Video Traffic Prediction Using Neural Networks
Directory of Open Access Journals (Sweden)
Miloš Oravec
2008-10-01
Full Text Available In this paper, we consider video stream prediction for application in services likevideo-on-demand, videoconferencing, video broadcasting, etc. The aim is to predict thevideo stream for an efficient bandwidth allocation of the video signal. Efficient predictionof traffic generated by multimedia sources is an important part of traffic and congestioncontrol procedures at the network edges. As a tool for the prediction, we use neuralnetworks – multilayer perceptron (MLP, radial basis function networks (RBF networksand backpropagation through time (BPTT neural networks. At first, we briefly introducetheoretical background of neural networks, the prediction methods and the differencebetween them. We propose also video time-series processing using moving averages.Simulation results for each type of neural network together with final comparisons arepresented. For comparison purposes, also conventional (non-neural prediction isincluded. The purpose of our work is to construct suitable neural networks for variable bitrate video prediction and evaluate them. We use video traces from [1].
Neural Networks for protein Structure Prediction
DEFF Research Database (Denmark)
Bohr, Henrik
1998-01-01
This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...
Neural Networks for protein Structure Prediction
DEFF Research Database (Denmark)
Bohr, Henrik
1998-01-01
This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...
Applications of Neural Networks in Spinning Prediction
Institute of Scientific and Technical Information of China (English)
程文红; 陆凯
2003-01-01
The neural network spinning prediction model (BP and RBF Networks) trained by data from the mill can predict yarn qualities and spinning performance. The input parameters of the model are as follows: yarn count, diameter, hauteur, bundle strength, spinning draft, spinning speed, traveler number and twist.And the output parameters are: yarn evenness, thin places, tenacity and elongation, ends-down.Predicting results match the testing data well.
Artificial neural network intelligent method for prediction
Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi
2017-09-01
Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.
Porosity Log Prediction Using Artificial Neural Network
Dwi Saputro, Oki; Lazuardi Maulana, Zulfikar; Dzar Eljabbar Latief, Fourier
2016-08-01
Well logging is important in oil and gas exploration. Many physical parameters of reservoir is derived from well logging measurement. Geophysicists often use well logging to obtain reservoir properties such as porosity, water saturation and permeability. Most of the time, the measurement of the reservoir properties are considered expensive. One of method to substitute the measurement is by conducting a prediction using artificial neural network. In this paper, artificial neural network is performed to predict porosity log data from other log data. Three well from ‘yy’ field are used to conduct the prediction experiment. The log data are sonic, gamma ray, and porosity log. One of three well is used as training data for the artificial neural network which employ the Levenberg-Marquardt Backpropagation algorithm. Through several trials, we devise that the most optimal input training is sonic log data and gamma ray log data with 10 hidden layer. The prediction result in well 1 has correlation of 0.92 and mean squared error of 5.67 x10-4. Trained network apply to other well data. The result show that correlation in well 2 and well 3 is 0.872 and 0.9077 respectively. Mean squared error in well 2 and well 3 is 11 x 10-4 and 9.539 x 10-4. From the result we can conclude that sonic log and gamma ray log could be good combination for predicting porosity with neural network.
Mobility Prediction in Wireless Ad Hoc Networks using Neural Networks
Kaaniche, Heni
2010-01-01
Mobility prediction allows estimating the stability of paths in a mobile wireless Ad Hoc networks. Identifying stable paths helps to improve routing by reducing the overhead and the number of connection interruptions. In this paper, we introduce a neural network based method for mobility prediction in Ad Hoc networks. This method consists of a multi-layer and recurrent neural network using back propagation through time algorithm for training.
Colored Noise Prediction Based on Neural Network
Institute of Scientific and Technical Information of China (English)
Gao Fei; Zhang Xiaohui
2003-01-01
A method for predicting colored noise by introducing prediction of nonhnear time series is presented By adopting three kinds of neural networks prediction models, the colored noise prediction is studied through changing the filter bandwidth for stochastic noise and the sampling rate for colored noise The results show that colored noise can be predicted The prediction error decreases with the increasing of the sampling rate or the narrowing of the filter bandwidth. If the parameters are selected properly, the prediction precision can meet the requirement of engineering implementation. The results offer a new reference way for increasing the ability for detecting weak signal in signal processing system
Predicting Water Levels at Kainji Dam Using Artificial Neural Networks
African Journals Online (AJOL)
Predicting Water Levels at Kainji Dam Using Artificial Neural Networks. ... The aim of this study is to develop artificial neural network models for predicting water levels at Kainji Dam, which supplies water to Nigeria's largest ... Article Metrics.
File access prediction using neural networks.
Patra, Prashanta Kumar; Sahu, Muktikanta; Mohapatra, Subasish; Samantray, Ronak Kumar
2010-06-01
One of the most vexing issues in design of a high-speed computer is the wide gap of access times between the memory and the disk. To solve this problem, static file access predictors have been used. In this paper, we propose dynamic file access predictors using neural networks to significantly improve upon the accuracy, success-per-reference, and effective-success-rate-per-reference by using neural-network-based file access predictor with proper tuning. In particular, we verified that the incorrect prediction has been reduced from 53.11% to 43.63% for the proposed neural network prediction method with a standard configuration than the recent popularity (RP) method. With manual tuning for each trace, we are able to improve upon the misprediction rate and effective-success-rate-per-reference using a standard configuration. Simulations on distributed file system (DFS) traces reveal that exact fit radial basis function (RBF) gives better prediction in high end system whereas multilayer perceptron (MLP) trained with Levenberg-Marquardt (LM) backpropagation outperforms in system having good computational capability. Probabilistic and competitive predictors are the most suitable for work stations having limited resources to deal with and the former predictor is more efficient than the latter for servers having maximum system calls. Finally, we conclude that MLP with LM backpropagation algorithm has better success rate of file prediction than those of simple perceptron, last successor, stable successor, and best k out of m predictors.
