the adequate memory trace, the retention of the pitch traces over time as well as the recollection and comparison of the stored information with newly incoming information. These impairments have been related to altered brain responses in a distributed fronto-temporal network, associated with decreased connectivity between these structures, as well as in abnormalities in the connectivity between the two auditory cortices. In contrast, amusic participants׳ short-term memory abilities for verbal material are preserved. These findings show that short-term memory deficits in congenital amusia are specific to pitch, suggesting a pitch-memory system that is, at least partly, separated from verbal memory. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Sparse Multi-Pitch and Panning Estimation of Stereophonic Signals

    DEFF Research Database (Denmark)

    Kronvall, Ted; Jakobsson, Andreas; Hansen, Martin Weiss

    2016-01-01

    In this paper, we propose a novel multi-pitch estimator for stereophonic mixtures, allowing for pitch estimation on multi-channel audio even if the amplitude and delay panning parameters are unknown. The presented method does not require prior knowledge of the number of sources present in the mix......In this paper, we propose a novel multi-pitch estimator for stereophonic mixtures, allowing for pitch estimation on multi-channel audio even if the amplitude and delay panning parameters are unknown. The presented method does not require prior knowledge of the number of sources present...

  4. Signal coupling to embedded pitch adapters in silicon sensors

    CERN Document Server

    Artuso, Marina; Bezshyiko, Iaroslava; Blusk, Steven R.; Brundler Denzer, Ruth; Bugiel, Szymon; Dasgupta, Roma; Dendek, Adam Mateusz; Dey, Biplab; Ely, Scott Edward; Lionetto, Federica; Petruzzo, Marco; Polyakov, Ivan; Rudolph, Matthew Scott; Schindler, Heinrich; Steinkamp, Olaf; Stone, Sheldon

    2017-01-01

    We have examined the effects of embedded pitch adapters on signal formation in n-substrate silicon microstrip sensors with data from beam tests and simulation. According to simulation, the presence of the pitch adapter metal layer changes the electric field inside the sensor, resulting in slowed signal formation on the nearby strips and a pick-up effect on the pitch adapter. This can result in an inefficiency to detect particles passing through the pitch adapter region. All these effects have been observed in the beam test data.

  5. A Method for Low-Delay Pitch Tracking and Smoothing

    OpenAIRE

    Christensen, Mads Græsbøll

    2012-01-01

    In this paper, a new method for pitch tracking is presented. The method is comprised of two steps. In the first step, accurate pitch estimates are obtained on a sample-by-sample basis by updates of the signal statistics with an exponential forgetting factor and subse- quent numerical optimization. In the second step, a Kalman filter is used to smooth the estimates and separate the pitch into a slowly varying component and a rapidly varying component. The former represents the mean pitch while...

  6. Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback.

    Science.gov (United States)

    Behroozmand, Roozbeh; Larson, Charles R

    2011-06-06

    The motor-driven predictions about expected sensory feedback (efference copies) have been proposed to play an important role in recognition of sensory consequences of self-produced motor actions. In the auditory system, this effect was suggested to result in suppression of sensory neural responses to self-produced voices that are predicted by the efference copies during vocal production in comparison with passive listening to the playback of the identical self-vocalizations. In the present study, event-related potentials (ERPs) were recorded in response to upward pitch shift stimuli (PSS) with five different magnitudes (0, +50, +100, +200 and +400 cents) at voice onset during active vocal production and passive listening to the playback. Results indicated that the suppression of the N1 component during vocal production was largest for unaltered voice feedback (PSS: 0 cents), became smaller as the magnitude of PSS increased to 200 cents, and was almost completely eliminated in response to 400 cents stimuli. Findings of the present study suggest that the brain utilizes the motor predictions (efference copies) to determine the source of incoming stimuli and maximally suppresses the auditory responses to unaltered feedback of self-vocalizations. The reduction of suppression for 50, 100 and 200 cents and its elimination for 400 cents pitch-shifted voice auditory feedback support the idea that motor-driven suppression of voice feedback leads to distinctly different sensory neural processing of self vs. non-self vocalizations. This characteristic may enable the audio-vocal system to more effectively detect and correct for unexpected errors in the feedback of self-produced voice pitch compared with externally-generated sounds.

  7. The influence of music-elicited emotions and relative pitch on absolute pitch memory for familiar melodies.

    Science.gov (United States)

    Jakubowski, Kelly; Müllensiefen, Daniel

    2013-01-01

    Levitin's findings that nonmusicians could produce from memory the absolute pitches of self-selected pop songs have been widely cited in the music psychology literature. These findings suggest that latent absolute pitch (AP) memory may be a more widespread trait within the population than traditional AP labelling ability. However, it has been left unclear what factors may facilitate absolute pitch retention for familiar pieces of music. The aim of the present paper was to investigate factors that may contribute to latent AP memory using Levitin's sung production paradigm for AP memory and comparing results to the outcomes of a pitch labelling task, a relative pitch memory test, measures of music-induced emotions, and various measures of participants' musical backgrounds. Our results suggest that relative pitch memory and the quality and degree of music-elicited emotions impact on latent AP memory.

  8. Representational momentum in memory for pitch.

    Science.gov (United States)

    Freyd, J J; Kelly, M H; DeKay, M L

    1990-11-01

    When a visual pattern is displayed at successively different orientations such that a rotation or translation is implied, an observer's memory for the final position is displaced forward. This phenomenon of representational momentum shares some similarities with physical momentum. For instance, the amount of memory shift is proportional to the implied velocity of the inducing display; representational momentum is specifically proportional to the final, not the average, velocity; representational momentum follows a continuous stopping function for the first 250 ms or so of the retention interval. In a previous paper (Kelly & Freyd, 1987) we demonstrated a forward memory asymmetry using implied changes in pitch, for subjects without formal musical training. In the current paper we replicate our earlier finding and show that the forward memory asymmetry occurs for subjects with formal musical training as well (Experiment 1). We then show the structural similarity between representational momentum in memory for pitch with previous reports of parametric effects using visual stimuli. We report a velocity effect for auditory momentum (Experiment 2), we demonstrate specifically that the velocity effect depends on the implied acceleration (Experiment 3), and we show that the stopping function for auditory momentum is qualitatively the same as that for visual momentum (Experiment 4). We consider the implications of these results for theories of mental representation.

  9. Pitch Correlogram Clustering for Fast Speaker Identification

    Directory of Open Access Journals (Sweden)

    Nitin Jhanwar

    2004-12-01

    Full Text Available Gaussian mixture models (GMMs are commonly used in text-independent speaker identification systems. However, for large speaker databases, their high computational run-time limits their use in online or real-time speaker identification situations. Two-stage identification systems, in which the database is partitioned into clusters based on some proximity criteria and only a single-cluster GMM is run in every test, have been suggested in literature to speed up the identification process. However, most clustering algorithms used have shown limited success, apparently because the clustering and GMM feature spaces used are derived from similar speech characteristics. This paper presents a new clustering approach based on the concept of a pitch correlogram that captures frame-to-frame pitch variations of a speaker rather than short-time spectral characteristics like cepstral coefficient, spectral slopes, and so forth. The effectiveness of this two-stage identification process is demonstrated on the IVIE corpus of 110 speakers. The overall system achieves a run-time advantage of 500% as well as a 10% reduction of error in overall speaker identification.

  10. Prelinguistic Infants Are Sensitive to Space-Pitch Associations Found Across Cultures

    NARCIS (Netherlands)

    Dolscheid, S.J.; Hunnius, S.; Casasanto, D.; Majid, A.

    2014-01-01

    People often talk about musical pitch using spatial metaphors. In English, for instance, pitches can be "high" or "low" (i.e., height-pitch association), whereas in other languages, pitches are described as "thin" or "thick" (i.e., thickness-pitch association). According to results from

  11. Auditory deficits in amusia extend beyond poor pitch perception.

    Science.gov (United States)

    Whiteford, Kelly L; Oxenham, Andrew J

    2017-05-01

    Congenital amusia is a music perception disorder believed to reflect a deficit in fine-grained pitch perception and/or short-term or working memory for pitch. Because most measures of pitch perception include memory and segmentation components, it has been difficult to determine the true extent of pitch processing deficits in amusia. It is also unclear whether pitch deficits persist at frequencies beyond the range of musical pitch. To address these questions, experiments were conducted with amusics and matched controls, manipulating both the stimuli and the task demands. First, we assessed pitch discrimination at low (500Hz and 2000Hz) and high (8000Hz) frequencies using a three-interval forced-choice task. Amusics exhibited deficits even at the highest frequency, which lies beyond the existence region of musical pitch. Next, we assessed the extent to which frequency coding deficits persist in one- and two-interval frequency-modulation (FM) and amplitude-modulation (AM) detection tasks at 500Hz at slow (fm=4Hz) and fast (fm=20Hz) modulation rates. Amusics still exhibited deficits in one-interval FM detection tasks that should not involve memory or segmentation. Surprisingly, amusics were also impaired on AM detection, which should not involve pitch processing. Finally, direct comparisons between the detection of continuous and discrete FM demonstrated that amusics suffer deficits in both coding and segmenting pitch information. Our results reveal auditory deficits in amusia extending beyond pitch perception that are subtle when controlling for memory and segmentation, and are likely exacerbated in more complex contexts such as musical listening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring.

    Science.gov (United States)

    Beatus, Tsevi; Cohen, Itai

    2015-08-01

    While the wing kinematics of many flapping insects have been well characterized, understanding the underlying sensory, neural, and physiological mechanisms that determine these kinematics is still a challenge. Two main difficulties in understanding the physiological mechanisms arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics of the insect wing hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here this strategy is used to model the torques exerted by the wing hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasistatic aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring parameters. The damped torsional-spring model explains the changes measured in wing-pitch kinematics during roll correction maneuvers through modulation of the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate that flies can accurately control their wing-pitch kinematics on a sub-wing-beat time scale by modulating all three effective spring parameters on longer time scales.

  13. Transfer Effect of Speech-sound Learning on Auditory-motor Processing of Perceived Vocal Pitch Errors.

    Science.gov (United States)

    Chen, Zhaocong; Wong, Francis C K; Jones, Jeffery A; Li, Weifeng; Liu, Peng; Chen, Xi; Liu, Hanjun

    2015-08-17

    Speech perception and production are intimately linked. There is evidence that speech motor learning results in changes to auditory processing of speech. Whether speech motor control benefits from perceptual learning in speech, however, remains unclear. This event-related potential study investigated whether speech-sound learning can modulate the processing of feedback errors during vocal pitch regulation. Mandarin speakers were trained to perceive five Thai lexical tones while learning to associate pictures with spoken words over 5 days. Before and after training, participants produced sustained vowel sounds while they heard their vocal pitch feedback unexpectedly perturbed. As compared to the pre-training session, the magnitude of vocal compensation significantly decreased for the control group, but remained consistent for the trained group at the post-training session. However, the trained group had smaller and faster N1 responses to pitch perturbations and exhibited enhanced P2 responses that correlated significantly with their learning performance. These findings indicate that the cortical processing of vocal pitch regulation can be shaped by learning new speech-sound associations, suggesting that perceptual learning in speech can produce transfer effects to facilitating the neural mechanisms underlying the online monitoring of auditory feedback regarding vocal production.

  14. Tracking of pitch probabilities in congenital amusia.

    Science.gov (United States)

    Omigie, Diana; Pearce, Marcus T; Stewart, Lauren

    2012-06-01

    Auditory perception involves not only hearing a series of sounds but also making predictions about future ones. For typical listeners, these predictions are formed on the basis of long-term schematic knowledge, gained over a lifetime of exposure to the auditory environment. Individuals with a developmental disorder known as congenital amusia show marked difficulties with music perception and production. The current study investigated whether these difficulties can be explained, either by a failure to internalise the statistical regularities present in music, or by a failure to consciously access this information. Two versions of a melodic priming paradigm were used to probe participants' abilities to form melodic pitch expectations, in an implicit and an explicit manner. In the implicit version (Experiment 1), participants made speeded, forced-choice discriminations concerning the timbre of a cued target note. In the explicit version (Experiment 2), participants used a 1-7 rating scale to indicate the degree to which the pitch of the cued target note was expected or unexpected. Target notes were chosen to have high or low probability in the context of the melody, based on the predictions of a computational model of melodic expectation. Analysis of the data from the implicit task revealed a melodic priming effect in both amusic and control participants whereby both groups showed faster responses to high probability than low probability notes rendered in the same timbre as the context. However, analysis of the data from the explicit task revealed that amusic participants were significantly worse than controls at using explicit ratings to differentiate between high and low probability events in a melodic context. Taken together, findings from the current study make an important contribution in demonstrating that amusic individuals track melodic pitch probabilities at an implicit level despite an impairment, relative to controls, when required to make explicit

  15. Twist defect in chiral photonic structures with spatially varying pitch

    Science.gov (United States)

    Chen, Jiun-Yeu; Chen, Lien-Wen

    2005-04-01

    The properties of photonic defect modes in a chiral photonic structure were investigated using the finite element method. By stacking two cholesteric liquid crystal (ChLC) films, the defect mode due to the introduction of a twist defect was considered in both cases of chiral structures with constant pitch and spatially varying pitch. Two types of linear pitch gradients for achieving a broadband reflection were analysed, and the number of chiral pitches required for establishing the stop band was simulated. The effect of a finite sample thickness on the energy density distribution of the defect mode and on the required polarization of the incident light to excite the defect mode was studied. In both cases of constant pitch and spatially varying pitch, an unusual crossover behaviour in reflection at the defect resonance wavelength of a single circularly polarized mode appears when the structure thickness increases beyond a specific value. The energy distribution inside the sample also reveals the unusual distribution. Two different resonance wavelengths can be created by a twist defect in the ChLC composite film with linearly varying pitch, while only one resonance wavelength can be created in the identical film with constant pitch.

  16. Thrust generation and wake structure for flow across a pitching ...

    Indian Academy of Sciences (India)

    In this work, we present detailed particle image velocimetry (PIV) based investigation of wake structure of a pitching airfoil. PIV measurements have been carried out for NACA0015 airfoil at Re = 2900 with reduced frequency range of 1.82–10.92 and pitching angle of 5°. Two different wake structures (reverse Kármán ...

  17. Binaural Pitch Fusion in Bilateral Cochlear Implant Users.

    Science.gov (United States)

    Reiss, Lina A J; Fowler, Jennifer R; Hartling, Curtis L; Oh, Yonghee

    2017-09-22

    Binaural pitch fusion is the fusion of stimuli that evoke different pitches between the ears into a single auditory image. Individuals who use hearing aids or bimodal cochlear implants (CIs) experience abnormally broad binaural pitch fusion, such that sounds differing in pitch by as much as 3-4 octaves are fused across ears, leading to spectral averaging and speech perception interference. The goal of this study was to determine if adult bilateral CI users also experience broad binaural pitch fusion. Stimuli were pulse trains delivered to individual electrodes. Fusion ranges were measured using simultaneous, dichotic presentation of reference and comparison stimuli in opposite ears, and varying the comparison stimulus to find the range that fused with the reference stimulus. Bilateral CI listeners had binaural pitch fusion ranges varying from 0 to 12 mm (average 6.1 ± 3.9 mm), where 12 mm indicates fusion over all electrodes in the array. No significant correlations of fusion range were observed with any subject factors related to age, hearing loss history, or hearing device history, or with any electrode factors including interaural electrode pitch mismatch, pitch match bandwidth, or within-ear electrode discrimination abilities. Bilateral CI listeners have abnormally broad fusion, similar to hearing aid and bimodal CI listeners. This broad fusion may explain the variability of binaural benefits for speech perception in quiet and in noise in bilateral CI users.

  18. The Association Between Pitch Conditions and the Incidence of ...

    African Journals Online (AJOL)

    Background: Environmental conditions have been shown to influence incidence of rugby injuries. Harsh weather conditions and detrimental effect on poor Kenyan rugby pitches create a unique environment for injury exposure. We conducted a whole population prospective cohort study to determine the association of pitch ...

  19. Pitch Perception, Working Memory, and Second-Language Phonological Production

    Science.gov (United States)

    Posedel, James; Emery, Lisa; Souza, Benjamin; Fountain, Catherine

    2012-01-01

    Previous research has suggested that training on a musical instrument is associated with improvements in working memory and musical pitch perception ability. Good working memory and musical pitch perception ability, in turn, have been linked to certain aspects of language production. The current study examines whether working memory and/or pitch…

  20. Pitch detection of speech signals in noisy environment by wavelet

    Science.gov (United States)

    Yip, Wing-kei; Leung, KwongSak; Wong, Kin-hong

    1995-04-01

    The pitch of voiced speech sounds provides very important information in speech analysis. Pitch estimation is a difficult task when unprevented noise exists. However experimental results have shown that even robust pitch detection techniques fail in noisy environment with periodic patterns such as noise generated by machines. Wavelet transform, with its special properties in time frequency relation, can be used to detect pitch with remarkable advantage in noise resistance. In wavelet signal analysis, the modulus of the transform have been used extensively, however, we found that the phase information is equally important especially for pitch detection. Since the phase spectrum is always intensive to noise, a more promising pitch period can be obtained from the phase diagram. Properties of the phase pattern in wavelet transform are investigated and the result is applied to construct a robust pitch detector. In our first test, the detector is employed to detect the pitches of a set of speech signals with white noise. We found that our approach clearly outperforms other non-wavelet methods with low signal-to-noise ratio. Sinusoidal noise with different frequency levels is used in the second test. Simulation results have shown that our system works quite stable in such an environment.

  1. Contributions of roll and pitch to sea sickness

    NARCIS (Netherlands)

    Wertheim, A.H.; Bos, J.E.; Bles, W.

    1998-01-01

    The purpose of the present study was to test the traditional assumption that sea sickness is uniquely provoked by heave motion characteristics, pitch and roll movements being ineffective. In an experi-ment with a ship motion simulator subjects were exposed to pitch, and roll motions in combination

  2. Contributions of roll and pitch to sea sickness

    NARCIS (Netherlands)

    Wertheim, A. H.; Bos, J. E.; van der Bles, W.

    1998-01-01

    The purpose of this study was to test the traditional assumption that sea sickness is uniquely provoked by heave motion characteristics, with pitch and roll movements being ineffective. In an experiment with a ship motion simulator, subjects were exposed to pitch and roll motions in combination with

  3. Pitch Ability as an Aptitude for Tone Learning

    Science.gov (United States)

    Bowles, Anita R.; Chang, Charles B.; Karuzis, Valerie P.

    2016-01-01

    Tone languages such as Mandarin use voice pitch to signal lexical contrasts, presenting a challenge for second/foreign language (L2) learners whose native languages do not use pitch in this manner. The present study examined components of an aptitude for mastering L2 lexical tone. Native English speakers with no previous tone language experience…

  4. Contamination of Pine Seeds by the Pitch Canker Fungus

    Science.gov (United States)

    L. David Dwinell; S.W. Fraedrich

    1999-01-01

    The pitch canker fungus, Fusarium subglutinans f. sp. pini, has been identified as a significant problem in man pine seed orchards and nursuries in the South. THe fungus causes strobilus mortality, seed deterioation, and cankers on the main stem, branches, and shoots of pines Dwinell and others 1985). The pitche canker fungus...

  5. Pulping Variables, Storage Time and Pitch Deposit | Ogunwusi ...

    African Journals Online (AJOL)

    The effects of pulping variable, wood classification and storage time on pitch deposition during kraft pulping of mixed tropical hardwood species growing in Nigeria were investigated. Storage time has effect on pitch deposition in all the groups. Pulp resin decreased from 0.535% in control experiment to 0.235% after the sixth ...

  6. Pitch Alterations in British Motherese: Some Preliminary Acoustic Data.

    Science.gov (United States)

    Shute, Brenda; Wheldall, Kevin

    1989-01-01

    Analysis of speech samples from British female adults (N=8) revealed that the subjects increased vocal pitch when addressing young children, but not as much as previously studied North American subjects did. Pitch increases were more commonly observed in free speech than in reading-aloud conditions. (23 references) (Author/CB)

  7. Pitch Systems and Curwen Hand Signs: A Review of Literature

    Science.gov (United States)

    Frey-Clark, Marta

    2017-01-01

    Learning to sing from notation is a complex task, and accurately performing pitches without an external reference can be particularly challenging. As such, the use of mnemonic devices to reinforce tonal relationships is a long-standing practice among musicians. Chief among these mnemonic devices are pitch syllable systems and Curwen hand signs.…

  8. Shoulder joint velocity during fastball pitching in baseball

    NARCIS (Netherlands)

    Gasparutto, X.; van der Graaff, E; van der Helm, F.C.T.; Veeger, H.E.J.; Colloud, F.; Domalain, M.; Monnet, T.

    2015-01-01

    The purpose of this study was to assess the rotation and translation velocity of the shoulder complex during fastball pitching in baseball. 8 pitchers from the Dutch AAA team performed each 3 fastball pitches. Their motion was recorded by an opto-electronic device. Kinematic computation was

  9. Cortical Basis for Dichotic Pitch Perception in Developmental Dyslexia

    Science.gov (United States)

    Partanen, Marita; Fitzpatrick, Kevin; Madler, Burkhard; Edgell, Dorothy; Bjornson, Bruce; Giaschi, Deborah E.

    2012-01-01

    The current study examined auditory processing deficits in dyslexia using a dichotic pitch stimulus and functional MRI. Cortical activation by the dichotic pitch task occurred in bilateral Heschl's gyri, right planum temporale, and right superior temporal sulcus. Adolescents with dyslexia, relative to age-matched controls, illustrated greater…

  10. Gray- and White-Matter Anatomy of Absolute Pitch Possessors

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Chakravarty, Mallar

    2015-01-01

    Absolute pitch (AP), the ability to identify a musical pitch without a reference, has been examined behaviorally in numerous studies for more than a century, yet only a few studies have examined the neuroanatomical correlates of AP. Here, we used MRI and diffusion tensor imaging to investigate st...

  11. Assessment of rail long-pitch corrugation

    Science.gov (United States)

    Valehrach, Jan; Guziur, Petr; Riha, Tomas; Plasek, Otto

    2017-09-01

    The paper focuses on defects of the running surface of the rail, namely the rail corrugation defect and specifically long-pitch corrugation in curves of small radii. These defects cause a shorter life of the rails, greater maintenance costs and increase the noise and vibration pollution. Therefore, it is very important to understand the formation and development of the imperfection of the rails. In the paper, various sections of railway tracks in the Czech Republic are listed, each of them completed with comparison of defect development, the particular track superstructure, rolling stock, axle load, traffic load etc. Based on performed measurements, defect development has been proved as different on sections with similar (or even same) parameters. The paper assumes that a train velocity is the significant circumstance for defect development rates. Assessment of track section with under sleeper pads, which are expected to be the one of the possible ways to suppress the corrugation defect development, is included in evaluation.

  12. Self-organization of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.W.; Winston, J.V.; Rafelski, J.

    1984-05-14

    The plastic development of a neural-network model operating autonomously in discrete time is described by the temporal modification of interneuronal coupling strengths according to momentary neural activity. A simple algorithm (brainwashing) is found which, applied to nets with initially quasirandom connectivity, leads to model networks with properties conducive to the simulation of memory and learning phenomena. 18 references, 2 figures.

  13. Adaptive Neurons For Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  14. Two LQRI based Blade Pitch Controls for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yoonsu Nam

    2012-06-01

    Full Text Available As the wind turbine size has been increasing and their mechanical components are built lighter, the reduction of the structural loads becomes a very important task of wind turbine control in addition to maximum wind power capture. In this paper, we present a separate set of collective and individual pitch control algorithms. Both pitch control algorithms use the LQR control technique with integral action (LQRI, and utilize Kalman filters to estimate system states and wind speed. Compared to previous works in this area, our pitch control algorithms can control rotor speed and blade bending moments at the same time to improve the trade-off between rotor speed regulation and load reduction, while both collective and individual pitch controls can be designed separately. Simulation results show that the proposed collective and individual pitch controllers achieve very good rotor speed regulation and significant reduction of blade bending moments.

