WorldWideScience

Sample records for neural pitch strength

  1. Estimates of pitch strength for musicians and nonmusicians

    Science.gov (United States)

    Clarkson, Marsha G.; Zettler, Cynthia M.; Follmer, Michelle J.; Faulk, Margaret; Takagi, Michael J.

    2003-04-01

    To measure the strength of the pitch of iterated rippled noise (IRN), 19 adults were tested in an operant conditioning procedure. Seven adults had music training and currently played an instrument; 12 adults had no training and did not currently play an instrument. To generate IRN, a 500-ms Gaussian noise stimulus was delayed by 5 or 6 ms (pitches of 200 or 166 Hz) and added to the original for 16 iterations. IRN stimuli having one delay were presented repeatedly. On signal trials the delay changed for 6 s. Stimulus level roved from 63-67 dBA (background of 28 dBA). Adults learned to press a button when the stimulus changed. Testing started with IRN stimuli having 0-dB attenuation (i.e., maximal pitch strength). Stimuli having weaker pitches (i.e., progressively greater attenuation applied to the delayed noise) followed. Strength of pitch was quantified as the maximum attenuation for which pitch was discerned. For each subject, threshold attenuation for pitch strength was extrapolated as the 71% point on a psychometric function depicting percent correct performance as a function of attenuation. Mean thresholds revealed that the pitch percept was similar for both nonmusically trained (18.70 dB) and musically trained adults (18.73 dB).

  2. Neural mechanisms underlying melodic perception and memory for pitch.

    Science.gov (United States)

    Zatorre, R J; Evans, A C; Meyer, E

    1994-04-01

    The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the first two notes of the same set of melodies, and (4) comparing the pitch of the first and last notes of the melodies. The latter two conditions were designed to investigate short-term pitch retention under low or high memory load, respectively. Subtraction of the obtained PET images, superimposed on matched MRI scans, provides anatomical localization of CBF changes associated with specific cognitive functions. Listening to melodies, relative to acoustically matched noise sequences, resulted in CBF increases in the right superior temporal and right occipital cortices. Pitch judgments of the first two notes of each melody, relative to passive listening to the same stimuli, resulted in right frontal-lobe activation. Analysis of the high memory load condition relative to passive listening revealed the participation of a number of cortical and subcortical regions, notably in the right frontal and right temporal lobes, as well as in parietal and insular cortex. Both pitch judgment conditions also revealed CBF decreases within the left primary auditory cortex. We conclude that specialized neural systems in the right superior temporal cortex participate in perceptual analysis of melodies; pitch comparisons are effected via a neural network that includes right prefrontal cortex, but active retention of pitch involves the interaction of right temporal and frontal cortices.

  3. The Neural Basis of Vocal Pitch Imitation in Humans.

    Science.gov (United States)

    Belyk, Michel; Pfordresher, Peter Q; Liotti, Mario; Brown, Steven

    2016-04-01

    Vocal imitation is a phenotype that is unique to humans among all primate species, and so an understanding of its neural basis is critical in explaining the emergence of both speech and song in human evolution. Two principal neural models of vocal imitation have emerged from a consideration of nonhuman animals. One hypothesis suggests that putative mirror neurons in the inferior frontal gyrus pars opercularis of Broca's area may be important for imitation. An alternative hypothesis derived from the study of songbirds suggests that the corticostriate motor pathway performs sensorimotor processes that are specific to vocal imitation. Using fMRI with a sparse event-related sampling design, we investigated the neural basis of vocal imitation in humans by comparing imitative vocal production of pitch sequences with both nonimitative vocal production and pitch discrimination. The strongest difference between these tasks was found in the putamen bilaterally, providing a striking parallel to the role of the analogous region in songbirds. Other areas preferentially activated during imitation included the orofacial motor cortex, Rolandic operculum, and SMA, which together outline the corticostriate motor loop. No differences were seen in the inferior frontal gyrus. The corticostriate system thus appears to be the central pathway for vocal imitation in humans, as predicted from an analogy with songbirds.

  4. Effect of Pitching Consecutive Days in Youth Fast-Pitch Softball Tournaments on Objective Shoulder Strength and Subjective Shoulder Symptoms.

    Science.gov (United States)

    Skillington, S Andrew; Brophy, Robert H; Wright, Rick W; Smith, Matthew V

    2017-05-01

    The windmill pitching motion has been associated with risk for shoulder injury. Because there are no pitching limits on youth fast-pitch softball pitchers, these athletes often pitch multiple games across consecutive days. Strength changes, fatigue levels, and shoulder pain that develop among female fast-pitch pitchers over the course of consecutive days of pitching have not been investigated. Over the course of 2- and 3-day fast-pitch softball tournaments, pitchers will develop progressive objective weakness and increased subjective shoulder fatigue and pain without complete recovery between days. Cross-sectional study; Level of evidence, 3. Fourteen female fast-pitch softball pitchers between the ages of 14 and 18 years were evaluated for strength and fatigue changes across 2- and 3-day tournaments. At the beginning and end of each day of tournament play, pitchers were asked to quantify shoulder fatigue and shoulder pain levels of their dominant throwing arm using a 10-point visual analog scale (VAS). Shoulder abduction, flexion, external rotation, internal rotation, elbow flexion, and elbow extension strength measurements were gathered using a handheld dynamometer. Over the course of an average single day of tournament participation, pitchers developed significant increases in VAS scores for shoulder fatigue (median, 2.0; 95% CI, 1.3-3.0) and pain (median, 1.3; 95% CI, 0.5-2.3) and significant strength loss in all tested motions. Pitchers also developed significant increases in VAS shoulder fatigue (median, 3.5; 95% CI, 1.5-5.5), VAS shoulder pain (median, 2.5; 95% CI, 1.0-4.5), and strength loss in all tested motions over the entire tournament. Shoulder pain, fatigue, and strength do not fully recover between days. The accumulation of subjective shoulder pain and fatigue over the course of tournament play were closely correlated. Among youth female fast-pitch softball pitchers, there is a progressive increase in shoulder fatigue, pain, and weakness over the

  5. Neural Networks for Segregation of Multiple Objects: Visual Figure-Ground Separation and Auditory Pitch Perception.

    Science.gov (United States)

    Wyse, Lonce

    An important component of perceptual object recognition is the segmentation into coherent perceptual units of the "blooming buzzing confusion" that bombards the senses. The work presented herein develops neural network models of some key processes of pre-attentive vision and audition that serve this goal. A neural network model, called an FBF (Feature -Boundary-Feature) network, is proposed for automatic parallel separation of multiple figures from each other and their backgrounds in noisy images. Figure-ground separation is accomplished by iterating operations of a Boundary Contour System (BCS) that generates a boundary segmentation of a scene, and a Feature Contour System (FCS) that compensates for variable illumination and fills-in surface properties using boundary signals. A key new feature is the use of the FBF filling-in process for the figure-ground separation of connected regions, which are subsequently more easily recognized. The new CORT-X 2 model is a feed-forward version of the BCS that is designed to detect, regularize, and complete boundaries in up to 50 percent noise. It also exploits the complementary properties of on-cells and off -cells to generate boundary segmentations and to compensate for boundary gaps during filling-in. In the realm of audition, many sounds are dominated by energy at integer multiples, or "harmonics", of a fundamental frequency. For such sounds (e.g., vowels in speech), the individual frequency components fuse, so that they are perceived as one sound source with a pitch at the fundamental frequency. Pitch is integral to separating auditory sources, as well as to speaker identification and speech understanding. A neural network model of pitch perception called SPINET (SPatial PItch NETwork) is developed and used to simulate a broader range of perceptual data than previous spectral models. The model employs a bank of narrowband filters as a simple model of basilar membrane mechanics, spectral on-center off-surround competitive

  6. Neural adaptations to electrical stimulation strength training

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Maffiuletti, Nicola A.

    2011-01-01

    This review provides evidence for the hypothesis that electrostimulation strength training (EST) increases the force of a maximal voluntary contraction (MVC) through neural adaptations in healthy skeletal muscle. Although electrical stimulation and voluntary effort activate muscle differently, there

  7. Language-dependent changes in pitch-relevant neural activity in the auditory cortex reflect differential weighting of temporal attributes of pitch contours

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Xu, Yi; Suresh, Chandan H.

    2016-01-01

    There remains a gap in our knowledge base about neural representation of pitch attributes that occur between onset and offset of dynamic, curvilinear pitch contours. The aim is to evaluate how language experience shapes processing of pitch contours as reflected in the amplitude of cortical pitch-specific response components. Responses were elicited from three nonspeech, bidirectional (falling-rising) pitch contours representative of Mandarin Tone 2 varying in location of the turning point with fixed onset and offset. At the frontocentral Fz electrode site, Na–Pb and Pb–Nb amplitude of the Chinese group was larger than the English group for pitch contours exhibiting later location of the turning point relative to the one with the earliest location. Chinese listeners’ amplitude was also greater than that of English in response to those same pitch contours with later turning points. At lateral temporal sites (T7/T8), Na–Pb amplitude was larger in Chinese listeners relative to English over the right temporal site. In addition, Pb–Nb amplitude of the Chinese group showed a rightward asymmetry. The pitch contour with its turning point located about halfway of total duration evoked a rightward asymmetry regardless of group. These findings suggest that neural mechanisms processing pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to weighted integration of changes in acceleration rates of rising and falling sections and the location of the turning point. PMID:28713201

  8. Are lexical tones musical? Native language's influence on neural response to pitch in different domains.

    Science.gov (United States)

    Chen, Ao; Peter, Varghese; Wijnen, Frank; Schnack, Hugo; Burnham, Denis

    2018-04-21

    Language experience shapes musical and speech pitch processing. We investigated whether speaking a lexical tone language natively modulates neural processing of pitch in language and music as well as their correlation. We tested tone language (Mandarin Chinese), and non-tone language (Dutch) listeners in a passive oddball paradigm measuring mismatch negativity (MMN) for (i) Chinese lexical tones and (ii) three-note musical melodies with similar pitch contours. For lexical tones, Chinese listeners showed a later MMN peak than the non-tone language listeners, whereas for MMN amplitude there were no significant differences between groups. Dutch participants also showed a late discriminative negativity (LDN). In the music condition two MMNs, corresponding to the two notes that differed between the standard and the deviant were found for both groups, and an LDN were found for both the Dutch and the Chinese listeners. The music MMNs were significantly right lateralized. Importantly, significant correlations were found between the lexical tone and the music MMNs for the Dutch but not the Chinese participants. The results suggest that speaking a tone language natively does not necessarily enhance neural responses to pitch either in language or in music, but that it does change the nature of neural pitch processing: non-tone language speakers appear to perceive lexical tones as musical, whereas for tone language speakers, lexical tones and music may activate different neural networks. Neural resources seem to be assigned differently for the lexical tones and for musical melodies, presumably depending on the presence or absence of long-term phonological memory traces. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Using a Neural Network Approach to Find Unusual Butterfly Pitch Angle Distribution Shapes

    Science.gov (United States)

    Medeiros, C.; Sibeck, D. G.; Souza, V. M. C. E. S.; Vieira, L.; Alves, L. R.; Da Silva, L. A.; Kanekal, S. G.; Baker, D. N.

    2017-12-01

    A special kind of neural network referred to as a Self-Organizing Map (SOM) was previously adopted to identify, in pitch angle-resolved relativistic electron flux data provided by the REPT instrument onboard the Van Allen Probes, three major types of electron pitch angle distributions (PADs), namely 90o-peaked, butterfly and flattop (Souza et al., 2016), following the classification scheme employed by Gannon et al. (2007). Previous studies show that butterfly distribution can be found in more than one shape. They usually exhibit an intense decrease near 90° pitch angles compared to the peaks usually around 30° and 150°. Sometimes unusual butterfly PAD shapes with peaks near 45° and 135° pitch angles can be observed. These could be correlated with different physical processes that govern the production and loss of energetic particles in the Van Allen radiation belt. A neural network approach allows the distinction of different kinds of butterfly PADs which were not analyzed in detail by Souza et al. (2016). This study uses SOM methodology to find these unusual butterfly PAD shape during the interval between January 1, 2014 and October 1, 2015, during which Van Allen Probes orbit covered all MLT. The spatial and temporal occurrence of these events were investigated as well as their solar wind and magnetospheric drivers.

  10. You Can’t Think and Hit at the Same Time: Neural Correlates of Baseball Pitch Classification

    Directory of Open Access Journals (Sweden)

    Jason eSherwin

    2012-12-01

    Full Text Available Hitting a baseball is often described as the most difficult thing to do in sports. A key aptitude of a good hitter is the ability to determine which pitch is coming. This rapid decision requires the batter to make a judgment in a fraction of a second based largely on the trajectory and spin of the ball. When does this decision occur relative to the ball’s trajectory and is it possible to identify neural correlates that represent how the decision evolves over a split second? Using single-trial analysis of electroencephalography (EEG we address this question within the context of subjects discriminating three types of pitches (fastball, curveball, slider based on pitch trajectories. We find clear neural signatures of pitch classification and, using signal detection theory, we identify the times of discrimination on a trial-to-trial basis. Based on these neural signatures we estimate neural discrimination distributions as a function of the distance the ball is from the plate. We find all three pitches yield unique distributions, namely the timing of the discriminating neural signatures relative to the position of the ball in its trajectory. For instance, fastballs are discriminated at the earliest points in their trajectory, relative to the two other pitches, which is consistent with the need for some constant time to generate and execute the motor plan for the swing (or inhibition of the swing. We also find incorrect discrimination of a pitch (errors yields neural sources in Brodmann Area 10 (BA 10, which has been implicated in prospective memory, recall and task difficulty. In summary, we show that single-trial analysis of EEG yields informative distributions of the relative point in a baseball’s trajectory when the batter makes a decision on which pitch is coming.

  11. Effect of pitching consecutive days in youth softball tournaments on objective shoulder strength and subjective shoulder symptoms

    Science.gov (United States)

    Skillington, S. Andrew; Brophy, Robert H.; Wright, Rick W.; Smith, Matthew V.

    2017-01-01

    Background The windmill pitching motion has been associated with risk for shoulder injury. Since there are no pitching limits on youth fast-pitch softball pitchers, these athletes often pitch multiple games across consecutive days. Strength changes, fatigue levels, and shoulder pain that develop among female fast-pitch pitchers over the course of consecutive days of pitching have not been investigated. Hypothesis Over the course of 2 and 3-day fast-pitch softball tournaments, pitchers will develop progressive objective weakness and increased subjective shoulder fatigue and pain without complete recovery between days. Study Design Cross-Sectional Study. Methods Female fast-pitch softball pitchers between the ages of 14 and 18 who were pitching in 2 and 3-day tournaments were recruited for study participation. At the beginning and end of each day of tournament play, pitchers were asked to quantify shoulder fatigue and shoulder pain levels of their dominant throwing arm using a 10-point visual analog scale (VAS). Shoulder abduction, flexion, external rotation, internal rotation, elbow flexion, and elbow extension strength measurements were gathered using a hand-held dynamometer. Results Over the course of an average single day of tournament participation, pitchers developed significant increases in VAS shoulder fatigue (2.0, 95% CI: 1.3 to 3.0), and pain (1.3, 95% CI: 0.5 to 2.3) and significant strength loss in all tested motions. Pitchers also developed significant increases in VAS shoulder fatigue (3.5, 95% CI: 1.5 to 5.5), VAS shoulder pain (2.5, 95% CI: 1.0 to 4.5) and strength loss in all tested motions over the entire tournament. Shoulder pain, fatigue, and strength do not fully recover between days. The accumulation of subjective shoulder pain and fatigue over the course of tournament play were closely correlated. Conclusion Among youth female fast-pitch softball pitchers, there is a progressive increase in shoulder fatigue, pain, and weakness over the course

  12. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm.

    Science.gov (United States)

    Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour

    2012-09-01

    In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  13. A Neural Network Approach for Identifying Particle Pitch Angle Distributions in Van Allen Probes Data

    Science.gov (United States)

    Souza, V. M.; Vieira, L. E. A.; Medeiros, C.; Da Silva, L. A.; Alves, L. R.; Koga, D.; Sibeck, D. G.; Walsh, B. M.; Kanekal, S. G.; Jauer, P. R.; hide

    2016-01-01

    Analysis of particle pitch angle distributions (PADs) has been used as a means to comprehend a multitude of different physical mechanisms that lead to flux variations in the Van Allen belts and also to particle precipitation into the upper atmosphere. In this work we developed a neural network-based data clustering methodology that automatically identifies distinct PAD types in an unsupervised way using particle flux data. One can promptly identify and locate three well-known PAD types in both time and radial distance, namely, 90deg peaked, butterfly, and flattop distributions. In order to illustrate the applicability of our methodology, we used relativistic electron flux data from the whole month of November 2014, acquired from the Relativistic Electron-Proton Telescope instrument on board the Van Allen Probes, but it is emphasized that our approach can also be used with multiplatform spacecraft data. Our PAD classification results are in reasonably good agreement with those obtained by standard statistical fitting algorithms. The proposed methodology has a potential use for Van Allen belt's monitoring.

  14. A Neural Network Controller for Variable-Speed Variable-Pitch Wind Energy Conversion Systems Using Generalized Minimum Entropy Criterion

    Directory of Open Access Journals (Sweden)

    Mifeng Ren

    2014-01-01

    Full Text Available This paper considers the neural network controller design problem for variable pitch wind energy conversion systems (WECS with non-Gaussian wind speed disturbances in the stochastic distribution control framework. The approach here is used to directly model the unknown control law based on a fixed neural network (the number of layers and nodes in a neural network is fixed without the need to construct a separate model for the WECS. In order to characterize the randomness of the WECS, a generalized minimum entropy criterion is established to train connection weights of the neural network. For the train purpose, both kernel density estimation method and sliding window technique are adopted to estimate the PDF of tracking error and entropies. Due to the unknown process dynamics, the gradient of the objective function in a gradient-descent-type algorithm is estimated using an incremental perturbation method. The proposed approach is illustrated on a simulated WECS with non-Gaussian wind speed.

  15. A Neuronal Network Model for Pitch Selectivity and Representation.

    Science.gov (United States)

    Huang, Chengcheng; Rinzel, John

    2016-01-01

    Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency estimation using biophysically-based, high-resolution coincidence detector neurons. The neuronal units respond only to highly coincident input among convergent auditory nerve fibers across frequency channels. Their selectivity for only very fast rising slopes of convergent input enables these slope-detectors to distinguish the most prominent coincidences in multi-peaked input time courses. Pitch can then be estimated from the first-order interspike intervals of the slope-detectors. The regular firing pattern of the slope-detector neurons are similar for sounds sharing the same pitch despite the distinct timbres. The decoded pitch strengths also correlate well with the salience of pitch perception as reported by human listeners. Therefore, our model can serve as a neural representation for pitch. Our model performs successfully in estimating the pitch of missing fundamental complexes and reproducing the pitch variation with respect to the frequency shift of inharmonic complexes. It also accounts for the phase sensitivity of pitch perception in the cases of Schroeder phase, alternating phase and random phase relationships. Moreover, our model can also be applied to stochastic sound stimuli, iterated-ripple-noise, and account for their multiple pitch perceptions.

  16. Neural coding and perception of pitch in the normal and impaired human auditory system

    DEFF Research Database (Denmark)

    Santurette, Sébastien

    2011-01-01

    that the use of spectral cues remained plausible. Simulations of auditory-nerve representations of the complex tones further suggested that a spectrotemporal mechanism combining precise timing information across auditory channels might best account for the behavioral data. Overall, this work provides insights...... investigated using psychophysical methods. First, hearing loss was found to affect the perception of binaural pitch, a pitch sensation created by the binaural interaction of noise stimuli. Specifically, listeners without binaural pitch sensation showed signs of retrocochlear disorders. Despite adverse effects...... of reduced frequency selectivity on binaural pitch perception, the ability to accurately process the temporal fine structure (TFS) of sounds at the output of the cochlear filters was found to be essential for perceiving binaural pitch. Monaural TFS processing also played a major and independent role...

  17. Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator

    Directory of Open Access Journals (Sweden)

    Khaoula Ghefiri

    2018-04-01

    Full Text Available Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances.

  18. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control

    Science.gov (United States)

    Habibi, Hamed; Rahimi Nohooji, Hamed; Howard, Ian

    2017-09-01

    Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.

  19. artificial neural network model for low strength rc beam shear capacity

    African Journals Online (AJOL)

    User

    RESEARCH PAPER. Keywords: Shear strength, reinforced concrete, Artificial Neural Network, design equations ... searchers using artificial intelligence to im- prove on theoretical ...... benefit to humanity or a waste of time?” The. Structural ...

  20. Subcortical plasticity following perceptual learning in a pitch discrimination task.

    Science.gov (United States)

    Carcagno, Samuele; Plack, Christopher J

    2011-02-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change.

  1. Coupling Strength and System Size Induce Firing Activity of Globally Coupled Neural Network

    International Nuclear Information System (INIS)

    Wei Duqu; Luo Xiaoshu; Zou Yanli

    2008-01-01

    We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network

  2. Neural differences between the processing of musical meaning conveyed by direction of pitch change and natural music in congenital amusia.

    Science.gov (United States)

    Zhou, Linshu; Liu, Fang; Jing, Xiaoyi; Jiang, Cunmei

    2017-02-01

    Music is a unique communication system for human beings. Iconic musical meaning is one dimension of musical meaning, which emerges from musical information resembling sounds of objects, qualities of objects, or qualities of abstract concepts. The present study investigated whether congenital amusia, a disorder of musical pitch perception, impacts the processing of iconic musical meaning. With a cross-modal semantic priming paradigm, target images were primed by semantically congruent or incongruent musical excerpts, which were characterized by direction (upward or downward) of pitch change (Experiment 1), or were selected from natural music (Experiment 2). Twelve Mandarin-speaking amusics and 12 controls performed a recognition (implicit) and a semantic congruency judgment (explicit) task while their EEG waveforms were recorded. Unlike controls, amusics failed to elicit an N400 effect when musical meaning was represented by direction of pitch change, regardless of the nature of the tasks (implicit versus explicit). However, the N400 effect in response to musical meaning in natural musical excerpts was observed for both the groups in both types of tasks. These results indicate that amusics are able to process iconic musical meaning through multiple acoustic cues in natural musical excerpts, but not through the direction of pitch change. This is the first study to investigate the processing of musical meaning in congenital amusia, providing evidence in support of the "melodic contour deafness hypothesis" with regard to iconic musical meaning processing in this disorder. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Variable synaptic strengths controls the firing rate distribution in feedforward neural networks.

    Science.gov (United States)

    Ly, Cheng; Marsat, Gary

    2018-02-01

    Heterogeneity of firing rate statistics is known to have severe consequences on neural coding. Recent experimental recordings in weakly electric fish indicate that the distribution-width of superficial pyramidal cell firing rates (trial- and time-averaged) in the electrosensory lateral line lobe (ELL) depends on the stimulus, and also that network inputs can mediate changes in the firing rate distribution across the population. We previously developed theoretical methods to understand how two attributes (synaptic and intrinsic heterogeneity) interact and alter the firing rate distribution in a population of integrate-and-fire neurons with random recurrent coupling. Inspired by our experimental data, we extend these theoretical results to a delayed feedforward spiking network that qualitatively capture the changes of firing rate heterogeneity observed in in-vivo recordings. We demonstrate how heterogeneous neural attributes alter firing rate heterogeneity, accounting for the effect with various sensory stimuli. The model predicts how the strength of the effective network connectivity is related to intrinsic heterogeneity in such delayed feedforward networks: the strength of the feedforward input is positively correlated with excitability (threshold value for spiking) when firing rate heterogeneity is low and is negatively correlated with excitability with high firing rate heterogeneity. We also show how our theory can be used to predict effective neural architecture. We demonstrate that neural attributes do not interact in a simple manner but rather in a complex stimulus-dependent fashion to control neural heterogeneity and discuss how it can ultimately shape population codes.

  4. Neural dissociations in attitude strength: Distinct regions of cingulate cortex track ambivalence and certainty.

    Science.gov (United States)

    Luttrell, Andrew; Stillman, Paul E; Hasinski, Adam E; Cunningham, William A

    2016-04-01

    People's behaviors are often guided by valenced responses to objects in the environment. Beyond positive and negative evaluations, attitudes research has documented the importance of attitude strength--qualities of an attitude that enhance or attenuate its impact and durability. Although neuroscience research has extensively investigated valence, little work exists on other related variables like metacognitive judgments about one's attitudes. It remains unclear, then, whether the various indicators of attitude strength represent a single underlying neural process or whether they reflect independent processes. To examine this, we used functional MRI (fMRI) to identify the neural correlates of attitude strength. Specifically, we focus on ambivalence and certainty, which represent metacognitive judgments that people can make about their evaluations. Although often correlated, prior neuroscience research suggests that these 2 attributes may have distinct neural underpinnings. We investigate this by having participants make evaluative judgments of visually presented words while undergoing fMRI. After scanning, participants rated the degree of ambivalence and certainty they felt regarding their attitudes toward each word. We found that these 2 judgments corresponded to distinct brain regions' activity during the process of evaluation. Ambivalence corresponded to activation in anterior cingulate cortex, dorsomedial prefrontal cortex, and posterior cingulate cortex. Certainty, however, corresponded to activation in unique areas of the precuneus/posterior cingulate cortex. These results support a model treating ambivalence and certainty as distinct, though related, attitude strength variables, and we discuss implications for both attitudes and neuroscience research. (c) 2016 APA, all rights reserved).

  5. Topological probability and connection strength induced activity in complex neural networks

    International Nuclear Information System (INIS)

    Du-Qu, Wei; Bo, Zhang; Dong-Yuan, Qiu; Xiao-Shu, Luo

    2010-01-01

    Recent experimental evidence suggests that some brain activities can be assigned to small-world networks. In this work, we investigate how the topological probability p and connection strength C affect the activities of discrete neural networks with small-world (SW) connections. Network elements are described by two-dimensional map neurons (2DMNs) with the values of parameters at which no activity occurs. It is found that when the value of p is smaller or larger, there are no active neurons in the network, no matter what the value of connection strength is; for a given appropriate connection strength, there is an intermediate range of topological probability where the activity of 2DMN network is induced and enhanced. On the other hand, for a given intermediate topological probability level, there exists an optimal value of connection strength such that the frequency of activity reaches its maximum. The possible mechanism behind the action of topological probability and connection strength is addressed based on the bifurcation method. Furthermore, the effects of noise and transmission delay on the activity of neural network are also studied. (general)

  6. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals.

    Science.gov (United States)

    Kim, Junkyeong; Lee, Chaggil; Park, Seunghee

    2017-06-07

    Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.

  7. Volatility Degree Forecasting of Stock Market by Stochastic Time Strength Neural Network

    Directory of Open Access Journals (Sweden)

    Haiyan Mo

    2013-01-01

    Full Text Available In view of the applications of artificial neural networks in economic and financial forecasting, a stochastic time strength function is introduced in the backpropagation neural network model to predict the fluctuations of stock price changes. In this model, stochastic time strength function gives a weight for each historical datum and makes the model have the effect of random movement, and then we investigate and forecast the behavior of volatility degrees of returns for the Chinese stock market indexes and some global market indexes. The empirical research is performed in testing the prediction effect of SSE, SZSE, HSI, DJIA, IXIC, and S&P 500 with different selected volatility degrees in the established model.

  8. Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children.

    Science.gov (United States)

    Nan, Yun; Liu, Li; Geiser, Eveline; Shu, Hua; Gong, Chen Chen; Dong, Qi; Gabrieli, John D E; Desimone, Robert

    2018-06-25

    Musical training confers advantages in speech-sound processing, which could play an important role in early childhood education. To understand the mechanisms of this effect, we used event-related potential and behavioral measures in a longitudinal design. Seventy-four Mandarin-speaking children aged 4-5 y old were pseudorandomly assigned to piano training, reading training, or a no-contact control group. Six months of piano training improved behavioral auditory word discrimination in general as well as word discrimination based on vowels compared with the controls. The reading group yielded similar trends. However, the piano group demonstrated unique advantages over the reading and control groups in consonant-based word discrimination and in enhanced positive mismatch responses (pMMRs) to lexical tone and musical pitch changes. The improved word discrimination based on consonants correlated with the enhancements in musical pitch pMMRs among the children in the piano group. In contrast, all three groups improved equally on general cognitive measures, including tests of IQ, working memory, and attention. The results suggest strengthened common sound processing across domains as an important mechanism underlying the benefits of musical training on language processing. In addition, although we failed to find far-transfer effects of musical training to general cognition, the near-transfer effects to speech perception establish the potential for musical training to help children improve their language skills. Piano training was not inferior to reading training on direct tests of language function, and it even seemed superior to reading training in enhancing consonant discrimination.

  9. Prediction of compression strength of high performance concrete using artificial neural networks

    International Nuclear Information System (INIS)

    Torre, A; Moromi, I; Garcia, F; Espinoza, P; Acuña, L

    2015-01-01

    High-strength concrete is undoubtedly one of the most innovative materials in construction. Its manufacture is simple and is carried out starting from essential components (water, cement, fine and aggregates) and a number of additives. Their proportions have a high influence on the final strength of the product. This relations do not seem to follow a mathematical formula and yet their knowledge is crucial to optimize the quantities of raw materials used in the manufacture of concrete. Of all mechanical properties, concrete compressive strength at 28 days is most often used for quality control. Therefore, it would be important to have a tool to numerically model such relationships, even before processing. In this aspect, artificial neural networks have proven to be a powerful modeling tool especially when obtaining a result with higher reliability than knowledge of the relationships between the variables involved in the process. This research has designed an artificial neural network to model the compressive strength of concrete based on their manufacturing parameters, obtaining correlations of the order of 0.94

  10. Estimation of RC slab-column joints effective strength using neural networks

    Directory of Open Access Journals (Sweden)

    A. A. Shah

    Full Text Available The nominal strength of slab-column joints made of highstrength concrete (HSC columns and normal strength concrete (NSC slabs is of great importance in structural design and construction of concrete buildings. This topic has been intensively studied during the last decades. Different types of column-slab joints have been investigated experimentally providing a basis for developing design provisions. However, available data does not cover all classes of concretes, reinforcements, and possible loading cases for the proper calculation of joint stresses necessary for design purposes. New numerical methods based on modern software seem to be effective and may allow reliable prediction of column-slab joint strength. The current research is focused on analysis of available experimental data on different slab-to-column joints with the aim of predicting the nominal strength of slabcolumn joint. Neural networks technique is proposed herein using MATLAB routines developed to analyze available experimental data. The obtained results allow prediction of the effective strength of column-slab joints with accuracy and good correlation coefficients when compared to regression based models. The proposed method enables the user to predict the effective design of column-slab joints without the need for conservative safety coefficients generally promoted and used by most construction codes.

  11. Prediction of zeolite-cement-sand unconfined compressive strength using polynomial neural network

    Science.gov (United States)

    MolaAbasi, H.; Shooshpasha, I.

    2016-04-01

    The improvement of local soils with cement and zeolite can provide great benefits, including strengthening slopes in slope stability problems, stabilizing problematic soils and preventing soil liquefaction. Recently, dosage methodologies are being developed for improved soils based on a rational criterion as it exists in concrete technology. There are numerous earlier studies showing the possibility of relating Unconfined Compressive Strength (UCS) and Cemented sand (CS) parameters (voids/cement ratio) as a power function fits. Taking into account the fact that the existing equations are incapable of estimating UCS for zeolite cemented sand mixture (ZCS) well, artificial intelligence methods are used for forecasting them. Polynomial-type neural network is applied to estimate the UCS from more simply determined index properties such as zeolite and cement content, porosity as well as curing time. In order to assess the merits of the proposed approach, a total number of 216 unconfined compressive tests have been done. A comparison is carried out between the experimentally measured UCS with the predictions in order to evaluate the performance of the current method. The results demonstrate that generalized polynomial-type neural network has a great ability for prediction of the UCS. At the end sensitivity analysis of the polynomial model is applied to study the influence of input parameters on model output. The sensitivity analysis reveals that cement and zeolite content have significant influence on predicting UCS.

  12. Pitch Fork

    DEFF Research Database (Denmark)

    Williams, Peter Leslie; Overholt, Daniel

    2017-01-01

    Pitch Fork is a prototype of an alternate, actuated digital musical instrument (DMI). It uses 5 infra-red and 4 piezoelectric sensors to control an additive synthesis engine. Iron bars are used as the physical point of contact in interaction with the aim of using this materials natural acoustic p...... properties as a control signal for aspects of the digitally produced sound. This choice of material was also chosen to affect player experience. Sensor readings are relayed to a Macbook via an Arduino Mega. Mappings and audio output signal is carried out with Pure Data Extended....

  13. able utilizando redes neuronales artificiales; UTILIZATION OF ARTIFICIAL NEURAL NETWORK IN THE SIMULATION AND CONTROL OF WIND TURBINE GENERATORS WITH VARIABLE SPEED AND VARIABLE PITCH.

    Directory of Open Access Journals (Sweden)

    Osley López González

    2011-02-01

    , considered as a whole, must be able of respond with anadequate precision and speed in response to the randomness and variability of the wind.The relationship between the wind speed, the blade pitch and the generator speed in order to produce themaximum power and also be able to limit the output power for large wind speeds is a very complicated oneand it is very difficult to find its mathematical function.In this paper, the authors, utilizing the MATLABSIMULINK toolboxes, propose representing this functional relation by means of an Artificial Neural Network(ANN. The parameters and characteristics of an existing wind turbine generator are utilized and it isdemonstrated that it is possible to use an ANN in the simulation and control of a variable speed, variablepitch wind turbine that capture the maximum power from the wind.

  14. Prediction Of Tensile And Shear Strength Of Friction Surfaced Tool Steel Deposit By Using Artificial Neural Networks

    Science.gov (United States)

    Manzoor Hussain, M.; Pitchi Raju, V.; Kandasamy, J.; Govardhan, D.

    2018-04-01

    Friction surface treatment is well-established solid technology and is used for deposition, abrasion and corrosion protection coatings on rigid materials. This novel process has wide range of industrial applications, particularly in the field of reclamation and repair of damaged and worn engineering components. In this paper, we present the prediction of tensile and shear strength of friction surface treated tool steel using ANN for simulated results of friction surface treatment. This experiment was carried out to obtain tool steel coatings of low carbon steel parts by changing contribution process parameters essentially friction pressure, rotational speed and welding speed. The simulation is performed by a 33-factor design that takes into account the maximum and least limits of the experimental work performed with the 23-factor design. Neural network structures, such as the Feed Forward Neural Network (FFNN), were used to predict tensile and shear strength of tool steel sediments caused by friction.

  15. Optimizing the Flexural Strength of Beams Reinforced with Fiber Reinforced Polymer Bars Using Back-Propagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Bahman O. Taha

    2015-06-01

    Full Text Available The reinforced concrete with fiber reinforced polymer (FRP bars (carbon, aramid, basalt and glass is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP bars.

  16. A PERFORMANCE COMPARISON BETWEEN ARTIFICIAL NEURAL NETWORKS AND MULTIVARIATE STATISTICAL METHODS IN FORECASTING FINANCIAL STRENGTH RATING IN TURKISH BANKING SECTOR

    Directory of Open Access Journals (Sweden)

    MELEK ACAR BOYACIOĞLU

    2013-06-01

    Full Text Available Financial strength rating indicates the fundamental financial strength of a bank. The aim of financial strength rating is to measure a bank’s fundamental financial strength excluding the external factors. External factors can stem from the working environment or can be linked with the outside protective support mechanisms. With the evaluation, the rating of a bank free from outside supportive factors is being sought. Also the financial fundamental, franchise value, the variety of assets and working environment of a bank are being evaluated in this context. In this study, a model has been developed in order to predict the financial strength rating of Turkish banks. The methodology of this study is as follows: Selecting variables to be used in the model, creating a data set, choosing the techniques to be used and the evaluation of classification success of the techniques. It is concluded that the artificial neural network system shows a better performance in terms of classification of financial strength rating in comparison to multivariate statistical methods in the raining set. On the other hand, there is no meaningful difference could be found in the validation set in which the prediction performances of the employed techniques are tested.

  17. Softball Pitching and Injury.

    Science.gov (United States)

    Lear, Aaron; Patel, Niraj

    2016-01-01

    The windmill softball pitch generates considerable forces about the athlete's shoulder and elbow. The injury pattern of softball pitchers seems to be primarily overuse injury, and they seem not to suffer the same volume of injury that baseball pitchers do. This article will explore softball pitching techniques, kinetics and kinematics of the windmill pitch, epidemiology of softball pitchers, and discuss possible etiologies of softball pitching injuries.

  18. A perceptual pitch boundary in a non-human primate

    Directory of Open Access Journals (Sweden)

    Olivier eJoly

    2014-09-01

    Full Text Available Pitch is an auditory percept critical to the perception of music and speech, and for these harmonic sounds, pitch is closely related to the repetition rate of the acoustic wave. This paper reports a test of the assumption that non-human primates and especially rhesus monkeys perceive the pitch of these harmonic sounds much as humans do. A new procedure was developed to train macaques to discriminate the pitch of harmonic sounds and thereby demonstrate that the lower limit for pitch perception in macaques is close to 30 Hz, as it is in humans. Moreover, when the phases of successive harmonics are alternated to cause a pseudo-doubling of the repetition rate, the lower pitch boundary in macaques decreases substantially, as it does in humans. The results suggest that both species use neural firing times to discriminate pitch, at least for sounds with relatively low repetition rates.

  19. Shear strength estimation of the concrete beams reinforced with FRP; comparison of artificial neural network and equations of regulations

    Directory of Open Access Journals (Sweden)

    Mahmood Akbari

    2017-12-01

    Full Text Available In recent years, numerous experimental tests were done on the concrete beams reinforced with the fiber-reinforced polymer (FRP. In this way, some equations were proposed to estimate the shear strength of the beams reinforced with FRP. The aim of this study is to explore the feasibility of using a feed-forward artificial neural network (ANN model to predict the ultimate shear strength of the beams strengthened with FRP composites. For this purpose, a database consists of 304 reinforced FRP concrete beams have been collected from the available articles on the analysis of shear behavior of these beams. The inputs to the ANN model consists of the 11 variables including the geometric dimensions of the section, steel reinforcement amount, FRP amount and the properties of the concrete, steel reinforcement and FRP materials while the output variable is the shear strength of the FRP beam. To assess the performance of the ANN model for estimating the shear strength of the reinforced beams, the outputs of the ANN are compared to those of equations of the Iranian code (Publication No. 345 and the American code (ACI 440. The comparisons between the outputs of Iran and American regulations with those of the proposed model indicates that the predictive power of this model is much better than the experimental codes. Specifically, for under study data, mean absolute relative error (MARE criteria is 13%, 34% and 39% for the ANN model, the American and the Iranian codes, respectively.

  20. Perceiving pitch absolutely: Comparing absolute and relative pitch possessors in a pitch memory task

    Directory of Open Access Journals (Sweden)

    Schlaug Gottfried

    2009-08-01

    Full Text Available Abstract Background The perceptual-cognitive mechanisms and neural correlates of Absolute Pitch (AP are not fully understood. The aim of this fMRI study was to examine the neural network underlying AP using a pitch memory experiment and contrasting two groups of musicians with each other, those that have AP and those that do not. Results We found a common activation pattern for both groups that included the superior temporal gyrus (STG extending into the adjacent superior temporal sulcus (STS, the inferior parietal lobule (IPL extending into the adjacent intraparietal sulcus (IPS, the posterior part of the inferior frontal gyrus (IFG, the pre-supplementary motor area (pre-SMA, and superior lateral cerebellar regions. Significant between-group differences were seen in the left STS during the early encoding phase of the pitch memory task (more activation in AP musicians and in the right superior parietal lobule (SPL/intraparietal sulcus (IPS during the early perceptual phase (ITP 0–3 and later working memory/multimodal encoding phase of the pitch memory task (more activation in non-AP musicians. Non-significant between-group trends were seen in the posterior IFG (more in AP musicians and the IPL (more anterior activations in the non-AP group and more posterior activations in the AP group. Conclusion Since the increased activation of the left STS in AP musicians was observed during the early perceptual encoding phase and since the STS has been shown to be involved in categorization tasks, its activation might suggest that AP musicians involve categorization regions in tonal tasks. The increased activation of the right SPL/IPS in non-AP musicians indicates either an increased use of regions that are part of a tonal working memory (WM network, or the use of a multimodal encoding strategy such as the utilization of a visual-spatial mapping scheme (i.e., imagining notes on a staff or using a spatial coding for their relative pitch height for pitch

  1. Timing matters: the processing of pitch relations

    Science.gov (United States)

    Weise, Annekathrin; Grimm, Sabine; Trujillo-Barreto, Nelson J.; Schröger, Erich

    2014-01-01

    The human central auditory system can automatically extract abstract regularities from a variant auditory input. To this end, temporarily separated events need to be related. This study tested whether the timing between events, falling either within or outside the temporal window of integration (~350 ms), impacts the extraction of abstract feature relations. We utilized tone pairs for which tones within but not across pairs revealed a constant pitch relation (e.g., pitch of second tone of a pair higher than pitch of first tone, while absolute pitch values varied across pairs). We measured the mismatch negativity (MMN; the brain’s error signal to auditory regularity violations) to second tones that rarely violated the pitch relation (e.g., pitch of second tone lower). A Short condition in which tone duration (90 ms) and stimulus onset asynchrony between the tones of a pair were short (110 ms) was compared to two conditions, where this onset asynchrony was long (510 ms). In the Long Gap condition, the tone durations were identical to Short (90 ms), but the silent interval was prolonged by 400 ms. In Long Tone, the duration of the first tone was prolonged by 400 ms, while the silent interval was comparable to Short (20 ms). Results show a frontocentral MMN of comparable amplitude in all conditions. Thus, abstract pitch relations can be extracted even when the within-pair timing exceeds the integration period. Source analyses indicate MMN generators in the supratemporal cortex. Interestingly, they were located more anterior in Long Gap than in Short and Long Tone. Moreover, frontal generator activity was found for Long Gap and Long Tone. Thus, the way in which the system automatically registers irregular abstract pitch relations depends on the timing of the events to be linked. Pending that the current MMN data mirror established abstract rule representations coding the regular pitch relation, neural processes building these templates vary with timing. PMID:24966823

  2. Timing matters: The processing of pitch relations

    Directory of Open Access Journals (Sweden)

    Annekathrin eWeise

    2014-06-01

    Full Text Available The human central auditory system can automatically extract abstract regularities from a variant auditory input. To this end, temporarily separated events need to be related. This study tested whether the timing between events, falling either within or outside the temporal window of integration (~350 ms, impacts the extraction of abstract feature relations. We utilized tone pairs for which tones within but not across pairs revealed a constant pitch relation (e.g. pitch of 2nd tone of a pair higher than pitch of 1st tone, while absolute pitch values varied across pairs. We measured the Mismatch Negativity (MMN; the brain’s error signal to auditory regularity violations to 2nd tones that rarely violated the pitch relation (e.g. pitch of 2nd tone lower. A Short condition in which tone duration (90 ms and stimulus onset asynchrony between the tones of a pair were short (110 ms was compared to two conditions, where this onset asynchrony was long (510 ms. In the Long Gap condition the tone durations were identical to Short (90 ms, but the silent interval was prolonged by 400 ms. In Long Tone the duration of the first tone was prolonged by 400 ms, while the silent interval was comparable to Short (20 ms. Results show a frontocentral MMN of comparable amplitude in all conditions. Thus, abstract pitch relations can be extracted even when the within-pair timing exceeds the integration period. Source analyses indicate MMN generators in the supratemporal cortex. Interestingly, they were located more anterior in Long Gap than in Short and Long Tone. Moreover, frontal generator activity was found for Long Gap and Long Tone. Thus, the way in which the system automatically registers irregular abstract pitch relations depends on the timing of the events to be linked. Pending that the current MMN data mirror established abstract rule representations coding the regular pitch relation, neural processes building these templates vary with timing.

  3. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch

    Science.gov (United States)

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A.; Larson, Charles R.

    2014-01-01

    The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing. PMID:24355545

  4. Effects of culture on musical pitch perception.

    Directory of Open Access Journals (Sweden)

    Patrick C M Wong

    Full Text Available The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association--the influence of linguistic background on music pitch processing and disorders--remains elusive. Because languages differ in their usage of elements (e.g., pitch that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means 'teacher' and 'to try' when spoken in a high and mid pitch pattern, respectively. Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages. This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population, we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of

  5. Effects of Culture on Musical Pitch Perception

    Science.gov (United States)

    Wong, Patrick C. M.; Ciocca, Valter; Chan, Alice H. D.; Ha, Louisa Y. Y.; Tan, Li-Hai; Peretz, Isabelle

    2012-01-01

    The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association—the influence of linguistic background on music pitch processing and disorders—remains elusive. Because languages differ in their usage of elements (e.g., pitch) that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic) comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm) processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada) were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means ‘teacher’ and ‘to try’ when spoken in a high and mid pitch pattern, respectively). Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages). This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population), we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of culture

  6. Effects of culture on musical pitch perception.

    Science.gov (United States)

    Wong, Patrick C M; Ciocca, Valter; Chan, Alice H D; Ha, Louisa Y Y; Tan, Li-Hai; Peretz, Isabelle

    2012-01-01

    The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association--the influence of linguistic background on music pitch processing and disorders--remains elusive. Because languages differ in their usage of elements (e.g., pitch) that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic) comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm) processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada) were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means 'teacher' and 'to try' when spoken in a high and mid pitch pattern, respectively). Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages). This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population), we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of culture

  7. High coking value pitch

    Science.gov (United States)

    Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

    2014-06-10

    A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

  8. Perfect pitch reconsidered.

    Science.gov (United States)

    Moulton, Calum

    2014-10-01

    Perfect pitch, or absolute pitch (AP), is defined as the ability to identify or produce the pitch of a sound without need for a reference pitch, and is generally regarded as a valuable asset to the musician. However, there has been no recent review of the literature examining its aetiology and its utility taking into account emerging scientific advances in AP research, notably in functional imaging. This review analyses the key empirical research on AP, focusing on genetic and neuroimaging studies. The review concludes that: AP probably has a genetic predisposition, although this is based on limited evidence; early musical training is almost certainly essential for AP acquisition; and, although there is evidence that it may be relevant to speech processing, AP can interfere with relative pitch, an ability on which humans rely to communicate effectively. The review calls into question the value of AP to musicians and non-musicians alike. © 2014 Royal College of Physicians.

  9. Factors affecting relative pitch perception

    OpenAIRE

    McClaskey, Carolyn Marie

    2016-01-01

    Sounds that evoke a sense of pitch are ubiquitous in our environment and important for speech, music, and auditory scene analysis. The frequencies of these sounds rarely remain constant, however, and the direction and extent of pitch change is often more important than the exact pitches themselves. This dissertation examines the mechanisms underlying how we perceive relative pitch distance, focusing on two types of stimuli: continuous pitch changes and discrete pitch changes. In a series of e...

  10. High-Intensity Progressive Resistance Training Increases Strength With No Change in Cardiovascular Function and Autonomic Neural Regulation in Older Adults.

    Science.gov (United States)

    Kanegusuku, Hélcio; Queiroz, Andréia C; Silva, Valdo J; de Mello, Marco T; Ugrinowitsch, Carlos; Forjaz, Cláudia L

    2015-07-01

    The effects of high-intensity progressive resistance training (HIPRT) on cardiovascular function and autonomic neural regulation in older adults are unclear. To investigate this issue, 25 older adults were randomly divided into two groups: control (CON, N = 13, 63 ± 4 years; no training) and HIPRT (N = 12, 64 ± 4 years; 2 sessions/week, 7 exercises, 2–4 sets, 10–4 RM). Before and after four months, maximal strength, quadriceps cross-sectional area (QCSA), clinic and ambulatory blood pressures (BP), systemic hemodynamics, and cardiovascular autonomic modulation were measured. Maximal strength and QCSA increased in the HIPRT group and did not change in the CON group. Clinic and ambulatory BP, cardiac output, systemic vascular resistance, stroke volume, heart rate, and cardiac sympathovagal balance did not change in the HIPRT group or the CON group. In conclusion, HIPRT was effective at increasing muscle mass and strength without promoting changes in cardiovascular function or autonomic neural regulation.

  11. Switching between pitch surfaces

    DEFF Research Database (Denmark)

    Rago, Vincenzo; Silva, João R; Brito, João

    2018-01-01

    Soccer training and completion is conventionally practiced on natural grass (NG) or artificial turf (AT). Recently, AT pitches for training / competition, and of unstable surfaces for injury prevention training has increased. Therefore, soccer players are frequently exposed to variations in pitch...... surface during either training or competition. These ground changes may impact physical and physiological responses, adaptations as well as the injury. The aim of this review was to summarize the acute physical and physiological responses, chronic adaptations, and injury risk associated with exercising...... on different pitch surfaces in soccer. Eligible studies were published in English, had pitch surface as an independent variable, and had physical, physiological or epidemiological information as outcome variables. Specific data extracted from the articles included the training response, training adaptations...

  12. Consonance and pitch.

    Science.gov (United States)

    McLachlan, Neil; Marco, David; Light, Maria; Wilson, Sarah

    2013-11-01

    To date, no consensus exists in the literature as to theories of consonance and dissonance. Experimental data collected over the last century have raised questions about the dominant theories that are based on frequency relationships between the harmonics of music chords. This study provides experimental evidence that strongly challenges these theories and suggests a new theory of dissonance based on relationships between pitch perception and recognition. Experiment 1 shows that dissonance does not increase with increasing numbers of harmonics in chords as predicted by Helmholtz's (1863/1954) roughness theory, nor does it increase with fewer pitch-matching errors as predicted by Stumpf's (1898) tonal fusion theory. Dissonance was strongly correlated with pitch-matching error for chords, which in turn was reduced by chord familiarity and greater music training. This led to the proposition that long-term memory templates for common chords assist the perception of pitches in chords by providing an estimate of the chord intervals from spectral information. When recognition mechanisms based on these templates fail, the spectral pitch estimate is inconsistent with the period of the waveform, leading to cognitive incongruence and the negative affect of dissonance. The cognitive incongruence theory of dissonance was rigorously tested in Experiment 2, in which nonmusicians were trained to match the pitches of a random selection of 2-pitch chords. After 10 training sessions, they rated the chords they had learned to pitch match as less dissonant than the unlearned chords, irrespective of their tuning, providing strong support for a cognitive mechanism of dissonance. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  13. Modelling and Predicting the Breaking Strength and Mass Irregularity of Cotton Rotor-Spun Yarns Containing Cotton Fiber Recovered from Ginning Process by Using Artificial Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Mohsen Shanbeh

    2011-01-01

    Full Text Available One of the main methods to reduce the production costs is waste recycling which is the most important challenge for the future. Cotton wastes collected from ginning process have desirable properties which could be used during spinning process. The purpose of this study was to develop predictive models of breaking strength and mass irregularity (CV% of cotton waste rotor-spun yarns containing cotton waste collected from ginning process by using the artificial neural network trained with backpropagation algorithm. Artificial neural network models have been developed based on rotor diameter, rotor speed, navel type, opener roller speed, ginning waste proportion and yarn linear density as input parameters. The parameters of artificial neural network model, namely, learning, and momentum rate, number of hidden layers and number of hidden processing elements (neurons were optimized to get the best predictive models. The findings showed that the breaking strength and mass irregularity of rotor spun yarns could be predicted satisfactorily by artificial neural network. The maximum error in predicting the breaking strength and mass irregularity of testing data was 8.34% and 6.65%, respectively.

  14. Neural Network Control for Variable Pitch Angle in Grid Connected Wind Turbine%并网风力机中基于变桨距角的神经网络控制方法

    Institute of Scientific and Technical Information of China (English)

    王凌云; 张涛; 孟娟

    2012-01-01

    针对并网风力机的运行特性,在其传动系统和发电机的动态模型基础上设计控制器.当外界风速较大,提出采用基于神经网络的风力机叶片桨距角控制器抑制多余的风能进入发电系统,维持风力发电机馈送到电网的功率稳定;当风速较低时,风力机转速需要跟随风速变化,调整叶片桨距角处于捕捉最大风能位置处,保证风力机的风能转换效率最优,提高其运行效率.仿真结果验证了该控制方法的有效性.%For the operation characteristics of a grid connected wind turbine, two controllers are designed based on the dynamical model of the wind turbine drive system and generator. When the wind speed is higher, the neural network controller of the turbine blades pitch angle is proposed to restrict the excess wind energy entering the generation system in order to keep the power injected into the grid stable. Meanwhile, when the wind speed is lower, the turbine speed is changed with the variation of wind speed by adjusting the blades angle at the value of capturing maximum wind power, then the optimal wind energy conversion efficiency is guaranteed. The simulation results verify this control method is highly effective.

  15. Prediction of Tensile Strength of Friction Stir Weld Joints with Adaptive Neuro-Fuzzy Inference System (ANFIS) and Neural Network

    Science.gov (United States)

    Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.

    2015-01-01

    Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.

  16. Pitch-Responsive Cortical Regions in Congenital Amusia.

    Science.gov (United States)

    Norman-Haignere, Sam V; Albouy, Philippe; Caclin, Anne; McDermott, Josh H; Kanwisher, Nancy G; Tillmann, Barbara

    2016-03-09

    Congenital amusia is a lifelong deficit in music perception thought to reflect an underlying impairment in the perception and memory of pitch. The neural basis of amusic impairments is actively debated. Some prior studies have suggested that amusia stems from impaired connectivity between auditory and frontal cortex. However, it remains possible that impairments in pitch coding within auditory cortex also contribute to the disorder, in part because prior studies have not measured responses from the cortical regions most implicated in pitch perception in normal individuals. We addressed this question by measuring fMRI responses in 11 subjects with amusia and 11 age- and education-matched controls to a stimulus contrast that reliably identifies pitch-responsive regions in normal individuals: harmonic tones versus frequency-matched noise. Our findings demonstrate that amusic individuals with a substantial pitch perception deficit exhibit clusters of pitch-responsive voxels that are comparable in extent, selectivity, and anatomical location to those of control participants. We discuss possible explanations for why amusics might be impaired at perceiving pitch relations despite exhibiting normal fMRI responses to pitch in their auditory cortex: (1) individual neurons within the pitch-responsive region might exhibit abnormal tuning or temporal coding not detectable with fMRI, (2) anatomical tracts that link pitch-responsive regions to other brain areas (e.g., frontal cortex) might be altered, and (3) cortical regions outside of pitch-responsive cortex might be abnormal. The ability to identify pitch-responsive regions in individual amusic subjects will make it possible to ask more precise questions about their role in amusia in future work. Copyright © 2016 the authors 0270-6474/16/362986-09$15.00/0.

  17. Pitch Based Sound Classification

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai; Kjems, U

    2006-01-01

    A sound classification model is presented that can classify signals into music, noise and speech. The model extracts the pitch of the signal using the harmonic product spectrum. Based on the pitch estimate and a pitch error measure, features are created and used in a probabilistic model with soft......-max output function. Both linear and quadratic inputs are used. The model is trained on 2 hours of sound and tested on publicly available data. A test classification error below 0.05 with 1 s classification windows is achieved. Further more it is shown that linear input performs as well as a quadratic......, and that even though classification gets marginally better, not much is achieved by increasing the window size beyond 1 s....

  18. Lower extremity muscle activation during baseball pitching.

    Science.gov (United States)

    Campbell, Brian M; Stodden, David F; Nixon, Megan K

    2010-04-01

    The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.