Network Traffic Prediction based on Particle Swarm BP Neural Network
Directory of Open Access Journals (Sweden)
Yan Zhu
2013-11-01
Full Text Available The traditional BP neural network algorithm has some bugs such that it is easy to fall into local minimum and the slow convergence speed. Particle swarm optimization is an evolutionary computation technology based on swarm intelligence which can not guarantee global convergence. Artificial Bee Colony algorithm is a global optimum algorithm with many advantages such as simple, convenient and strong robust. In this paper, a new BP neural network based on Artificial Bee Colony algorithm and particle swarm optimization algorithm is proposed to optimize the weight and threshold value of BP neural network. After network traffic prediction experiment, we can conclude that optimized BP network traffic prediction based on PSO-ABC has high prediction accuracy and has stable prediction performance.
Combining neural networks for protein secondary structure prediction
DEFF Research Database (Denmark)
Riis, Søren Kamaric
1995-01-01
In this paper structured neural networks are applied to the problem of predicting the secondary structure of proteins. A hierarchical approach is used where specialized neural networks are designed for each structural class and then combined using another neural network. The submodels are designe...... is better than most secondary structure prediction methods based on single sequences even though this model contains much fewer parameters...
Prediction based chaos control via a new neural network
Energy Technology Data Exchange (ETDEWEB)
Shen Liqun [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: liqunshen@gmail.com; Wang Mao [Space Control and Inertia Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China); Liu Wanyu [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001 (China); Sun Guanghui [Space Control and Inertia Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China)
2008-11-17
In this Letter, a new chaos control scheme based on chaos prediction is proposed. To perform chaos prediction, a new neural network architecture for complex nonlinear approximation is proposed. And the difficulty in building and training the neural network is also reduced. Simulation results of Logistic map and Lorenz system show the effectiveness of the proposed chaos control scheme and the proposed neural network.
Artificial Neural Network Model for Predicting Compressive
Directory of Open Access Journals (Sweden)
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Combining logistic regression and neural networks to create predictive models.
Spackman, K. A.
1992-01-01
Neural networks are being used widely in medicine and other areas to create predictive models from data. The statistical method that most closely parallels neural networks is logistic regression. This paper outlines some ways in which neural networks and logistic regression are similar, shows how a small modification of logistic regression can be used in the training of neural network models, and illustrates the use of this modification for variable selection and predictive model building wit...
Groundwater Level Predictions Using Artificial Neural Networks
Institute of Scientific and Technical Information of China (English)
毛晓敏; 尚松浩; 刘翔
2002-01-01
The prediction of groundwater level is important for the use and management of groundwater resources. In this paper, the artificial neural networks (ANN) were used to predict groundwater level in the Dawu Aquifer of Zibo in Eastern China. The first step was an auto-correlation analysis of the groundwater level which showed that the monthly groundwater level was time dependent. An auto-regression type ANN (ARANN) model and a regression-auto-regression type ANN (RARANN) model using back-propagation algorithm were then used to predict the groundwater level. Monthly data from June 1988 to May 1998 was used for the network training and testing. The results show that the RARANN model is more reliable than the ARANN model, especially in the testing period, which indicates that the RARANN model can describe the relationship between the groundwater fluctuation and main factors that currently influence the groundwater level. The results suggest that the model is suitable for predicting groundwater level fluctuations in this area for similar conditions in the future.
Prediction of surface distress using neural networks
Hamdi, Hadiwardoyo, Sigit P.; Correia, A. Gomes; Pereira, Paulo; Cortez, Paulo
2017-06-01
Road infrastructures contribute to a healthy economy throughout a sustainable distribution of goods and services. A road network requires appropriately programmed maintenance treatments in order to keep roads assets in good condition, providing maximum safety for road users under a cost-effective approach. Surface Distress is the key element to identify road condition and may be generated by many different factors. In this paper, a new approach is aimed to predict Surface Distress Index (SDI) values following a data-driven approach. Later this model will be accordingly applied by using data obtained from the Integrated Road Management System (IRMS) database. Artificial Neural Networks (ANNs) are used to predict SDI index using input variables related to the surface of distress, i.e., crack area and width, pothole, rutting, patching and depression. The achieved results show that ANN is able to predict SDI with high correlation factor (R2 = 0.996%). Moreover, a sensitivity analysis was applied to the ANN model, revealing the influence of the most relevant input parameters for SDI prediction, namely rutting (59.8%), crack width (29.9%) and crack area (5.0%), patching (3.0%), pothole (1.7%) and depression (0.3%).