  15. Co-carbonization of oxidized coals with petroleum pitches

    Energy Technology Data Exchange (ETDEWEB)

    Grint, A.; Clarke, K.; Marsh, H.

    1983-11-01

    Sherwood and Oakdale coals (NCB class 602 and 301a) were progressively oxidized in oxygen or air. The optical textures of cokes from carbonizations were monitored by optical microscopy. Fresh and oxidized coals were co-carbonized with three petroleum pitches of different modifying ability, i.e., superactive, active and passive. Increases in anisotropic optical texture of resultant cokes were monitored by a point-counting technique. Whereas all three pitches could remove the effects of mild oxidation it was only the super-active pitch which could modify cokes from the heavily oxidized coals. Modifying abilities of pitches can be explained in terms of their hydrogen-transfer capabilities. Suitable blending with pitches may enable oxidized coals to be used for making metallurgical coke.

  16. Co-carbonization of oxidized coals with petroleum pitches

    Energy Technology Data Exchange (ETDEWEB)

    Grint, A.; Marsh, H.; Clarke, K.

    1983-11-01

    Sherwood and Oakdale coals (NCB class 602 and 301a) were progressively oxidized in oxygen or air. The optical textures of cokes from carbonizations were monitored by optical microscopy. Fresh and oxidized coals were co-carbonized with three petroleum pitches of different modifying ability i.e. superactive, active and passive. Increases in anisotropic optical texture of resultant cokes were monitored by a point-counting technique. Whereas all three pitches could remove the effects of mild oxidation it was only the super-active pitch which could modify cokes from the heavily oxidized coals. Modifying abilities of pitches can be explained in terms of their hydrogen-transfer capabilities. Suitable blending with pitches may enable oxidized coals to be used for making metallurgical coke. (26 refs.)

  17. H-Darrieus Wind Turbine with Blade Pitch Control

    Directory of Open Access Journals (Sweden)

    I. Paraschivoiu

    2009-01-01

    Full Text Available A procedure for computing the optimal variation of the blades' pitch angle of an H-Darrieus wind turbine that maximizes its torque at given operational conditions is proposed and presented along with the results obtained on a 7 kW prototype. The CARDAAV code, based on the “Double-Multiple Streamtube” model developed by the first author, is used to determine the performances of the straight-bladed vertical axis wind turbine. This was coupled with a genetic algorithm optimizer. The azimuthal variation of the blades' pitch angle is modeled with an analytical function whose coefficients are used as variables in the optimization process. Two types of variations were considered for the pitch angle: a simple sinusoidal one and one which is more general, relating closely the blades' pitch to the local flow conditions along their circular path. A gain of almost 30% in the annual energy production was obtained with the polynomial optimal pitch control.

  18. Effects of increasing time delays on pitch-matching accuracy in trained singers and untrained individuals.

    Science.gov (United States)

    Estis, Julie M; Coblentz, Joana K; Moore, Robert E

    2009-07-01

    Trained singers (TS) generally demonstrate accurate pitch matching, but this ability varies within the general population. Pitch-matching accuracy, given increasing silence intervals of 5, 15, and 25 seconds between target tones and vocal matches, was investigated in TS and untrained individuals. A relationship between pitch discrimination and pitch matching was also examined. Thirty-two females (20-30 years) were grouped based on individual vocal training and performance in an immediate pitch-matching task. Participants matched target pitches following time delays, and completed a pitch discrimination task, which required the classification of two tones as same or different. TS and untrained accurate participants performed comparably on all pitch-matching tasks, while untrained inaccurate participants performed significantly less accurately than the other two groups. Performances declined across groups as intervals of silence increased, suggesting degradation of pitch matching as pitch memory was taxed. A significant relationship between pitch discrimination and pitch matching was revealed across participants.

  19. Pre-attentive auditory processing of non-scale pitch in absolute pitch possessors.

    Science.gov (United States)

    Matsuda, Ayasa; Hara, Keiko; Watanabe, Satsuki; Matsuura, Masato; Ohta, Katsuya; Matsushima, Eisuke

    2013-08-26

    Absolute pitch (AP) refers to the ability to identify the pitch of sound without reference. To clarify the neurophysiological characteristics of AP, we compared mismatch negativity (MMN) elicited by scale and non-scale notes between AP possessors and non-AP individuals. Eight individuals who were able to identify pitch with perfect accuracy were defined as AP possessors. Eighteen participants who failed to achieve perfect accuracy were included in the non-AP group. We presented participants with two tone pairs, in a scale condition and a non-scale condition. The frequency ratios of the two pairs were the same. MMN over the frontal region in the non-scale condition was larger in the AP group than the non-AP group. In contrast, no such difference was observed between the two groups in the scale condition. The results suggest that pre-attentive processing of non-scale note sounds in the auditory cortex is a salient neurophysiological characteristic of AP. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Do Musicians with Perfect Pitch Have More Autism Traits than Musicians without Perfect Pitch? An Empirical Study

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Heaton, Pamela

    2012-01-01

    Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increased...

  1. Language experience-dependent advantage in pitch representation in the auditory cortex is limited to favorable signal-to-noise ratios.

    Science.gov (United States)

    Suresh, Chandan H; Krishnan, Ananthanarayan; Gandour, Jackson T

    2017-11-01

    Long-term experience enhances neural representation of temporal attributes of pitch in the brainstem and auditory cortex in favorable listening conditions. Herein we examine whether cortical pitch mechanisms shaped by language experience are more resilient to degradation in background noise, and exhibit greater binaural release from masking (BRM). Cortical pitch responses (CPR) were recorded from Mandarin- and English-speaking natives using a Mandarin word exhibiting a high rising pitch (/yi2/). Stimuli were presented diotically in Quiet, and in noise at +5, and 0 dB SNR. CPRs were also recorded in binaural conditions, SONO (where signal and noise were in phase at both ears); or S0Nπ (where signal was in phase and noise 180° out of phase at each ear), using 0 dB SNR. At Fz, both groups showed increase in CPR peak latency and decrease in amplitude with increasing noise level. A language-dependent enhancement of Na-Pb amplitude (Chinese > English) was restricted to Quiet and +5 dB SNR conditions. At T7/T8 electrode sites, Chinese natives exhibited a rightward asymmetry for both CPR components. A language-dependent effect (Chinese > English) was restricted to T8. Regarding BRM, both CPR components showed greater response amplitude for the S0Nπ condition compared to S0N0 across groups. Rightward asymmetry for BRM in the Chinese group indicates experience-dependent recruitment of right auditory cortex. Restriction of the advantage in pitch representation to the quiet and +5 SNR conditions, and the absence of group differences in the binaural release from masking, suggest that language experience affords limited advantage in the neural representation of pitch-relevant information in the auditory cortex under adverse listening conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Long-pitch cholesteric liquid crystals for display applications

    Science.gov (United States)

    Yoon, Tae-Hoon; Huh, Jae-Won; Yu, Byeong-Hun

    2014-02-01

    Cholesteric liquid crystals (CLCs) have been used for a reflective display because of their reflective nature in the planar state. In a reflective display, the planar and the focal-conic states are used for the bright state and the dark state, respectively. In this paper we introduce a long-pitch CLC device, in which a selective wavelength of the reflected light is shifted to infrared (IR) wavelengths by controlling the pitch. The planar state of a long-pitch CLC device is transparent over the entire visible wavelengths in the field-off state. Omni-directional achromatic reflection through light scattering in the focal-conic state can be achieved without a polarizer. Compared to conventional CLC cells that reflect the visible light in the planar state, a long-pitch CLC device has a longer pitch, of which the operating voltage for switching between the two state is much lower so that achromatic reflective displays and light shutters with low power consumption can be realized using long-pitch CLC devices. By coupling with a reflector, the light efficiency of a longpitch CLC cell in the focal-conic state can be enhanced, by which higher brightness can be obtained for application to reflective displays. A dye-doped long-pitch CLC device can be placed behind a transparent organic light-emitting diode display for use as a light shutter to block the ambient light.

  3. Experiments to investigate lift production mechanisms on pitching flat plates

    Science.gov (United States)

    Stevens, P. R. R. J.; Babinsky, H.

    2017-01-01

    Pitching flat plates are a useful simplification of flapping wings, and their study can provide useful insights into unsteady force generation. Non-circulatory and circulatory lift producing mechanisms for low Reynolds number pitching flat plates are investigated. A series of experiments are designed to measure forces and study the unsteady flowfield development. Two pitch axis positions are investigated, namely a leading edge and a mid-chord pitch axis. A novel PIV approach using twin laser lightsheets is shown to be effective at acquiring full field of view velocity data when an opaque wing model is used. Leading-edge vortex (LEV) circulations are extracted from velocity field data, using a Lamb-Oseen vortex fitting algorithm. LEV and trailing-edge vortex positions are also extracted. It is shown that the circulation of the LEV, as determined from PIV data, approximately matches the general trend of an unmodified Wagner function for a leading edge pitch axis and a modified Wagner function for a mid-chord pitch axis. Comparison of experimentally measured lift correlates well with the prediction of a reduced-order model for a LE pitch axis.

  4. Kinematics and kinetics of elite windmill softball pitching.

    Science.gov (United States)

    Werner, Sherry L; Jones, Deryk G; Guido, John A; Brunet, Michael E

    2006-04-01

    A significant number of time-loss injuries to the upper extremity in elite windmill softball pitchers has been documented. The number of outings and pitches thrown in 1 week for a softball pitcher is typically far in excess of those seen in baseball pitchers. Shoulder stress in professional baseball pitching has been reported to be high and has been linked to pitching injuries. Shoulder distraction has not been studied in an elite softball pitching population. The stresses on the throwing shoulder of elite windmill pitchers are similar to those found for professional baseball pitchers. Descriptive laboratory study. Three-dimensional, high-speed (120 Hz) video data were collected on rise balls from 24 elite softball pitchers during the 1996 Olympic Games. Kinematic parameters related to pitching mechanics and resultant kinetics on the throwing shoulder were calculated. Multiple linear regression analysis was used to relate shoulder stress and pitching mechanics. Shoulder distraction stress averaged 80% of body weight for the Olympic pitchers. Sixty-nine percent of the variability in shoulder distraction can be explained by a combination of 7 parameters related to pitching mechanics. Excessive distraction stress at the throwing shoulder is similar to that found in baseball pitchers, which suggests that windmill softball pitchers are at risk for overuse injuries. Normative information regarding upper extremity kinematics and kinetics for elite softball pitchers has been established.

  5. Mismatch negativity to pitch pattern deviants in schizophrenia.

    Science.gov (United States)

    Haigh, Sarah M; Matteis, Mario De; Coffman, Brian A; Murphy, Timothy K; Butera, Christiana D; Ward, Kayla L; Leiter-McBeth, Justin R; Salisbury, Dean F

    2017-09-01

    Simple mismatch negativity (MMN) to infrequent pitch deviants is impaired in individuals with long-term schizophrenia (Sz). The complex MMN elicited by pattern deviance often manifes is cut from here]->ts later after deviant onset than simple MMN and can ascertain deficits in abstracting relationships between stimuli. Sz exhibit reduced complex MMN, but so far this has only been measured when deviance detection relies on a grouping rule. We measured MMN to deviants in pitch-based rules to see whether MMN is also abnormal in Sz under these conditions. Three experiments were conducted. Twenty-seven Sz and 28 healthy matched controls (HC) participated in Experiments 1 and 2, and 24 Sz and 26 HC participated in Experiment 3. Experiment 1 was a standard pitch MMN task, and Sz showed the expected MMN reduction (~ 115 ms) in the simple pitch deviant compared to HC. Experiment 2 comprised standard groups of six tones that ascended in pitch, and deviant groups where the last tone descended in pitch. Complex MMN was late (~ 510 ms) and significantly blunted in Sz. Experiment 3 comprised standard groups of 12 tones (six tones ascending in pitch followed by six tones descending in pitch, like a scale), and deviant groups containing two repetitions of six ascending tones (the scale restarted midstream). Complex MMN was also late (~ 460 ms) and significantly blunted in Sz. These results identify a late pitch pattern deviance-related MMN that is deficient in schizophrenia. This suggests specific deficits in later more complex deviance detection in schizophrenia for abstract patterns. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Auditory working memory predicts individual differences in absolute pitch learning.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  7. predicting flexural strength river gravel using multi ravel using multi

    African Journals Online (AJOL)

    eobe

    determination of flexural determination of flexural strength of concrete mate strength of concrete mate ... computational model, based on artificial neural ne strength of concrete materials made from prevalent coarse aggregate com ...... of Date Palm Wood Fibre-Recycled Low Density. Polyethylene Composite Using Artificial ...

  8. Neural Representation of Concurrent Vowels in Macaque Primary Auditory Cortex123

    Science.gov (United States)

    Micheyl, Christophe; Steinschneider, Mitchell

    2016-01-01

    Abstract Successful speech perception in real-world environments requires that the auditory system segregate competing voices that overlap in frequency and time into separate streams. Vowels are major constituents of speech and are comprised of frequencies (harmonics) that are integer multiples of a common fundamental frequency (F0). The pitch and identity of a vowel are determined by its F0 and spectral envelope (formant structure), respectively. When two spectrally overlapping vowels differing in F0 are presented concurrently, they can be readily perceived as two separate “auditory objects” with pitches at their respective F0s. A difference in pitch between two simultaneous vowels provides a powerful cue for their segregation, which in turn, facilitates their individual identification. The neural mechanisms underlying the segregation of concurrent vowels based on pitch differences are poorly understood. Here, we examine neural population responses in macaque primary auditory cortex (A1) to single and double concurrent vowels (/a/ and /i/) that differ in F0 such that they are heard as two separate auditory objects with distinct pitches. We find that neural population responses in A1 can resolve, via a rate-place code, lower harmonics of both single and double concurrent vowels. Furthermore, we show that the formant structures, and hence the identities, of single vowels can be reliably recovered from the neural representation of double concurrent vowels. We conclude that A1 contains sufficient spectral information to enable concurrent vowel segregation and identification by downstream cortical areas. PMID:27294198

  9. Individual pitch control of wind turbines using local inflow measurements

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2008-01-01

    This paper describes a model based control approach for individually adjusting the pitch of wind turbine blades and thereby attenuating the effect of asymmetric wind loads. It is assumed that measurements of local inflow along each blade are available. This effectively provides an estimate...... of the load distribution along the blades. The load estimates are used in a predictive setup where inflow measured by one blade is used as basis for calculating future loads for the other blades. Simulations with a full stochastic wind field illustrate the effectiveness of the individual pitch controller...... as compared to controlling the pitch collectively....

  10. Attenuating wind turbine loads through model based individual pitch control

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2009-01-01

    In this paper we consider wind turbine load attenuation through model based control. Asymmetric loads caused by the wind field can be reduced by pitching the blades individually. To this end we investigate the use of stochastic models of the wind which can be included in a model based individual....... The individual pitch controller design in investigated in simulations....... pitch controller design. In this way the variability of the wind can be estimated and compensated for by the controller. The wind turbine model is in general time-variant due to its rotational nature. For this reason the modeling and control is carried out in so-called multiblade coordinates...

  11. The pitch-heave dynamics of transportation vehicles

    Science.gov (United States)

    Sweet, L. M.; Richardson, H. H.

    1975-01-01

    The analysis and design of suspensions for vehicles of finite length using pitch-heave models is presented. Dynamic models for the finite length vehicle include the spatial distribution of the guideway input disturbance over the vehicle length, as well as both pitch and heave degrees-of-freedom. Analytical results relate the vehicle front and rear accelerations to the pitch and heave natural frequencies, which are functions of vehicle suspension geometry and mass distribution. The effects of vehicle asymmetry and suspension contact area are evaluated. Design guidelines are presented for the modification of vehicle and suspension parameters to meet alternative ride quality criteria.

  12. Structural and High-Temperature Tensile Properties of Special Pitch-Coke Graphites

    Science.gov (United States)

    Kotlensky, W. V.; Martens, H. E.

    1961-01-01

    The room-temperature structural properties and the tensile properties up to 5000 F (275O C) were determined for ten grades of specially prepared petroleum-coke coal-tar-pitch graphites which were graphitized at 5430 F (3000 C). One impregnation with coal-tar pitch increased the bulk density from 1.41 to 1.57 g/cm3 and the maximum strength at 4500 F (2500 C) from 4000 to 5700 psi. None of the processing parameters studied had a marked effect on the closed porosity or the X-ray structure or the per cent graphitization. The coarse-particle filler resulted in the lowest coefficient of thermal expansion and the fine-particle filler in the highest coefficient. A marked improvement in uniformity of tensile strength was observed. A standard-deviation analysis gave a one-sigma value of approximately 150 psi for one of these special grades and values of 340-420 psi for three commercial grades.

  13. Comparison of pitch rate history effects on dynamic stall

    Science.gov (United States)

    Chandrasekhara, M. S.; Carr, Lawrence W.; Ahmed, S.

    1992-01-01

    Dynamic stall of an airfoil is a classic case of forced unsteady separated flow. Flow separation is brought about by large incidences introduced by the large amplitude unsteady pitching motion of an airfoil. One of the parameters that affects the dynamic stall process is the history of the unsteady motion. In addition, the problem is complicated by the effects of compressibility that rapidly appear over the airfoil even at low Mach numbers at moderately high angles of attack. Consequently, it is of interest to know the effects of pitch rate history on the dynamic stall process. This abstract compares the results of a flow visualization study of the problem with two different pitch rate histories, namely, oscillating airfoil motion and a linear change in the angle of attack due to a transient pitching motion.

  14. Association of the pitch canker pathogen Fusarium circinatum with ...

    African Journals Online (AJOL)

    Association of the pitch canker pathogen Fusarium circinatum with grass hosts in commercial pine production areas of South Africa. Cassandra L Swett, Bernice Porter, Gerda Fourie, Emma T Steenkamp, Thomas R Gordon, Michael J Wingfield ...

  15. Pitch Angle Control for Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhang, Jianzhong; Cheng, M

    2008-01-01

    Pitch angle control is the most common means for adjusting the aerodynamic torque of the wind turbine when wind speed is above rated speed and various controlling variables may be chosen, such as wind speed, generator speed and generator power. As conventional pitch control usually use PI...... controller, the mathematical model of the system should be known well. A fuzzy logic pitch angle controller is developed in this paper, in which it does not need well known about the system and the mean wind speed is used to compensate the non-linear sensitivity. The fuzzy logic control strategy may have...... the potential when the system contains strong non-linearity, such as wind turbulence is strong, or the control objectives include fatigue loads. The design of the fuzzy logic controller and the comparisons with conversional pitch angle control strategies with various controlling variables are carried out...

  16. The role of pitch and timbre in voice gender categorization.

    Science.gov (United States)

    Pernet, Cyril R; Belin, Pascal

    2012-01-01

    Voice gender perception can be thought of as a mixture of low-level perceptual feature extraction and higher-level cognitive processes. Although it seems apparent that voice gender perception would rely on low-level pitch analysis, many lines of research suggest that this is not the case. Indeed, voice gender perception has been shown to rely on timbre perception and to be categorical, i.e., to depend on accessing a gender model or representation. Here, we used a unique combination of acoustic stimulus manipulation and mathematical modeling of human categorization performances to determine the relative contribution of pitch and timbre to this process. Contrary to the idea that voice gender perception relies on timber only, we demonstrate that voice gender categorization can be performed using pitch only but more importantly that pitch is used only when timber information is ambiguous (i.e., for more androgynous voices).

  17. Positioning of semi-submersibles with roll and pitch damping

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, A.J. [ABB Industri AS, Oslo (Norway); Strand, J.P. [Norwegian University of Science and Technology, Trondheim (Norway). Dept. of Engineering Cybernetics

    1999-07-01

    Dynamic positioning and thruster assisted position mooring of ships and floating marine constructions include different control functions for automatic positioning in the horizontal plane. A three degrees of freedom multivariable controller with feedback signals from surge, sway and yaw, either of linear or nonlinear type, can be regarded as adequate for the control objective for most surface vessels. However, for certain marine constructions with discernible coupling characteristics in the dynamics between the horizontal plane (surge, sway and yaw) and vertical plane (heave, roll and pitch), undesirably large roll and pitch oscillations may be induced by the thruster actions. Especially for constructions with natural periods in roll and pitch within the bandwidth of the positioning controller, the thruster induced oscillations in roll and pitch may become limitable on the operation. In this paper a new multivariable control law accounting for both horizontal and vertical motions is proposed. Simulations with a semi-submersible demonstrate the effect of the proposed control strategy. (author)

  18. Low Cost/Low Noise Variable Pitch Ducted Fan Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ACI proposes a design for a Propulsor (Low Cost/Low Noise Variable Pitch Ducted Fan) that has wide application in all sectors of Aviation. Propulsor hardware of this...

  19. Series pid pitch controller of large wind turbines generator

    Directory of Open Access Journals (Sweden)

    Micić Aleksandar D.

    2015-01-01

    Full Text Available For this stable process with oscillatory dynamics, characterized with small damping ratio and dominant transport delay, design of the series PID pitch controller is based on the model obtained from the open-loop process step response, filtered with the second-order Butterworth filter Fbw. Performance of the series PID pitch controller, with the filter Fbw, is analyzed by simulations of the set-point and input/output disturbance responses, including simulations with a colored noise added to the control variable. Excellent performance/robustness tradeoff is obtained, compared to the recently proposed PI pitch controllers and to the modified internal model pitch controller, developed here, which has a natural mechanism to compensate effect of dominant transport delay. [Projekat Ministarstva nauke Republike Srbije, br. III 47016

  20. Joint Pitch and DOA Estimation Using the ESPRIT method

    DEFF Research Database (Denmark)

    Wu, Yuntao; Amir, Leshem; Jensen, Jesper Rindom

    2015-01-01

    In this paper, the problem of joint multi-pitch and direction-of-arrival (DOA) estimation for multi-channel harmonic sinusoidal signals is considered. A spatio-temporal matrix signal model for a uniform linear array is defined, and then the ESPRIT method based on subspace techniques that exploits...... the invariance property in the time domain is first used to estimate the multi pitch frequencies of multiple harmonic signals. Followed by the estimated pitch frequencies, the DOA estimations based on the ESPRIT method are also presented by using the shift invariance structure in the spatial domain. Compared...... to the existing stateof-the-art algorithms, the proposed method based on ESPRIT without 2-D searching is computationally more efficient but performs similarly. An asymptotic performance analysis of the DOA and pitch estimation of the proposed method are also presented. Finally, the effectiveness of the proposed...

  1. Nonlinear Dynamics of the Perceived Pitch of Complex Sounds

    Science.gov (United States)

    Cartwright, Julyan H. E.; González, Diego L.; Piro, Oreste

    1999-06-01

    We apply results from nonlinear dynamics to an old problem in acoustical physics: the mechanism of the perception of the pitch of sounds, especially the sounds known as complex tones that are important for music and speech intelligibility.

  2. Meet you in the elevator! Pitching yourself and your research

    NARCIS (Netherlands)

    Scheffel, Maren; Börner, Dirk

    2013-01-01

    Scheffel, M., & Börner, D. (2013, 31 May). Meet you in the elevator! Pitching yourself and your research. Workshop presentation at the 9th Joint European Summer School on Technology Enhanced Learning, Limassol, Cyprus.

  3. The role of pitch and timbre in voice gender categorization

    Directory of Open Access Journals (Sweden)

    Cyril R Pernet

    2012-02-01

    Full Text Available Voice gender perception can be thought of as a mixture of low-level perceptual feature extraction and higher-level cognitive processes. Although it seems apparent that voice gender perception would rely on low-level pitch analysis, many lines of research suggest that this is not the case. Indeed, voice gender perception has been shown to rely on timbre perception and to be categorical, i.e. to depend on accessing a gender model or representation. Here, we used a unique combination of acoustic stimulus manipulation and mathematical modelling of human categorization performances to determine the relative contribution of pitch and timbre to this process. Contrary to the idea that voice gender perception relies on timber only, we demonstrate that voice gender categorization can be performed using pitch only but more importantly that pitch is used only when timber information is ambiguous (i.e. for more androgynous voices.