  19. Pitch memory and exposure effects.

    Science.gov (United States)

    Ben-Haim, Moshe Shay; Eitan, Zohar; Chajut, Eran

    2014-02-01

    Recent studies indicate that the ability to represent absolute pitch values in long-term memory, long believed to be the possession of a small minority of trained musicians endowed with "absolute pitch," is in fact shared to some extent by a considerable proportion of the population. The current study examined whether this newly discovered ability affects aspects of music and auditory cognition, particularly pitch learning and evaluation. Our starting points are two well-established premises: (1) frequency of occurrence has an influence on the way we process stimuli; (2) in Western music, some pitches and musical keys are much more frequent than others. Based on these premises, we hypothesize that if absolute pitch values are indeed represented in long-term memory, pitch frequency of occurrence in music would significantly affect cognitive processes, in particular pitch learning and evaluation. Two experiments were designed to test this hypothesis in participants with no absolute pitch, most with little or no musical training. Experiment 1 demonstrated a faster response and a learning advantage for frequent pitches over infrequent pitches in an identification task. In Experiment 2, participants evaluated infrequent pitches as more pleasing than frequent pitches when presented in isolation. These results suggest that absolute pitch representation in memory may play a substantial, hitherto unacknowledged role in auditory (and specifically musical) cognition. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  20. Norwegian Pitched Roof Defects

    Directory of Open Access Journals (Sweden)

    Lars Gullbrekken

    2016-06-01

    Full Text Available The building constructions investigated in this work are pitched wooden roofs with exterior vertical drainpipes and wooden load-bearing system. The aim of this research is to further investigate the building defects of pitched wooden roofs and obtain an overview of typical roof defects. The work involves an analysis of the building defect archive from the research institute SINTEF Building and Infrastructure. The findings from the SINTEF archive show that moisture is a dominant exposure factor, especially in roof constructions. In pitched wooden roofs, more than half of the defects are caused by deficiencies in design, materials, or workmanship, where these deficiencies allow moisture from precipitation or indoor moisture into the structure. Hence, it is important to increase the focus on robust and durable solutions to avoid defects both from exterior and interior moisture sources in pitched wooden roofs. Proper design of interior ventilation and vapour retarders seem to be the main ways to control entry from interior moisture sources into attic and roof spaces.

  1. Vocal Pitch Shift in Congenital Amusia (Pitch Deafness)

    Science.gov (United States)

    Hutchins, Sean; Peretz, Isabelle

    2013-01-01

    We tested whether congenital amusics, who exhibit pitch perception deficits, nevertheless adjust the pitch of their voice in response to a sudden pitch shift applied to vocal feedback. Nine amusics and matched controls imitated their own previously-recorded speech or singing, while the online feedback they received was shifted mid-utterance by 25…

  2. Attending to pitch information inhibits processing of pitch information: the curious case of amusia.

    Science.gov (United States)

    Zendel, Benjamin Rich; Lagrois, Marie-Élaine; Robitaille, Nicolas; Peretz, Isabelle

    2015-03-04

    In normal listeners, the tonal rules of music guide musical expectancy. In a minority of individuals, known as amusics, the processing of tonality is disordered, which results in severe musical deficits. It has been shown that the tonal rules of music are neurally encoded, but not consciously available in amusics. Previous neurophysiological studies have not explicitly controlled the level of attention in tasks where participants ignored the tonal structure of the stimuli. Here, we test whether access to tonal knowledge can be demonstrated in congenital amusia when attention is controlled. Electric brain responses were recorded while asking participants to detect an individually adjusted near-threshold click in a melody. In half the melodies, a note was inserted that violated the tonal rules of music. In a second task, participants were presented with the same melodies but were required to detect the tonal deviation. Both tasks required sustained attention, thus conscious access to the rules of tonality was manipulated. In the click-detection task, the pitch deviants evoked an early right anterior negativity (ERAN) in both groups. In the pitch-detection task, the pitch deviants evoked an ERAN and P600 in controls but not in amusics. These results indicate that pitch regularities are represented in the cortex of amusics, but are not consciously available. Moreover, performing a pitch-judgment task eliminated the ERAN in amusics, suggesting that attending to pitch information interferes with perception of pitch. We propose that an impaired top-down frontotemporal projection is responsible for this disorder. Copyright © 2015 the authors 0270-6474/15/353815-10$15.00/0.

  3. A PERFORMANCE COMPARISON BETWEEN ARTIFICIAL NEURAL NETWORKS AND MULTIVARIATE STATISTICAL METHODS IN FORECASTING FINANCIAL STRENGTH RATING IN TURKISH BANKING SECTOR

    OpenAIRE

    MELEK ACAR BOYACIOĞLU; YAKUP KARA

    2013-01-01

    Financial strength rating indicates the fundamental financial strength of a bank. The aim of financial strength rating is to measure a bank’s fundamental financial strength excluding the external factors. External factors can stem from the working environment or can be linked with the outside protective support mechanisms. With the evaluation, the rating of a bank free from outside supportive factors is being sought. Also the financial fundamental, franchise value, the variety of assets and w...

  4. Discriminating male and female voices: differentiating pitch and gender.

    Science.gov (United States)

    Latinus, Marianne; Taylor, Margot J

    2012-04-01

    Gender is salient, socially critical information obtained from faces and voices, yet the brain processes underlying gender discrimination have not been well studied. We investigated neural correlates of gender processing of voices in two ERP studies. In the first, ERP differences were seen between female and male voices starting at 87 ms, in both spatial-temporal and peak analyses, particularly the fronto-central N1 and P2. As pitch differences may drive gender differences, the second study used normal, high- and low-pitch voices. The results of these studies suggested that differences in pitch produced early effects (27-63 ms). Gender effects were seen on N1 (120 ms) with implicit pitch processing (study 1), but were not seen with manipulations of pitch (study 2), demonstrating that N1 was modulated by attention. P2 (between 170 and 230 ms) discriminated male from female voices, independent of pitch. Thus, these data show that there are two stages in voice gender processing; a very early pitch or frequency discrimination and a later more accurate determination of gender at the P2 latency.

  5. Subcortical and cortical correlates of pitch discrimination: Evidence for two levels of neuroplasticity in musicians

    DEFF Research Database (Denmark)

    Bianchi, Federica; Hjortkjær, Jens; Santurette, Sébastien

    2017-01-01

    superior temporal gyrus, Heschl's gyrus, insular cortex, inferior frontal gyrus, and in the inferior colliculus. Both subcortical and cortical neural responses predicted the individual pitch-discrimination performance. However, functional activity in the inferior colliculus correlated with differences...

  6. A combined neural network and mechanistic approach for the prediction of corrosion rate and yield strength of magnesium-rare earth alloys

    Energy Technology Data Exchange (ETDEWEB)

    Birbilis, N., E-mail: nick.birbilis@monash.ed [ARC Centre of Excellence for Design in Light Metals, Monash University (Australia); CAST Co-operative Research Centre, Monash University (Australia); Cavanaugh, M.K. [Department of Materials Science and Engineering, The Ohio State University (United States); Sudholz, A.D. [ARC Centre of Excellence for Design in Light Metals, Monash University (Australia); Zhu, S.M.; Easton, M.A. [CAST Co-operative Research Centre, Monash University (Australia); Gibson, M.A. [CSIRO Division of Process Science and Engineering (Australia)

    2011-01-15

    Research highlights: This study presents a body of corrosion data for a set of custom alloys and displays this in multivariable space. These alloys represent the next generation of Mg alloys for auto applications. The data is processed using an ANN model, which makes it possible to yield a single expression for prediction of corrosion rate (and strength) as a function of any input composition (of Ce, La or Nd between 0 and 6 wt.%). The relative influence of the various RE elements on corrosion is assessed, with the outcome that Nd additions can offer comparable strength with minimal rise in corrosion rate. The morphology and solute present in the eutectic region itself (as opposed to just the intermetallic presence) was shown - for the first time - to also be a key contributor to corrosion. The above approach sets the foundation for rational alloy design of alloys with corrosion performance in mind. - Abstract: Additions of Ce, La and Nd to Mg were made in binary, ternary and quaternary combinations up to {approx}6 wt.%. This provided a dataset that was used in developing a neural network model for predicting corrosion rate and yield strength. Whilst yield strength increased with RE additions, corrosion rates also systematically increased, however, this depended on the type of RE element added and the combination of elements added (along with differences in intermetallic morphology). This work is permits an understanding of Mg-RE alloy performance, and can be exploited in Mg alloy design for predictable combinations of strength and corrosion resistance.

  7. Cooperative effect of random and time-periodic coupling strength on synchronization transitions in one-way coupled neural system: mean field approach.

    Science.gov (United States)

    Jiancheng, Shi; Min, Luo; Chusheng, Huang

    2017-08-01

    The cooperative effect of random coupling strength and time-periodic coupling strengh on synchronization transitions in one-way coupled neural system has been investigated by mean field approach. Results show that cooperative coupling strength (CCS) plays an active role for the enhancement of synchronization transitions. There exist an optimal frequency of CCS which makes the system display the best CCS-induced synchronization transitions, a critical frequency of CCS which can not further affect the CCS-induced synchronization transitions, and a critical amplitude of CCS which can not occur the CCS-induced synchronization transitions. Meanwhile, noise intensity plays a negative role for the CCS-induced synchronization transitions. Furthermore, it is found that the novel CCS amplitude-induced synchronization transitions and CCS frequency-induced synchronization transitions are found.

  8. Lung studies with spiral CT. pitch 1 versus pitch 2

    International Nuclear Information System (INIS)

    Sartoni Galloni, S.; Miceli, M.; Lipparino, M.; Burzi, M.; Gigli, F.; Rossi, M.S.; Santoli, G.; Guidarelli, G.

    1999-01-01

    In Spiral CT, the pitch is the ratio of the distance to tabletop travels per 360 degrees rotation to nominal slice width, expressed in mm. Performing Spiral CT examination with pitch 2 allows to reduce examination time, exposure and contrast dose, and X-ray tube overload. The authors investigated the yield of pitch 2 in lung parenchyma studies, particular relative to diagnostic image quality [it

  9. Tune That Beer! Listening for the Pitch of Beer

    Directory of Open Access Journals (Sweden)

    Felipe Reinoso Carvalho

    2016-11-01

    Full Text Available We report two experiments designed to assess the key sensory drivers underlying people’s association of a specific auditory pitch with Belgian beer. In particular, we assessed if people would rely mostly on the differences between beers in terms of their relative alcohol strength, or on the contrast between the most salient taste attributes of the different beers. In Experiment 1, the participants rated three bitter beers (differing in alcohol content, using a narrow range of pitch choices (50–500 Hz. The results revealed that the beers were all rated around the same pitch (Mean = 232 Hz, SD = 136 Hz. In Experiment 2, a wider range of pitch choices (50–1500 Hz, along with the addition of a much sweeter beer, revealed that people mostly tend to match beers with bitter-range profiles at significantly lower pitch ranges when compared to the average pitch of a much sweeter beer. These results therefore demonstrate that clear differences in taste attributes lead to distinctly different matches in terms of pitch. Having demonstrated the robustness of the basic crossmodal matching, future research should aim to uncover the basis for such matches and better understand the perceptual effects of matching/non-matching tones on the multisensory drinking experience.

  10. Pitch memory and exposure effects.

    OpenAIRE

    Ben-Haim, Moshe Shay; Eitan, Zohar; Chajut, Eran

    2014-01-01

    Recent studies indicate that the ability to represent absolute pitch values in long-term memory (LTM), long believed to be the possession of a small minority of trained musicians endowed with "absolute pitch" (AP), is in fact shared to some extent by a considerable proportion of the population. The current study examined whether this newly-discovered ability affects aspects of music and auditory cognition, particularly pitch learning and evaluation. Our starting points are two well establishe...

  11. Integrating cues of social interest and voice pitch in men's preferences for women's voices

    OpenAIRE

    Jones, Benedict C; Feinberg, David R; DeBruine, Lisa M; Little, Anthony C; Vukovic, Jovana

    2008-01-01

    Most previous studies of vocal attractiveness have focused on preferences for physical characteristics of voices such as pitch. Here we examine the content of vocalizations in interaction with such physical traits, finding that vocal cues of social interest modulate the strength of men's preferences for raised pitch in women's voices. Men showed stronger preferences for raised pitch when judging the voices of women who appeared interested in the listener than when judging the voices of women ...

  12. Fast pitch softball injuries.

    Science.gov (United States)

    Meyers, M C; Brown, B R; Bloom, J A

    2001-01-01

    The popularity of fast pitch softball in the US and throughout the world is well documented. Along with this popularity, there has been a concomitant increase in the number of injuries. Nearly 52% of cases qualify as major disabling injuries requiring 3 weeks or more of treatment and 2% require surgery. Interestingly, 75% of injuries occur during away games and approximately 31% of traumas occur during nonpositional and conditioning drills. Injuries range from contusions and tendinitis to ligamentous disorders and fractures. Although head and neck traumas account for 4 to 12% of cases, upper extremity traumas account for 23 to 47% of all injuries and up to 19% of cases involve the knee. Approximately 34 to 42% of injuries occur when the athlete collides with another individual or object. Other factors involved include the quality of playing surface, athlete's age and experience level, and the excessive physical demands associated with the sport. Nearly 24% of injuries involve base running and are due to poor judgement, sliding technique, current stationary base design, unorthodox joint and extremity position during ground impact and catching of cleats. The increasing prevalence of overtraining syndrome among athletes has been attributed to an unclear definition of an optimal training zone, poor communication between player and coach, and the limited ability of bone and connective tissue to quickly respond to match the demands of the sport. This has led routinely to arm, shoulder and lumbar instability, chronic nonsteroidal anti-inflammatory drug (NSAID) use and time loss injuries in 45% of pitching staff during a single season. Specific attention to a safer playing environment, coaching and player education, and sport-specific training and conditioning would reduce the risk, rate and severity of fast pitch traumas. Padding of walls, backstops, rails and dugout areas, as well as minimising use of indoor facilities, is suggested to decrease the number of collision

  13. Musical Activity Tunes Up Absolute Pitch Ability

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Ribe, Lars Riisgaard

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce pitches of musical tones without an external reference. Active AP (i.e., pitch production or pitch adjustment) and passive AP (i.e., pitch identification) are considered to not necessarily coincide, although no study has properly compared...

  14. A combined neural network and mechanistic approach for the prediction of corrosion rate and yield strength of magnesium-rare earth alloys

    International Nuclear Information System (INIS)

    Birbilis, N.; Cavanaugh, M.K.; Sudholz, A.D.; Zhu, S.M.; Easton, M.A.; Gibson, M.A.

    2011-01-01

    Research highlights: → This study presents a body of corrosion data for a set of custom alloys and displays this in multivariable space. These alloys represent the next generation of Mg alloys for auto applications. → The data is processed using an ANN model, which makes it possible to yield a single expression for prediction of corrosion rate (and strength) as a function of any input composition (of Ce, La or Nd between 0 and 6 wt.%). → The relative influence of the various RE elements on corrosion is assessed, with the outcome that Nd additions can offer comparable strength with minimal rise in corrosion rate. → The morphology and solute present in the eutectic region itself (as opposed to just the intermetallic presence) was shown - for the first time - to also be a key contributor to corrosion. → The above approach sets the foundation for rational alloy design of alloys with corrosion performance in mind. - Abstract: Additions of Ce, La and Nd to Mg were made in binary, ternary and quaternary combinations up to ∼6 wt.%. This provided a dataset that was used in developing a neural network model for predicting corrosion rate and yield strength. Whilst yield strength increased with RE additions, corrosion rates also systematically increased, however, this depended on the type of RE element added and the combination of elements added (along with differences in intermetallic morphology). This work is permits an understanding of Mg-RE alloy performance, and can be exploited in Mg alloy design for predictable combinations of strength and corrosion resistance.

  15. Performance Demands in Softball Pitching: A Comprehensive Muscle Fatigue Study.

    Science.gov (United States)

    Corben, Jeffrey S; Cerrone, Sara A; Soviero, Julie E; Kwiecien, Susan Y; Nicholas, Stephen J; McHugh, Malachy P

    2015-08-01

    Monitoring pitch count is standard practice in minor league baseball but not in softball because of the perception that fast-pitch softball pitching is a less stressful motion. To examine muscle fatigue after fast-pitch softball performances to provide an assessment of performance demand. Descriptive laboratory study. Bilateral strength measurements (handheld dynamometer) were made on 19 female softball pitchers (mean age [±SD], 15.2 ± 1.2 years) before and after pitching a game (mean number of pitches, 99 ± 21; mean innings pitched, 5 ± 1). A total of 20 tests were performed on the dominant and nondominant sides: forearm (grip, wrist flexion/extension, pronation/supination, elbow flexion/extension), shoulder (flexion, abduction/adduction, external/internal rotation, empty can test), scapula (middle/lower trapezius, rhomboid), and hip (hip flexion/extension, abduction/adduction). Fatigue (percentage strength loss) was categorized based on bilateral versus unilateral presentation using paired t tests: bilateral symmetric (significant on dominant and nondominant and not different between sides), bilateral asymmetric (significant on dominant and nondominant but significantly greater on dominant), unilateral asymmetric (significant on dominant only and significantly greater than nondominant), or unilateral equivocal (significant on dominant only but not different from nondominant). Bilateral symmetric fatigue was evident for all hip (dominant, 19.3%; nondominant, 15.2%) and scapular tests (dominant, 19.2%; nondominant, 19.3%). In general, shoulder tests exhibited bilateral asymmetric fatigue (dominant, 16.9%; nondominant, 11.6%). Forearm tests were more variable, with bilateral symmetric fatigue in the elbow flexors (dominant, 22.5%; nondominant, 19.2%), and wrist flexors (dominant, 21.6%; nondominant, 19.0%), bilateral asymmetric fatigue in the supinators (dominant, 21.8%; nondominant, 15.5%), unilateral asymmetric fatigue in the elbow extensors (dominant, 22

  16. Functional Strength Training and Movement Performance Therapy for Upper Limb Recovery Early Poststroke—Efficacy, Neural Correlates, Predictive Markers, and Cost-Effectiveness: FAST-INdiCATE Trial

    Directory of Open Access Journals (Sweden)

    Susan M. Hunter

    2018-01-01

    Full Text Available BackgroundVariation in physiological deficits underlying upper limb paresis after stroke could influence how people recover and to which physical therapy they best respond.ObjectivesTo determine whether functional strength training (FST improves upper limb recovery more than movement performance therapy (MPT. To identify: (a neural correlates of response and (b whether pre-intervention neural characteristics predict response.DesignExplanatory investigations within a randomised, controlled, observer-blind, and multicentre trial. Randomisation was computer-generated and concealed by an independent facility until baseline measures were completed. Primary time point was outcome, after the 6-week intervention phase. Follow-up was at 6 months after stroke.ParticipantsWith some voluntary muscle contraction in the paretic upper limb, not full dexterity, when recruited up to 60 days after an anterior cerebral circulation territory stroke.InterventionsConventional physical therapy (CPT plus either MPT or FST for up to 90 min-a-day, 5 days-a-week for 6 weeks. FST was “hands-off” progressive resistive exercise cemented into functional task training. MPT was “hands-on” sensory/facilitation techniques for smooth and accurate movement.OutcomesThe primary efficacy measure was the Action Research Arm Test (ARAT. Neural measures: fractional anisotropy (FA corpus callosum midline; asymmetry of corticospinal tracts FA; and resting motor threshold (RMT of motor-evoked potentials.AnalysisCovariance models tested ARAT change from baseline. At outcome: correlation coefficients assessed relationship between change in ARAT and neural measures; an interaction term assessed whether baseline neural characteristics predicted response.Results288 Participants had: mean age of 72.2 (SD 12.5 years and mean ARAT 25.5 (18.2. For 240 participants with ARAT at baseline and outcome the mean change was 9.70 (11.72 for FST + CPT and 7.90 (9.18 for MPT

  17. Thrust generation and wake structure for flow across a pitching ...

    Indian Academy of Sciences (India)

    ... condition for the generation of thrust. The vortex strength is found to be invariant of the pitching frequency. Certain differences from the reported results are noted, which may be because of difference in the airfoil shape. These results can help improve understanding of the flow behavior as the low Reynolds number range ...

  18. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates

    International Nuclear Information System (INIS)

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

    2008-01-01

    The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in

  19. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates.

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

    2008-09-01

    The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in

  20. Back-propagation neural network-based approximate analysis of true stress-strain behaviors of high-strength metallic material

    International Nuclear Information System (INIS)

    Doh, Jaeh Yeok; Lee, Jong Soo; Lee, Seung Uk

    2016-01-01

    In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material's behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity's effect on the material property through a first-order sensitivity analysis.

  1. Trunk Muscle Function Deficit in Youth Baseball Pitchers With Excessive Contralateral Trunk Tilt During Pitching.

    Science.gov (United States)

    Oyama, Sakiko; Waldhelm, Andrew G; Sosa, Araceli R; Patel, Ravina R; Kalinowski, Derick L

    2017-09-01

    Pitching technique is one of many factors that affect injury risk. Exhibiting excessive contralateral trunk tilt (CLT) during pitching has been linked to higher ball speed but also to increased joint loading. Deficit in trunk muscle strength has been suggested as an underlying cause of this movement pattern. The purpose of the study was to compare trunk muscle strength between youth baseball pitchers with varying degree of CLT during pitching. Cross-sectional study. Baseball practice fields. Twenty-eight youth baseball pitchers. Pitching technique was captured using a video camera. Based on the 2-dimensional trunk contralateral flexion angle, pitchers were categorized into low (30 degrees) CLT groups. Maximum isometric strength tests for trunk flexion, extension, and bilateral rotation, measured using a dynamometer. The pitchers with high CLT (n = 10) had longer pitching experience (P = 0.014), produced higher ball speed (P = 0.003) compared with the pitchers with moderate (n = 10) and low (n = 8) CLT, but demonstrated greater asymmetry in trunk rotation strength (relative weakness in rotation strength toward dominant side) compared with the pitchers with low CLT (P = 0.015). Excessive CLT may be a strategy that young pitchers learn to achieve higher ball velocity but also may be associated with imbalance between the oblique muscles on dominant and nondominant side, which may be acquired from repetitive pitching. Strengthening and emphasizing the use of dominant side oblique muscles may keep pitchers from leaning excessively during pitching and thus decrease joint loading.

  2. LANGUAGE EXPERIENCE SHAPES PROCESSING OF PITCH RELEVANT INFORMATION IN THE HUMAN BRAINSTEM AND AUDITORY CORTEX: ELECTROPHYSIOLOGICAL EVIDENCE.

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T

    2014-12-01

    Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. As such, it provides an analytic window to evaluate how neural activity relevant to pitch undergo transformation from early sensory to later cognitive stages of processing in a well coordinated hierarchical network that is subject to experience-dependent plasticity. We review recent evidence of language experience-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem and auditory cortex. We present evidence that shows enhanced representation of linguistically-relevant pitch dimensions or features at both the brainstem and cortical levels with a stimulus-dependent preferential activation of the right hemisphere in native speakers of a tone language. We argue that neural representation of pitch-relevant information in the brainstem and early sensory level processing in the auditory cortex is shaped by the perceptual salience of domain-specific features. While both stages of processing are shaped by language experience, neural representations are transformed and fundamentally different at each biological level of abstraction. The representation of pitch relevant information in the brainstem is more fine-grained spectrotemporally as it reflects sustained neural phase-locking to pitch relevant periodicities contained in the stimulus. In contrast, the cortical pitch relevant neural activity reflects primarily a series of transient temporal neural events synchronized to certain temporal attributes of the pitch contour. We argue that experience-dependent enhancement of pitch representation for Chinese listeners most likely reflects an interaction between higher-level cognitive processes and early sensory-level processing to improve representations of behaviorally-relevant features that contribute optimally to perception. It is our view that long

  3. The strength of a remorseful heart: psychological and neural basis of how apology emolliates reactive aggression and promotes forgiveness.

    Science.gov (United States)

    Beyens, Urielle; Yu, Hongbo; Han, Ting; Zhang, Li; Zhou, Xiaolin

    2015-01-01

    Apology from the offender facilitates forgiveness and thus has the power to restore a broken relationship. Here we showed that apology from the offender not only reduces the victim's propensity to react aggressively but also alters the victim's implicit attitude and neural responses toward the offender. We adopted an interpersonal competitive game which consisted of two phases. In the first, "passive" phase, participants were punished by high or low pain stimulation chosen by the opponents when losing a trial. During the break, participants received a note from each of the opponents, one apologizing and the other not. The second, "active" phase, involved a change of roles where participants could punish the two opponents after winning. Experiment 1 included an Implicit Association Test (IAT) in between the reception of notes and the second phase. Experiment 2 recorded participants' brain potentials in the second phase. We found that participants reacted less aggressively toward the apologizing opponent than the non-apologizing opponent in the active phase. Moreover, female, but not male, participants responded faster in the IAT when positive and negative words were associated with the apologizing and the non-apologizing opponents, respectively, suggesting that female participants had enhanced implicit attitude toward the apologizing opponent. Furthermore, the late positive potential (LPP), a component in brain potentials associated with affective/motivational reactions, was larger when viewing the portrait of the apologizing than the non-apologizing opponent when participants subsequently selected low punishment. Additionally, the LPP elicited by the apologizing opponents' portrait was larger in the female than in the male participants. These findings confirm the apology's role in reducing reactive aggression and further reveal that this forgiveness process engages, at least in female, an enhancement of the victim's implicit attitude and a prosocial motivational

  4. VLSI implementation of an AMDF pitch detector

    OpenAIRE

    Smith, Tony; Gittel, Falko; Schwarzbacher, Andreas; Hilt, E.; Timoney, Joseph

    2003-01-01

    Pitch detectors are used in a variety of speech processing applications such as speech recognition systems where the pitch of the speaker is used as one parameter for identification purposes. Furthermore, pitch detectors are also sued with adaptive filters to achieve high quality adaptive noise cancellation of speech signals. In voice conversion systems, pitch detection is an essential step since the pitch of the modified signal is altered to model the target voice. This paper describes a ...

  5. Effect of cervical vs. thoracic spinal manipulation on peripheral neural features and grip strength in subjects with chronic mechanical neck pain: a randomized controlled trial.

    Science.gov (United States)

    Bautista-Aguirre, Francisco; Oliva-Pascual-Vaca, Ángel; Heredia-Rizo, Alberto M; Boscá-Gandía, Juan J; Ricard, François; Rodriguez-Blanco, Cleofás

    2017-06-01

    treatment session using cervical or thoracic thrust techniques is not enough to achieve clinically relevant changes on neural mechanosensitivity and grip strength in chronic non-specific mechanical neck pain.

  6. Tinnitus pitch and acoustic trauma

    Energy Technology Data Exchange (ETDEWEB)

    Cahani, M; Paul, G; Shahar, A

    1983-01-01

    Fifty-six subjects complaining of tinnitus underwent an audiometric test and a test for identifying the analogous pitch of their tinnitus. All of the subjects reported that they had been exposed to noise in the past. The subjects were divided into two groups on the basis of their audiometric test results. Group P was composed of subjects who showed a sensorineural hearing loss typical of acoustic trauma. Group N was composed of subjects whose hearing was within normal limits. The pitch of the tinnitus in group P was concentrated in the high-frequency range, whereas in group N tinnitus pitch values were distributed over the low and mid-audiometric frequency spectrum. It was deduced that different processes are involved in the generation of tinnitus in the two groups.

  7. Disorders of pitch production in tone deafness

    Directory of Open Access Journals (Sweden)

    Simone eDalla Bella

    2011-07-01

    Full Text Available Singing is as natural as speaking for the majority of people. Yet some individuals (i.e., 10-15% are inaccurate singers, typically performing or imitating pitches and melodies inaccurately. This condition, commonly referred to as tone deafness, has been observed both in the presence and absence of deficient pitch perception. In this article we review the existing literature concerning normal singing, poor-pitch singing, and, briefly, the sources of this condition. Considering that pitch plays a prominent role in the structure of both music and speech we also focus on the possibility that pitch production (or imitation is similarly impaired in poor-pitch singers. Preliminary evidence from our laboratory on poor-pitch singing suggests that pitch imitation may be selectively inaccurate in the music domain without being affected in speech. This finding points to separability of mechanisms subserving pitch production in music and language.

  8. Difficulties with Pitch Discrimination Influences Pitch Memory Performance: Evidence from Congenital Amusia

    OpenAIRE

    Jiang, Cunmei; Lim, Vanessa K.; Wang, Hang; Hamm, Jeff P.

    2013-01-01

    Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to crea...

  9. The musical environment and auditory plasticity: Hearing the pitch of percussion

    Directory of Open Access Journals (Sweden)

    Neil M Mclachlan

    2013-10-01

    Full Text Available Although musical skills clearly improve with training, pitch processing has generally been believed to be biologically determined by the behavior of brain stem neural mechanisms. Two main classes of pitch models have emerged over the last 50 years. Harmonic template models have been used to explain cross-channel integration of frequency information, and waveform periodicity models have been used to explain pitch discrimination that is much finer than the resolution of the auditory nerve. It has been proposed that harmonic templates are learnt from repeated exposure to voice, and so it may also be possible to learn inharmonic templates from repeated exposure to inharmonic music instruments. This study investigated whether pitch-matching accuracy for inharmonic percussion instruments was better in people who have trained on these instruments and could reliably recognize their timbre. We found that adults who had trained with Indonesian gamelan instruments were better at recognizing and pitch-matching gamelan instruments than people with similar levels of music training, but no prior exposure to these instruments. These findings suggest that gamelan musicians were able to use inharmonic templates to support accurate pitch processing for these instruments. We suggest that recognition mechanisms based on spectrotemporal patterns of afferent auditory excitation in the early stages of pitch processing allow rapid priming of the lowest frequency partial of inharmonic timbres, explaining how music training can adapt pitch processing to different musical genres and instruments.

  10. Surface Electromyography of the Forearm Musculature During the Windmill Softball Pitch

    Science.gov (United States)

    Remaley, D. Trey; Fincham, Bryce; McCullough, Bryan; Davis, Kirk; Nofsinger, Charles; Armstrong, Charles; Stausmire, Julie M.

    2015-01-01

    Background: Previous studies investigating the windmill softball pitch have focused primarily on shoulder musculature and function, collecting limited data on elbow and forearm musculature. Little information is available in the literature regarding the forearm. This study documents forearm muscle electromyographic (EMG) activity that has not been previously published. Purpose: Elbow and upper extremity overuse injuries are on the rise in fast-pitch softball pitchers. This study attempts to describe forearm muscle activity in softball pitchers during the windmill softball pitch. Overuse injuries can be prevented if a better understanding of mechanics is defined. Study Design: Descriptive laboratory study. Methods: Surface EMG and high-speed videography was used to study forearm muscle activation patterns during the windmill softball pitch on 10 female collegiate-level pitchers. Maximum voluntary isometric contraction of each muscle was used as a normalizing value. Each subject was tested during a single laboratory session per pitcher. Data included peak muscle activation, average muscle activation, and time to peak activation for 6 pitch types: fastball, changeup, riseball, curveball, screwball, and dropball. Results: During the first 4 phases, muscle activity (seen as signal strength on the EMG recordings) was limited and static in nature. The greatest activation occurred in phases 5 and 6, with increased signal strength, evidence of stretch-shortening cycle, and different muscle characteristics with each pitch style. These 2 phases of the windmill pitch are where the arm is placed in the 6 o’clock position and then at release of the ball. The flexor carpi ulnaris signal strength was significantly greater than the other forearm flexors. Timing of phases 1 through 5 was successively shorter for each pitch. There was a secondary pattern of activation in the flexor carpi ulnaris in phase 4 for all pitches except the fastball and riseball. Conclusion: During the 6

  11. Surface Electromyography of the Forearm Musculature During the Windmill Softball Pitch.

    Science.gov (United States)

    Remaley, D Trey; Fincham, Bryce; McCullough, Bryan; Davis, Kirk; Nofsinger, Charles; Armstrong, Charles; Stausmire, Julie M

    2015-01-01

    Previous studies investigating the windmill softball pitch have focused primarily on shoulder musculature and function, collecting limited data on elbow and forearm musculature. Little information is available in the literature regarding the forearm. This study documents forearm muscle electromyographic (EMG) activity that has not been previously published. Elbow and upper extremity overuse injuries are on the rise in fast-pitch softball pitchers. This study attempts to describe forearm muscle activity in softball pitchers during the windmill softball pitch. Overuse injuries can be prevented if a better understanding of mechanics is defined. Descriptive laboratory study. Surface EMG and high-speed videography was used to study forearm muscle activation patterns during the windmill softball pitch on 10 female collegiate-level pitchers. Maximum voluntary isometric contraction of each muscle was used as a normalizing value. Each subject was tested during a single laboratory session per pitcher. Data included peak muscle activation, average muscle activation, and time to peak activation for 6 pitch types: fastball, changeup, riseball, curveball, screwball, and dropball. During the first 4 phases, muscle activity (seen as signal strength on the EMG recordings) was limited and static in nature. The greatest activation occurred in phases 5 and 6, with increased signal strength, evidence of stretch-shortening cycle, and different muscle characteristics with each pitch style. These 2 phases of the windmill pitch are where the arm is placed in the 6 o'clock position and then at release of the ball. The flexor carpi ulnaris signal strength was significantly greater than the other forearm flexors. Timing of phases 1 through 5 was successively shorter for each pitch. There was a secondary pattern of activation in the flexor carpi ulnaris in phase 4 for all pitches except the fastball and riseball. During the 6 pitches, the greatest muscular activity was in phases 5 and 6

  12. Reliable Fluid Power Pitch Systems

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; Soltani, Mohsen

    2015-01-01

    The key objectives of wind turbine manufactures and buyers are to reduce the Total Cost of Ownership and Total Cost of Energy. Among others, low downtime of a wind turbine is important to increase the amount of energy produced during its lifetime. Historical data indicate that pitch systems accou...

  13. Decoding the dynamic representation of musical pitch from human brain activity.

    Science.gov (United States)

    Sankaran, N; Thompson, W F; Carlile, S; Carlson, T A

    2018-01-16

    In music, the perception of pitch is governed largely by its tonal function given the preceding harmonic structure of the music. While behavioral research has advanced our understanding of the perceptual representation of musical pitch, relatively little is known about its representational structure in the brain. Using Magnetoencephalography (MEG), we recorded evoked neural responses to different tones presented within a tonal context. Multivariate Pattern Analysis (MVPA) was applied to "decode" the stimulus that listeners heard based on the underlying neural activity. We then characterized the structure of the brain's representation using decoding accuracy as a proxy for representational distance, and compared this structure to several well established perceptual and acoustic models. The observed neural representation was best accounted for by a model based on the Standard Tonal Hierarchy, whereby differences in the neural encoding of musical pitches correspond to their differences in perceived stability. By confirming that perceptual differences honor those in the underlying neuronal population coding, our results provide a crucial link in understanding the cognitive foundations of musical pitch across psychological and neural domains.

  14. Cross-Cultural Perspectives on Pitch Memory

    Science.gov (United States)

    Trehub, Sandra E.; Schellenberg, E. Glenn; Nakata, Takayuki

    2008-01-01

    We examined effects of age and culture on children's memory for the pitch level of familiar music. Canadian 9- and 10-year-olds distinguished the original pitch level of familiar television theme songs from foils that were pitch-shifted by one semitone, whereas 5- to 8-year-olds failed to do so (Experiment 1). In contrast, Japanese 5- and…

  15. Pitch perception prior to cortical maturation

    Science.gov (United States)

    Lau, Bonnie K.

    Pitch perception plays an important role in many complex auditory tasks including speech perception, music perception, and sound source segregation. Because of the protracted and extensive development of the human auditory cortex, pitch perception might be expected to mature, at least over the first few months of life. This dissertation investigates complex pitch perception in 3-month-olds, 7-month-olds and adults -- time points when the organization of the auditory pathway is distinctly different. Using an observer-based psychophysical procedure, a series of four studies were conducted to determine whether infants (1) discriminate the pitch of harmonic complex tones, (2) discriminate the pitch of unresolved harmonics, (3) discriminate the pitch of missing fundamental melodies, and (4) have comparable sensitivity to pitch and spectral changes as adult listeners. The stimuli used in these studies were harmonic complex tones, with energy missing at the fundamental frequency. Infants at both three and seven months of age discriminated the pitch of missing fundamental complexes composed of resolved and unresolved harmonics as well as missing fundamental melodies, demonstrating perception of complex pitch by three months of age. More surprisingly, infants in both age groups had lower pitch and spectral discrimination thresholds than adult listeners. Furthermore, no differences in performance on any of the tasks presented were observed between infants at three and seven months of age. These results suggest that subcortical processing is not only sufficient to support pitch perception prior to cortical maturation, but provides adult-like sensitivity to pitch by three months.

  16. Relating Pitch Awareness to Phonemic Awareness in Children: Implications for Tone-Deafness and Dyslexia

    Directory of Open Access Journals (Sweden)

    Psyche eLoui

    2011-05-01

    Full Text Available Language and music are complex cognitive and neural functions that rely on awareness of one’s own sound productions. Information on the awareness of vocal pitch, and its relation to phonemic awareness which is crucial for learning to read, will be important for understanding the relationship between tone-deafness and developmental language disorders such as dyslexia. Here we show that phonemic awareness skills are positively correlated with pitch perception-production skills in children. Children between the ages of 7 and 9 were tested on pitch perception and production, phonemic awareness, and IQ. Results showed a significant positive correlation between pitch perception-production and phonemic awareness, suggesting that the relationship between musical and linguistic sound processing is intimately linked to awareness at the level of pitch and phonemes. Since tone-deafness is a pitch-related impairment and dyslexia is a deficit of phonemic awareness, we suggest that dyslexia and tone-deafness may have a shared and/or common neural basis.

  17. Effects of voice harmonic complexity on ERP responses to pitch-shifted auditory feedback.

    Science.gov (United States)

    Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R

    2011-12-01

    The present study investigated the neural mechanisms of voice pitch control for different levels of harmonic complexity in the auditory feedback. Event-related potentials (ERPs) were recorded in response to+200 cents pitch perturbations in the auditory feedback of self-produced natural human vocalizations, complex and pure tone stimuli during active vocalization and passive listening conditions. During active vocal production, ERP amplitudes were largest in response to pitch shifts in the natural voice, moderately large for non-voice complex stimuli and smallest for the pure tones. However, during passive listening, neural responses were equally large for pitch shifts in voice and non-voice complex stimuli but still larger than that for pure tones. These findings suggest that pitch change detection is facilitated for spectrally rich sounds such as natural human voice and non-voice complex stimuli compared with pure tones. Vocalization-induced increase in neural responses for voice feedback suggests that sensory processing of naturally-produced complex sounds such as human voice is enhanced by means of motor-driven mechanisms (e.g. efference copies) during vocal production. This enhancement may enable the audio-vocal system to more effectively detect and correct for vocal errors in the feedback of natural human vocalizations to maintain an intended vocal output for speaking. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Pitching Airfoil Boundary Layer Investigations

    OpenAIRE

    Raffel, Markus; Richard, Hugues; Richter, Kai; Bosbach, Johannes; Geißler, Wolfgang

    2006-01-01

    The present paper describes an experiment performed in a transonic wind tunnel facility where a new test section has been developed especially for the investigation of the unsteady flow above oscillating airfoils under dynamic stall conditions. Dynamic stall is characterized by the development, movement and shedding of one or more concentrated vortices on the airfoils upper surface. The hysteresis loops of lift-, drag- and pitching moment are highly influenced by these vortices. To understand...

  19. Cortical pitch representations of complex tones in musicians and non-musicians

    DEFF Research Database (Denmark)

    Bianchi, Federica; Hjortkjær, Jens; Santurette, Sébastien

    Musicians typically show enhanced pitch-discrimination ability compared to non-musicians, consistent with the fact that musicians are more sensitive to some acoustic features critical for both speech and music processing. However, it is still unclear which mechanisms underlie this perceptual...... enhancement. In a previous behavioral study, musicians showed an increased pitch-discrimination performance for both resolved and unresolved complex tones suggesting an enhanced neural representation of pitch at central stages of the auditory system. The aim of this study was to clarify whether musicians show...... (i) differential neural activation in response to complex tones as compared to non-musicians and/or (ii) finer fundamental frequency (F0) representation in the auditory cortex. Assuming that the right auditory cortex is specialized in processing fine spectral changes, we hypothesized that an enhanced...

  20. Variable Pitch Darrieus Water Turbines

    Science.gov (United States)

    Kirke, Brian; Lazauskas, Leo

    In recent years the Darrieus wind turbine concept has been adapted for use in water, either as a hydrokinetic turbine converting the kinetic energy of a moving fluid in open flow like an underwater wind turbine, or in a low head or ducted arrangement where flow is confined, streamtube expansion is controlled and efficiency is not subject to the Betz limit. Conventional fixed pitch Darrieus turbines suffer from two drawbacks, (i) low starting torque and (ii) shaking due to cyclical variations in blade angle of attack. Ventilation and cavitation can also cause problems in water turbines when blade velocities are high. Shaking can be largely overcome by the use of helical blades, but these do not produce large starting torque. Variable pitch can produce high starting torque and high efficiency, and by suitable choice of pitch regime, shaking can be minimized but not entirely eliminated. Ventilation can be prevented by avoiding operation close to a free surface, and cavitation can be prevented by limiting blade velocities. This paper summarizes recent developments in Darrieus water turbines, some problems and some possible solutions.

  1. Absolute pitch: a case study.

    Science.gov (United States)

    Vernon, P E

    1977-11-01

    The auditory skill known as 'absolute pitch' is discussed, and it is shown that this differs greatly in accuracy of identification or reproduction of musical tones from ordinary discrimination of 'tonal height' which is to some extent trainable. The present writer possessed absolute pitch for almost any tone or chord over the normal musical range, from about the age of 17 to 52. He then started to hear all music one semitone too high, and now at the age of 71 it is heard a full tone above the true pitch. Tests were carried out under controlled conditions, in which 68 to 95 per cent of notes were identified as one semitone or one tone higher than they should be. Changes with ageing seem more likely to occur in the elasticity of the basilar membrane mechanisms than in the long-term memory which is used for aural analysis of complex sounds. Thus this experience supports the view that some resolution of complex sounds takes place at the peripheral sense organ, and this provides information which can be incorrect, for interpretation by the cortical centres.

  2. Disorders of pitch production in tone deafness.

    Science.gov (United States)

    Bella, Simone Dalla; Berkowska, Magdalena; Sowiński, Jakub

    2011-01-01

    Singing is as natural as speaking for the majority of people. Yet some individuals (i.e., 10-15%) are poor singers, typically performing or imitating pitches and melodies inaccurately. This condition, commonly referred to as "tone deafness," has been observed both in the presence and absence of deficient pitch perception. In this article we review the existing literature concerning normal singing, poor-pitch singing, and, briefly, the sources of this condition. Considering that pitch plays a prominent role in the structure of both music and speech we also focus on the possibility that speech production (or imitation) is similarly impaired in poor-pitch singers. Preliminary evidence from our laboratory suggests that pitch imitation may be selectively inaccurate in the music domain without being affected in speech. This finding points to separability of mechanisms subserving pitch production in music and language.

  3. Tone language fluency impairs pitch discrimination

    Directory of Open Access Journals (Sweden)

    Isabelle ePeretz

    2011-07-01

    Full Text Available Here we present evidence that native speakers of a tone language, in which pitch contributes to word meaning, are impaired in the discrimination of falling pitches in tone sequences, as compared to speakers of a non-tone language. Both groups were presented with monotonic and isochronous sequences of five tones (i.e., constant pitch and intertone interval. They were required to detect when the fourth tone was displaced in pitch or time. While speakers of a tone language performed more poorly in the detection of downward pitch changes, they did not differ from non-tone language speakers in their perception of upward pitch changes or in their perception of subtle time changes. Moreover, this impairment cannot be attributed to low musical aptitude since the impairment remains unchanged when individual differences in musical pitch-based processing is taken into account. Thus, the impairment appears highly specific and may reflect the influence of statistical regularities of tone languages.

  4. Disorders of Pitch Production in Tone Deafness

    Science.gov (United States)

    Bella, Simone Dalla; Berkowska, Magdalena; Sowiński, Jakub

    2011-01-01

    Singing is as natural as speaking for the majority of people. Yet some individuals (i.e., 10–15%) are poor singers, typically performing or imitating pitches and melodies inaccurately. This condition, commonly referred to as “tone deafness,” has been observed both in the presence and absence of deficient pitch perception. In this article we review the existing literature concerning normal singing, poor-pitch singing, and, briefly, the sources of this condition. Considering that pitch plays a prominent role in the structure of both music and speech we also focus on the possibility that speech production (or imitation) is similarly impaired in poor-pitch singers. Preliminary evidence from our laboratory suggests that pitch imitation may be selectively inaccurate in the music domain without being affected in speech. This finding points to separability of mechanisms subserving pitch production in music and language. PMID:21811479

  5. Difficulties with pitch discrimination influences pitch memory performance: evidence from congenital amusia.

    Science.gov (United States)

    Jiang, Cunmei; Lim, Vanessa K; Wang, Hang; Hamm, Jeff P

    2013-01-01

    Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to create conditions where two pitches (the standard and the comparison tones) differed by 1x, 2x, and 3x the threshold setting. For comparison with the literature a condition that employed a constant pitch difference of four semitones was also included. The results showed that pitch memory performance improved as the discrimination between the standard and the comparison tones was made easier for both amusic and control groups, and more importantly, that amusics did not show any pitch retention deficits when the discrimination difficulty was equated. In contrast, consistent with previous literature, amusics performed worse than controls when the physical pitch distance was held constant at four semitones. This impaired performance has been interpreted as evidence for pitch memory impairment in the past. However, employing a constant pitch distance always makes the difference closer to the discrimination threshold for the amusic group than for the control group. Therefore, reduced performance in this condition may simply reflect differences in the perceptual difficulty of the discrimination. The findings indicate the importance of equating the discrimination difficulty when investigating memory.

  6. Difficulties with pitch discrimination influences pitch memory performance: evidence from congenital amusia.

    Directory of Open Access Journals (Sweden)

    Cunmei Jiang

    Full Text Available Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to create conditions where two pitches (the standard and the comparison tones differed by 1x, 2x, and 3x the threshold setting. For comparison with the literature a condition that employed a constant pitch difference of four semitones was also included. The results showed that pitch memory performance improved as the discrimination between the standard and the comparison tones was made easier for both amusic and control groups, and more importantly, that amusics did not show any pitch retention deficits when the discrimination difficulty was equated. In contrast, consistent with previous literature, amusics performed worse than controls when the physical pitch distance was held constant at four semitones. This impaired performance has been interpreted as evidence for pitch memory impairment in the past. However, employing a constant pitch distance always makes the difference closer to the discrimination threshold for the amusic group than for the control group. Therefore, reduced performance in this condition may simply reflect differences in the perceptual difficulty of the discrimination. The findings indicate the importance of equating the discrimination difficulty when investigating memory.

  7. Individual Pitch Control Using LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    2012-01-01

    In this work the problem of individual pitch control of a variable-speed variable-pitch wind turbine in the full load region is considered. Model predictive control (MPC) is used to solve the problem. However as the plant is nonlinear and time varying, a new approach is proposed to simplify......-of-plane blade root bending moments and a better transient response compared to a benchmark PI individual pitch controller....

  8. Heavy vehicle pitch dynamics and suspension tuning

    OpenAIRE

    Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi

    2008-01-01

    The influence of suspension tuning of passenger cars on bounce and pitch ride performance has been explored in a number of studies, while only minimal efforts have been made for establishing similar rules for heavy vehicles. This study aims to explore pitch dynamics and suspension tunings of a two-axle heavy vehicle with unconnected suspension, which could also provide valuable information for heavy vehicles with coupled suspensions. Based on a generalised pitch-plane model of a two-axle heav...

  9. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  10. Pitch Discrimination Learning: Specificity for Pitch and Harmonic Resolvability, and Electrophysiological Correlates

    OpenAIRE

    Carcagno, Samuele; Plack, Christopher J.

    2011-01-01

    Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed...

  11. Modulation of electric brain responses evoked by pitch deviants through transcranial direct current stimulation.

    Science.gov (United States)

    Royal, Isabelle; Zendel, Benjamin Rich; Desjardins, Marie-Ève; Robitaille, Nicolas; Peretz, Isabelle

    2018-01-31

    Congenital amusia is a neurodevelopmental disorder, characterized by a difficulty detecting pitch deviation that is related to abnormal electrical brain responses. Abnormalities found along the right fronto-temporal pathway between the inferior frontal gyrus (IFG) and the auditory cortex (AC) are the likely neural mechanism responsible for amusia. To investigate the causal role of these regions during the detection of pitch deviants, we applied cathodal (inhibitory) transcranial direct current stimulation (tDCS) over right frontal and right temporal regions during separate testing sessions. We recorded participants' electrical brain activity (EEG) before and after tDCS stimulation while they performed a pitch change detection task. Relative to a sham condition, there was a decrease in P3 amplitude after cathodal stimulation over both frontal and temporal regions compared to pre-stimulation baseline. This decrease was associated with small pitch deviations (6.25 cents), but not large pitch deviations (200 cents). Overall, this demonstrates that using tDCS to disrupt regions around the IFG and AC can induce temporary changes in evoked brain activity when processing pitch deviants. These electrophysiological changes are similar to those observed in amusia and provide causal support for the connection between P3 and fronto-temporal brain regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Hemispheric lateralization for early auditory processing of lexical tones: dependence on pitch level and pitch contour.

    Science.gov (United States)

    Wang, Xiao-Dong; Wang, Ming; Chen, Lin

    2013-09-01

    In Mandarin Chinese, a tonal language, pitch level and pitch contour are two dimensions of lexical tones according to their acoustic features (i.e., pitch patterns). A change in pitch level features a step change whereas that in pitch contour features a continuous variation in voice pitch. Currently, relatively little is known about the hemispheric lateralization for the processing of each dimension. To address this issue, we made whole-head electrical recordings of mismatch negativity in native Chinese speakers in response to the contrast of Chinese lexical tones in each dimension. We found that pre-attentive auditory processing of pitch level was obviously lateralized to the right hemisphere whereas there is a tendency for that of pitch contour to be lateralized to the left. We also found that the brain responded faster to pitch level than to pitch contour at a pre-attentive stage. These results indicate that the hemispheric lateralization for early auditory processing of lexical tones depends on the pitch level and pitch contour, and suggest an underlying inter-hemispheric interactive mechanism for the processing. © 2013 Elsevier Ltd. All rights reserved.

  13. Coding of auditory temporal and pitch information by hippocampal individual cells and cell assemblies in the rat.

    Science.gov (United States)

    Sakurai, Y

    2002-01-01

    This study reports how hippocampal individual cells and cell assemblies cooperate for neural coding of pitch and temporal information in memory processes for auditory stimuli. Each rat performed two tasks, one requiring discrimination of auditory pitch (high or low) and the other requiring discrimination of their duration (long or short). Some CA1 and CA3 complex-spike neurons showed task-related differential activity between the high and low tones in only the pitch-discrimination task. However, without exception, neurons which showed task-related differential activity between the long and short tones in the duration-discrimination task were always task-related neurons in the pitch-discrimination task. These results suggest that temporal information (long or short), in contrast to pitch information (high or low), cannot be coded independently by specific neurons. The results also indicate that the two different behavioral tasks cannot be fully differentiated by the task-related single neurons alone and suggest a model of cell-assembly coding of the tasks. Cross-correlation analysis among activities of simultaneously recorded multiple neurons supported the suggested cell-assembly model.Considering those results, this study concludes that dual coding by hippocampal single neurons and cell assemblies is working in memory processing of pitch and temporal information of auditory stimuli. The single neurons encode both auditory pitches and their temporal lengths and the cell assemblies encode types of tasks (contexts or situations) in which the pitch and the temporal information are processed.

  14. Neural bases of congenital amusia in tonal language speakers.

    Science.gov (United States)

    Zhang, Caicai; Peng, Gang; Shao, Jing; Wang, William S-Y

    2017-03-01

    Congenital amusia is a lifelong neurodevelopmental disorder of fine-grained pitch processing. In this fMRI study, we examined the neural bases of congenial amusia in speakers of a tonal language - Cantonese. Previous studies on non-tonal language speakers suggest that the neural deficits of congenital amusia lie in the music-selective neural circuitry in the right inferior frontal gyrus (IFG). However, it is unclear whether this finding can generalize to congenital amusics in tonal languages. Tonal language experience has been reported to shape the neural processing of pitch, which raises the question of how tonal language experience affects the neural bases of congenital amusia. To investigate this question, we examined the neural circuitries sub-serving the processing of relative pitch interval in pitch-matched Cantonese level tone and musical stimuli in 11 Cantonese-speaking amusics and 11 musically intact controls. Cantonese-speaking amusics exhibited abnormal brain activities in a widely distributed neural network during the processing of lexical tone and musical stimuli. Whereas the controls exhibited significant activation in the right superior temporal gyrus (STG) in the lexical tone condition and in the cerebellum regardless of the lexical tone and music conditions, no activation was found in the amusics in those regions, which likely reflects a dysfunctional neural mechanism of relative pitch processing in the amusics. Furthermore, the amusics showed abnormally strong activation of the right middle frontal gyrus and precuneus when the pitch stimuli were repeated, which presumably reflect deficits of attending to repeated pitch stimuli or encoding them into working memory. No significant group difference was found in the right IFG in either the whole-brain analysis or region-of-interest analysis. These findings imply that the neural deficits in tonal language speakers might differ from those in non-tonal language speakers, and overlap partly with the

  15. Visually induced gains in pitch discrimination: Linking audio-visual processing with auditory abilities.

    Science.gov (United States)

    Møller, Cecilie; Højlund, Andreas; Bærentsen, Klaus B; Hansen, Niels Chr; Skewes, Joshua C; Vuust, Peter

    2018-05-01

    Perception is fundamentally a multisensory experience. The principle of inverse effectiveness (PoIE) states how the multisensory gain is maximal when responses to the unisensory constituents of the stimuli are weak. It is one of the basic principles underlying multisensory processing of spatiotemporally corresponding crossmodal stimuli that are well established at behavioral as well as neural levels. It is not yet clear, however, how modality-specific stimulus features influence discrimination of subtle changes in a crossmodally corresponding feature belonging to another modality. Here, we tested the hypothesis that reliance on visual cues to pitch discrimination follow the PoIE at the interindividual level (i.e., varies with varying levels of auditory-only pitch discrimination abilities). Using an oddball pitch discrimination task, we measured the effect of varying visually perceived vertical position in participants exhibiting a wide range of pitch discrimination abilities (i.e., musicians and nonmusicians). Visual cues significantly enhanced pitch discrimination as measured by the sensitivity index d', and more so in the crossmodally congruent than incongruent condition. The magnitude of gain caused by compatible visual cues was associated with individual pitch discrimination thresholds, as predicted by the PoIE. This was not the case for the magnitude of the congruence effect, which was unrelated to individual pitch discrimination thresholds, indicating that the pitch-height association is robust to variations in auditory skills. Our findings shed light on individual differences in multisensory processing by suggesting that relevant multisensory information that crucially aids some perceivers' performance may be of less importance to others, depending on their unisensory abilities.

  16. Anomalous capillary flow of coal tar pitches

    Energy Technology Data Exchange (ETDEWEB)

    Saint Romain, J.L.; Lahaye, J.; Ehrburger, P.; Couderc, P.

    1986-06-01

    Capillary flow of liquid coal tar pitch into a coke bed was studied. Anomalies in the flow could not be attributed to a plugging effect for mesophase content lower than 20 wt%. The flow behaviour of small pitch droplets can be correlated with the change in physicochemical properties, as measured by the glass transition temperature, on penetration into the coke bed. 4 references.