Wavelet Neural Network Based Traffic Prediction for Next Generation Network
Institute of Scientific and Technical Information of China (English)
Zhao Qigang; Li Qunzhan; He Zhengyou
2005-01-01
By using netflow traffic collecting technology, some traffic data for analysis are collected from a next generation network (NGN) operator. To build a wavelet basis neural network (NN), the Sigmoid function is replaced with the wavelet in NN. Then the wavelet multiresolution analysis method is used to decompose the traffic signal, and the decomposed component sequences are employed to train the NN. By using the methods, an NGN traffic prediction model is built to predict one day's traffic. The experimental results show that the traffic prediction method of wavelet NN is more accurate than that without using wavelet in the NGN traffic forecasting.
Forex Market Prediction Using NARX Neural Network with Bagging
Directory of Open Access Journals (Sweden)
Shahbazi Nima
2016-01-01
Full Text Available We propose a new methodfor predicting movements in Forex market based on NARX neural network withtime shifting bagging techniqueand financial indicators, such as relative strength index and stochastic indicators. Neural networks have prominent learning ability but they often exhibit bad and unpredictable performance for noisy data. When compared with the static neural networks, our method significantly reducesthe error rate of the responseandimproves the performance of the prediction. We tested three different types ofarchitecture for predicting the response and determined the best network approach. We applied our method to prediction the hourly foreign exchange rates and found remarkable predictability in comprehensive experiments with 2 different foreign exchange rates (GBPUSD and EURUSD.
Network traffic anomaly prediction using Artificial Neural Network
Ciptaningtyas, Hening Titi; Fatichah, Chastine; Sabila, Altea
2017-03-01
As the excessive increase of internet usage, the malicious software (malware) has also increase significantly. Malware is software developed by hacker for illegal purpose(s), such as stealing data and identity, causing computer damage, or denying service to other user[1]. Malware which attack computer or server often triggers network traffic anomaly phenomena. Based on Sophos's report[2], Indonesia is the riskiest country of malware attack and it also has high network traffic anomaly. This research uses Artificial Neural Network (ANN) to predict network traffic anomaly based on malware attack in Indonesia which is recorded by Id-SIRTII/CC (Indonesia Security Incident Response Team on Internet Infrastructure/Coordination Center). The case study is the highest malware attack (SQL injection) which has happened in three consecutive years: 2012, 2013, and 2014[4]. The data series is preprocessed first, then the network traffic anomaly is predicted using Artificial Neural Network and using two weight update algorithms: Gradient Descent and Momentum. Error of prediction is calculated using Mean Squared Error (MSE) [7]. The experimental result shows that MSE for SQL Injection is 0.03856. So, this approach can be used to predict network traffic anomaly.
Multilayer perceptron neural network for flow prediction.
Araujo, P; Astray, G; Ferrerio-Lage, J A; Mejuto, J C; Rodriguez-Suarez, J A; Soto, B
2011-01-01
Artificial neural networks (ANNs) have proven to be a tool for characterizing, modeling and predicting many of the non-linear hydrological processes such as rainfall-runoff, groundwater evaluation or simulation of water quality. After proper training they are able to generate satisfactory predictive results for many of these processes. In this paper they have been used to predict 1 or 2 days ahead the average and maximum daily flow of a river in a small forest headwaters in northwestern Spain. The inputs used were the flow and climate data (precipitation, temperature, relative humidity, solar radiation and wind speed) as recorded in the basin between 2003 and 2008. Climatic data have been utilized in a disaggregated form by considering each one as an input variable in ANN(1), or in an aggregated form by its use in the calculation of evapotranspiration and using this as input variable in ANN(2). Both ANN(1) and ANN(2), after being trained with the data for the period 2003-2007, have provided a good fit between estimated and observed data, with R(2) values exceeding 0.95. Subsequently, its operation has been verified making use of the data for the year 2008. The correlation coefficients obtained between the data estimated by ANNs and those observed were in all cases superior to 0.85, confirming the capacity of ANNs as a model for predicting average and maximum daily flow 1 or 2 days in advance.
Financial Time Series Prediction Using Elman Recurrent Random Neural Networks.
Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli
2016-01-01
In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.
Prediction of Parametric Roll Resonance by Multilayer Perceptron Neural Network
DEFF Research Database (Denmark)
Míguez González, M; López Peña, F.; Díaz Casás, V.
2011-01-01
acknowledged in the last few years. This work proposes a prediction system based on a multilayer perceptron (MP) neural network. The training and testing of the MP network is accomplished by feeding it with simulated data of a three degrees-of-freedom nonlinear model of a fishing vessel. The neural network...
Prediction of Parametric Roll Resonance by Multilayer Perceptron Neural Network
DEFF Research Database (Denmark)
Míguez González, M; López Peña, F.; Díaz Casás, V.
2011-01-01
acknowledged in the last few years. This work proposes a prediction system based on a multilayer perceptron (MP) neural network. The training and testing of the MP network is accomplished by feeding it with simulated data of a three degrees-of-freedom nonlinear model of a fishing vessel. The neural network...
Using Neural Networks to Predict MBA Student Success
Naik, Bijayananda; Ragothaman, Srinivasan
2004-01-01
Predicting MBA student performance for admission decisions is crucial for educational institutions. This paper evaluates the ability of three different models--neural networks, logit, and probit to predict MBA student performance in graduate programs. The neural network technique was used to classify applicants into successful and marginal student…
Prediction of tides using back-propagation neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
Prediction of tides is very much essential for human activities and to reduce the construction cost in marine environment. This paper presents an application of the artificial neural network with back-propagation procedures for accurate prediction...