  4. Impaired pitch identification as a potential marker for depression

    National Research Council Canada - National Science Library

    Schwenzer, Michael; Zattarin, Eva; Grözinger, Michael; Mathiak, Klaus

    2012-01-01

    Impaired auditory performance has been considered as marker for depression. The present study tested whether pitch perception is affected in depression and whether the impairment is task-specific or reflects global dysfunction...

  5. Nonlinear Dynamics of the Perceived Pitch of Complex Sounds

    CERN Document Server

    Cartwright, J H E; Piro, O; Cartwright, Julyan H. E.; Gonzalez, Diego L.; Piro, Oreste

    1999-01-01

    We apply results from nonlinear dynamics to an old problem in acoustical physics: the mechanism of the perception of the pitch of sounds, especially the sounds known as complex tones that are important for music and speech intelligibility.

  6. Complex-tone pitch representations in the human auditory system

    DEFF Research Database (Denmark)

    Bianchi, Federica

    ) listeners and the effect of musical training for pitch discrimination of complex tones with resolved and unresolved harmonics. Concerning the first topic, behavioral and modeling results in listeners with sensorineural hearing loss (SNHL) indicated that temporal envelope cues of complex tones......, although their benefit was larger for the resolved harmonics. Additionally, task-evoked pupil responses were recorded as an indicator of processing effort while listeners performed a pitch-discrimination task. Although the difficulty of the task was adjusted for each participant to compensate...... for the individual pitch-discrimination abilities, the musically trained listeners still allocated lower processing effort than did the non-musicians to perform the task at the same performance level. This finding suggests an enhanced pitch representation along the auditory system in musicians, possibly as a result...

  7. Investors prefer entrepreneurial ventures pitched by attractive men.

    Science.gov (United States)

    Brooks, Alison Wood; Huang, Laura; Kearney, Sarah Wood; Murray, Fiona E

    2014-03-25

    Entrepreneurship is a central path to job creation, economic growth, and prosperity. In the earliest stages of start-up business creation, the matching of entrepreneurial ventures to investors is critically important. The entrepreneur's business proposition and previous experience are regarded as the main criteria for investment decisions. Our research, however, documents other critical criteria that investors use to make these decisions: the gender and physical attractiveness of the entrepreneurs themselves. Across a field setting (three entrepreneurial pitch competitions in the United States) and two experiments, we identify a profound and consistent gender gap in entrepreneur persuasiveness. Investors prefer pitches presented by male entrepreneurs compared with pitches made by female entrepreneurs, even when the content of the pitch is the same. This effect is moderated by male physical attractiveness: attractive males were particularly persuasive, whereas physical attractiveness did not matter among female entrepreneurs.

  8. Not pitch perfect: sensory contributions to affective communication impairment in schizophrenia.

    Science.gov (United States)

    Leitman, David I; Wolf, Daniel H; Laukka, Petri; Ragland, J Daniel; Valdez, Jeffrey N; Turetsky, Bruce I; Gur, Raquel E; Gur, Ruben C

    2011-10-01

    Schizophrenia patients have vocal affect (prosody) deficits that are treatment resistant and associated with negative symptoms and poor outcome. The neural correlates of this dysfunction are unclear. Prior study has suggested that schizophrenia vocal affect perception deficits stem from an inability to use acoustic cues, notably pitch, in decoding emotion. Functional magnetic resonance imaging was performed in 24 schizophrenia patients and 28 healthy control subjects, during the performance of a four-choice (happiness, fear, anger, neutral) vocal affect identification task in which items for each emotion varied parametrically in affective salient acoustic cue levels. We observed that parametric increases in cue levels in schizophrenia failed to produce the same identification rate increases as in control subjects. These deficits correlated with diminished reciprocal activation changes in superior temporal and inferior frontal gyri and reduced temporo-frontal connectivity. Task activation also correlated with independent measures of pitch perception and negative symptom severity. These findings illustrate the interplay between sensory and higher-order cognitive dysfunction in schizophrenia. Sensory contributions to vocal affect deficits also suggest that this neurobehavioral marker could be targeted by pharmacological or behavioral remediation of acoustic feature discrimination. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Two LQRI based Blade Pitch Controls for Wind Turbines

    OpenAIRE

    Sungsu Park; Yoonsu Nam

    2012-01-01

    As the wind turbine size has been increasing and their mechanical components are built lighter, the reduction of the structural loads becomes a very important task of wind turbine control in addition to maximum wind power capture. In this paper, we present a separate set of collective and individual pitch control algorithms. Both pitch control algorithms use the LQR control technique with integral action (LQRI), and utilize Kalman filters to estimate system states and wind speed. Compared to ...

  10. Pitch Sequence Complexity and Long-Term Pitcher Performance

    Directory of Open Access Journals (Sweden)

    Joel R. Bock

    2015-03-01

    Full Text Available Winning one or two games during a Major League Baseball (MLB season is often the difference between a team advancing to post-season play, or “waiting until next year”. Technology advances have made it feasible to augment historical data with in-game contextual data to provide managers immediate insights regarding an opponent’s next move, thereby providing a competitive edge. We developed statistical models of pitcher behavior using pitch sequences thrown during three recent MLB seasons (2011–2013. The purpose of these models was to predict the next pitch type, for each pitcher, based on data available at the immediate moment, in each at-bat. Independent models were developed for each player’s most frequent four pitches. The overall predictability of next pitch type is 74:5%. Additional analyses on pitcher predictability within specific game situations are discussed. Finally, using linear regression analysis, we show that an index of pitch sequence predictability may be used to project player performance in terms of Earned Run Average (ERA and Fielding Independent Pitching (FIP over a longer term. On a restricted range of the independent variable, reducing complexity in selection of pitches is correlated with higher values of both FIP and ERA for the players represented in the sample. Both models were significant at the α = 0.05 level (ERA: p = 0.022; FIP: p = 0.0114. With further development, such models may reduce risk faced by management in evaluation of potential trades, or to scouts assessing unproven emerging talent. Pitchers themselves might benefit from awareness of their individual statistical tendencies, and adapt their behavior on the mound accordingly. To our knowledge, the predictive model relating pitch-wise complexity and long-term performance appears to be novel.

  11. 2DFFT: Measuring Galactic Spiral Arm Pitch Angle

    Science.gov (United States)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2016-08-01

    2DFFT utilizes two-dimensional fast Fourier transformations of images of spiral galaxies to isolate and measure the pitch angles of their spiral arms; this provides a quantitative way to measure this morphological feature and allows comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. 2DFFT requires fourn.c from Numerical Recipes in C (Press et al. 1989).

  12. Variable gain for a wind turbine pitch control

    Science.gov (United States)

    Seidel, R. C.; Birchenough, A. G.

    1981-01-01

    The gain variation is made in the software logic of the pitch angle controller. The gain level is changed depending upon the level of power error. The control uses low gain for low pitch activity the majority of the time. If the power exceeds ten percent offset above rated, the gain is increased to a higher gain to more effectively limit power. A variable gain control functioned well in tests on the Mod-0 wind turbine.

  13. Modelling a Voice Activated Speaker Identification System using MFCC-Pitch-Formant Vector

    Science.gov (United States)

    Sengupta, Avik; Ghosh, Rabindranath

    2012-03-01

    The paper presents the model of an automatic speaker identification system which will recognize users based on their voice. The system will be relatively independent of spoken words but will rely on the voice quality of a user i.e. use speech independent voice recognition. The basic approach was to create a front end system which will identify speech parameters of particular users and create speech feature vectors which will later be used to train a back-propagation neural network for the recognition phase. Mel-frequency cepstrum coefficients and linear predictive coding coefficients have been used, along with Pitch and Formants, for feature extraction. The main area of focus of the paper is to outline the optimum set of speech features which form the most reliable model for an automatic speaker identification system.

  14. Spectral Envelope Transformation in Singing Voice for Advanced Pitch Shifting

    Directory of Open Access Journals (Sweden)

    José L. Santacruz

    2016-11-01

    Full Text Available The aim of the present work is to perform a step towards more natural pitch shifting techniques in singing voice for its application in music production and entertainment systems. In this paper, we present an advanced method to achieve natural modifications when applying a pitch shifting process to singing voice by modifying the spectral envelope of the audio excerpt. To this end, an all-pole model has been selected to model the spectral envelope, which is estimated using a constrained non-linear optimization. The analysis of the global variations of the spectral envelope was carried out by identifying changes of the parameters of the model along with the changes of the pitch. With the obtained spectral envelope transformation functions, we applied our pitch shifting scheme to some sustained vowels in order to compare results with the same transformation made by using the Flex Pitch plugin of Logic Pro X and pitch synchronous overlap and add technique (PSOLA. This comparison has been carried out by means of both an objective and a subjective evaluation. The latter was done with a survey open to volunteers on our website.

  15. A Method for Low-Delay Pitch Tracking and Smoothing

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    In this paper, a new method for pitch tracking is presented. The method is comprised of two steps. In the first step, accurate pitch estimates are obtained on a sample-by-sample basis by updates of the signal statistics with an exponential forgetting factor and subse- quent numerical optimization...... that require fast and sample-by-sample estimates, like tuners for musical instruments, transcription tasks requiring details like vi- brato, and real-time tracking of voiced speech.......In this paper, a new method for pitch tracking is presented. The method is comprised of two steps. In the first step, accurate pitch estimates are obtained on a sample-by-sample basis by updates of the signal statistics with an exponential forgetting factor and subse- quent numerical optimization....... In the second step, a Kalman filter is used to smooth the estimates and separate the pitch into a slowly varying component and a rapidly varying component. The former represents the mean pitch while the latter represents vibrato, slides and other fast changes. The method is intended for use in applica- tions...

  16. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  17. Do Musicians with Perfect Pitch Have More Autism Traits than Musicians without Perfect Pitch? An Empirical Study

    OpenAIRE

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Heaton, Pamela; Vuust, Peter

    2012-01-01

    Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increased prevalence of AP in individuals with sensory and developmental disorders. Here, we determine whether individual autistic traits are present in people with AP. We quantified subclinical levels of au...

  18. Perceptual distortions in pitch and time reveal active prediction and support for an auditory pitch-motion hypothesis.

    Directory of Open Access Journals (Sweden)

    Molly J Henry

    Full Text Available A number of accounts of human auditory perception assume that listeners use prior stimulus context to generate predictions about future stimulation. Here, we tested an auditory pitch-motion hypothesis that was developed from this perspective. Listeners judged either the time change (i.e., duration or pitch change of a comparison frequency glide relative to a standard (referent glide. Under a constant-velocity assumption, listeners were hypothesized to use the pitch velocity (Δf/Δt of the standard glide to generate predictions about the pitch velocity of the comparison glide, leading to perceptual distortions along the to-be-judged dimension when the velocities of the two glides differed. These predictions were borne out in the pattern of relative points of subjective equality by a significant three-way interaction between the velocities of the two glides and task. In general, listeners' judgments along the task-relevant dimension (pitch or time were affected by expectations generated by the constant-velocity standard, but in an opposite manner for the two stimulus dimensions. When the comparison glide velocity was faster than the standard, listeners overestimated time change, but underestimated pitch change, whereas when the comparison glide velocity was slower than the standard, listeners underestimated time change, but overestimated pitch change. Perceptual distortions were least evident when the velocities of the standard and comparison glides were matched. Fits of an imputed velocity model further revealed increasingly larger distortions at faster velocities. The present findings provide support for the auditory pitch-motion hypothesis and add to a larger body of work revealing a role for active prediction in human auditory perception.

  19. Reflexive and volitional voice fundamental frequency responses to an anticipated feedback pitch error.

    Science.gov (United States)

    Burnett, Theresa A; McCurdy, Katie E; Bright, Jessica C

    2008-11-01

    The pitch-shift reflex is a corrective voice fundamental frequency (F0) response triggered by a sudden shift or "error" in auditory feedback pitch. We investigated how anticipating a voice pitch error affects the pitch-shift reflex and volitional voice F0 responses. Adults sustained the vowel/u/at a comfortable pitch and pressed a button to deliver a 100 cent, 100 ms auditory feedback pitch shift immediately or after a random delay. Pitch shift direction was either constant (up) or randomized (up or down). Onset anticipation often resulted in an anticipatory voice F0 change, but stimulus direction predictability did not affect the responses. When pitch error onset and direction were both anticipated, some participants produced an ideomotor voice F0 change that partially imitated the error, but they produced no apparent pitch-shift reflex. Results imply that when voice pitch errors are anticipated, volitional voice F0 responses may reduce or enhance voice F0 stability.

  20. Shoulder and Scapular Kinematics during the Windmill Softball Pitch

    Science.gov (United States)

    Backus, Sherry I.; Kraszewski, Andrew; Kontaxis, Andreas; Gibbons, Mandi; Bido, Jennifer; Graziano, Jessica; Hafer, Jocelyn; Jones, Kristofer J.; Hillstrom, Howard; Fealy, Stephen

    2013-01-01

    Objectives: Pitch count has been studied extensively in the overhand throwing athlete. However, pitch count and fatigue have not been systematically evaluated in the female windmill (underhand) throwing athlete. Direct kinematic measurements of the glenohumeral and scapulo-thoracic joint have not to be correlated and determined. The purpose is to measure scapular kinematics for the high school female windmill softball pitcher and identify kinematic adaptions and changes in pitching performance due to fatigue. Methods: Eight female high school softball pitchers without previous shoulder injury were enrolled. Three-dimensional (3D) motion of the humerus, scapula and trunk were recorded with surface markers at 250 Hz. Marker placement and the anatomical calibration of bony landmarks followed recommendations by the ISB (Wu et al. 2005) and Kontaxis et al (2009). A custom marker cluster was used to dynamically track the scapula (Karduna et al. 2001). The pitching mound was at regulation distance (43’) from the strike zone target. All athletes completed 105 pitches in sets of 15 with a rest of 5 minutes between sets. Ball speed recorded with a radar gun, 3D angular rotations of the glenohumeral joint, scapulo-thoracic joint and thorax with respect to the room were calculated for all throws. The last five pitches of every set were averaged for analysis. Results: Ball speed (Figure 1, n=8 subjects) and peak glenohumeral, scapulo-thoracic and thoracic angular rotations (n=4 subjects) were consistent across all sets. Examples of kinematics at two of these joints are presented across all sets (Figure 2, n=4). Data across all planes demonstrated similar consistency. Conclusion: This study presents a systematic protocol for the study of fatigue during windmill softball pitching. To our knowledge, this is one of the first studies to analyze glenohumeral as well as scapulo-thoracic kinematics during this task. The consistency in the glenohumeral, scapulo-thoracic and torso

  1. High-pitch metal-on-glass technology for pad pitch adaptation between detectors and readout electronics

    CERN Document Server

    Ullán, Miguel; Campabadal, Francesca; Fleta, Celeste; Garcia, Carmen; Gonzalez, Francisco; Bernabeu, Jose

    2004-01-01

    Modern high-energy physics and astrophysics strip detectors have increased channel density to levels at which their connection with readout electronics has become very complex due to high pad pitch. Also, direct wire bonding is prevented by the fact that typically detector's pad pitch and electronics' pad pitch do not match. A high- pitch metal-on-glass technology is presented, that allows pad pitch adaptation between detectors and readout electronics. It consists of high-density metal lines on top of an insulating glass substrate. A photoresist layer is deposited covering the metal tracks for passivation and protection The technology is tested for conductivity, bondability, bonding pull force, peel off, and radiation hardness, and it is an established technology in the clean room of the CNM Institute in Barcelona. This technology has been chosen by the ATLAS Collaboration for the pad pitch adapters (PPA) of the SCT Endcap Modules, by a Compton camera project, and by other HEP groups for interconnection betwe...

  2. Influence of Pitch Height on the Perception of Submissiveness and Threat in Musical Passages

    Directory of Open Access Journals (Sweden)

    David Huron

    2006-09-01

    Full Text Available Bolinger, Ohala, Morton and others have established that vocal pitch height is perceived to be associated with social signals of dominance and submissiveness: higher vocal pitch is associated with submissiveness, whereas lower vocal pitch is associated with social dominance. An experiment was carried out to test this relationship in the perception of non-vocal melodies. Results show a parallel situation in music: higher-pitched melodies sound more submissive (less threatening than lower-pitched melodies.

  3. The sound of size: crossmodal binding in pitch-size synesthesia: a combined TMS, EEG and psychophysics study.

    Science.gov (United States)

    Bien, Nina; ten Oever, Sanne; Goebel, Rainer; Sack, Alexander T

    2012-01-02

    Crossmodal binding usually relies on bottom-up stimulus characteristics such as spatial and temporal correspondence. However, in case of ambiguity the brain has to decide whether to combine or segregate sensory inputs. We hypothesise that widespread, subtle forms of synesthesia provide crossmodal mapping patterns which underlie and influence multisensory perception. Our aim was to investigate if such a mechanism plays a role in the case of pitch-size stimulus combinations. Using a combination of psychophysics and ERPs, we could show that despite violations of spatial correspondence, the brain specifically integrates certain stimulus combinations which are congruent with respect to our hypothesis of pitch-size synesthesia, thereby impairing performance on an auditory spatial localisation task (Ventriloquist effect). Subsequently, we perturbed this process by functionally disrupting a brain area known for its role in multisensory processes, the right intraparietal sulcus, and observed how the Ventriloquist effect was abolished, thereby increasing behavioural performance. Correlating behavioural, TMS and ERP results, we could retrace the origin of the synesthestic pitch-size mappings to a right intraparietal involvement around 250 ms. The results of this combined psychophysics, TMS and ERP study provide evidence for shifting the current viewpoint on synesthesia more towards synesthesia being at the extremity of a spectrum of normal, adaptive perceptual processes, entailing close interplay between the different sensory systems. Our results support this spectrum view of synesthesia by demonstrating that its neural basis crucially depends on normal multisensory processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Dynamics of fluidic devices with applications to rotor pitch links

    Science.gov (United States)

    Scarborough, Lloyd H., III

    Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port produces a fundamentally new class of tunable vibration isolator. This fluidlastic device provides significant vibration reduction at an isolation frequency that can be tuned over a broad frequency range. The material properties and geometry of the F2MC element, as well as the port inertance, determine the isolation frequency. A unique feature of this device is that the port inertance depends on pressure so the isolation frequency can be adjusted by changing the air pressure. For constant port inertance, the isolation frequency is largely independent of the isolated mass so the device is robust to changes in load. A nonlinear model is developed to predict isolator length and port inertance. The model is linearized and the frequency response calculated. Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency. Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies. Replacing rigid pitch links on rotorcraft with fluidic pitch links changes the blade torsional

  5. Transient Thermal Tensile Behaviour of Novel Pitch-Based Ultra-High Modulus CFRP Tendons

    Directory of Open Access Journals (Sweden)

    Giovanni Pietro Terrasi

    2016-12-01

    Full Text Available A novel ultra-high modulus carbon fibre reinforced polymer (CFRP prestressing tendon made from coal tar pitch-based carbon fibres was characterized in terms of high temperature tensile strength (up to 570 °C with a series of transient thermal and steady state temperature tensile tests. Digital image correlation was used to capture the high temperature strain development during thermal and mechanical loading. Complementary thermogravimetric (TGA and dynamic mechanical thermal (DMTA experiments were performed on the tendons to elucidate their high temperature thermal and mechanical behaviour. The novel CFRP tendons investigated in the present study showed an ambient temperature design tensile strength of 1400 MPa. Their failure temperature at a sustained prestress level of 50% of the design tensile strength was 409 °C, which is higher than the failure temperature of most fibre reinforced polymer rebars used in civil engineering applications at similar utilisation levels. This high-temperature tensile strength shows that there is potential to use the novel high modulus CFRP tendons in CFRP pretensioned concrete elements for building applications that fulfill the fire resistance criteria typically applied within the construction industry.

  6. The Significance of the Right Dorsolateral Prefrontal Cortex for Pitch Memory in Non-musicians Depends on Baseline Pitch Memory Abilities

    OpenAIRE

    Schaal, Nora K.; Kretschmer, Marina; Keitel, Ariane; Krause, Vanessa; Pfeifer, Jasmin; Pollok, Bettina

    2017-01-01

    Pitch memory is a resource which is shared by music and language. Neuroimaging studies have shown that the right dorsolateral prefrontal cortex (DLPFC) is activated during pitch memory processes. The present study investigated the causal significance of this brain area for pitch memory in non-musicians by applying cathodal and sham transcranial direct current stimulation (tDCS) over the right DLPFC and examining the impact on offline pitch and visual memory span performances. On the overall s...

  7. predicting the compressive strength of concretes made with granite

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... computational model based on artificial neural networks for the determination of the compressive strength of concrete ... (relative) error of 1.149, while the neural network model prediction has a sum of squares error of. 0.299 and a mean .... tion vary from region to region and from country to country. Hence ...

  8. Voice examination in patients with decreased high pitch after thyroidectomy.

    Science.gov (United States)

    Kim, Sung Won; Kim, Seung Tae; Park, Hyo Sang; Lee, Hyoung Shin; Hong, Jong Chul; Kwon, Soon Bok; Lee, Kang Dae

    2012-06-01

    Decreased high pitch after thyroidectomy due to injury of the external branch of superior laryngeal nerve (EBSLN) may be a critical, especially to professional voice users. The author studied the usefulness of VRP (voice range profile) and MDVP (multi-dimensional voice program) to evaluate patients who have decreased high pitch after thyroidectomy. A study was performed with 58 females and 9 males who underwent voice assessment between January 2008 and June 2009. The patients were classified as the group of female with no decreased high pitch (group A, n = 52), decreased high pitch (group B, n = 6) and the group of male with no decreased high pitch (group C, n = 9). VRP and laryngeal electromyogram (EMG) was performed in group B. The preoperative frequency range of group A and B were statistically not different. In Group B, the result of VRP showed that the frequency range was 443.11 ± 83.97, 246.67 ± 49.41, 181.37 ± 80.13 Hz showing significant decrease after the surgery compared to that of the preoperative result. (P VRP revealed no significant difference between the preoperative and postoperative result. VRP is a noninvasive, quick, and practical test to demonstrate decreased frequency range visually and helps to evaluate EBSLN injury in patient with thyroidectomy.

  9. Study of Pumping Capacity of Pitched Blade Impellers

    Directory of Open Access Journals (Sweden)

    I. Fořt

    2002-01-01

    Full Text Available A study was made of the pumping capacity of pitched blade impellers in a cylindrical pilot plant vessel with four standard radial baffles at the wall under a turbulent regime of flow. The pumping capacity was calculated from the radial profile of the axial flow, under the assumption of axial symmetry of the discharge flow. The mean velocity was measured using laser Doppler anemometry in a transparent vessel of diameter T = 400 mm, provided with a standard dished bottom. Three and six blade pitched blade impellers (the pitch angle varied within the interval a Îá24°; 45°ń of impeller/vessel diameter ratio D/T = 0.36, as well as a three blade pitched blade impeller with folded blades of the same diameter, were tested. The calculated results were compared with the results of experiments mentioned in the literature, above all in cylindrical vessels with a flat bottom. Both arrangements of the agitated system were described by the impeller energetic efficiency, i.e, a criterion including in dimensionless form both the impeller energy consumption (impeller power input and the impeller pumping effect (impeller pumping capacity. It follows from the results obtained with various geometrical configurations that the energetic efficiency of pitched blade impellers is significantly lower for configurations suitable for mixing solid-liquid suspensions (low impeller off bottom clearances than for blending miscible liquids in mixing (higher impeller off bottom clearances.