  17. Ideomotor effects of pitch on continuation tapping.

    Science.gov (United States)

    Ammirante, Paolo; Thompson, William F; Russo, Frank A

    2011-02-01

    The ideomotor principle predicts that perception will modulate action where overlap exists between perceptual and motor representations of action. This effect is demonstrated with auditory stimuli. Previous perceptual evidence suggests that pitch contour and pitch distance in tone sequences may elicit tonal motion effects consistent with listeners' implicit awareness of the lawful dynamics of locomotive bodies. To examine modulating effects of perception on action, participants in a continuation tapping task produced a steady tempo. Auditory tones were triggered by each tap. Pitch contour randomly and persistently varied within trials. Pitch distance between successive tones varied between trials. Although participants were instructed to ignore them, tones systematically affected finger dynamics and timing. Where pitch contour implied positive acceleration, the following tap and the intertap interval (ITI) that it completed were faster. Where pitch contour implied negative acceleration, the following tap and the ITI that it completed were slower. Tempo was faster with greater pitch distance. Musical training did not predict the magnitude of these effects. There were no generalized effects on timing variability. Pitch contour findings demonstrate how tonal motion may elicit the spontaneous production of accents found in expressive music performance.

  18. Characterization of pitches by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ehrburger, P.; Martin, C.; Lahaye, J.; Saint-Romain, J.L.; Couderc, P.

    1988-12-01

    Pitch materials have generally a very complex composition with molecular mass ranging from a few hundred to several thousands units. In order to characterize these materials their properties related to the glassy transformation, in particular to enthalpy relaxation, have been investigated. Solvent soluble fractions have been characterized by differential scanning calorimetry (DSC). As with polymeric materials, enthalpy relaxation can provide information about pitches and the interactions occurring between the different types of molecules present in the pitch: mean molecular size, structural factor, molecular-size distribution. The determination of glass transition properties provides a useful means for the characterization of pitch and of their solvent extracts. It also permits insight into the complex reactions which occur when pitch materials are heat-treated. 7 refs., 2 figs., 3 tabs.

  19. Memory for vocal tempo and pitch.

    Science.gov (United States)

    Boltz, Marilyn G

    2017-11-01

    Two experiments examined the ability to remember the vocal tempo and pitch of different individuals, and the way this information is encoded into the cognitive system. In both studies, participants engaged in an initial familiarisation phase while attending was systematically directed towards different aspects of speakers' voices. Afterwards, they received a tempo or pitch recognition task. Experiment 1 showed that tempo and pitch are both incidentally encoded into memory at levels comparable to intentional learning, and no performance deficit occurs with divided attending. Experiment 2 examined the ability to recognise pitch or tempo when the two dimensions co-varied and found that the presence of one influenced the other: performance was best when both dimensions were positively correlated with one another. As a set, these findings indicate that pitch and tempo are automatically processed in a holistic, integral fashion [Garner, W. R. (1974). The processing of information and structure. Potomac, MD: Erlbaum.] which has a number of cognitive implications.

  20. A Neuronal Network Model for Pitch Selectivity and Representation

    OpenAIRE

    Huang, Chengcheng; Rinzel, John

    2016-01-01

    Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency estimation using biophysically-based, high-resolution coincidence detector neurons. The neuronal units respond only to highly coincident input among c...

  1. Hearing of note: an electrophysiologic and psychoacoustic comparison of pitch discrimination between vocal and instrumental musicians.

    Science.gov (United States)

    Nikjeh, Dee A; Lister, Jennifer J; Frisch, Stefan A

    2008-11-01

    Cortical auditory evoked potentials of instrumental musicians suggest that music expertise modifies pitch processing, yet less is known about vocal musicians. Mismatch negativity (MMN) to pitch deviances and difference limen for frequency (DLF) were examined among 61 young adult women, including 20 vocalists, 21 instrumentalists, and 20 nonmusicians. Stimuli were harmonic tone complexes from the mid-female vocal range (C4-G4). MMN was elicited by multideviant paradigm. DLF was obtained by an adaptive psychophysical paradigm. Musicians detected pitch changes earlier and DLFs were 50% smaller than nonmusicians. Both vocal and instrumental musicians possess superior sensory-memory representations for acoustic parameters. Vocal musicians with instrumental training appear to have an auditory neural advantage over instrumental or vocal only musicians. An incidental finding reveals P3a as a sensitive index of music expertise.

  2. Integrating cues of social interest and voice pitch in men's preferences for women's voices.

    Science.gov (United States)

    Jones, Benedict C; Feinberg, David R; Debruine, Lisa M; Little, Anthony C; Vukovic, Jovana

    2008-04-23

    Most previous studies of vocal attractiveness have focused on preferences for physical characteristics of voices such as pitch. Here we examine the content of vocalizations in interaction with such physical traits, finding that vocal cues of social interest modulate the strength of men's preferences for raised pitch in women's voices. Men showed stronger preferences for raised pitch when judging the voices of women who appeared interested in the listener than when judging the voices of women who appeared relatively disinterested in the listener. These findings show that voice preferences are not determined solely by physical properties of voices and that men integrate information about voice pitch and the degree of social interest expressed by women when forming voice preferences. Women's preferences for raised pitch in women's voices were not modulated by cues of social interest, suggesting that the integration of cues of social interest and voice pitch when men judge the attractiveness of women's voices may reflect adaptations that promote efficient allocation of men's mating effort.

  3. Pitch memory, labelling and disembedding in autism.

    Science.gov (United States)

    Heaton, Pamela

    2003-05-01

    Autistic musical savants invariably possess absolute pitch ability and are able to disembed individual musical tones from chords. Enhanced pitch discrimination and memory has been found in non-savant individuals with autism who also show superior performance on visual disembedding tasks. These experiments investigate the extent that enhanced disembedding ability will be found within the musical domain in autism. High-functioning children with autism, together with age- and intelligence-matched controls, participated in three experiments testing pitch memory, labelling and chord disembedding. The findings from experiment 1 showed enhanced pitch memory and labelling in the autism group. In experiment 2, when subjects were pre-exposed to labelled individual tones, superior chord segmentation was also found. However, in experiment 3, when disembedding performance was less reliant on pitch memory, no group differences emerged and the children with autism, like controls, perceived musical chords holistically. These findings indicate that pitch memory and labelling is superior in autism and can facilitate performance on musical disembedding tasks. However, when task performance does not rely on long-term pitch memory, autistic children, like controls, succumb to the Gestalt qualities of chords.

  4. Sensory Processing: Advances in Understanding Structure and Function of Pitch-Shifted Auditory Feedback in Voice Control

    Directory of Open Access Journals (Sweden)

    Charles R Larson

    2016-02-01

    Full Text Available The pitch-shift paradigm has become a widely used method for studying the role of voice pitch auditory feedback in voice control. This paradigm introduces small, brief pitch shifts in voice auditory feedback to vocalizing subjects. The perturbations trigger a reflexive mechanism that counteracts the change in pitch. The underlying mechanisms of the vocal responses are thought to reflect a negative feedback control system that is similar to constructs developed to explain other forms of motor control. Another use of this technique requires subjects to voluntarily change the pitch of their voice when they hear a pitch shift stimulus. Under these conditions, short latency responses are produced that change voice pitch to match that of the stimulus. The pitch-shift technique has been used with magnetoencephalography (MEG and electroencephalography (EEG recordings, and has shown that at vocal onset there is normally a suppression of neural activity related to vocalization. However, if a pitch-shift is also presented at voice onset, there is a cancellation of this suppression, which has been interpreted to mean that one way in which a person distinguishes self-vocalization from vocalization of others is by a comparison of the intended voice and the actual voice. Studies of the pitch shift reflex in the fMRI environment show that the superior temporal gyrus (STG plays an important role in the process of controlling voice F0 based on auditory feedback. Additional studies using fMRI for effective connectivity modeling show that the left and right STG play critical roles in correcting for an error in voice production. While both the left and right STG are involved in this process, a feedback loop develops between left and right STG during perturbations, in which the left to right connection becomes stronger, and a new negative right to left connection emerges along with the emergence of other feedback loops within the cortical network tested.

  5. Pitch-to-Pitch Correlation in Location, Velocity, and Movement ant Its Role in Predicting Strikeout Rate

    OpenAIRE

    Zhao, Shiyuan

    2015-01-01

    We evaluate a model for pitch sequencing in baseball that is defined by pitch-to-pitch correlation in location, velocity, and movement. The correlations quantify the average similarity of consecutive pitches and provide a measure of the batter's ability to predict the properties of the upcoming pitch. We examine the characteristics of the model for a set of major league pitchers using PITCHf/x data for nearly three million pitches thrown over seven major league seasons. After partitioning the...

  6. Imperfect pitch: Gabor's uncertainty principle and the pitch of extremely brief sounds.

    Science.gov (United States)

    Hsieh, I-Hui; Saberi, Kourosh

    2016-02-01

    How brief must a sound be before its pitch is no longer perceived? The uncertainty tradeoff between temporal and spectral resolution (Gabor's principle) limits the minimum duration required for accurate pitch identification or discrimination. Prior studies have reported that pitch can be extracted from sinusoidal pulses as brief as half a cycle. This finding has been used in a number of classic papers to develop models of pitch encoding. We have found that phase randomization, which eliminates timbre confounds, degrades this ability to chance, raising serious concerns over the foundation on which classic pitch models have been built. The current study investigated whether subthreshold pitch cues may still exist in partial-cycle pulses revealed through statistical integration in a time series containing multiple pulses. To this end, we measured frequency-discrimination thresholds in a two-interval forced-choice task for trains of partial-cycle random-phase tone pulses. We found that residual pitch cues exist in these pulses but discriminating them requires an order of magnitude (ten times) larger frequency difference than that reported previously, necessitating a re-evaluation of pitch models built on earlier findings. We also found that as pulse duration is decreased to less than two cycles its pitch becomes biased toward higher frequencies, consistent with predictions of an auto-correlation model of pitch extraction.

  7. Pitch modelling for the Nguni languages

    CSIR Research Space (South Africa)

    Govender, N

    2007-06-01

    Full Text Available Govender ngovender@csir.co.za, Etienne Barnard ebarnard@csir.co.za, Marelie Davel mdavel@csir.co.za by varying the levels of pitch, intensity and duration in the voice. An overview of intonation as observed in a variety of languages is provided in [1... nature of laryngograph data in voiced speech) and thus either could be used as the basis for the experiments. The pitch values extracted by Yin for all the laryngograph databases was consequently used as the basis for our comparisons. Pitch...

  8. Forced pitch motion of wind turbines

    Science.gov (United States)

    Leble, V.; Barakos, G.

    2016-09-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.

  9. Forced pitch motion of wind turbines

    International Nuclear Information System (INIS)

    Leble, V; Barakos, G

    2016-01-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance. (paper)

  10. Lateralization of the Huggins pitch

    Science.gov (United States)

    Zhang, Peter Xinya; Hartmann, William M.

    2004-05-01

    The lateralization of the Huggins pitch (HP) was measured using a direct estimation method. The background noise was initially N0 or Nπ, and then the laterality of the entire stimulus was varied with a frequency-independent interaural delay, ranging from -1 to +1 ms. Two versions of the HP boundary region were used, stepped phase and linear phase. When presented in isolation, without the broadband background, the stepped boundary can be lateralized on its own but the linear boundary cannot. Nevertheless, the lateralizations of both forms of HP were found to be almost identical functions both of the interaural delay and of the boundary frequency over a two-octave range. In a third experiment, the same listeners lateralized sine tones in quiet as a function of interaural delay. Good agreement was found between lateralizations of the HP and of the corresponding sine tones. The lateralization judgments depended on the boundary frequency according to the expected hyperbolic law except when the frequency-independent delay was zero. For the latter case, the dependence on boundary frequency was much slower than hyperbolic. [Work supported by the NIDCD grant DC 00181.

  11. Effects of spectral complexity and sound duration on automatic complex-sound pitch processing in humans - a mismatch negativity study.

    Science.gov (United States)

    Tervaniemi, M; Schröger, E; Saher, M; Näätänen, R

    2000-08-18

    The pitch of a spectrally rich sound is known to be more easily perceived than that of a sinusoidal tone. The present study compared the importance of spectral complexity and sound duration in facilitated pitch discrimination. The mismatch negativity (MMN), which reflects automatic neural discrimination, was recorded to a 2. 5% pitch change in pure tones with only one sinusoidal frequency component (500 Hz) and in spectrally rich tones with three (500-1500 Hz) and five (500-2500 Hz) harmonic partials. During the recordings, subjects concentrated on watching a silent movie. In separate blocks, stimuli were of 100 and 250 ms in duration. The MMN amplitude was enhanced with both spectrally rich sounds when compared with pure tones. The prolonged sound duration did not significantly enhance the MMN. This suggests that increased spectral rather than temporal information facilitates pitch processing of spectrally rich sounds.

  12. A Dynamical Model of Pitch Memory Provides an Improved Basis for Implied Harmony Estimation

    Science.gov (United States)

    Kim, Ji Chul

    2017-01-01

    Tonal melody can imply vertical harmony through a sequence of tones. Current methods for automatic chord estimation commonly use chroma-based features extracted from audio signals. However, the implied harmony of unaccompanied melodies can be difficult to estimate on the basis of chroma content in the presence of frequent nonchord tones. Here we present a novel approach to automatic chord estimation based on the human perception of pitch sequences. We use cohesion and inhibition between pitches in auditory short-term memory to differentiate chord tones and nonchord tones in tonal melodies. We model short-term pitch memory as a gradient frequency neural network, which is a biologically realistic model of auditory neural processing. The model is a dynamical system consisting of a network of tonotopically tuned nonlinear oscillators driven by audio signals. The oscillators interact with each other through nonlinear resonance and lateral inhibition, and the pattern of oscillatory traces emerging from the interactions is taken as a measure of pitch salience. We test the model with a collection of unaccompanied tonal melodies to evaluate it as a feature extractor for chord estimation. We show that chord tones are selectively enhanced in the response of the model, thereby increasing the accuracy of implied harmony estimation. We also find that, like other existing features for chord estimation, the performance of the model can be improved by using segmented input signals. We discuss possible ways to expand the present model into a full chord estimation system within the dynamical systems framework. PMID:28522983

  13. A Dynamical Model of Pitch Memory Provides an Improved Basis for Implied Harmony Estimation.

    Science.gov (United States)

    Kim, Ji Chul

    2017-01-01

    Tonal melody can imply vertical harmony through a sequence of tones. Current methods for automatic chord estimation commonly use chroma-based features extracted from audio signals. However, the implied harmony of unaccompanied melodies can be difficult to estimate on the basis of chroma content in the presence of frequent nonchord tones. Here we present a novel approach to automatic chord estimation based on the human perception of pitch sequences. We use cohesion and inhibition between pitches in auditory short-term memory to differentiate chord tones and nonchord tones in tonal melodies. We model short-term pitch memory as a gradient frequency neural network, which is a biologically realistic model of auditory neural processing. The model is a dynamical system consisting of a network of tonotopically tuned nonlinear oscillators driven by audio signals. The oscillators interact with each other through nonlinear resonance and lateral inhibition, and the pattern of oscillatory traces emerging from the interactions is taken as a measure of pitch salience. We test the model with a collection of unaccompanied tonal melodies to evaluate it as a feature extractor for chord estimation. We show that chord tones are selectively enhanced in the response of the model, thereby increasing the accuracy of implied harmony estimation. We also find that, like other existing features for chord estimation, the performance of the model can be improved by using segmented input signals. We discuss possible ways to expand the present model into a full chord estimation system within the dynamical systems framework.

  14. A Dynamical Model of Pitch Memory Provides an Improved Basis for Implied Harmony Estimation

    Directory of Open Access Journals (Sweden)

    Ji Chul Kim

    2017-05-01

    Full Text Available Tonal melody can imply vertical harmony through a sequence of tones. Current methods for automatic chord estimation commonly use chroma-based features extracted from audio signals. However, the implied harmony of unaccompanied melodies can be difficult to estimate on the basis of chroma content in the presence of frequent nonchord tones. Here we present a novel approach to automatic chord estimation based on the human perception of pitch sequences. We use cohesion and inhibition between pitches in auditory short-term memory to differentiate chord tones and nonchord tones in tonal melodies. We model short-term pitch memory as a gradient frequency neural network, which is a biologically realistic model of auditory neural processing. The model is a dynamical system consisting of a network of tonotopically tuned nonlinear oscillators driven by audio signals. The oscillators interact with each other through nonlinear resonance and lateral inhibition, and the pattern of oscillatory traces emerging from the interactions is taken as a measure of pitch salience. We test the model with a collection of unaccompanied tonal melodies to evaluate it as a feature extractor for chord estimation. We show that chord tones are selectively enhanced in the response of the model, thereby increasing the accuracy of implied harmony estimation. We also find that, like other existing features for chord estimation, the performance of the model can be improved by using segmented input signals. We discuss possible ways to expand the present model into a full chord estimation system within the dynamical systems framework.

  15. Examining pitch and numerical magnitude processing in congenital amusia: A quasi-experimental pilot study.

    Science.gov (United States)

    Nunes-Silva, Marilia; Moura, Ricardo; Lopes-Silva, Júlia Beatriz; Haase, Vitor Geraldi

    2016-08-01

    Congenital amusia is a developmental disorder associated with deficits in pitch height discrimination or in integrating pitch sequences into melodies. This quasi-experimental pilot study investigated whether there is an association between pitch and numerical processing deficits in congenital amusia. Since pitch height discrimination is considered a form of magnitude processing, we investigated whether individuals with amusia present an impairment in numerical magnitude processing, which would reflect damage to a generalized magnitude system. Alternatively, we investigated whether the numerical processing deficit would reflect a disconnection between nonsymbolic and symbolic number representations. This study was conducted with 11 adult individuals with congenital amusia and a control comparison group of 6 typically developing individuals. Participants performed nonsymbolic and symbolic magnitude comparisons and number line tasks. Results were available from previous testing using the Montreal Battery of Evaluation of Amusia (MBEA) and a pitch change detection task (PCD). Compared to the controls, individuals with amusia exhibited no significant differences in their performance on both the number line and the nonsymbolic magnitude tasks. Nevertheless, they showed significantly worse performance on the symbolic magnitude task. Moreover, individuals with congenital amusia, who presented worse performance in the Meter subtest, also presented less precise nonsymbolic numerical representation. The relationship between meter and nonsymbolic numerical discrimination could indicate a general ratio processing deficit. The finding of preserved nonsymbolic numerical magnitude discrimination and mental number line representations, with impaired symbolic number processing, in individuals with congenital amusia indicates that (a) pitch height and numerical magnitude processing may not share common neural representations, and (b) in addition to pitch processing, individuals with

  16. The role of the auditory brainstem in processing musically-relevant pitch

    Directory of Open Access Journals (Sweden)

    Gavin M. Bidelman

    2013-05-01

    Full Text Available Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically-relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain.

  17. Methods for the characterization of impregnating pitches

    Energy Technology Data Exchange (ETDEWEB)

    Compin, S.; Ben Aim, R.; Couderc, P.; Saint-Romain, J.L.

    1987-11-01

    This paper discusses modification of the impregnation performance of various pitches. The filtration ability, which expresses the impregnation performance, was studied using gel permeation chromatography and scanning electron microscopy. 16 refs., 5 figs., 2 tabs.

  18. Pitch Synchronous Segmentation of Speech Signals

    Data.gov (United States)

    National Aeronautics and Space Administration — The Pitch Synchronous Segmentation (PSS) that accelerates speech without changing its fundamental frequency method could be applied and evaluated for use at NASA....

  19. Coal tar pitch. Interrelations between properties and utilization of coal tar pitch

    Energy Technology Data Exchange (ETDEWEB)

    Collin, G; Koehler, H [Ruetgerswerke A.G., Duisburg (Germany, F.R.)

    1977-06-01

    Coal tar pitch is won as a highly aromatic, thermoplastic residue by destillating coal tar. In this paper the structure as well as the chemical and physical data of this pitch are introduced. In addition to this the actual as well as possible applications are indicated. For example, the pitch can be used for the production of binders, e.g. for electrodes and road construction as well as in combination with plastics for the production of insulating material and corrosion protection material.

  20. Major League Baseball pitch velocity and pitch type associated with risk of ulnar collateral ligament injury.

    Science.gov (United States)

    Keller, Robert A; Marshall, Nathan E; Guest, John-Michael; Okoroha, Kelechi R; Jung, Edward K; Moutzouros, Vasilios

    2016-04-01

    The number of Major League Baseball (MLB) pitchers requiring ulnar collateral ligament (UCL) reconstructions is increasing. Recent literature has attempted to correlate specific stresses placed on the throwing arm to risk for UCL injury, with limited results. Eighty-three MLB pitchers who underwent primary UCL reconstruction were evaluated. Pitching velocity and percent of pitch type thrown (fastball, curve ball, slider, and change-up) were evaluated 2 years before and after surgery. Data were compared with control pitchers matched for age, position, size, innings pitched, and experience. The evaluation of pitch velocity compared with matched controls found no differences in pre-UCL reconstruction pitch velocities for fastballs (91.5 vs. 91.2 miles per hour [mph], P = .69), curveballs (78.2 vs. 77.9 mph, P = .92), sliders (83.3 vs. 83.5 mph, P = .88), or change-ups (83.9 vs. 83.8 mph, P = .96). When the percentage of pitches thrown was evaluated, UCL reconstructed pitchers pitch significantly more fastballs than controls (46.7% vs. 39.4%, P = .035). This correlated to a 2% increase in risk for UCL injury for every 1% increase in fastballs thrown. Pitching more than 48% fastballs was a significant predictor of UCL injury, because pitchers over this threshold required reconstruction (P = .006). MLB pitchers requiring UCL reconstruction do not pitch at higher velocities than matched controls, and pitch velocity does not appear to be a risk factor for UCL reconstruction. However, MLB pitchers who pitch a high percentage of fastballs may be at increased risk for UCL injury because pitching a higher percent of fastballs appears to be a risk factor for UCL reconstruction. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. Perceptual pitch deficits coexist with pitch production difficulties in music but not Mandarin speech

    Science.gov (United States)

    Yang, Wu-xia; Feng, Jie; Huang, Wan-ting; Zhang, Cheng-xiang; Nan, Yun

    2014-01-01

    Congenital amusia is a musical disorder that mainly affects pitch perception. Among Mandarin speakers, some amusics also have difficulties in processing lexical tones (tone agnosics). To examine to what extent these perceptual deficits may be related to pitch production impairments in music and Mandarin speech, eight amusics, eight tone agnosics, and 12 age- and IQ-matched normal native Mandarin speakers were asked to imitate music note sequences and Mandarin words of comparable lengths. The results indicated that both the amusics and tone agnosics underperformed the controls on musical pitch production. However, tone agnosics performed no worse than the amusics, suggesting that lexical tone perception deficits may not aggravate musical pitch production difficulties. Moreover, these three groups were all able to imitate lexical tones with perfect intelligibility. Taken together, the current study shows that perceptual musical pitch and lexical tone deficits might coexist with musical pitch production difficulties. But at the same time these perceptual pitch deficits might not affect lexical tone production or the intelligibility of the speech words that were produced. The perception-production relationship for pitch among individuals with perceptual pitch deficits may be, therefore, domain-dependent. PMID:24474944

  2. Perceptual Pitch Deficits Coexist with Pitch Production Difficulties in Music but Not Mandarin Speech

    Directory of Open Access Journals (Sweden)

    Wu-xia eYang

    2014-01-01

    Full Text Available Congenital amusia is a musical disorder that mainly affects pitch perception. Among Mandarin speakers, some amusics also have difficulties in processing lexical tones (tone agnosics. To examine to what extent these perceptual deficits may be related to pitch production impairments in music and Mandarin speech, 8 amusics, 8 tone agnosics, and 12 age- and IQ-matched normal native Mandarin speakers were asked to imitate music note sequences and Mandarin words of comparable lengths. The results indicated that both the amusics and tone agnosics underperformed the controls on musical pitch production. However, tone agnosics performed no worse than the amusics, suggesting that lexical tone perception deficits may not aggravate musical pitch production difficulties. Moreover, these three groups were all able to imitate lexical tones with perfect intelligibility. Taken together, the current study shows that perceptual musical pitch and lexical tone deficits might coexist with musical pitch production difficulties. But at the same time these perceptual pitch deficits might not affect lexical tone production or the intelligibility of the speech words that were produced. The perception-production relationship for pitch among individuals with perceptual pitch deficits may be, therefore, domain-dependent.

  3. Pitch discrimination learning: specificity for pitch and harmonic resolvability, and electrophysiological correlates.

    Science.gov (United States)

    Carcagno, Samuele; Plack, Christopher J

    2011-08-01

    Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed in pitch and/or spectral resolvability of their components by the cochlea, but were filtered into the same spectral region. Cortical-evoked potentials and a behavioral measure of pitch discrimination were assessed before and after training for all the four complexes. The change in these measures was compared to that of two control groups: one trained on a level discrimination task and one without any training. The behavioral results showed that learning was partly specific to both pitch and resolvability. Training with a resolved-harmonic complex improved pitch discrimination for resolved complexes more than training with an unresolved complex. However, we did not find evidence that training with an unresolved complex leads to specific learning for unresolved complexes. Training affected the P2 component of the cortical-evoked potentials, as well as a later component (250-400 ms). No significant changes were found on the mismatch negativity (MMN) component, although a separate experiment showed that this measure was sensitive to pitch changes equivalent to the pitch discriminability changes induced by training. This result suggests that pitch discrimination training affects processes not measured by the MMN, for example, processes higher in level or parallel to those involved in MMN generation.

  4. Physicochemical characterization of pitches by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lahaye, J.; Ehrburger, P.; Saint-Romain, J.L.; Couderc, P.

    1987-11-01

    The glass transition characterization of pitches has been studied by differential scanning calorimetry (d.s.c.). Experimental results and theoretical considerations indicate that: (1) the average molecular mass of pitches can be characterized by the apparent activation energy of the relaxation phenomenon of pitch molecules; (2) the molecular polydispersity is correlated with the width of the glass transition. Characterization of pitch by d.s.c. is well adapted to follow pitch transformation during heat treatment. 6 refs., 6 figs., 4 tabs.

  5. Individual differences in sound-in-noise perception are related to the strength of short-latency neural responses to noise.

    Directory of Open Access Journals (Sweden)

    Ekaterina Vinnik

    2011-02-01

    Full Text Available Important sounds can be easily missed or misidentified in the presence of extraneous noise. We describe an auditory illusion in which a continuous ongoing tone becomes inaudible during a brief, non-masking noise burst more than one octave away, which is unexpected given the frequency resolution of human hearing. Participants strongly susceptible to this illusory discontinuity did not perceive illusory auditory continuity (in which a sound subjectively continues during a burst of masking noise when the noises were short, yet did so at longer noise durations. Participants who were not prone to illusory discontinuity showed robust early electroencephalographic responses at 40-66 ms after noise burst onset, whereas those prone to the illusion lacked these early responses. These data suggest that short-latency neural responses to auditory scene components reflect subsequent individual differences in the parsing of auditory scenes.

  6. Sensorimotor Mismapping in Poor-pitch Singing.

    Science.gov (United States)

    He, Hao; Zhang, Wei-Dong

    2017-09-01

    This study proposes that there are two types of sensorimotor mismapping in poor-pitch singing: erroneous mapping and no mapping. We created operational definitions for the two types of mismapping based on the precision of pitch-matching and predicted that in the two types of mismapping, phonation differs in terms of accuracy and the dependence on the articulation consistency between the target and the intended vocal action. The study aimed to test this hypothesis by examining the reliability and criterion-related validity of the operational definitions. A within-subject design was used in this study. Thirty-two participants identified as poor-pitch singers were instructed to vocally imitate pure tones and to imitate their own vocal recordings with the same articulation as self-targets and with different articulation from self-targets. Definitions of the types of mismapping were demonstrated to be reliable with the split-half approach and to have good criterion-related validity with findings that pitch-matching with no mapping was less accurate and more dependent on the articulation consistency between the target and the intended vocal action than pitch-matching with erroneous mapping was. Furthermore, the precision of pitch-matching was positively associated with its accuracy and its dependence on articulation consistency when mismapping was analyzed on a continuum. Additionally, the data indicated that the self-imitation advantage was a function of articulation consistency. Types of sensorimotor mismapping lead to pitch-matching that differs in accuracy and its dependence on the articulation consistency between the target and the intended vocal action. Additionally, articulation consistency produces the self-advantage. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  7. Pitch-verticality and pitch-size cross-modal interactions

    DEFF Research Database (Denmark)

    Bonetti, Leonardo; Costa, Marco

    2017-01-01

    Two studies were conducted on cross-modal matching between pitch and sound source localization on the vertical axis, and pitch and size. In the first study 100 Hz, 200 Hz, 600 Hz, and 800 Hz tones were emitted by a loudspeaker positioned 60 cm above or below to the participant’s ear level. Using...

  8. Measurement of pitch in speech : an implementation of Goldstein's theory of pitch perception

    NARCIS (Netherlands)

    Duifhuis, H.; Willems, L.F.; Sluyter, R.J.

    1982-01-01

    Recent developments in hearing theory have resulted in the rather general acceptance of the idea that the perception of pitch of complex sounds is the result of the psychological pattern recognition process. The pitch is supposedly mediated by the fundamental of the harmonic spectrum which fits the

  9. Method of producing pitch (distillation residue)

    Energy Technology Data Exchange (ETDEWEB)

    Stepanenko, M.A.; Belkina, T.V.; Krysin, V.P.

    1979-08-15

    A method is proposed for producing pitch by mixing hard coal pitch with anthracene fraction and thermal treatment of the mixture. The method is distinguished in that in order to increase the quality of the pitch, the anthracene fraction is subjected to thermal treatment at 250-300/sup 0/ for 10-13 hours in the presence of air. This duration of heat treatment allows one to build up in the anthracene fraction up to 20-24% of material which is not soluble and toluene, without the formation of products which are not soluble in quinoline. The fraction prepared in this manner is inserted into the initial pitch in the ratio 1:2 up to 1:9, the mixture is subject to heat treatment at temperature 360-380/sup 0/ and air consumption 7-91/kgX hours until the production of pitch with softening temperature of 85-90/sup 0/. As the initial raw material we used pitch with softening temperature of 60/sup 0/, content of substances which are not soluble in quinoline, 2.0% which are not soluble and toluene 20.6% and coking residue of 49.2%. Example. 80 grams of anthracene fraction is added to 320 grams of pitch. The anthracene fraction is subjected previously to heat treatment at 300/sup 0/ for 13 hours in the presence of air, supplied in the amount of 9 liters per hour. As a result of the heat treatment of the content of materials which are not soluble in toluence in the anthracene fraction is 24.0%, in quinoline it is 0.1%. The ratio of a pitch and thermally treated anthracene fraction in the mixture was 4:l. The produced mixture was subjected to heat treatment at 360/sup 0/ for 1.5 hours with air supply in the amount of 7 liters/ kilograms/hours. Pitch is produced with the following characteristics: softening temperature 88/sup 0/, content of substances which are not soluble in toluene 32.5%, in quinilone, 6.0%, coking residue, 56.7%. The invention can be used in the chemical coking and petrochemical industry.

  10. Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch

    Energy Technology Data Exchange (ETDEWEB)

    Kirke, B.K. [Sustainable Energy Centre, University of South Australia, Mawson Lakes, SA 5095 (Australia); Lazauskas, L. [Cyberiad, 25/65 King William Street, Adelaide, SA 5000 (Australia)

    2011-03-15

    Small Darrieus hydrokinetic turbines with fixed pitch blades typically suffer from poor starting torque, low efficiency and shaking due to large fluctuations in both radial and tangential force with azimuth angle. Efficiency improves as size increases, since adequate blade chord Reynolds numbers can be maintained with low solidity. Shaking can be eliminated by using helical blades, or reduced by using multiple blades. Starting torque can be marginally improved by the use of cambered blade profiles but may still be inadequate to overcome drive train friction for self-starting. Variable pitch can generate high starting torque, high efficiency and reduced shaking but active pitch control systems add considerably to complexity and cost, while passive systems must have effective pitch control to achieve higher efficiency than fixed pitch systems. (author)

  11. Memory for pitch in congenital amusia: beyond a fine-grained pitch discrimination problem.

    Science.gov (United States)

    Williamson, Victoria Jane; Stewart, Lauren

    2010-08-01

    Congenital amusia is a disorder that affects the perception and production of music. While amusia has been associated with deficits in pitch discrimination, several reports suggest that memory deficits also play a role. The present study investigated short-term memory span for pitch-based and verbal information in 14 individuals with amusia and matched controls. Analogous adaptive-tracking procedures were used to generate tone and digit spans using stimuli that exceeded psychophysically measured pitch perception thresholds. Individuals with amusia had significantly smaller tone spans, whereas their digits spans were a similar size to those of controls. An automated operation span task was used to determine working memory capacity. Working memory deficits were seen in only a small subgroup of individuals with amusia. These findings support the existence of a pitch-specific component within short-term memory and suggest that congenital amusia is more than a disorder of fine-grained pitch discrimination.

  12. Measurement and investigation of effects of coal tar pitch fractions in nuclear graphite properties

    International Nuclear Information System (INIS)

    Fatemi, K.; Fatoorehchian, S.; Ahari Hashemi, F.; Ahmadi, Sh.

    2003-01-01

    Coal tar pitch has a complex chemical structure. Determination of α, β, γ fractions, is one of the methods to get information about its properties. In graphite fabrication it plays a role as a binder for coke particles. During the thermal treatment it carbonizes and changes to a secondary coke. This has considerable affects on the graphite properties. In this paper, determination of α, β, γ-1 fraction in three different types of pitches have been carried out. Graphite specimens have been fabricated by using these pitches and anisotropy coke in laboratory scale. The graphite properties have been compared with the nuclear graphite prototype. The comparison of the results showed that the density and compression strength are appreciable while the anisotropy factor of properties is about one. The linear thermal expansion in graphite from Iranian pitch had a better, result, where it stands in the nuclear range of usage. As a result, our studies showed that the graphite properties are affected by properties of pitch fractions, where it can be used as a proper sample for the graphite fabrication

  13. The shoulder in baseball pitching: biomechanics and related injuries-part 1.

    Science.gov (United States)

    Park, Samuel S; Loebenberg, Mark L; Rokito, Andrew S; Zuckerman, Joseph D

    The extreme range of motion at the shoulder, the high angular velocities and torques, and the repetitious nature of the pitching motion combine to make the shoulder vulnerable to injury during the baseball pitch. An understanding of the biomechanics that contribute to shoulder injuries during each phase of the pitching motion can facilitate the athlete's diagnosis, treatment, and rehabilitation. Common injuries that occur during the late cocking and acceleration phases of the pitch include anterior instability and impingement, bicipital tendinitis, and subacromial impingement. Nonoperative treatment consisting of an initial period of rest and NSAIDS, followed by physical therapy and a gradual return to activity, is usually successful. When this approach fails, surgical intervention, either arthroscopic or open, may be necessary. Physical therapy and rehabilitation are directed toward restoring the integrity and strength of the dynamic and static stabilizers of the shoulder joint, yet preserving the range of motion necessary for performance. Through rehabilitation, the dedicated athlete can often return to the pitching mound at his previous level of performance.

  14. Pitch catch ultrasonic study on unidirectional CFRP composite laminates using rayleigh wave transducers

    International Nuclear Information System (INIS)

    Park, Je Woong; Yang, In Young; Im, Kwang Hee; Hsu, David K.; Jung, Jong An

    2012-01-01

    The importance of carbon fiber reinforced plastics (CFRP) has been generally recognized, and CFRP composite laminates have become widely used. Thus, a nondestructive technique would be very useful for evaluating CF/epoxy composite laminates. A pitch catch UT signal is more sensitive than is a normal incidence backwall echo of a longitudinal wave in composites. The depth of the sampling volume where the pitch catch UT signal came from is relatively shallow, but the depth can be increased by increasing the separation distance of the transmitting and receiving probes. Moreover, a method is utilized to determine the porosity content of a composite lay up by processing micrograph images of the laminate. The porosity content of a composite structure is critical to the overall strength and performance of the structure. The image processing method developed utilizes software to process micrograph images of the test sample. The results from the image processing method are compared with existing data. Beam profile is characterized in unidirectional CFRP using pitch catch Rayleigh probes. The one sided and two sided pitch catch techniques are utilized to produce C scan images with the aid of an automatic scanner. The pitch catch ultrasonic signal corresponds with the simulated results of unidirectional CFRP composites

  15. Effects of harmonic roving on pitch discrimination

    DEFF Research Database (Denmark)

    Santurette, Sébastien; de Kérangal, Mathilde le Gal; Joshi, Suyash Narendra

    2015-01-01

    Performance in pitch discrimination tasks is limited by variability intrinsic to listeners which may arise from peripheral auditory coding limitations or more central noise sources. The present study aimed at quantifying such “internal noise” by estimating the amount of harmonic roving required...... to impair pitch discrimination performance. Fundamental-frequency difference limens (F0DLs) were obtained in normal-hearing listeners with and without musical training for complex tones filtered between 1.5 and 3.5 kHz with F0s of 300 Hz (resolved harmonics) and 75 Hz (unresolved harmonics). The harmonicity...... that could be used to quantify the internal noise and provide strong constraints for physiologically inspired models of pitch perception....

  16. Analysis of Pitch Gear Deterioration using Indicators

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2011-01-01

    This work concerns a case study in the context of risk-based operation and maintenance of offshore wind turbines. For wind turbines with electrical pitch systems, deterioration can generally be observed at the pitch gear teeth; especially at the point where the blades are located during normal...... of the damage, and can be used for Bayesian updating of a damage model used for risk-based decision making. For this decision problem, the risk of failure should be compared to the cost of preventive maintenance. The hypothesis that the maximum pitch motor torque is an indicator of the damage size is supported...... changes in the temperature are the primary cause of the decrease. A model is established to remove the effect of the explained variation, and it is investigated if deterioration can be detected as changes in the peak torque. A small increase could be detected after the maintenance, but before...

  17. Multi-pitch Estimation using Semidefinite Programming

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Vandenberghe, Lieven

    2017-01-01

    assuming a Nyquist sampled signal by adding an additional semidefinite constraint. We show that the proposed estimator has superior performance compared to state- of-the-art methods for separating two closely spaced fundamentals and approximately achieves the asymptotic Cramér-Rao lower bound.......Multi-pitch estimation concerns the problem of estimating the fundamental frequencies (pitches) and amplitudes/phases of multiple superimposed harmonic signals with application in music, speech, vibration analysis etc. In this paper we formulate a complex-valued multi-pitch estimator via...... a semidefinite programming representation of an atomic decomposition over a continuous dictionary of complex exponentials and extend this to real-valued data via a real semidefinite pro-ram with the same dimensions (i.e. half the size). We further impose a continuous frequency constraint naturally occurring from...

  18. Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network.

    Science.gov (United States)

    De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico

    2016-11-10

    A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.

  19. Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Luigi Alberto Ciro De Filippis

    2016-11-01

    Full Text Available A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable and the mechanical properties (output responses of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls. The simulation model was based on the adoption of the Artificial Neural Networks (ANNs characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.

  20. DIAGNOSIS OF PITCH AND LOAD DEFECTS

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a method, system and computer readable code for diagnosis of pitch and/or load defects of e.g. wind turbines as well as wind turbines using said diagnosis method and/or comprising said diagnosis system.......The invention relates to a method, system and computer readable code for diagnosis of pitch and/or load defects of e.g. wind turbines as well as wind turbines using said diagnosis method and/or comprising said diagnosis system....

  1. Cortical pitch regions in humans respond primarily to resolved harmonics and are located in specific tonotopic regions of anterior auditory cortex.

    Science.gov (United States)

    Norman-Haignere, Sam; Kanwisher, Nancy; McDermott, Josh H

    2013-12-11

    Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce "resolved" peaks of excitation in the cochlea, whereas others are "unresolved," providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior.

  2. Effect of Tempo on Pitch Perception.

    Science.gov (United States)

    Duke, Robert A.; And Others

    1988-01-01

    Presents a study which investigated the perception of music majors and nonmusic majors concerning their ability to discriminate the way in which altered musical excerpts differed in pitch or tempo (or both) from preceding presentations. Concludes that both groups responded similarly across conditions and replications, and that tempo changes were…

  3. Pitch-catch only ultrasonic fluid densitometer

    Science.gov (United States)

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  4. Pitch and timbre : definition, meaning and use

    NARCIS (Netherlands)

    Houtsma, A.J.M.

    1997-01-01

    Pitch and timbre are terms frequently used in studies on sound perception. Despite the existence of formal definitions, these terms are often used ambiguously in the literature. This paper is intended as a review of the ANSI definitions and their shortcomings, of modern ways to define the concepts

  5. Coal Tar and Coal-Tar Pitch

    Science.gov (United States)

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  6. Silvical characteristics of pitch pine (Pinus rigida)

    Science.gov (United States)

    S. Little

    1959-01-01

    Pitch pine (Pinus rigida Mill.) grows over a wide geographical range - from central Maine to New York and extreme southeastern Ontario, south to Virginia and southern Ohio, and in the mountains to eastern Tennessee, northern Georgia, and western South Carolina. Because it grows mostly on the poorer soils, its distribution is spotty.

  7. Establishment of expanded and streamlined pipeline of PITCh knock-in - a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO.

    Science.gov (United States)

    Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Nakade, Shota; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi

    2017-05-04

    The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer ( http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html ), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively.

  8. Establishment of expanded and streamlined pipeline of PITCh knock-in – a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO

    Science.gov (United States)

    Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi

    2017-01-01

    ABSTRACT The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer (http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively. PMID:28453368

  9. Cortical processing of pitch: Model-based encoding and decoding of auditory fMRI responses to real-life sounds.

    Science.gov (United States)

    De Angelis, Vittoria; De Martino, Federico; Moerel, Michelle; Santoro, Roberta; Hausfeld, Lars; Formisano, Elia

    2017-11-13

    Pitch is a perceptual attribute related to the fundamental frequency (or periodicity) of a sound. So far, the cortical processing of pitch has been investigated mostly using synthetic sounds. However, the complex harmonic structure of natural sounds may require different mechanisms for the extraction and analysis of pitch. This study investigated the neural representation of pitch in human auditory cortex using model-based encoding and decoding analyses of high field (7 T) functional magnetic resonance imaging (fMRI) data collected while participants listened to a wide range of real-life sounds. Specifically, we modeled the fMRI responses as a function of the sounds' perceived pitch height and salience (related to the fundamental frequency and the harmonic structure respectively), which we estimated with a computational algorithm of pitch extraction (de Cheveigné and Kawahara, 2002). First, using single-voxel fMRI encoding, we identified a pitch-coding region in the antero-lateral Heschl's gyrus (HG) and adjacent superior temporal gyrus (STG). In these regions, the pitch representation model combining height and salience predicted the fMRI responses comparatively better than other models of acoustic processing and, in the right hemisphere, better than pitch representations based on height/salience alone. Second, we assessed with model-based decoding that multi-voxel response patterns of the identified regions are more informative of perceived pitch than the remainder of the auditory cortex. Further multivariate analyses showed that complementing a multi-resolution spectro-temporal sound representation with pitch produces a small but significant improvement to the decoding of complex sounds from fMRI response patterns. In sum, this work extends model-based fMRI encoding and decoding methods - previously employed to examine the representation and processing of acoustic sound features in the human auditory system - to the representation and processing of a relevant

  10. Complex-tone pitch representations in the human auditory system

    DEFF Research Database (Denmark)

    Bianchi, Federica

    in listeners with SNHL, it is likely that HI listeners rely on the enhanced envelope cues to retrieve the pitch of unresolved harmonics. Hence, the relative importance of pitch cues may be altered in HI listeners, whereby envelope cues may be used instead of TFS cues to obtain a similar performance in pitch......Understanding how the human auditory system processes the physical properties of an acoustical stimulus to give rise to a pitch percept is a fascinating aspect of hearing research. Since most natural sounds are harmonic complex tones, this work focused on the nature of pitch-relevant cues...... that are necessary for the auditory system to retrieve the pitch of complex sounds. The existence of different pitch-coding mechanisms for low-numbered (spectrally resolved) and high-numbered (unresolved) harmonics was investigated by comparing pitch-discrimination performance across different cohorts of listeners...

  11. Adaptive pitch control for variable speed wind turbines

    Science.gov (United States)

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  12. STEREO/LET Observations of Solar Energetic Particle Pitch Angle Distributions

    Science.gov (United States)

    Leske, Richard; Cummings, Alan; Cohen, Christina; Mewaldt, Richard; Labrador, Allan; Stone, Edward; Wiedenbeck, Mark; Christian, Eric; von Rosenvinge, Tycho

    2015-04-01

    As solar energetic particles (SEPs) travel through interplanetary space, the shape of their pitch angle distributions is determined by magnetic focusing and scattering. Measurements of SEP anisotropies therefore probe interplanetary conditions far from the observer and can provide insight into particle transport. Bidirectional flows of SEPs are often seen within interplanetary coronal mass ejections (ICMEs), resulting from injection of particles at both footpoints of the CME or from mirroring of a unidirectional beam. Mirroring is clearly implicated in those cases that show a loss cone distribution, in which particles with large pitch angles are reflected but the magnetic field enhancement at the mirror point is too weak to turn around particles with the smallest pitch angles. The width of the loss cone indicates the magnetic field strength at the mirror point far from the spacecraft, while if timing differences are detectable between outgoing and mirrored particles they may help constrain the location of the reflecting boundary.The Low Energy Telescopes (LETs) onboard both STEREO spacecraft measure energetic particle anisotropies for protons through iron at energies of about 2-12 MeV/nucleon. With these instruments we have observed loss cone distributions in several SEP events, as well as other interesting anisotropies, such as unusual oscillations in the widths of the pitch angle distributions on a timescale of several minutes during the 23 July 2012 SEP event and sunward-flowing particles when the spacecraft was magnetically connected to the back side of a distant shock well beyond 1 AU. We present the STEREO/LET anisotropy observations and discuss their implications for SEP transport. In particular, we find that the shapes of the pitch angle distributions generally vary with energy and particle species, possibly providing a signature of the rigidity dependence of the pitch angle diffusion coefficient.

  13. Subcortical plasticity following perceptual learning in a pitch discrimination task

    OpenAIRE

    Carcagno, Samuele; Plack, Christopher J.

    2011-01-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pi...

  14. Musicians' and nonmusicians' short-term memory for verbal and musical sequences: comparing phonological similarity and pitch proximity.

    Science.gov (United States)

    Williamson, Victoria J; Baddeley, Alan D; Hitch, Graham J

    2010-03-01

    Language-music comparative studies have highlighted the potential for shared resources or neural overlap in auditory short-term memory. However, there is a lack of behavioral methodologies for comparing verbal and musical serial recall. We developed a visual grid response that allowed both musicians and nonmusicians to perform serial recall of letter and tone sequences. The new method was used to compare the phonological similarity effect with the impact of an operationalized musical equivalent-pitch proximity. Over the course of three experiments, we found that short-term memory for tones had several similarities to verbal memory, including limited capacity and a significant effect of pitch proximity in nonmusicians. Despite being vulnerable to phonological similarity when recalling letters, however, musicians showed no effect of pitch proximity, a result that we suggest might reflect strategy differences. Overall, the findings support a limited degree of correspondence in the way that verbal and musical sounds are processed in auditory short-term memory.

  15. Thermosetting behavior of pitch-resin from heavy residue

    Energy Technology Data Exchange (ETDEWEB)

    Qingfang, Z.; Yansheng, G.; Baohua, H.; Yuzhen, Z. [China Univ. of Petroleum, Dongying, Shandong (China). State Key LAboratory of Heavy Oil Processing, Heavy Oil Research Inst.

    2006-07-01

    Thermosetting resins are widely employed as a basic matrix for c/c composites in carbon materials production. A new type of synthesized thermosetting resin is called pitch resin. Pitch resin is a cheaper resin and possesses a potential opportunity for future use. However, the thermosetting behavior of pitch resin is not very clear. The hardening process and conditions for thermosetting are very important for future use of pitch resin. B-stage pitch resin is a soluble and meltable inter-media condensed polymer, which is not fully reacted and is of a low molecular weight. The insoluble and unmelted pitch resin can only be obtained from synthesized B-stage resin after a hardening stage. This paper presented an experiment that synthesized B-stage pitch resin with a link agent (PXG) under catalyst action from fluid catalytic cracking (FCC) of the slurry's aromatic enriched component (FCCDF). The paper discussed the experiment, including the synthesis of pitch resin and thermosetting of pitch resin. Two kinds of thermosetting procedures were used in the study called one-step thermosetting and two-step thermosetting. It was concluded that the B-stage pitch resin could be hardened after a thermosetting procedure by heat treatment. The thermosetting pitch resin from 2-step thermosetting possesses was found to have better thermal resistant properties than that of the 1-step thermosetting pitch resin. 13 refs., 2 tabs., 6 figs.

  16. Relating binaural pitch perception to the individual listener's auditory profile.

    Science.gov (United States)

    Santurette, Sébastien; Dau, Torsten

    2012-04-01

    The ability of eight normal-hearing listeners and fourteen listeners with sensorineural hearing loss to detect and identify pitch contours was measured for binaural-pitch stimuli and salience-matched monaurally detectable pitches. In an effort to determine whether impaired binaural pitch perception was linked to a specific deficit, the auditory profiles of the individual listeners were characterized using measures of loudness perception, cognitive ability, binaural processing, temporal fine structure processing, and frequency selectivity, in addition to common audiometric measures. Two of the listeners were found not to perceive binaural pitch at all, despite a clear detection of monaural pitch. While both binaural and monaural pitches were detectable by all other listeners, identification scores were significantly lower for binaural than for monaural pitch. A total absence of binaural pitch sensation coexisted with a loss of a binaural signal-detection advantage in noise, without implying reduced cognitive function. Auditory filter bandwidths did not correlate with the difference in pitch identification scores between binaural and monaural pitches. However, subjects with impaired binaural pitch perception showed deficits in temporal fine structure processing. Whether the observed deficits stemmed from peripheral or central mechanisms could not be resolved here, but the present findings may be useful for hearing loss characterization.

  17. Noise and pitch interact during the cortical segregation of concurrent speech.

    Science.gov (United States)

    Bidelman, Gavin M; Yellamsetty, Anusha

    2017-08-01

    Behavioral studies reveal listeners exploit intrinsic differences in voice fundamental frequency (F0) to segregate concurrent speech sounds-the so-called "F0-benefit." More favorable signal-to-noise ratio (SNR) in the environment, an extrinsic acoustic factor, similarly benefits the parsing of simultaneous speech. Here, we examined the neurobiological substrates of these two cues in the perceptual segregation of concurrent speech mixtures. We recorded event-related brain potentials (ERPs) while listeners performed a speeded double-vowel identification task. Listeners heard two concurrent vowels whose F0 differed by zero or four semitones presented in either clean (no noise) or noise-degraded (+5 dB SNR) conditions. Behaviorally, listeners were more accurate in correctly identifying both vowels for larger F0 separations but F0-benefit was more pronounced at more favorable SNRs (i.e., pitch × SNR interaction). Analysis of the ERPs revealed that only the P2 wave (∼200 ms) showed a similar F0 x SNR interaction as behavior and was correlated with listeners' perceptual F0-benefit. Neural classifiers applied to the ERPs further suggested that speech sounds are segregated neurally within 200 ms based on SNR whereas segregation based on pitch occurs later in time (400-700 ms). The earlier timing of extrinsic SNR compared to intrinsic F0-based segregation implies that the cortical extraction of speech from noise is more efficient than differentiating speech based on pitch cues alone, which may recruit additional cortical processes. Findings indicate that noise and pitch differences interact relatively early in cerebral cortex and that the brain arrives at the identities of concurrent speech mixtures as early as ∼200 ms. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli.

    Science.gov (United States)

    Hertrich, Ingo; Mathiak, Klaus; Lutzenberger, Werner; Ackermann, Hermann

    2004-01-01

    To delineate the time course and processing stages of pitch encoding at the level of the supratemporal plane, the present study recorded evoked magnetic fields in response to rippled noise (RN) stimuli. RN largely masks simple tonotopic representations and addresses pitch processing within the temporal domain (periodicity encoding). Four dichotic stimulus types (111 or 133 Hz RN at one ear, white noise to the other one) were applied in randomized order during either visual distraction or selective auditory attention. Strictly periodic signals, noise-like events, and mixtures of both signals served as control conditions. (1) Attention-dependent ear x hemisphere interactions were observed within the time domain of the M50 field, indicating early streaming of auditory information. (2) M100 responses to strictly periodic stimuli were found lateralized to the right hemisphere. Furthermore, the higher-pitched stimuli yielded enhanced activation as compared to the lower-pitch signals (pitch scaling), conceivably reflecting sensory memory operations. (3) Besides right-hemisphere pitch scaling, the relatively late M100 component in association with the RN condition (latency = 136 ms) showed significantly stronger field strengths over the left hemisphere. Control experiments revealed this lateralization effect to be related to noise rather than pitch processing. Furthermore, subtle noise variations interacted with signal periodicity. Obviously, thus, complex task demands such as RN encoding give rise to functional segregation of auditory processing across the two hemispheres (left hemisphere: noise, right hemisphere: periodicity representation). The observed noise/periodicity interactions, furthermore, might reflect pitch-synchronous spectral evaluation at the level of the left supratemporal plane, triggered by right-hemisphere representation of signal periodicity. Copyright 2004 Elsevier Ltd.

  19. Relationship of biomechanical factors to baseball pitching velocity: within pitcher variation.

    Science.gov (United States)

    Stodden, David F; Fleisig, Glenn S; McLean, Scott P; Andrews, James R

    2005-02-01

    To reach the level of elite, most baseball pitchers need to consistently produce high ball velocity but avoid high joint loads at the shoulder and elbow that may lead to injury. This study examined the relationship between fastball velocity and variations in throwing mechanics within 19 baseball pitchers who were analyzed via 3-D high-speed motion analysis. Inclusion in the study required each one to demonstrate a variation in velocity of at least 1.8 m/s (range 1.8-3.5 m/s) during 6 to 10 fastball pitch trials. Three mixed model analyses were performed to assess the independent effects of 7 kinetic, 11 temporal, and 12 kinematic parameters on pitched ball velocity. Results indicated that elbow flexion torque, shoulder proximal force, and elbow proximal force were the only three kinetic parameters significantly associated with increased ball velocity. Two temporal parameters (increased time to max shoulder horizontal adduction and decreased time to max shoulder internal rotation) and three kinematic parameters (decreased shoulder horizontal adduction at foot contact, decreased shoulder abduction during acceleration, and increased trunk tilt forward at release) were significantly related to increased ball velocity. These results point to variations in an individual's throwing mechanics that relate to pitched ball velocity, and also suggest that pitchers should focus on consistent mechanics to produce consistently high fastball velocities. In addition, pitchers should strengthen shoulder and elbow musculature that resist distraction as well as improve trunk strength and flexibility to maximize pitching velocity and help prevent injury.

  20. Single organic microtwist with tunable pitch.

    Science.gov (United States)

    Chen, Hai-Bo; Zhou, Yan; Yin, Jie; Yan, Jing; Ma, Yuguo; Wang, Lei; Cao, Yong; Wang, Jian; Pei, Jian

    2009-05-19

    A facile synthesis of previously unknown, well-separated, uniform chiral microstructures from achiral pi-conjugated organic molecules was developed by simple solution process. Detailed characterization and formation mechanism were presented. By simple structure modification or temperature change, the pitch of the chiral structure can be fine tuned. Our result opens new possibilities for novel materials in which structure chirality is coupled to device performance.