Spatial predictive mapping using artificial neural networks
Noack, S.; Knobloch, A.; Etzold, S. H.; Barth, A.; Kallmeier, E.
2014-11-01
The modelling or prediction of complex geospatial phenomena (like formation of geo-hazards) is one of the most important tasks for geoscientists. But in practice it faces various difficulties, caused mainly by the complexity of relationships between the phenomena itself and the controlling parameters, as well by limitations of our knowledge about the nature of physical/ mathematical relationships and by restrictions regarding accuracy and availability of data. In this situation methods of artificial intelligence, like artificial neural networks (ANN) offer a meaningful alternative modelling approach compared to the exact mathematical modelling. In the past, the application of ANN technologies in geosciences was primarily limited due to difficulties to integrate it into geo-data processing algorithms. In consideration of this background, the software advangeo® was developed to provide a normal GIS user with a powerful tool to use ANNs for prediction mapping and data preparation within his standard ESRI ArcGIS environment. In many case studies, such as land use planning, geo-hazards analysis and prevention, mineral potential mapping, agriculture & forestry advangeo® has shown its capabilities and strengths. The approach is able to add considerable value to existing data.
The EEG Signal Prediction by Using Neural Network
Directory of Open Access Journals (Sweden)
Jitka Mohylova
2008-01-01
Full Text Available The neural network is computational model based on the features abstraction of biological neural systems. The neural networks have many ways of usage in technical field. They have been applied successfully to speech recognition, image analysis and adaptive control, in order to construct software agents or autonomous robots. In this paper is described usage of neural networks for ECG signal prediction. The ECG signal prediction can be used for automated detection of irregular heartbeat – extrasystole. The automated detection system of unexpected abnormalities is also described in this paper
Prediction Model of Sewing Technical Condition by Grey Neural Network
Institute of Scientific and Technical Information of China (English)
DONG Ying; FANG Fang; ZHANG Wei-yuan
2007-01-01
The grey system theory and the artificial neural network technology were applied to predict the sewing technical condition. The representative parameters, such as needle, stitch, were selected. Prediction model was established based on the different fabrics' mechanical properties that measured by KES instrument. Grey relevant degree analysis was applied to choose the input parameters of the neural network. The result showed that prediction model has good precision. The average relative error was 4.08% for needle and 4.25% for stitch.
Financial time series prediction using spiking neural networks.
Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam
2014-01-01
In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.
Financial time series prediction using spiking neural networks.
Directory of Open Access Journals (Sweden)
David Reid
Full Text Available In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.
Neural networks for predicting mass transfer parameters in supercritical extraction
Directory of Open Access Journals (Sweden)
A.P. Fonseca
2000-12-01
Full Text Available Neural networks have been investigated for predicting mass transfer coefficients from supercritical Carbon Dioxide/Ethanol/Water system. To avoid the difficulties associated with reduce experimental data set available for supercritical extraction in question, it was chosen to use a technique to generate new semi-empirical data. It combines experimental mass transfer coefficient with those obtained from correlation available in literature, producing an extended data set enough for efficient neural network identification. With respect to available experimental data, the results obtained to benefit neural networks in comparing with empirical correlations for predicting mass transfer parameters.
Nonlinear wind prediction using a fuzzy modular temporal neural network
Energy Technology Data Exchange (ETDEWEB)
Wu, G.G. [GeoControl Systems, Inc., Houston, TX (United States); Zhijie Dou [West Texas A& M Univ., Canyon, TX (United States)
1995-12-31
This paper introduces a new approach utilizing a fuzzy classifier and a modular temporal neural network to predict wind speed and direction for advanced wind turbine control systems. The fuzzy classifier estimates wind patterns and then assigns weights accordingly to each module of the temporal neural network. A temporal network with the finite-duration impulse response and multiple-layer structure is used to represent the underlying dynamics of physical phenomena. Using previous wind measurements and information given by the classifier, the modular network trained by a standard back-propagation algorithm predicts wind speed and direction effectively. Meanwhile, the feedback from the network helps auto-tuning the classifier.
Financial Time Series Prediction Using Elman Recurrent Random Neural Networks
Directory of Open Access Journals (Sweden)
Jie Wang
2016-01-01
(ERNN, the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.
Neural Network predictions of Diatomic and Triatomic Molecular Data
Blake Laing, W.
1997-11-01
The arrangement of molecules in periodic systems offers an enhanced comprehension of trends in molecular properties, a more efficient method of sorting and searching of molecular databases, and bases for the prediction of new data. Neural networks have the ability to "learn" existing data and to forecast a large amount of new data without a smoothing equation.(R. Hefferlin, B. Davis, W. B. Laing, "The Learning and Prediction of Triatomic Molecular Data with Neural Networks," International Arctic Seminar 1997, Murmansk, Russia)(J. Wohlers, W. B. Laing, R. Hefferlin, and B. Daivs, "Least-Squares and Neural-Network Forecasting from Citical Data: Diatomic Molecular Internuclear Separations and Triatomic Heats of Atomization and Ionization Potentials," Advances in Molecular Similarity: JIA book series, in press) This report will present periodic systems of molecules as well as neural network predictions for additional properties of diatomic and triatomic molecules.
Prediction of stock market characteristics using neural networks
Pandya, Abhijit S.; Kondo, Tadashi; Shah, Trupti U.; Gandhi, Viraf R.