  10. Turbulent Flow Over a Low-Camber Pitching Arc Wing

    Science.gov (United States)

    Molki, Majid

    2014-11-01

    Aerodynamics of pitching airfoils and wings are of great importance to the design of air vehicles. This investigation presents the effect of camber on flow field and force coefficient for a pitching circular-arc airfoil. The wing considered in this study is a cambered plate of zero thickness which executes a linear pitch ramp, hold and return of 45° amplitude. The momentum equation is solved on a mesh that is attached to the wing and executes a pitching motion with the wing about a pivot point located at 0.25-chord or 0.50-chord distance from the leading edge. Turbulence is modeled by the k - ω SST model. Using the open-source software OpenFOAM, the conservation equations are solved on a dynamic mesh and the flow is resolved all the way to the wall (y+ ~ 1). The computations are performed for Re = 40,000 with the reduced pitch rate equal to K = cθ˙ / 2U∞ = 0 . 2 . The results are presented for three wings, namely, a flat plate (zero camber) and wings of 4% and 10% camber. It is found that the flow has complex features such as leading-edge vortex, near-wake vortex pairs, clockwise and counter-clockwise vortices, and trailing-edge vortex. While vortices are formed over the flat plate, they are formed both over and under the cambered wing.

  11. A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback.

    Science.gov (United States)

    Behroozmand, Roozbeh; Sangtian, Stacey; Korzyukov, Oleg; Larson, Charles R

    2016-04-01

    The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch perturbations in voice auditory feedback would modulate ERP and behavioral responses during vocal production. We designed six counterbalanced blocks in which a +100 cents pitch-shift stimulus perturbed voice auditory feedback during vowel sound vocalizations. In three blocks, there was a fixed delay (500, 750 or 1000 ms) between voice and pitch-shift stimulus onset (predictable), whereas in the other three blocks, stimulus onset delay was randomized between 500, 750 and 1000 ms (unpredictable). We found that subjects produced compensatory (opposing) vocal responses that started at 80 ms after the onset of the unpredictable stimuli. However, for predictable stimuli, subjects initiated vocal responses at 20 ms before and followed the direction of pitch shifts in voice feedback. Analysis of ERPs showed that the amplitudes of the N1 and P2 components were significantly reduced in response to predictable compared with unpredictable stimuli. These findings indicate that predictions about temporal features of sensory feedback can modulate vocal motor behavior. In the context of the predictive coding model, temporally-predictable stimuli are learned and reinforced by the internal feedforward system, and as indexed by the ERP suppression, the sensory feedback contribution is reduced for their processing. These findings provide new insights into the neural mechanisms of vocal production and motor control. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Understanding the neural mechanisms involved in sensory control of voice production.

    Science.gov (United States)

    Parkinson, Amy L; Flagmeier, Sabina G; Manes, Jordan L; Larson, Charles R; Rogers, Bill; Robin, Donald A

    2012-05-15

    Auditory feedback is important for the control of voice fundamental frequency (F0). In the present study we used neuroimaging to identify regions of the brain responsible for sensory control of the voice. We used a pitch-shift paradigm where subjects respond to an alteration, or shift, of voice pitch auditory feedback with a reflexive change in F0. To determine the neural substrates involved in these audio-vocal responses, subjects underwent fMRI scanning while vocalizing with or without pitch-shifted feedback. The comparison of shifted and unshifted vocalization revealed activation bilaterally in the superior temporal gyrus (STG) in response to the pitch shifted feedback. We hypothesize that the STG activity is related to error detection by auditory error cells located in the superior temporal cortex and efference copy mechanisms whereby this region is responsible for the coding of a mismatch between actual and predicted voice F0. Published by Elsevier Inc.

  13. Cortical encoding and neurophysiological tracking of intensity and pitch cues signaling English stress patterns in native and nonnative speakers.

    Science.gov (United States)

    Chung, Wei-Lun; Bidelman, Gavin M

    2016-01-01

    We examined cross-language differences in neural encoding and tracking of intensity and pitch cues signaling English stress patterns. Auditory mismatch negativities (MMNs) were recorded in English and Mandarin listeners in response to contrastive English pseudowords whose primary stress occurred either on the first or second syllable (i.e., "nocTICity" vs. "NOCticity"). The contrastive syllable stress elicited two consecutive MMNs in both language groups, but English speakers demonstrated larger responses to stress patterns than Mandarin speakers. Correlations between the amplitude of ERPs and continuous changes in the running intensity and pitch of speech assessed how well each language group's brain activity tracked these salient acoustic features of lexical stress. We found that English speakers' neural responses tracked intensity changes in speech more closely than Mandarin speakers (higher brain-acoustic correlation). Findings demonstrate more robust and precise processing of English stress (intensity) patterns in early auditory cortical responses of native relative to nonnative speakers. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Experimental and theoretical study of an improved breakdown voltage SOI LDMOS with a reduced cell pitch

    Science.gov (United States)

    Xiaorong, Luo; Xiaowei, Wang; Gangyi, Hu; Yuanhang, Fan; Kun, Zhou; Yinchun, Luo; Ye, Fan; Zhengyuan, Zhang; Yong, Mei; Bo, Zhang

    2014-02-01

    An improved breakdown voltage (BV) SOI power MOSFET with a reduced cell pitch is proposed and fabricated. Its breakdown characteristics are investigated numerically and experimentally. The MOSFET features dual trenches (DTMOS), an oxide trench between the source and drain regions, and a trench gate extended to the buried oxide (BOX). The proposed device has three merits. First, the oxide trench increases the electric field strength in the x-direction due to the lower permittivity of oxide (ɛox) than that of Si (ɛSi). Furthermore, the trench gate, the oxide trench, and the BOX cause multi-directional depletion, improving the electric field distribution and enhancing the RESURF (reduced surface field) effect. Both increase the BV. Second, the oxide trench folds the drift region along the y-direction and thus reduces the cell pitch. Third, the trench gate not only reduces the on-resistance, but also acts as a field plate to improve the BV. Additionally, the trench gate achieves the isolation between high-voltage devices and the low voltage CMOS devices in a high-voltage integrated circuit (HVIC), effectively saving the chip area and simplifying the isolation process. An 180 V prototype DTMOS with its applied drive IC is fabricated to verify the mechanism.

  15. Carbonization and liquid-crystal (mesophase) development. 21. Replacement of low-volatile caking coal by petroleum pitch in coal blends for metallurgical coke

    Energy Technology Data Exchange (ETDEWEB)

    Grint, A.; Marsh, H.

    1981-06-01

    Cokes were prepared in a 7 kg oven from blends of high-volatile and low-volatile caking coals, using ratios of 1:1 and 3:7 To the 1:1 blend was added 7.5% of either Ashland A240 or A170 petroleum pitch or SFBP petroleum pitch 1. Micum m$SUB$3$SUB$0 and m$SUB$1$SUB$0 indices were determined on cokes from the 7 kg oven, using the 1/5 micum drum. Optical textures were assessed using polarized light microscopy of polished surfaces of cokes. The effect of additive is to increase the strength of cokes. The pitch can be an effective replacement of low-volatile caking coal. The analysis by optical microscopy shows that with the stronger cokes from the 7 kg oven there has occurred an interaction between the coal and pitch at the interface of coal particles to produce a solution or fluid phase which carbonizes to a coke with an optical texture of fine-grained mozaics. This material could be responsible for the enhancement of coke strength, being associated with pore wall material rather than with a change in porosity. The results agree with previous work using cokes prepared in the laboratory on a small scale. (17 refs.)

  16. ESTIMATION OF SHEAR STRENGTH PARAMETERS OF ...

    African Journals Online (AJOL)

    This research work seeks to develop models for predicting the shear strength parameters (cohesion and angle of friction) of lateritic soils in central and southern areas of Delta State using artificial neural network modeling technique. The application of these models will help reduce cost and time in acquiring geotechnical ...

  17. A Psychophysics experimental software to evaluate electrical pitch discrimination in Nucleus cochlear implanted patients

    Science.gov (United States)

    Pérez Zaballos, M. T.; Ramos de Miguel, A.; Killian, M.; Ramos Macías, A.

    2016-02-01

    Multichannel electrode array design in cochlear implants has evolved into two major categories: straight and perimodiolar electrodes. When implanted, the former lies along the outer wall of the scala tympani, while the later are located closer to the modiolus, where the neural ends are. Therefore, a perimodiolar position of the electrode array could be expected to result in reduced stimulus thresholds and stimulating currents, increased dynamic range, and more localized stimulation of the neural elements. However, their advantage for pitch discrimination has not been conclusively stated. Therefore, in order to study electrode independence, a psychophysical software has been developed, making use of Nucleus Implant Communicator tools provided by Cochlear company under a research agreement. The application comprises a graphical interface to facilitate its use, since previous software has always required some type of computer language skills. It allows for customization of electrical pulse parameters, measurement of threshold and comfort levels, loudness balancing and alternative forced choice experiments to determine electrode discrimination in Nucleus© users.

  18. Interaural bimodal pitch matching with two-formant vowels

    DEFF Research Database (Denmark)

    Guérit, François; Chalupper, Josef; Santurette, Sébastien

    2013-01-01

    practice. Behavioral pitch matching between the two ears has also been suggested, but has been shown to be tedious and unreliable. Here, an alternative method using two-formant vowels was developed and tested with a vocoder system simulating different CI insertion depths. The hypothesis was that patients...... may more easily identify vowels than perform a classical pitch-matching task. A spectral shift is inferred by comparing vowel spaces, measured by presenting the first formant in the HA and the second either in the HA or the CI. Preliminary results suggest that pitch mismatches can be derived from...... such vowel spaces. In order to take auditory adaptation in individual patients into account, the method will be tested with CI patients with contralateral residual hearing....

  19. Interaural bimodal pitch matching with two-formant vowels

    DEFF Research Database (Denmark)

    Guerit, Francois Marie Louis Paul; Chalupper, Josef; Santurette, Sébastien

    practice. Behavioral pitch matching between the two ears has also been suggested, but has been shown to be tedious and unreliable. Here, an alternative method using two-formant vowels was developed and tested with a vocoder system simulating different CI insertion depths. The hypothesis was that patients...... may more easily identify vowels than perform a classical pitch-matching task. A spectral shift is inferred by comparing vowel spaces, measured by presenting the first formant in the HA and the second either in the HA or the CI. Preliminary results suggest that pitch mismatches can be derived from...... such vowel spaces. In order to take auditory adaptation in individual patients into account, the method will be tested with CI patients with contralateral residual hearing....

  20. Numerical Prediction of Hydromechanical Behaviour of Controllable Pitch Propeller

    Directory of Open Access Journals (Sweden)

    Saman Tarbiat

    2014-01-01

    Full Text Available The research described in this paper was carried out to predict hydrodynamic and frictional forces of controllable pitch propeller (CPP that bring about fretting problems in a blade bearing. The governing equations are Reynolds-averaged Navier-Stokes (RANS and are solved by OpenFOAM solver for hydrodynamic forces behind the ship’s wake. Frictional forces are calculated by practical mechanical formulae. Different advance velocities with constant rotational speed for blades are used to achieve hydrodynamic coefficients in open water and the wake behind the propeller. Results are compared at four different pitches. Detailed numerical results of 3D modelling of the propeller, hydrodynamic characteristics, and probability of the fretting motion in the propeller are presented. Results show that the probability of the fretting movement is related to the pitch.

  1. Pitching stability analysis of half-rotating wing air vehicle

    Science.gov (United States)

    Wang, Xiaoyi; Wu, Yang; Li, Qian; Li, Congmin; Qiu, Zhizhen

    2017-06-01

    Half-Rotating Wing (HRW) is a new power wing which had been developed by our work team using rotating-type flapping instead of oscillating-type flapping. Half-Rotating Wing Air Vehicle (HRWAV) is similar as Bionic Flapping Wing Air Vehicle (BFWAV). It is necessary to guarantee pitching stability of HRWAV to maintain flight stability. The working principle of HRW was firstly introduced in this paper. The rule of motion indicated that the fuselage of HRWAV without empennage would overturn forward as it generated increased pitching movement. Therefore, the empennage was added on the tail of HRWAV to balance the additional moment generated by aerodynamic force during flight. The stability analysis further shows that empennage could weaken rapidly the pitching disturbance on HRWAV and a new balance of fuselage could be achieved in a short time. Case study using numerical analysis verified correctness and validity of research results mentioned above, which could provide theoretical guidance to design and control HRWAV.

  2. Vortex scale of unsteady separation on a pitching airfoil.

    Science.gov (United States)

    Fuchiwaki, Masaki; Tanaka, Kazuhiro

    2002-10-01

    The streaklines of unsteady separation on two kinds of pitching airfoils, the NACA65-0910 and a blunt trailing edge airfoil, were studied by dye flow visualization and by the Schlieren method. The latter visualized the discrete vortices shed from the leading edge. The results of these visualization studies allow a comparison between the dynamic behavior of the streakline of unsteady separation and that of the discrete vortices shed from the leading edge. The influence of the airfoil configuration on the flow characteristics was also examined. Furthermore, the scale of a discrete vortex forming the recirculation region was investigated. The non-dimensional pitching rate was k = 0.377, the angle of attack alpha(m) = 16 degrees and the pitching amplitude was fixed to A = +/-6 degrees for Re = 4.0 x 10(3) in this experiment.

  3. Characterization of pitches by solid state nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Grint, A.; Proud, G.P.; Poplett, I.J.F.; Bartle, K.D.; Wallace, S.; Matthews, R.S. (The British Petroleum Company plc, Sunbury-on-Thames (UK). BP Research Centre)

    1989-11-01

    Solid petroleum, ethylene-cracker, and coal tar pitches were characterized by {sup 13}C cross-polarization-magic-angle-spinning nuclear magnetic resonance spectroscopy (CP/MAS n.m.r.) and by dipolar dephasing. The relative numbers of carbon atoms were determined by peak synthesis of the dipolar dephased (DD) spectrum and of the difference spectrum between the CP/MAS and DD spectra. Spectra and derived structural information obtained in this way were in good agreement with high-resolution n.m.r. spectra of pitch in solution. Solid state n.m.r. is shown to be an attractive alternative to the recording of spectra of pitches in reactive solvents. 11 refs., 3 figs., 3 tabs.

  4. Context effects on pitch perception in musicians and nonmusicians

    DEFF Research Database (Denmark)

    Brattico, E; Naatanen, R; Tervaniemi, M

    2001-01-01

    Behavioral evidence indicates that musical context facilitates pitch discrimination. In the present study, we sought to determine whether pitch context and its familiarity might affect brain responses to pitch change even at the preattentive level. Ten musicians and 10 nonmusicians, while...... arithmetically determined tone frequencies, the deviant not causing any change of mode. The no-context condition included only third-position tones. All deviants elicited the change-specific mismatch negativity component of the event-related potentials in both groups of subjects. In both musicians...... is generally enhanced in a familiar context. Moreover, the latency of the mismatch negativity was shorter for musicians than for nonmusicians in both the familiar and unfamiliar conditions, whereas no difference between groups was observed in the no-context condition. This finding indicates that, in response...

  5. Valproate reopens critical-period learning of absolute pitch

    Directory of Open Access Journals (Sweden)

    Judit eGervain

    2013-12-01

    Full Text Available Absolute pitch, the ability to identify or produce the pitch of a sound without a reference point, has a critical period, i.e. it can only be acquired early in life. However, research has shown that histone-deacetylase inhibitors (HDAC inhibitors enable adult mice to establish perceptual preferences that are otherwise impossible to acquire after youth. In humans, we found that adult men who took valproate (a HDAC inhibitor learned to identify pitch significantly better than those taking placebo – evidence that valproate facilitated critical-period learning in the adult human brain. Importantly, this result was not due to a general change in cognitive function, but rather a specific effect on a sensory task associated with a critical-period.

  6. Demonstration of partial pitch 2-bladed wind turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong; Zahle, Frederik; Troldborg, Niels

    This is the final report for the EUDP project performed from January 2012 to December 2015. The main objective for the project was to demonstrate the potential of the partial pitch two-bladed (PP-2B) technology. DTU Wind Energy took a responsibility for three workpackages (WPs) among 6 WPs which...... were aerodynamic evaluation of partial pitch technology (WP2), aeroelastic analysis of two-bladed turbine (WP3) and On-site testing (WP4). For the WP2, a comprehensive set of 3D CFD simulations including the gap between inner and outer part of the blade and vortex generators (VGs) of both cross...... pitch concept and detailed load analyses were performed. Also the comparison studies between numerical results and experimental results were performed. Moreover stability analyses for the PP- 2B turbine have been performed with HAWC2 and modal analysis using Hill’s method was performed to calculate...

  7. Preliminary evaluation of ultra-high pitch computed tomography enterography

    Energy Technology Data Exchange (ETDEWEB)

    Hardie, Andrew D.; Horst, Nicole D.; Mayes, Nicholas [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston (United States)], E-mail: andrewdhardie@gmail.com

    2012-12-15

    Background. CT enterography (CTE) is a valuable tool in the management of patients with inflammatory bowel disease. Reducing imaging time, reduced motion artifacts, and decreased radiation exposure are important goals for optimizing CTE examinations. Purpose. To assess the potential impact of new CT technology (ultra-high pitch CTE) for the ability to reduce scan time and also potentially reduce radiation exposure while maintaining image quality. Material and Methods. This retrospective study compared 13 patients who underwent ultra-high pitch CTE with 25 patients who underwent routine CTE on the same CT scanner with identical radiation emission settings. Total scan time and radiation exposure were recorded for each patient. Image quality was assessed by measurement of image noise and also qualitatively by two independent observers. Results. Total scan time was significantly lower for patients who underwent ultra-high pitch CTE (2.1 s {+-} 0.2) than by routine CTE (18.6 s {+-} 0.9) (P < 0.0001). The mean radiation exposure for ultra-high pitch CTE was also significantly lower (10.1 mGy {+-} 1.0) than routine CTE (15.8 mGy {+-} 4.5) (P < 0.0001). No significant difference in image noise was found between ultra-high pitch CTE (16.0 HU {+-} 2.5) and routine CTE (15.5 HU {+-} 3.7) (P > 0.74). There was also no significant difference in image quality noted by either of the two readers. Conclusion. Ultra-high pitch CTE can be performed more rapidly than standard CTE and offers the potential for radiation exposure reduction while maintaining image quality.

  8. Frogs Call at a Higher Pitch in Traffic Noise

    Directory of Open Access Journals (Sweden)

    Kirsten M. Parris

    2009-06-01

    Full Text Available Male frogs call to attract females for mating and to defend territories from rival males. Female frogs of some species prefer lower-pitched calls, which indicate larger, more experienced males. Acoustic interference occurs when background noise reduces the active distance or the distance over which an acoustic signal can be detected. Birds are known to call at a higher pitch or frequency in urban noise, decreasing acoustic interference from low-frequency noise. Using Bayesian linear regression, we investigated the effect of traffic noise on the pitch of advertisement calls in two species of frogs, the southern brown tree frog (Litoria ewingii and the common eastern froglet (Crinia signifera. We found evidence that L. ewingii calls at a higher pitch in traffic noise, with an average increase in dominant frequency of 4.1 Hz/dB of traffic noise, and a total effect size of 123 Hz. This frequency shift is smaller than that observed in birds, but is still large enough to be detected by conspecific frogs and confer a significant benefit to the caller. Mathematical modelling predicted a 24% increase in the active distance of a L. ewingii call in traffic noise with a frequency shift of this size. Crinia signifera may also call at a higher pitch in traffic noise, but more data are required to be confident of this effect. Because frog calls are innate rather than learned, the frequency shift demonstrated by L. ewingii may represent an evolutionary adaptation to noisy conditions. The phenomenon of frogs calling at a higher pitch in traffic noise could therefore constitute an intriguing trade-off between audibility and attractiveness to potential mates.

  9. Abnormal pitch perception produced by cochlear implant stimulation.

    Science.gov (United States)

    Zeng, Fan-Gang; Tang, Qing; Lu, Thomas

    2014-01-01

    Contemporary cochlear implants with multiple electrode stimulation can produce good speech perception but poor music perception. Hindered by the lack of a gold standard to quantify electric pitch, relatively little is known about the nature and extent of the electric pitch abnormalities and their impact on cochlear implant performance. Here we overcame this obstacle by comparing acoustic and electric pitch perception in 3 unilateral cochlear-implant subjects who had functionally usable acoustic hearing throughout the audiometric frequency range in the non-implant ear. First, to establish a baseline, we measured and found slightly impaired pure tone frequency discrimination and nearly perfect melody recognition in all 3 subjects' acoustic ear. Second, using pure tones in the acoustic ear to match electric pitch induced by an intra-cochlear electrode, we found that the frequency-electrode function was not only 1-2 octaves lower, but also 2 times more compressed in frequency range than the normal cochlear frequency-place function. Third, we derived frequency difference limens in electric pitch and found that the equivalent electric frequency discrimination was 24 times worse than normal-hearing controls. These 3 abnormalities are likely a result of a combination of broad electric field, distant intra-cochlear electrode placement, and non-uniform spiral ganglion cell distribution and survival, all of which are inherent to the electrode-nerve interface in contemporary cochlear implants. Previous studies emphasized on the "mean" shape of the frequency-electrode function, but the present study indicates that the large "variance" of this function, reflecting poor electric pitch discriminability, is the main factor limiting contemporary cochlear implant performance.

  10. Abnormal pitch perception produced by cochlear implant stimulation.

    Directory of Open Access Journals (Sweden)

    Fan-Gang Zeng

    Full Text Available Contemporary cochlear implants with multiple electrode stimulation can produce good speech perception but poor music perception. Hindered by the lack of a gold standard to quantify electric pitch, relatively little is known about the nature and extent of the electric pitch abnormalities and their impact on cochlear implant performance. Here we overcame this obstacle by comparing acoustic and electric pitch perception in 3 unilateral cochlear-implant subjects who had functionally usable acoustic hearing throughout the audiometric frequency range in the non-implant ear. First, to establish a baseline, we measured and found slightly impaired pure tone frequency discrimination and nearly perfect melody recognition in all 3 subjects' acoustic ear. Second, using pure tones in the acoustic ear to match electric pitch induced by an intra-cochlear electrode, we found that the frequency-electrode function was not only 1-2 octaves lower, but also 2 times more compressed in frequency range than the normal cochlear frequency-place function. Third, we derived frequency difference limens in electric pitch and found that the equivalent electric frequency discrimination was 24 times worse than normal-hearing controls. These 3 abnormalities are likely a result of a combination of broad electric field, distant intra-cochlear electrode placement, and non-uniform spiral ganglion cell distribution and survival, all of which are inherent to the electrode-nerve interface in contemporary cochlear implants. Previous studies emphasized on the "mean" shape of the frequency-electrode function, but the present study indicates that the large "variance" of this function, reflecting poor electric pitch discriminability, is the main factor limiting contemporary cochlear implant performance.

  11. Electric Control Substituting Pitch Control for Large Wind Turbines

    Directory of Open Access Journals (Sweden)

    Jon Kjellin

    2013-01-01

    turbine has fixed pitch and is only controlled electrically accommodated by passive stall of the blades. By electrically controlling the generator rotational speed with the inverter, passive stall regulation is enabled. The first results on experimental verification of stall regulation in gusty wind speeds are presented. The experiments show that the control system can keep the turbine rotational speed constant even at very gusty winds. It is concluded that electrical control accommodated by passive stall is sufficient as control of the wind turbine even at high wind speeds and can substitute mechanical control such as blade pitch.

  12. [Contribution to the study of the perfect pitch].

    Science.gov (United States)

    Chouard, C H; Sposetti, R

    1990-01-01

    Absolute pitch (AP) is the ability to name a note without any reference, since relative pitch (RP) needs for a previous and known tone to be able of such a recognition. We suggest that AP is due to both environmental features and physiological particularity. From the responses of 263 musicians including 169 AP we observed that for AP musical environment in childhood was better, and younger the age of instrumental beginning than for RP. The study of otoacustic emissions evoked by a supraliminar stimulation in 183 musicians ears including 68 AP showed that the echo was significantly greater in case of AP than in case of RP.