  1. Voice pitch influences perceptions of sexual infidelity.

    Science.gov (United States)

    O'Connor, Jillian J M; Re, Daniel E; Feinberg, David R

    2011-02-28

    Sexual infidelity can be costly to members of both the extra-pair and the paired couple. Thus, detecting infidelity risk is potentially adaptive if it aids in avoiding cuckoldry or loss of parental and relationship investment. Among men, testosterone is inversely related to voice pitch, relationship and offspring investment, and is positively related to the pursuit of short-term relationships, including extra-pair sex. Among women, estrogen is positively related to voice pitch, attractiveness, and the likelihood of extra-pair involvement. Although prior work has demonstrated a positive relationship between men's testosterone levels and infidelity, this study is the first to investigate attributions of infidelity as a function of sexual dimorphism in male and female voices. We found that men attributed high infidelity risk to feminized women's voices, but not significantly more often than did women. Women attributed high infidelity risk to masculinized men's voices at significantly higher rates than did men. These data suggest that voice pitch is used as an indicator of sexual strategy in addition to underlying mate value. The aforementioned attributions may be adaptive if they prevent cuckoldry and/or loss of parental and relationship investment via avoidance of partners who may be more likely to be unfaithful.

  2. Voice Pitch Influences Perceptions of Sexual Infidelity

    Directory of Open Access Journals (Sweden)

    Jillian J.M. O'Connor

    2011-01-01

    Full Text Available Sexual infidelity can be costly to members of both the extra-pair and the paired couple. Thus, detecting infidelity risk is potentially adaptive if it aids in avoiding cuckoldry or loss of parental and relationship investment. Among men, testosterone is inversely related to voice pitch, relationship and offspring investment, and is positively related to the pursuit of short-term relationships, including extra-pair sex. Among women, estrogen is positively related to voice pitch, attractiveness, and the likelihood of extra-pair involvement. Although prior work has demonstrated a positive relationship between men's testosterone levels and infidelity, this study is the first to investigate attributions of infidelity as a function of sexual dimorphism in male and female voices. We found that men attributed high infidelity risk to feminized women's voices, but not significantly more often than did women. Women attributed high infidelity risk to masculinized men's voices at significantly higher rates than did men. These data suggest that voice pitch is used as an indicator of sexual strategy in addition to underlying mate value. The aforementioned attributions may be adaptive if they prevent cuckoldry and/or loss of parental and relationship investment via avoidance of partners who may be more likely to be unfaithful.

  3. Pitched Blade Turbine Efficiency at Particle Suspension

    Directory of Open Access Journals (Sweden)

    D. Ceres

    2010-01-01

    Full Text Available Mixing suspensions is a very important hydraulic operation. The pitched six-blade turbine is a widely-used axial-flow impeller. This paper deals with effect relative impeller size and particle content on theefficiency of a pitched six-blade turbine at particle suspension. Two pitched six-blade turbines were used in model measurements of just suspension impeller speed. The ratios of the vessel to agitator diameter D/d were 3 and 4.5. The measurements were carried out in a dish-bottomed vessel 300 mm in diameter. The just suspension impeller speeds were measured using an electrochemical method, and were checked visually. A 2.5 % NaCl water solution was used as the liquid phase, and glass particles with four equivalent diameters between 0.18 and 0.89 mmand volumetric concentration from 2.5 % to 40% were usedasthesolid phase. The criterion values πs=Po√Fr'3(d/D7 were calculated from the particle suspension and power consumption measurements. The dependencies of πs on particle content cv show that larger agitators are more efficient for higher particle content.

  4. Feedback brake distribution control for minimum pitch

    Science.gov (United States)

    Tavernini, Davide; Velenis, Efstathios; Longo, Stefano

    2017-06-01

    The distribution of brake forces between front and rear axles of a vehicle is typically specified such that the same level of brake force coefficient is imposed at both front and rear wheels. This condition is known as 'ideal' distribution and it is required to deliver the maximum vehicle deceleration and minimum braking distance. For subcritical braking conditions, the deceleration demand may be delivered by different distributions between front and rear braking forces. In this research we show how to obtain the optimal distribution which minimises the pitch angle of a vehicle and hence enhances driver subjective feel during braking. A vehicle model including suspension geometry features is adopted. The problem of the minimum pitch brake distribution for a varying deceleration level demand is solved by means of a model predictive control (MPC) technique. To address the problem of the undesirable pitch rebound caused by a full-stop of the vehicle, a second controller is designed and implemented independently from the braking distribution in use. An extended Kalman filter is designed for state estimation and implemented in a high fidelity environment together with the MPC strategy. The proposed solution is compared with the reference 'ideal' distribution as well as another previous feed-forward solution.

  5. Auditory processing in absolute pitch possessors

    Science.gov (United States)

    McKetton, Larissa; Schneider, Keith A.

    2018-05-01

    Absolute pitch (AP) is a rare ability in classifying a musical pitch without a reference standard. It has been of great interest to researchers studying auditory processing and music cognition since it is seldom expressed and sheds light on influences pertaining to neurodevelopmental biological predispositions and the onset of musical training. We investigated the smallest frequency that could be detected or just noticeable difference (JND) between two pitches. Here, we report significant differences in JND thresholds in AP musicians and non-AP musicians compared to non-musician control groups at both 1000 Hz and 987.76 Hz testing frequencies. Although the AP-musicians did better than non-AP musicians, the difference was not significant. In addition, we looked at neuro-anatomical correlates of musicianship and AP using structural MRI. We report increased cortical thickness of the left Heschl's Gyrus (HG) and decreased cortical thickness of the inferior frontal opercular gyrus (IFO) and circular insular sulcus volume (CIS) in AP compared to non-AP musicians and controls. These structures may therefore be optimally enhanced and reduced to form the most efficient network for AP to emerge.

  6. Individual blade pitch for yaw control

    International Nuclear Information System (INIS)

    Navalkar, S T; Van Wingerden, J W; Van Kuik, G A M

    2014-01-01

    Individual pitch control (IPC) for reducing blade loads has been investigated and proven successful in recent literature. For IPC, the multi-blade co-ordinate (MBC) transformation is used to process the blade load signals from the rotating to a stationary frame of reference. In the stationary frame of reference, the yaw error of a turbine can be appended to generate IPC actions that are able to achieve turbine yaw control for a turbine in free yaw. In this paper, IPC for yaw control is tested on a high-fidelity numerical model of a commercially produced wind turbine in free yaw. The tests show that yaw control using IPC has the distinct advantage that the yaw system loads and support structure loading are substantially reduced. However, IPC for yaw control also shows a reduction in IPC blade load reduction potential and causes a slight increase in pitch activity. Thus, the key contribution of this paper is the concept demonstration of IPC for yaw control. Further, using IPC for yaw as a tuning parameter, it is shown how the best trade-off between blade loading, pitch activity and support structure loading can be achieved for wind turbine design

  7. A fundamental residue pitch perception bias for tone language speakers

    Science.gov (United States)

    Petitti, Elizabeth

    A complex tone composed of only higher-order harmonics typically elicits a pitch percept equivalent to the tone's missing fundamental frequency (f0). When judging the direction of residue pitch change between two such tones, however, listeners may have completely opposite perceptual experiences depending on whether they are biased to perceive changes based on the overall spectrum or the missing f0 (harmonic spacing). Individual differences in residue pitch change judgments are reliable and have been associated with musical experience and functional neuroanatomy. Tone languages put greater pitch processing demands on their speakers than non-tone languages, and we investigated whether these lifelong differences in linguistic pitch processing affect listeners' bias for residue pitch. We asked native tone language speakers and native English speakers to perform a pitch judgment task for two tones with missing fundamental frequencies. Given tone pairs with ambiguous pitch changes, listeners were asked to judge the direction of pitch change, where the direction of their response indicated whether they attended to the overall spectrum (exhibiting a spectral bias) or the missing f0 (exhibiting a fundamental bias). We found that tone language speakers are significantly more likely to perceive pitch changes based on the missing f0 than English speakers. These results suggest that tone-language speakers' privileged experience with linguistic pitch fundamentally tunes their basic auditory processing.

  8. Pitch Counts in Youth Baseball and Softball: A Historical Review.

    Science.gov (United States)

    Feeley, Brian T; Schisel, Jessica; Agel, Julie

    2018-07-01

    Pitching injuries are getting increased attention in the mass media. Many references are made to pitch counts and the role they play in injury prevention. The original purpose of regulating the pitch count in youth baseball was to reduce injury and fatigue to pitchers. This article reviews the history and development of the pitch count limit in baseball, the effect it has had on injury, and the evidence regarding injury rates on softball windmill pitching. Literature search through PubMed, mass media, and organizational Web sites through June 2015. Pitch count limits and rest recommendations were introduced in 1996 after a survey of 28 orthopedic surgeons and baseball coaches showed injuries to baseball pitchers' arms were believed to be from the number of pitches thrown. Follow-up research led to revised recommendations with more detailed guidelines in 2006. Since that time, data show a relationship between innings pitched and upper extremity injury, but pitch type has not clearly been shown to affect injury rates. Current surveys of coaches and players show that coaches, parents, and athletes often do not adhere to these guidelines. There are no pitch count guidelines currently available in softball. The increase in participation in youth baseball and softball with an emphasis on early sport specialization in youth sports activities suggests that there will continue to be a rise in injury rates to young throwers. The published pitch counts are likely to positively affect injury rates but must be adhered to by athletes, coaches, and parents.

  9. Effects of aging on neuromagnetic mismatch responses to pitch changes.

    Science.gov (United States)

    Cheng, Chia-Hsiung; Baillet, Sylvain; Hsiao, Fu-Jung; Lin, Yung-Yang

    2013-06-07

    Although aging-related alterations in the auditory sensory memory and involuntary change discrimination have been widely studied, it remains controversial whether the mismatch negativity (MMN) or its magnetic counterpart (MMNm) is modulated by physiological aging. This study aimed to examine the effects of aging on mismatch activity to pitch deviants by using a whole-head magnetoencephalography (MEG) together with distributed source modeling analysis. The neuromagnetic responses to oddball paradigms consisting of standards (1000 Hz, p=0.85) and deviants (1100 Hz, p=0.15) were recorded in healthy young (n=20) and aged (n=18) male adults. We used minimum norm estimate of source reconstruction to characterize the spatiotemporal neural dynamics of MMNm responses. Distributed activations to MMNm were identified in the bilateral fronto-temporo-parietal areas. Compared to younger participants, the elderly exhibited a significant reduction of cortical activation in bilateral superior temporal guri, superior temporal sulci, inferior fontal gyri, orbitofrontal cortices and right inferior parietal lobules. In conclusion, our results suggest an aging-related decline in auditory sensory memory and automatic change detection as indexed by MMNm. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. The lateralized arcuate fasciculus in developmental pitch disorders among mandarin amusics: left for speech and right for music.

    Science.gov (United States)

    Chen, Xizhuo; Zhao, Yanxin; Zhong, Suyu; Cui, Zaixu; Li, Jiaqi; Gong, Gaolang; Dong, Qi; Nan, Yun

    2018-05-01

    The arcuate fasciculus (AF) is a neural fiber tract that is critical to speech and music development. Although the predominant role of the left AF in speech development is relatively clear, how the AF engages in music development is not understood. Congenital amusia is a special neurodevelopmental condition, which not only affects musical pitch but also speech tone processing. Using diffusion tensor tractography, we aimed at understanding the role of AF in music and speech processing by examining the neural connectivity characteristics of the bilateral AF among thirty Mandarin amusics. Compared to age- and intelligence quotient (IQ)-matched controls, amusics demonstrated increased connectivity as reflected by the increased fractional anisotropy in the right posterior AF but decreased connectivity as reflected by the decreased volume in the right anterior AF. Moreover, greater fractional anisotropy in the left direct AF was correlated with worse performance in speech tone perception among amusics. This study is the first to examine the neural connectivity of AF in the neurodevelopmental condition of amusia as a result of disrupted music pitch and speech tone processing. We found abnormal white matter structural connectivity in the right AF for the amusic individuals. Moreover, we demonstrated that the white matter microstructural properties of the left direct AF is modulated by lexical tone deficits among the amusic individuals. These data support the notion of distinctive pitch processing systems between music and speech.

  11. Vowel identity between note labels confuses pitch identification in non-absolute pitch possessors.

    Directory of Open Access Journals (Sweden)

    Alfredo Brancucci

    Full Text Available The simplest and likeliest assumption concerning the cognitive bases of absolute pitch (AP is that at its origin there is a particularly skilled function which matches the height of the perceived pitch to the verbal label of the musical tone. Since there is no difference in sound frequency resolution between AP and non-AP (NAP musicians, the hypothesis of the present study is that the failure of NAP musicians in pitch identification relies mainly in an inability to retrieve the correct verbal label to be assigned to the perceived musical note. The primary hypothesis is that, when asked to identify tones, NAP musicians confuse the verbal labels to be attached to the stimulus on the basis of their phonetic content. Data from two AP tests are reported, in which subjects had to respond in the presence or in the absence of visually presented verbal note labels (fixed Do solmization. Results show that NAP musicians confuse more frequently notes having a similar vowel in the note label. They tend to confuse e.g. a 261 Hz tone (Do more often with Sol than, e.g., with La. As a second goal, we wondered whether this effect is lateralized, i.e. whether one hemisphere is more responsible than the other in the confusion of notes with similar labels. This question was addressed by observing pitch identification during dichotic listening. Results showed that there is a right hemispheric disadvantage, in NAP but not AP musicians, in the retrieval of the verbal label to be assigned to the perceived pitch. The present results indicate that absolute pitch has strong verbal bases, at least from a cognitive point of view.

  12. [Factors influencing the pitch and loudness of tinnitus].

    Science.gov (United States)

    Ueda, S; Asoh, S; Watanabe, Y

    1992-11-01

    Pitch match and loudness balance tests were given to 397 cases with tinnitus. The factors which influenced tinnitus pitch and loudness were analyzed statistically from the clinical point of view. The results obtained were as follows: 1) Onomatopoeia of tinnitus, either [Keeeen] or [Jeeeen], were observed in a majority of cases. 2) Significantly sharp sounding onomatopoeia such as [Keeeen] or [Meeeen] had high pitches, over 4kHz, and dull sounds like [Gooooh] or [Buuuun] had low pitches, below 500Hz. 3) Acute stage tinnitus, within one month of onset, had a significantly depressed pitch and walked loudness, above 6dB. 4) The pitches observed in cases with Meniere's disease and chronic otitis media were distributed evenly from low frequencies to high. In other cases, especially presbyacusis and noise deafness, high pitch tinnitus (above 4kHz) was frequently noted. The loudness of tinnitus without hearing loss was significantly greater than in other diseases. 5) As a rule the more deteriorated the hearing level was, the lower the frequency of the pitch, and the smaller the loudness in tinnitus. 6) A high pitch of tinnitus nearly corresponded with hearing type, that is, the pitch of tinnitus was also in accordance with the disturbed frequency in the hearing threshold.

  13. Auditory event-related potentials associated with perceptual reversals of bistable pitch motion.

    Science.gov (United States)

    Davidson, Gray D; Pitts, Michael A

    2014-01-01

    Previous event-related potential (ERP) experiments have consistently identified two components associated with perceptual transitions of bistable visual stimuli, the "reversal negativity" (RN) and the "late positive complex" (LPC). The RN (~200 ms post-stimulus, bilateral occipital-parietal distribution) is thought to reflect transitions between neural representations that form the moment-to-moment contents of conscious perception, while the LPC (~400 ms, central-parietal) is considered an index of post-perceptual processing related to accessing and reporting one's percept. To explore the generality of these components across sensory modalities, the present experiment utilized a novel bistable auditory stimulus. Pairs of complex tones with ambiguous pitch relationships were presented sequentially while subjects reported whether they perceived the tone pairs as ascending or descending in pitch. ERPs elicited by the tones were compared according to whether perceived pitch motion changed direction or remained the same across successive trials. An auditory reversal negativity (aRN) component was evident at ~170 ms post-stimulus over bilateral fronto-central scalp locations. An auditory LPC component (aLPC) was evident at subsequent latencies (~350 ms, fronto-central distribution). These two components may be auditory analogs of the visual RN and LPC, suggesting functionally equivalent but anatomically distinct processes in auditory vs. visual bistable perception.

  14. Multi-Channel Maximum Likelihood Pitch Estimation

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    In this paper, a method for multi-channel pitch estimation is proposed. The method is a maximum likelihood estimator and is based on a parametric model where the signals in the various channels share the same fundamental frequency but can have different amplitudes, phases, and noise characteristics....... This essentially means that the model allows for different conditions in the various channels, like different signal-to-noise ratios, microphone characteristics and reverberation. Moreover, the method does not assume that a certain array structure is used but rather relies on a more general model and is hence...

  15. A developmental study of latent absolute pitch memory.

    Science.gov (United States)

    Jakubowski, Kelly; Müllensiefen, Daniel; Stewart, Lauren

    2017-03-01

    The ability to recall the absolute pitch level of familiar music (latent absolute pitch memory) is widespread in adults, in contrast to the rare ability to label single pitches without a reference tone (overt absolute pitch memory). The present research investigated the developmental profile of latent absolute pitch (AP) memory and explored individual differences related to this ability. In two experiments, 288 children from 4 to12 years of age performed significantly above chance at recognizing the absolute pitch level of familiar melodies. No age-related improvement or decline, nor effects of musical training, gender, or familiarity with the stimuli were found in regard to latent AP task performance. These findings suggest that latent AP memory is a stable ability that is developed from as early as age 4 and persists into adulthood.

  16. Processing of Binaural Pitch Stimuli in Hearing-Impaired Listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2009-01-01

    Binaural pitch is a tonal sensation produced by introducing a frequency-dependent interaural phase shift in binaurally presented white noise. As no spectral cues are present in the physical stimulus, binaural pitch perception is assumed to rely on accurate temporal fine structure coding and intact...... binaural integration mechanisms. This study investigated to what extent basic auditory measures of binaural processing as well as cognitive abilities are correlated with the ability of hearing-impaired listeners to perceive binaural pitch. Subjects from three groups (1: normal-hearing; 2: cochlear...... hearingloss; 3: retro-cochlear impairment) were asked to identify the pitch contour of series of five notes of equal duration, ranging from 523 to 784 Hz, played either with Huggins’ binaural pitch stimuli (BP) or perceptually similar, but monaurally detectable, pitches (MP). All subjects from groups 1 and 2...

  17. Illusory conjunctions of pitch and duration in unfamiliar tone sequences.

    Science.gov (United States)

    Thompson, W F; Hall, M D; Pressing, J

    2001-02-01

    In 3 experiments, the authors examined short-term memory for pitch and duration in unfamiliar tone sequences. Participants were presented a target sequence consisting of 2 tones (Experiment 1) or 7 tones (Experiments 2 and 3) and then a probe tone. Participants indicated whether the probe tone matched 1 of the target tones in both pitch and duration. Error rates were relatively low if the probe tone matched 1 of the target tones or if it differed from target tones in pitch, duration, or both. Error rates were remarkably high, however, if the probe tone combined the pitch of 1 target tone with the duration of a different target tone. The results suggest that illusory conjunctions of these dimensions frequently occur. A mathematical model is presented that accounts for the relative contribution of pitch errors, duration errors, and illusory conjunctions of pitch and duration.

  18. The use of coal-tar pitches of very high softening point and low carcinogen content as binders for industrial carbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    It has been demonstrated that the content of known carcinogenic polynuclear aromatic hydrocarbons (PAH) in coal-tar pitches may be reduced to levels which comply with existing and/or proposed environmental legislation, typically by distillation at low pressures, and preferably using a form of thin-film evaporation apparatus. However, the immediate products of such distillations usually have very high softening points, typically above 200{degree}C, and are unsuitable for direct utilization in conventional commercial carbon manufacturing processes as a result of the need for very high mixing temperatures. Advantage has been taken of the of a low-PAH coal-tar pitch, supplied in powder form, which has a softening point above 200{degree}C. Methods were examined which might allow mixing and forming of the hard pitch and a petroleum coke aggregate blend either at room temperature or at conventional processing temperature, and hot-pressuring or sintering procedures in which mixtures of the hard pitch and petroleum coke aggregate were formed at or above the softening temperature of the pitch. All the formed products were baked to give carbons which were evaluated for the major properties of density, electrical resistivity and strength. A comparison was also made between the volatiles evolved during the baking of products made with the low-PAH pitch and those made with a conventional coal-tar binder pitch.

  19. Brain activity is related to individual differences in the number of items stored in auditory short-term memory for pitch: evidence from magnetoencephalography.

    Science.gov (United States)

    Grimault, Stephan; Nolden, Sophie; Lefebvre, Christine; Vachon, François; Hyde, Krista; Peretz, Isabelle; Zatorre, Robert; Robitaille, Nicolas; Jolicoeur, Pierre

    2014-07-01

    We used magnetoencephalography (MEG) to examine brain activity related to the maintenance of non-verbal pitch information in auditory short-term memory (ASTM). We focused on brain activity that increased with the number of items effectively held in memory by the participants during the retention interval of an auditory memory task. We used very simple acoustic materials (i.e., pure tones that varied in pitch) that minimized activation from non-ASTM related systems. MEG revealed neural activity in frontal, temporal, and parietal cortices that increased with a greater number of items effectively held in memory by the participants during the maintenance of pitch representations in ASTM. The present results reinforce the functional role of frontal and temporal cortices in the retention of pitch information in ASTM. This is the first MEG study to provide both fine spatial localization and temporal resolution on the neural mechanisms of non-verbal ASTM for pitch in relation to individual differences in the capacity of ASTM. This research contributes to a comprehensive understanding of the mechanisms mediating the representation and maintenance of basic non-verbal auditory features in the human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Shoulder and Scapular Kinematics during the Windmill Softball Pitch

    OpenAIRE

    Backus, Sherry I.; Kraszewski, Andrew; Kontaxis, Andreas; Gibbons, Mandi; Bido, Jennifer; Graziano, Jessica; Hafer, Jocelyn; Jones, Kristofer J.; Hillstrom, Howard; Fealy, Stephen

    2013-01-01

    Objectives: Pitch count has been studied extensively in the overhand throwing athlete. However, pitch count and fatigue have not been systematically evaluated in the female windmill (underhand) throwing athlete. Direct kinematic measurements of the glenohumeral and scapulo-thoracic joint have not to be correlated and determined. The purpose is to measure scapular kinematics for the high school female windmill softball pitcher and identify kinematic adaptions and changes in pitching performanc...

  1. Kinematics changes in technique of a softball pitch

    OpenAIRE

    Tomášek, Petr

    2007-01-01

    Headline: Kinematic changes in technique of a softball pitch. Aims of thesis: I will compare the pitches ofprofessinal european softball wonam pitchers and then I will compare their technique with professional czech woman pitcher. Methods: Results: Key words: For examination of different techniques, I choosed thease professinal european softball wonam pitchers 3 Italians and 2 Greeks. Videotape was taken on European championship 2005 in Prague. For description of softball pitch I used a metho...

  2. Absolute Pitch: Effects of Timbre on Note-Naming Ability

    OpenAIRE

    Vanzella, Patr?cia; Schellenberg, E. Glenn

    2010-01-01

    Background Absolute pitch (AP) is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names), it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP poss...

  3. Perception and Modeling of Affective Qualities of Musical Instrument Sounds across Pitch Registers.

    Science.gov (United States)

    McAdams, Stephen; Douglas, Chelsea; Vempala, Naresh N

    2017-01-01

    Composers often pick specific instruments to convey a given emotional tone in their music, partly due to their expressive possibilities, but also due to their timbres in specific registers and at given dynamic markings. Of interest to both music psychology and music informatics from a computational point of view is the relation between the acoustic properties that give rise to the timbre at a given pitch and the perceived emotional quality of the tone. Musician and nonmusician listeners were presented with 137 tones produced at a fixed dynamic marking (forte) playing tones at pitch class D# across each instrument's entire pitch range and with different playing techniques for standard orchestral instruments drawn from the brass, woodwind, string, and pitched percussion families. They rated each tone on six analogical-categorical scales in terms of emotional valence (positive/negative and pleasant/unpleasant), energy arousal (awake/tired), tension arousal (excited/calm), preference (like/dislike), and familiarity. Linear mixed models revealed interactive effects of musical training, instrument family, and pitch register, with non-linear relations between pitch register and several dependent variables. Twenty-three audio descriptors from the Timbre Toolbox were computed for each sound and analyzed in two ways: linear partial least squares regression (PLSR) and nonlinear artificial neural net modeling. These two analyses converged in terms of the importance of various spectral, temporal, and spectrotemporal audio descriptors in explaining the emotion ratings, but some differences also emerged. Different combinations of audio descriptors make major contributions to the three emotion dimensions, suggesting that they are carried by distinct acoustic properties. Valence is more positive with lower spectral slopes, a greater emergence of strong partials, and an amplitude envelope with a sharper attack and earlier decay. Higher tension arousal is carried by brighter sounds

  4. Pitch Correlogram Clustering for Fast Speaker Identification

    Directory of Open Access Journals (Sweden)

    Nitin Jhanwar

    2004-12-01

    Full Text Available Gaussian mixture models (GMMs are commonly used in text-independent speaker identification systems. However, for large speaker databases, their high computational run-time limits their use in online or real-time speaker identification situations. Two-stage identification systems, in which the database is partitioned into clusters based on some proximity criteria and only a single-cluster GMM is run in every test, have been suggested in literature to speed up the identification process. However, most clustering algorithms used have shown limited success, apparently because the clustering and GMM feature spaces used are derived from similar speech characteristics. This paper presents a new clustering approach based on the concept of a pitch correlogram that captures frame-to-frame pitch variations of a speaker rather than short-time spectral characteristics like cepstral coefficient, spectral slopes, and so forth. The effectiveness of this two-stage identification process is demonstrated on the IVIE corpus of 110 speakers. The overall system achieves a run-time advantage of 500% as well as a 10% reduction of error in overall speaker identification.

  5. Representational momentum in memory for pitch.

    Science.gov (United States)

    Freyd, J J; Kelly, M H; DeKay, M L

    1990-11-01

    When a visual pattern is displayed at successively different orientations such that a rotation or translation is implied, an observer's memory for the final position is displaced forward. This phenomenon of representational momentum shares some similarities with physical momentum. For instance, the amount of memory shift is proportional to the implied velocity of the inducing display; representational momentum is specifically proportional to the final, not the average, velocity; representational momentum follows a continuous stopping function for the first 250 ms or so of the retention interval. In a previous paper (Kelly & Freyd, 1987) we demonstrated a forward memory asymmetry using implied changes in pitch, for subjects without formal musical training. In the current paper we replicate our earlier finding and show that the forward memory asymmetry occurs for subjects with formal musical training as well (Experiment 1). We then show the structural similarity between representational momentum in memory for pitch with previous reports of parametric effects using visual stimuli. We report a velocity effect for auditory momentum (Experiment 2), we demonstrate specifically that the velocity effect depends on the implied acceleration (Experiment 3), and we show that the stopping function for auditory momentum is qualitatively the same as that for visual momentum (Experiment 4). We consider the implications of these results for theories of mental representation.

  6. Impaired short-term memory for pitch in congenital amusia.

    Science.gov (United States)

    Tillmann, Barbara; Lévêque, Yohana; Fornoni, Lesly; Albouy, Philippe; Caclin, Anne

    2016-06-01

    Congenital amusia is a neuro-developmental disorder of music perception and production. The hypothesis is that the musical deficits arise from altered pitch processing, with impairments in pitch discrimination (i.e., pitch change detection, pitch direction discrimination and identification) and short-term memory. The present review article focuses on the deficit of short-term memory for pitch. Overall, the data discussed here suggest impairments at each level of processing in short-term memory tasks; starting with the encoding of the pitch information and the creation of the adequate memory trace, the retention of the pitch traces over time as well as the recollection and comparison of the stored information with newly incoming information. These impairments have been related to altered brain responses in a distributed fronto-temporal network, associated with decreased connectivity between these structures, as well as in abnormalities in the connectivity between the two auditory cortices. In contrast, amusic participants׳ short-term memory abilities for verbal material are preserved. These findings show that short-term memory deficits in congenital amusia are specific to pitch, suggesting a pitch-memory system that is, at least partly, separated from verbal memory. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Statistically Efficient Methods for Pitch and DOA Estimation

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2013-01-01

    , it was recently considered to estimate the DOA and pitch jointly. In this paper, we propose two novel methods for DOA and pitch estimation. They both yield maximum-likelihood estimates in white Gaussian noise scenar- ios, where the SNR may be different across channels, as opposed to state-of-the-art methods......Traditionally, direction-of-arrival (DOA) and pitch estimation of multichannel, periodic sources have been considered as two separate problems. Separate estimation may render the task of resolving sources with similar DOA or pitch impossible, and it may decrease the estimation accuracy. Therefore...

  8. Language experience enhances early cortical pitch-dependent responses

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Vijayaraghavan, Venkatakrishnan

    2014-01-01

    Pitch processing at cortical and subcortical stages of processing is shaped by language experience. We recently demonstrated that specific components of the cortical pitch response (CPR) index the more rapidly-changing portions of the high rising Tone 2 of Mandarin Chinese, in addition to marking pitch onset and sound offset. In this study, we examine how language experience (Mandarin vs. English) shapes the processing of different temporal attributes of pitch reflected in the CPR components using stimuli representative of within-category variants of Tone 2. Results showed that the magnitude of CPR components (Na-Pb and Pb-Nb) and the correlation between these two components and pitch acceleration were stronger for the Chinese listeners compared to English listeners for stimuli that fell within the range of Tone 2 citation forms. Discriminant function analysis revealed that the Na-Pb component was more than twice as important as Pb-Nb in grouping listeners by language affiliation. In addition, a stronger stimulus-dependent, rightward asymmetry was observed for the Chinese group at the temporal, but not frontal, electrode sites. This finding may reflect selective recruitment of experience-dependent, pitch-specific mechanisms in right auditory cortex to extract more complex, time-varying pitch patterns. Taken together, these findings suggest that long-term language experience shapes early sensory level processing of pitch in the auditory cortex, and that the sensitivity of the CPR may vary depending on the relative linguistic importance of specific temporal attributes of dynamic pitch. PMID:25506127

  9. Pitch discrimination associated with phonological awareness: Evidence from congenital amusia.

    Science.gov (United States)

    Sun, Yanan; Lu, Xuejing; Ho, Hao Tam; Thompson, William Forde

    2017-03-13

    Research suggests that musical skills are associated with phonological abilities. To further investigate this association, we examined whether phonological impairments are evident in individuals with poor music abilities. Twenty individuals with congenital amusia and 20 matched controls were assessed on a pure-tone pitch discrimination task, a rhythm discrimination task, and four phonological tests. Amusic participants showed deficits in discriminating pitch and discriminating rhythmic patterns that involve a regular beat. At a group level, these individuals performed similarly to controls on all phonological tests. However, eight amusics with severe pitch impairment, as identified by the pitch discrimination task, exhibited significantly worse performance than all other participants in phonological awareness. A hierarchical regression analysis indicated that pitch discrimination thresholds predicted phonological awareness beyond that predicted by phonological short-term memory and rhythm discrimination. In contrast, our rhythm discrimination task did not predict phonological awareness beyond that predicted by pitch discrimination thresholds. These findings suggest that accurate pitch discrimination is critical for phonological processing. We propose that deficits in early-stage pitch discrimination may be associated with impaired phonological awareness and we discuss the shared role of pitch discrimination for processing music and speech.

  10. Perception of words and pitch patterns in song and speech

    Directory of Open Access Journals (Sweden)

    Julia eMerrill

    2012-03-01

    Full Text Available This fMRI study examines shared and distinct cortical areas involved in the auditory perception of song and speech at the level of their underlying constituents: words, pitch and rhythm. Univariate and multivariate analyses were performed on the brain activity patterns of six conditions, arranged in a subtractive hierarchy: sung sentences including words, pitch and rhythm; hummed speech prosody and song melody containing only pitch patterns and rhythm; as well as the pure musical or speech rhythm.Systematic contrasts between these balanced conditions following their hierarchical organization showed a great overlap between song and speech at all levels in the bilateral temporal lobe, but suggested a differential role of the inferior frontal gyrus (IFG and intraparietal sulcus (IPS in processing song and speech. The left IFG was involved in word- and pitch-related processing in speech, the right IFG in processing pitch in song.Furthermore, the IPS showed sensitivity to discrete pitch relations in song as opposed to the gliding pitch in speech. Finally, the superior temporal gyrus and premotor cortex coded for general differences between words and pitch patterns, irrespective of whether they were sung or spoken. Thus, song and speech share many features which are reflected in a fundamental similarity of brain areas involved in their perception. However, fine-grained acoustic differences on word and pitch level are reflected in the activity of IFG and IPS.

  11. The influence of music-elicited emotions and relative pitch on absolute pitch memory for familiar melodies.

    Science.gov (United States)

    Jakubowski, Kelly; Müllensiefen, Daniel

    2013-01-01

    Levitin's findings that nonmusicians could produce from memory the absolute pitches of self-selected pop songs have been widely cited in the music psychology literature. These findings suggest that latent absolute pitch (AP) memory may be a more widespread trait within the population than traditional AP labelling ability. However, it has been left unclear what factors may facilitate absolute pitch retention for familiar pieces of music. The aim of the present paper was to investigate factors that may contribute to latent AP memory using Levitin's sung production paradigm for AP memory and comparing results to the outcomes of a pitch labelling task, a relative pitch memory test, measures of music-induced emotions, and various measures of participants' musical backgrounds. Our results suggest that relative pitch memory and the quality and degree of music-elicited emotions impact on latent AP memory.

  12. The auditory dynamic attending theory revisited: A closer look at the pitch comparison task.

    Science.gov (United States)

    Bauer, Anna-Katharina R; Jaeger, Manuela; Thorne, Jeremy D; Bendixen, Alexandra; Debener, Stefan

    2015-11-11

    The dynamic attending theory as originally proposed by Jones, 1976. Psychol. Rev. 83(5), 323-355 posits that tone sequences presented at a regular rhythm entrain attentional oscillations and thereby facilitate the processing of sounds presented in phase with this rhythm. The increased interest in neural correlates of dynamic attending requires robust behavioral indicators of the phenomenon. Here we aimed to replicate and complement the most prominent experimental implementation of dynamic attending (Jones et al., 2002. Psychol. Sci. 13(4), 313-319). The paradigm uses a pitch comparison task in which two tones, the initial and the last of a longer series, have to be compared. In-between the two, distractor tones with variable pitch are presented, at a regular pace. A comparison tone presented in phase with the entrained rhythm is hypothesized to lead to better behavioral performance. Aiming for a conceptual replication, four different variations of the original paradigm were created which were followed by an exact replication attempt. Across all five experiments, only 40 of the 140 tested participants showed the hypothesized pattern of an inverted U-shaped profile in task accuracy, and the group average effects did not replicate the pattern reported by Jones et al., 2002. Psychol. Sci. 13(4), 313-319 in any of the five experiments. However, clear evidence for a relationship between musicality and overall behavioral performance was found. This study casts doubt on the suitability of the pitch comparison task for demonstrating auditory dynamic attending. We discuss alternative tasks that have been shown to support dynamic attending theory, thus lending themselves more readily to studying its neural correlates. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback

    Directory of Open Access Journals (Sweden)

    Larson Charles R

    2011-06-01

    Full Text Available Abstract Background The motor-driven predictions about expected sensory feedback (efference copies have been proposed to play an important role in recognition of sensory consequences of self-produced motor actions. In the auditory system, this effect was suggested to result in suppression of sensory neural responses to self-produced voices that are predicted by the efference copies during vocal production in comparison with passive listening to the playback of the identical self-vocalizations. In the present study, event-related potentials (ERPs were recorded in response to upward pitch shift stimuli (PSS with five different magnitudes (0, +50, +100, +200 and +400 cents at voice onset during active vocal production and passive listening to the playback. Results Results indicated that the suppression of the N1 component during vocal production was largest for unaltered voice feedback (PSS: 0 cents, became smaller as the magnitude of PSS increased to 200 cents, and was almost completely eliminated in response to 400 cents stimuli. Conclusions Findings of the present study suggest that the brain utilizes the motor predictions (efference copies to determine the source of incoming stimuli and maximally suppresses the auditory responses to unaltered feedback of self-vocalizations. The reduction of suppression for 50, 100 and 200 cents and its elimination for 400 cents pitch-shifted voice auditory feedback support the idea that motor-driven suppression of voice feedback leads to distinctly different sensory neural processing of self vs. non-self vocalizations. This characteristic may enable the audio-vocal system to more effectively detect and correct for unexpected errors in the feedback of self-produced voice pitch compared with externally-generated sounds.

  14. Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback.

    Science.gov (United States)

    Behroozmand, Roozbeh; Larson, Charles R

    2011-06-06

    The motor-driven predictions about expected sensory feedback (efference copies) have been proposed to play an important role in recognition of sensory consequences of self-produced motor actions. In the auditory system, this effect was suggested to result in suppression of sensory neural responses to self-produced voices that are predicted by the efference copies during vocal production in comparison with passive listening to the playback of the identical self-vocalizations. In the present study, event-related potentials (ERPs) were recorded in response to upward pitch shift stimuli (PSS) with five different magnitudes (0, +50, +100, +200 and +400 cents) at voice onset during active vocal production and passive listening to the playback. Results indicated that the suppression of the N1 component during vocal production was largest for unaltered voice feedback (PSS: 0 cents), became smaller as the magnitude of PSS increased to 200 cents, and was almost completely eliminated in response to 400 cents stimuli. Findings of the present study suggest that the brain utilizes the motor predictions (efference copies) to determine the source of incoming stimuli and maximally suppresses the auditory responses to unaltered feedback of self-vocalizations. The reduction of suppression for 50, 100 and 200 cents and its elimination for 400 cents pitch-shifted voice auditory feedback support the idea that motor-driven suppression of voice feedback leads to distinctly different sensory neural processing of self vs. non-self vocalizations. This characteristic may enable the audio-vocal system to more effectively detect and correct for unexpected errors in the feedback of self-produced voice pitch compared with externally-generated sounds.

  15. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  16. Auditory deficits in amusia extend beyond poor pitch perception.

    Science.gov (United States)

    Whiteford, Kelly L; Oxenham, Andrew J

    2017-05-01

    Congenital amusia is a music perception disorder believed to reflect a deficit in fine-grained pitch perception and/or short-term or working memory for pitch. Because most measures of pitch perception include memory and segmentation components, it has been difficult to determine the true extent of pitch processing deficits in amusia. It is also unclear whether pitch deficits persist at frequencies beyond the range of musical pitch. To address these questions, experiments were conducted with amusics and matched controls, manipulating both the stimuli and the task demands. First, we assessed pitch discrimination at low (500Hz and 2000Hz) and high (8000Hz) frequencies using a three-interval forced-choice task. Amusics exhibited deficits even at the highest frequency, which lies beyond the existence region of musical pitch. Next, we assessed the extent to which frequency coding deficits persist in one- and two-interval frequency-modulation (FM) and amplitude-modulation (AM) detection tasks at 500Hz at slow (f m =4Hz) and fast (f m =20Hz) modulation rates. Amusics still exhibited deficits in one-interval FM detection tasks that should not involve memory or segmentation. Surprisingly, amusics were also impaired on AM detection, which should not involve pitch processing. Finally, direct comparisons between the detection of continuous and discrete FM demonstrated that amusics suffer deficits in both coding and segmenting pitch information. Our results reveal auditory deficits in amusia extending beyond pitch perception that are subtle when controlling for memory and segmentation, and are likely exacerbated in more complex contexts such as musical listening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring

    Science.gov (United States)

    Beatus, Tsevi; Cohen, Itai

    2015-08-01

    While the wing kinematics of many flapping insects have been well characterized, understanding the underlying sensory, neural, and physiological mechanisms that determine these kinematics is still a challenge. Two main difficulties in understanding the physiological mechanisms arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics of the insect wing hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here this strategy is used to model the torques exerted by the wing hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasistatic aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring parameters. The damped torsional-spring model explains the changes measured in wing-pitch kinematics during roll correction maneuvers through modulation of the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate that flies can accurately control their wing-pitch kinematics on a sub-wing-beat time scale by modulating all three effective spring parameters on longer time scales.

  18. Transfer Effect of Speech-sound Learning on Auditory-motor Processing of Perceived Vocal Pitch Errors.

    Science.gov (United States)

    Chen, Zhaocong; Wong, Francis C K; Jones, Jeffery A; Li, Weifeng; Liu, Peng; Chen, Xi; Liu, Hanjun

    2015-08-17

    Speech perception and production are intimately linked. There is evidence that speech motor learning results in changes to auditory processing of speech. Whether speech motor control benefits from perceptual learning in speech, however, remains unclear. This event-related potential study investigated whether speech-sound learning can modulate the processing of feedback errors during vocal pitch regulation. Mandarin speakers were trained to perceive five Thai lexical tones while learning to associate pictures with spoken words over 5 days. Before and after training, participants produced sustained vowel sounds while they heard their vocal pitch feedback unexpectedly perturbed. As compared to the pre-training session, the magnitude of vocal compensation significantly decreased for the control group, but remained consistent for the trained group at the post-training session. However, the trained group had smaller and faster N1 responses to pitch perturbations and exhibited enhanced P2 responses that correlated significantly with their learning performance. These findings indicate that the cortical processing of vocal pitch regulation can be shaped by learning new speech-sound associations, suggesting that perceptual learning in speech can produce transfer effects to facilitating the neural mechanisms underlying the online monitoring of auditory feedback regarding vocal production.

  19. Assessment of rail long-pitch corrugation

    Science.gov (United States)

    Valehrach, Jan; Guziur, Petr; Riha, Tomas; Plasek, Otto

    2017-09-01

    The paper focuses on defects of the running surface of the rail, namely the rail corrugation defect and specifically long-pitch corrugation in curves of small radii. These defects cause a shorter life of the rails, greater maintenance costs and increase the noise and vibration pollution. Therefore, it is very important to understand the formation and development of the imperfection of the rails. In the paper, various sections of railway tracks in the Czech Republic are listed, each of them completed with comparison of defect development, the particular track superstructure, rolling stock, axle load, traffic load etc. Based on performed measurements, defect development has been proved as different on sections with similar (or even same) parameters. The paper assumes that a train velocity is the significant circumstance for defect development rates. Assessment of track section with under sleeper pads, which are expected to be the one of the possible ways to suppress the corrugation defect development, is included in evaluation.

  20. Analysis of pitch system data for condition monitoring

    DEFF Research Database (Denmark)

    Nielsen, Jannie Sønderkær; van de Pieterman, René P.; Sørensen, John Dalsgaard

    2014-01-01

    with a theoretical model based on aeroelastic simulations. The blade moment is found to have only minor influence on the friction in the blade bearing. The main factors affecting the static friction are the temperature and time after the latest pitch movement. Pitch motor current and torque are proportional...

  1. Pitch Systems and Curwen Hand Signs: A Review of Literature

    Science.gov (United States)

    Frey-Clark, Marta

    2017-01-01

    Learning to sing from notation is a complex task, and accurately performing pitches without an external reference can be particularly challenging. As such, the use of mnemonic devices to reinforce tonal relationships is a long-standing practice among musicians. Chief among these mnemonic devices are pitch syllable systems and Curwen hand signs.…

  2. Wing-pitching mechanism of hovering Ruby-throated hummingbirds

    International Nuclear Information System (INIS)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-01

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint. (paper)

  3. Autistic Traits and Enhanced Perceptual Representation of Pitch and Time

    Science.gov (United States)

    Stewart, Mary E.; Griffiths, Timothy D.; Grube, Manon

    2018-01-01

    Enhanced basic perceptual discrimination has been reported for pitch in individuals with autism spectrum conditions. We test whether there is a correlational pattern of enhancement across the broader autism phenotype and whether this correlation occurs for the discrimination of pitch, time and loudness. Scores on the Autism-Spectrum Quotient…

  4. Binaural Pitch Fusion in Bilateral Cochlear Implant Users.

    Science.gov (United States)

    Reiss, Lina A J; Fowler, Jennifer R; Hartling, Curtis L; Oh, Yonghee

    Binaural pitch fusion is the fusion of stimuli that evoke different pitches between the ears into a single auditory image. Individuals who use hearing aids or bimodal cochlear implants (CIs) experience abnormally broad binaural pitch fusion, such that sounds differing in pitch by as much as 3-4 octaves are fused across ears, leading to spectral averaging and speech perception interference. The goal of this study was to determine if adult bilateral CI users also experience broad binaural pitch fusion. Stimuli were pulse trains delivered to individual electrodes. Fusion ranges were measured using simultaneous, dichotic presentation of reference and comparison stimuli in opposite ears, and varying the comparison stimulus to find the range that fused with the reference stimulus. Bilateral CI listeners had binaural pitch fusion ranges varying from 0 to 12 mm (average 6.1 ± 3.9 mm), where 12 mm indicates fusion over all electrodes in the array. No significant correlations of fusion range were observed with any subject factors related to age, hearing loss history, or hearing device history, or with any electrode factors including interaural electrode pitch mismatch, pitch match bandwidth, or within-ear electrode discrimination abilities. Bilateral CI listeners have abnormally broad fusion, similar to hearing aid and bimodal CI listeners. This broad fusion may explain the variability of binaural benefits for speech perception in quiet and in noise in bilateral CI users.

  5. Pointed and plateau-shaped pitch accents in North Frisian

    DEFF Research Database (Denmark)

    Niebuhr, Oliver; Hoekstra, Jarich

    2015-01-01

    for language documentation and conservation purposes. We selected a small part of this corpus – interviews of 10 elderly speakers – and conducted multiparametric F0 and duration measurements, focusing on nuclear rising-falling pitch accent patterns. We found strong evidence for a phonological pitch...

  6. The Association Between Pitch Conditions and the Incidence of ...

    African Journals Online (AJOL)

    shown to influence incidence of rugby injuries. Harsh weather conditions and detrimental effect on poor Kenyan rugby pitches create a unique environment for injury exposure. We conducted a whole population prospective cohort study to determine the association of pitch conditions with injury incidence and severity.

  7. Sparse Multi-Pitch and Panning Estimation of Stereophonic Signals

    DEFF Research Database (Denmark)

    Kronvall, Ted; Jakobsson, Andreas; Hansen, Martin Weiss

    2016-01-01

    In this paper, we propose a novel multi-pitch estimator for stereophonic mixtures, allowing for pitch estimation on multi-channel audio even if the amplitude and delay panning parameters are unknown. The presented method does not require prior knowledge of the number of sources present in the mix...

  8. Pitch identification and discrimination for complex tones with many harmonics

    NARCIS (Netherlands)

    Houtsma, A.J.M.; Smurzyński, J.

    1990-01-01

    Four experiments are reported that deal with pitch perception of harmonic complex tones containing up to 11 successive harmonics. In particular, the question is raised whether the pitch percept of the missing fundamental is mediated only by low-order resolvable harmonics, or whether it can also be

  9. Pitch Perception, Working Memory, and Second-Language Phonological Production

    Science.gov (United States)

    Posedel, James; Emery, Lisa; Souza, Benjamin; Fountain, Catherine

    2012-01-01

    Previous research has suggested that training on a musical instrument is associated with improvements in working memory and musical pitch perception ability. Good working memory and musical pitch perception ability, in turn, have been linked to certain aspects of language production. The current study examines whether working memory and/or pitch…

  10. Wing-pitching mechanism of hovering Ruby-throated hummingbirds.

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-19

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint.

  11. Pulping Variables, Storage Time and Pitch Deposit | Ogunwusi ...

    African Journals Online (AJOL)

    Pulp resin is also influenced by effective alkali concentration of the pulping medium. With increase in effective alkali concentration from 13% to 15%, pulp pitch is reduced. The interaction effect of storage and effective alkali concentration was not significant indicating that reduction in pulp pitch caused by effective alkali ...

  12. Shoulder joint velocity during fastball pitching in baseball

    NARCIS (Netherlands)

    Gasparutto, X.; van der Graaff, E; van der Helm, F.C.T.; Veeger, H.E.J.; Colloud, F.; Domalain, M.; Monnet, T.

    2015-01-01

    The purpose of this study was to assess the rotation and translation velocity of the shoulder complex during fastball pitching in baseball. 8 pitchers from the Dutch AAA team performed each 3 fastball pitches. Their motion was recorded by an opto-electronic device. Kinematic computation was

  13. H-Darrieus Wind Turbine with Blade Pitch Control

    Directory of Open Access Journals (Sweden)

    I. Paraschivoiu

    2009-01-01

    Full Text Available A procedure for computing the optimal variation of the blades' pitch angle of an H-Darrieus wind turbine that maximizes its torque at given operational conditions is proposed and presented along with the results obtained on a 7 kW prototype. The CARDAAV code, based on the “Double-Multiple Streamtube” model developed by the first author, is used to determine the performances of the straight-bladed vertical axis wind turbine. This was coupled with a genetic algorithm optimizer. The azimuthal variation of the blades' pitch angle is modeled with an analytical function whose coefficients are used as variables in the optimization process. Two types of variations were considered for the pitch angle: a simple sinusoidal one and one which is more general, relating closely the blades' pitch to the local flow conditions along their circular path. A gain of almost 30% in the annual energy production was obtained with the polynomial optimal pitch control.

  14. Unsteady force characteristics on foils undergoing pitching motion

    International Nuclear Information System (INIS)

    Yang, Chang Jo

    2006-01-01

    In the present study the unsteady forces acting on the pitching foils such as a flat plate, NACA0010, NACA0020, NACA65-0910 and BTE have been measured by using a six-axis sensor in a circulating water tunnel at a low Reynolds number region. The unsteady characteristics of the dynamic drag and lift have been compared to the quasi-steady ones which are measured under the stationary condition. The pitching motion is available for keeping the lift higher after the separation occurs. Especially, the characteristics of the dynamic lift are quite different from the quasi-steady one at high pitching frequency regions. As the pitching frequency deceases, the amplitude of the dynamic lift becomes closer to the quasi-steady one. However, the phase remains different between the steady and unsteady conditions even at low pitching frequencies. On the other hand, the dynamic drag is governed strongly by the angle of attack

  15. Wind turbine pitch control using ICPSO-PID algorithm

    DEFF Research Database (Denmark)

    Xu, Chang; Tian, Qiangqiang; Shen, Wen Zhong

    2013-01-01

    For the traditional simplified first-order pitch-control system model, it is difficult to describe a real dynamic characteristic of a variable pitch action system, thus a complete high order mathematical model has to be developed for the pitch control of wind turbine generation (WTG). In the paper...... controller parameters quickly; and the feed-forward controller for wind speed can improve dynamics of a pitch-control system; additionally the power controller can allow a wind turbine to have a constant power output as a wind speed is over the rated one. Compared with a conventional PID, the controller...... with ICPSO-PID algorithm has a smaller overshoot, a shorter tuning time and better robustness. The design method proposed in the paper can be applied in a practical electro-hydraulic pitch control system for WTG....

  16. Two LQRI based Blade Pitch Controls for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yoonsu Nam

    2012-06-01

    Full Text Available As the wind turbine size has been increasing and their mechanical components are built lighter, the reduction of the structural loads becomes a very important task of wind turbine control in addition to maximum wind power capture. In this paper, we present a separate set of collective and individual pitch control algorithms. Both pitch control algorithms use the LQR control technique with integral action (LQRI, and utilize Kalman filters to estimate system states and wind speed. Compared to previous works in this area, our pitch control algorithms can control rotor speed and blade bending moments at the same time to improve the trade-off between rotor speed regulation and load reduction, while both collective and individual pitch controls can be designed separately. Simulation results show that the proposed collective and individual pitch controllers achieve very good rotor speed regulation and significant reduction of blade bending moments.

  17. Influence of irradiation on high-strength graphites

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.; Grebennik, V.N.; Kalyagina, I.P.

    1989-01-01

    To ensure efficiency of the graphite elements of the construction of the masonry of reactors, the graphite must possess high radiation stability, strength, and heat resistance. In this connection, the physical properties of graphites based on uncalcined petroleum coke with a binder - high-temperature hard coal pitch - the amount of which reaches 40% are considered in this paper

  18. Do Musicians with Perfect Pitch Have More Autism Traits than Musicians without Perfect Pitch? An Empirical Study

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Heaton, Pamela

    2012-01-01

    Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increas...

  19. Long-term memory for pitch in six-month-old infants.

    Science.gov (United States)

    Plantinga, Judy; Trainor, Laurel J

    2003-11-01

    We examined 6-month-old infants' long-term memory representations for the pitch of familiar melodies. Infants remembered the relative pitch of the melodies, but the absolute pitch was either not remembered or not a particularly salient attribute.

  20. Neural networks

    International Nuclear Information System (INIS)

    Denby, Bruce; Lindsey, Clark; Lyons, Louis

    1992-01-01

    The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive

  1. Kinematics and kinetics of elite windmill softball pitching.

    Science.gov (United States)

    Werner, Sherry L; Jones, Deryk G; Guido, John A; Brunet, Michael E

    2006-04-01

    A significant number of time-loss injuries to the upper extremity in elite windmill softball pitchers has been documented. The number of outings and pitches thrown in 1 week for a softball pitcher is typically far in excess of those seen in baseball pitchers. Shoulder stress in professional baseball pitching has been reported to be high and has been linked to pitching injuries. Shoulder distraction has not been studied in an elite softball pitching population. The stresses on the throwing shoulder of elite windmill pitchers are similar to those found for professional baseball pitchers. Descriptive laboratory study. Three-dimensional, high-speed (120 Hz) video data were collected on rise balls from 24 elite softball pitchers during the 1996 Olympic Games. Kinematic parameters related to pitching mechanics and resultant kinetics on the throwing shoulder were calculated. Multiple linear regression analysis was used to relate shoulder stress and pitching mechanics. Shoulder distraction stress averaged 80% of body weight for the Olympic pitchers. Sixty-nine percent of the variability in shoulder distraction can be explained by a combination of 7 parameters related to pitching mechanics. Excessive distraction stress at the throwing shoulder is similar to that found in baseball pitchers, which suggests that windmill softball pitchers are at risk for overuse injuries. Normative information regarding upper extremity kinematics and kinetics for elite softball pitchers has been established.

  2. Auditory working memory predicts individual differences in absolute pitch learning.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  3. Pitch Angle Control for Variable Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Mouna Ben Smida

    2015-08-01

    Full Text Available Abstract.Pitch control is a practical technique for power regulation above the rated wind speed it is considered as the most efficient and popular power control method. As conventional pitch control usually use PI controller, the mathematical model of the system should be known well.This paper deals with the operation and the control of the direct driven permanent magnet synchronous generator (PMSG.Different conventional strategies of pitch angle control are described and validated through simulation results under Matlab\\Simulink.

  4. Fault Detection and Isolation for Wind Turbine Electric Pitch System

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; Hajizadeh, Amin

    2017-01-01

    This paper presents a model-based fault detection and isolation scheme applied on electric pitch system of wind turbines. Pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be precisely...... detected to prevent failures and decrease downtime. To detect faults of electric pitch actuators and sensors, an extended kalman filter (EKF) based multiple model adaptive estimation (MMAE) designed to estimate the states of the system. The proposed method is demonstrated in case studies. The simulation...

  5. Half pitch lower sound perception caused by carbamazepine.

    Science.gov (United States)

    Konno, Shyu; Yamazaki, Etsuko; Kudoh, Masako; Abe, Takashi; Tohgi, Hideo

    2003-09-01

    We report a 16-year-old woman with secondary generalization of partial seizure, who complained of an auditory disturbance after carbamazepine (CBZ) administration. She had been taking sodium valproate (VPA) from the age of 15. However, her seizures remained poorly controlled. We changed her antiepileptic drug from VPA to CBZ. At 1 week after CBZ administration, she noticed that electone musical performances were heard as a semitone lower. When oral administration of CBZ was stopped, her pitch perception returned to normal. If she had not been able to discern absolute pitch, she might have been unable to recognize her lowered pitch perception. Auditory disturbance caused by CBZ is reversible and very rare.