1999-03-01
International stocks trading, currency and derivative contracts play an increasingly important role for many investors. Neural network is playing a dominant role in predicting the trends in stock markets and in currency speculation. In most economic applications, the success rate using neural networks is limited to 70 - 80%. By means of the new approach of GMDH (Group Method of Data Handling) neural network predictions can be improved further by 10 - 15%. It was observed in our study, that using GMDH for short, noisy or inaccurate data sample resulted in the best-simplified model. In the GMDH model accuracy of prediction is higher and the structure is simpler than that of the usual full physical model. As an example, prediction of the activity on the stock exchange in New York was considered. On the basis of observations in the period of Jan '95 to July '98, several variables of the stock market (S&P 500, Small Cap, Dow Jones, etc.) were predicted. A model portfolio using various stocks (Amgen, Merck, Office Depot, etc.) was built and its performance was evaluated based on neural network forecasting of the closing prices. Comparison of results was made with various neural network models such as Multilayer Perceptrons with Back Propagation, and the GMDH neural network. Variations of GMDH were studied and analysis of their performance is reported in the paper.
System Identification, Prediction, Simulation and Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1997-01-01
The intention of this paper is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: 1) Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. 2) Amongst numerous training algorithms, only the Recursive Prediction Error Method using...... a Gauss-Newton search direction is applied. 3) Amongst numerous model types, often met in control applications, only the Non-linear ARMAX (NARMAX) model, representing input/output description, is examined. A simulated example confirms that a neural network has the potential to perform excellent System...
Fuzzy Neural Network Based Traffic Prediction and Congestion Control in High-Speed Networks
Institute of Scientific and Technical Information of China (English)
费翔; 何小燕; 罗军舟; 吴介一; 顾冠群
2000-01-01
Congestion control is one of the key problems in high-speed networks, such as ATM. In this paper, a kind of traffic prediction and preventive congestion control scheme is proposed using neural network approach. Traditional predictor using BP neural network has suffered from long convergence time and dissatisfying error. Fuzzy neural network developed in this paper can solve these problems satisfactorily. Simulations show the comparison among no-feedback control scheme,reactive control scheme and neural network based control scheme.
Prediction of Aerodynamic Coefficients using Neural Networks for Sparse Data
Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)
2002-01-01
Basic aerodynamic coefficients are modeled as functions of angles of attack and sideslip with vehicle lateral symmetry and compressibility effects. Most of the aerodynamic parameters can be well-fitted using polynomial functions. In this paper a fast, reliable way of predicting aerodynamic coefficients is produced using a neural network. The training data for the neural network is derived from wind tunnel test and numerical simulations. The coefficients of lift, drag, pitching moment are expressed as a function of alpha (angle of attack) and Mach number. The results produced from preliminary neural network analysis are very good.
Wind power prediction based on genetic neural network
Zhang, Suhan
2017-04-01
The scale of grid connected wind farms keeps increasing. To ensure the stability of power system operation, make a reasonable scheduling scheme and improve the competitiveness of wind farm in the electricity generation market, it's important to accurately forecast the short-term wind power. To reduce the influence of the nonlinear relationship between the disturbance factor and the wind power, the improved prediction model based on genetic algorithm and neural network method is established. To overcome the shortcomings of long training time of BP neural network and easy to fall into local minimum and improve the accuracy of the neural network, genetic algorithm is adopted to optimize the parameters and topology of neural network. The historical data is used as input to predict short-term wind power. The effectiveness and feasibility of the method is verified by the actual data of a certain wind farm as an example.
Predictive modeling of dental pain using neural network.
Kim, Eun Yeob; Lim, Kun Ok; Rhee, Hyun Sill
2009-01-01
The mouth is a part of the body for ingesting food that is the most basic foundation and important part. The dental pain predicted by the neural network model. As a result of making a predictive modeling, the fitness of the predictive modeling of dental pain factors was 80.0%. As for the people who are likely to experience dental pain predicted by the neural network model, preventive measures including proper eating habits, education on oral hygiene, and stress release must precede any dental treatment.
Applying Neural Network in Evaporative Cooler Performance Prediction
Institute of Scientific and Technical Information of China (English)
QIANG Tian-wei; SHEN Heng-gen; HUANG Xiang; XUAN Yong-mei
2007-01-01
The back-propagation (BP) neural network is created to predict the performance of a direct evaporative cooling (DEC) air conditioner with GLASdek pads. The experiment data about the performance of the DEC air conditioner are obtained. Some experiment data are used to train the network until these data can approximate a function, then, simulate the network with the remanent data. The predicted result shows satisfying effects.
The Application of Neural Network in Lifetime Prediction of Concrete
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
There are many difficulties in concrete endurance prediction, especially in accurate predicting service life of concrete engineering. It is determined by the concentration of SO2-4/ Mg2+/Cl-/Ca2+, reaction areas, the cycles of freezing and dissolving, alternatives of dry and wet state, the kind of cement, etc.. In general, because of complexity itself and cognitive limitation, endurance prediction under sulphate erosion is still illegible and uncertain,so this paper adopts neural network technology to research this problem. Through analyzing, the paper sets up a 3-levels neural network and a 4-levels neural network to predict the endurance under sulphate erosion. The 3-levels neural network includes 13 inputting nodes, 7 outputting nodes and 34 hidden nodes. The 4-levels neural network also has 13 inputting nodes and 7 outputting nodes with two hidden levels which has 7 nodes and 8 nodes separately. In the end the paper give a example with laboratorial data and discussion the result and deviation. The paper shows that deviation results from some faults of training specimens:such as few training specimens and few distinctions among training specimens. So the more specimens should be collected to reduce data redundancy and improve the reliability of network analysis conclusion.