  13. Dynamically Tuned Blade Pitch Links for Vibration Reduction

    Science.gov (United States)

    Milgram, Judah; Chopra, Inderjit; Kottapalli, Sesi

    1994-01-01

    A passive vibration reduction device in which the conventional main rotor blade pitch link is replaced by a spring/damper element is investigated using a comprehensive rotorcraft analysis code. A case study is conducted for a modern articulated helicopter main rotor. Correlation of vibratory pitch link loads with wind tunnel test data is satisfactory for lower harmonics. Inclusion of unsteady aerodynamics had little effect on the correlation. In the absence of pushrod damping, reduction in pushrod stiffness from the baseline value had an adverse effect on vibratory hub loads in forward flight. However, pushrod damping in combination with reduced pushrod stiffness resulted in modest improvements in fixed and rotating system hub loads.

  14. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Optimization of Nano-Grating Pitch Evaluation Method Based on Line Edge Roughness Analysis

    Science.gov (United States)

    Chen, Jie; Liu, Jie; Wang, Xingrui; Zhang, Longfei; Deng, Xiao; Cheng, Xinbin; Li, Tongbao

    2017-12-01

    Pitch uncertainty and line edge roughness are among the critical quality attributes of a pitch standard and normally the analyses of these two parameters are separate. The analysis of self-traceable Cr atom lithography nano-gratings shows a positive relevance and sensitivity between LER and evaluated standard deviation of pitch. Therefore, LER can be used as an aided pre-evaluation parameter for the pitch calculation method, such as the gravity center method or the zero-crossing points method. The optimization of the nano-grating evaluation method helps to obtain the accurate pitch value with fewer measurements and provide a comprehensive characterization of pitch standards.

  16. Optimization of Nano-Grating Pitch Evaluation Method Based on Line Edge Roughness Analysis

    Directory of Open Access Journals (Sweden)

    Chen Jie

    2017-12-01

    Full Text Available Pitch uncertainty and line edge roughness are among the critical quality attributes of a pitch standard and normally the analyses of these two parameters are separate. The analysis of self-traceable Cr atom lithography nano-gratings shows a positive relevance and sensitivity between LER and evaluated standard deviation of pitch. Therefore, LER can be used as an aided pre-evaluation parameter for the pitch calculation method, such as the gravity center method or the zero-crossing points method. The optimization of the nano-grating evaluation method helps to obtain the accurate pitch value with fewer measurements and provide a comprehensive characterization of pitch standards.

  17. Development of advanced blade pitching kinematics for cycloturbines and cyclorotors

    Science.gov (United States)

    Adams, Zachary Howard

    Cycloturbines and cyclorotors are established concepts for extracting freesteam fluid energy and producing thrust which promise to exceed the performance of traditional horizontal axis turbines and rotors while maintaining unique operational advantages. However, their potential is not yet realized in widespread applications. A central barrier to their proliferation is the lack of fundamental understanding of the aerodynamic interaction between the turbine and the freestream flow. In particular, blade pitch must be precisely actuated throughout the revolution to achieve the proper blade angle of attack and maximize performance. So far, there is no adequate method for determining or implementing the optimal blade pitching kinematics for cyclorotors or cycloturbines. This dissertation bridges the pitching deficiency by introducing a novel low order model to predict improved pitch kinematics, experimentally demonstrating improved performance, and evaluating flow physics with a high order Navier-Stokes computational code. The foundation for developing advanced blade pitch motions is a low order model named Fluxline Theory. Fluid calculations are performed in a coordinate system fixed to streamlines whose spatial locations are not pre-described in order to capture the flow expansion/contraction and bending through the turbine. A transformation then determines the spatial location of streamlines through the rotor disk and finally blade element method integrations determine the power and forces produced. Validation against three sets of extant cycloturbine experimental data demonstrates improvement over other existing streamtube models. Fluxline Theory was extended by removing dependence on a blade element model to better understand how turbine-fluid interaction impacts thrust and power production. This pure momentum variation establishes a cycloturbine performance limit similar to the Betz Limit for horizontal axis wind turbines, as well as the fluid deceleration required

  18. Should We Limit Innings Pitched After Ulnar Collateral Ligament Reconstruction in Major League Baseball Pitchers?

    Science.gov (United States)

    Erickson, Brandon J; Cvetanovich, Gregory L; Bach, Bernard R; Bush-Joseph, Charles A; Verma, Nikhil N; Romeo, Anthony A

    2016-09-01

    Ulnar collateral ligament reconstruction (UCLR) has become a common procedure among Major League Baseball (MLB) pitchers. It is unclear if a limit on innings pitched after UCLR should be instituted to prevent revision UCLR. Number of innings pitched and number of pitches thrown after UCLR will not affect whether a pitcher requires a revision UCLR. Descriptive laboratory study. All MLB pitchers between 1974 and 2015 who pitched at least 1 full season after UCLR were included in this study. Pitch counts and innings pitched for the first full season after UCLR as well as total pitch count and total innings pitched were recorded. Pitch counts and innings pitched were compared among players who required revision UCLR and those who did not. Overall, 154 pitchers were included. Of these, 135 pitchers did not require revision UCLR while 19 underwent revision UCLR. No significant difference existed between pitchers who underwent revision UCLR and those who did not when comparing number of innings pitched in the season after UCLR (79.4 ± 46.7 vs 90.1 ± 58.6; P = .9016), number of pitches thrown in the season after UCLR (1233.2 ± 710.4 vs 1449.2 ± 904.1; P = .7337), number of innings pitched in the pitcher's career after UCLR (357.4 ± 312.0 vs 399.3 ± 446.4; P = .6945), and number of pitches thrown in the pitcher's career after UCLR (5632.7 ± 4583.9 vs 5674.7 ± 5755.4; P = .4789), respectively. Furthermore, no difference existed in revision rate between pitchers who pitched more or less than 180 innings in the first full season after UCLR (P = .6678). The number of innings pitched and number of pitches thrown in the first full season as well as over a player's career after UCLR are not associated with an increased risk of a pitcher requiring revision UCLR. © 2016 The Author(s).

  19. The Effects of Lexical Pitch Accent on Infant Word Recognition in Japanese

    Directory of Open Access Journals (Sweden)

    Mitsuhiko Ota

    2018-01-01

    Full Text Available Learners of lexical tone languages (e.g., Mandarin develop sensitivity to tonal contrasts and recognize pitch-matched, but not pitch-mismatched, familiar words by 11 months. Learners of non-tone languages (e.g., English also show a tendency to treat pitch patterns as lexically contrastive up to about 18 months. In this study, we examined if this early-developing capacity to lexically encode pitch variations enables infants to acquire a pitch accent system, in which pitch-based lexical contrasts are obscured by the interaction of lexical and non-lexical (i.e., intonational features. Eighteen 17-month-olds learning Tokyo Japanese were tested on their recognition of familiar words with the expected pitch or the lexically opposite pitch pattern. In early trials, infants were faster in shifting their eyegaze from the distractor object to the target object than in shifting from the target to distractor in the pitch-matched condition. In later trials, however, infants showed faster distractor-to-target than target-to-distractor shifts in both the pitch-matched and pitch-mismatched conditions. We interpret these results to mean that, in a pitch-accent system, the ability to use pitch variations to recognize words is still in a nascent state at 17 months.

  20. Changes in pitching mechanics after ulnar collateral ligament reconstruction in major league baseball pitchers.

    Science.gov (United States)

    Portney, Daniel A; Lazaroff, Jake M; Buchler, Lucas T; Gryzlo, Stephen M; Saltzman, Matthew D

    2017-08-01

    Medial ulnar collateral ligament (UCL) reconstruction is a common procedure performed on Major League Baseball pitchers. Variations in pitching mechanics before and after UCL reconstructive surgery are not well understood. Publicly available pitch tracking data (PITCHf/x) were compared for all Major League Baseball pitchers who underwent UCL reconstruction between 2008 and 2013. Specific parameters analyzed were fastball percentage, release location, velocity, and movement of each pitch type. These data were compared before and after UCL reconstructive surgery and compared with a randomly selected control cohort. There were no statistically significant changes in pitch selection or pitch accuracy after UCL reconstruction, nor was there a decrease in pitch velocity. The average pitch release location for 4-seam and 2-seam fastballs, curveballs, and changeups is more medial after UCL reconstruction (P < .01). Four-seam fastballs and sliders showed decreased horizontal breaking movement after surgery (P < .05), whereas curveballs showed increased downward breaking movement after surgery (P < .05). Pitch selection, pitch velocity, and pitch accuracy do not significantly change after UCL reconstruction, nor do players who require UCL reconstruction have significantly different pitch selection, velocity, or accuracy than a randomly selected control cohort. Pitch release location is more medial after UCL reconstruction for all pitch types except sliders. Breaking movement of fastballs, sliders, and curveballs changes after UCL reconstruction. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. Long-term pitch memory for music recordings is related to auditory working memory precision.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Nusbaum, Howard C

    2017-08-31

    Most individuals have reliable long-term memories for the pitch of familiar music recordings. This pitch memory (1) appears to be normally distributed in the population, (2) does not depend on explicit musical training, and (3) only seems to be weakly related to differences in listening frequency estimates. The present experiment was designed to assess whether individual differences in auditory working memory could explain variance in long-term pitch memory for music recordings. In Experiment 1, participants first completed a musical note adjustment task that has been previously used to assess working memory of musical pitch. Afterwards, participants were asked to judge the pitch of well-known music recordings, which either had or had not been shifted in pitch. We found that performance on the pitch working memory task was significantly related to performance in the pitch memory task using well-known recordings, even when controlling for overall musical experience and familiarity with each recording. In Experiment 2, we replicated these findings in a separate group of participants while additionally controlling for fluid intelligence and non-pitch based components of auditory working memory. In Experiment 3, we demonstrated that participants could not accurately judge the pitch of unfamiliar recordings, suggesting that our method of pitch shifting did not result in unwanted acoustic cues that could have aided participants in Experiments 1 and 2. These results, taken together, suggest that the ability to maintain pitch information in working memory might lead to more accurate long-term pitch memory.

  2. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  3. Predicting Flexural Strength of Concretes Incorporating River Gravel ...

    African Journals Online (AJOL)

    This work shows the development of a computational model, based on artificial neural networks for the determination of flexural strength of concrete materials made from ... The result of the study has adequately demonstrated a cheap, simple, very quick and accurate alternative to experimental method of concrete strength ...

  4. Predicting the Compressive Strength of Concretes Made with ...

    African Journals Online (AJOL)

    This research seeks to develop a computational model based on arti cial neural networks for the determination of the compressive strength of concrete materials ... The result of the study has ably demonstrated a cheap, simple, very quick and accurate alternative to experimental method of concrete strength determination.

  5. Children's Identification of Questions from Rising Terminal Pitch

    Science.gov (United States)

    Saindon, Mathieu R.; Trehub, Sandra E.; Schellenberg, E. Glenn; van Lieshout, Pascal

    2016-01-01

    Young children are slow to master conventional intonation patterns in their "yes/no" questions, which may stem from imperfect understanding of the links between terminal pitch contours and pragmatic intentions. In Experiment 1, five to ten-year-old children and adults were required to judge utterances as questions or statements on the…

  6. Periodic Burning In Table Mountain-Pitch Pine Stands

    Science.gov (United States)

    Russell B. Randles; David H. van Lear; Thomas A. Waldrop; Dean M. Simon

    2002-01-01

    Abstract - The effects of multiple, low intensity burns on vegetation and wildlife habitat in Table Mountain (Pinus pungens Lamb.)-pitch (Pinus rigida Mill.) pine communities were studied in the Blue Ridge Mountains of North Carolina. Treatments consisted of areas burned from one to four times at 3-4 year...

  7. Extraction of Coal-tar Pitch by Supercritical Carbon Dioxide ...

    African Journals Online (AJOL)

    Several extractions of coal-tar pitch were performed using supercritical fluid carbon dioxide. The relationships between extraction yield during supercritical fluid extraction (SFE) and the variables temperature, pressure and extraction time were investigated. For qualitative and quantitative identification of organic compounds, ...

  8. Effects of pitch, level, and tactile cues on speech segregation

    Science.gov (United States)

    Drullman, Rob; Bronkhorst, Adelbert W.

    2003-04-01

    Sentence intelligibility for interfering speech was investigated as a function of level difference, pitch difference, and presence of tactile support. A previous study by the present authors [J. Acoust. Soc. Am. 111, 2432-2433 (2002)] had shown a small benefit of tactile support in the speech-reception threshold measured against a background of one to eight competing talkers. The present experiment focused on the effects of informational and energetic masking for one competing talker. Competing speech was obtained by manipulating the speech of the male target talker (different sentences). The PSOLA technique was used to increase the average pitch of competing speech by 2, 4, 8, or 12 semitones. Level differences between target and competing speech ranged from -16 to +4 dB. Tactile support (B&K 4810 shaker) was given to the index finger by presenting the temporal envelope of the low-pass-filtered speech (0-200 Hz). Sentences were presented diotically and the percentage of correctly perceived words was measured. Results show a significant overall increase in intelligibility score from 71% to 77% due to tactile support. Performance improves monotonically with increasing pitch difference. Louder target speech generally helps perception, but results for level differences are considerably dependent on pitch differences.

  9. Phonological Processing in Adults with Deficits in Musical Pitch Recognition

    Science.gov (United States)

    Jones, Jennifer L.; Lucker, Jay; Zalewski, Christopher; Brewer, Carmen; Drayna, Dennis

    2009-01-01

    We identified individuals with deficits in musical pitch recognition by screening a large random population using the Distorted Tunes Test (DTT), and enrolled individuals who had DTT scores in the lowest 10th percentile, classified as tune deaf. We examined phonological processing abilities in 35 tune deaf and 34 normal control individuals. Eight…

  10. The Relationship between Pitch and Space in Congenital Amusia

    Science.gov (United States)

    Williamson, Victoria J.; Cocchini, Gianna; Stewart, Lauren

    2011-01-01

    Congenital amusia manifests as a lifelong difficulty in making sense of musical sound. The extent to which this disorder is accompanied by deficits in visuo-spatial processing is an important question, bearing on the issue of whether pitch processing draws on supramodal spatial representations. The present study assessed different aspects of…

  11. Pitch jnd and the tritone paradox: The linguistic nexus

    Science.gov (United States)

    Safari, Kourosh

    2002-11-01

    Previous research has shown a connection between absolute pitch (the ability to name a specific pitch in the absence of any reference) and native competence in a tone language (Deutsch, 1990). In tone languages, tone is one of the features which determines the lexical meaning of a word. This study investigates the relationship between native competence in a tone language and the just noticeable difference of pitch. Furthermore, the tritone paradox studies have shown that subjects hear two tritones (with bell-shaped spectral envelopes) as either ascending or descending depending on their linguistic backgrounds (Deutsch, 1987). It is hypothesized that the native speakers of tone languages have a higher JND for pitch, and hear the two tones of the tritone paradox as ascending, whereas, native speakers of nontone languages hear them as descending. This study will indicate the importance of early musical training for the development of acute tone sensitivity. It will also underline the importance of language and culture in the way it shapes our musical understanding. The significance of this study will be in the areas of music education and pedagogy.

  12. Dynamic pitching effect on a laminar separation bubble

    NARCIS (Netherlands)

    Nati, A.; De Kat, R.; Scarano, F.; Van Oudheusden, B.W.

    2015-01-01

    The unsteady effect of a periodic pitching motion on the characteristic of a laminar separation bubble on the suction side of a SD7003 aerofoil is investigated by means of time-resolved planar and tomographic particle image velocimetry. The measurements provide information on the separation,

  13. Diseases of pines caused by the pitch canker fungus

    Science.gov (United States)

    L. David Dwinell; Stephen W. Fraedrich; D. Adams

    2001-01-01

    Fusarium subglutinans f. sp. pini, the pitch canker fungus, causes a number of serious diseases of Pinus species. The pathogen infects a variety of vegetative and reproductive pine structures at different stages of maturity and produces a diversity of symptoms. When the pathogen infects the woody vegetative...

  14. Influence of musical and psychoacoustical training on pitch discrimination.

    Science.gov (United States)

    Micheyl, Christophe; Delhommeau, Karine; Perrot, Xavier; Oxenham, Andrew J

    2006-09-01

    This study compared the influence of musical and psychoacoustical training on auditory pitch discrimination abilities. In a first experiment, pitch discrimination thresholds for pure and complex tones were measured in 30 classical musicians and 30 non-musicians, none of whom had prior psychoacoustical training. The non-musicians' mean thresholds were more than six times larger than those of the classical musicians initially, and still about four times larger after 2h of training using an adaptive two-interval forced-choice procedure; this difference is two to three times larger than suggested by previous studies. The musicians' thresholds were close to those measured in earlier psychoacoustical studies using highly trained listeners, and showed little improvement with training; this suggests that classical musical training can lead to optimal or nearly optimal pitch discrimination performance. A second experiment was performed to determine how much additional training was required for the non-musicians to obtain thresholds as low as those of the classical musicians from experiment 1. Eight new non-musicians with no prior training practiced the frequency discrimination task for a total of 14 h. It took between 4 and 8h of training for their thresholds to become as small as those measured in the classical musicians from experiment 1. These findings supplement and qualify earlier data in the literature regarding the respective influence of musical and psychoacoustical training on pitch discrimination performance.

  15. Pixel size and pitch measurements of liquid crystal spatial light ...

    Indian Academy of Sciences (India)

    We present a simple technique for the determination of pixel size and pitch of liquid crystal (LC) based spatial light modulator (SLM). The proposed method is based on optical diffraction from pixelated LC panel that has been modeled as a two-dimensional array of rectangular apertures. A novel yet simple, two-plane ...

  16. Singing Video Games May Help Improve Pitch-Matching Accuracy

    Science.gov (United States)

    Paney, Andrew S.

    2015-01-01

    The purpose of this study was to investigate the effect of singing video games on the pitch-matching skills of undergraduate students. Popular games like "Rock Band" and "Karaoke Revolutions" rate players' singing based on the correctness of the frequency of their sung response. Players are motivated to improve their…

  17. Distraction by novel and pitch-deviant sounds in children

    Directory of Open Access Journals (Sweden)

    Nicole Wetzel

    2016-12-01

    Full Text Available The control of attention is an important part of our executive functions and enables us to focus on relevant information and to ignore irrelevant information. The ability to shield against distraction by task-irrelevant sounds is suggested to mature during school age. The present study investigated the developmental time course of distraction in three groups of children aged 7 – 10 years. Two different types of distractor sounds that have been frequently used in auditory attention research – novel environmental and pitch-deviant sounds – were presented within an oddball paradigm while children performed a visual categorization task. Reaction time measurements revealed decreasing distractor-related impairment with age. Novel environmental sounds impaired performance in the categorization task more than pitch-deviant sounds. The youngest children showed a pronounced decline of novel-related distraction effects throughout the experimental session. Such a significant decline as a result of practice was not observed in the pitch-deviant condition and not in older children. We observed no correlation between cross-modal distraction effects and performance in standardized tests of concentration and visual distraction. Results of the cross-modal distraction paradigm indicate that separate mechanisms underlying the processing of novel environmental and pitch-deviant sounds develop with different time courses and that these mechanisms develop considerably within a few years in middle childhood.

  18. Shoulder muscle firing patterns during the windmill softball pitch.

    Science.gov (United States)

    Maffet, M W; Jobe, F W; Pink, M M; Brault, J; Mathiyakom, W

    1997-01-01

    The purpose of this study was to describe the activity of eight shoulder muscles during the windmill fast-pitch softball throw. Ten collegiate female pitchers were analyzed with intramuscular electromyography, high-speed cinematography, and motion analysis. The supraspinatus muscle fired maximally during arm elevation from the 6 to 3 o'clock position phase, centralizing the humeral head within the glenoid. The posterior deltoid and teres minor muscles acted maximally from the 3 to 12 o'clock position phase to continue arm elevation and externally rotate the humerus. The pectoralis major muscle accelerated the arm from the 12 o'clock position to ball release phase. The serratus anterior muscle characteristically acted to position the scapula for optimal glenohumeral congruency, and the subscapularis muscle functioned as an internal rotator and to protect the anterior capsule. Although the windmill softball pitch is overtly different from the baseball pitch, several surprising similarities were revealed. The serratus anterior and pectoralis major muscles work in synchrony and seem to have similar functions in both pitches. Although the infraspinatus and teres minor muscles are both posterior cuff muscles, they are characteristically uncoupled during the 6 to 3 o'clock position phase, with the infraspinatus muscle acting more independently below 90 degrees. Subscapularis muscle activity seems important in dynamic anterior glenohumeral stabilization and as an internal rotator in both the baseball and softball throws.

  19. Musical pitch and lexical tone perception with cochlear implants.

    Science.gov (United States)

    Wang, Wuqing; Zhou, Ning; Xu, Li

    2011-04-01

    The purpose of the present study was to test the hypothesis that cochlear implant (CI) users' music perception is correlated with their lexical tone perception, and the two types of perception share similar mechanisms in electric hearing. A lexical tone perception test and a pitch interval discrimination test were administered to a group of CI users and a group of normal-hearing (NH) listeners. SAMPLE STUDY: Nineteen adult CI users and 10 NH listeners who are native-Mandarin-Chinese speakers participated in the study. Tone-perception performance of the CI group was, on average, 58.3% correct (± 19.78% correct), and performance of the NH group was near perfect. The CI group had a mean threshold of 5.66 semitones (± 5.57 semitones) in pitch discrimination as compared to the threshold of 0.44 semitone from the NH group. There was a strong correlation between the CI users' tone-perception performance and their pitch discrimination threshold (r = -0.75, p pitch perceptions are strongly correlated with each other and they might share similar mechanisms in electric hearing.

  20. Our Work Done Well Is Like the Perfect Pitch

    Science.gov (United States)

    Rasmussen, Claudette; Hopkins, Susan; Fitzpatrick, Michele

    2004-01-01

    A carefully developed, comprehensive professional development plan takes time, energy, and coordination of resources, but when it's done well, it can seem as effortless as a perfectly pitched curve ball. Seven steps, each with a set of guiding questions, can help planners meet the goal and create a program that produces results. [Appended to this…

  1. Wear and Friction in a Controllable Pitch Propeller

    NARCIS (Netherlands)

    Godjevac, M.

    2010-01-01

    The author is a naval architect and this book is his PhD thesis. In this research the author focuses on friction in a controllable pitch propeller (CPP), formation of wear in a CPP system, and their mutual dependence. Instead of going deeply only in tribology aspects, the author tries to get an

  2. Pitch and Loudness Tinnitus in Individuals with Presbycusis.

    Science.gov (United States)

    Seimetz, Bruna Macangnin; Teixeira, Adriane Ribeiro; Rosito, Leticia Petersen Schmidt; Flores, Leticia Sousa; Pappen, Carlos Henrique; Dall'igna, Celso

    2016-10-01

    Introduction  Tinnitus is a symptom that is often associated with presbycusis. Objective  This study aims to analyze the existence of association among hearing thresholds, pitch, and loudness of tinnitus in individuals with presbycusis, considering the gender variable. Methods  Cross-sectional, descriptive, and prospective study, whose sample consisted of individuals with tinnitus and diagnosis of presbycusis. For the evaluation, we performed anamnesis along with otoscopy, pure tone audiometry, and acuphenometry to analyze the psychoacoustic characteristics of tinnitus individuals. Results  The sample consisted of 49 subjects, with a mean age of 69.57 ± 6.53 years, who presented unilateral and bilateral tinnitus, therefore, a sample of 80 ears. In analyzing the results, as for acuphenometry, the loudness of tinnitus was more present at 0dB and the pitch was 6HKz and 8HKz. Regarding the analysis of the association between the frequency of greater hearing threshold and tinnitus pitch, no statistical significance ( p  = 0.862) was found. As for the association between the intensity of greater hearing threshold and tinnitus loudness, no statistical significance ( p  = 0.115) was found. Conclusion  There is no significant association between the hearing loss of patients with presbycusis and the pitch and loudness of tinnitus.