  6. Risk-based Comparative Study of Fluid Power Pitch Concepts

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; N. Soltani, Mohsen

    2017-01-01

    Proper functioning of the pitch system is essential to both normal operation and safety critical shut down of modern multi megawatt wind turbines. Several studies on field failure rates for such turbines show that pitch systems are a major contributor to failures which entails an increased risk....... Thus, more reliable and safe concepts are needed. A review of patents and patent applications covering fluid power pitch concepts, reveals that many propose closed-type hydraulic systems. This paper proposes a closed-type concept with a bootstrap reservoir. In contrary to a conventional system where...

  7. Polyphonic pitch detection and instrument separation

    Science.gov (United States)

    Bay, Mert; Beauchamp, James W.

    2005-09-01

    An algorithm for polyphonic pitch detection and musical instrument separation is presented. Each instrument is represented as a time-varying harmonic series. Spectral information is obtained from a monaural input signal using a spectral peak tracking method. Fundamental frequencies (F0s) for each time frame are estimated from the spectral data using an Expectation Maximization (EM) algorithm with a Gaussian mixture model representing the harmonic series. The method first estimates the most predominant F0, suppresses its series in the input, and then the EM algorithm is run iteratively to estimate each next F0. Collisions between instrument harmonics, which frequently occur, are predicted from the estimated F0s, and the resulting corrupted harmonics are ignored. The amplitudes of these corrupted harmonics are replaced by harmonics taken from a library of spectral envelopes for different instruments, where the spectrum which most closely matches the important characteristics of each extracted spectrum is chosen. Finally, each voice is separately resynthesized by additive synthesis. This algorithm is demonstrated for a trio piece that consists of 3 different instruments.

  8. Self-propulsion of a pitching foil

    Science.gov (United States)

    Das, Anil; Shukla, Ratnesh; Govardhan, Raghuraman

    2017-11-01

    Undulatory motions serve as a fundamental mechanism for bio-locomotion at moderate and high Reynolds numbers. An understanding of the interactions between self-propelling undulatory motions and the surrounding fluid, not only provides insight into the efficiency of bio-locomotion, but also yields valuable pointers for the design of autonomous under-water and micro-aerial vehicles. Here, we investigate a simplified model of a self-propelling pitching foil that undergoes time-periodic oscillations about its quarter chord. We consider two-dimensional configurations in which the foil is free to propel along only longitudinal and both transverse and longitudinal directions. In both the configurations, the time-averaged self-propelling velocity increases monotonically with the Reynolds number Re (based on trailing edge speed and chord as the characteristic velocity and length). The rate of increase is particularly pronounced in the low Re regime (Re spaced wake vortices dissipate within a few chord lengths. At moderate and high Re, the wake exhibits increasingly complex structure in both the configurations. For a fixed Re, the foil with a single translational degree of freedom propels at a higher speed for a higher input power requirement. Differences between the two configurations will be discussed within the context of undulatory self-propulsion observed in nature.

  9. Oscillatory phase dynamics in neural entrainment underpin illusory percepts of time.

    Science.gov (United States)

    Herrmann, Björn; Henry, Molly J; Grigutsch, Maren; Obleser, Jonas

    2013-10-02

    Neural oscillatory dynamics are a candidate mechanism to steer perception of time and temporal rate change. While oscillator models of time perception are strongly supported by behavioral evidence, a direct link to neural oscillations and oscillatory entrainment has not yet been provided. In addition, it has thus far remained unaddressed how context-induced illusory percepts of time are coded for in oscillator models of time perception. To investigate these questions, we used magnetoencephalography and examined the neural oscillatory dynamics that underpin pitch-induced illusory percepts of temporal rate change. Human participants listened to frequency-modulated sounds that varied over time in both modulation rate and pitch, and judged the direction of rate change (decrease vs increase). Our results demonstrate distinct neural mechanisms of rate perception: Modulation rate changes directly affected listeners' rate percept as well as the exact frequency of the neural oscillation. However, pitch-induced illusory rate changes were unrelated to the exact frequency of the neural responses. The rate change illusion was instead linked to changes in neural phase patterns, which allowed for single-trial decoding of percepts. That is, illusory underestimations or overestimations of perceived rate change were tightly coupled to increased intertrial phase coherence and changes in cerebro-acoustic phase lag. The results provide insight on how illusory percepts of time are coded for by neural oscillatory dynamics.

  10. Investors prefer entrepreneurial ventures pitched by attractive men.

    Science.gov (United States)

    Brooks, Alison Wood; Huang, Laura; Kearney, Sarah Wood; Murray, Fiona E

    2014-03-25

    Entrepreneurship is a central path to job creation, economic growth, and prosperity. In the earliest stages of start-up business creation, the matching of entrepreneurial ventures to investors is critically important. The entrepreneur's business proposition and previous experience are regarded as the main criteria for investment decisions. Our research, however, documents other critical criteria that investors use to make these decisions: the gender and physical attractiveness of the entrepreneurs themselves. Across a field setting (three entrepreneurial pitch competitions in the United States) and two experiments, we identify a profound and consistent gender gap in entrepreneur persuasiveness. Investors prefer pitches presented by male entrepreneurs compared with pitches made by female entrepreneurs, even when the content of the pitch is the same. This effect is moderated by male physical attractiveness: attractive males were particularly persuasive, whereas physical attractiveness did not matter among female entrepreneurs.

  11. Joint Pitch and DOA Estimation Using the ESPRIT method

    DEFF Research Database (Denmark)

    Wu, Yuntao; Amir, Leshem; Jensen, Jesper Rindom

    2015-01-01

    In this paper, the problem of joint multi-pitch and direction-of-arrival (DOA) estimation for multi-channel harmonic sinusoidal signals is considered. A spatio-temporal matrix signal model for a uniform linear array is defined, and then the ESPRIT method based on subspace techniques that exploits...... the invariance property in the time domain is first used to estimate the multi pitch frequencies of multiple harmonic signals. Followed by the estimated pitch frequencies, the DOA estimations based on the ESPRIT method are also presented by using the shift invariance structure in the spatial domain. Compared...... to the existing stateof-the-art algorithms, the proposed method based on ESPRIT without 2-D searching is computationally more efficient but performs similarly. An asymptotic performance analysis of the DOA and pitch estimation of the proposed method are also presented. Finally, the effectiveness of the proposed...

  12. Human vertical eye movement responses to earth horizontal pitch

    Science.gov (United States)

    Wall, C. 3rd; Petropoulos, A. E.

    1993-01-01

    The vertical eye movements in humans produced in response to head-over-heels constant velocity pitch rotation about a horizontal axis resemble those from other species. At 60 degrees/s these are persistent and tend to have non-reversing slow components that are compensatory to the direction of rotation. In most, but not all subjects, the slow component velocity was well characterized by a rapid build-up followed by an exponential decay to a non-zero baseline. Super-imposed was a cyclic or modulation component whose frequency corresponded to the time for one revolution and whose maximum amplitude occurred during a specific head orientation. All response components (exponential decay, baseline and modulation) were larger during pitch backward compared to pitch forward runs. Decay time constants were shorter during the backward runs, thus, unlike left to right yaw axis rotation, pitch responses display significant asymmetries between paired forward and backward runs.

  13. Meet you in the elevator! Pitching yourself and your research

    NARCIS (Netherlands)

    Scheffel, Maren; Börner, Dirk

    2013-01-01

    Scheffel, M., & Börner, D. (2013, 31 May). Meet you in the elevator! Pitching yourself and your research. Workshop presentation at the 9th Joint European Summer School on Technology Enhanced Learning, Limassol, Cyprus.

  14. Association of the pitch canker pathogen Fusarium circinatum with ...

    African Journals Online (AJOL)

    Association of the pitch canker pathogen Fusarium circinatum with grass hosts in commercial pine production areas of South Africa. Cassandra L Swett, Bernice Porter, Gerda Fourie, Emma T Steenkamp, Thomas R Gordon, Michael J Wingfield ...

  15. A Computationally Efficient Method for Polyphonic Pitch Estimation

    Directory of Open Access Journals (Sweden)

    Ruohua Zhou

    2009-01-01

    Full Text Available This paper presents a computationally efficient method for polyphonic pitch estimation. The method employs the Fast Resonator Time-Frequency Image (RTFI as the basic time-frequency analysis tool. The approach is composed of two main stages. First, a preliminary pitch estimation is obtained by means of a simple peak-picking procedure in the pitch energy spectrum. Such spectrum is calculated from the original RTFI energy spectrum according to harmonic grouping principles. Then the incorrect estimations are removed according to spectral irregularity and knowledge of the harmonic structures of the music notes played on commonly used music instruments. The new approach is compared with a variety of other frame-based polyphonic pitch estimation methods, and results demonstrate the high performance and computational efficiency of the approach.

  16. Pitch Angle Control for Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhang, Jianzhong; Cheng, M

    2008-01-01

    Pitch angle control is the most common means for adjusting the aerodynamic torque of the wind turbine when wind speed is above rated speed and various controlling variables may be chosen, such as wind speed, generator speed and generator power. As conventional pitch control usually use PI...... controller, the mathematical model of the system should be known well. A fuzzy logic pitch angle controller is developed in this paper, in which it does not need well known about the system and the mean wind speed is used to compensate the non-linear sensitivity. The fuzzy logic control strategy may have...... the potential when the system contains strong non-linearity, such as wind turbulence is strong, or the control objectives include fatigue loads. The design of the fuzzy logic controller and the comparisons with conversional pitch angle control strategies with various controlling variables are carried out...

  17. Series pid pitch controller of large wind turbines generator

    Directory of Open Access Journals (Sweden)

    Micić Aleksandar D.

    2015-01-01

    Full Text Available For this stable process with oscillatory dynamics, characterized with small damping ratio and dominant transport delay, design of the series PID pitch controller is based on the model obtained from the open-loop process step response, filtered with the second-order Butterworth filter Fbw. Performance of the series PID pitch controller, with the filter Fbw, is analyzed by simulations of the set-point and input/output disturbance responses, including simulations with a colored noise added to the control variable. Excellent performance/robustness tradeoff is obtained, compared to the recently proposed PI pitch controllers and to the modified internal model pitch controller, developed here, which has a natural mechanism to compensate effect of dominant transport delay. [Projekat Ministarstva nauke Republike Srbije, br. III 47016

  18. Development in children's interpretation of pitch cues to emotions.

    Science.gov (United States)

    Quam, Carolyn; Swingley, Daniel

    2012-01-01

    Young infants respond to positive and negative speech prosody (A. Fernald, 1993), yet 4-year-olds rely on lexical information when it conflicts with paralinguistic cues to approval or disapproval (M. Friend, 2003). This article explores this surprising phenomenon, testing one hundred eighteen 2- to 5-year-olds' use of isolated pitch cues to emotions in interactive tasks. Only 4- to 5-year-olds consistently interpreted exaggerated, stereotypically happy or sad pitch contours as evidence that a puppet had succeeded or failed to find his toy (Experiment 1) or was happy or sad (Experiments 2, 3). Two- and 3-year-olds exploited facial and body-language cues in the same task. The authors discuss the implications of this late-developing use of pitch cues to emotions, relating them to other functions of pitch. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.

  19. Thermal transformations of pitch and its compositions with thermoanthracite

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Ulanovskii, M.L.; Krysin, V.P.

    1983-01-01

    Derivatogrphy is used to investigate the character of thermal transformations of hard coal pitch in compositions with thermoanthracite. It was shown that losses in mass during thermal transformations of hard coal pitch in the temperature interval 200-1000 C occur in two stages, at a varying rate in the 200-600 C range and at a constant rate in the 600-1000 C range. The rate of loss in the 200-600 C range is determined primarily by the rate of diffusion of volatile components and products of pitch conversion and in the 600-1000 C range mainly by the rate of the elemental chemical event. The thermal transformation is essentially unchanged in the presence of thermoanthracite. Silica intensifies the synthesis and increases the solid residue yield. Increasing the rate of heating of the pitch-thermoanthracite brings about incomplete separation of volatile products and a corresponding increase in the solid residue yield. (9 refs.)

  20. An Approximate Method for Pitch-Damping Prediction

    National Research Council Canada - National Science Library

    Danberg, James

    2003-01-01

    ...) method for predicting the pitch-damping coefficients has been employed. The CFD method provides important details necessary to derive the correlation functions that are unavailable from the current experimental database...

  1. Determination of pitch rotation in a spherical birefringent microparticle

    Science.gov (United States)

    Roy, Basudev; Ramaiya, Avin; Schäffer, Erik

    2018-03-01

    Rotational motion of a three dimensional spherical microscopic object can happen either in pitch, yaw or roll fashion. Among these, the yaw motion has been conventionally studied using the intensity of scattered light from birefringent microspheres through crossed polarizers. Up until now, however, there is no way to study the pitch motion in spherical microspheres. Here, we suggest a new method to study the pitch motion of birefringent microspheres under crossed polarizers by measuring the 2-fold asymmetry in the scattered signal either using video microscopy or with optical tweezers. We show a couple of simple examples of pitch rotation determination using video microscopy for a microsphere attached with a kinesin molecule while moving along a microtubule and of a particle diffusing freely in water.

  2. Stimulating Thinking at the Design Pitch: Storytelling Approach and Impact

    OpenAIRE

    Parkinson, David; Warwick, Laura

    2017-01-01

    This paper presents findings from doctoral research to propose that next, we should look to understand storytelling at the design pitch in terms of the relationship between approaches taken and their impacts. A review of literature highlighted the following as desirable impacts for a design pitch: ‘Delivering Understanding’, ‘Demonstrating Value’, ‘Stimulating Critique’, and ‘Encouraging more Holistic Thinking’. These impacts were used to focus a series of semi-structured interviews conducted...

  3. A kinetic study of pyrolysis in pitch impregnated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kocaefe, D.; Charette, A.; Ferland, J.; Couderc, P.; Saint-Romain, J.L. (Universite du Quebec a Chicoutini, Chicoutini, PQ (Canada))

    1990-12-01

    A study was conducted on carbon electrodes which were impregnated with three different pitches. The focus of the study was to investigate the pyrolysis of pitch impregnated electrodes. For the purposes of the research an experimental technique and calculation procedure were developed. A kinetic model was used to interpret the data, comparison of model predictions and experimental data showed good agreement. 17 refs., 10 figs., 2 tabs.

  4. Pitch range variations improve cognitive processing of audio messages

    OpenAIRE

    Rodero Antón, Emma; Potter, Rob F.; Prieto Vives, Pilar, 1965-

    2017-01-01

    This study explores the effect of different speaker intonation strategies in audio messages on attention, autonomic arousal, and memory. An experiment was conducted in which participants listened to 16 radio commercials produced to vary in pitch range across sentences. Dependent variables were self-reported effectiveness and adequacy, psychophysiological arousal and attention, immediate word recall and recognition of information. Results showed that messages conveyed with pitch variations ach...

  5. A Method for Low-Delay Pitch Tracking and Smoothing

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    . In the second step, a Kalman filter is used to smooth the estimates and separate the pitch into a slowly varying component and a rapidly varying component. The former represents the mean pitch while the latter represents vibrato, slides and other fast changes. The method is intended for use in applica- tions...... that require fast and sample-by-sample estimates, like tuners for musical instruments, transcription tasks requiring details like vi- brato, and real-time tracking of voiced speech....

  6. Jet meandering by a foil pitching in quiescent fluid

    Science.gov (United States)

    Shinde, Sachin Y.; Arakeri, Jaywant H.

    2013-04-01

    The flow produced by a rigid symmetric NACA0015 airfoil purely pitching at a fixed location in quiescent fluid (the limiting case of infinite Strouhal number) is studied using visualizations and particle image velocimetry. A weak jet is generated whose inclination changes continually with time. This meandering is observed to be random and independent of the initial conditions, over a wide range of pitching parameters.

  7. Pitch Sequence Complexity and Long-Term Pitcher Performance

    Directory of Open Access Journals (Sweden)

    Joel R. Bock

    2015-03-01

    Full Text Available Winning one or two games during a Major League Baseball (MLB season is often the difference between a team advancing to post-season play, or “waiting until next year”. Technology advances have made it feasible to augment historical data with in-game contextual data to provide managers immediate insights regarding an opponent’s next move, thereby providing a competitive edge. We developed statistical models of pitcher behavior using pitch sequences thrown during three recent MLB seasons (2011–2013. The purpose of these models was to predict the next pitch type, for each pitcher, based on data available at the immediate moment, in each at-bat. Independent models were developed for each player’s most frequent four pitches. The overall predictability of next pitch type is 74:5%. Additional analyses on pitcher predictability within specific game situations are discussed. Finally, using linear regression analysis, we show that an index of pitch sequence predictability may be used to project player performance in terms of Earned Run Average (ERA and Fielding Independent Pitching (FIP over a longer term. On a restricted range of the independent variable, reducing complexity in selection of pitches is correlated with higher values of both FIP and ERA for the players represented in the sample. Both models were significant at the α = 0.05 level (ERA: p = 0.022; FIP: p = 0.0114. With further development, such models may reduce risk faced by management in evaluation of potential trades, or to scouts assessing unproven emerging talent. Pitchers themselves might benefit from awareness of their individual statistical tendencies, and adapt their behavior on the mound accordingly. To our knowledge, the predictive model relating pitch-wise complexity and long-term performance appears to be novel.

  8. Effect of head pitch and roll orientations on magnetically induced vertigo.

    Science.gov (United States)

    Mian, Omar S; Li, Yan; Antunes, Andre; Glover, Paul M; Day, Brian L

    2016-02-15

    Lying supine in a strong magnetic field, such as in magnetic resonance imaging scanners, can induce a perception of whole-body rotation. The leading hypothesis to explain this invokes a Lorentz force mechanism acting on vestibular endolymph that acts to stimulate semicircular canals. The hypothesis predicts that the perception of whole-body rotation will depend on head orientation in the field. Results showed that the direction and magnitude of apparent whole-body rotation while stationary in a 7 T magnetic field is influenced by head orientation. The data are compatible with the Lorentz force hypothesis of magnetic vestibular stimulation and furthermore demonstrate the operation of a spatial transformation process from head-referenced vestibular signals to Earth-referenced body motion. High strength static magnetic fields are known to induce vertigo, believed to be via stimulation of the vestibular system. The leading hypothesis (Lorentz forces) predicts that the induced vertigo should depend on the orientation of the magnetic field relative to the head. In this study we examined the effect of static head pitch (-80 to +40 deg; 12 participants) and roll (-40 to +40 deg; 11 participants) on qualitative and quantitative aspects of vertigo experienced in the dark by healthy humans when exposed to the static uniform magnetic field inside a 7 T MRI scanner. Three participants were additionally examined at 180 deg pitch and roll orientations. The effect of roll orientation on horizontal and vertical nystagmus was also measured and was found to affect only the vertical component. Vertigo was most discomforting when head pitch was around 60 deg extension and was mildest when it was around 20 deg flexion. Quantitative analysis of vertigo focused on the induced perception of horizontal-plane rotation reported online with the aid of hand-held switches. Head orientation had effects on both the magnitude and the direction of this perceived rotation. The data suggest

  9. Resting-state functional connectivity and pitch identification ability in non-musicians

    Directory of Open Access Journals (Sweden)

    Jiancheng eHou

    2015-02-01

    Full Text Available Previous studies have used task-related fMRI to investigate the neural basis of pitch identification (PI, but no study has examined the associations between resting-state functional connectivity (RSFC and PI ability. Using a large sample of Chinese non-musicians (N = 320, with 56 having prior musical training, the current study examined the associations among musical training, PI ability, and RSFC. Results showed that musical training was associated with increased RSFC within the networks for multiple cognitive functions (such as vision, phonology, semantics, auditory encoding, and executive functions. PI ability was associated with RSFC with regions for perceptual and auditory encoding for participants with musical training, and with RSFC with regions for short-term memory, semantics, and phonology for participants without musical training.

  10. Petrographic characterization of the solid products of coal- pitch coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Potter, J.; Kybett, B.D.; McDougall, W.J.; Nambudiri, E.M.V.; Rahimi, P.; Price, J.T.

    1986-06-01

    Petrographic studies were conducted on four solid residues resulting from the hydrogenation process of 1) Forestburg sub- bituminous coal alone, 2) the coal with a non-coking solvent (anthracene oil), 3) pitch (Cold Lake vacuum-bottom deposits), and 4) a mixture of coal and pitch. The purpose was to determine the amounts of coal and pitch-derived solids in the residues. All the residues were produced under identical severe conditions of liquefaction to promote the formation of solids. The coal processed with anthracene oil gives a residue consisting mainly of isotropic huminitic solids. If the coal is hydrogenated under similar conditions but without a solvent, the predominant residual solids are anisotropic semicokes displaying coarse mosaic textures, which form from vitroplast. The residual products from the hydrogenated Cold Lake vacuum- bottom deposits are also dominantly anisotropic semicokes; these display coarse mosaics and flow textures, and form by the growth and coalescence of mesophase spherules. Both coal- and pitch-derived solids are identified in a residue produced by coprocessing the Forestburg coal with the pitch from the Cold Lake vacuum-bottom deposits. It is concluded that the huminite macerals in the coal generate the fine-grained, mosaic-textured semicokes, whereas the pitch produces the coarse mosaics and flow-textured semicokes.

  11. Spectral Envelope Transformation in Singing Voice for Advanced Pitch Shifting

    Directory of Open Access Journals (Sweden)

    José L. Santacruz

    2016-11-01

    Full Text Available The aim of the present work is to perform a step towards more natural pitch shifting techniques in singing voice for its application in music production and entertainment systems. In this paper, we present an advanced method to achieve natural modifications when applying a pitch shifting process to singing voice by modifying the spectral envelope of the audio excerpt. To this end, an all-pole model has been selected to model the spectral envelope, which is estimated using a constrained non-linear optimization. The analysis of the global variations of the spectral envelope was carried out by identifying changes of the parameters of the model along with the changes of the pitch. With the obtained spectral envelope transformation functions, we applied our pitch shifting scheme to some sustained vowels in order to compare results with the same transformation made by using the Flex Pitch plugin of Logic Pro X and pitch synchronous overlap and add technique (PSOLA. This comparison has been carried out by means of both an objective and a subjective evaluation. The latter was done with a survey open to volunteers on our website.

  12. Detection and identification of monaural and binaural pitch contours in dyslexic listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten; Poelmans, Hanne

    2010-01-01

    found that a majority of dyslexic subjects were unable to hear binaural pitch, the latter obtained a clear response of dyslexic listeners to Huggins’ pitch (HP) (Cramer and Huggins, 1958). The present study clarified whether impaired binaural pitch perception is found in dyslexia. Results from a pitch...

  13. Attitude Strength.

    Science.gov (United States)

    Howe, Lauren C; Krosnick, Jon A

    2017-01-03

    Attitude strength has been the focus of a huge volume of research in psychology and related sciences for decades. The insights offered by this literature have tremendous value for understanding attitude functioning and structure and for the effective application of the attitude concept in applied settings. This is the first Annual Review of Psychology article on the topic, and it offers a review of theory and evidence regarding one of the most researched strength-related attitude features: attitude importance. Personal importance is attached to an attitude when the attitude is perceived to be relevant to self-interest, social identification with reference groups or reference individuals, and values. Attaching personal importance to an attitude causes crystallizing of attitudes (via enhanced resistance to change), effortful gathering and processing of relevant information, accumulation of a large store of well-organized relevant information in long-term memory, enhanced attitude extremity and accessibility, enhanced attitude impact on the regulation of interpersonal attraction, energizing of emotional reactions, and enhanced impact of attitudes on behavioral intentions and action. Thus, important attitudes are real and consequential psychological forces, and their study offers opportunities for addressing behavioral change.

  14. High-pitch metal-on-glass technology for pad pitch adaptation between detectors and readout electronics

    CERN Document Server

    Ullán, Miguel; Campabadal, Francesca; Fleta, Celeste; Garcia, Carmen; Gonzalez, Francisco; Bernabeu, Jose

    2004-01-01

    Modern high-energy physics and astrophysics strip detectors have increased channel density to levels at which their connection with readout electronics has become very complex due to high pad pitch. Also, direct wire bonding is prevented by the fact that typically detector's pad pitch and electronics' pad pitch do not match. A high- pitch metal-on-glass technology is presented, that allows pad pitch adaptation between detectors and readout electronics. It consists of high-density metal lines on top of an insulating glass substrate. A photoresist layer is deposited covering the metal tracks for passivation and protection The technology is tested for conductivity, bondability, bonding pull force, peel off, and radiation hardness, and it is an established technology in the clean room of the CNM Institute in Barcelona. This technology has been chosen by the ATLAS Collaboration for the pad pitch adapters (PPA) of the SCT Endcap Modules, by a Compton camera project, and by other HEP groups for interconnection betwe...

  15. Dynamics of fluidic devices with applications to rotor pitch links

    Science.gov (United States)

    Scarborough, Lloyd H., III

    Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port produces a fundamentally new class of tunable vibration isolator. This fluidlastic device provides significant vibration reduction at an isolation frequency that can be tuned over a broad frequency range. The material properties and geometry of the F2MC element, as well as the port inertance, determine the isolation frequency. A unique feature of this device is that the port inertance depends on pressure so the isolation frequency can be adjusted by changing the air pressure. For constant port inertance, the isolation frequency is largely independent of the isolated mass so the device is robust to changes in load. A nonlinear model is developed to predict isolator length and port inertance. The model is linearized and the frequency response calculated. Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency. Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies. Replacing rigid pitch links on rotorcraft with fluidic pitch links changes the blade torsional

  16. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  17. Influence of Pitch Height on the Perception of Submissiveness and Threat in Musical Passages

    Directory of Open Access Journals (Sweden)

    David Huron

    2006-09-01

    Full Text Available Bolinger, Ohala, Morton and others have established that vocal pitch height is perceived to be associated with social signals of dominance and submissiveness: higher vocal pitch is associated with submissiveness, whereas lower vocal pitch is associated with social dominance. An experiment was carried out to test this relationship in the perception of non-vocal melodies. Results show a parallel situation in music: higher-pitched melodies sound more submissive (less threatening than lower-pitched melodies.

  18. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  19. The effect of pitch in multislice spiral/helical CT

    International Nuclear Information System (INIS)

    Wang, G.; Vannier, M.W.

    2000-01-01

    The purpose of this study is to understand the effect of pitch on raw data interpolation in multislice spiral/helical computed tomography (CT) and provide guidelines for scanner design and protocol optimization. Multislice spiral CT is mainly characterized by the three parameters: the number of detector arrays, the detector collimation, and the table increment per x-ray source rotation. The pitch in multislice spiral CT is defined as the ratio of the table increment over the detector collimation in this study. In parallel to the current framework for studying longitudinal image resolution, the central fan-beam rays of direct and opposite directions are considered, assuming a narrow cone-beam angle. Generally speaking, sampling in the Radon domain by the direct and opposite central rays is nonuniform along the longitudinal axis. Using a recently developed methodology for quantifying the sensibility of signal reconstruction from non-uniformly sampled finite points, the effect of pitch on raw data interpolation is analyzed in multislice spiral CT. Unlike single-slice spiral CT, in which image quality decreases monotonically as the pitch increases, the sensibility of raw data interpolation in multislice spiral CT increases, suggesting that image quality does not decrease monotonically in this case. The most favorable pitch can be found from the sensitivity-slice spiral CT is provided. The study on the effect of pitch using the sensitivity analysis approach reveals the fundamental characteristics of raw data interpolation in multislice spiral CT, and gives insights into interaction between pitch and image quality. These results may be valuable for design of multislice spiral CT scanners and imaging protocol optimization in clinical applications. (authors)

  20. Learning for pitch and melody discrimination in congenital amusia.

    Science.gov (United States)

    Whiteford, Kelly L; Oxenham, Andrew J

    2018-03-23

    Congenital amusia is currently thought to be a life-long neurogenetic disorder in music perception, impervious to training in pitch or melody discrimination. This study provides an explicit test of whether amusic deficits can be reduced with training. Twenty amusics and 20 matched controls participated in four sessions of psychophysical training involving either pure-tone (500 Hz) pitch discrimination or a control task of lateralization (interaural level differences for bandpass white noise). Pure-tone pitch discrimination at low, medium, and high frequencies (500, 2000, and 8000 Hz) was measured before and after training (pretest and posttest) to determine the specificity of learning. Melody discrimination was also assessed before and after training using the full Montreal Battery of Evaluation of Amusia, the most widely used standardized test to diagnose amusia. Amusics performed more poorly than controls in pitch but not localization discrimination, but both groups improved with practice on the trained stimuli. Learning was broad, occurring across all three frequencies and melody discrimination for all groups, including those who trained on the non-pitch control task. Following training, 11 of 20 amusics no longer met the global diagnostic criteria for amusia. A separate group of untrained controls (n = 20), who also completed melody discrimination and pretest, improved by an equal amount as trained controls on all measures, suggesting that the bulk of learning for the control group occurred very rapidly from the pretest. Thirty-one trained participants (13 amusics) returned one year later to assess long-term maintenance of pitch and melody discrimination. On average, there was no change in performance between posttest and one-year follow-up, demonstrating that improvements on pitch- and melody-related tasks in amusics and controls can be maintained. The findings indicate that amusia is not always a life-long deficit when using the current standard

  1. Faster decline of pitch memory over time in congenital amusia.

    Science.gov (United States)

    Williamson, Victoria J; McDonald, Claire; Deutsch, Diana; Griffiths, Timothy D; Stewart, Lauren

    2010-04-26

    Congenital amusia (amusia, hereafter) is a developmental disorder that impacts negatively on the perception of music. Psychophysical testing suggests that individuals with amusia have above average thresholds for detection of pitch change and pitch direction discrimination; however, a low-level auditory perceptual problem cannot completely explain the disorder, since discrimination of melodies is also impaired when the constituent intervals are suprathreshold for perception. The aim of the present study was to test pitch memory as a function of (a) time and (b) tonal interference, in order to determine whether pitch traces are inherently weaker in amusic individuals. Memory for the pitch of single tones was compared using two versions of a paradigm developed by Deutsch (1970a). In both tasks, participants compared the pitch of a standard (S) versus a comparison (C) tone. In the time task, the S and C tones were presented, separated in time by 0, 1, 5, 10, and 15 s (blocked presentation). In the interference task, the S and C tones were presented with a fixed time interval (5 s) but with a variable number of irrelevant tones in between 0, 2, 4, 6, and 8 tones (blocked presentation). In the time task, control performance remained high for all time intervals, but amusics showed a performance decrement over time. In the interference task, controls and amusics showed a similar performance decrement with increasing number of irrelevant tones. Overall, the results suggest that the pitch representations of amusic individuals are less stable and more prone to decay than those of matched non-amusic individuals.

  2. The relationship between structural and functional connectivity: graph theoretical analysis of an EEG neural mass model

    NARCIS (Netherlands)

    Ponten, S.C.; Daffertshofer, A.; Hillebrand, A.; Stam, C.J.

    2010-01-01

    We investigated the relationship between structural network properties and both synchronization strength and functional characteristics in a combined neural mass and graph theoretical model of the electroencephalogram (EEG). Thirty-two neural mass models (NMMs), each representing the lump activity

  3. Modeling unsteady forces and pressures on a rapidly pitching airfoil

    Science.gov (United States)

    Schiavone, Nicole K.; Dawson, Scott T. M.; Rowley, Clarence W.; Williams, David R.

    2014-11-01

    This work develops models to quantify and understand the unsteady aerodynamic forces arising from rapid pitching motion of a NACA0012 airfoil at a Reynolds number of 50 000. The system identification procedure applies a generalized DMD-type algorithm to time-resolved wind tunnel measurements of the lift and drag forces, as well as the pressure at six locations on the suction surface of the airfoil. Models are identified for 5-degree pitch-up and pitch-down maneuvers within the overall range of 0-20 degrees. The identified models can accurately capture the effects of flow separation and leading-edge vortex formation and convection. We demonstrate that switching between different linear models can give accurate prediction of the nonlinear behavior that is present in high-amplitude maneuvers. The models are accurate for a wide-range of motions, including pitch-and-hold, sinusoidal, and pseudo-random pitching maneuvers. Providing the models access to a subset of the measured data channels can allow for improved estimates of the remaining states via the use of a Kalman filter, suggesting that the modeling framework could be useful for aerodynamic control applications. This work was supported by the Air Force Office of Scientific Research, under Award No. FA9550-12-1-0075.

  4. Study of Pumping Capacity of Pitched Blade Impellers

    Directory of Open Access Journals (Sweden)

    I. Fořt

    2002-01-01

    Full Text Available A study was made of the pumping capacity of pitched blade impellers in a cylindrical pilot plant vessel with four standard radial baffles at the wall under a turbulent regime of flow. The pumping capacity was calculated from the radial profile of the axial flow, under the assumption of axial symmetry of the discharge flow. The mean velocity was measured using laser Doppler anemometry in a transparent vessel of diameter T = 400 mm, provided with a standard dished bottom. Three and six blade pitched blade impellers (the pitch angle varied within the interval a Îá24°; 45°ń of impeller/vessel diameter ratio D/T = 0.36, as well as a three blade pitched blade impeller with folded blades of the same diameter, were tested. The calculated results were compared with the results of experiments mentioned in the literature, above all in cylindrical vessels with a flat bottom. Both arrangements of the agitated system were described by the impeller energetic efficiency, i.e, a criterion including in dimensionless form both the impeller energy consumption (impeller power input and the impeller pumping effect (impeller pumping capacity. It follows from the results obtained with various geometrical configurations that the energetic efficiency of pitched blade impellers is significantly lower for configurations suitable for mixing solid-liquid suspensions (low impeller off bottom clearances than for blending miscible liquids in mixing (higher impeller off bottom clearances.

  5. A Novel Degradation Identification Method for Wind Turbine Pitch System

    Science.gov (United States)

    Guo, Hui-Dong

    2018-04-01

    It’s difficult for traditional threshold value method to identify degradation of operating equipment accurately. An novel degradation evaluation method suitable for wind turbine condition maintenance strategy implementation was proposed in this paper. Based on the analysis of typical variable-speed pitch-to-feather control principle and monitoring parameters for pitch system, a multi input multi output (MIMO) regression model was applied to pitch system, where wind speed, power generation regarding as input parameters, wheel rotation speed, pitch angle and motor driving currency for three blades as output parameters. Then, the difference between the on-line measurement and the calculated value from the MIMO regression model applying least square support vector machines (LSSVM) method was defined as the Observed Vector of the system. The Gaussian mixture model (GMM) was applied to fitting the distribution of the multi dimension Observed Vectors. Applying the model established, the Degradation Index was calculated using the SCADA data of a wind turbine damaged its pitch bearing retainer and rolling body, which illustrated the feasibility of the provided method.

  6. Electrically tuned photoluminescence in large pitch cholesteric liquid crystal

    International Nuclear Information System (INIS)

    Middha, Manju; Kumar, Rishi; Raina, K. K.

    2014-01-01

    Cholesteric liquid crystals are known as 1-D photonic band gap materials due to their periodic helical supramolecular structure and larger birefringence. Depending upon the helical twisted pitch length, they give the characteristic contrast due to selective Bragg reflections when viewed through the polarizing optical microscope and hence affect the electro-optic properties. So the optimization of chiral dopant concentration in nematic liquid crystal leads to control the transmission of polarized light through the microscope. Hence transmission based polarizing optical microscope is used for the characterization of helical pitch length in the optical texture. The unwinding of helical pitch was observed with the application of electric field which affects the intensity of photoluminescence

  7. Microstructure and properties of lignite tar and pitch. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Walther, H

    1954-01-01

    Photomicrographs reveal the presence of crystalline wax which affects the working properties in lignite tars and pitch. The crystals are large needles after slow cooling and small after rapid cooling. The crystals are paraffinic in character. All samples were nonhomogeneous. Thus the properties of lignite tar and pitch are varied by the source of the lignite and history of the specimen, neither softening point nor dropping point seems to satisfactorily characterize these tars. The samples exhibit thixotropic behavior characteristic of a structural viscosity and show hysteresis loops on varying the working rate. The variations have hindered use of lignite tars and pitches except where solubility in a solvent such as coal tar oil can be used to advantage.

  8. Tonal Scales and Minimal Simple Pitch Class Cycles

    DEFF Research Database (Denmark)

    Meredith, David

    2011-01-01

    Numerous studies have explored the special mathematical properties of the diatonic set. However, much less attention has been paid to the sets associated with the other scales that play an important rôle in Western tonal music, such as the harmonic minor scale and ascending melodic minor scale....... This paper focuses on the special properties of the class, T, of sets associated with the major and minor scales (including the harmonic major scale). It is observed that T is the set of pitch class sets associated with the shortest simple pitch class cycles in which every interval between consecutive pitch...... classes is either a major or a minor third, and at least one of each type of third appears in the cycle. Employing Rothenberg’s definition of stability and propriety, T is also the union of the three most stable inversional equivalence classes of proper 7-note sets. Following Clough and Douthett’s concept...

  9. Numerical Prediction of Hydromechanical Behaviour of Controllable Pitch Propeller

    Directory of Open Access Journals (Sweden)

    Saman Tarbiat

    2014-01-01

    Full Text Available The research described in this paper was carried out to predict hydrodynamic and frictional forces of controllable pitch propeller (CPP that bring about fretting problems in a blade bearing. The governing equations are Reynolds-averaged Navier-Stokes (RANS and are solved by OpenFOAM solver for hydrodynamic forces behind the ship’s wake. Frictional forces are calculated by practical mechanical formulae. Different advance velocities with constant rotational speed for blades are used to achieve hydrodynamic coefficients in open water and the wake behind the propeller. Results are compared at four different pitches. Detailed numerical results of 3D modelling of the propeller, hydrodynamic characteristics, and probability of the fretting motion in the propeller are presented. Results show that the probability of the fretting movement is related to the pitch.

  10. Vortex scale of unsteady separation on a pitching airfoil.

    Science.gov (United States)

    Fuchiwaki, Masaki; Tanaka, Kazuhiro

    2002-10-01

    The streaklines of unsteady separation on two kinds of pitching airfoils, the NACA65-0910 and a blunt trailing edge airfoil, were studied by dye flow visualization and by the Schlieren method. The latter visualized the discrete vortices shed from the leading edge. The results of these visualization studies allow a comparison between the dynamic behavior of the streakline of unsteady separation and that of the discrete vortices shed from the leading edge. The influence of the airfoil configuration on the flow characteristics was also examined. Furthermore, the scale of a discrete vortex forming the recirculation region was investigated. The non-dimensional pitching rate was k = 0.377, the angle of attack alpha(m) = 16 degrees and the pitching amplitude was fixed to A = +/-6 degrees for Re = 4.0 x 10(3) in this experiment.

  11. Boosting pitch encoding with audiovisual interactions in congenital amusia.

    Science.gov (United States)

    Albouy, Philippe; Lévêque, Yohana; Hyde, Krista L; Bouchet, Patrick; Tillmann, Barbara; Caclin, Anne

    2015-01-01

    The combination of information across senses can enhance perception, as revealed for example by decreased reaction times or improved stimulus detection. Interestingly, these facilitatory effects have been shown to be maximal when responses to unisensory modalities are weak. The present study investigated whether audiovisual facilitation can be observed in congenital amusia, a music-specific disorder primarily ascribed to impairments of pitch processing. Amusic individuals and their matched controls performed two tasks. In Task 1, they were required to detect auditory, visual, or audiovisual stimuli as rapidly as possible. In Task 2, they were required to detect as accurately and as rapidly as possible a pitch change within an otherwise monotonic 5-tone sequence that was presented either only auditorily (A condition), or simultaneously with a temporally congruent, but otherwise uninformative visual stimulus (AV condition). Results of Task 1 showed that amusics exhibit typical auditory and visual detection, and typical audiovisual integration capacities: both amusics and controls exhibited shorter response times for audiovisual stimuli than for either auditory stimuli or visual stimuli. Results of Task 2 revealed that both groups benefited from simultaneous uninformative visual stimuli to detect pitch changes: accuracy was higher and response times shorter in the AV condition than in the A condition. The audiovisual improvements of response times were observed for different pitch interval sizes depending on the group. These results suggest that both typical listeners and amusic individuals can benefit from multisensory integration to improve their pitch processing abilities and that this benefit varies as a function of task difficulty. These findings constitute the first step towards the perspective to exploit multisensory paradigms to reduce pitch-related deficits in congenital amusia, notably by suggesting that audiovisual paradigms are effective in an appropriate

  12. Frogs Call at a Higher Pitch in Traffic Noise

    Directory of Open Access Journals (Sweden)

    Kirsten M. Parris

    2009-06-01

    Full Text Available Male frogs call to attract females for mating and to defend territories from rival males. Female frogs of some species prefer lower-pitched calls, which indicate larger, more experienced males. Acoustic interference occurs when background noise reduces the active distance or the distance over which an acoustic signal can be detected. Birds are known to call at a higher pitch or frequency in urban noise, decreasing acoustic interference from low-frequency noise. Using Bayesian linear regression, we investigated the effect of traffic noise on the pitch of advertisement calls in two species of frogs, the southern brown tree frog (Litoria ewingii and the common eastern froglet (Crinia signifera. We found evidence that L. ewingii calls at a higher pitch in traffic noise, with an average increase in dominant frequency of 4.1 Hz/dB of traffic noise, and a total effect size of 123 Hz. This frequency shift is smaller than that observed in birds, but is still large enough to be detected by conspecific frogs and confer a significant benefit to the caller. Mathematical modelling predicted a 24% increase in the active distance of a L. ewingii call in traffic noise with a frequency shift of this size. Crinia signifera may also call at a higher pitch in traffic noise, but more data are required to be confident of this effect. Because frog calls are innate rather than learned, the frequency shift demonstrated by L. ewingii may represent an evolutionary adaptation to noisy conditions. The phenomenon of frogs calling at a higher pitch in traffic noise could therefore constitute an intriguing trade-off between audibility and attractiveness to potential mates.

  13. An advanced pitch change mechanism incorporating a hybrid traction drive

    Science.gov (United States)

    Steinetz, B. M.; Loewenthal, S. H.; Sargisson, D. F.; White, G.

    1984-01-01

    A design of a propeller pitch control mechanism is described that meets the demanding requirements of a high-power, advanced turboprop. In this application, blade twisting moment torque can be comparable to that of the main reduction gearbox output: precise pitch control, reliability and compactness are all at a premium. A key element in the design is a compact, high-ratio hybrid traction drive which offers low torque ripple and high torsional stiffness. The traction drive couples a high speed electric motor/alternator unit to a ball screw that actuates the blade control links. The technical merits of this arrangement and the performance characteristics of the traction drive are discussed.

  14. Automatic pitch detection for a computer game interface

    International Nuclear Information System (INIS)

    Fonseca Solis, Juan M.

    2015-01-01

    A software able to recognize notes played by musical instruments is created through automatic pitch recognition. A pitch recognition algorithm is embedded into a software project, using the C implementation of SWIPEP. A memory game is chosen for project. A sequence of notes is listened and played by user to the computer, using a soprano recorder flute. The basic concepts to understand the acoustic phenomena involved are explained. The paper is aimed for all students with basic programming knowledge and want to incorporate sound processing to their projects. (author) [es

  15. Computationally Efficient and Noise Robust DOA and Pitch Estimation

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2016-01-01

    Many natural signals, such as voiced speech and some musical instruments, are approximately periodic over short intervals. These signals are often described in mathematics by the sum of sinusoids (harmonics) with frequencies that are proportional to the fundamental frequency, or pitch. In sensor...... a joint DOA and pitch estimator. In white Gaussian noise, we derive even more computationally efficient solutions which are designed using the narrowband power spectrum of the harmonics. Numerical results reveal the performance of the estimators in colored noise compared with the Cram\\'{e}r-Rao lower...

  16. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Bond strength of masonry

    NARCIS (Netherlands)

    Pluijm, van der R.; Vermeltfoort, A.Th.

    1992-01-01

    Bond strength is not a well defined property of masonry. Normally three types of bond strength can be distinguished: - tensile bond strength, - shear (and torsional) bond strength, - flexural bond strength. In this contribution the behaviour and strength of masonry in deformation controlled uniaxial

  18. Development of advanced blade pitching kinematics for cycloturbines and cyclorotors

    Science.gov (United States)

    Adams, Zachary Howard

    Cycloturbines and cyclorotors are established concepts for extracting freesteam fluid energy and producing thrust which promise to exceed the performance of traditional horizontal axis turbines and rotors while maintaining unique operational advantages. However, their potential is not yet realized in widespread applications. A central barrier to their proliferation is the lack of fundamental understanding of the aerodynamic interaction between the turbine and the freestream flow. In particular, blade pitch must be precisely actuated throughout the revolution to achieve the proper blade angle of attack and maximize performance. So far, there is no adequate method for determining or implementing the optimal blade pitching kinematics for cyclorotors or cycloturbines. This dissertation bridges the pitching deficiency by introducing a novel low order model to predict improved pitch kinematics, experimentally demonstrating improved performance, and evaluating flow physics with a high order Navier-Stokes computational code. The foundation for developing advanced blade pitch motions is a low order model named Fluxline Theory. Fluid calculations are performed in a coordinate system fixed to streamlines whose spatial locations are not pre-described in order to capture the flow expansion/contraction and bending through the turbine. A transformation then determines the spatial location of streamlines through the rotor disk and finally blade element method integrations determine the power and forces produced. Validation against three sets of extant cycloturbine experimental data demonstrates improvement over other existing streamtube models. Fluxline Theory was extended by removing dependence on a blade element model to better understand how turbine-fluid interaction impacts thrust and power production. This pure momentum variation establishes a cycloturbine performance limit similar to the Betz Limit for horizontal axis wind turbines, as well as the fluid deceleration required

  19. Hopfield neural network in HEP track reconstruction

    International Nuclear Information System (INIS)

    Muresan, R.; Pentia, M.

    1997-01-01

    In experimental particle physics, pattern recognition problems, specifically for neural network methods, occur frequently in track finding or feature extraction. Track finding is a combinatorial optimization problem. Given a set of points in Euclidean space, one tries the reconstruction of particle trajectories, subject to smoothness constraints.The basic ingredients in a neural network are the N binary neurons and the synaptic strengths connecting them. In our case the neurons are the segments connecting all possible point pairs.The dynamics of the neural network is given by a local updating rule wich evaluates for each neuron the sign of the 'upstream activity'. An updating rule in the form of sigmoid function is given. The synaptic strengths are defined in terms of angle between the segments and the lengths of the segments implied in the track reconstruction. An algorithm based on Hopfield neural network has been developed and tested on the track coordinates measured by silicon microstrip tracking system

  20. Grouping and the pitch of a mistuned fundamental component: Effects of applying simultaneous multiple mistunings to the other harmonics.

    Science.gov (United States)

    Roberts, Brian; Holmes, Stephen D

    2006-12-01

    Mistuning a harmonic produces an exaggerated change in its pitch. This occurs because the component becomes inconsistent with the regular pattern that causes the other harmonics (constituting the spectral frame) to integrate perceptually. These pitch shifts were measured when the fundamental (F0) component of a complex tone (nominal F0 frequency = 200 Hz) was mistuned by +8% and -8%. The pitch-shift gradient was defined as the difference between these values and its magnitude was used as a measure of frame integration. An independent and random perturbation (spectral jitter) was applied simultaneously to most or all of the frame components. The gradient magnitude declined gradually as the degree of jitter increased from 0% to +/-40% of F0. The component adjacent to the mistuned target made the largest contribution to the gradient, but more distant components also contributed. The stimuli were passed through an auditory model, and the exponential height of the F0-period peak in the averaged summary autocorrelation function correlated well with the gradient magnitude. The fit improved when the weighting on more distant channels was attenuated by a factor of three per octave. The results are consistent with a grouping mechanism that computes a weighted average of periodicity strength across several components.

  1. The Effects of Lexical Pitch Accent on Infant Word Recognition in Japanese

    Directory of Open Access Journals (Sweden)

    Mitsuhiko Ota

    2018-01-01

    Full Text Available Learners of lexical tone languages (e.g., Mandarin develop sensitivity to tonal contrasts and recognize pitch-matched, but not pitch-mismatched, familiar words by 11 months. Learners of non-tone languages (e.g., English also show a tendency to treat pitch patterns as lexically contrastive up to about 18 months. In this study, we examined if this early-developing capacity to lexically encode pitch variations enables infants to acquire a pitch accent system, in which pitch-based lexical contrasts are obscured by the interaction of lexical and non-lexical (i.e., intonational features. Eighteen 17-month-olds learning Tokyo Japanese were tested on their recognition of familiar words with the expected pitch or the lexically opposite pitch pattern. In early trials, infants were faster in shifting their eyegaze from the distractor object to the target object than in shifting from the target to distractor in the pitch-matched condition. In later trials, however, infants showed faster distractor-to-target than target-to-distractor shifts in both the pitch-matched and pitch-mismatched conditions. We interpret these results to mean that, in a pitch-accent system, the ability to use pitch variations to recognize words is still in a nascent state at 17 months.

  2. Long-term pitch memory for music recordings is related to auditory working memory precision.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon Lm; Nusbaum, Howard C

    2018-04-01

    Most individuals have reliable long-term memories for the pitch of familiar music recordings. This pitch memory (1) appears to be normally distributed in the population, (2) does not depend on explicit musical training and (3) only seems to be weakly related to differences in listening frequency estimates. The present experiment was designed to assess whether individual differences in auditory working memory could explain variance in long-term pitch memory for music recordings. In Experiment 1, participants first completed a musical note adjustment task that has been previously used to assess working memory of musical pitch. Afterward, participants were asked to judge the pitch of well-known music recordings, which either had or had not been shifted in pitch. We found that performance on the pitch working memory task was significantly related to performance in the pitch memory task using well-known recordings, even when controlling for overall musical experience and familiarity with each recording. In Experiment 2, we replicated these findings in a separate group of participants while additionally controlling for fluid intelligence and non-pitch-based components of auditory working memory. In Experiment 3, we demonstrated that participants could not accurately judge the pitch of unfamiliar recordings, suggesting that our method of pitch shifting did not result in unwanted acoustic cues that could have aided participants in Experiments 1 and 2. These results, taken together, suggest that the ability to maintain pitch information in working memory might lead to more accurate long-term pitch memory.

  3. predicting the compressive strength of concretes made with granite

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... computational model based on artificial neural networks for the determination of the compressive strength of concrete ... Strength being the most important property of con- ... to cut corners use low quality concrete materials in .... manner of operation of natural neurons in the human body. ... the output ai.

  4. The Importance of Muscular Strength: Training Considerations.

    Science.gov (United States)

    Suchomel, Timothy J; Nimphius, Sophia; Bellon, Christopher R; Stone, Michael H

    2018-04-01

    This review covers underlying physiological characteristics and training considerations that may affect muscular strength including improving maximal force expression and time-limited force expression. Strength is underpinned by a combination of morphological and neural factors including muscle cross-sectional area and architecture, musculotendinous stiffness, motor unit recruitment, rate coding, motor unit synchronization, and neuromuscular inhibition. Although single- and multi-targeted block periodization models may produce the greatest strength-power benefits, concepts within each model must be considered within the limitations of the sport, athletes, and schedules. Bilateral training, eccentric training and accentuated eccentric loading, and variable resistance training may produce the greatest comprehensive strength adaptations. Bodyweight exercise, isolation exercises, plyometric exercise, unilateral exercise, and kettlebell training may be limited in their potential to improve maximal strength but are still relevant to strength development by challenging time-limited force expression and differentially challenging motor demands. Training to failure may not be necessary to improve maximum muscular strength and is likely not necessary for maximum gains in strength. Indeed, programming that combines heavy and light loads may improve strength and underpin other strength-power characteristics. Multiple sets appear to produce superior training benefits compared to single sets; however, an athlete's training status and the dose-response relationship must be considered. While 2- to 5-min interset rest intervals may produce the greatest strength-power benefits, rest interval length may vary based an athlete's training age, fiber type, and genetics. Weaker athletes should focus on developing strength before emphasizing power-type training. Stronger athletes may begin to emphasize power-type training while maintaining/improving their strength. Future research should

  5. Pitch and tonality in contemporary African music: Nigerian gospel ...

    African Journals Online (AJOL)

    Like melody, language and rhythm, pitch and tonality are major indicators of African identity in music. In traditional African musical forms, these elements are obvious, but in contemporary African musical expressions which are influenced by several external factors, it is necessary to know the extent to which the elements ...

  6. Distraction by novel and pitch-deviant sounds in children

    Directory of Open Access Journals (Sweden)

    Nicole Wetzel

    2016-12-01

    Full Text Available The control of attention is an important part of our executive functions and enables us to focus on relevant information and to ignore irrelevant information. The ability to shield against distraction by task-irrelevant sounds is suggested to mature during school age. The present study investigated the developmental time course of distraction in three groups of children aged 7 – 10 years. Two different types of distractor sounds that have been frequently used in auditory attention research – novel environmental and pitch-deviant sounds – were presented within an oddball paradigm while children performed a visual categorization task. Reaction time measurements revealed decreasing distractor-related impairment with age. Novel environmental sounds impaired performance in the categorization task more than pitch-deviant sounds. The youngest children showed a pronounced decline of novel-related distraction effects throughout the experimental session. Such a significant decline as a result of practice was not observed in the pitch-deviant condition and not in older children. We observed no correlation between cross-modal distraction effects and performance in standardized tests of concentration and visual distraction. Results of the cross-modal distraction paradigm indicate that separate mechanisms underlying the processing of novel environmental and pitch-deviant sounds develop with different time courses and that these mechanisms develop considerably within a few years in middle childhood.

  7. Embedded pitch adapters for the ATLAS Tracker Upgrade

    International Nuclear Information System (INIS)

    Ullan, Miguel; Benitez, Victor; Pellegrini, Giulio; Fleta, Celeste; Lozano, Manuel; Lacasta, Carlos; Soldevila, Urmila; Garcia, Carmen

    2013-01-01

    In the current ATLAS tracker modules, sensor bonding pads are placed on their corresponding strips and oriented along the strips. This creates a difference in pitch and orientation between sensor bond pads and readout electronics bond pads. Therefore, a pitch adapter (PA), or “fan-in”, is needed. The purpose of these PA is the electrical interconnection of every channel from the detector bonding pads to the read-out chips, adapting the different pad pitch. Our new approach is to build those PAs inside the sensor; this is what we call Embedded Pitch Adapters. The idea is to use an additional metal layer in order to define a new group of pads, connected to the strips via tracks with the second metal. The embedded PAs have been fabricated on 4-in. prototype sensors for the ATLAS-Upgrade Endcap Tracker to test their performance and suitability. The tests confirm proper fabrication of the second metal tracks, and no effects on detector performance. No indication of cross-talk between first and second metal channels has been observed. A small indication of possible signal pick-up from the bulk has been observed in a few channels, which needs to be further investigated

  8. 14 CFR 35.21 - Variable and reversible pitch propellers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Variable and reversible pitch propellers. 35.21 Section 35.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.21 Variable and...

  9. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  10. Pitch perception in children with autistic spectrum disorders

    NARCIS (Netherlands)

    Altgassen, A.M.; Kliegel, M.; Williams, T.I.

    2005-01-01

    This study investigated the accuracy of musical pitch detection in children with autistic spectrum disorders as compared with typically developing children. Seventeen children on the autistic spectrum (Mage=9.34, SDage=1.12) and 13 typically developing, chronological age-matched children (Mage=9.13,

  11. Relating binaural pitch perception to the individual listener's auditory profile

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2012-01-01

    pitch perception showed deficits in temporal fine structure processing. Whether the observed deficits stemmed from peripheral or central mechanisms could not be resolved here, but the present findings may be useful for hearing loss characterization. (C) 2012 Acoustical Society of America. [http...