Prediction of littoral drift with artificial neural networks
Digital Repository Service at National Institute of Oceanography (India)
Singh, A.K.; Deo, M.C.; SanilKumar, V.
of the rate of sand drift has still remained as a problem. The current study addresses this issue through the use of artificial neural networks (ANN). Feed forward networks were developed to predict the sand drift from a variety of causative variables...
Neural network definitions of highly predictable protein secondary structure classes
Energy Technology Data Exchange (ETDEWEB)
Lapedes, A. [Los Alamos National Lab., NM (United States)]|[Santa Fe Inst., NM (United States); Steeg, E. [Toronto Univ., ON (Canada). Dept. of Computer Science; Farber, R. [Los Alamos National Lab., NM (United States)
1994-02-01
We use two co-evolving neural networks to determine new classes of protein secondary structure which are significantly more predictable from local amino sequence than the conventional secondary structure classification. Accurate prediction of the conventional secondary structure classes: alpha helix, beta strand, and coil, from primary sequence has long been an important problem in computational molecular biology. Neural networks have been a popular method to attempt to predict these conventional secondary structure classes. Accuracy has been disappointingly low. The algorithm presented here uses neural networks to similtaneously examine both sequence and structure data, and to evolve new classes of secondary structure that can be predicted from sequence with significantly higher accuracy than the conventional classes. These new classes have both similarities to, and differences with the conventional alpha helix, beta strand and coil.
Neural network for prediction of superheater fireside corrosion
Energy Technology Data Exchange (ETDEWEB)
Makkonen, P. [Foster Wheeler Energia Oy, Karhula R and D Center, Karhula (Finland)
1998-12-31
Superheater corrosion causes vast annual losses to the power companies. If the corrosion could be reliably predicted, new power plants could be designed accordingly, and knowledge of fuel selection and determination of process conditions could be utilized to minimize superheater corrosion. If relations between inputs and the output are poorly known, conventional models depending on corrosion theories will fail. A prediction model based on a neural network is capable of learning from errors and improving its performance as the amount of data increases. The neural network developed during this study predicts superheater corrosion with 80 % accuracy at early stage of the project. (orig.) 10 refs.
Prediction of Double Layer Grids' Maximum Deflection Using Neural Networks
Directory of Open Access Journals (Sweden)
Reza K. Moghadas
2008-01-01
Full Text Available Efficient neural networks models are trained to predict the maximum deflection of two-way on two-way grids with variable geometrical parameters (span and height as well as cross-sectional areas of the element groups. Backpropagation (BP and Radial Basis Function (RBF neural networks are employed for the mentioned purpose. The inputs of the neural networks are the length of the spans, L, the height, h and cross-sectional areas of the all groups, A and the outputs are maximum deflections of the corresponding double layer grids, respectively. The numerical results indicate that the RBF neural network is better than BP in terms of training time and performance generality.
Artificial Neural Networks: A New Approach to Predicting Application Behavior.
Gonzalez, Julie M. Byers; DesJardins, Stephen L.
2002-01-01
Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)
Artificial Neural Networks: A New Approach to Predicting Application Behavior.
Gonzalez, Julie M. Byers; DesJardins, Stephen L.
2002-01-01
Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)
Neural networks for predicting breeding values and genetic gains
Directory of Open Access Journals (Sweden)
Gabi Nunes Silva
2014-12-01
Full Text Available Analysis using Artificial Neural Networks has been described as an approach in the decision-making process that, although incipient, has been reported as presenting high potential for use in animal and plant breeding. In this study, we introduce the procedure of using the expanded data set for training the network. Wealso proposed using statistical parameters to estimate the breeding value of genotypes in simulated scenarios, in addition to the mean phenotypic value in a feed-forward back propagation multilayer perceptron network. After evaluating artificial neural network configurations, our results showed its superiority to estimates based on linear models, as well as its applicability in the genetic value prediction process. The results further indicated the good generalization performance of the neural network model in several additional validation experiments.
Predicting the survival of diabetes using neural network
Mamuda, Mamman; Sathasivam, Saratha
2017-08-01
Data mining techniques at the present time are used in predicting diseases of health care industries. Neural Network is one among the prevailing method in data mining techniques of an intelligent field for predicting diseases in health care industries. This paper presents a study on the prediction of the survival of diabetes diseases using different learning algorithms from the supervised learning algorithms of neural network. Three learning algorithms are considered in this study: (i) The levenberg-marquardt learning algorithm (ii) The Bayesian regulation learning algorithm and (iii) The scaled conjugate gradient learning algorithm. The network is trained using the Pima Indian Diabetes Dataset with the help of MATLAB R2014(a) software. The performance of each algorithm is further discussed through regression analysis. The prediction accuracy of the best algorithm is further computed to validate the accurate prediction
Time series prediction using wavelet process neural network
Institute of Scientific and Technical Information of China (English)
Ding Gang; Zhong Shi-Sheng; Li Yang
2008-01-01
In the real world, the inputs of many complicated systems are time-varying functions or processes. In order to predict the outputs of these systems with high speed and accuracy, this paper proposes a time series prediction model based on the wavelet process neural network, and develops the corresponding learning algorithm based on the expansion of the orthogonal basis functions. The effectiveness of the proposed time series prediction model and its learning algorithm is proved by the Mackey-Glass time series prediction, and the comparative prediction results indicate that the proposed time series prediction model based on the wavelet process neural network seems to perform well and appears suitable for using as a good tool to predict the highly complex nonlinear time series.