  3. Pitch and Loudness Tinnitus in Individuals with Presbycusis

    Directory of Open Access Journals (Sweden)

    Seimetz, Bruna Macangnin

    2016-02-01

    Full Text Available Introduction Tinnitus is a symptom that is often associated with presbycusis. Objective This study aims to analyze the existence of association among hearing thresholds, pitch, and loudness of tinnitus in individuals with presbycusis, considering the gender variable. Methods Cross-sectional, descriptive, and prospective study, whose sample consisted of individuals with tinnitus and diagnosis of presbycusis. For the evaluation, we performed anamnesis along with otoscopy, pure tone audiometry, and acuphenometry to analyze the psychoacoustic characteristics of tinnitus individuals. Results The sample consisted of 49 subjects, with a mean age of 69.57 ± 6.53 years, who presented unilateral and bilateral tinnitus, therefore, a sample of 80 ears. In analyzing the results, as for acuphenometry, the loudness of tinnitus was more present at 0dB and the pitch was 6HKz and 8HKz. Regarding the analysis of the association between the frequency of greater hearing threshold and tinnitus pitch, no statistical significance (p = 0.862 was found. As for the association between the intensity of greater hearing threshold and tinnitus loudness, no statistical significance (p = 0.115 was found. Conclusion There is no significant association between the hearing loss of patients with presbycusis and the pitch and loudness of tinnitus.

  4. Development in Children's Interpretation of Pitch Cues to Emotions

    Science.gov (United States)

    Quam, Carolyn; Swingley, Daniel

    2012-01-01

    Young infants respond to positive and negative speech prosody (A. Fernald, 1993), yet 4-year-olds rely on lexical information when it conflicts with paralinguistic cues to approval or disapproval (M. Friend, 2003). This article explores this surprising phenomenon, testing one hundred eighteen 2- to 5-year-olds' use of isolated pitch cues to…

  5. Perceptual Grouping Affects Pitch Judgments across Time and Frequency

    Science.gov (United States)

    Borchert, Elizabeth M. O.; Micheyl, Christophe; Oxenham, Andrew J.

    2011-01-01

    Pitch, the perceptual correlate of fundamental frequency (F0), plays an important role in speech, music, and animal vocalizations. Changes in F0 over time help define musical melodies and speech prosody, while comparisons of simultaneous F0 are important for musical harmony, and for segregating competing sound sources. This study compared…

  6. Pitch perception in children with autistic spectrum disorders

    NARCIS (Netherlands)

    Altgassen, A.M.; Kliegel, M.; Williams, T.I.

    2005-01-01

    This study investigated the accuracy of musical pitch detection in children with autistic spectrum disorders as compared with typically developing children. Seventeen children on the autistic spectrum (Mage=9.34, SDage=1.12) and 13 typically developing, chronological age-matched children (Mage=9.13,

  7. 14 CFR 35.21 - Variable and reversible pitch propellers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Variable and reversible pitch propellers. 35.21 Section 35.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.21 Variable and...

  8. Risk-based Comparative Study of Fluid Power Pitch Concepts

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; N. Soltani, Mohsen

    2017-01-01

    . Thus, more reliable and safe concepts are needed. A review of patents and patent applications covering fluid power pitch concepts, reveals that many propose closed-type hydraulic systems. This paper proposes a closed-type concept with a bootstrap reservoir. In contrary to a conventional system where...

  9. Pitch and tonality in contemporary African music: Nigerian gospel ...

    African Journals Online (AJOL)

    Like melody, language and rhythm, pitch and tonality are major indicators of African identity in music. In traditional African musical forms, these elements are obvious, but in contemporary African musical expressions which are influenced by several external factors, it is necessary to know the extent to which the elements ...

  10. Pitch organisation in Hendrik Hofmeyr's Alleenstryd | May | South ...

    African Journals Online (AJOL)

    Hendrik Hofmeyr's Alleenstryd is of seminal importance in the evolution of the composer's musical language. Emerging ideas of types of pitch organisation in earlier works are here for the first time organised into a fully integrated system and the principles applied here later became some of the most important hallmarks of ...

  11. Development of a Pitch Discrimination Screening Test for Preschool Children.

    Science.gov (United States)

    Abramson, Maria Kulick; Lloyd, Peter J

    2016-04-01

    There is a critical need for tests of auditory discrimination for young children as this skill plays a fundamental role in the development of speaking, prereading, reading, language, and more complex auditory processes. Frequency discrimination is important with regard to basic sensory processing affecting phonological processing, dyslexia, measurements of intelligence, auditory memory, Asperger syndrome, and specific language impairment. This study was performed to determine the clinical feasibility of the Pitch Discrimination Test (PDT) to screen the preschool child's ability to discriminate some of the acoustic demands of speech perception, primarily pitch discrimination, without linguistic content. The PDT used brief speech frequency tones to gather normative data from preschool children aged 3 to 5 yrs. A cross-sectional study was used to gather data regarding the pitch discrimination abilities of a sample of typically developing preschool children, between 3 and 5 yrs of age. The PDT consists of ten trials using two pure tones of 100-msec duration each, and was administered in an AA or AB forced-choice response format. Data from 90 typically developing preschool children between the ages of 3 and 5 yrs were used to provide normative data. Nonparametric Mann-Whitney U-testing was used to examine the effects of age as a continuous variable on pitch discrimination. The Kruskal-Wallis test was used to determine the significance of age on performance on the PDT. Spearman rank was used to determine the correlation of age and performance on the PDT. Pitch discrimination of brief tones improved significantly from age 3 yrs to age 4 yrs, as well as from age 3 yrs to the age 4- and 5-yrs group. Results indicated that between ages 3 and 4 yrs, children's auditory discrimination of pitch improved on the PDT. The data showed that children can be screened for auditory discrimination of pitch beginning with age 4 yrs. The PDT proved to be a time efficient, feasible tool for

  12. Sensorimotor control of vocal pitch and formant frequencies in Parkinson's disease.

    Science.gov (United States)

    Mollaei, Fatemeh; Shiller, Douglas M; Baum, Shari R; Gracco, Vincent L

    2016-09-01

    Auditory feedback reflects information on multiple speech parameters including fundamental frequency (pitch) and formant properties. Inducing auditory errors in these acoustic parameters during speech production has been used to examine the manner in which auditory feedback is integrated with ongoing speech motor processes. This integration has been shown to be impaired in disorders such as Parkinson's disease (PD), in which individuals exhibit difficulty adjusting to altered sensory-motor relationships. The current investigation examines whether such sensorimotor impairments affect fundamental frequency and formant parameters of speech differentially. We employed a sensorimotor compensation paradigm to investigate the mechanisms underlying the control of vocal pitch and formant parameters. Individuals with PD and age-matched controls prolonged a speech vowel in the context of a word while the fundamental or first formant frequency of their auditory feedback was altered unexpectedly on random trials, using two magnitudes of perturbation. Compared with age-matched controls, individuals with PD exhibited a larger compensatory response to fundamental frequency perturbations, in particular in response to the smaller magnitude alteration. In contrast, the group with PD showed reduced compensation to first formant frequency perturbations. The results demonstrate that the neural processing impairment of PD differentially affects the processing of auditory feedback for the control of fundamental and formant frequency. The heightened modulation of fundamental frequency in response to auditory perturbations may reflect a change in sensory weighting due to somatosensory deficits associated with the larynx, while the reduced ability to modulate vowel formants may result from impaired activation of the oral articulatory musculature. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Preferences for very low and very high voice pitch in humans.

    Directory of Open Access Journals (Sweden)

    Daniel E Re

    Full Text Available Manipulations of voice pitch have been shown to alter attractiveness ratings, but whether preferences extend to very low or very high voice pitch is unknown. Here, we manipulated voice pitch in averaged men's and women's voices by 2 Hz intervals to create a range of male and female voices speaking monopthong vowel sounds and spanning a range of frequencies from normal to very low and very high pitch. With these voices, we used the method of constant stimuli to measure preferences for voice. Nineteen university students (ages: 20-25 participated in three experiments. On average, men preferred high-pitched women's voices to low-pitched women's voices across all frequencies tested. On average, women preferred men's voices lowered in pitch, but did not prefer very low men's voices. The results of this study may reflect selection pressures for men's and women's voices, and shed light on a perceptual link between voice pitch and vocal attractiveness.

  14. Preferences for very low and very high voice pitch in humans.

    Science.gov (United States)

    Re, Daniel E; O'Connor, Jillian J M; Bennett, Patrick J; Feinberg, David R

    2012-01-01

    Manipulations of voice pitch have been shown to alter attractiveness ratings, but whether preferences extend to very low or very high voice pitch is unknown. Here, we manipulated voice pitch in averaged men's and women's voices by 2 Hz intervals to create a range of male and female voices speaking monopthong vowel sounds and spanning a range of frequencies from normal to very low and very high pitch. With these voices, we used the method of constant stimuli to measure preferences for voice. Nineteen university students (ages: 20-25) participated in three experiments. On average, men preferred high-pitched women's voices to low-pitched women's voices across all frequencies tested. On average, women preferred men's voices lowered in pitch, but did not prefer very low men's voices. The results of this study may reflect selection pressures for men's and women's voices, and shed light on a perceptual link between voice pitch and vocal attractiveness.

  15. The role of femininity and averageness of voice pitch in aesthetic judgments of women's voices.

    Science.gov (United States)

    Feinberg, David R; DeBruine, Lisa M; Jones, Benedict C; Perrett, David I

    2008-01-01

    Although averageness is preferred in auditory stimuli (eg music) and non-face objects (eg wristwatches), exaggerated feminine characteristics are preferred to averageness in female faces. To establish whether or not men prefer femininity in female voices to average characteristics, we conducted a correlational study (study 1) to assess the relationship between voice pitch and attractiveness ratings. We found a positive linear relationship between voice pitch and attractiveness ratings. In study 2 we manipulated pitch in women's voices with low (lower than average), average, and high (higher than average) starting pitches and gauged men's preferences. Men preferred women's voices with raised pitch for all levels of starting pitch. These findings suggest that men prefer high voice pitch to average voice pitch in women's voices.

  16. Facial expression and vocal pitch height: Evidence of an intermodal association

    DEFF Research Database (Denmark)

    Huron, David; Dahl, Sofia; Johnson, Randolph

    2009-01-01

    Forty-four participants were asked to sing moderate, high, and low  pitches while their faces were photographed. In a two-alternative forced choice task,  independent judges selected the high-pitch faces as more friendly than the low-pitch  faces. When photographs were cropped to show only the ey...... eyebrow position and sung pitch—consistent with the role of eyebrows in signaling aggression and appeasement. Overall, the results are consistent with an inter-modal linkage between vocal and facial expressions....... region, judges still rated the high-pitch faces friendlier than the low-pitch faces. These results are consistent with prior research showing that vocal pitch height is used to signal aggression (low pitch) or appeasement (high pitch). An analysis of the facial features shows a strong correlation between...

  17. Absolute pitch: effects of timbre on note-naming ability.

    Directory of Open Access Journals (Sweden)

    Patrícia Vanzella

    Full Text Available BACKGROUND: Absolute pitch (AP is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names, it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP possessors to identify. A musician's first instrument may also affect performance and extend the sensitive period for acquiring accurate AP. METHODS/PRINCIPAL FINDINGS: A large sample of AP possessors was recruited on-line. Participants were required to identity test tones presented in four different timbres: piano, pure tone, natural (sung voice, and synthesized voice. Note-naming accuracy was better for non-vocal (piano and pure tones than for vocal (natural and synthesized voices test tones. This difference could not be attributed solely to vibrato (pitch variation, which was more pronounced in the natural voice than in the synthesized voice. Although starting music lessons by age 7 was associated with enhanced note-naming accuracy, equivalent abilities were evident among listeners who started music lessons on piano at a later age. CONCLUSIONS/SIGNIFICANCE: Because the human voice is inextricably linked to language and meaning, it may be processed automatically by voice-specific mechanisms that interfere with note naming among AP possessors. Lessons on piano or other fixed-pitch instruments appear to enhance AP abilities and to extend the sensitive period for exposure to music in order to develop accurate AP.

  18. Estimación de la resistencia a la penetración de suelos usando redes neuronales artificiales Prediction of the soils penetration strength using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Nidia Johana Valdés Holguín

    2011-07-01

    Full Text Available Las redes neuronales artificiales, simuladoras del proceso de aprendizaje de las neuronas biológicas, han sido utilizadas con éxito en el cálculo de parámetros en diversos problemas de ingeniería en que las variables involucradas tienen una alta relación no lineal entre sí y la modelación no permite representar el problema mediante una función matemática de fácil deducción. En la ciencia del suelo la predicción de algunas propiedades involucra diversas variables que hacen de su estimación por medio de modelos matemáticos un proceso complejo, y trasladan la solución del problema al campo de la inteligencia artificial. En el presente artículo se reporta la elaboración de redes neuronales artificiales para la estimación de la resistencia a la penetración a diferentes profundidades de un suelo; se consideran como variables influyentes el contenido de humedad, la densidad, la carga estática y la presión de inflado. Los resultados muestran una mejor estimación para profundidades entre 20 cm y 30 cm.Artificial Neural Networks simulate the learning process of biological neurons, and these have been successfully used in the computation of parameters on several engineering problems where exist a strong nonlinear relation among the variables. In soil science, estimation of some properties involves variables that are complicated to estimate using mathematical models, so the solution for the problems fall into the field of Artificial Intelligence. The present paper reports the elaboration of an Artificial Neural Network for the estimation of penetration resistance of soil at different depths, considering as influential variables humidity, density, static load, and inflate pressure. The best estimation results were obtained at a depth of 20-30 cm.

  19. Frequency Regulation Control of Wind Turbine Incorporating Stepper Motor in Pitch System

    OpenAIRE

    Syed Zikriya Shah; Muhammad Naeem Arbab

    2016-01-01

    This paper describes the presentation of a stepper motor in the pitch control system to regulate frequency. The controller sense the frequency deviation. If the frequency deviation is positive the stepper motor will recommend the motor to pitch the turbine blade slightly away from wind pressure. Similarly if the frequency deviation is negative the stepper motor will recommend the motor to pitch the turbine blade slightly towards wind pressure. The blade pitching is performed by another motor....

  20. Two Studies of Pitch in String Instrument Vibrato: Perception and Pitch Matching Responses of University and High School String Players

    Science.gov (United States)

    Geringer, John M.; MacLeod, Rebecca B.; Ellis, Julia C.

    2014-01-01

    We investigated pitch perception of string vibrato tones among string players in two separate studies. In both studies we used tones of acoustic instruments (violin and cello) as stimuli. In the first, we asked 192 high school and university string players to listen to a series of tonal pairs: one tone of each pair was performed with vibrato and…

  1. Do musicians with perfect pitch have more autism traits than musicians without perfect pitch? An empirical study.

    Directory of Open Access Journals (Sweden)

    Anders Dohn

    Full Text Available Perfect pitch, also known as absolute pitch (AP, refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increased prevalence of AP in individuals with sensory and developmental disorders. Here, we determine whether individual autistic traits are present in people with AP. We quantified subclinical levels of autism traits using the Autism-Spectrum Quotient (AQ in three matched groups of subjects: 16 musicians with AP (APs, 18 musicians without AP (non-APs, and 16 non-musicians. In addition, we measured AP ability by a pitch identification test with sine wave tones and piano tones. We found a significantly higher degree of autism traits in APs than in non-APs and non-musicians, and autism scores were significantly correlated with pitch identification scores (r = .46, p = .003. However, our results showed that APs did not differ from non-APs on diagnostically crucial social and communicative domain scores and their total AQ scores were well below clinical thresholds for autism. Group differences emerged on the imagination and attention switching subscales of the AQ. Thus, whilst these findings do link AP with autism, they also show that AP ability is most strongly associated with personality traits that vary widely within the normal population.

  2. Do musicians with perfect pitch have more autism traits than musicians without perfect pitch? An empirical study.

    Science.gov (United States)

    Dohn, Anders; Garza-Villarreal, Eduardo A; Heaton, Pamela; Vuust, Peter

    2012-01-01

    Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increased prevalence of AP in individuals with sensory and developmental disorders. Here, we determine whether individual autistic traits are present in people with AP. We quantified subclinical levels of autism traits using the Autism-Spectrum Quotient (AQ) in three matched groups of subjects: 16 musicians with AP (APs), 18 musicians without AP (non-APs), and 16 non-musicians. In addition, we measured AP ability by a pitch identification test with sine wave tones and piano tones. We found a significantly higher degree of autism traits in APs than in non-APs and non-musicians, and autism scores were significantly correlated with pitch identification scores (r = .46, p = .003). However, our results showed that APs did not differ from non-APs on diagnostically crucial social and communicative domain scores and their total AQ scores were well below clinical thresholds for autism. Group differences emerged on the imagination and attention switching subscales of the AQ. Thus, whilst these findings do link AP with autism, they also show that AP ability is most strongly associated with personality traits that vary widely within the normal population.

  3. Variability of a "force signature" during windmill softball pitching and relationship between discrete force variables and pitch velocity.

    Science.gov (United States)

    Nimphius, Sophia; McGuigan, Michael R; Suchomel, Timothy J; Newton, Robert U

    2016-06-01

    This study assessed reliability of discrete ground reaction force (GRF) variables over multiple pitching trials, investigated the relationships between discrete GRF variables and pitch velocity (PV) and assessed the variability of the "force signature" or continuous force-time curve during the pitching motion of windmill softball pitchers. Intraclass correlation coefficient (ICC) for all discrete variables was high (0.86-0.99) while the coefficient of variance (CV) was low (1.4-5.2%). Two discrete variables were significantly correlated to PV; second vertical peak force (r(5)=0.81, p=0.03) and time between peak forces (r(5)=-0.79; p=0.03). High ICCs and low CVs support the reliability of discrete GRF and PV variables over multiple trials and significant correlations indicate there is a relationship between the ability to produce force and the timing of this force production with PV. The mean of all pitchers' curve-average standard deviation of their continuous force-time curves demonstrated low variability (CV=4.4%) indicating a repeatable and identifiable "force signature" pattern during this motion. As such, the continuous force-time curve in addition to discrete GRF variables should be examined in future research as a potential method to monitor or explain changes in pitching performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effects of a Simulated Game on Upper Extremity Pitching Mechanics and Muscle Activations Among Various Pitch Types in Youth Baseball Pitchers.

    Science.gov (United States)

    Oliver, Gretchen D; Plummer, Hillary; Henning, Lisa; Saper, Michael; Glimer, Gabrielle; Brambeck, Allison; Andrews, James R

    2017-03-21

    Throwing requires proper stability and orientation of the pelvis and scapula for efficient energy transfer during pitching. Fatigue of the pelvis and scapular musculature throughout the course of a game can impair pitching performance, and place excessive demands on the throwing arm leading to injury. The purpose of this study was to examine differences in pelvis, torso, and upper extremity pitching mechanics and muscle activations between the fastball, change-up, and curveball pitches in youth baseball pitchers following a simulated game. Fourteen youth baseball pitchers with no history of injury participated. Pitching mechanics were collected using an electromagnetic tracking system. Surface electromyography data were collected on the bilateral gluteus medius and maximus; and throwing arm side latissimus dorsi, lower trapezius, upper trapezius, and serratus anterior. Participants were instructed to throw maximum effort pitches during a simulated game that provided random game situations similar to those that occur in competition. Participants were limited to 85 pitches based on age-restricted pitch counts. Data from 3 fastballs, curveballs, and change-ups thrown in the first and last innings were selected for analysis. Repeated measures multivariate analyses of variance revealed that neither pitch type nor the effect of a simulated game resulted in statistically significant changes in pitching mechanics (F(10,600)=0.55, P=0.85), or muscle activations (pelvic: F(4,195)=0.07, P=0.85; scapular: F(4,118)=0.09, P=0.52). The principle findings of this study revealed that pitching to the age-restricted pitch count limit did not result in altered pitching mechanics or muscle activations, and no differences occurred between the 3 pitches. These results support previous research that indicate the curveball pitch is no more dangerous for youth than the other pitches commonly thrown. This is supported by the pitcher's ability to maintain a proper arm slot during all 3

  5. Detection and identification of monaural and binaural pitch contours in dyslexic listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Poelmans, Hanne; Luts, Heleen

    2010-01-01

    of dyslexic listeners to Huggins' pitch (HP). The present study clarified whether impaired binaural pitch perception is found in dyslexia. Results from a pitch contour identification test, performed in 31 dyslexic listeners and 31 matched controls, clearly showed that dyslexics perceived HP as well...

  6. The Effect of Dynamic Pitch on Speech Recognition in Temporally Modulated Noise

    Science.gov (United States)

    Shen, Jung; Souza, Pamela E.

    2017-01-01

    Purpose: This study investigated the effect of dynamic pitch in target speech on older and younger listeners' speech recognition in temporally modulated noise. First, we examined whether the benefit from dynamic-pitch cues depends on the temporal modulation of noise. Second, we tested whether older listeners can benefit from dynamic-pitch cues for…

  7. Local and global pitch perception in L1 and L2 readers of Dutch

    NARCIS (Netherlands)

    de Jong, Chiara; Postma, Marie; Mos, Maria; Vedder, Kayleigh; Hendriks, Danielle; Maggiore, G.

    2017-01-01

    Prior research showed a relationship between reading skills and pitch perception, however the exact nature remained unclear. By means of reading tests and a pitch perception test, we examined the relation between reading abilities and local and global pitch perception for 92 native Dutch children

  8. The Influence of Voice Pitch on the Evaluation of a Social Robot Receptionist

    NARCIS (Netherlands)

    Niculescu, A.I.; van Dijk, Elisabeth M.A.G.; Nijholt, Antinus; See, Swee Lan

    2011-01-01

    In this paper we present an experiment addressing the effect of voice pitch on the evaluation of a social robot receptionist. Twenty eight test participants interacted with two “female‿ robot characters: one with a high-pitched, exuberant voice, the other with a low-pitched, calm voice. Our results

  9. Pitch Discrimination and Melodic Memory in Children with Autism Spectrum Disorders

    Science.gov (United States)

    Stanutz, Sandy; Wapnick, Joel; Burack, Jacob A.

    2014-01-01

    Background: Pitch perception is enhanced among persons with autism. We extended this finding to memory for pitch and melody among school-aged children. Objective: The purpose of this study was to investigate pitch memory in musically untrained children with autism spectrum disorders, aged 7-13 years, and to compare it to that of age- and…

  10. Neural and behavioral investigations into timbre perception

    Directory of Open Access Journals (Sweden)

    Stephen Michael Town

    2013-11-01

    Full Text Available Timbre is the attribute that distinguishes sounds of equal pitch, loudness and duration. It contributes to our perception and discrimination of different vowels and consonants in speech, instruments in music and environmental sounds. Here we begin by reviewing human timbre perception and the spectral and temporal acoustic features that give rise to timbre in speech, musical and environmental sounds. We also consider the perception of timbre by animals, both in the case of human vowels and non-human vocalizations. We then explore the neural representation of timbre, first within the peripheral auditory system and later at the level of the auditory cortex. We examine the neural networks that are implicated in timbre perception and the computations that may be performed in auditory cortex to enable listeners to extract information about timbre. We consider whether single neurons in auditory cortex are capable of representing spectral timbre independently of changes in other perceptual attributes and the mechanisms that may shape neural sensitivity to timbre. Finally, we conclude by outlining some of the questions that remain about the role of neural mechanisms in behavior and consider some potentially fruitful avenues for future research.