  12. Pixel size and pitch measurements of liquid crystal spatial light ...

    Indian Academy of Sciences (India)

    However, some departure from square pixel shape and pitch may result due to the manufacturing constraints and environmental changes like temperature or mechanical stresses. To our knowledge, we did not come across any detailed studies to accurately measure these variations (if any) in the available literature. We find ...

  13. Hydrodynamics of a flexible plate between pitching rigid plates

    Science.gov (United States)

    Kim, Junyoung; Kim, Daegyoum

    2017-11-01

    The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.

  14. Pitch perception and retention: two cumulative benefits of selective attention.

    Science.gov (United States)

    Demany, Laurent; Montandon, Gaspard; Semal, Catherine

    2004-05-01

    By presenting, before a "chord" of three pure tones with remote frequencies, a tone relatively close in frequency to one component (T1) of the chord, one can direct the listener's attention onto T1 within the chord. In the first part of the present study, it was found that this increases the accuracy with which the pitch of T1 is perceived. The attentional cue improved the discrimination between the frequency of T1 and that of another tone (T2) presented immediately after the chord or very shortly (300 msec) after it. No improvement was found when T1 was presented alone instead of within a chord. A subsequent experiment, in which the chord and T2 were separated by either 300 msec or 4 sec, indicated that the attentional cue improved not only the perception, but also the memorization of the pitch of T1 (especially when T1 was the intermediate component of the chord). It is argued that the positive effect of attention on memory took place when the pitch percept was encoded into memory, rather than after the formation of the pitch memory trace.

  15. Bat Dynamics of Female Fast Pitch Softball Batters.

    Science.gov (United States)

    Messier, Stephen P.; Owen, Marjorie G.

    1984-01-01

    Female fast pitch softball batters served in an examination of the dynamic characteristics of the bat during the swing through the use of three-dimensional cinematographic analysis techniques. These results were compared with those from previous studies of baseball batting. Findings are listed. (Author/DF)

  16. The Relationship between Pitch and Space in Congenital Amusia

    Science.gov (United States)

    Williamson, Victoria J.; Cocchini, Gianna; Stewart, Lauren

    2011-01-01

    Congenital amusia manifests as a lifelong difficulty in making sense of musical sound. The extent to which this disorder is accompanied by deficits in visuo-spatial processing is an important question, bearing on the issue of whether pitch processing draws on supramodal spatial representations. The present study assessed different aspects of…

  17. Pitch and Loudness Tinnitus in Individuals with Presbycusis.

    Science.gov (United States)

    Seimetz, Bruna Macangnin; Teixeira, Adriane Ribeiro; Rosito, Leticia Petersen Schmidt; Flores, Leticia Sousa; Pappen, Carlos Henrique; Dall'igna, Celso

    2016-10-01

    Introduction  Tinnitus is a symptom that is often associated with presbycusis. Objective  This study aims to analyze the existence of association among hearing thresholds, pitch, and loudness of tinnitus in individuals with presbycusis, considering the gender variable. Methods  Cross-sectional, descriptive, and prospective study, whose sample consisted of individuals with tinnitus and diagnosis of presbycusis. For the evaluation, we performed anamnesis along with otoscopy, pure tone audiometry, and acuphenometry to analyze the psychoacoustic characteristics of tinnitus individuals. Results  The sample consisted of 49 subjects, with a mean age of 69.57 ± 6.53 years, who presented unilateral and bilateral tinnitus, therefore, a sample of 80 ears. In analyzing the results, as for acuphenometry, the loudness of tinnitus was more present at 0dB and the pitch was 6HKz and 8HKz. Regarding the analysis of the association between the frequency of greater hearing threshold and tinnitus pitch, no statistical significance ( p  = 0.862) was found. As for the association between the intensity of greater hearing threshold and tinnitus loudness, no statistical significance ( p  = 0.115) was found. Conclusion  There is no significant association between the hearing loss of patients with presbycusis and the pitch and loudness of tinnitus.

  18. Pitch and Loudness Tinnitus in Individuals with Presbycusis

    Directory of Open Access Journals (Sweden)

    Seimetz, Bruna Macangnin

    2016-02-01

    Full Text Available Introduction Tinnitus is a symptom that is often associated with presbycusis. Objective This study aims to analyze the existence of association among hearing thresholds, pitch, and loudness of tinnitus in individuals with presbycusis, considering the gender variable. Methods Cross-sectional, descriptive, and prospective study, whose sample consisted of individuals with tinnitus and diagnosis of presbycusis. For the evaluation, we performed anamnesis along with otoscopy, pure tone audiometry, and acuphenometry to analyze the psychoacoustic characteristics of tinnitus individuals. Results The sample consisted of 49 subjects, with a mean age of 69.57 ± 6.53 years, who presented unilateral and bilateral tinnitus, therefore, a sample of 80 ears. In analyzing the results, as for acuphenometry, the loudness of tinnitus was more present at 0dB and the pitch was 6HKz and 8HKz. Regarding the analysis of the association between the frequency of greater hearing threshold and tinnitus pitch, no statistical significance (p = 0.862 was found. As for the association between the intensity of greater hearing threshold and tinnitus loudness, no statistical significance (p = 0.115 was found. Conclusion There is no significant association between the hearing loss of patients with presbycusis and the pitch and loudness of tinnitus.

  19. The thermal transformations of pitch and its compositions with thermoanthracite

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Krysin, V.P.; Ulanovskii, M.L.

    1983-01-01

    The loss of mass in the thermal transformations of a hard-coal pitch and its compositions with thermoanthracite in the temperature interval of 200-1000/sup 0/C takes place in two main stages: with a variable rate in the 200-600/sup 0/C interval and at a constant rate in the 600-1000/sup 0/C interval. The rate of the mass loss process in the 200-600/sup 0/C interval is determined mainly by the rate of diffusion of the volatile components and also of the light products of the thermal transformations of the pitch from the bulk to the phase separation boundary, and in the 600-1000/sup 0/C interval predominantly by the rate of the actual elementary chemical reaction. In the presence of thermoanthracite, the nature of the thermal transformations of the pitch does not change appreciably, while in the presence of silica synthetic reactions are intensified, which leads to an increase in the yield of solid residue by approximately 4 mass %. (A rise in the rate of heating of pitch-thermoanthracite compositions leads to the incomplete elimination of volatile products in the first stage, which has a favorable action on the increase in the yield of solid residue.)

  20. Periodic Burning In Table Mountain-Pitch Pine Stands

    Science.gov (United States)

    Russell B. Randles; David H. van Lear; Thomas A. Waldrop; Dean M. Simon

    2002-01-01

    Abstract - The effects of multiple, low intensity burns on vegetation and wildlife habitat in Table Mountain (Pinus pungens Lamb.)-pitch (Pinus rigida Mill.) pine communities were studied in the Blue Ridge Mountains of North Carolina. Treatments consisted of areas burned from one to four times at 3-4 year...

  1. Influence of musical and psychoacoustical training on pitch discrimination.

    Science.gov (United States)

    Micheyl, Christophe; Delhommeau, Karine; Perrot, Xavier; Oxenham, Andrew J

    2006-09-01

    This study compared the influence of musical and psychoacoustical training on auditory pitch discrimination abilities. In a first experiment, pitch discrimination thresholds for pure and complex tones were measured in 30 classical musicians and 30 non-musicians, none of whom had prior psychoacoustical training. The non-musicians' mean thresholds were more than six times larger than those of the classical musicians initially, and still about four times larger after 2h of training using an adaptive two-interval forced-choice procedure; this difference is two to three times larger than suggested by previous studies. The musicians' thresholds were close to those measured in earlier psychoacoustical studies using highly trained listeners, and showed little improvement with training; this suggests that classical musical training can lead to optimal or nearly optimal pitch discrimination performance. A second experiment was performed to determine how much additional training was required for the non-musicians to obtain thresholds as low as those of the classical musicians from experiment 1. Eight new non-musicians with no prior training practiced the frequency discrimination task for a total of 14 h. It took between 4 and 8h of training for their thresholds to become as small as those measured in the classical musicians from experiment 1. These findings supplement and qualify earlier data in the literature regarding the respective influence of musical and psychoacoustical training on pitch discrimination performance.

  2. Multilingual evaluation of voice disability index using pitch rate

    Directory of Open Access Journals (Sweden)

    Shuji Shinohara

    2017-06-01

    Full Text Available We propose the use of the pitch rate of free-form speech recorded by smartphones as an index of voice disability. This research compares the effectiveness of pitch rate, jitter, shimmer, and harmonic-to-noise ratio (HNR as indices of voice disability in English, German, and Japanese. Normally, the evaluation of these indices is performed using long-vowel sounds; however, this study included the recitation of a set passage, which is more similar to free-form speech. The results showed that for English, the jitter, shimmer, and HNR were very effective indices for long-vowel sounds, but the shimmer and HNR for read speech were considerably worse. Although the effectiveness of jitter as an index was maintained for read speech, the pitch rate was better in distinguishing between healthy individuals and patients with illnesses affecting their voice. The read speech results in German, Japanese, and English were similar, and the pitch rate showed the greatest efficiency for identification. Nevertheless, compared to English, the identification efficiency for the other two languages was lower.

  3. LQG Controller Design for Pitch Regulated Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Imran, Raja Muhammed; Hussain, Dil Muhammad Akbar; Chen, Zhe

    2014-01-01

    Variable speed wind turbine is a complex and nonlinear system, a sophisticated control is required to meet the challenges posed by these systems. This paper is presenting a pitch regulation strategy based on LQG (Linear Quadratic Gaussian) to regulate turbine at its rated power and to reject...

  4. Singing Video Games May Help Improve Pitch-Matching Accuracy

    Science.gov (United States)

    Paney, Andrew S.

    2015-01-01

    The purpose of this study was to investigate the effect of singing video games on the pitch-matching skills of undergraduate students. Popular games like "Rock Band" and "Karaoke Revolutions" rate players' singing based on the correctness of the frequency of their sung response. Players are motivated to improve their…

  5. Development of a Pitch Discrimination Screening Test for Preschool Children.

    Science.gov (United States)

    Abramson, Maria Kulick; Lloyd, Peter J

    2016-04-01

    There is a critical need for tests of auditory discrimination for young children as this skill plays a fundamental role in the development of speaking, prereading, reading, language, and more complex auditory processes. Frequency discrimination is important with regard to basic sensory processing affecting phonological processing, dyslexia, measurements of intelligence, auditory memory, Asperger syndrome, and specific language impairment. This study was performed to determine the clinical feasibility of the Pitch Discrimination Test (PDT) to screen the preschool child's ability to discriminate some of the acoustic demands of speech perception, primarily pitch discrimination, without linguistic content. The PDT used brief speech frequency tones to gather normative data from preschool children aged 3 to 5 yrs. A cross-sectional study was used to gather data regarding the pitch discrimination abilities of a sample of typically developing preschool children, between 3 and 5 yrs of age. The PDT consists of ten trials using two pure tones of 100-msec duration each, and was administered in an AA or AB forced-choice response format. Data from 90 typically developing preschool children between the ages of 3 and 5 yrs were used to provide normative data. Nonparametric Mann-Whitney U-testing was used to examine the effects of age as a continuous variable on pitch discrimination. The Kruskal-Wallis test was used to determine the significance of age on performance on the PDT. Spearman rank was used to determine the correlation of age and performance on the PDT. Pitch discrimination of brief tones improved significantly from age 3 yrs to age 4 yrs, as well as from age 3 yrs to the age 4- and 5-yrs group. Results indicated that between ages 3 and 4 yrs, children's auditory discrimination of pitch improved on the PDT. The data showed that children can be screened for auditory discrimination of pitch beginning with age 4 yrs. The PDT proved to be a time efficient, feasible tool for

  6. Pitch, roll, and yaw variations in patient positioning

    International Nuclear Information System (INIS)

    Kaiser, Adeel; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.; Smith, David D.; Han, Chunhui; Vora, Nayana L.; Pezner, Richard D.; Chen Yijen; Radany, Eric H.

    2006-01-01

    Purpose: To use pretreatment megavoltage-computed tomography (MVCT) scans to evaluate positioning variations in pitch, roll, and yaw for patients treated with helical tomotherapy. Methods and Materials: Twenty prostate and 15 head-and-neck cancer patients were selected. Pretreatment MVCT scans were performed before every treatment fraction and automatically registered to planning kilovoltage CT (KVCT) scans by bony landmarks. Image registration data were used to adjust patient setups before treatment. Corrections for pitch, roll, and yaw were recorded after bone registration, and data from fractions 1-5 and 16-20 were used to analyze mean rotational corrections. Results: For prostate patients, the means and standard deviations (in degrees) for pitch, roll, and yaw corrections were -0.60 ± 1.42, 0.66 ± 1.22, and -0.33 ± 0.83. In head-and-neck patients, the means and standard deviations (in degrees) were -0.24 ± 1.19, -0.12 ± 1.53, and 0.25 ± 1.42 for pitch, roll, and yaw, respectively. No significant difference in rotational variations was observed between Weeks 1 and 4 of treatment. Head-and-neck patients had significantly smaller pitch variation, but significantly larger yaw variation, than prostate patients. No difference was found in roll corrections between the two groups. Overall, 96.6% of the rotational corrections were less than 4 deg. Conclusions: The initial rotational setup errors for prostate and head-and-neck patients were all small in magnitude, statistically significant, but did not vary considerably during the course of radiotherapy. The data are relevant to couch hardware design for correcting rotational setup variations. There should be no theoretical difference between these data and data collected using cone beam KVCT on conventional linacs

  7. Biomimetic propulsion under random heaving conditions, using active pitch control

    Science.gov (United States)

    Politis, Gerasimos; Politis, Konstantinos

    2014-05-01

    Marine mammals travel long distances by utilizing and transforming wave energy to thrust through proper control of their caudal fin. On the other hand, manmade ships traveling in a wavy sea store large amounts of wave energy in the form of kinetic energy for heaving, pitching, rolling and other ship motions. A natural way to extract this energy and transform it to useful propulsive thrust is by using a biomimetic wing. The aim of this paper is to show how an actively pitched biomimetic wing could achieve this goal when it performs a random heaving motion. More specifically, we consider a biomimetic wing traveling with a given translational velocity in an infinitely extended fluid and performing a random heaving motion with a given energy spectrum which corresponds to a given sea state. A formula is invented by which the instantaneous pitch angle of the wing is determined using the heaving data of the current and past time steps. Simulations are then performed for a biomimetic wing at different heave energy spectra, using an indirect Source-Doublet 3-D-BEM, together with a time stepping algorithm capable to track the random motion of the wing. A nonlinear pressure type Kutta condition is applied at the trailing edge of the wing. With a mollifier-based filtering technique, the 3-D unsteady rollup pattern created by the random motion of the wing is calculated without any simplifying assumptions regarding its geometry. Calculated unsteady forces, moments and useful power, show that the proposed active pitch control always results in thrust producing motions, with significant propulsive power production and considerable beneficial stabilizing action to ship motions. Calculation of the power required to set the pitch angle prove it to be a very small percentage of the useful power and thus making the practical application of the device very tractable.

  8. Absolute pitch: effects of timbre on note-naming ability.

    Science.gov (United States)

    Vanzella, Patrícia; Schellenberg, E Glenn

    2010-11-11

    Absolute pitch (AP) is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names), it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP possessors to identify. A musician's first instrument may also affect performance and extend the sensitive period for acquiring accurate AP. A large sample of AP possessors was recruited on-line. Participants were required to identity test tones presented in four different timbres: piano, pure tone, natural (sung) voice, and synthesized voice. Note-naming accuracy was better for non-vocal (piano and pure tones) than for vocal (natural and synthesized voices) test tones. This difference could not be attributed solely to vibrato (pitch variation), which was more pronounced in the natural voice than in the synthesized voice. Although starting music lessons by age 7 was associated with enhanced note-naming accuracy, equivalent abilities were evident among listeners who started music lessons on piano at a later age. Because the human voice is inextricably linked to language and meaning, it may be processed automatically by voice-specific mechanisms that interfere with note naming among AP possessors. Lessons on piano or other fixed-pitch instruments appear to enhance AP abilities and to extend the sensitive period for exposure to music in order to develop accurate AP.

  9. Absolute pitch: effects of timbre on note-naming ability.

    Directory of Open Access Journals (Sweden)

    Patrícia Vanzella

    2010-11-01

    Full Text Available Absolute pitch (AP is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names, it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP possessors to identify. A musician's first instrument may also affect performance and extend the sensitive period for acquiring accurate AP.A large sample of AP possessors was recruited on-line. Participants were required to identity test tones presented in four different timbres: piano, pure tone, natural (sung voice, and synthesized voice. Note-naming accuracy was better for non-vocal (piano and pure tones than for vocal (natural and synthesized voices test tones. This difference could not be attributed solely to vibrato (pitch variation, which was more pronounced in the natural voice than in the synthesized voice. Although starting music lessons by age 7 was associated with enhanced note-naming accuracy, equivalent abilities were evident among listeners who started music lessons on piano at a later age.Because the human voice is inextricably linked to language and meaning, it may be processed automatically by voice-specific mechanisms that interfere with note naming among AP possessors. Lessons on piano or other fixed-pitch instruments appear to enhance AP abilities and to extend the sensitive period for exposure to music in order to develop accurate AP.

  10. 179 Extraction of Coal-tar Pitch by Supercritical Carbon Dioxide ...

    African Journals Online (AJOL)

    Meyer

    Several extractions of coal-tar pitch were performed using supercritical fluid ..... pressure and temperature, unlike exhaustive extraction, which involves a change in ... mechanism that is operative on extracting coal-tar pitch components with.

  11. Relating the absence of binaural pitch percept to retro-cochlear impairment

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    Binaural pitch stimuli, created by introducing an interaural phase difference over a narrow band of otherwise diotic white noise, produce an immediate tonal sensation with a pitch close to the centre of the phase-shifted band. In Santurette and Dau [Hear. Res. 223(1-2):29-47, 2007], it was shown...... that the salience of binaural pitch was affected by hearing impairment. Specifically, for subjects with a sensorineural impairment, binaural pitch perception was weaker than the normal-hearing average but the pitch sensation was immediately present. In contrast, no binaural pitch sensation at all was found...... for the (only) two subjects with damage at central stages. The aim of the present study is to clarify whether such a sharp distinction between levels of impairment can be made using binaural pitch stimuli. A pitch detection test was performed by three groups of subjects with: 1) normal hearing; 2) a cochlear...

  12. Facial Expression and Vocal Pitch Height: Evidence of an Intermodal Association

    Directory of Open Access Journals (Sweden)

    David Huron

    2009-11-01

    Full Text Available Forty-four participants were asked to sing moderate, high, and low pitches while their faces were photographed. In a two-alternative forced choice task, independent judges selected the high-pitch faces as more friendly than the low-pitch faces. When photographs were cropped to show only the eye region, judges still rated the high-pitch faces friendlier than the low-pitch faces. These results are consistent with prior research showing that vocal pitch height is used to signal aggression (low pitch or appeasement (high pitch. An analysis of the facial features shows a strong correlation between eyebrow position and sung pitch—consistent with the role of eyebrows in signaling aggression and appeasement. Overall, the results are consistent with an inter-modal linkage between vocal and facial expressions.

  13. Signal Processing and Neural Network Simulator

    Science.gov (United States)

    Tebbe, Dennis L.; Billhartz, Thomas J.; Doner, John R.; Kraft, Timothy T.

    1995-04-01

    The signal processing and neural network simulator (SPANNS) is a digital signal processing simulator with the capability to invoke neural networks into signal processing chains. This is a generic tool which will greatly facilitate the design and simulation of systems with embedded neural networks. The SPANNS is based on the Signal Processing WorkSystemTM (SPWTM), a commercial-off-the-shelf signal processing simulator. SPW provides a block diagram approach to constructing signal processing simulations. Neural network paradigms implemented in the SPANNS include Backpropagation, Kohonen Feature Map, Outstar, Fully Recurrent, Adaptive Resonance Theory 1, 2, & 3, and Brain State in a Box. The SPANNS was developed by integrating SAIC's Industrial Strength Neural Networks (ISNN) Software into SPW.

  14. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  15. Variability of a "force signature" during windmill softball pitching and relationship between discrete force variables and pitch velocity.

    Science.gov (United States)

    Nimphius, Sophia; McGuigan, Michael R; Suchomel, Timothy J; Newton, Robert U

    2016-06-01

    This study assessed reliability of discrete ground reaction force (GRF) variables over multiple pitching trials, investigated the relationships between discrete GRF variables and pitch velocity (PV) and assessed the variability of the "force signature" or continuous force-time curve during the pitching motion of windmill softball pitchers. Intraclass correlation coefficient (ICC) for all discrete variables was high (0.86-0.99) while the coefficient of variance (CV) was low (1.4-5.2%). Two discrete variables were significantly correlated to PV; second vertical peak force (r(5)=0.81, p=0.03) and time between peak forces (r(5)=-0.79; p=0.03). High ICCs and low CVs support the reliability of discrete GRF and PV variables over multiple trials and significant correlations indicate there is a relationship between the ability to produce force and the timing of this force production with PV. The mean of all pitchers' curve-average standard deviation of their continuous force-time curves demonstrated low variability (CV=4.4%) indicating a repeatable and identifiable "force signature" pattern during this motion. As such, the continuous force-time curve in addition to discrete GRF variables should be examined in future research as a potential method to monitor or explain changes in pitching performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Pitch Tracking and Voiced/Unvoiced Detection in Noisy Environment using Optimat Sequence Estimation

    OpenAIRE

    Wasserblat, Moshe; Gainza, Mikel; Dorran, David; Domb, Yuval

    2008-01-01

    This paper addresses the problem of pitch tracking and voiced/unvoiced detection in noisy speech environments. An algorithm is presented which uses a number of variable thresholds to track pitch contour with minimal error. This is achieved by modeling the pitch tracking problem in such a way that allows the use of optimal estimation methods, such MLSE. The performance of the algorithm is evaluated using the Keele pitch detection database with realistic background noise. Results show best perf...

  17. Local and global pitch perception in L1 and L2 readers of Dutch

    NARCIS (Netherlands)

    de Jong, Chiara; Postma, Marie; Mos, Maria; Vedder, Kayleigh; Hendriks, Danielle; Maggiore, G.

    2017-01-01

    Prior research showed a relationship between reading skills and pitch perception, however the exact nature remained unclear. By means of reading tests and a pitch perception test, we examined the relation between reading abilities and local and global pitch perception for 92 native Dutch children

  18. Pitch and Time Processing in Speech and Tones: The Effects of Musical Training and Attention

    Science.gov (United States)

    Sares, Anastasia G.; Foster, Nicholas E. V.; Allen, Kachina; Hyde, Krista L.

    2018-01-01

    Purpose: Musical training is often linked to enhanced auditory discrimination, but the relative roles of pitch and time in music and speech are unclear. Moreover, it is unclear whether pitch and time processing are correlated across individuals and how they may be affected by attention. This study aimed to examine pitch and time processing in…

  19. Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism

    International Nuclear Information System (INIS)

    Li, Qing'an; Kamada, Yasunari; Maeda, Takao; Murata, Junsuke; Iida, Kohei; Okumura, Yuta

    2016-01-01

    Wind turbines mounted on floating platforms are subjected to completely different and soft foundation properties, rather than onshore wind turbines. Due to the flexibility of their mooring systems, floating offshore wind turbines are susceptible to large oscillations such as aerodynamic force of the wind and hydrodynamic force of the wave, which may compromise their performance and structural stability. This paper focuses on the evaluation of aerodynamic forces depending on suppressing undesired turbine's motion by a rotor thrust control which is controlled by pitch changes with wind tunnel experiments. In this research, the aerodynamic forces of wind turbine are tested at two kinds of pitch control system: steady pitch control and cyclic pitch control. The rotational speed of rotor is controlled by a variable speed generator, which can be measured by the power coefficient. Moment and force acts on model wind turbine are examined by a six-component balance. From cyclic pitch testing, the direction and magnitude of moment can be arbitrarily controlled by cyclic pitch control. Moreover, the fluctuations of thrust coefficient can be controlled by collective pitch control. The results of this analysis will help resolve the fundamental design of suppressing undesired turbine's motion by cyclic pitch control. - Highlights: • Offshore wind offers additional options in regions with low onshore potential. • Two kinds of pitch control system: Steady pitch control and Cyclic pitch control. • Performance curves and unsteady aerodynamics are investigated in wind tunnel. • Fluctuations of thrust coefficient can be controlled by collective pitch control.

  20. Congenital Amusia in linguistic and non-linguistic pitch perception - What behavior and reaction times reveal

    NARCIS (Netherlands)

    Pfeifer, J.; Hamann, S.; Exter, M.; Campbell, N.; Gibbon, D.; Hirst, D.

    2014-01-01

    Congenital Amusia is a developmental disorder that has a negative influence on pitch perception. While it used to be described as a disorder of musical pitch perception, recent studies indicate that congenital amusics also show deficits in linguistic pitch perception. This study investigates the

  1. Detection and identification of monaural and binaural pitch contours in dyslexic listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Poelmans, Hanne; Luts, Heleen

    2010-01-01

    of dyslexic listeners to Huggins' pitch (HP). The present study clarified whether impaired binaural pitch perception is found in dyslexia. Results from a pitch contour identification test, performed in 31 dyslexic listeners and 31 matched controls, clearly showed that dyslexics perceived HP as well...

  2. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    2013-01-01

    in a previous publication. Further, it is well know that the variation of the blade pitch angle during the rotation improves the power efficiency. A blade pitch variation is implemented by active blade pitch control, which operates as per wind speed and position of the blade with respect to the rotor. A double...

  3. Pitch and Time, Tonality and Meter: How Do Musical Dimensions Combine?

    Science.gov (United States)

    Prince, Jon B.; Thompson, William F.; Schmuckler, Mark A.

    2009-01-01

    The authors examined how the structural attributes of tonality and meter influence musical pitch-time relations. Listeners heard a musical context followed by probe events that varied in pitch class and temporal position. Tonal and metric hierarchies contributed additively to the goodness-of-fit of probes, with pitch class exerting a stronger…

  4. Major League pitching workload after primary ulnar collateral ligament reconstruction and risk for revision surgery.

    Science.gov (United States)

    Keller, Robert A; Mehran, Nima; Marshall, Nathan E; Okoroha, Kelechi R; Khalil, Lafi; Tibone, James E; Moutzouros, Vasilios

    2017-02-01

    Literature has attempted to correlate pitching workload with risk of ulnar collateral ligament (UCL) injury; however, limited data are available in evaluating workload and its relationship with the need for revision reconstruction in Major League Baseball (MLB) pitchers. We identified 29 MLB pitchers who underwent primary UCL reconstruction surgery and subsequently required revision reconstruction and compared them with 121 MLB pitchers who underwent primary reconstruction but did not later require revision surgery. Games pitched, pitch counts, and innings pitched were evaluated and compared for the seasons after returning from primary reconstruction and for the last season pitched before undergoing revision surgery. The difference in workload between pitchers who did and did not require revision reconstruction was not statistically significant in games pitched, innings pitched, and MLB-only pitch counts. The one significant difference in workload was in total pitch counts (combined MLB and minor league), with the pitchers who required revision surgery pitching less than those who did not (primary: 1413.6 pitches vs. revision: 959.0 pitches, P = .04). In addition, pitchers who required revision surgery underwent primary reconstruction at an early age (22.9 years vs. 27.3 years, P risk for injury after primary UCL reconstruction. However, correlations of risk may be younger age and less MLB experience at the time of the primary reconstruction. Copyright © 2017. Published by Elsevier Inc.

  5. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...

  6. Pitch Discrimination and Melodic Memory in Children with Autism Spectrum Disorders

    Science.gov (United States)

    Stanutz, Sandy; Wapnick, Joel; Burack, Jacob A.

    2014-01-01

    Background: Pitch perception is enhanced among persons with autism. We extended this finding to memory for pitch and melody among school-aged children. Objective: The purpose of this study was to investigate pitch memory in musically untrained children with autism spectrum disorders, aged 7-13 years, and to compare it to that of age- and…

  7. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    Science.gov (United States)

    Panther, Chad C.

    Re, k, and +/-alpha to match a typical VAWT operating environment. A range of reduced jet frequencies (0.25≤St≤4) were analyzed with varying Cmu, based on effective ranges from prior flow control airfoil studies. Airfoil pitch was found to increase the baseline lift-to-drag ratio (L/D) by up to 50% due to dynamic stall effects. The influence of dynamic stall on steady CC airfoil performance was greater for Cmu=0.05, increasing L/D by 115% for positive angle-of-attack. Pulsed actuation was shown to match, or improve, steady jet lift performance while reducing required mass flow by up to 35%. From numerical flow visualization, pulsed actuation was shown to reduce the size and strength of wake vorticity during DS, resulting in lower profile drag relative to baseline and steady actuation cases. A database of pitching airfoil test data, including overshoot and hysteresis of aerodynamic coefficients (Cl, Cd), was compiled for improved analytical model inputs to update CCVAWT performance predictions, where the aforementioned L/D improvements will be directly reflected. Relative to a conventional VAWT with annual power output of 1 MW, previous work at WVU proved that the addition of steady jet CC could improve total output to 1.25 MW. However, the pumping cost to generate the continuous jet reduced yearly CCVAWT net gains to 1.15 MW. The current study has shown that pulsed CC jets can recover 4% of the pumping demands due to reduced mass flow requirements, increasing annual CCVAWT net power production to 1.19 MW, a 19% improvement relative to the conventional turbine.

  8. Speech emotion recognition based on statistical pitch model

    Institute of Scientific and Technical Information of China (English)

    WANG Zhiping; ZHAO Li; ZOU Cairong

    2006-01-01

    A modified Parzen-window method, which keep high resolution in low frequencies and keep smoothness in high frequencies, is proposed to obtain statistical model. Then, a gender classification method utilizing the statistical model is proposed, which have a 98% accuracy of gender classification while long sentence is dealt with. By separation the male voice and female voice, the mean and standard deviation of speech training samples with different emotion are used to create the corresponding emotion models. Then the Bhattacharyya distance between the test sample and statistical models of pitch, are utilized for emotion recognition in speech.The normalization of pitch for the male voice and female voice are also considered, in order to illustrate them into a uniform space. Finally, the speech emotion recognition experiment based on K Nearest Neighbor shows that, the correct rate of 81% is achieved, where it is only 73.85%if the traditional parameters are utilized.

  9. New SOFRADIR 10μm pixel pitch infrared products

    Science.gov (United States)

    Lefoul, X.; Pere-Laperne, N.; Augey, T.; Rubaldo, L.; Aufranc, Sébastien; Decaens, G.; Ricard, N.; Mazaleyrat, E.; Billon-Lanfrey, D.; Gravrand, Olivier; Bisotto, Sylvette

    2014-10-01

    Recent advances in miniaturization of IR imaging technology have led to a growing market for mini thermal-imaging sensors. In that respect, Sofradir development on smaller pixel pitch has made much more compact products available to the users. When this competitive advantage is mixed with smaller coolers, made possible by HOT technology, we achieved valuable reductions in the size, weight and power of the overall package. At the same time, we are moving towards a global offer based on digital interfaces that provides our customers simplifications at the IR system design process while freeing up more space. This paper discusses recent developments on hot and small pixel pitch technologies as well as efforts made on compact packaging solution developed by SOFRADIR in collaboration with CEA-LETI.

  10. Amusia for pitch caused by right middle cerebral artery infarct.

    Science.gov (United States)

    Hochman, M Seth; Abrams, Kevin J

    2014-01-01

    A 61-year-old right-handed man with hypertension and dyslipidemia noted that he was singing along to classic rock songs on his car radio, but his voice was off pitch. Six days later, a magnetic resonance imaging scan of his brain revealed a cerebral infarct of the right temporal parietal cortex and insula. Case reports of the precise anatomic correlates of disordered pitch musical processing have been few and fragmentary. The anatomic involvement of our case coincides with the areas of involvement in 3 previously reported cases. Increased awareness of amusia as a rare clinical presentation of stroke should lead to earlier stroke intervention. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  11. Congenital amusia: a disorder of fine-grained pitch discrimination.

    Science.gov (United States)

    Peretz, Isabelle; Ayotte, Julie; Zatorre, Robert J; Mehler, Jacques; Ahad, Pierre; Penhune, Virginia B; Jutras, Benoît

    2002-01-17

    We report the first documented case of congenital amusia. This disorder refers to a musical disability that cannot be explained by prior brain lesion, hearing loss, cognitive deficits, socioaffective disturbance, or lack of environmental stimulation. This musical impairment is diagnosed in a middle-aged woman, hereafter referred to as Monica, who lacks most basic musical abilities, including melodic discrimination and recognition, despite normal audiometry and above-average intellectual, memory, and language skills. The results of psychophysical tests show that Monica has severe difficulties with detecting pitch changes. The data suggest that music-processing difficulties may result from problems in fine-grained discrimination of pitch, much in the same way as many language-processing difficulties arise from deficiencies in auditory temporal resolution.

  12. Binaural pitch perception in hearing-impaired listeners

    DEFF Research Database (Denmark)

    Dau, Torsten; Santurette, Sébastien; Strelcyk, Olaf

    2007-01-01

    When two white noises differing only in phase in a particular frequency range are presented simultaneously each to one of our ears, a pitch sensation may be perceived inside the head. This phenomenon, called ’binaural pitch’ or ’dichotic pitch’, can be produced by frequency-dependent interaural...... phasedifference patterns. The evaluation of these interaural phase differences depends on the functionality of the binaural auditory system and the spectro-temporal information at its input. A melody recognition task was performed in the present study using pure-tone stimuli and six different types of noises...... that can generate a binaural pitch sensation. Normal-hearing listeners and hearing-impaired listeners with different kinds of hearing impairment participated in the experiment....

  13. Torque- and Speed Control of a Pitch Regulated Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rasila, Mika

    2003-07-01

    Variable speed operated wind turbines has the potential to reduce fatigue loads, compared to fixed speed wind turbines. With pitch controllable rotor blades limitation of the power at high wind speeds is obtained. The thesis describes different controlling aspects concerning wind turbines and how these together can be used to optimize the system's performance. Torque control is used in order to achieve reduction on the mechanical loads on the drive-train for low wind speeds and limitation of power output for high wind speeds. In the high wind speed interval torque control is effective in order to limit the output power if a sufficiently fast pitch actuator is used. In the middle wind speed interval filter utilization can be used to give a reference signal to the controller in order to reduce speed and torque variations.

  14. Pitch adaptors of the ATLAS-SCT Endcap detector modules

    International Nuclear Information System (INIS)

    Ullan, M; Lozano, M; Campabadal, F; Fleta, C; Pellegrini, G; Garcia, C; Gonzalez, F

    2007-01-01

    Interconnection between detectors and electronics in modern High Energy Physics has become an issue of difficult solution due to the need to integrate both parts in the same module and the need for a low mass, simple connection. The Endcap section of the Semiconductor Tracker (SCT) of the ATLAS experiment at CERN has adopted the solution of using interface devices called pitch adaptors or fan-ins that, mounted on the modules, and using automatic wire bonding, connect the detector's multiple channels to the front-end electronics, adapting their different designs (pad pitch, dimensions, position). This paper describes the characteristics of these devices, the qualification tests that they have been submitted to, and the final results of their fabrication including quality assurance procedures

  15. Binaural fusion and the representation of virtual pitch in the human auditory cortex.

    Science.gov (United States)

    Pantev, C; Elbert, T; Ross, B; Eulitz, C; Terhardt, E

    1996-10-01

    The auditory system derives the pitch of complex tones from the tone's harmonics. Research in psychoacoustics predicted that binaural fusion was an important feature of pitch processing. Based on neuromagnetic human data, the first neurophysiological confirmation of binaural fusion in hearing is presented. The centre of activation within the cortical tonotopic map corresponds to the location of the perceived pitch and not to the locations that are activated when the single frequency constituents are presented. This is also true when the different harmonics of a complex tone are presented dichotically. We conclude that the pitch processor includes binaural fusion to determine the particular pitch location which is activated in the auditory cortex.

  16. Neural Global Pattern Similarity Underlies True and False Memories.

    Science.gov (United States)

    Ye, Zhifang; Zhu, Bi; Zhuang, Liping; Lu, Zhonglin; Chen, Chuansheng; Xue, Gui

    2016-06-22

    The neural processes giving rise to human memory strength signals remain poorly understood. Inspired by formal computational models that posit a central role of global matching in memory strength, we tested a novel hypothesis that the strengths of both true and false memories arise from the global similarity of an item's neural activation pattern during retrieval to that of all the studied items during encoding (i.e., the encoding-retrieval neural global pattern similarity [ER-nGPS]). We revealed multiple ER-nGPS signals that carried distinct information and contributed differentially to true and false memories: Whereas the ER-nGPS in the parietal regions reflected semantic similarity and was scaled with the recognition strengths of both true and false memories, ER-nGPS in the visual cortex contributed solely to true memory. Moreover, ER-nGPS differences between the parietal and visual cortices were correlated with frontal monitoring processes. By combining computational and neuroimaging approaches, our results advance a mechanistic understanding of memory strength in recognition. What neural processes give rise to memory strength signals, and lead to our conscious feelings of familiarity? Using fMRI, we found that the memory strength of a given item depends not only on how it was encoded during learning, but also on the similarity of its neural representation with other studied items. The global neural matching signal, mainly in the parietal lobule, could account for the memory strengths of both studied and unstudied items. Interestingly, a different global matching signal, originated from the visual cortex, could distinguish true from false memories. The findings reveal multiple neural mechanisms underlying the memory strengths of events registered in the brain. Copyright © 2016 the authors 0270-6474/16/366792-11$15.00/0.

  17. Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event

    Science.gov (United States)

    Zhang, X.-J.; Li, W.; Thorne, R. M.; Angelopoulos, V.; Ma, Q.; Li, J.; Bortnik, J.; Nishimura, Y.; Chen, L.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Blake, J. B.; Fennell, J. F.

    2016-09-01

    Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1 MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.

  18. Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event: Drift Shell Splitting on the Dayside

    International Nuclear Information System (INIS)

    Zhang, X.-J.; University of California, Los Angeles, CA; Li, W.; Boston University, MA; Thorne, R. M.

    2016-01-01

    Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 < L* < 5) in less than 6 h after the passage of an interplanetary shock. We model the electron pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.

  19. Raman microprobe study of heat-treated pitches

    Energy Technology Data Exchange (ETDEWEB)

    Cottinet, D.; Couderc, P.; Saint Romain, J.L.; Dhamelincourt, P.

    1988-01-01

    A series of heat-treated pitches from the same coal-tar precursor is investigated by means of a Raman microprobe. Separated Raman spectra are obtained for the isotropic phase and the mesophase. The evolutions observed are characteristic of the structural rearrangement change in the two phases. They correlate well with the observations reported in literature and obtained by using different methods of structural investigations.

  20. Improved Methods for Pitch Synchronous Linear Prediction Analysis of Speech

    OpenAIRE

    劉, 麗清

    2015-01-01

    Linear prediction (LP) analysis has been applied to speech system over the last few decades. LP technique is well-suited for speech analysis due to its ability to model speech production process approximately. Hence LP analysis has been widely used for speech enhancement, low-bit-rate speech coding in cellular telephony, speech recognition, characteristic parameter extraction (vocal tract resonances frequencies, fundamental frequency called pitch) and so on. However, the performance of the co...

  1. Buds enable pitch and shortleaf pines to recover from injury

    Science.gov (United States)

    S. Little; H. A. Somes

    1956-01-01

    Pitch and shortleaf pines often survive severe damage by fires, cutting, rabbits, or deer. Deer may take all but 2 inches of the 6- to 8-inch shoots of seedlings, and still these seedlings may live and develop new shoots. Fires may kill all the foliage and terminal shoots on sapling or pole-size stems, but still these trees may green up and develop new leaders. Many of...

  2. Context effects on pitch perception in musicians and nonmusicians

    DEFF Research Database (Denmark)

    Brattico, E; Naatanen, R; Tervaniemi, M

    2001-01-01

    concentrating on reading a book, were presented with sound stimuli that had an infrequent (p = 15 %) pitch shift of 144 Hz. In the familiar condition, the infrequent third-position deviant changed the mode (major vs. minor) of the five-tone pattern. In the unfamiliar condition, patterns were formed from five...... to sequential structured sound events, the auditory system reacts faster in musicians than in nonmusicians. Received December 8, 1999, accepted July 14, 2001....

  3. Pitch Fork: A Novel tactile Digital Musical Instrument

    OpenAIRE

    Williams, Peter; Overholt, Daniel

    2017-01-01

    Pitch Fork is a prototype of an alternate, actuated digital musical instrument (DMI). It uses 5 infra-red and 4 piezoelectric sensors to control an additive synthesis engine. Iron bars are used as the physical point of contact in interaction with the aim of using material computation to control aspects of the digitally produced sound. This choice of material was also chosen to affect player experience. Sensor readings are relayed to a Macbook via an Arduino Mega. Mappings and audio output sig...

  4. The Strength Compass

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    In the Ph.D-project ͚Strengths-based Learning - Children͛s character strengths as a means to their learning potential͛ 750 Danish children have assessed ͚The Strength Compass͛ in order to identify their strengths and to create awareness of strengths. This was followed by a strengths......-based intervention program in order to explore the strengths. Finally different methods to apply the strength in everyday life at school were applied. The paper presentation will show the results for strengths display for children aged 6-16 in different categories: Different age groups: Are the same strengths...... present in both small children and youths? Gender: Do the results show differences between the two genders? Danish as a mother- tongue language: Do the results show any differences in the strengths display when considering different language and cultural backgrounds? Children with Special Needs: Do...

  5. Spatial Rack Drives Pitch Configurations: Essence and Content

    Science.gov (United States)

    Abadjieva, Emilia; Abadjiev, Valentin; Naganawa, Akihiro

    2018-03-01

    The practical realization of all types of mechanical motions converters is preceded by solving the task of their kinematic synthesis. In this way, the determination of the optimal values of the constant geometrical parameters of the chosen structure of the created mechanical system is achieved. The searched result is a guarantee of the preliminary defined kinematic characteristics of the synthesized transmission and in the first place, to guarantee the law of motions transformation. The kinematic synthesis of mechanical transmissions is based on adequate mathematical modelling of the process of motions transformation and on the object, realizing this transformation. Basic primitives of the mathematical models for synthesis upon a pitch contact point are geometric and kinematic pitch configurations. Their dimensions and mutual position in space are the input parameters for the processes of design and elaboration of the synthesized mechanical device. The study presented here is a brief review of the theory of pitch configurations. It is an independent scientific branch of the spatial gearing theory (theory of hyperboloid gears). On this basis, the essence and content of the corresponding primitives, applicable to the synthesis of spatial rack drives, are defined.

  6. Pitching Emotions: The Interpersonal Effects of Emotions in Professional Baseball

    Directory of Open Access Journals (Sweden)

    Arik eCheshin

    2016-02-01

    Full Text Available Sports games are inherently emotional situations, but surprisingly little is known about the social consequences of these emotions. We examined the interpersonal effects of emotional expressions in professional baseball. Specifically, we investigated whether pitchers' facial displays influence how pitches are assessed and responded to. Using footage from MLB World Series finals, we isolated incidents where the pitcher's face was visible before a pitch. A pre-study indicated that participants consistently perceived anger, happiness, and worry in pitchers' facial displays. An independent sample then predicted pitch characteristics and batter responses based on the same perceived emotional displays. Participants expected pitchers perceived as happy to throw more accurate balls, pitchers perceived as angry to throw faster and more difficult balls, and pitchers perceived as worried to throw slower and less accurate balls. Batters were expected to approach (swing when faced with a pitcher perceived as happy and to avoid (no swing when faced with a pitcher perceived as worried. Whereas previous research focused on using emotional expressions as information regarding past and current situations, our work suggests that people also use perceived emotional expressions to predict future behavior. Our results attest to the impact perceived emotional expressions can have on professional sports.

  7. Physics of pitch angle scattering and velocity diffusion. I - Theory

    Science.gov (United States)

    Karimabadi, H.; Krauss-Varban, D.; Terasawa, T.

    1992-01-01

    A general theory for the pitch angle scattering and velocity diffusion of particles in the field of a spectrum of waves in a magnetized plasma is presented. The test particle theory is used to analyze the particle motion. The form of diffusion surfaces is examined, and analytical expressions are given for the resonance width and bounce frequency. The resonance widths are found to vary strongly as a function of harmonic number. The resulting diffusion can be quite asymmetric with respect to pitch angle of 90 deg. The conditions for the onset of pitch angle scattering and energy diffusion are explained in detail. Some of the known shortcomings of the standard quasi-linear theory are also addressed, and ways to overcome them are shown. In particular, the often stated quasi-linear gap at 90 deg is found to exist only under very special cases. For instance, oblique wave propagation can easily remove the gap. The conditions for the existence of the gap are described in great detail. A new diffusion equation which takes into account the finite resonance widths is also discussed. The differences between this new theory and the standard resonance broadening theory is explained.

  8. Examination of statistical noise in SPECT image and sampling pitch

    International Nuclear Information System (INIS)

    Takaki, Akihiro; Soma, Tsutomu; Murase, Kenya; Watanabe, Hiroyuki; Murakami, Tomonori; Kawakami, Kazunori; Teraoka, Satomi; Kojima, Akihiro; Matsumoto, Masanori

    2008-01-01

    Statistical noise in single photon emission computed tomography (SPECT) image was examined for its relation with total count and with sampling pitch by simulation and phantom experiment to obtain their projection data under defined conditions. The former SPECT simulation was performed on assumption of a virtual, homogeneous water column (20 cm diameter) as an absorbing mass. In the latter, used were 3D-Hoffman brain phantom (Data Spectrum Corp.) filled with 370 MBq of 99m Tc-pertechnetate solution and a facing 2-detector SPECT machine with a low-energy/high-resolution collimator, E-CAM (Siemens). Projected data by the two methods were reconstructed through the filtered back projection to make each transaxial image. The noise was evaluated by vision, by their root mean square uncertainty calculated from average count and standard deviation (SD) in the region of interest (ROI) defined in reconstructed images and by normalized mean squares calculated from the difference between the reference image obtained with common sampling pitch to and all of obtained slices of, the simulation and phantom. As a conclusion, the pitch was recommended to be set in the machine as to approximating the value calculated by the sampling theorem, though the projection counts per one angular direction were smaller with the same total time of data acquisition. (R.T.)

  9. Pitching Emotions: The Interpersonal Effects of Emotions in Professional Baseball.

    Science.gov (United States)

    Cheshin, Arik; Heerdink, Marc W; Kossakowski, Jolanda J; Van Kleef, Gerben A

    2016-01-01

    Sports games are inherently emotional situations, but surprisingly little is known about the social consequences of these emotions. We examined the interpersonal effects of emotional expressions in professional baseball. Specifically, we investigated whether pitchers' facial displays influence how pitches are assessed and responded to. Using footage from the Major League Baseball World Series finals, we isolated incidents where the pitcher's face was visible before a pitch. A pre-study indicated that participants consistently perceived anger, happiness, and worry in pitchers' facial displays. An independent sample then predicted pitch characteristics and batter responses based on the same perceived emotional displays. Participants expected pitchers perceived as happy to throw more accurate balls, pitchers perceived as angry to throw faster and more difficult balls, and pitchers perceived as worried to throw slower and less accurate balls. Batters were expected to approach (swing) when faced with a pitcher perceived as happy and to avoid (no swing) when faced with a pitcher perceived as worried. Whereas previous research focused on using emotional expressions as information regarding past and current situations, our work suggests that people also use perceived emotional expressions to predict future behavior. Our results attest to the impact perceived emotional expressions can have on professional sports.

  10. An investigation of spatial representation of pitch in individuals with congenital amusia.

    Science.gov (United States)

    Lu, Xuejing; Sun, Yanan; Thompson, William Forde

    2017-09-01

    Spatial representation of pitch plays a central role in auditory processing. However, it is unknown whether impaired auditory processing is associated with impaired pitch-space mapping. Experiment 1 examined spatial representation of pitch in individuals with congenital amusia using a stimulus-response compatibility (SRC) task. For amusic and non-amusic participants, pitch classification was faster and more accurate when correct responses involved a physical action that was spatially congruent with the pitch height of the stimulus than when it was incongruent. However, this spatial representation of pitch was not as stable in amusic individuals, revealed by slower response times when compared with control individuals. One explanation is that the SRC effect in amusics reflects a linguistic association, requiring additional time to link pitch height and spatial location. To test this possibility, Experiment 2 employed a colour-classification task. Participants judged colour while ignoring a concurrent pitch by pressing one of two response keys positioned vertically to be congruent or incongruent with the pitch. The association between pitch and space was found in both groups, with comparable response times in the two groups, suggesting that amusic individuals are only slower to respond to tasks involving explicit judgments of pitch.

  11. A Fröhlich effect and representational gravity in memory for auditory pitch.

    Science.gov (United States)

    Hubbard, Timothy L; Ruppel, Susan E

    2013-08-01

    Memory for the initial pitch of an auditory target that increased or decreased in auditory frequency was examined. Memory was displaced forward in the direction of pitch motion, and this is consistent with the Fröhlich effect previously observed for visual targets moving in visual physical space. The Fröhlich effect for pitch increased with faster target velocity and decreased if an auditory cue with the same pitch as the initial pitch of the target was presented before the target was presented. The Fröhlich effect was larger for descending pitch motion than for ascending pitch motion, and this is consistent with an influence of representational gravity. The data suggest that representation of auditory frequency space exhibits some of the same biases as representation of visual physical space, and implications for theories of attention in displacement and for crossmodal and multisensory representation of space are discussed. 2013 APA, all rights reserved

  12. Fine-grained pitch processing of music and speech in congenital amusia.

    Science.gov (United States)

    Tillmann, Barbara; Rusconi, Elena; Traube, Caroline; Butterworth, Brian; Umiltà, Carlo; Peretz, Isabelle

    2011-12-01

    Congenital amusia is a lifelong disorder of music processing that has been ascribed to impaired pitch perception and memory. The present study tested a large group of amusics (n=17) and provided evidence that their pitch deficit affects pitch processing in speech to a lesser extent: Fine-grained pitch discrimination was better in spoken syllables than in acoustically matched tones. Unlike amusics, control participants performed fine-grained pitch discrimination better for musical material than for verbal material. These findings suggest that pitch extraction can be influenced by the nature of the material (music vs speech), and that amusics' pitch deficit is not restricted to musical material, but extends to segmented speech events. © 2011 Acoustical Society of America

  13. Binaural pitch perception in normal-hearing and hearing-impaired listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2007-01-01

    The effects of hearing impairment on the perception of binaural-pitch stimuli were investigated. Several experiments were performed with normal-hearing and hearing-impaired listeners, including detection and discrimination of binaural pitch, and melody recognition using different types of binaural...... pitches. For the normal-hearing listeners, all types of binaural pitches could be perceived immediately and were musical. The hearing-impaired listeners could be divided into three groups based on their results: (a) some perceived all types of binaural pitches, but with decreased salience or musicality...... compared to normal-hearing listeners; (b) some could only perceive the strongest pitch types; (c) some were unable to perceive any binaural pitch at all. The performance of the listeners was not correlated with audibility. Additional experiments investigated the correlation between performance in binaural...

  14. Pitch and time, tonality and meter: how do musical dimensions combine?

    Science.gov (United States)

    Prince, Jon B; Thompson, William F; Schmuckler, Mark A

    2009-10-01

    The authors examined how the structural attributes of tonality and meter influence musical pitch-time relations. Listeners heard a musical context followed by probe events that varied in pitch class and temporal position. Tonal and metric hierarchies contributed additively to the goodness-of-fit of probes, with pitch class exerting a stronger influence than temporal position (Experiment 1), even when listeners attempted to ignore pitch (Experiment 2). Speeded classification tasks confirmed this asymmetry. Temporal classification was biased by tonal stability (Experiment 3), but pitch classification was unaffected by temporal position (Experiment 4). Experiments 5 and 6 ruled out explanations based on the presence of pitch classes and temporal positions in the context, unequal stimulus quantity, and discriminability. The authors discuss how typical Western music biases attention toward pitch and distinguish between dimensional discriminability and salience. PsycINFO Database Record (c) 2009 APA, all rights reserved.

  15. Ground reaction forces, kinematics, and muscle activations during the windmill softball pitch.

    Science.gov (United States)

    Oliver, Gretchen D; Plummer, Hillary

    2011-07-01

    The aims of the present study were to examine quantitatively ground reaction forces, kinematics, and muscle activations during the windmill softball pitch, and to determine relationships between knee valgus and muscle activations, ball velocity and muscle activation as well as ball velocity and ground reaction forces. It was hypothesized that there would be an inverse relationship between degree of knee valgus and muscle activation, a direct relationship between ground reaction forces and ball velocity, and non-stride leg muscle activations and ball velocity. Ten female windmill softball pitchers (age 17.6 ± 3.47 years, stature 1.67 ± 0.07 m, weight 67.4 ± 12.2 kg) participated. Dependent variables were ball velocity, surface electromyographic (sEMG), kinematic, and kinetic data while the participant was the independent variable. Stride foot contact reported peak vertical forces of 179% body weight. There were positive relationships between ball velocity and ground reaction force (r = 0.758, n = 10, P = 0.029) as well as ball velocity and non-stride leg gluteus maximus (r = 0.851, n = 10, P = 0.007) and medius (r = 0.760, n = 10, P = 0.029) muscle activity, while there was no notable relationship between knee valgus and muscle activation. As the windmill softball pitcher increased ball velocity, her vertical ground reaction forces also increased. Proper conditioning of the lumbopelvic-hip complex, including the gluteals, is essential for injury prevention. From the data presented, it is evident that bilateral strength and conditioning of the gluteal muscle group is salient in the windmill softball pitch as an attempt to decrease incidence of injury.

  16. Relationship of radiation dose and spiral pitch for multi-slice CT system

    International Nuclear Information System (INIS)

    Song Shaojuan; Wang Wei; Liu Chuanya

    2006-01-01

    Objective: To study the relations of radiation dose and spiral pitch for multi-slice CT system. Methods: 16 mm dose phantom with solidose 300/400 pen-style ion chamber inserted into each of five holes in turn was scanned with different spiral pitch by LightSpeed 16-slice CT and Sensation 16-slice and 64-slice CT and radiation dose. Results: CTDI vol of axial scan and spiral scan for the three types of CT system are: (1) LightSpeed 16-slice CT: 28.9 (axial), 51.4 (pitch 0.562), 30.8 (pitch 0.938) and 16.5 ( pitch 1.75 ); (2) Sensation 16-slice CT: 41.2(axial) and 40.3(pitch 0.5) ,41.5(pitch 1) and 43.2(pitch 1.5); (3) Sensation 64- slice CT: 41.2(axial) and 40.3(pitch 0.5),41.5(pitch 1),43.2(pitch 1.5). Conclusions: For LightSpeed 16-slice CT, the measured radiation dose decreased with the increase of spiral pitch, the image quality could keep constant only if we increase mAs. While for Sensation 16-slice and 64-slice CT system, the measured radiation dose was identical for different pitch, and the image quality was identical because of the use of mAs auto control technique The mAs should be adjusted in different way according to the type of CT system when the pitch is changed in daily operation. (authors)

  17. Optimal pitching axis location of flapping wings for efficient hovering flight.

    Science.gov (United States)

    Wang, Q; Goosen, J F L; van Keulen, F

    2017-09-01

    Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of great interest to investigate the optimal pitching axis for flapping wings to maximize the power efficiency during hovering flight. In this study, flapping wings are modeled as rigid plates with non-uniform mass distribution. The wing flexibility is represented by a linearly torsional spring at the wing root. A predictive quasi-steady aerodynamic model is used to evaluate the lift generated by such wings. Two extreme power consumption scenarios are modeled for hovering flight, i.e. the power consumed by a drive system with and without the capacity of kinetic energy recovery. For wings with different shapes, the optimal pitching axis location is found such that the cycle-averaged power consumption during hovering flight is minimized. Optimization results show that the optimal pitching axis is located between the leading edge and the mid-chord line, which shows close resemblance to insect wings. An optimal pitching axis can save up to 33% of power during hovering flight when compared to traditional wings used by most of flapping wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading edge as the pitching axis. With the optimized pitching axis, flapping wings show higher pitching amplitudes and start the pitching reversals in advance of the sweeping reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the lower power consumption. In addition, the optimized pitching axis provides the drive system higher potential to recycle energy during the deceleration phases as compared to their counterparts. This observation underlines the particular importance of the wing pitching axis location for energy-efficient FWMAVs when

  18. Pitch Angle Scattering of Energetic Electrons by Plasmaspheric Hiss Emissions

    Science.gov (United States)

    Tobita, M.; Omura, Y.; Summers, D.