A Framework for Predicting Phishing Websites Using Neural Networks
Directory of Open Access Journals (Sweden)
A Martin
2011-03-01
Full Text Available In India many people are now dependent on online banking. This raises security concerns as the banking websites are forged and fraud can be committed by identity theft. These forged websites are called as Phishing websites and created by malicious people to mimic web pages of real websites and it attempts to defraud people of their personal information. Detecting and identifying phishing websites is a really complex and dynamic problem involving many factors and criteria. This paper discusses about the prediction of phishing websites using neural networks. A neural network is a multilayer system which reduces the error and increases the performance. This paper describes a framework to better classify and predict the phishing sites using neural networks.
A Framework for Predicting Phishing Websites using Neural Networks
Martin, A; Sathyavathy, M; Francois, Marie Manjari Saint; Venkatesan, Dr V Prasanna
2011-01-01
In India many people are now dependent on online banking. This raises security concerns as the banking websites are forged and fraud can be committed by identity theft. These forged websites are called as Phishing websites and created by malicious people to mimic web pages of real websites and it attempts to defraud people of their personal information. Detecting and identifying phishing websites is a really complex and dynamic problem involving many factors and criteria. This paper discusses about the prediction of phishing websites using neural networks. A neural network is a multilayer system which reduces the error and increases the performance. This paper describes a framework to better classify and predict the phishing sites using neural networks.
Neural Network Predictive Control for Vanadium Redox Flow Battery
Directory of Open Access Journals (Sweden)
Hai-Feng Shen
2013-01-01
Full Text Available The vanadium redox flow battery (VRB is a nonlinear system with unknown dynamics and disturbances. The flowrate of the electrolyte is an important control mechanism in the operation of a VRB system. Too low or too high flowrate is unfavorable for the safety and performance of VRB. This paper presents a neural network predictive control scheme to enhance the overall performance of the battery. A radial basis function (RBF network is employed to approximate the dynamics of the VRB system. The genetic algorithm (GA is used to obtain the optimum initial values of the RBF network parameters. The gradient descent algorithm is used to optimize the objective function of the predictive controller. Compared with the constant flowrate, the simulation results show that the flowrate optimized by neural network predictive controller can increase the power delivered by the battery during the discharge and decrease the power consumed during the charge.
Predicting Chaotic Time Series Using Recurrent Neural Network
Institute of Scientific and Technical Information of China (English)
ZHANG Jia-Shu; XIAO Xian-Ci
2000-01-01
A new proposed method, i.e. the recurrent neural network (RNN), is introduced to predict chaotic time series. The effectiveness of using RNN for making one-step and multi-step predictions is tested based on remarkable few datum points by computer-generated chaotic time series. Numerical results show that the RNN proposed here is a very powerful tool for making prediction of chaotic time series.
Using neural networks for prediction of nuclear parameters
Energy Technology Data Exchange (ETDEWEB)
Pereira Filho, Leonidas; Souto, Kelling Cabral, E-mail: leonidasmilenium@hotmail.com, E-mail: kcsouto@bol.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ (Brazil); Machado, Marcelo Dornellas, E-mail: dornemd@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (GCN.T/ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Gerencia de Combustivel Nuclear
2013-07-01
Dating from 1943, the earliest work on artificial neural networks (ANN), when Warren Mc Cullock and Walter Pitts developed a study on the behavior of the biological neuron, with the goal of creating a mathematical model. Some other work was done until after the 80 witnessed an explosion of interest in ANNs, mainly due to advances in technology, especially microelectronics. Because ANNs are able to solve many problems such as approximation, classification, categorization, prediction and others, they have numerous applications in various areas, including nuclear. Nodal method is adopted as a tool for analyzing core parameters such as boron concentration and pin power peaks for pressurized water reactors. However, this method is extremely slow when it is necessary to perform various core evaluations, for example core reloading optimization. To overcome this difficulty, in this paper a model of Multi-layer Perceptron (MLP) artificial neural network type backpropagation will be trained to predict these values. The main objective of this work is the development of Multi-layer Perceptron (MLP) artificial neural network capable to predict, in very short time, with good accuracy, two important parameters used in the core reloading problem - Boron Concentration and Power Peaking Factor. For the training of the neural networks are provided loading patterns and nuclear data used in cycle 19 of Angra 1 nuclear power plant. Three models of networks are constructed using the same input data and providing the following outputs: 1- Boron Concentration and Power Peaking Factor, 2 - Boron Concentration and 3 - Power Peaking Factor. (author)
Patterning and predicting aquatic macroinvertebrate diversities using artificial neural network
Park, Y.S.; Verdonschot, P.F.M.; Chon, T.S.; Lek, S.