  11. Characterization of coal- and petroleum-derived binder pitches and the interaction of pitch/coke mixtures in pre-baked carbon anodes

    Science.gov (United States)

    Suriyapraphadilok, Uthaiporn

    Carbon anodes are manufactured from calcined petroleum coke (i.e. sponge coke) and recycled anode butts as fillers, and coal tar pitch (SCTP) as the binder. During the manufacturing of carbon anodes, coal tar pitch is mixed with calcined petroleum coke. The mix of binder, filler and some additives is heated to about 50°C above the softening point of the pitch, typically 160°C. This temperature is sufficient to enable the pitch to wet the coke particles. The mix is then either extruded, vibrated, or pressed to form a green anode. The binding between coke and pitch is very important to the anode properties. There are different binder pitches used in this work, which were standard coal tar pitch (SCTP-2), petroleum pitch (PP-1), gasification pitch (GP-115), coal-extract pitch (WVU-5), and co-coking pitches (HTCCP and OXCCP). Petroleum pitch is a residue produced from heat-treatment and distillation of petroleum fractions. Production of coal-extract pitch involves a prehydrogenation of coal followed by extraction using a dipolar solvent. Gasification pitches are distilled by-product tars produced from the coal gasification process. Co-coking pitch was developed in this work and was obtained from the liquid distillate of co-coking process of coal and heavy petroleum residue. Understanding of composition and structures of pitches from different sources and processes would lead to greater understanding of the binding properties of pitch in carbon anodes and was one of the main focuses in this study. Characterization of pitches by using different techniques including gas chromatography/mass spectrometry (GC/MS), high performance liquid chromatography (HPLC), matrix-assisted laser desorption ionization/mass spectrometry (MALDI/MS), 1H and 13C solution-state nuclear magnetic resonance (NMR), and 13C solid-state NMR yield important chemistry and structural information. The binding, or in other words the interactions in the pitch/coke mixture, is another interest in this

  12. Neural Tube Defects

    Science.gov (United States)

    ... vitamin, before and during pregnancy prevents most neural tube defects. Neural tube defects are usually diagnosed before the infant is ... or imaging tests. There is no cure for neural tube defects. The nerve damage and loss of function ...

  13. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    Science.gov (United States)

    Panther, Chad C.

    required mass flow by up to 35%. From numerical flow visualization, pulsed actuation was shown to reduce the size and strength of wake vorticity during DS, resulting in lower profile drag relative to baseline and steady actuation cases. A database of pitching airfoil test data, including overshoot and hysteresis of aerodynamic coefficients (Cl, Cd), was compiled for improved analytical model inputs to update CCVAWT performance predictions, where the aforementioned L/D improvements will be directly reflected. Relative to a conventional VAWT with annual power output of 1 MW, previous work at WVU proved that the addition of steady jet CC could improve total output to 1.25 MW. However, the pumping cost to generate the continuous jet reduced yearly CCVAWT net gains to 1.15 MW. The current study has shown that pulsed CC jets can recover 4% of the pumping demands due to reduced mass flow requirements, increasing annual CCVAWT net power production to 1.19 MW, a 19% improvement relative to the conventional turbine.

  14. A Comparison of Average Pitch Height and Interval Size in Major- and Minor-key Themes: Evidence Consistent with Affect-related Pitch Prosody

    Directory of Open Access Journals (Sweden)

    David Huron

    2008-05-01

    Full Text Available An analysis of 9,788 instrumental themes shows that minor-key themes are, on average, slightly lower in pitch than major-key themes. The lower pitch is not merely an artifact of structural differences in the scales. In addition, instrumental themes in minor keys show a weak though significant tendency to use smaller pitch intervals. Both results are consistent with observations in speech prosody, where sad speakers exhibit a lower F0 and narrower pitch fluctuation compared with normal or happy speakers.

  15. The Significance of the Right Dorsolateral Prefrontal Cortex for Pitch Memory in Non-musicians Depends on Baseline Pitch Memory Abilities

    Directory of Open Access Journals (Sweden)

    Nora K. Schaal

    2017-12-01

    Full Text Available Pitch memory is a resource which is shared by music and language. Neuroimaging studies have shown that the right dorsolateral prefrontal cortex (DLPFC is activated during pitch memory processes. The present study investigated the causal significance of this brain area for pitch memory in non-musicians by applying cathodal and sham transcranial direct current stimulation (tDCS over the right DLPFC and examining the impact on offline pitch and visual memory span performances. On the overall sample (N = 22 no significant modulation effect of cathodal stimulation on the pitch span task was found. However, when dividing the sample by means of a median split of pre-test pitch memory abilities into a high and low performing group, a selective effect of significantly impaired pitch memory after cathodal tDCS in good performers was revealed. The visual control task was not affected by the stimulation in either group. The results support previous neuroimaging studies that the right DLPFC is involved in pitch memory processes in non-musicians and highlights the importance of baseline pitch memory abilities for the modulatory effect of tDCS.

  16. The Significance of the Right Dorsolateral Prefrontal Cortex for Pitch Memory in Non-musicians Depends on Baseline Pitch Memory Abilities.

    Science.gov (United States)

    Schaal, Nora K; Kretschmer, Marina; Keitel, Ariane; Krause, Vanessa; Pfeifer, Jasmin; Pollok, Bettina

    2017-01-01

    Pitch memory is a resource which is shared by music and language. Neuroimaging studies have shown that the right dorsolateral prefrontal cortex (DLPFC) is activated during pitch memory processes. The present study investigated the causal significance of this brain area for pitch memory in non-musicians by applying cathodal and sham transcranial direct current stimulation (tDCS) over the right DLPFC and examining the impact on offline pitch and visual memory span performances. On the overall sample ( N = 22) no significant modulation effect of cathodal stimulation on the pitch span task was found. However, when dividing the sample by means of a median split of pre-test pitch memory abilities into a high and low performing group, a selective effect of significantly impaired pitch memory after cathodal tDCS in good performers was revealed. The visual control task was not affected by the stimulation in either group. The results support previous neuroimaging studies that the right DLPFC is involved in pitch memory processes in non-musicians and highlights the importance of baseline pitch memory abilities for the modulatory effect of tDCS.

  17. Enhanced production and perception of musical pitch in tone language speakers.

    Science.gov (United States)

    Pfordresher, Peter Q; Brown, Steven

    2009-08-01

    Individuals differ markedly with respect to how well they can imitate pitch through singing and in their ability to perceive pitch differences. We explored whether the use of pitch in one's native language can account for some of the differences in these abilities. Results from two studies suggest that individuals whose native language is a tone language, in which pitch contributes to word meaning, are better able to imitate (through singing) and perceptually discriminate musical pitch. These findings support the view that language acquisition fine-tunes the processing of critical auditory dimensions in the speech signal and that this fine-tuning can be carried over into nonlinguistic domains.

  18. Active and passive stabilization of body pitch in insect flight.

    Science.gov (United States)

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J; Chang, Song; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2013-08-06

    Flying insects have evolved sophisticated sensory-motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots.

  19. Absolute pitch correlates with high performance on musical dictation.

    Science.gov (United States)

    Dooley, Kevin; Deutsch, Diana

    2010-08-01

    Absolute pitch (AP)--the ability to name a musical note in the absence of a reference note--is a rare ability whose relevance to musical proficiency has so far been unclear. Sixty trained musicians--thirty who self-reported AP and thirty with equivalent age of onset and duration of musical training--were administered a test for AP and also a musical dictation test not requiring AP. Performance on both types of test were highly correlated (r=.81, pdictation test, the scores of those without AP varied widely, and the performance of the intermediate group of borderline AP possessors fell between that of clear AP possessors and clear nonpossessors. The findings support the hypothesis that AP is associated with proficiency in performing other musical tasks, and run counter to the claim that it confers a disadvantage in the processing of relative pitch.

  20. Determining pitch-angle diffusion coefficients from test particle simulations

    CERN Document Server

    Ivascenko, A; Spanier, F; Vainio, R

    2016-01-01

    Transport and acceleration of charged particles in turbulent media is a topic of great interest in space physics and interstellar astrophysics. These processes are dominated by the scattering of particles off magnetic irregularities. The scattering process itself is usually described by small-angle scattering with the pitch-angle coefficient $D_{\\mu\\mu}$ playing a major role. Since the diffusion coefficient $D_{\\mu\\mu}$ can be determined analytically only for the approximation of quasi-linear theory, the determination of this coefficient from numerical simulations has, therefore, become more important. So far these simulations yield particle tracks for small-scale scattering, which can then be interpreted using the running diffusion coefficients. This method has a limited range of validity. This paper presents two new methods that allow for the calculation of the pitch-angle diffusion coefficient from numerical simulations. These methods no longer analyse particle trajectories, but the change of particle dist...

  1. Standardization of pitch-range settings in voice acoustic analysis.

    Science.gov (United States)

    Vogel, Adam P; Maruff, Paul; Snyder, Peter J; Mundt, James C

    2009-05-01

    Voice acoustic analysis is typically a labor-intensive, time-consuming process that requires the application of idiosyncratic parameters tailored to individual aspects of the speech signal. Such processes limit the efficiency and utility of voice analysis in clinical practice as well as in applied research and development. In the present study, we analyzed 1,120 voice files, using standard techniques (case-by-case hand analysis), taking roughly 10 work weeks of personnel time to complete. The results were compared with the analytic output of several automated analysis scripts that made use of preset pitch-range parameters. After pitch windows were selected to appropriately account for sex differences, the automated analysis scripts reduced processing time of the 1,120 speech samples to less than 2.5 h and produced results comparable to those obtained with hand analysis. However, caution should be exercised when applying the suggested preset values to pathological voice populations.

  2. Investigating the Role of Wind Turbine Pitch using CFD

    Directory of Open Access Journals (Sweden)

    Sobotta Dorit

    2016-01-01

    Full Text Available Horizontal axis wind turbines are an attractive renewable energy source due to their very low carbon emission during their life cycle. In this study the effect of pitching the rotor blades of the NREL Phase VI rotor has been investigated in detail using CFD in order to allow a detailed torque analysis. Initial investigations have shown that at low rotational speeds the inboard section of the blade is responsible for the majority of the power generation. As the rotational speed increases the power producing section is shifted towards the blade tip. These trends are less pronounced when the blade is pitched which allows the blade to generate significantly more power at low rotational speeds. The improved low speed performance however comes at the cost of a significantly lower maximum power output. These findings are particularly relevant for turbines operating in unfavourable wind environments and for small scale turbines which solely rely on their aerodynamic torque for starting.

  3. Application of fin system to reduce pitch motion

    Directory of Open Access Journals (Sweden)

    B. Rajesh Reguram

    2016-07-01

    Full Text Available Container ships are prone to move at a greater speed compared to other merchant ships. The slenderness of the hull of container vessel is for better speed, but it leads to unfavorable motions. The pitch and roll are related and sometimes the vessel might be forced to parametric roll condition which is very dangerous. A fin attached to the ship hull proves to be more efficient in controlling the pitch. The fin is fitted at a lowest possible location of the hull surface and it is at the bow part of the ship. Simulations are done using proven software package ANSYS AQWA and the results are compared. Simulations are done for both regular and irregular seas and the effect of fin on ship motion is studied. P-M spectrum is considered for various sea states.

  4. Dual pitch plasmonic devices for polarization enhanced colour based sensing

    Science.gov (United States)

    Langley, D.; Balaur, E.; Sadatnajafi, C.; Abbey, B.

    2016-12-01

    Plasmonic devices provide a unique sensitivity to changes in the permittivity of the immediate, near-surface environment. In this work we explore the use of dual pitch plasmonic devices combined with microfluidics for polarization enhanced colour sensing of a chemicals' refractive index. We demonstrate that the use of cross-shaped apertures can produce polarization tunable color based sensing in the optical regime and show that the spectral variations as a function of the incident polarization can be decomposed into contributions from the two orthogonal modes that characterize the dual pitch plasmonic device. Finally we demonstrate that the use of the full colour spectrum in the visible range in combination with polarization control enables sensing `by-eye' of refractive index changes below 1 × 10-3 RIU.

  5. An investigation of spatial representation of pitch in individuals with congenital amusia.

    Science.gov (United States)

    Lu, Xuejing; Sun, Yanan; Thompson, William Forde

    2017-09-01

    Spatial representation of pitch plays a central role in auditory processing. However, it is unknown whether impaired auditory processing is associated with impaired pitch-space mapping. Experiment 1 examined spatial representation of pitch in individuals with congenital amusia using a stimulus-response compatibility (SRC) task. For amusic and non-amusic participants, pitch classification was faster and more accurate when correct responses involved a physical action that was spatially congruent with the pitch height of the stimulus than when it was incongruent. However, this spatial representation of pitch was not as stable in amusic individuals, revealed by slower response times when compared with control individuals. One explanation is that the SRC effect in amusics reflects a linguistic association, requiring additional time to link pitch height and spatial location. To test this possibility, Experiment 2 employed a colour-classification task. Participants judged colour while ignoring a concurrent pitch by pressing one of two response keys positioned vertically to be congruent or incongruent with the pitch. The association between pitch and space was found in both groups, with comparable response times in the two groups, suggesting that amusic individuals are only slower to respond to tasks involving explicit judgments of pitch.

  6. Design principles for Bernal spirals and helices with tunable pitch

    Science.gov (United States)

    Fejer, Szilard N.; Chakrabarti, Dwaipayan; Kusumaatmaja, Halim; Wales, David J.

    2014-07-01

    Using the framework of potential energy landscape theory, we describe two in silico designs for self-assembling helical colloidal superstructures based upon dipolar dumbbells and Janus-type building blocks, respectively. Helical superstructures with controllable pitch length are obtained using external magnetic field driven assembly of asymmetric dumbbells involving screened electrostatic as well as magnetic dipolar interactions. The pitch of the helix is tuned by modulating the Debye screening length over an experimentally accessible range. The second design is based on building blocks composed of rigidly linked spheres with short-range anisotropic interactions, which are predicted to self-assemble into Bernal spirals. These spirals are quite flexible, and longer helices undergo rearrangements via cooperative, hinge-like moves, in agreement with experiment.Using the framework of potential energy landscape theory, we describe two in silico designs for self-assembling helical colloidal superstructures based upon dipolar dumbbells and Janus-type building blocks, respectively. Helical superstructures with controllable pitch length are obtained using external magnetic field driven assembly of asymmetric dumbbells involving screened electrostatic as well as magnetic dipolar interactions. The pitch of the helix is tuned by modulating the Debye screening length over an experimentally accessible range. The second design is based on building blocks composed of rigidly linked spheres with short-range anisotropic interactions, which are predicted to self-assemble into Bernal spirals. These spirals are quite flexible, and longer helices undergo rearrangements via cooperative, hinge-like moves, in agreement with experiment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00324a

  7. Sensorimotor control of vocal pitch production in Parkinson's disease.

    Science.gov (United States)

    Chen, Xi; Zhu, Xiaoxia; Wang, Emily Q; Chen, Ling; Li, Weifeng; Chen, Zhaocong; Liu, Hanjun

    2013-08-21

    The present study was designed to investigate the sensorimotor control of voice fundamental frequency (F0) in individuals with Parkinson's diseases (PD). Fifteen Cantonese individuals with PD, and fifteen age- and sex-matched healthy Cantonese individuals participated in the experiment. Participants were asked to vocalize a vowel sound while hearing their voice auditory feedback unexpectedly pitch-shifted upwards or downwards through headphones. The size of pitch shifts varied from 50, 100, to 200 cents. One novel averaging method was used to categorize the individual trials such that only those trials that opposed the perturbation direction were averaged to generate an overall response. The results showed that Cantonese individuals with PD produced significantly larger magnitudes of vocal compensation for pitch perturbations than healthy participants. Both groups showed systematic changes in compensation magnitude as a function of perturbation size and direction: larger perturbation size or upward direction elicited greater compensation magnitude. Moreover, pitch variability indexed by the standard deviations of the baseline F0 was significantly correlated with the magnitude of vocal compensation in individuals with PD, whereas this correlation failed to reach significance for healthy participants. This study presents the first data demonstrating the abnormal processing of auditory feedback in the sensorimotor control of voice F0 for Cantonese individuals with PD. It is suggested that the abnormal sensorimotor integration of voice F0 control in PD may be caused by the increased weighting of auditory feedback control resulting from dysfunction of feedforward control and somatosensory feedback caused by the impairment of the basal ganglia. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Pitch enhancement facilitates word learning across visual contexts

    Directory of Open Access Journals (Sweden)

    Piera eFilippi

    2014-12-01

    Full Text Available This study investigates word-learning using a new model that integrates three processes: a extracting a word out of a continuous sound sequence, b inferring its referential meanings in context, c mapping the segmented word onto its broader intended referent, such as other objects of the same semantic category, and to novel utterances. Previous work has examined the role of statistical learning and/or of prosody in each of these processes separately. Here, we combine these strands of investigation into a single experimental approach, in which participants viewed a photograph belonging to one of three semantic categories while hearing a complex, five-syllable utterance containing a one-syllable target word. Six between-subjects conditions were tested with 20 adult participants each. In condition 1, the only cue to word-meaning mapping was the co-occurrence of word and referents. This statistical cue was present in all conditions. In condition 2, the target word was sounded at a higher pitch. In condition 3, random one-syllable words were sounded at a higher pitch, creating an inconsistent cue. In condition 4, the duration of the target word was lengthened. In conditions 5 and 6, an extraneous acoustic cue and a visual cue were associated with the target word, respectively. Performance in this word-learning task was significantly higher than that observed with simple co-occurrence only when pitch prominence consistently marked the target word. We discuss implications for the intentional value of pitch marking as well as the relevance of our findings to language acquisition and language evolution.

  9. Buds enable pitch and shortleaf pines to recover from injury

    Science.gov (United States)

    S. Little; H. A. Somes

    1956-01-01

    Pitch and shortleaf pines often survive severe damage by fires, cutting, rabbits, or deer. Deer may take all but 2 inches of the 6- to 8-inch shoots of seedlings, and still these seedlings may live and develop new shoots. Fires may kill all the foliage and terminal shoots on sapling or pole-size stems, but still these trees may green up and develop new leaders. Many of...

  10. Light airplane crash tests at three pitch angles

    Science.gov (United States)

    Vaughan, V. L., Jr.; Alfaro-Bou, E.

    1979-01-01

    Three similar twin-engine general aviation airplane specimens were crash tested at an impact dynamics research facility at 27 m/sec, a flight path angle of -15 deg, and pitch angles of -15 deg, 0 deg, and 15 deg. Other crash parameters were held constant. The test facility, instrumentation, test specimens, and test method are briefly described. Structural damage and accelerometer data for each of the three impact conditions are presented and discussed.

  11. Processing pitch in a non-human mammal (Chinchilla laniger)

    OpenAIRE

    Shofner, William P.; Chaney, Megan

    2012-01-01

    Whether the mechanisms giving rise to pitch reflect spectral or temporal processing has long been debated. Generally, sounds having strong harmonic structures in their spectra have strong periodicities in their temporal structures. We found that when a wideband harmonic tone complex is passed through a noise vocoder, the resulting sound can have a harmonic structure with a large peak-to-valley ratio, but with little or no periodicity in the temporal structure. To test the role of harmonic str...

  12. Accuracy of pitch matching significantly improved by live voice model.

    Science.gov (United States)

    Granot, Roni Y; Israel-Kolatt, Rona; Gilboa, Avi; Kolatt, Tsafrir

    2013-05-01

    Singing is, undoubtedly, the most fundamental expression of our musical capacity, yet an estimated 10-15% of Western population sings "out-of-tune (OOT)." Previous research in children and adults suggests, albeit inconsistently, that imitating a human voice can improve pitch matching. In the present study, we focus on the potentially beneficial effects of the human voice and especially the live human voice. Eighteen participants varying in their singing abilities were required to imitate in singing a set of nine ascending and descending intervals presented to them in five different randomized blocked conditions: live piano, recorded piano, live voice using optimal voice production, recorded voice using optimal voice production, and recorded voice using artificial forced voice production. Pitch and interval matching in singing were much more accurate when participants repeated sung intervals as compared with intervals played to them on the piano. The advantage of the vocal over the piano stimuli was robust and emerged clearly regardless of whether piano tones were played live and in full view or were presented via recording. Live vocal stimuli elicited higher accuracy than recorded vocal stimuli, especially when the recorded vocal stimuli were produced in a forced vocal production. Remarkably, even those who would be considered OOT singers on the basis of their performance when repeating piano tones were able to pitch match live vocal sounds, with deviations well within the range of what is considered accurate singing (M=46.0, standard deviation=39.2 cents). In fact, those participants who were most OOT gained the most from the live voice model. Results are discussed in light of the dual auditory-motor encoding of pitch analogous to that found in speech. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  13. Perfect pitch and the implicit/explicit distinction

    OpenAIRE

    Macpherson, F.

    1999-01-01

    This paper examines the representationalist view of experiences in the light of the phenomena of perfect and relative pitch. Two main kinds of representationalism are identified - environment-based and cognitive role-based. It is argued that to explain the relationship between the two theories a distinction should be drawn between various types of implicit and explicit content. When investigated, this distinction sheds some light on the difference between the phenomenology of perfect and rela...

  14. Binaural pitch perception in normal-hearing and hearing-impaired listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2007-01-01

    The effects of hearing impairment on the perception of binaural-pitch stimuli were investigated. Several experiments were performed with normal-hearing and hearing-impaired listeners, including detection and discrimination of binaural pitch, and melody recognition using different types of binaural...... pitches. For the normal-hearing listeners, all types of binaural pitches could be perceived immediately and were musical. The hearing-impaired listeners could be divided into three groups based on their results: (a) some perceived all types of binaural pitches, but with decreased salience or musicality...... compared to normal-hearing listeners; (b) some could only perceive the strongest pitch types; (c) some were unable to perceive any binaural pitch at all. The performance of the listeners was not correlated with audibility. Additional experiments investigated the correlation between performance in binaural...

  15. Relating the absence of binaural pitch percept to retro-cochlear impairment

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    that the salience of binaural pitch was affected by hearing impairment. Specifically, for subjects with a sensorineural impairment, binaural pitch perception was weaker than the normal-hearing average but the pitch sensation was immediately present. In contrast, no binaural pitch sensation at all was found...... for the (only) two subjects with damage at central stages. The aim of the present study is to clarify whether such a sharp distinction between levels of impairment can be made using binaural pitch stimuli. A pitch detection test was performed by three groups of subjects with: 1) normal hearing; 2) a cochlear...... impairment with no sign of retro-cochlear impairment; and 3) a diagnosed retro-cochlear impairment. Subjects were asked to judge the pitch direction of series of five notes of equal duration (300, 600 or 900 ms), ranging from 523 to 784 Hz, presented either in an ascending, descending, or constant sequence...