    2017-12-01

    We study scattering of energetic electrons in pitch angles and kinetic energies through their resonance with plasmaspheric hiss emissions consisting of many coherent discrete whistler-mode wave packets with rising and falling frequencies [1,2,3]. Using test particle simulations, we evaluate the efficiency of scattering, which depends on the inhomogeneity ratio S of whistler mode wave-particle interaction [4]. The value of S is determined by the wave amplitude, frequency sweep rate, and the gradient of the background magnetic field. We first modulate those parameters and observe variations of pitch angles and kinetic energies of electrons with a single wave under various S values so as to obtain basic understanding. We then include many waves into the system to simulate plasmaspheric hiss emissions. As the wave packets propagate away from the magnetic equator, the nonlinear trapping potential at the resonance velocity is deformed, making a channel of gyrophase for untrapped electrons to cross the resonance velocity, and causing modulations in their pitch angles and kinetic energies. We find efficient scattering of pitch angles and kinetic energies because of coherent nonlinear wave-particle interaction, resulting in electron precipitations into the polar atmosphere. We compare the results with the bounce averaged pitch angle diffusion coefficient based on quasi-linear theory, and show that the nonlinear wave model with many coherent packets can cause scattering of resonant electrons much faster than the quasi-linear diffusion process. [1] Summers, D., Omura, Y., Nakamura, S., and C. A. Kletzing (2014), Fine structure of plasmaspheric hiss, J. Geophys. Res., 119, 9134-9149. [2] Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562. [3] Nakamura, S., Y

  19. Deep Neural Network Detects Quantum Phase Transition

    Science.gov (United States)

    Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki

    2018-03-01

    We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.

  20. Using spatial manipulation to examine interactions between visual and auditory encoding of pitch and time

    Directory of Open Access Journals (Sweden)

    Neil M McLachlan

    2010-12-01

    Full Text Available Music notations use both symbolic and spatial representation systems. Novice musicians do not have the training to associate symbolic information with musical identities, such as chords or rhythmic and melodic patterns. They provide an opportunity to explore the mechanisms underpinning multimodal learning when spatial encoding strategies of feature dimensions might be expected to dominate. In this study, we applied a range of transformations (such as time reversal to short melodies and rhythms and asked novice musicians to identify them with or without the aid of notation. Performance using a purely spatial (graphic notation was contrasted with the more symbolic, traditional western notation over a series of weekly sessions. The results showed learning effects for both notation types, but performance improved more for graphic notation. This points to greater compatibility of auditory and visual neural codes for novice musicians when using spatial notation, suggesting that pitch and time may be spatially encoded in multimodal associative memory. The findings also point to new strategies for training novice musicians.

  1. Differential Recognition of Pitch Patterns in Discrete and Gliding Stimuli in Congenital Amusia: Evidence from Mandarin Speakers

    Science.gov (United States)

    Liu, Fang; Xu, Yi; Patel, Aniruddh D.; Francart, Tom; Jiang, Cunmei

    2012-01-01

    This study examined whether "melodic contour deafness" (insensitivity to the direction of pitch movement) in congenital amusia is associated with specific types of pitch patterns (discrete versus gliding pitches) or stimulus types (speech syllables versus complex tones). Thresholds for identification of pitch direction were obtained using discrete…

  2. Reducing Wind Tunnel Data Requirements Using Neural Networks

    Science.gov (United States)

    Ross, James C.; Jorgenson, Charles C.; Norgaard, Magnus

    1997-01-01

    The use of neural networks to minimize the amount of data required to completely define the aerodynamic performance of a wind tunnel model is examined. The accuracy requirements for commercial wind tunnel test data are very severe and are difficult to reproduce using neural networks. For the current work, multiple input, single output networks were trained using a Levenberg-Marquardt algorithm for each of the aerodynamic coefficients. When applied to the aerodynamics of a 55% scale model of a U.S. Air Force/ NASA generic fighter configuration, this scheme provided accurate models of the lift, drag, and pitching-moment coefficients. Using only 50% of the data acquired during, the wind tunnel test, the trained neural network had a predictive accuracy equal to or better than the accuracy of the experimental measurements.

  3. Selective attention to sound location or pitch studied with fMRI.

    Science.gov (United States)

    Degerman, Alexander; Rinne, Teemu; Salmi, Juha; Salonen, Oili; Alho, Kimmo

    2006-03-10

    We used 3-T functional magnetic resonance imaging to compare the brain mechanisms underlying selective attention to sound location and pitch. In different tasks, the subjects (N = 10) attended to a designated sound location or pitch or to pictures presented on the screen. In the Attend Location conditions, the sound location varied randomly (left or right), while the pitch was kept constant (high or low). In the Attend Pitch conditions, sounds of randomly varying pitch (high or low) were presented at a constant location (left or right). Both attention to location and attention to pitch produced enhanced activity (in comparison with activation caused by the same sounds when attention was focused on the pictures) in widespread areas of the superior temporal cortex. Attention to either sound feature also activated prefrontal and inferior parietal cortical regions. These activations were stronger during attention to location than during attention to pitch. Attention to location but not to pitch produced a significant increase of activation in the premotor/supplementary motor cortices of both hemispheres and in the right prefrontal cortex, while no area showed activity specifically related to attention to pitch. The present results suggest some differences in the attentional selection of sounds on the basis of their location and pitch consistent with the suggested auditory "what" and "where" processing streams.

  4. Prediction of HS Soderberg plant PAH emissions from a laboratory evaluation of a pitch

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, L.; Mirtchi, A. A.; Proulx, A. L.; Savard, G.; Simard, E.; Steward, N.; Tremblay, C. [Alcan International Ltd., Arvida Research and Development Centre, Jonquiere, PQ (Canada)

    1998-12-31

    The presence of certain polycyclic aromatic hydrocarbons (PAHs) in coal tar pitch has been identified as a possible limit to the long-term viability of horizontal stud (HS) Soderberg technology, a technology of importance in the aluminum industry. This paper presents the results of a comparative study of pitch PAH content and HS Soderberg cell emissions. Laboratory results are compared with plant emissions for two regular and low PAH pitches with the same softening points. The results indicate the existence of a correlation between pitch PAH content and cell emission, which is valid for regular tar pitches, low tar pitches, as well as for hybrid pitches. These findings make it possible to predict the quantity and distribution of HS Soderberg cell PAH emissions from the analysis of PAHs in the pitch. The results also justify the conclusion that the emission of genotoxic compounds from pitch in the HS Soderberg technology can be decreased by using a pitch with low PAH content. 4 refs., 5 tabs., 5 figs.

  5. The Influence of Second Harmonic Phase and Amplitude Variation in Cyclically Pitching Wings

    Science.gov (United States)

    Culler, Ethan; Farnsworth, John

    2017-11-01

    From wind tunnel testing of a cyber-physical wing model, it has been found that the pitch trajectory for stall flutter is described by an array of higher harmonic frequencies with decaying energy content. These frequencies distort the stall flutter motion from that of a pure sinusoidal oscillation in pitch and can have a significant effect on the resulting force production. In order to understand how these higher harmonic frequencies contribute to the overall pitching moment characteristics of a wing in stall flutter, a rigid finite span wing model, with aspect ratio four, was pitched in the wind tunnel. The prescribed motion of the pitch cycle was varied by changing the amplitude ratio and phase of the second harmonic of the oscillation frequency. The second harmonic represents the second highest energy mode in the pitching cycle spectra. Pitching moment and planar particle image velocimetry data was collected. From these pitching trajectories, a significant dependence of pitching moment on both the phase and amplitude of the prescribed waveforms was found. Specifically, for the same amplitude ratio, variations in the phase produced changes of approximately 30 percent in the phase averaged pitching moment.

  6. Number 13 / Part I. Music. 7. Grounds of Absolute Pitch Development in Yamaha Music School

    Directory of Open Access Journals (Sweden)

    Iușcă Dorina

    2017-03-01

    Full Text Available Absolute pitch is defined as the ability to identify the pitch class of a certain given sound without the aid of an external reference pitch (Takeuchi & Hulse, 1993; Deutsch, 2002. The incidence of absolute pitch is extremely rare among the general population, respectively 1 in 10.000 people and it depends on testing conditions such as the number of identified sounds, pitch Chroma, pitch height, timbre, register or requested reaction time, and also on subjects musical training commencing and Eastern-Asian origins. The way absolute pitch develops is described by three models: the tone language theory, the early training theory and the genetic theory. The early training theory states that absolute pitch appears due to the beginning of musical lessons during a critical development period situated before the age of 6. The educational implications of this theory are revealed in the principles and activities of Yamaha Music School which employs didactic strategies that naturally develop absolute pitch. Yamaha Music School is the largest private music education system from Japan, established by Torakusu Yamaha in 1954. Up to this day it has extended in 40 countries from Europe, Asia and the American continents, as it has about 710 million students and 30.000 teachers. The present study aims to illustrate a detailed analysis of the way the learning experiences offered by Yamaha School lead to the development of absolute pitch.

  7. TRUNK LEAN DURING A SINGLE-LEG SQUAT IS ASSOCIATED WITH TRUNK LEAN DURING PITCHING.

    Science.gov (United States)

    Plummer, Hillary A; Oliver, Gretchen D; Powers, Christopher M; Michener, Lori A

    2018-02-01

    Impaired trunk motion during pitching may be a risk factor for upper extremity injuries. Specifically, increased forces about the shoulder and elbow have been observed in pitchers with excessive contralateral trunk lean during pitching. Because of the difficulty in identifying abnormal trunk motions during a high-speed task such as pitching, a clinical screening test is needed to identify pitchers who have impaired trunk motion during pitching. The purpose of this study was to determine the relationship between the degree of lateral trunk lean during the single-leg squat and amount of trunk lean during pitching and if trunk lean during pitching can be predicted from lean during the single-leg squat. Controlled Laboratory Study; Cross-sectional. Seventy-three young baseball pitchers (11.4 ± 1.7 years; 156.3 ± 11.9 cm; 50.5 ± 8.8 kg) participated. An electromagnetic tracking system was used to obtain trunk kinematic data during a single-leg squat task (lead leg) and at maximum shoulder external rotation of a fastball pitch. Pearson correlation coefficients for trunk lean during the single-leg squat and pitching were calculated. A linear regression analysis was performed to determine if trunk lean during pitching can be predicted from lean during the single-leg squat. There was a positive correlation between trunk lean during the single-leg squat and trunk lean during pitching (r = 0.53; plean during the single-leg squat predicted the amount of lateral trunk lean during pitching (R 2 = 0.28; p lean during an SLS and pitching. Trunk lean during the single-leg squat explained 28% of the variance in trunk lean during pitching. Diagnosis, level 3.

  8. Effects of Game Pitch Count and Body Mass Index on Pitching Biomechanics in 9- to 10-Year-Old Baseball Athletes.

    Science.gov (United States)

    Darke, Jim D; Dandekar, Eshan M; Aguinaldo, Arnel L; Hazelwood, Scott J; Klisch, Stephen M

    2018-04-01

    Pitching while fatigued and body composition may increase the injury risk in youth and adult pitchers. However, the relationships between game pitch count, biomechanics, and body composition have not been reported for a study group restricted to 9- to 10-year-old athletes. During a simulated game with 9- to 10-year-old athletes, (1) participants will experience biomechanical signs of fatigue, and (2) shoulder and elbow kinetics will correlate with body mass index (BMI). Descriptive laboratory study. Thirteen 9- to 10-year-old youth baseball players pitched a simulated game (75 pitches). Range of motion and muscular output tests were conducted before and after the simulated game to quantify fatigue. Kinematic parameters at foot contact, maximum external rotation, and maximum internal rotation velocity (MIRV), as well as maximum shoulder and elbow kinetics between foot contact and MIRV were compared at pitches 1-5, 34-38, and 71-75. Multivariate analyses of variance were used to test the first hypothesis, and linear regressions were used to test the second hypothesis. MIRV increased from pitches 1-5 to 71-75 ( P = .007), and head flexion at MIRV decreased from pitches 1-5 to 34-38 ( P = .022). Maximum shoulder horizontal adduction, external rotation, and internal rotation torques increased from pitches 34-38 to 71-75 ( P = .031, .023, and .021, respectively). Shoulder compression force increased from pitches 1-5 to 71-75 ( P = .011). Correlations of joint torque/force with BMI were found at every pitch period: for example, shoulder internal rotation ( R 2 = 0.93, P biomechanics for 9- to 10-year-old baseball pitchers and may be used in future studies to improve evidence-based injury prevention guidelines.

  9. The strength compass

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    of agreement/disagreement. Also the child/teacher is asked whether the actual strength is important and if he or she has the possibilities to apply the strength in the school. In a PhDproject ‘Strengths-based Learning - Children’s Character Strengths as Means to their Learning Potential’ 750 Danish children......Individual paper presentation: The ‘Strength Compass’. The results of a PhDresearch project among schoolchildren (age 6-16) identifying VIAstrengths concerning age, gender, mother-tongue-langue and possible child psychiatric diagnosis. Strengths-based interventions in schools have a theoretical...... Psychological Publishing Company. ‘The Strength Compass’ is a computer/Ipad based qualitative tool to identify the strengths of a child by a self-survey or a teacher’s survey. It is designed as a visual analogue scale with a statement of the strength in which the child/teacher may declare the degree...

  10. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  11. Unaccounted Workload Factor: Game-Day Pitch Counts in High School Baseball Pitchers-An Observational Study.

    Science.gov (United States)

    Zaremski, Jason L; Zeppieri, Giorgio; Jones, Deborah L; Tripp, Brady L; Bruner, Michelle; Vincent, Heather K; Horodyski, MaryBeth

    2018-04-01

    Throwing injuries are common in high school baseball. Known risk factors include excessive pitch counts, year-round pitching, and pitching with arm pain and fatigue. Despite the evidence, the prevalence of pitching injuries among high school players has not decreased. One possibility to explain this pattern is that players accumulate unaccounted pitch volume during warm-up and bullpen activity, but this has not yet been examined. Our primary hypothesis was that approximately 30% to 40% of pitches thrown off a mound by high school pitchers during a game-day outing are unaccounted for in current data but will be revealed when bullpen sessions and warm-up pitches are included. Our secondary hypothesis was that there is wide variability among players in the number of bullpen pitches thrown per outing. Cross-sectional study; Level of evidence, 3. Researchers counted all pitches thrown off a mound during varsity high school baseball games played by 34 high schools in North Central Florida during the 2017 season. We recorded 13,769 total pitches during 115 varsity high school baseball starting pitcher outings. The mean ± SD pitch numbers per game were calculated for bullpen activity (27.2 ± 9.4), warm-up (23.6 ±8.0), live games (68.9 ±19.7), and total pitches per game (119.7 ± 27.8). Thus, 42.4% of the pitches performed were not accounted for in the pitch count monitoring of these players. The number of bullpen pitches thrown varied widely among players, with 25% of participants in our data set throwing fewer than 22 pitches and 25% throwing more than 33 pitches per outing. In high school baseball players, pitch count monitoring does not account for the substantial volume of pitching that occurs during warm-up and bullpen activity during the playing season. These extra pitches should be closely monitored to help mitigate the risk of overuse injury.

  12. Advances in dual-tone development for pitch frequency doubling

    Science.gov (United States)

    Fonseca, Carlos; Somervell, Mark; Scheer, Steven; Kuwahara, Yuhei; Nafus, Kathleen; Gronheid, Roel; Tarutani, Shinji; Enomoto, Yuuichiro

    2010-04-01

    Dual-tone development (DTD) has been previously proposed as a potential cost-effective double patterning technique1. DTD was reported as early as in the late 1990's2. The basic principle of dual-tone imaging involves processing exposed resist latent images in both positive tone (aqueous base) and negative tone (organic solvent) developers. Conceptually, DTD has attractive cost benefits since it enables pitch doubling without the need for multiple etch steps of patterned resist layers. While the concept for DTD technique is simple to understand, there are many challenges that must be overcome and understood in order to make it a manufacturing solution. Previous work by the authors demonstrated feasibility of DTD imaging for 50nm half-pitch features at 0.80NA (k1 = 0.21) and discussed challenges lying ahead for printing sub-40nm half-pitch features with DTD. While previous experimental results suggested that clever processing on the wafer track can be used to enable DTD beyond 50nm halfpitch, it also suggest that identifying suitable resist materials or chemistries is essential for achieving successful imaging results with novel resist processing methods on the wafer track. In this work, we present recent advances in the search for resist materials that work in conjunction with novel resist processing methods on the wafer track to enable DTD. Recent experimental results with new resist chemistries, specifically designed for DTD, are presented in this work. We also present simulation studies that help and support identifying resist properties that could enable DTD imaging, which ultimately lead to producing viable DTD resist materials.

  13. The speech signal segmentation algorithm using pitch synchronous analysis

    Directory of Open Access Journals (Sweden)

    Amirgaliyev Yedilkhan

    2017-03-01

    Full Text Available Parameterization of the speech signal using the algorithms of analysis synchronized with the pitch frequency is discussed. Speech parameterization is performed by the average number of zero transitions function and the signal energy function. Parameterization results are used to segment the speech signal and to isolate the segments with stable spectral characteristics. Segmentation results can be used to generate a digital voice pattern of a person or be applied in the automatic speech recognition. Stages needed for continuous speech segmentation are described.

  14. Crackle and fizz essential communication and pitching skills for scientists

    CERN Document Server

    Van den Brul, Caroline

    2014-01-01

    This is a book for scientists and other experts who need to explain the significance and potential of their work to colleagues, committees, funding bodies or the general public. It details how to harness story-telling principles to make complex or technical content easier to communicate and fulfilling for audiences. Eight narrative ingredients, Audience, Change and Affect, Lure, World, Character, Big Hook, Plot and Structure, are illustrated with examples and exercises to demonstrate how to build a presentation, how to pitch for funds or resources, how to make a persuasive argument, or simply how to explain ideas so they CRACKLE and FIZZ for the Audience.

  15. Development of a Mechanical Passive Pitch System for a 500W Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    Poryzala, Tomek; Mikkelsen, Robert Flemming; Kim, Taeseong

    2017-01-01

    The goal of this paper is to design, analyze, manufacture, and test a mechanical passive pitch mechanism for a small horizontal axis wind turbine. Several pitching concepts were investigated in the wind industry and related fields before ultimately deciding on a centrifugal governor design concept...... in a pitch-to-stall configuration. Inertial and aerodynamic models were developed in order to predict steady-state performance and an optimization routine was created to optimize the pitch mechanism configuration subject to manufacturing constraints. Dynamic modeling in HAWC2 validated the steady......-state design code, aeroelastic simulations were performed in turbulent wind conditions to simulate the pitch system dynamics. Physical testing of the full turbine was not completed, however the hub sub-assembly was tested on its own to validate the passive pitch characteristics and showed good agreement...

  16. Impact of imaging quality of change pitch on coronary CTA with 64-detector row CT

    International Nuclear Information System (INIS)

    Li Xiang; Jin Chaolin; Zhang Shutong

    2009-01-01

    Objective: To investigate the impact of imaging quality of pitch on coronary CT angiography (CTA) with 64-detector row CT. Methods: 566 patients were divided into four groups according to heart rate (≤ 50, 51 ∼ 70, 71 ∼ 80 and ≥ 80 bpm). Three dimensional reconstructions were used such as volume rendering (VR), maximum intensity projection(MIP) and curved planar reformation (CPR). Each group was divided into control group and experimential group randomly, using normal pitch and revised pitch respectively, and the imaging quality and influencing factors were analyzed among the four groups. Results: There was significant difference in imaging quality among the four groups (P < 0.05). Each group had difference in imaging quality with normal pitch and revised pitch. Conclusions: The revised pitch helps to improve the imaging quality and meet the demand of diagnosis. (authors)

  17. Congenital amusics use a secondary pitch mechanism to identify lexical tones.

    Science.gov (United States)

    Bones, Oliver; Wong, Patrick C M

    2017-09-01

    Amusia is a pitch perception disorder associated with deficits in processing and production of both musical and lexical tones, which previous reports have suggested may be constrained to fine-grained pitch judgements. In the present study speakers of tone-languages, in which lexical tones are used to convey meaning, identified words present in chimera stimuli containing conflicting pitch-cues in the temporal fine-structure and temporal envelope, and which therefore conveyed two distinct utterances. Amusics were found to be more likely than controls to judge the word according to the envelope pitch-cues. This demonstrates that amusia is not associated with fine-grained pitch judgements alone, and is consistent with there being two distinct pitch mechanisms and with amusics having an atypical reliance on a secondary mechanism based upon envelope cues. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Utilisation of the binders prepared from coal tar pitch and phenolic resins for the production metallurgical quality briquettes from coke breeze and the study of their high temperature carbonization behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Benk, Ayse [University of Erciyes, Faculty of Art and Science, Department of Chemistry, 38039, Kayseri (Turkey)

    2010-09-15

    To reduce the cost of the formed coke briquettes which can be used as a substitute fuel to the metallurgical coke for the blast furnace from the coke breeze alternative binders and their blends were used. The high temperature behavior was investigated. The binders tested were: the nitrogen blown, air blown coal tar pitch and the blend of air blown coal tar pitch with the phenolic resins blends. The phenolic resin blends were prepared by mixing equal amount of resole and novalac. From the results, nitrogen blowing resulted in the weakest briquettes. The air blowing procedure should be preferred in place of nitrogen blowing for this purpose. When the air blown coal tar pitch was used alone as a binder, the briquettes must be cured at 200 C for 2 h, then carbonized at a temperature above 670 C. Since it requires higher temperature at carbonization stage, using air blown coal tar pitch alone as a binder was not economical. Therefore, the briquettes were prepared from the blended binder, containing air blown coal tar pitch and phenolic resins blend. The optimum amount of air blown coal tar pitch was found to be 50% w/w in the blended binder. Curing the briquettes at 200 C for 2 h was found to be sufficient for producing strong briquettes with a tensile strength of 50.45 MN/m{sup 2}. When these cured briquettes were carbonized at temperatures 470 C, 670 C and 950 C, their strength were increasing continuously, reaching to 71.85 MN/m{sup 2} at the carbonization temperature of 950 C. These briquettes can be used as a substitute for the metallurgical coke after curing; the process might not require un-economical high temperature carbonization stage. (author)

  19. Voltage harmonic variation in three-phase induction motors with different coil pitches

    International Nuclear Information System (INIS)

    Deshmukh, Ram; Moses, Anthony John; Anayi, Fatih

    2006-01-01

    A pulse-width modulation (PWM) inverter feeding four different chorded three-phase induction motors was tested for low-order odd harmonic voltage component and efficiency at different loads. Total harmonic distortion (THD) due to 3rd, 5th and 9th harmonics was less in a motor with 160 o coil pitch. Particular harmonic order for each coil pitch was suppressed and the efficiency of a 120 o coil pitch motor was increased by 7.5%

  20. Crackle Pitch Rises Progressively during Inspiration in Pneumonia, CHF, and IPF Patients

    OpenAIRE

    Vyshedskiy, Andrey; Murphy, Raymond

    2012-01-01

    Objective. It is generally accepted that crackles are due to sudden opening of airways and that larger airways produce crackles of lower pitch than smaller airways do. As larger airways are likely to open earlier in inspiration than smaller airways and the reverse is likely to be true in expiration, we studied crackle pitch as a function of crackle timing in inspiration and expiration. Our goal was to see if the measurement of crackle pitch was consistent with this theory. Methods. Patient...

  1. THE BEHAVIOR OF THE PITCH ANGLE OF SPIRAL ARMS DEPENDING ON OPTICAL WAVELENGTH

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-García, Eric E.; Puerari, Ivânio; Rosales-Ortega, F. F.; Luna, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Aptdo. Postal 51 y 216, 72000 Puebla, Pue. (Mexico); González-Lópezlira, Rosa A. [Centro de Radioastronomía y Astrofísica, UNAM, Campus Morelia, Michoacán, México, C.P. 58089 (Mexico); Fuentes-Carrera, Isaura, E-mail: ericmartinez@inaoep.mx [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U. P. Adolfo López Mateos, Zacatenco, 07730 México, D.F. (Mexico)

    2014-09-20

    Based on integral field spectroscopy data from the CALIFA survey, we investigate the possible dependence of spiral arm pitch angle with optical wavelength. For three of the five studied objects, the pitch angle gradually increases at longer wavelengths. This is not the case for two objects where the pitch angle remains constant. This result is confirmed by the analysis of SDSS data. We discuss the possible physical mechanisms to explain this phenomenon, as well as the implications of the results.

  2. Congenital Amusia (or Tone-Deafness) Interferes with Pitch Processing in Tone Languages

    OpenAIRE

    Tillmann, Barbara; Burnham, Denis; Nguyen, Sebastien; Grimault, Nicolas; Gosselin, Nathalie; Peretz, Isabelle

    2011-01-01

    Congenital amusia is a neurogenetic disorder that affects music processing and that is ascribed to a deficit in pitch processing. We investigated whether this deficit extended to pitch processing in speech, notably the pitch changes used to contrast lexical tones in tonal languages. Congenital amusics and matched controls, all non-tonal language speakers, were tested for lexical tone discrimination in Mandarin Chinese (Experiment 1) and in Thai (Experiment 2). Tones were presented in pairs an...

  3. Pitch perception and production in congenital amusia: Evidence from Cantonese speakers

    OpenAIRE

    Liu, Fang; Chan, Alice H. D.; Ciocca, Valter; Roquet, Catherine; Peretz, Isabelle; Wong, Patrick C. M.

    2016-01-01

    This study investigated pitch perception and production in speech and music in individuals with congenital amusia (a disorder of musical pitch processing) who are native speakers of Cantonese, a tone language with a highly complex tonal system. Sixteen Cantonese-speaking congenital amusics and 16 controls performed a set of lexical tone perception, production, singing, and psychophysical pitch threshold tasks. Their tone production accuracy and singing proficiency were subsequently judged by ...

  4. Demonstration of partial pitch 2-bladed wind turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong; Zahle, Frederik; Troldborg, Niels

    -sections on the blade as well as fully resolved rotor simulations, and finally simulations coupling HAWC2 with EllipSys3D, investigating the behaviors of the rotor at standstill, has been performed. For the WP3, the state-of-the art aeroelastic analysis tool, HAWC2, has been updated in order to consider the partial......This is the final report for the EUDP project performed from January 2012 to December 2015. The main objective for the project was to demonstrate the potential of the partial pitch two-bladed (PP-2B) technology. DTU Wind Energy took a responsibility for three workpackages (WPs) among 6 WPs which...... were aerodynamic evaluation of partial pitch technology (WP2), aeroelastic analysis of two-bladed turbine (WP3) and On-site testing (WP4). For the WP2, a comprehensive set of 3D CFD simulations including the gap between inner and outer part of the blade and vortex generators (VGs) of both cross...

  5. Blade pitch optimization methods for vertical-axis wind turbines

    Science.gov (United States)

    Kozak, Peter

    Vertical-axis wind turbines (VAWTs) offer an inherently simpler design than horizontal-axis machines, while their lower blade speed mitigates safety and noise concerns, potentially allowing for installation closer to populated and ecologically sensitive areas. While VAWTs do offer significant operational advantages, development has been hampered by the difficulty of modeling the aerodynamics involved, further complicated by their rotating geometry. This thesis presents results from a simulation of a baseline VAWT computed using Star-CCM+, a commercial finite-volume (FVM) code. VAWT aerodynamics are shown to be dominated at low tip-speed ratios by dynamic stall phenomena and at high tip-speed ratios by wake-blade interactions. Several optimization techniques have been developed for the adjustment of blade pitch based on finite-volume simulations and streamtube models. The effectiveness of the optimization procedure is evaluated and the basic architecture for a feedback control system is proposed. Implementation of variable blade pitch is shown to increase a baseline turbine's power output between 40%-100%, depending on the optimization technique, improving the turbine's competitiveness when compared with a commercially-available horizontal-axis turbine.

  6. Unsteady Flow Interactions Between Pitching Wings In Schooling Arrangements

    Science.gov (United States)

    Kurt, Melike; Moored, Keith

    2017-11-01

    In nature, many fish aggregate into large groups or schools for protection against predators, for social interactions and to save energy during migrations. Regardless of their prime motivation, fish experience three-dimensional flow interactions amongst themselves that can improve or hamper swimming performance and give rise to fluid-mediated forces between individuals. To date, the unsteady, three-dimensional flow interactions among schooling fish remains relatively unexplored. In order to study these interactions, the caudal fins of two interacting fish are idealized as two finite span pitching wings arranged in mixtures of canonical in-line and side-by-side arrangements. The forces and moments acting on the wings in the streamwise and cross-stream directions are quantified as the arrangement and the phase delay between the wings is altered. Particle image velocimetry is employed to characterize the flow physics during high efficiency locomotion. Finally, the forces and flowfields of two-dimensional pitching wings are compared with three-dimensional wings to distinguish how three-dimensionality alters the flow interactions in schools of fish.

  7. A nonmusical paradigm for identifying absolute pitch possessors

    Science.gov (United States)

    Ross, David A.; Olson, Ingrid R.; Marks, Lawrence E.; Gore, John C.

    2004-09-01

    The ability to identify and reproduce sounds of specific frequencies is remarkable and uncommon. The etiology and defining characteristics of this skill, absolute pitch (AP), have been very controversial. One theory suggests that AP requires a specific type of early musical training and that the ability to encode and remember tones depends on these learned musical associations. An alternate theory argues that AP may be strongly dependent on hereditary factors and relatively independent of musical experience. To date, it has been difficult to test these hypotheses because all previous paradigms for identifying AP have required subjects to employ knowledge of musical nomenclature. As such, these tests are insensitive to the possibility of discovering AP in either nonmusicians or musicians of non-Western training. Based on previous literature in pitch memory, a paradigm is presented that is intended to distinguish between AP possessors and nonpossessors independent of the subjects' musical experience. The efficacy of this method is then tested with 20 classically defined AP possessors and 22 nonpossessors. Data from these groups strongly support the validity of the paradigm. The use of a nonmusical paradigm to identify AP may facilitate research into many aspects of this phenomenon.

  8. Relationship between noise, dose, and pitch in cardiac multi-detector row CT.

    Science.gov (United States)

    Primak, Andrew N; McCollough, Cynthia H; Bruesewitz, Michael R; Zhang, Jie; Fletcher, Joel G

    2006-01-01

    In spiral computed tomography (CT), dose is always inversely proportional to pitch. However, the relationship between noise and pitch (and hence noise and dose) depends on the scanner type (single vs multi-detector row) and reconstruction mode (cardiac vs noncardiac). In single detector row spiral CT, noise is independent of pitch. Conversely, in noncardiac multi-detector row CT, noise depends on pitch because the spiral interpolation algorithm makes use of redundant data from different detector rows to decrease noise for pitch values less than 1 (and increase noise for pitch values > 1). However, in cardiac spiral CT, redundant data cannot be used because such data averaging would degrade the temporal resolution. Therefore, the behavior of noise versus pitch returns to the single detector row paradigm, with noise being independent of pitch. Consequently, since faster rotation times require lower pitch values in cardiac multi-detector row CT, dose is increased without a commensurate decrease in noise. Thus, the use of faster rotation times will improve temporal resolution, not alter noise, and increase dose. For a particular application, the higher dose resulting from faster rotation speeds should be justified by the clinical benefits of the improved temporal resolution. RSNA, 2006

  9. Singing with yourself: evidence for an inverse modeling account of poor-pitch singing.

    Science.gov (United States)

    Pfordresher, Peter Q; Mantell, James T

    2014-05-01

    Singing is a ubiquitous and culturally significant activity that humans engage in from an early age. Nevertheless, some individuals - termed poor-pitch singers - are unable to match target pitches within a musical semitone while singing. In the experiments reported here, we tested whether poor-pitch singing deficits would be reduced when individuals imitate recordings of themselves as opposed to recordings of other individuals. This prediction was based on the hypothesis that poor-pitch singers have not developed an abstract "inverse model" of the auditory-vocal system and instead must rely on sensorimotor associations that they have experienced directly, which is true for sequences an individual has already produced. In three experiments, participants, both accurate and poor-pitch singers, were better able to imitate sung recordings of themselves than sung recordings of other singers. However, this self-advantage was enhanced for poor-pitch singers. These effects were not a byproduct of self-recognition (Experiment 1), vocal timbre (Experiment 2), or the absolute pitch of target recordings (i.e., the advantage remains when recordings are transposed, Experiment 3). Results support the conceptualization of poor-pitch singing as an imitative deficit resulting from a deficient inverse model of the auditory-vocal system with respect to pitch. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Singing ability is rooted in vocal-motor control of pitch.

    Science.gov (United States)

    Hutchins, Sean; Larrouy-Maestri, Pauline; Peretz, Isabelle

    2014-11-01

    The inability to vocally match a pitch can be caused by poor pitch perception or by poor vocal-motor control. Although previous studies have tried to examine the relationship between pitch perception and vocal production, they have failed to control for the timbre of the target to be matched. In the present study, we compare pitch-matching accuracy with an unfamiliar instrument (the slider) and with the voice, designed such that the slider plays back recordings of the participant's own voice. We also measured pitch accuracy in singing a familiar melody ("Happy Birthday") to assess the relationship between single-pitch-matching tasks and melodic singing. Our results showed that participants (all nonmusicians) were significantly better at matching recordings of their own voices with the slider than with their voice, indicating that vocal-motor control is an important limiting factor on singing ability. We also found significant correlations between the ability to sing a melody in tune and vocal pitch matching, but not pitch matching on the slider. Better melodic singers also tended to have higher quality voices (as measured by acoustic variables). These results provide important evidence about the role of vocal-motor control in poor singing ability and demonstrate that single-pitch-matching tasks can be useful in measuring general singing abilities.

  11. Structural Load Analysis of a Wind Turbine under Pitch Actuator and Controller Faults

    International Nuclear Information System (INIS)

    Etemaddar, Mahmoud; Gao, Zhen; Moan, Torgeir

    2014-01-01

    In this paper, we investigate the characteristics of a wind turbine under blade pitch angle and shaft speed sensor faults as well as pitch actuator faults. A land-based NREL 5MW variable speed pitch reg- ulated wind turbine is considered as a reference. The conventional collective blade pitch angle controller strategy with independent pitch actuators control is used for load reduction. The wind turbine class is IEC-BII. The main purpose is to investigate the severity of end effects on structural loads and responses and consequently identify the high-risk components according to the type and amplitude of fault using a servo-aero-elastic simulation code, HAWC2. Both transient and steady state effects of faults are studied. Such information is useful for wind turbine fault detection and identification as well as system reliability analysis. Results show the effects of faults on wind turbine power output and responses. Pitch sensor faults mainly affects the vibration of shaft main bearing, while generator power and aerodynamic thrust are not changed significantly, due to independent pitch actuator control of three blades. Shaft speed sensor faults can seriously affect the generator power and aerodynamic thrust. Pitch actuator faults can result in fully pitching of the blade, and consequently rotor stops due to negative aerodynamic torque

  12. From amusic to musical?--Improving pitch memory in congenital amusia with transcranial alternating current stimulation.

    Science.gov (United States)

    Schaal, Nora K; Pfeifer, Jasmin; Krause, Vanessa; Pollok, Bettina

    2015-11-01

    Brain imaging studies highlighted structural differences in congenital amusia, a life-long perceptual disorder that is associated with pitch perception and pitch memory deficits. A functional anomaly characterized by decreased low gamma oscillations (30-40 Hz range) in the right dorsolateral prefrontal cortex (DLPFC) during pitch memory has been revealed recently. Thus, the present study investigates whether applying transcranial alternating current stimulation (tACS) at 35 Hz to the right DLPFC would improve pitch memory. Nine amusics took part in two tACS sessions (either 35 Hz or 90 Hz) and completed a pitch and visual memory task before and during stimulation. 35 Hz stimulation facilitated pitch memory significantly. No modulation effects were found with 90 Hz stimulation or on the visual task. While amusics showed a selective impairment of pitch memory before stimulation, the performance during 35 Hz stimulation was not significantly different to healthy controls anymore. Taken together, the study shows that modulating the right DLPFC with 35 Hz tACS in congenital amusia selectively improves pitch memory performance supporting the hypothesis that decreased gamma oscillations within the DLPFC are causally involved in disturbed pitch memory and highlight the potential use of tACS to interact with cognitive processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Comparison of individual pitch and smart rotor control strategies for load reduction

    Science.gov (United States)

    Plumley, C.; Leithead, W.; Jamieson, P.; Bossanyi, E.; Graham, M.

    2014-06-01

    Load reduction is increasingly seen as an essential part of controller and wind turbine design. On large multi-MW wind turbines that experience high levels of wind shear and turbulence across the rotor, individual pitch control and smart rotor control are being considered. While individual pitch control involves adjusting the pitch of each blade individually to reduce the cyclic loadings on the rotor, smart rotor control involves activating control devices distributed along the blades to alter the local aerodynamics of the blades. Here we investigate the effectiveness of using a DQ-axis control and a distributed (independent) control for both individual pitch and trailing edge flap smart rotor control. While load reductions are similar amongst the four strategies across a wide range of variables, including blade root bending moments, yaw bearing and shaft, the pitch actuator requirements vary. The smart rotor pitch actuator has reduced travel, rates, accelerations and power requirements than that of the individual pitch controlled wind turbines. This benefit alone however would be hard to justify the added design complexities of using a smart rotor, which can be seen as an alternative to upgrading the pitch actuator and bearing. In addition, it is found that the independent control strategy is apt at roles that the collective pitch usually targets, such as tower motion and speed control, and it is perhaps here, in supplementing other systems, that the future of the smart rotor lies.

  14. Visuoauditory mappings between high luminance and high pitch are shared by chimpanzees (Pan troglodytes) and humans

    Science.gov (United States)

    Ludwig, Vera U.; Adachi, Ikuma; Matsuzawa, Tetsuro

    2011-01-01

    Humans share implicit preferences for certain cross-sensory combinations; for example, they consistently associate higher-pitched sounds with lighter colors, smaller size, and spikier shapes. In the condition of synesthesia, people may experience such cross-modal correspondences to a perceptual degree (e.g., literally seeing sounds). So far, no study has addressed the question whether nonhuman animals share cross-modal correspondences as well. To establish the evolutionary origins of cross-modal mappings, we tested whether chimpanzees (Pan troglodytes) also associate higher pitch with higher luminance. Thirty-three humans and six chimpanzees were required to classify black and white squares according to their color while hearing irrelevant background sounds that were either high-pitched or low-pitched. Both species performed better when the background sound was congruent (high-pitched for white, low-pitched for black) than when it was incongruent (low-pitched for white, high-pitched for black). An inherent tendency to pair high pitch with high luminance hence evolved before the human lineage split from that of chimpanzees. Rather than being a culturally learned or a linguistic phenomenon, this mapping constitutes a basic feature of the primate sensory system. PMID:22143791

  15. Calculation and characteristics analysis of blade pitch loads for large scale wind turbines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the electric pitch system of large scale horizontal-axis wind turbines,the blade pitch loads coming mainly from centrifugal force,aerodynamic force and gravity are analyzed,and the calculation models for them are established in this paper.For illustration,a 1.2 MW wind turbine is introduced as a practical sample,and its blade pitch loads from centrifugal force,aerodynamic force and gravity are calculated and analyzed separately and synthetically.The research results showed that in the process of rotor rotating 360o,the fluctuation of blade pitch loads is similar to cosine curve when the rotor rotational speed,in-flow wind speed and pitch angle are constant.Furthermore,the amplitude of blade pitch load presents quite a difference at a different pitch angle.The ways of calculation for blade pitch loads are of the universality,and are helpful for further research of the individual pitch control system.

  16. Comparison of individual pitch and smart rotor control strategies for load reduction

    International Nuclear Information System (INIS)

    Plumley, C; Leithead, W; Jamieson, P; Bossanyi, E; Graham, M

    2014-01-01

    Load reduction is increasingly seen as an essential part of controller and wind turbine design. On large multi-MW wind turbines that experience high levels of wind shear and turbulence across the rotor, individual pitch control and smart rotor control are being considered. While individual pitch control involves adjusting the pitch of each blade individually to reduce the cyclic loadings on the rotor, smart rotor control involves activating control devices distributed along the blades to alter the local aerodynamics of the blades. Here we investigate the effectiveness of using a DQ-axis control and a distributed (independent) control for both individual pitch and trailing edge flap smart rotor control. While load reductions are similar amongst the four strategies across a wide range of variables, including blade root bending moments, yaw bearing and shaft, the pitch actuator requirements vary. The smart rotor pitch actuator has reduced travel, rates, accelerations and power requirements than that of the individual pitch controlled wind turbines. This benefit alone however would be hard to justify the added design complexities of using a smart rotor, which can be seen as an alternative to upgrading the pitch actuator and bearing. In addition, it is found that the independent control strategy is apt at roles that the collective pitch usually targets, such as tower motion and speed control, and it is perhaps here, in supplementing other systems, that the future of the smart rotor lies

  17. Children’s identification of familiar songs from pitch and timing cues

    Directory of Open Access Journals (Sweden)

    Anna eVolkova

    2014-08-01

    Full Text Available The goal of the present study was to ascertain whether children with normal hearing and prelingually deaf children with cochlear implants could use pitch or timing cues alone or in combination to identify familiar songs. Children 4-7 years of age were required to identify the theme songs of familiar TV shows in a simple task with excerpts that preserved (1 the relative pitch and timing cues of the melody but not the original instrumentation, (2 the timing cues only (rhythm, meter, and tempo, and (3 the relative pitch cues only (pitch contour and intervals. Children with normal hearing performed at high levels and comparably across the three conditions. The performance of child implant users was well above chance levels when both pitch and timing cues were available, marginally above chance with timing cues only, and at chance with pitch cues only. This is the first demonstration that children can identify familiar songs from monotonic versions—timing cues but no pitch cues—and from isochronous versions—pitch cues but no timing cues. The study also indicates that, in the context of a very simple task, young implant users readily identify songs from melodic versions that preserve pitch and timing cues.

  18. Pitch perception and production in congenital amusia: Evidence from Cantonese speakers.

    Science.gov (United States)

    Liu, Fang; Chan, Alice H D; Ciocca, Valter; Roquet, Catherine; Peretz, Isabelle; Wong, Patrick C M

    2016-07-01

    This study investigated pitch perception and production in speech and music in individuals with congenital amusia (a disorder of musical pitch processing) who are native speakers of Cantonese, a tone language with a highly complex tonal system. Sixteen Cantonese-speaking congenital amusics and 16 controls performed a set of lexical tone perception, production, singing, and psychophysical pitch threshold tasks. Their tone production accuracy and singing proficiency were subsequently judged by independent listeners, and subjected to acoustic analyses. Relative to controls, amusics showed impaired discrimination of lexical tones in both speech and non-speech conditions. They also received lower ratings for singing proficiency, producing larger pitch interval deviations and making more pitch interval errors compared to controls. Demonstrating higher pitch direction identification thresholds than controls for both speech syllables and piano tones, amusics nevertheless produced native lexical tones with comparable pitch trajectories and intelligibility as controls. Significant correlations were found between pitch threshold and lexical tone perception, music perception and production, but not between lexical tone perception and production for amusics. These findings provide further evidence that congenital amusia is a domain-general language-independent pitch-processing deficit that is associated with severely impaired music perception and production, mildly impaired speech perception, and largely intact speech production.

  19. Effects of Music and Tonal Language Experience on Relative Pitch Performance.

    Science.gov (United States)

    Ngo, Mary Kim; Vu, Kim-Phuong L; Strybel, Thomas Z

    2016-01-01

    We examined the interaction between music and tone language experience as related to relative pitch processing by having participants judge the direction and magnitude of pitch changes in a relative pitch task. Participants' performance on this relative pitch task was assessed using the Cochran-Weiss-Shanteau (CWS) index of expertise, based on a ratio of discrimination over consistency in participants' relative pitch judgments. Testing took place in 2 separate sessions on different days to assess the effects of practice on participants' performance. Participants also completed the Montreal Battery of Evaluation of Amusia (MBEA), an existing measure comprising subtests aimed at evaluating relative pitch processing abilities. Musicians outperformed nonmusicians on both the relative pitch task, as measured by the CWS index, and the MBEA, but tonal language speakers outperformed non-tonal language speakers only on the MBEA. A closer look at the discrimination and consistency component scores of the CWS index revealed that musicians were better at discriminating different pitches and more consistent in their assessments of the direction and magnitude of relative pitch change.

  20. Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This paper extends Hodges-Dowell's partial differential equations of blade motion, by including the effects from gravity, pitch action and varying rotor speed. New equations describing the pitch action and rotor speeds are also derived. The physical interpretation of the individual terms...... in the equations is discussed. The partial differential equations of motion are approximated by ordinary differential equations of motion using an assumed mode method. The ordinary differential equations are used to simulate a sudden pitch change of a rotating blade. This work is a part of a project on pitch blade...

  1. Detection of pitch failures in wind turbines using environmental noise recognition techniques

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Marhadi, Kun S.; Gomez, Robert

    2015-01-01

    Modern wind turbines employ pitch regulated control strategies in order to optimise the yielded power production. Pitch systems can be subjected to various failure modes related to cylinders, bearings and loose mounting, leading to poor pitching and aerodynamic imbalance. Early stage pitch....... The proposed method is built upon the following three processes. Firstly, the impacts are identified using envelope analysis, followed by the extraction of 12 features, such as energy, crest factor and peak to peak amplitude and finally the classification of the events based on the above features. Eighty nine...

  2. arXiv Signal coupling to embedded pitch adapters in silicon sensors

    CERN Document Server

    Artuso, M.; Bezshyiko, I.; Blusk, S.; Bruendler, R.; Bugiel, S.; Dasgupta, R.; Dendek, A.; Dey, B.; Ely, S.; Lionetto, F.; Petruzzo, M.; Polyakov, I.; Rudolph, M.; Schindler, H.; Steinkamp, O.; Stone, S.

    2018-01-01

    We have examined the effects of embedded pitch adapters on signal formation in n-substrate silicon microstrip sensors with data from beam tests and simulation. According to simulation, the presence of the pitch adapter metal layer changes the electric field inside the sensor, resulting in slowed signal formation on the nearby strips and a pick-up effect on the pitch adapter. This can result in an inefficiency to detect particles passing through the pitch adapter region. All these effects have been observed in the beam test data.

  3. Kalman Filtering and Smoothing of the Van Allen Probes Observations to Estimate the Radial, Energy and Pitch Angle Diffusion Rates

    Science.gov (United States)

    Podladchikova, T.; Shprits, Y.; Kellerman, A. C.

    2015-12-01

    The Kalman filter technique combines the strengths of new physical models of the Earth's radiation belts with long-term spacecraft observations of electron fluxes and therefore provide an extremely useful method for the analysis of the state and evolution of the electron radiation belts. However, to get the reliable data assimilation output, the Kalman filter application is confronted with a set of fundamental problems. E.g., satellite measurements are usually limited to a single location in space, which confines the reconstruction of the global evolution of the radiation environment. The uncertainties arise from the imperfect description of the process dynamics and the presence of observation errors, which may cause the failure of data assimilation solution. The development of adaptive Kalman filter that combines the Van Allen Probes data and 3-D VERB code, its accurate customizations in the reconstruction of model describing the phase space density (PSD) evolution, extension of the possibilities to use measurement information, and the model adjustment by developing the identification techniques of model and measurement errors allowed us to reveal hidden and implicit regularities of the PSD dynamics and obtain quantitative and qualitative estimates of radial, energy and pitch angle diffusion characteristics from satellite observations. In this study we propose an approach to estimate radial, energy and pitch angle diffusion rates, as well as the direction of their propagation.

  4. Strengths-based Learning

    DEFF Research Database (Denmark)

    Ledertoug, Mette Marie

    -being. The Ph.D.-project in Strength-based learning took place in a Danish school with 750 pupils age 6-16 and a similar school was functioning as a control group. The presentation will focus on both the aware-explore-apply processes and the practical implications for the schools involved, and on measurable......Strength-based learning - Children͛s Character Strengths as Means to their Learning Potential͛ is a Ph.D.-project aiming to create a strength-based mindset in school settings and at the same time introducing strength-based interventions as specific tools to improve both learning and well...

  5. Differential recognition of pitch patterns in discrete and gliding stimuli in congenital amusia: evidence from Mandarin speakers.

    Science.gov (United States)

    Liu, Fang; Xu, Yi; Patel, Aniruddh D; Francart, Tom; Jiang, Cunmei

    2012-08-01

    This study examined whether "melodic contour deafness" (insensitivity to the direction of pitch movement) in congenital amusia is associated with specific types of pitch patterns (discrete versus gliding pitches) or stimulus types (speech syllables versus complex tones). Thresholds for identification of pitch direction were obtained using discrete or gliding pitches in the syllable /ma/ or its complex tone analog, from nineteen amusics and nineteen controls, all healthy university students with Mandarin Chinese as their native language. Amusics, unlike controls, had more difficulty recognizing pitch direction in discrete than in gliding pitches, for both speech and non-speech stimuli. Also, amusic thresholds were not significantly affected by stimulus types (speech versus non-speech), whereas controls showed lower thresholds for tones than for speech. These findings help explain why amusics have greater difficulty with discrete musical pitch perception than with speech perception, in which continuously changing pitch movements are prevalent. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Hindcasting of storm waves using neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, S.; Mandal, S.

    Department NN neural network net i weighted sum of the inputs of neuron i o k network output at kth output node P total number of training pattern s i output of neuron i t k target output at kth output node 1. Introduction Severe storms occur in Bay of Bengal...), forecasting of runoff (Crespo and Mora, 1993), concrete strength (Kasperkiewicz et al., 1995). The uses of neural network in the coastal the wave conditions will change from year to year, thus a proper statistical and climatological treatment requires several...

  7. Full field image reconstruction is suitable for high-pitch dual-source computed tomography.

    Science.gov (United States)

    Mahnken, Andreas H; Allmendinger, Thomas; Sedlmair, Martin; Tamm, Miriam; Reinartz, Sebastian D; Flohr, Thomas

    2012-11-01

    The field of view (FOV) in high-pitch dual-source computed tomography (DSCT) is limited by the size of the second detector. The goal of this study was to develop and evaluate a full FOV image reconstruction technique for high-pitch DSCT. For reconstruction beyond the FOV of the second detector, raw data of the second system were extended to the full dimensions of the first system, using the partly existing data of the first system in combination with a very smooth transition weight function. During the weighted filtered backprojection, the data of the second system were applied with an additional weighting factor. This method was tested for different pitch values from 1.5 to 3.5 on a simulated phantom and on 25 high-pitch DSCT data sets acquired at pitch values of 1.6, 2.0, 2.5, 2.8, and 3.0. Images were reconstructed with FOV sizes of 260 × 260 and 500 × 500 mm. Image quality was assessed by 2 radiologists using a 5-point Likert scale and analyzed with repeated-measure analysis of variance. In phantom and patient data, full FOV image quality depended on pitch. Where complete projection data from both tube-detector systems were available, image quality was unaffected by pitch changes. Full FOV image quality was not compromised at pitch values of 1.6 and remained fully diagnostic up to a pitch of 2.0. At higher pitch values, there was an increasing difference in image quality between limited and full FOV images (P = 0.0097). With this new image reconstruction technique, full FOV image reconstruction can be used up to a pitch of 2.0.

  8. Crackle Pitch Rises Progressively during Inspiration in Pneumonia, CHF, and IPF Patients.

    Science.gov (United States)

    Vyshedskiy, Andrey; Murphy, Raymond

    2012-01-01

    Objective. It is generally accepted that crackles are due to sudden opening of airways and that larger airways produce crackles of lower pitch than smaller airways do. As larger airways are likely to open earlier in inspiration than smaller airways and the reverse is likely to be true in expiration, we studied crackle pitch as a function of crackle timing in inspiration and expiration. Our goal was to see if the measurement of crackle pitch was consistent with this theory. Methods. Patients with a significant number of crackles were examined using a multichannel lung sound analyzer. These patients included 34 with pneumonia, 38 with heart failure, and 28 with interstitial fibrosis. Results. Crackle pitch progressively increased during inspirations in 79% of all patients. In these patients crackle pitch increased by approximately 40 Hz from the early to midinspiration and by another 40 Hz from mid to late-inspiration. In 10% of patients, crackle pitch did not change and in 11% of patients crackle pitch decreased. During expiration crackle pitch progressively decreased in 72% of patients and did not change in 28% of patients. Conclusion. In the majority of patients, we observed progressive crackle pitch increase during inspiration and decrease during expiration. Increased crackle pitch at larger lung volumes is likely a result of recruitment of smaller diameter airways. An alternate explanation is that crackle pitch may be influenced by airway tension that increases at greater lung volume. In any case improved understanding of the mechanism of production of these common lung sounds may help improve our understanding of pathophysiology of these disorders.

  9. Meta-analytic evidence for the non-modularity of pitch processing in congenital amusia.

    Science.gov (United States)

    Vuvan, Dominique T; Nunes-Silva, Marilia; Peretz, Isabelle

    2015-08-01

    A major theme driving research in congenital amusia is related to the modularity of this musical disorder, with two possible sources of the amusic pitch perception deficit. The first possibility is that the amusic deficit is due to a broad disorder of acoustic pitch processing that has the effect of disrupting downstream musical pitch processing, and the second is that amusia is specific to a musical pitch processing module. To interrogate these hypotheses, we performed a meta-analysis on two types of effect sizes contained within 42 studies in the amusia literature: the performance gap between amusics and controls on tasks of pitch discrimination, broadly defined, and the correlation between specifically acoustic pitch perception and musical pitch perception. To augment the correlation database, we also calculated this correlation using data from 106 participants tested by our own research group. We found strong evidence for the acoustic account of amusia. The magnitude of the performance gap was moderated by the size of pitch change, but not by whether the stimuli were composed of tones or speech. Furthermore, there was a significant correlation between an individual's acoustic and musical pitch perception. However, individual cases show a double dissociation between acoustic and musical processing, which suggests that although most amusic cases are probably explainable by an acoustic deficit, there is heterogeneity within the disorder. Finally, we found that tonal language fluency does not influence the performance gap between amusics and controls, and that there was no evidence that amusics fare worse with pitch direction tasks than pitch discrimination tasks. These results constitute a quantitative review of the current literature of congenital amusia, and suggest several new directions for research, including the experimental induction of amusic behaviour through transcranial magnetic stimulation (TMS) and the systematic exploration of the developmental

  10. Application of Cu-polyimide flex circuit and Al-on-glass pitch adapter for the ATLAS SCT barrel hybrid

    CERN Document Server

    Unno, Y; Ikegami, Y; Iwata, Y; Kohriki, T; Kondo, T; Nakano, I; Ohsugi, T; Takashima, R; Tanaka, R; Terada, S; Ujiie, N

    2005-01-01

    We applied the surface build-up Cu-polyimide flex-circuit technology with laser vias to the ATLAS SCT barrel hybrid to be made in one piece from the connector to the electronics sections including cables. The hybrids, reinforced with carbon-carbon substrates, provide mechanical strength, thermal conductivity, low-radiation length, and stability in application-specific integrated circuit (ASIC) operation. By following the design rules, we experienced little trouble in breaking the traces. The pitch adapter between the sensor and the ASICs was made of aluminum traces on glass substrate. We identified that the generation of whiskers around the wire-bonding feet was correlated with the hardness of metallized aluminum. The appropriate hardness has been achieved by keeping the temperature of the glasses as low as room temperature during the metallization. The argon plasma cleaning procedure cleaned the contamination on the gold pads of the hybrids for successful wire bonding, although it was unsuccessful in the alu...

  11. The Effects of Head-Up Display (HUD) Pitch Ladder Articulation, Pitch Number Location and Horizon Line Length on Unusual Attitude Recoveries for the F-16

    Science.gov (United States)

    1990-07-01

    No comment . ’D. No comment . E. The best display was the partially articulated HUD. F. Only pitch bars below the horizon should be articulated. G. Fully articulated pitch bars were the best. H. Fully articulated configuration was easiest to quickly determine which direction to the horizon. I. No comment . J. Fully articulated HUD gave instant feedback on which way to pull to the horizon, K. No comment . L. Definite difference using the full articulation. 2. The following zomments are

  12. 基于BP神经网络的音乐情感分类及评价模型%Music emotion classification and evaluation model based on BP neural network

    Institute of Scientific and Technical Information of China (English)

    赵伟

    2015-01-01

    针对多音轨MIDI文件,提出一种多音轨MIDI音乐主旋律识别方法,通过对表征音乐旋律特征的音高、音长、音色、速度和力度5个特征向量的提取,构建基于BP神经网络的情感模型,并且用200首不同情感特征的歌曲对其进行训练和验证。实验结果显示取得了较好的效果。%The audio track of music melody includes a lot of useful information of music melody, which is the basic of music character recognition and also the premise work in the design of the performance plan of music foundation .Five eigenvectors:pitch, length, tone tempo and strength are extracted for the expression of music melody, by which, the basic music character recognition system can be set up. A emotion model is formed by using BP neural network.200 songs with different emotional characteristic songs will be used as the sample data for the training and validation of the neural network. The results of validation shows the effectiveness of the emotion model.

  13. Strength and power of knee extensor muscles

    Directory of Open Access Journals (Sweden)

    Knežević Olivera

    2011-01-01

    Full Text Available In the studies of human neuromuscular function, the function of leg muscles has been most often measured, particularly the function of the knee extensors. Therefore, this review will be focused on knee extensors, methods for assessment of its function, the interdependence of strength and power, relations that describe these two abilities and the influence of various factors on their production (resistance training, stretching, movement tasks, age, etc.. Given that it consists of four separate muscles, the variability of their anatomical characteristics affects their participation in strength and power production, depending on the type of movement and motion that is performed. Since KE is active in a variety of activities it must be able to generate great strength in a large and diverse range of muscle lengths and high shortening velocities, in respect to different patterns of strength production, and thus different generation capacities within the muscle (Blazevich et al., 2006. It has been speculated that KE exerts its Pmax at workloads close to subject's own body weight or lower (Rahmani et al., 2001, which is very close to the maximum dynamic output hypothesis (MDI of Jaric and Markovic (2009. Changes under the influence of resistance training or biological age are variously manifested in muscle's morphological, physiological and neural characteristics, and thus in strength and power. Understanding the issues related to strength and power as abilities of great importance for daily activities, is also important for sports and rehabilitation. Performances improvement in sports in which leg muscles strength and power are crucial, as well as recovery after the injuries, are largely dependent on the research results regarding KE function. Also, the appropriate strength balance between knee flexors and extensors is important for the knee joint stability, so that the presence of imbalance between these two muscle groups might be a risk factor for

  14. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  15. A Cultural Paradigm--Learning by Observing and Pitching In.

    Science.gov (United States)

    Rogoff, Barbara; Mejía-Arauz, Rebeca; Correa-Chávez, Maricela

    2015-01-01

    We discuss Learning by Observing and Pitching In (LOPI) as a cultural paradigm that provides an interesting alternative to Assembly-Line Instruction for supporting children's learning. Although LOPI may occur in all communities, it appears to be especially prevalent in many Indigenous and Indigenous-heritage communities of the Americas. We explain key features of this paradigm, previewing the chapters of this volume, which examine LOPI as it occurs in the lives of families and communities. In this introductory chapter, we focus especially on one feature of the paradigm that plays an important role in its uptake and maintenance in families, institutions, and communities-the nature of assessment. We consider the power of the dominant paradigm and the challenges in making paradigm shifts. © 2015 Elsevier Inc. All rights reserved.

  16. Effects of musical training and hearing loss on pitch discrimination

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Bianchi, Federica; Dau, Torsten

    2018-01-01

    content of the sound and whether the harmonics are resolved by the auditory frequency analysis operated by cochlear processing. F0DLs are also heavily influenced by the amount of musical training received by the listener and by the spectrotemporal auditory processing deficits that often accompany...... sensorineural hearing loss. This paper reviews the latest evidence for how musical training and hearing loss affect pitch discrimination performance, based on behavioral F0DL experiments with complex tones containing either resolved or unresolved harmonics, carried out in listeners with different degrees...... of hearing loss and musicianship. A better understanding of the interaction between these two factors is crucial to determine whether auditory training based on musical tasks or targeted towards specific auditory cues may be useful to hearing-impaired patients undergoing hearing rehabilitation....

  17. HYDRODYNAMICS OF OSCILLATING WING ON THE PITCH ANGLE

    Directory of Open Access Journals (Sweden)

    Vitalii Korobov

    2017-07-01

    Full Text Available Purpose: research of the hydrodynamic characteristics of a wing in a nonstationary stream. Methods: The experimental studies of the hydrodynamic load acting on the wing of 1.5 elongation, wich harmonically oscillated respect to the transversal axis in the frequency range of 0.2-2.5 Hz. The flow speed in the hydrodynamic tunnel ranged of 0.2-1.5 m/s. Results: The instantaneous values of the coefficients of lift and drag / thrust on the pitch angle at unsteady flow depends on the Strouhal number.Discussion: with increasing oscillation frequency coefficients of hydrodynamic force components significantly higher than the data for the stationary blowing out of the wing.

  18. Statistical study of ion pitch-angle distributions

    International Nuclear Information System (INIS)

    Sibeck, D.G.; Mcentire, R.W.; Lui, A.T.Y.; Krimigis, S.M.

    1987-01-01

    Preliminary results of a statistical study of energetic (34-50 keV) ion pitch-angle distributions (PADs) within 9 Re of earth provide evidence for an orderly pattern consistent with both drift-shell splitting and magnetopause shadowing. Normal ion PADs dominate the dayside and inner magnetosphere. Butterfly PADs typically occur in a narrow belt stretching from dusk to dawn through midnight, where they approach within 6 Re of earth. While those ion butterfly PADs that typically occur on closed drift paths are mainly caused by drift-shell splitting, there is also evidence for magnetopause shadowing in observations of more frequent butterfly PAD occurrence in the outer magnetosphere near dawn than dusk. Isotropic and gradient boundary PADs terminate the tailward extent of the butterfly ion PAD belt. 9 references

  19. Adaptive pitch control for load mitigation of wind turbines

    Science.gov (United States)

    Yuan, Yuan; Tang, J.

    2015-04-01

    In this research, model reference adaptive control is examined for the pitch control of wind turbines that may suffer from reduced life owing to extreme loads and fatigue when operated under a high wind speed. Specifically, we aim at making a trade-off between the maximum energy captured and the load induced. The adaptive controller is designed to track the optimal generator speed and at the same time to mitigate component loads under turbulent wind field and other uncertainties. The proposed algorithm is tested on the NREL offshore 5-MW baseline wind turbine, and its performance is compared with that those of the gain scheduled proportional integral (GSPI) control and the disturbance accommodating control (DAC). The results show that the blade root flapwise load can be reduced at a slight expense of optimal power output. The generator speed regulation under adaptive controller is better than DAC.

  20. Sensor comparison study for load alleviating wind turbine pitch control

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig; Henriksen, Lars Christian

    2014-01-01

    As the size of wind turbines increases, the load alleviating capabilities of the turbine controller are becoming increasingly important. Load alleviating control schemes have traditionally been based on feedback from load sensor; however, recent developments of measurement technologies have enabled...... control on the basis of preview measurements of the inflow acquired using, e.g., light detection and ranging. The potential of alleviating load variations that are caused by mean wind speed changes through feed-forward control have been demonstrated through both experiments and simulations in several...... studies, whereas the potential of preview control for alleviating the load variations caused by azimuth dependent inflow variations is less described. Individual or cyclic pitch is required to alleviate azimuth dependent load variations and is traditionally applied through feedback control of the blade...

  1. Fire resistance of single pitched-roof steel portal frame

    Directory of Open Access Journals (Sweden)

    J. J. Ferrán Gozálvez

    2017-03-01

    Full Text Available The standard procedure of structural fire design is based on the simplified analysis of single members. This method leads to conservative results in the case of structures able to redistribution of forces. The failure mechanism affecting both life safety and fire propagation is unknown. This work proposes a methodology for the advanced fire calculation of single pitched-roof portal frame for an agroindustrial building according to the Spanish Specifications with the structural software SAP2000. A non-linear dynamic and plastic, geometric (P-Delta and large-displacements calculation method has been developed. The different failure mechanisms and their influence are studied in terms of fire time resistance, human hazard and good safety. Also, parametric analyses were conducted: load level, rotational stiffness of the base and finally, support fire protection.

  2. Signal collection and position reconstruction of silicon strip detectors with 200 μm readout pitch

    International Nuclear Information System (INIS)

    Krammer, M.; Pernegger, H.

    1997-01-01

    Silicon strip detectors with large readout pitch and intermediate strips offer an interesting approach to reduce the number of readout channels in the tracking systems of future collider experiments without compromising too much on the spatial resolution. Various detector geometries with a readout pitch of 200 μm have been studied for their signal response and spatial resolution. (orig.)

  3. Perceived Pitch of Violin and Cello Vibrato Tones among Music Majors

    Science.gov (United States)

    Geringer, John M.; MacLeod, Rebecca B.; Allen, Michael L.

    2010-01-01

    The purpose of this study was to investigate the perceived pitch of string vibrato tones. The authors used recordings of acoustic instruments (cello and violin) to provide both vibrato stimulus tones and the nonvibrato tones that listeners adjusted to match the perceived pitch of the vibrato stimuli. We were interested especially in whether there…

  4. Tonal Language Background and Detecting Pitch Contour in Spoken and Musical Items

    Science.gov (United States)

    Stevens, Catherine J.; Keller, Peter E.; Tyler, Michael D.

    2013-01-01

    An experiment investigated the effect of tonal language background on discrimination of pitch contour in short spoken and musical items. It was hypothesized that extensive exposure to a tonal language attunes perception of pitch contour. Accuracy and reaction times of adult participants from tonal (Thai) and non-tonal (Australian English) language…

  5. Evaluation of health risks of playing sports on synthetic turf pitches with rubber granulate

    NARCIS (Netherlands)

    Oomen AG; de Groot GM; CPV; M&V

    2017-01-01

    New research by the Dutch National Institute for Public Health and the Environment (RIVM) indicates that the health risk of playing sports on synthetic turf pitches with an infill of rubber granulate is virtually negligible. Therefore, it is considered safe for people to play sports on such pitches.

  6. Crackle Pitch Rises Progressively during Inspiration in Pneumonia, CHF, and IPF Patients

    Directory of Open Access Journals (Sweden)

    Andrey Vyshedskiy

    2012-01-01

    Methods. Patients with a significant number of crackles were examined using a multichannel lung sound analyzer. These patients included 34 with pneumonia, 38 with heart failure, and 28 with interstitial fibrosis. Results. Crackle pitch progressively increased during inspirations in 79% of all patients. In these patients crackle pitch increased by approximately 40 Hz from the early to midinspiration and by another 40 Hz from mid to late-inspiration. In 10% of patients, crackle pitch did not change and in 11% of patients crackle pitch decreased. During expiration crackle pitch progressively decreased in 72% of patients and did not change in 28% of patients. Conclusion. In the majority of patients, we observed progressive crackle pitch increase during inspiration and decrease during expiration. Increased crackle pitch at larger lung volumes is likely a result of recruitment of smaller diameter airways. An alternate explanation is that crackle pitch may be influenced by airway tension that increases at greater lung volume. In any case improved understanding of the mechanism of production of these common lung sounds may help improve our understanding of pathophysiology of these disorders.

  7. Servo-Elastic Dynamics of a Hydraulic Actuator Pitching a Blade with Large Deflections

    International Nuclear Information System (INIS)

    Hansen, M H; Kallesoee, B S

    2007-01-01

    This paper deals with the servo-elastic dynamics of a hydraulic pitch actuator acting on a largely bend wind turbine blade. The compressibility of the oil and flexibility of the hoses introduce a dynamic mode in the pitch bearing degree of freedom. This mode may obtain negative damping if the proportional gain on the actuator position error is defined too large relative to the viscous forces in the hydraulic system and the total rotational inertia of the pitch bearing degree of freedom. A simple expression for the stability limit of this proportional gain is derived for tuning the gain based on the Ziegler-Nichols method. Computed transfer functions from reference to actual pitch angles indicate that the actuator can be approximated as a low-pass filter with some appropriate limitations on pitching speed and acceleration. The structural blade model includes the geometrical coupling of edgewise bending and torsion for large flapwise deflections. This coupling is shown to introduce edgewise bending response for pitch reference oscillations around the natural frequency of the edgewise bending mode, in which frequency range the transfer function from reference to actual pitch angle cannot be modeled as a simple low-pass filter. The pitch bearing is assumed to be frictionless as a first approximation

  8. Perceiving differences in linguistic and non-linguistic pitch: A pilot study with German congenital amusics

    NARCIS (Netherlands)

    Hamann, S.; Exter, M.; Pfeifer, J.; Krause-Burmester, M.; Cambouropoulos, F.; Tsougras, C.; Mavromatis, P.; Pastiadis, K.

    2012-01-01

    This study investigates the perception of pitch differences by seven German congenital amusics in speech and two types of non-speech material (sinusoidal waves and pulse trains). Congenital amusia is defined by a deficit in musical pitch perception, and recent studies indicate that at least a

  9. Latent infection by Fusarium circinatum influences susceptibility of monterey pine seedlings to pitch canker

    Science.gov (United States)

    Cassandra L. Swett; Thomas R. Gordon

    2012-01-01

    Pitch canker, caused by Fusarium circinatum, is a serious disease affecting Pinus radiata D. Don (Monterey pine) in nurseries, landscapes, and native forests. A typical symptom of pitch canker is canopy dieback resulting from girdling lesions on terminal branches (Gordon et al. 2001). More extensive dieback can result from...

  10. A rule-based backchannel prediction model using pitch and pause information

    NARCIS (Netherlands)

    Truong, Khiet Phuong; Poppe, Ronald Walter; Heylen, Dirk K.J.

    We manually designed rules for a backchannel (BC) prediction model based on pitch and pause information. In short, the model predicts a BC when there is a pause of a certain length that is preceded by a falling or rising pitch. This model was validated against the Dutch IFADV Corpus in a

  11. Pitch Discrimination without Awareness in Congenital Amusia: Evidence from Event-Related Potentials

    Science.gov (United States)

    Moreau, Patricia; Jolicoeur, Pierre; Peretz, Isabelle

    2013-01-01

    Congenital amusia is a lifelong disorder characterized by a difficulty in perceiving and producing music despite normal intelligence and hearing. Behavioral data have indicated that it originates from a deficit in fine-grained pitch discrimination, and is expressed by the absence of a P3b event-related brain response for pitch differences smaller…

  12. Impaired Pitch Production and Preserved Rhythm Production in a Right Brain-Damaged Patient with Amusia

    Science.gov (United States)

    Murayama, Junko; Kashiwagi, Toshihiro; Kashiwagi, Asako; Mimura, Masaru

    2004-01-01

    Pre- and postmorbid singing of a patient with amusia due to a right-hemispheric infarction was analyzed acoustically. This particular patient had a premorbid tape recording of her own singing without accompaniment. Appropriateness of pitch interval and rhythm was evaluated based on ratios of pitch and duration between neighboring notes. The…

  13. A Novel Binaural Pitch Elicited by Phase-Modulated Noise: MEG and Psychophysical Observations

    NARCIS (Netherlands)

    Witton, C.; Hillebrand, A.; Furlong, P.L.; Henning, G.B.

    2012-01-01

    Binaural pitches are auditory percepts that emerge from combined inputs to the ears but that cannot be heard if the stimulus is presented to either ear alone. Here, we describe a binaural pitch that is not easily accommodated within current models of binaural processing. Convergent

  14. Brief Report: Discrimination of Foreign Speech Pitch and Autistic Traits in Non-Clinical Population

    Science.gov (United States)

    Iao, Lai-Sang; Wippich, Anna; Lam, Yu Hin

    2018-01-01

    Individuals with Autism Spectrum Conditions (ASC) are widely suggested to show enhanced perceptual discrimination but inconsistent findings have been reported for pitch discrimination. Given the high variability in ASC, this study investigated whether ASC traits were correlated with pitch discrimination in an undergraduate sample when musical and…

  15. The thermal transformations of pitch and its compositions with thermo-anthracite

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Ulanovskii, M.L.; Krysin, V.P.

    1983-01-01

    The derivatographic method was used to examine the nature of thermal treatment of pitch in a mixture with heat-treated anthracite. The basic effect of anthracite on the thermal conversion of pitch was established, as well as the stages of mass loss and the processes that limit such losses. (9 refs.)

  16. Solid state 13 C NMR quantitative study of wood tar pitches

    International Nuclear Information System (INIS)

    Prauchner, Marcos Juliano; Pasa, Vanya Marcia Duarte; Menezes, Sonia Maria Cabral de

    1999-01-01

    In this work, solid-state 13 C NMR is used with other techniques to characterize Eucalyptus tar pitches and to follow their polymerization reactions. The pitches are the residues of distillation (about 50% m;m) of the tar generated in Eucalyptus slow pyrolysis for charcoal production in metal industry

  17. The investment strategies of sovereign wealth funds: A reverse engineered pitch

    Directory of Open Access Journals (Sweden)

    Stanislav Martínek

    2017-12-01

    Full Text Available This letter describes personal reflection based on the utilization of the Faff’s (2017, Pitching Research pitch template for a reverse engineering technique in order to summarize, evaluate and properly interpret information from articles in respected scientific journals which represents key or seminal scientific research work upon which a researcher built his/her scientific work.

  18. The effects of medial ulnar collateral ligament reconstruction on Major League pitching performance.

    Science.gov (United States)

    Keller, Robert A; Steffes, Matthew J; Zhuo, David; Bey, Michael J; Moutzouros, Vasilios

    2014-11-01

    Medial ulnar collateral ligament (MUCL) reconstruction is commonly performed on Major League Baseball (MLB) pitchers. Previous studies have reported that most pitchers return to presurgical statistical performance levels after MUCL reconstruction. Pitching performance data--specifically, earned run average (ERA), walks and hits per inning pitched (WHIP), winning percentage, and innings pitched--were acquired for 168 MLB pitchers who had undergone MUCL reconstruction. These data were averaged over the 3 years before surgery and the 3 years after surgery and also acquired from 178 age-matched, uninjured MLB pitchers. Of the pitchers who had MUCL reconstruction surgery, 87% returned to MLB pitching. However, compared with presurgical data, pitching performance declined in terms of ERA (P = .001), WHIP (P = .011), and innings pitched (P = .026). Pitching performance also declined in the season before the surgery compared with previous years (ERA, P = .014; WHIP, P = .036; innings pitched, P risk factor for requiring surgery. In addition, there is an increased risk of MUCL reconstruction for pitchers who enter the major leagues at a younger age. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. 29 CFR 1926.1102 - Coal tar pitch volatiles; interpretation of term.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Coal tar pitch volatiles; interpretation of term. 1926.1102 Section 1926.1102 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Hazardous Substances § 1926.1102 Coal tar pitch volatiles; interpretation of term. Note: The requirements...

  20. 29 CFR 1915.1002 - Coal tar pitch volatiles; interpretation of term.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Coal tar pitch volatiles; interpretation of term. 1915.1002 Section 1915.1002 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Toxic and Hazardous Substances § 1915.1002 Coal tar pitch volatiles; interpretation of term. Note: The...

  1. Give Me Strength.

    Institute of Scientific and Technical Information of China (English)

    维拉

    1996-01-01

    Mort had an absolutely terrible day at the office.Everythingthat could go wrong did go wrong.As he walked home he could beheard muttering strange words to himself:“Oh,give me strength,give me strength.”Mort isn’t asking for the kind of strength thatbuilds strong muscles:he’s asking for the courage or ability to

  2. Neural tissue-spheres

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Johansen, Mathias; Blaabjerg, Morten

    2007-01-01

    By combining new and established protocols we have developed a procedure for isolation and propagation of neural precursor cells from the forebrain subventricular zone (SVZ) of newborn rats. Small tissue blocks of the SVZ were dissected and propagated en bloc as free-floating neural tissue...... content, thus allowing experimental studies of neural precursor cells and their niche...

  3. A Comparative Analysis of Pitch Detection Methods Under the Influence of Different Noise Conditions.

    Science.gov (United States)

    Sukhostat, Lyudmila; Imamverdiyev, Yadigar

    2015-07-01

    Pitch is one of the most important components in various speech processing systems. The aim of this study was to evaluate different pitch detection methods in terms of various noise conditions. Prospective study. For evaluation of pitch detection algorithms, time-domain, frequency-domain, and hybrid methods were considered by using Keele and CSTR speech databases. Each of them has its own advantages and disadvantages. Experiments have shown that BaNa method achieves the highest pitch detection accuracy. The development of methods for pitch detection, which are robust to additive noise at different signal-to-noise ratio, is an important field of research with many opportunities for enhancement the modern methods. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Investigation on pitch system loads by means of an integral multi body simulation approach

    Science.gov (United States)

    Berroth, J.; Jacobs, G.; Kroll, T.; Schelenz, R.

    2016-09-01

    In modern horizontal axis wind turbines the rotor blades are adjusted by three individual pitch systems to control power output. The pitch system consists of either a hydraulic or an electrical actuator, the blade bearing, the rotor blade itself and the control. In case of an electrical drive a gearbox is used to transmit the high torques that are required for blade pitch angle adjustment. In this contribution a new integral multi body simulation approach is presented that enables detailed assessment of dynamic pitch system loads. The simulation results presented are compared and evaluated with measurement data of a 2 MW-class reference wind turbine. Major focus of this contribution is on the assessment of non linear tooth contact behaviour incorporating tooth backlash for the single gear stages and the impact on dynamic pitch system loads.

  5. Evidence for shared cognitive processing of pitch in music and language.

    Science.gov (United States)

    Perrachione, Tyler K; Fedorenko, Evelina G; Vinke, Louis; Gibson, Edward; Dilley, Laura C

    2013-01-01

    Language and music epitomize the complex representational and computational capacities of the human mind. Strikingly similar in their structural and expressive features, a longstanding question is whether the perceptual and cognitive mechanisms underlying these abilities are shared or distinct--either from each other or from other mental processes. One prominent feature shared between language and music is signal encoding using pitch, conveying pragmatics and semantics in language and melody in music. We investigated how pitch processing is shared between language and music by measuring consistency in individual differences in pitch perception across language, music, and three control conditions intended to assess basic sensory and domain-general cognitive processes. Individuals' pitch perception abilities in language and music were most strongly related, even after accounting for performance in all control conditions. These results provide behavioral evidence, based on patterns of individual differences, that is consistent with the hypothesis that cognitive mechanisms for pitch processing may be shared between language and music.

  6. Self-optimizing Pitch Control for Large Scale Wind Turbine Based on ADRC

    Science.gov (United States)

    Xia, Anjun; Hu, Guoqing; Li, Zheng; Huang, Dongxiao; Wang, Fengxiang

    2018-01-01

    Since wind turbine is a complex nonlinear and strong coupling system, traditional PI control method can hardly achieve good control performance. A self-optimizing pitch control method based on the active-disturbance-rejection control theory is proposed in this paper. A linear model of the wind turbine is derived by linearizing the aerodynamic torque equation and the dynamic response of wind turbine is transformed into a first-order linear system. An expert system is designed to optimize the amplification coefficient according to the pitch rate and the speed deviation. The purpose of the proposed control method is to regulate the amplification coefficient automatically and keep the variations of pitch rate and rotor speed in proper ranges. Simulation results show that the proposed pitch control method has the ability to modify the amplification coefficient effectively, when it is not suitable, and keep the variations of pitch rate and rotor speed in proper ranges

  7. Learning-induced neural plasticity of speech processing before birth.

    Science.gov (United States)

    Partanen, Eino; Kujala, Teija; Näätänen, Risto; Liitola, Auli; Sambeth, Anke; Huotilainen, Minna

    2013-09-10

    Learning, the foundation of adaptive and intelligent behavior, is based on plastic changes in neural assemblies, reflected by the modulation of electric brain responses. In infancy, auditory learning implicates the formation and strengthening of neural long-term memory traces, improving discrimination skills, in particular those forming the prerequisites for speech perception and understanding. Although previous behavioral observations show that newborns react differentially to unfamiliar sounds vs. familiar sound material that they were exposed to as fetuses, the neural basis of fetal learning has not thus far been investigated. Here we demonstrate direct neural correlates of human fetal learning of speech-like auditory stimuli. We presented variants of words to fetuses; unlike infants with no exposure to these stimuli, the exposed fetuses showed enhanced brain activity (mismatch responses) in response to pitch changes for the trained variants after birth. Furthermore, a significant correlation existed between the amount of prenatal exposure and brain activity, with greater activity being associated with a higher amount of prenatal speech exposure. Moreover, the learning effect was generalized to other types of similar speech sounds not included in the training material. Consequently, our results indicate neural commitment specifically tuned to the speech features heard before birth and their memory representations.

  8. On an Ethical Use of Neural Networks: A Case Study on a North Indian Raga

    Directory of Open Access Journals (Sweden)

    SHUKLA Ripunjai Kumar

    2009-12-01

    Full Text Available The paper gives an artificial neural network (ANN approach to time series modeling, the data being instance versus notes (characterized by pitch depicting the structure of a North Indian raga, namely, Bageshree. Respecting the sentiments of the artists’ community, the paper argues why it is more ethical to model a structure than try and “manufacture” an artist by training the neural network to copy performances of artists. Indian Classical Music centers on the ragas, where emotion and devotion are both important and neither can be substituted by such “calculated artistry” which the ANN generated copies are ultimately up to.

  9. Audio-visual interactions uniquely contribute to resolution of visual conflict in people possessing absolute pitch.

    Directory of Open Access Journals (Sweden)

    Sujin Kim

    Full Text Available Individuals possessing absolute pitch (AP are able to identify a given musical tone or to reproduce it without reference to another tone. The present study sought to learn whether this exceptional auditory ability impacts visual perception under stimulus conditions that provoke visual competition in the form of binocular rivalry. Nineteen adult participants with 3-19 years of musical training were divided into two groups according to their performance on a task involving identification of the specific note associated with hearing a given musical pitch. During test trials lasting just over half a minute, participants dichoptically viewed a scrolling musical score presented to one eye and a drifting sinusoidal grating presented to the other eye; throughout the trial they pressed buttons to track the alternations in visual awareness produced by these dissimilar monocular stimuli. On "pitch-congruent" trials, participants heard an auditory melody that was congruent in pitch with the visual score, on "pitch-incongruent" trials they heard a transposed auditory melody that was congruent with the score in melody but not in pitch, and on "melody-incongruent" trials they heard an auditory melody completely different from the visual score. For both groups, the visual musical scores predominated over the gratings when the auditory melody was congruent compared to when it was incongruent. Moreover, the AP participants experienced greater predominance of the visual score when it was accompanied by the pitch-congruent melody compared to the same melody transposed in pitch; for non-AP musicians, pitch-congruent and pitch-incongruent trials yielded equivalent predominance. Analysis of individual durations of dominance revealed differential effects on dominance and suppression durations for AP and non-AP participants. These results reveal that AP is accompanied by a robust form of bisensory interaction between tonal frequencies and musical notation that boosts

  10. Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number

    Science.gov (United States)

    Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Cheng, Bo

    2018-05-01

    Due to adverse viscous effects, revolving wings suffer universally from low efficiency at low Reynolds number (Re). By reciprocating wing revolving motion, natural flyers flying at low Re successfully exploit unsteady effects to augment force production and efficiency. Here we investigate the aerodynamics of an alternative, i.e., a revolving wing with concomitant unsteady pitching and vertical flapping perturbations (a pitching-flapping-perturbed revolving wing). The current work builds upon a previous study on flapping-perturbed revolving wings (FP-RWs) and focuses on combined effects of pitching-flapping perturbation on force generation and vortex behaviors. The results show that, compared with a FR-RW, pitching motion further (1) reduces the external driving torque for rotating at 0° angle of attack (α0) and (2) enhances lift and leads to a self-rotating equilibrium at α0 = 20°. The power loading of a revolving wing at α0 = 20° can be improved using pitching-flapping perturbations with large pitching amplitude but small Strouhal number. Additionally, an advanced pitching improves the reduction of external driving torque, whereas a delayed pitching weakens both the lift enhancement and the reduction of external driving torque. Further analysis shows that pitching effects can be mainly decomposed into the Leading-Edge-Vortex (LEV)-mediated pressure component and geometric projection component, together they determine the force performance. LEV circulation is found to be determined by the instantaneous effective angle of attack but could be affected asymmetrically between upstroke and downstroke depending on the nominal angle of attack. Pitching-flapping perturbation thus can potentially inspire novel mechanisms to improve the aerodynamic performance of rotary wing micro air vehicles.

  11. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  12. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-05-01

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  14. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  15. Photon strength functions

    International Nuclear Information System (INIS)

    Bergqvist, I.

    1976-01-01

    Methods for extracting photon strength functions are briefly discussed. We follow the Brink-Axel approach to relate the strength functions to the giant resonances observed in photonuclear work and summarize the available data on the E1, E2 and M1 resonances. Some experimental and theoretical problems are outlined. (author)

  16. Interviewing to Understand Strengths

    Science.gov (United States)

    Hass, Michael R.

    2018-01-01

    Interviewing clients about their strengths is an important part of developing a complete understanding of their lives and has several advantages over simply focusing on problems and pathology. Prerequisites for skillfully interviewing for strengths include the communication skills that emerge from a stance of not knowing, developing a vocabulary…

  17. Sensory Processing: Advances in Understanding Structure and Function of Pitch-Shifted Auditory Feedback in Voice Control

    OpenAIRE

    Charles R Larson; Donald A Robin

    2016-01-01

    The pitch-shift paradigm has become a widely used method for studying the role of voice pitch auditory feedback in voice control. This paradigm introduces small, brief pitch shifts in voice auditory feedback to vocalizing subjects. The perturbations trigger a reflexive mechanism that counteracts the change in pitch. The underlying mechanisms of the vocal responses are thought to reflect a negative feedback control system that is similar to constructs developed to explain other forms of motor ...

  18. Politeness, emotion, and gender: A sociophonetic study of voice pitch modulation

    Science.gov (United States)

    Yuasa, Ikuko

    The present dissertation is a cross-gender and cross-cultural sociophonetic exploration of voice pitch characteristics utilizing speech data derived from Japanese and American speakers in natural conversations. The roles of voice pitch modulation in terms of the concepts of politeness and emotion as they pertain to culture and gender will be investigated herein. The research interprets the significance of my findings based on the acoustic measurements of speech data as they are presented in the ERB-rate scale (the most appropriate scale for human speech perception). The investigation reveals that pitch range modulation displayed by Japanese informants in two types of conversations is closely linked to types of politeness adopted by those informants. The degree of the informants' emotional involvement and expressions reflected in differing pitch range widths plays an important role in determining the relationship between pitch range modulation and politeness. The study further correlates the Japanese cultural concept of enryo ("self-restraint") with this phenomenon. When median values were examined, male and female pitch ranges across cultures did not conspicuously differ. However, sporadically occurring women's pitch characteristics which culturally differ in width and height of pitch ranges may create an 'emotional' perception of women's speech style. The salience of these pitch characteristics appears to be the source of the stereotypically linked sound of women's speech being identified as 'swoopy' or 'shrill' and thus 'emotional'. Such women's salient voice characteristics are interpreted in light of camaraderie/positive politeness. Women's use of conspicuous paralinguistic features helps to create an atmosphere of camaraderie. These voice pitch characteristics promote the establishment of a sense of camaraderie since they act to emphasize such feelings as concern, support, and comfort towards addressees, Moreover, men's wide pitch ranges are discussed in view

  19. Short-Term Memory Performance in 7- and 8-Year-Old Children: The Relationship between Phonological and Pitch Processing

    Science.gov (United States)

    Flagge, Ashley Gaal; Estis, Julie M.; Moore, Robert E.

    2016-01-01

    Purpose: The relationship between short-term memory for phonology and pitch was explored by examining accuracy scores for typically developing children for 5 experimental tasks: immediate nonword repetition (NWR), nonword repetition with an 8-s silent interference (NWRS), pitch discrimination (PD), pitch discrimination with an 8-s silent…

  20. Size matters: pitch dimensions constrain inter-team distances and surface area difference in small-sided soccer games

    NARCIS (Netherlands)

    Frencken, Wouter; van der Plaats, Jorrit; Visscher, Chris; Lemmink, Koen

    2013-01-01

    Pitch size varies in official soccer matches and differently sized pitches are adopted for tactical purposes in small-sided training games. Since interactive team behaviour emerges under con- straints, the authors evaluate the effect of pitch size (task) manipulations on interactive team behaviour

  1. Beethoven's Last Piano Sonata and Those Who Follow Crocodiles: Cross-Domain Mappings of Auditory Pitch in a Musical Context

    Science.gov (United States)

    Eitan, Zohar; Timmers, Renee

    2010-01-01

    Though auditory pitch is customarily mapped in Western cultures onto spatial verticality (high-low), both anthropological reports and cognitive studies suggest that pitch may be mapped onto a wide variety of other domains. We collected a total number of 35 pitch mappings and investigated in four experiments how these mappings are used and…

  2. Robust hybrid pitch detector for pathologic voice analysis

    OpenAIRE

    Boyanov, B.; Hadjitodorov, S.; Teston, B.; Doskov, D.

    1997-01-01

    International audience; A hybrid speech period (To) detector characterizided by parallel analyses of three speech signals in temporal spectral and cepstral domains and preprocessing for periodic/aperiodic (unvoiced) separation (PAS) is proposed. The preprocessing is realized by analysis in these three domains and PAS by multi layer Perceptron neural network.Two phonations of the wowel "a" of 40 speakers and 62 patients were analyzed. For the proposed detector errors were significantly minimized.

  3. Preparation and characterization of pitch-based nanoporous carbons for improving CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seul-Yi; Yoo, Hye-Min [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon (Korea, Republic of); Park, Sang Wook; Hee Park, Sang; Oh, Young Se [GS Caltex Corporation, Munji-dong, Yuseong-gu, Daejeon (Korea, Republic of); Rhee, Kyong Yop [Industrial Liaison Research Institute, Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon (Korea, Republic of)

    2014-07-01

    Pitch is considered a promising low-cost carbon precursor. However, when pitch is pyrolyzed, it forms polycrystalline graphite, which is non-porous, and therefore, not useful for CO{sub 2} adsorption. In this work, pitch was chemically activated to obtain a large specific surface area and micropore volume. Varying weight ratios of KOH (i.e., 0, 1, 2, and 3) were used as the activating agent. The characteristics of the samples were investigated using scanning electron microscopy (SEM), N{sub 2}/77 K adsorption isotherms, and X-ray diffraction (XRD). The CO{sub 2} adsorption performance was studied by isothermal adsorption/desorption measurements. The results showed that an increase in specific surface areas and total pore volumes of pitch-based nanoporous carbons, resulted in an enhancement of CO{sub 2} adsorption capacity. - Graphical abstract: This is the surface morphologies of pitch precursor and pitch-derived activated carbon (AC-2). - Highlights: • Pitch is considered a promising low-cost carbon precursor. • Specific surface area: 1442 m{sup 2}/g and micropore volume: 0.504 cm{sup 3}/g. • CO{sub 2} adsorption capacity showed 203 mg/g (@ RT/1 bar)

  4. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures

    Directory of Open Access Journals (Sweden)

    Behzad Majidi

    2016-05-01

    Full Text Available Rheological properties of pitch and pitch/coke mixtures at temperatures around 150 °C are of great interest for the carbon anode manufacturing process in the aluminum industry. In the present work, a cohesive viscoelastic contact model based on Burger’s model is developed using the discrete element method (DEM on the YADE, the open-source DEM software. A dynamic shear rheometer (DSR is used to measure the viscoelastic properties of pitch at 150 °C. The experimental data obtained is then used to estimate the Burger’s model parameters and calibrate the DEM model. The DSR tests were then simulated by a three-dimensional model. Very good agreement was observed between the experimental data and simulation results. Coke aggregates were modeled by overlapping spheres in the DEM model. Coke/pitch mixtures were numerically created by adding 5, 10, 20, and 30 percent of coke aggregates of the size range of 0.297–0.595 mm (−30 + 50 mesh to pitch. Adding up to 30% of coke aggregates to pitch can increase its complex shear modulus at 60 Hz from 273 Pa to 1557 Pa. Results also showed that adding coke particles increases both storage and loss moduli, while it does not have a meaningful effect on the phase angle of pitch.

  5. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures.

    Science.gov (United States)

    Majidi, Behzad; Taghavi, Seyed Mohammad; Fafard, Mario; Ziegler, Donald P; Alamdari, Houshang

    2016-05-04

    Rheological properties of pitch and pitch/coke mixtures at temperatures around 150 °C are of great interest for the carbon anode manufacturing process in the aluminum industry. In the present work, a cohesive viscoelastic contact model based on Burger's model is developed using the discrete element method (DEM) on the YADE, the open-source DEM software. A dynamic shear rheometer (DSR) is used to measure the viscoelastic properties of pitch at 150 °C. The experimental data obtained is then used to estimate the Burger's model parameters and calibrate the DEM model. The DSR tests were then simulated by a three-dimensional model. Very good agreement was observed between the experimental data and simulation results. Coke aggregates were modeled by overlapping spheres in the DEM model. Coke/pitch mixtures were numerically created by adding 5, 10, 20, and 30 percent of coke aggregates of the size range of 0.297-0.595 mm (-30 + 50 mesh) to pitch. Adding up to 30% of coke aggregates to pitch can increase its complex shear modulus at 60 Hz from 273 Pa to 1557 Pa. Results also showed that adding coke particles increases both storage and loss moduli, while it does not have a meaningful effect on the phase angle of pitch.

  6. Rapid area change in pitch-up manoeuvres of small perching birds.

    Science.gov (United States)

    Polet, D T; Rival, D E

    2015-10-26

    Rapid pitch-up has been highlighted as a mechanism to generate large lift and drag during landing manoeuvres. However, pitching rates had not been measured previously in perching birds, and so the direct applicability of computations and experiments to observed behaviour was not known. We measure pitch rates in a small, wild bird (the black-capped chickadee; Poecile atricapillus), and show that these rates are within the parameter range used in experiments. Pitching rates were characterized by the shape change number, a metric comparing the rate of frontal area increase to acceleration. Black-capped chickadees increase the shape change number during perching in direct proportion to their total kinetic and potential energy at the start of the manoeuvre. The linear relationship between dissipated energy and shape change number is in accordance with a simple analytical model developed for two-dimensional pitching and decelerating airfoils. Black-capped chickadees use a wing pitch-up manoeuvre during perching to dissipate energy quickly while maintaining lift and drag through rapid area change. It is suggested that similar pitch-and-decelerate manoeuvres could be used to aid in the controlled, precise landings of small manoeuvrable air vehicles.

  7. A comparative Tg-Ms study of the carbonization behaviour of different pitches

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, R.; Arenillas, A.; Crespo, J.L.; Pis, J.J.; Moinelo, S.R. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon

    2002-08-01

    The purpose of this work was to study the formation of mesophase spherules from a low-temperature coal tar pitch under carbonization conditions. For comparison, the carbonization of a high-temperature coal tar pitch and a petroleum pitch were also considered. Different degrees of mesophase formation and development for each pitch. The results from Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and the thermogravimetric analyzer mass spectrometer (TG-MS) tests were compared with the different extents of mesophase formation, checked by optical microscopy. According to the results, several stages can be distinguished as temperature increases in the carbonization process of the pitches. In the low-temperature coal tar pitch, the devolatilization of light components, especially phenols, accounts for the most significant weight loss. Moreover, cross-linking contributes greatly to the formation and development of mesophase, resulting in the predominance of bulk mesophase in a relatively short time in the case of the low-temperature coal tar pitch. 19 refs., 10 figs., 2 tabs.

  8. Exploring the Effects of Pitch Layout on Learning a New Musical Instrument

    Directory of Open Access Journals (Sweden)

    Jennifer MacRitchie

    2017-11-01

    Full Text Available Although isomorphic pitch layouts are proposed to afford various advantages for musicians playing new musical instruments, this paper details the first substantive set of empirical tests on how two fundamental aspects of isomorphic pitch layouts affect motor learning: shear, which makes the pitch axis vertical, and the adjacency (or nonadjacency of pitches a major second apart. After receiving audio-visual training tasks for a scale and arpeggios, performance accuracies of 24 experienced musicians were assessed in immediate retention tasks (same as the training tasks, but without the audio-visual guidance and in a transfer task (performance of a previously untrained nursery rhyme. Each participant performed the same tasks with three different pitch layouts and, in total, four different layouts were tested. Results show that, so long as the performance ceiling has not already been reached (due to ease of the task or repeated practice, adjacency strongly improves performance accuracy in the training and retention tasks. They also show that shearing the layout, to make the pitch axis vertical, worsens performance accuracy for the training tasks but, crucially, it strongly improves performance accuracy in the transfer task when the participant needs to perform a new, but related, task. These results can inform the design of pitch layouts in new musical instruments.

  9. Pitch structure, but not selective attention, affects accent weightings in metrical grouping.

    Science.gov (United States)

    Prince, Jon B

    2014-10-01

    Among other cues, pitch and temporal accents contribute to grouping in musical sequences. However, exactly how they combine remains unclear, possibly because of the role of structural organization. In 3 experiments, participants rated the perceived metrical grouping of sequences that either adhered to the rules of tonal Western musical pitch structure (musical key) or did not (atonal). The tonal status of sequences did not provide any grouping cues and was irrelevant to the task. Experiment 1 established equally strong levels of pitch leap accents and duration accents in baseline conditions, which were then recombined in subsequent experiments. Neither accent type was stronger or weaker for tonal and atonal contexts. In Experiment 2, pitch leap accents dominated over duration accents, but the extent of this advantage was greater when sequences were tonal. Experiment 3 ruled out an attentional origin of this effect by replicating this finding while explicitly manipulating attention to pitch or duration accents between participant groups. Overall, the presence of tonal pitch structure made the dimension of pitch more salient at the expense of time. These findings support a dimensional salience framework in which the presence of organizational structure prioritizes the processing of the more structured dimension regardless of task relevance, independent from psychophysical difficulty, and impervious to attentional allocation.

  10. Investigation of habitual pitch during free play activities for preschool-aged children.

    Science.gov (United States)

    Chen, Yang; Kimelman, Mikael D Z; Micco, Katie

    2009-01-01

    This study is designed to compare the habitual pitch measured in two different speech activities (free play activity and traditionally used structured speech activity) for normally developing preschool-aged children to explore to what extent preschoolers vary their vocal pitch among different speech environments. Habitual pitch measurements were conducted for 10 normally developing children (2 boys, 8 girls) between the ages of 31 months and 71 months during two different activities: (1) free play; and (2) structured speech. Speech samples were recorded using a throat microphone connected with a wireless transmitter in both activities. The habitual pitch (in Hz) was measured for all collected speech samples by using voice analysis software (Real-Time Pitch). Significantly higher habitual pitch is found during free play in contrast to structured speech activities. In addition, there is no showing of significant difference of habitual pitch elicited across a variety of structured speech activities. Findings suggest that the vocal usage of preschoolers appears to be more effortful during free play than during structured activities. It is recommended that a comprehensive evaluation for young children's voice needs to be based on the speech/voice samples collected from both free play and structured activities.

  11. Utterance-final position and pitch marking aid word learning in school-age children.

    Science.gov (United States)

    Filippi, Piera; Laaha, Sabine; Fitch, W Tecumseh

    2017-08-01

    We investigated the effects of word order and prosody on word learning in school-age children. Third graders viewed photographs belonging to one of three semantic categories while hearing four-word nonsense utterances containing a target word. In the control condition, all words had the same pitch and, across trials, the position of the target word was varied systematically within each utterance. The only cue to word-meaning mapping was the co-occurrence of target words and referents. This cue was present in all conditions. In the Utterance-final condition, the target word always occurred in utterance-final position, and at the same fundamental frequency as all the other words of the utterance. In the Pitch peak condition, the position of the target word was varied systematically within each utterance across trials, and produced with pitch contrasts typical of infant-directed speech (IDS). In the Pitch peak + Utterance-final condition, the target word always occurred in utterance-final position, and was marked with a pitch contrast typical of IDS. Word learning occurred in all conditions except the control condition. Moreover, learning performance was significantly higher than that observed with simple co-occurrence ( control condition) only for the Pitch peak + Utterance-final condition. We conclude that, for school-age children, the combination of words' utterance-final alignment and pitch enhancement boosts word learning.

  12. Characterization of pitches by liquid chromatography using cellulose 3,5-dinitrobenzoate as the packing material

    Energy Technology Data Exchange (ETDEWEB)

    Arai, K.; Judo, R.; Ota, E. [Gunma University, Gunma (Japan). Dept. of Chemistry

    1997-08-01

    Characterization of coal tar, petroleum and PVC pitches by a liquid chromatography using cellulose 3,5-dinitrobenzoate (DNB-cellulose) as the packing material was investigated. Separation mechanism based on charge-transfer interaction between the dinitrobenzoyl group and polyaromatic compounds was expected to be useful for separation of the constituents of the pitches. First, 26 model polyaromatic compounds were tested to examine the characteristic feature of the packing material by liquid chromatography. The compounds were found to be classified roughly into four groups with different retention volume, principally according to the number of condensed rings. The nonplanar structure and aliphatic side chain of the polyaromatic compounds also affected the separation behavior. Both benzene soluble-hexane soluble and benzene soluble-hexane insoluble fractions of the three pitches were separated on DNB-cellulose. It was found that coal tar pitch contains relatively large amounts of some highly condensed polyaromatic compounds with condensed rings of 4 to 5; petroleum pitch has small amounts of such specific highly condensed polyaromatic compounds, while PVC pitch has large amounts of less condensed polyaromatic compounds and there is no significant amount of highly condensed compound in it. Thus DNB-cellulose was useful as the convenient packing material for liquid chromatography to characterize pitches.

  13. PRODUCTION OF FOAMS, FIBERS AND PITCHES USING A COAL EXTRACTION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Chong Chen; Elliot B. Kennel; Liviu Magean; Pete G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-06-20

    This Department of Energy National Energy Technology Laboratory sponsored project developed processes for converting coal feedstocks to carbon products, including coal-derived pitch, coke foams and fibers based on solvent extraction processes. A key technology is the use of hydrogenation accomplished at elevated temperatures and pressures to obtain a synthetic coal pitch. Hydrogenation, or partial direct liquefaction of coal, is used to modify the properties of raw coal such that a molten synthetic pitch can be obtained. The amount of hydrogen required to produce a synthetic pitch is about an order of magnitude less than the amount required to produce synthetic crude oil. Hence the conditions for synthetic pitch production consume very little hydrogen and can be accomplished at substantially lower pressure. In the molten state, hot filtration or centrifugation can be used to separate dissolved coal chemicals from mineral matter and insolubles (inertinite), resulting in the production of a purified hydrocarbon pitch. Alternatively, if hydrogenation is not used, aromatic hydrocarbon liquids appropriate for use as precursors to carbon products can obtained by dissolving coal in a solvent. As in the case for partial direct liquefaction pitches, undissolved coal is removed via hot filtration or centrifugation. Excess solvent is boiled off and recovered. The resultant solid material, referred to as Solvent Extracted Carbon Ore or SECO, has been used successfully to produce artificial graphite and carbon foam.

  14. ADSORPTION OF PITCH AND STICKIES ON MAGNESIUM ALUMINUM HYDROXIDES TREATED AT DIFFERENT TEMPERAURES

    Directory of Open Access Journals (Sweden)

    Guodong Li

    2011-04-01

    Full Text Available Magnesium aluminum hydroxides (MAH of nitrate and carbonate forms were prepared by co-precipitation, dried at different temperatures, and employed as an adsorbent for pitch and stickies in papermaking. Results indicated that MAH that had been heat-treated had higher adsorption capacity to model pitch and stickies at neutral pH. Low-temperature-dried magnesium aluminum hydroxides of nitrate form (MAH-NO3 had higher adsorption capacity to model pitch and model stickies than those of the carbonate form (MAH-CO3. Increasing the drying temperature of MAH reduced the difference of adsorption capacity between MAH-NO3 and MAH-CO3. Higher-temperature-dried magnesium aluminum hydroxides also showed higher adsorption capacity to model pitch and stickies when the drying temperature was lower than 550 oC. MAH displayed higher adsorption capacity while a lower initial adsorption rate of model stickies than of model pitch. The model pitch and stickies were adsorbed on MAH significantly by charge neutralization and distributed mainly on the surface of the platelets of magnesium aluminum hydroxides. The experimental isothermal adsorption data of model pitch and stickies on MAH dried at 500 oC fit well to the Freundlich and Dubinin–Radushkevich isotherm equations.

  15. Developmental trajectories of pitch-related music skills in children with Williams syndrome.

    Science.gov (United States)

    Martínez-Castilla, Pastora; Rodríguez, Manuel; Campos, Ruth

    2016-01-01

    The study of music cognition in Williams syndrome (WS) has resulted in theoretical debates regarding cognitive modularity and development. However, no research has previously investigated the development of music skills in this population. In this study, we used the cross-sectional developmental trajectories approach to assess the development of pitch-related music skills in children with WS compared with typically developing (TD) peers. Thus, we evaluated the role of change over time on pitch-related music skills and the developmental relationships between music skills and different cognitive areas. In the TD children, the pitch-related music skills improved with chronological age and cognitive development. In the children with WS, developmental relationships were only found between several pitch-related music skills and specific cognitive processes. We also found non-systematic relationships between chronological age and the pitch-related music skills, stabilization in the level reached in music when cognitive development was considered, and uneven associations between cognitive and music skills. In addition, the TD and WS groups differed in their patterns of pitch-related music skill development. These results suggest that the development of pitch-related music skills in children with WS is atypical. Our findings stand in contrast with the views that claim innate modularity for music in WS; rather, they are consistent with neuroconstructivist accounts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Sounds like a winner: voice pitch influences perception of leadership capacity in both men and women.

    Science.gov (United States)

    Klofstad, Casey A; Anderson, Rindy C; Peters, Susan

    2012-07-07

    It is well known that non-human animals respond to information encoded in vocal signals, and the same can be said of humans. Specifically, human voice pitch affects how speakers are perceived. As such, does voice pitch affect how we perceive and select our leaders? To answer this question, we recorded men and women saying 'I urge you to vote for me this November'. Each recording was manipulated digitally to yield a higher- and lower-pitched version of the original. We then asked men and women to vote for either the lower- or higher-pitched version of each voice. Our results show that both men and women select male and female leaders with lower voices. These findings suggest that men and women with lower-pitched voices may be more successful in obtaining positions of leadership. This might also suggest that because women, on average, have higher-pitched voices than men, voice pitch could be a factor that contributes to fewer women holding leadership roles than men. Additionally, while people are free to choose their leaders, these results clearly demonstrate that these choices cannot be understood in isolation from biological influences.

  17. Chaotic diagonal recurrent neural network

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)

  18. Forex Market Prediction Using NARX Neural Network with Bagging

    Directory of Open Access Journals (Sweden)

    Shahbazi Nima

    2016-01-01

    Full Text Available We propose a new methodfor predicting movements in Forex market based on NARX neural network withtime shifting bagging techniqueand financial indicators, such as relative strength index and stochastic indicators. Neural networks have prominent learning ability but they often exhibit bad and unpredictable performance for noisy data. When compared with the static neural networks, our method significantly reducesthe error rate of the responseandimproves the performance of the prediction. We tested three different types ofarchitecture for predicting the response and determined the best network approach. We applied our method to prediction the hourly foreign exchange rates and found remarkable predictability in comprehensive experiments with 2 different foreign exchange rates (GBPUSD and EURUSD.

  19. Knee Pain during Strength Training Shortly following Fast-Track Total Knee Arthroplasty

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Thorborg, Kristian; Lunn, Troels Haxholdt

    2014-01-01

    BACKGROUND: Loading and contraction failure (muscular exhaustion) are strength training variables known to influence neural activation of the exercising muscle in healthy subjects, which may help reduce neural inhibition of the quadriceps muscle following total knee arthroplasty (TKA). It is unkn......BACKGROUND: Loading and contraction failure (muscular exhaustion) are strength training variables known to influence neural activation of the exercising muscle in healthy subjects, which may help reduce neural inhibition of the quadriceps muscle following total knee arthroplasty (TKA......). It is unknown how these exercise variables influence knee pain after TKA. OBJECTIVE: To investigate the effect of loading and contraction failure on knee pain during strength training, shortly following TKA. DESIGN: Cross-sectional study. SETTING: Consecutive sample of patients from the Copenhagen area, Denmark...... TKA. However, only the increase in pain during repetitions to contraction failure exceeded that defined as clinically relevant, and was very short-lived. TRIAL REGISTRATION: ClinicalTrials.gov NCT01729520....

  20. The intensity-pitch relation revisited: monopolar versus bipolar cochlear stimulation.

    Science.gov (United States)

    Arnoldner, Christoph; Riss, Dominik; Kaider, Alexandra; Mair, Alois; Wagenblast, Jens; Baumgartner, Wolf-Dieter; Gstöttner, Wolfgang; Hamzavi, Jafar-Sasan

    2008-09-01

    The very high speech perception scores now being achieved with cochlear implants have led to demands for similar levels of achievement in music perception and perception in noisy environments. One of the crucial factors in these fields is pitch perception. The aim of the present study was to investigate the extent to which pitch perception is influenced by the intensity of the stimulus, through the use of different stimulation modes (monopolar, bipolar) and different electrodes (lateral and perimodiolar). Sixteen postlingually deafened patients with an average implant use of 3.1 years were included in this study. All patients were using a Cochlear (CI24M, CI24R, CI24RE) cochlear implant. Subjects were asked to compare the pitch of an intensity-constant reference tone with the pitch of a test tone of varying intensity. The test was repeated for apical, mediocochlear, and basal channel locations, and also for monopolar and bipolar stimulation. It was found that in monopolar stimulation 87.5% and in bipolar stimulation 85.7% of the patients perceived a clear pitch change with changing intensity of the stimulus (Spearman correlation coefficients r 0.3, respectively). A total of 73.1% of these patients perceived lower pitches with increasing intensity, 26.9% reported the opposite effect. No statistically significant difference in the intensity-pitch correlation could be found between mono- and bipolar stimulation. Neither the mean dynamic range nor the type of electrode used was found to be related to the correlation coefficient. Although the majority of today's cochlear implant recipients perform well and the intensity-pitch relation in cochlear implant recipients is still poorly understood, rising demands on speech-coding strategies may soon make a compensation of the pitch shifts desirable. Although the results of our study tend to argue against a peripheral mechanism, the exact origin of this phenomenon remains unclear.