  16. Neural Representation of Concurrent Harmonic Sounds in Monkey Primary Auditory Cortex: Implications for Models of Auditory Scene Analysis

    Science.gov (United States)

    Steinschneider, Mitchell; Micheyl, Christophe

    2014-01-01

    The ability to attend to a particular sound in a noisy environment is an essential aspect of hearing. To accomplish this feat, the auditory system must segregate sounds that overlap in frequency and time. Many natural sounds, such as human voices, consist of harmonics of a common fundamental frequency (F0). Such harmonic complex tones (HCTs) evoke a pitch corresponding to their F0. A difference in pitch between simultaneous HCTs provides a powerful cue for their segregation. The neural mechanisms underlying concurrent sound segregation based on pitch differences are poorly understood. Here, we examined neural responses in monkey primary auditory cortex (A1) to two concurrent HCTs that differed in F0 such that they are heard as two separate “auditory objects” with distinct pitches. We found that A1 can resolve, via a rate-place code, the lower harmonics of both HCTs, a prerequisite for deriving their pitches and for their perceptual segregation. Onset asynchrony between the HCTs enhanced the neural representation of their harmonics, paralleling their improved perceptual segregation in humans. Pitches of the concurrent HCTs could also be temporally represented by neuronal phase-locking at their respective F0s. Furthermore, a model of A1 responses using harmonic templates could qualitatively reproduce psychophysical data on concurrent sound segregation in humans. Finally, we identified a possible intracortical homolog of the “object-related negativity” recorded noninvasively in humans, which correlates with the perceptual segregation of concurrent sounds. Findings indicate that A1 contains sufficient spectral and temporal information for segregating concurrent sounds based on differences in pitch. PMID:25209282

  17. Ground reaction forces, kinematics, and muscle activations during the windmill softball pitch.

    Science.gov (United States)

    Oliver, Gretchen D; Plummer, Hillary

    2011-07-01

    The aims of the present study were to examine quantitatively ground reaction forces, kinematics, and muscle activations during the windmill softball pitch, and to determine relationships between knee valgus and muscle activations, ball velocity and muscle activation as well as ball velocity and ground reaction forces. It was hypothesized that there would be an inverse relationship between degree of knee valgus and muscle activation, a direct relationship between ground reaction forces and ball velocity, and non-stride leg muscle activations and ball velocity. Ten female windmill softball pitchers (age 17.6 ± 3.47 years, stature 1.67 ± 0.07 m, weight 67.4 ± 12.2 kg) participated. Dependent variables were ball velocity, surface electromyographic (sEMG), kinematic, and kinetic data while the participant was the independent variable. Stride foot contact reported peak vertical forces of 179% body weight. There were positive relationships between ball velocity and ground reaction force (r = 0.758, n = 10, P = 0.029) as well as ball velocity and non-stride leg gluteus maximus (r = 0.851, n = 10, P = 0.007) and medius (r = 0.760, n = 10, P = 0.029) muscle activity, while there was no notable relationship between knee valgus and muscle activation. As the windmill softball pitcher increased ball velocity, her vertical ground reaction forces also increased. Proper conditioning of the lumbopelvic-hip complex, including the gluteals, is essential for injury prevention. From the data presented, it is evident that bilateral strength and conditioning of the gluteal muscle group is salient in the windmill softball pitch as an attempt to decrease incidence of injury.

  18. Do individuals with Williams syndrome possess absolute pitch?

    Science.gov (United States)

    Martínez-Castilla, Pastora; Sotillo, María; Campos, Ruth

    2013-01-01

    Although absolute pitch (AP) is a rare skill in typical development, individuals with Williams syndrome (WS) are often referred to as possessing this musical ability. However, there is paucity of research on the topic. In this article, 2 studies were conducted to evaluate AP in WS. In Study 1, seven musically trained individuals with WS, 14 musically trained typically developing controls matched for chronological age, and 2 experienced musicians with AP completed a pitch-identification task. Although the task was a classical assessment of AP, it required participants to have musical knowledge, and the availability and accessibility of musically trained individuals with WS is very low. In Study 2, a paradigm suitable for evaluating AP in individuals without musical training was used, which made it possible to evaluate a larger group of participants with WS. A pitch memory test for isolated tones was presented to 27 individuals with WS, 54 typically developing peers matched for chronological age, and the 2 musicians with AP. Both individuals with WS and their controls obtained low results in the two studies. They showed an arbitrary pattern of response, and their performance was far from that of musicians with AP. Therefore, participants with WS did not appear to possess AP. Unlike what is usually claimed, results suggest that AP is not a remarkable ability in WS and that, as in the typically developing population, this musical ability is also rare in individuals with WS.

  19. Absolute and relative pitch: Global versus local processing of chords.

    Science.gov (United States)

    Ziv, Naomi; Radin, Shulamit

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce notes without any reference note. An ongoing debate exists regarding the benefits or disadvantages of AP in processing music. One of the main issues in this context is whether the categorical perception of pitch in AP possessors may interfere in processing tasks requiring relative pitch (RP). Previous studies, focusing mainly on melodic and interval perception, have obtained inconsistent results. The aim of the present study was to examine the effect of AP and RP separately, using isolated chords. Seventy-three musicians were categorized into four groups of high and low AP and RP, and were tested on two tasks: identifying chord types (Task 1), and identifying a single note within a chord (Task 2). A main effect of RP on Task 1 and an interaction between AP and RP in reaction times were found. On Task 2 main effects of AP and RP, and an interaction were found, with highest performance in participants with both high AP and RP. Results suggest that AP and RP should be regarded as two different abilities, and that AP may slow down reaction times for tasks requiring global processing.

  20. Tactile cueing in detecting and controlling pitch and roll motion.

    Science.gov (United States)

    Bouak, Fethi; Kline, Julianne; Cheung, Bob

    2011-10-01

    Tactile cueing has been explored primarily for the detection of linear motion such as vertical, longitudinal, and lateral translation in the laboratory and in flight. The usefulness of tactile cues in detecting roll and pitch motion has not been fully investigated. There were 12 subjects (21-56 yr) who were exposed to controlled pitch and roll motion generated by a motion platform with and without tactile cueing. The tactile system consists of a torso vest with 24 electromechanical tactors and a tactor on each shoulder and under each thigh harness, respectively. While devoid of visual and auditory cues, each subject performed three tasks: 1) indicate motion perception without tactile cues (C1); 2) return to vertical from an offset angle (C2); and 3) maintain straight and level while the platform was continuously in motion (C3). Our results indicated that in the absence of visual and auditory cues, subjects reported that the tactile system was useful in the execution of C2 and C3 maneuvers. Specifically, the presence of tactile cues had a significant impact on the accuracy, duration, and perceived workload. In addition, tactile cueing also increased the accuracy in returning to neutral from an offset position and in maintaining the neutral position while the platform was in continuous motion. Tactile cueing appears to be effective in detecting roll and pitch motion and has the potential to reduce the workload and risks of high stress and time sensitive air operations.

  1. Pitching Emotions: The Interpersonal Effects of Emotions in Professional Baseball

    Directory of Open Access Journals (Sweden)

    Arik eCheshin

    2016-02-01

    Full Text Available Sports games are inherently emotional situations, but surprisingly little is known about the social consequences of these emotions. We examined the interpersonal effects of emotional expressions in professional baseball. Specifically, we investigated whether pitchers' facial displays influence how pitches are assessed and responded to. Using footage from MLB World Series finals, we isolated incidents where the pitcher's face was visible before a pitch. A pre-study indicated that participants consistently perceived anger, happiness, and worry in pitchers' facial displays. An independent sample then predicted pitch characteristics and batter responses based on the same perceived emotional displays. Participants expected pitchers perceived as happy to throw more accurate balls, pitchers perceived as angry to throw faster and more difficult balls, and pitchers perceived as worried to throw slower and less accurate balls. Batters were expected to approach (swing when faced with a pitcher perceived as happy and to avoid (no swing when faced with a pitcher perceived as worried. Whereas previous research focused on using emotional expressions as information regarding past and current situations, our work suggests that people also use perceived emotional expressions to predict future behavior. Our results attest to the impact perceived emotional expressions can have on professional sports.

  2. [Neural repair].

    Science.gov (United States)

    Kitada, Masaaki; Dezawa, Mari

    2008-05-01

    Recent progress of stem cell biology gives us the hope for neural repair. We have established methods to specifically induce functional Schwann cells and neurons from bone marrow stromal cells (MSCs). The effectiveness of these induced cells was evaluated by grafting them either into peripheral nerve injury, spinal cord injury, or Parkinson' s disease animal models. MSCs-derived Schwann cells supported axonal regeneration and re-constructed myelin to facilitate the functional recovery in peripheral and spinal cord injury. MSCs-derived dopaminergic neurons integrated into host striatum and contributed to behavioral repair. In this review, we introduce the differentiation potential of MSCs and finally discuss about their benefits and drawbacks of these induction systems for cell-based therapy in neuro-traumatic and neuro-degenerative diseases.

  3. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  4. Using spatial manipulation to examine interactions between visual and auditory encoding of pitch and time

    Directory of Open Access Journals (Sweden)

    Neil M McLachlan

    2010-12-01

    Full Text Available Music notations use both symbolic and spatial representation systems. Novice musicians do not have the training to associate symbolic information with musical identities, such as chords or rhythmic and melodic patterns. They provide an opportunity to explore the mechanisms underpinning multimodal learning when spatial encoding strategies of feature dimensions might be expected to dominate. In this study, we applied a range of transformations (such as time reversal to short melodies and rhythms and asked novice musicians to identify them with or without the aid of notation. Performance using a purely spatial (graphic notation was contrasted with the more symbolic, traditional western notation over a series of weekly sessions. The results showed learning effects for both notation types, but performance improved more for graphic notation. This points to greater compatibility of auditory and visual neural codes for novice musicians when using spatial notation, suggesting that pitch and time may be spatially encoded in multimodal associative memory. The findings also point to new strategies for training novice musicians.

  5. How We Hear: The Perception and Neural Coding of Sound.

    Science.gov (United States)

    Oxenham, Andrew J

    2018-01-04

    Auditory perception is our main gateway to communication with others via speech and music, and it also plays an important role in alerting and orienting us to new events. This review provides an overview of selected topics pertaining to the perception and neural coding of sound, starting with the first stage of filtering in the cochlea and its profound impact on perception. The next topic, pitch, has been debated for millennia, but recent technical and theoretical developments continue to provide us with new insights. Cochlear filtering and pitch both play key roles in our ability to parse the auditory scene, enabling us to attend to one auditory object or stream while ignoring others. An improved understanding of the basic mechanisms of auditory perception will aid us in the quest to tackle the increasingly important problem of hearing loss in our aging population.

  6. Pitch Processing in Children with Williams Syndrome: Relationships between Music and Prosody Skills.

    Science.gov (United States)

    Martínez-Castilla, Pastora; Sotillo, María

    2014-05-15

    Williams syndrome (WS), a genetic neurodevelopmental disorder, has been taken as evidence that music and language constitute separate modules. This research focused on the linguistic component of prosody and aimed to assess whether relationships exist between the pitch processing mechanisms for music and prosody in WS. Children with WS and typically developing individuals were presented with a musical pitch and two prosody discrimination tasks. In the musical pitch discrimination task, participants were required to distinguish whether two musical tones were the same or different. The prosody discrimination tasks evaluated participants' skills for discriminating pairs of prosodic contours based on pitch or pitch, loudness and length, jointly. In WS, musical pitch discrimination was significantly correlated with performance on the prosody task assessing the discrimination of prosodic contours based on pitch only. Furthermore, musical pitch discrimination skills predicted performance on the prosody task based on pitch, and this relationship was not better explained by chronological age, vocabulary or auditory memory. These results suggest that children with WS process pitch in music and prosody through shared mechanisms. We discuss the implications of these results for theories of cognitive modularity. The implications of these results for intervention programs for individuals with WS are also discussed.

  7. Normal-Hearing Listeners’ and Cochlear Implant Users’ Perception of Pitch Cues in Emotional Speech

    Directory of Open Access Journals (Sweden)

    Steven Gilbers

    2015-10-01

    Full Text Available In cochlear implants (CIs, acoustic speech cues, especially for pitch, are delivered in a degraded form. This study’s aim is to assess whether due to degraded pitch cues, normal-hearing listeners and CI users employ different perceptual strategies to recognize vocal emotions, and, if so, how these differ. Voice actors were recorded pronouncing a nonce word in four different emotions: anger, sadness, joy, and relief. These recordings’ pitch cues were phonetically analyzed. The recordings were used to test 20 normal-hearing listeners’ and 20 CI users’ emotion recognition. In congruence with previous studies, high-arousal emotions had a higher mean pitch, wider pitch range, and more dominant pitches than low-arousal emotions. Regarding pitch, speakers did not differentiate emotions based on valence but on arousal. Normal-hearing listeners outperformed CI users in emotion recognition, even when presented with CI simulated stimuli. However, only normal-hearing listeners recognized one particular actor’s emotions worse than the other actors’. The groups behaved differently when presented with similar input, showing that they had to employ differing strategies. Considering the respective speaker’s deviating pronunciation, it appears that for normal-hearing listeners, mean pitch is a more salient cue than pitch range, whereas CI users are biased toward pitch range cues.

  8. Pitch Processing in Children with Williams Syndrome: Relationships between Music and Prosody Skills

    Directory of Open Access Journals (Sweden)

    Pastora Martínez-Castilla

    2014-05-01

    Full Text Available Williams syndrome (WS, a genetic neurodevelopmental disorder, has been taken as evidence that music and language constitute separate modules. This research focused on the linguistic component of prosody and aimed to assess whether relationships exist between the pitch processing mechanisms for music and prosody in WS. Children with WS and typically developing individuals were presented with a musical pitch and two prosody discrimination tasks. In the musical pitch discrimination task, participants were required to distinguish whether two musical tones were the same or different. The prosody discrimination tasks evaluated participants’ skills for discriminating pairs of prosodic contours based on pitch or pitch, loudness and length, jointly. In WS, musical pitch discrimination was significantly correlated with performance on the prosody task assessing the discrimination of prosodic contours based on pitch only. Furthermore, musical pitch discrimination skills predicted performance on the prosody task based on pitch, and this relationship was not better explained by chronological age, vocabulary or auditory memory. These results suggest that children with WS process pitch in music and prosody through shared mechanisms. We discuss the implications of these results for theories of cognitive modularity. The implications of these results for intervention programs for individuals with WS are also discussed.

  9. The effects of medial ulnar collateral ligament reconstruction on Major League pitching performance.

    Science.gov (United States)

    Keller, Robert A; Steffes, Matthew J; Zhuo, David; Bey, Michael J; Moutzouros, Vasilios

    2014-11-01

    Medial ulnar collateral ligament (MUCL) reconstruction is commonly performed on Major League Baseball (MLB) pitchers. Previous studies have reported that most pitchers return to presurgical statistical performance levels after MUCL reconstruction. Pitching performance data--specifically, earned run average (ERA), walks and hits per inning pitched (WHIP), winning percentage, and innings pitched--were acquired for 168 MLB pitchers who had undergone MUCL reconstruction. These data were averaged over the 3 years before surgery and the 3 years after surgery and also acquired from 178 age-matched, uninjured MLB pitchers. Of the pitchers who had MUCL reconstruction surgery, 87% returned to MLB pitching. However, compared with presurgical data, pitching performance declined in terms of ERA (P = .001), WHIP (P = .011), and innings pitched (P = .026). Pitching performance also declined in the season before the surgery compared with previous years (ERA, P = .014; WHIP, P = .036; innings pitched, P major league experience at the same age (P major league level. However, after MUCL reconstruction, there is a statistically significant decline in pitching performance. There appears to be a statistically significant decline in pitching performance the year before reconstructive surgery, and this decline is also a risk factor for requiring surgery. In addition, there is an increased risk of MUCL reconstruction for pitchers who enter the major leagues at a younger age. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  10. Major League pitching workload after primary ulnar collateral ligament reconstruction and risk for revision surgery.

    Science.gov (United States)

    Keller, Robert A; Mehran, Nima; Marshall, Nathan E; Okoroha, Kelechi R; Khalil, Lafi; Tibone, James E; Moutzouros, Vasilios

    2017-02-01

    Literature has attempted to correlate pitching workload with risk of ulnar collateral ligament (UCL) injury; however, limited data are available in evaluating workload and its relationship with the need for revision reconstruction in Major League Baseball (MLB) pitchers. We identified 29 MLB pitchers who underwent primary UCL reconstruction surgery and subsequently required revision reconstruction and compared them with 121 MLB pitchers who underwent primary reconstruction but did not later require revision surgery. Games pitched, pitch counts, and innings pitched were evaluated and compared for the seasons after returning from primary reconstruction and for the last season pitched before undergoing revision surgery. The difference in workload between pitchers who did and did not require revision reconstruction was not statistically significant in games pitched, innings pitched, and MLB-only pitch counts. The one significant difference in workload was in total pitch counts (combined MLB and minor league), with the pitchers who required revision surgery pitching less than those who did not (primary: 1413.6 pitches vs. revision: 959.0 pitches, P = .04). In addition, pitchers who required revision surgery underwent primary reconstruction at an early age (22.9 years vs. 27.3 years, P < .001) and had less MLB experience (1.5 years vs. 5.0 years, P < .001). There is no specific number of pitches, innings, or games that place a pitcher at an increase risk for injury after primary UCL reconstruction. However, correlations of risk may be younger age and less MLB experience at the time of the primary reconstruction. Copyright © 2017. Published by Elsevier Inc.

  11. Global Neural Pattern Similarity as a Common Basis for Categorization and Recognition Memory

    OpenAIRE

    Davis, Tyler; Xue, Gui; Love, Bradley C.; Preston, Alison. R.; Poldrack, Russell A

    2014-01-01

    Familiarity, or memory strength, is a central construct in models of cognition. In previous categorization and long-term memory research, correlations have been found between psychological measures of memory strength and activation in the medial temporal lobes (MTLs), which suggests a common neural locus for memory strength. However, activation alone is insufficient for determining whether the same mechanisms underlie neural function across domains. Guided by mathematical models of categoriza...

  12. Interlaboratory comparison of traceable atomic force microscope pitch measurements

    Science.gov (United States)

    Dixson, Ronald; Chernoff, Donald A.; Wang, Shihua; Vorburger, Theodore V.; Tan, Siew Leng; Orji, Ndubuisi G.; Fu, Joseph

    2010-06-01

    The National Institute of Standards and Technology (NIST), Advanced Surface Microscopy (ASM), and the National Metrology Centre (NMC) of the Agency for Science, Technology, and Research (A*STAR) in Singapore have completed a three-way interlaboratory comparison of traceable pitch measurements using atomic force microscopy (AFM). The specimen being used for this comparison is provided by ASM and consists of SiO2 lines having a 70 nm pitch patterned on a silicon substrate. NIST has a multifaceted program in atomic force microscope (AFM) dimensional metrology. One component of this effort is a custom in-house metrology AFM, called the calibrated AFM (C-AFM). The NIST C-AFM has displacement metrology for all three axes traceable to the 633 nm wavelength of the iodine-stabilized He-Ne laser - a recommended wavelength for realization of the SI (Système International d'Unités, or International System of Units) meter. NIST used the C-AFM to participate in this comparison. ASM used a commercially available AFM with an open-loop scanner, calibrated by a 144 nm pitch transfer standard. In a prior collaboration with Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, ASM's transfer standard was calibrated using PTB's traceable optical diffractometry instrument. Thus, ASM's measurements are also traceable to the SI meter. NMC/A*STAR used a large scanning range metrological atomic force microscope (LRM-AFM). The LRM-AFM integrates an AFM scanning head into a nano-stage equipped with three built-in He-Ne laser interferometers so that its measurement related to the motion on all three axes is directly traceable to the SI meter. The measurements for this interlaboratory comparison have been completed and the results are in agreement within their expanded uncertainties and at the level of a few parts in 104.

  13. Survey on Neural Networks Used for Medical Image Processing.

    Science.gov (United States)

    Shi, Zhenghao; He, Lifeng; Suzuki, Kenji; Nakamura, Tsuyoshi; Itoh, Hidenori

    2009-02-01

    This paper aims to present a review of neural networks used in medical image processing. We classify neural networks by its processing goals and the nature of medical images. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of neural network application for medical image processing and an outlook for the future research are also discussed. By this survey, we try to answer the following two important questions: (1) What are the major applications of neural networks in medical image processing now and in the nearby future? (2) What are the major strengths and weakness of applying neural networks for solving medical image processing tasks? We believe that this would be very helpful researchers who are involved in medical image processing with neural network techniques.

  14. Binaural pitch perception in hearing-impaired listeners

    DEFF Research Database (Denmark)

    Dau, Torsten; Santurette, Sébastien; Strelcyk, Olaf

    2007-01-01

    When two white noises differing only in phase in a particular frequency range are presented simultaneously each to one of our ears, a pitch sensation may be perceived inside the head. This phenomenon, called ’binaural pitch’ or ’dichotic pitch’, can be produced by frequency-dependent interaural...... phasedifference patterns. The evaluation of these interaural phase differences depends on the functionality of the binaural auditory system and the spectro-temporal information at its input. A melody recognition task was performed in the present study using pure-tone stimuli and six different types of noises...

  15. Crackle and fizz essential communication and pitching skills for scientists

    CERN Document Server

    Van den Brul, Caroline

    2014-01-01

    This is a book for scientists and other experts who need to explain the significance and potential of their work to colleagues, committees, funding bodies or the general public. It details how to harness story-telling principles to make complex or technical content easier to communicate and fulfilling for audiences. Eight narrative ingredients, Audience, Change and Affect, Lure, World, Character, Big Hook, Plot and Structure, are illustrated with examples and exercises to demonstrate how to build a presentation, how to pitch for funds or resources, how to make a persuasive argument, or simply how to explain ideas so they CRACKLE and FIZZ for the Audience.

  16. Computationally Efficient and Noise Robust DOA and Pitch Estimation

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2016-01-01

    signals are often contaminated by different types of noise, which challenges the assumption of white Gaussian noise in most state-of-the-art methods. We establish filtering methods based on noise statistics to apply to nonparametric spectral and spatial parameter estimates of the harmonics. We design...... a joint DOA and pitch estimator. In white Gaussian noise, we derive even more computationally efficient solutions which are designed using the narrowband power spectrum of the harmonics. Numerical results reveal the performance of the estimators in colored noise compared with the Cram\\'{e}r-Rao lower...

  17. Fuzzy maintenance costs of a wind turbine pitch control device

    Directory of Open Access Journals (Sweden)

    Mariana Carvalho

    2015-07-01

    Full Text Available This paper deals with the problem of estimation maintenance costs for the case of the pitch controls system of wind farms turbines. Previous investigations have estimated these costs as (traditional “crisp” values, simply ignoring the uncertainty nature of data and information available. This paper purposes an extended version of the estimation model by making use of the Fuzzy Set Theory. The results alert decision-makers to consequent uncertainty of the estimations along with their overall level, thus improving the information given to the mainte-nance support system.

  18. LQG Controller Design for Pitch Regulated Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Imran, Raja Muhammed; Hussain, Dil Muhammad Akbar; Chen, Zhe

    2014-01-01

    the effect of disturbance acting on its rotor blades by wind. CART2 (Control Advanced Research Turbine) linear model is produced/generated by FAST (Fatigue, Aerodynamics, Structures and Turbulence) code to test its simulation on MATLAB/Simulink and various results are compared. The designed controller......Variable speed wind turbine is a complex and nonlinear system, a sophisticated control is required to meet the challenges posed by these systems. This paper is presenting a pitch regulation strategy based on LQG (Linear Quadratic Gaussian) to regulate turbine at its rated power and to reject...

  19. Kalimat Tanya Dalam Film Pitch Perfect Karya Jason Moore

    OpenAIRE

    Londok, Aprilia Fenria Ireine

    2016-01-01

    This study, entitled “The Interrogative Sentence in The Film” Pitch Perfect by Jason Moore, is aimed at identifyng and analyzing the interrogative sentence found in the film. The data have been collected by focusing on the conversation among the characters in the film and analyzed based on Aarts and Aarts' concept. Interrogative sentence is a sentence that contains subject and open with an auxiliary verb or a wh-word. Interrogative sentence which is open with an auxiliary verb is called yes/n...

  20. Pitch Fork: A Novel tactile Digital Musical Instrument

    DEFF Research Database (Denmark)

    Williams, Peter Leslie; Overholt, Daniel

    2017-01-01

    Pitch Fork is a prototype of an alternate, actuated digital musical instrument (DMI). It uses 5 infra-red and 4 piezoelectric sensors to control an additive synthesis engine. Iron bars are used as the physical point of contact in interaction with the aim of using this materials natural acoustic p...... properties as a control signal for aspects of the digitally produced sound. This choice of material was also chosen to affect player experience. Sensor readings are relayed to a Macbook via an Arduino Mega. Mappings and audio output signal is carried out with Pure Data Extended....