2003-01-01
A counterpropagation neural network (CPN) was applied to predict species richness (SR) and Shannon diversity index (SH) of benthic macroinvertebrate communities using 34 environmental variables. The data were collected at 664 sites at 23 different water types such as springs, streams, rivers, canals
Predicting Physical Time Series Using Dynamic Ridge Polynomial Neural Networks
Al-Jumeily, Dhiya; Ghazali, Rozaida; Hussain, Abir
2014-01-01
Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques. PMID:25157950
Wind Power Plant Prediction by Using Neural Networks: Preprint
Energy Technology Data Exchange (ETDEWEB)
Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.
2012-08-01
This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.
Predicting physical time series using dynamic ridge polynomial neural networks.
Directory of Open Access Journals (Sweden)
Dhiya Al-Jumeily
Full Text Available Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques.
STUDY ON TURBOMACHINERY PERFORMANCE PREDICTION WITH NEURAL NETWORKS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Traditional methods for performance prediction of a turbomachinery are usually based on certain computations from a set of data obtained in limited experiment measurements of the machine, or the machinemodels. Since the computational (mathematical) models used in such performance prediction are often crude,most of the predicted results are only correct in very small ranges around the known data points. Beyond the limited ranges,the accuracy of the resultant predictions decrease abruptly. Therefore, an alternative approach,neural network technique,is studied for performance prediction of turbomachinery. The new approach has been applied to two typical performance prediction cases to verify its feasibility and reliability.
Stability prediction of berm breakwater using neural network
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Rao, S.; Manjunath, Y.R.
. In order to allow the network to learn both non-linear and linear relationships between input nodes and output nodes, multiple-layer networks are often used. Among many neural network architectures, the three layers feed forward backpropagation neural...
Neural Network Predictive Control Based Power System Stabilizer
Directory of Open Access Journals (Sweden)
Ali Mohamed Yousef
2012-04-01
Full Text Available The present study investigates the power system stabilizer based on neural predictive control for improving power system dynamic performance over a wide range of operating conditions. In this study a design and application of the Neural Network Model Predictive Controller (NN-MPC on a simple power system composed of a synchronous generator connected to an infinite bus through a transmission line is proposed. The synchronous machine is represented in detail, taking into account the effect of the machine saliency and the damper winding. Neural network model predictive control combines reliable prediction of neural network model with excellent performance of model predictive control using nonlinear Levenberg-Marquardt optimization. This control system is used the rotor speed deviation as a feedback signal. Furthermore, the using performance system of the proposed controller is compared with the system performance using conventional one (PID controller through simulation studies. Digital simulation has been carried out in order to validate the effectiveness proposed NN-MPC power system stabilizer for achieving excellent performance. The results demonstrate that the effectiveness and superiority of the proposed controller in terms of fast response and small settling time.
PREDICTING CUSTOMER CHURN IN BANKING INDUSTRY USING NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
Alisa Bilal Zorić
2016-03-01
Full Text Available The aim of this article is to present a case study of usage of one of the data mining methods, neural network, in knowledge discovery from databases in the banking industry. Data mining is automated process of analysing, organization or grouping a large set of data from different perspectives and summarizing it into useful information using special algorithms. Data mining can help to resolve banking problems by finding some regularity, causality and correlation to business information which are not visible at first sight because they are hidden in large amounts of data. In this paper, we used one of the data mining methods, neural network, within the software package Alyuda NeuroInteligence to predict customer churn in bank. The focus on customer churn is to determinate the customers who are at risk of leaving and analysing whether those customers are worth retaining. Neural network is statistical learning model inspired by biological neural and it is used to estimate or approximate functions that can depend on a large number of inputs which are generally unknown. Although the method itself is complicated, there are tools that enable the use of neural networks without much prior knowledge of how they operate. The results show that clients who use more bank services (products are more loyal, so bank should focus on those clients who use less than three products, and offer them products according to their needs. Similar results are obtained for different network topologies.
Prediction of Skin Penetration using Artificial Neural Network
Directory of Open Access Journals (Sweden)
Sangita Saini,
2010-06-01
Full Text Available The artificial neural networks (ANN technologies provide on-line capability to analyze many inputs and provide information to multiple outputs, and have the capability to learn or adapt to changing conditions. No doubt that the determination of Skin permeability is a time consuming process; which involves a quite tedious work. Material and method: Software Neurodimension was used for this study. A data set was taken from literature and used to train the network. A set of 20 compounds were used to construct the ANN models for training and 10 compounds used for prediction of skin penetration (n=30, molecular weight>500 da. Skin permeability expressed in log Kp (cm/h. Abraham descriptors of R2 (excess molar refraction, π2 H dipolarity/polarizability, Σα2 H, Σβ2 H (the overall or effective hydrogen-bond acidity and basicity, and Vx (the McGowan haracteristic volume were obtained. Result: The correlation between the skin permeability coefficient and the Abraham descriptors were obtained from the trained neural network. The regression coefficient was 0.856 for training subset and MSE was 0.04. In addition, thepredictability of the neural network model was compared to the experimental data. This paper uses artificial neural network for prediction of Skin permeability study.
Neural networks for the prediction organic chemistry reactions
Wei, Jennifer N; Aspuru-Guzik, Alán
2016-01-01
Reaction prediction remains one of the great challenges for organic chemistry. Solving this problem computationally requires the programming of a vast amount of knowledge and intuition of the rules of organic chemistry and the development of algorithms for their application. It is desirable to develop algorithms that, like humans, "learn" from being exposed to examples of the application of the rules of organic chemistry. In this work, we introduce a novel algorithm for predicting the products of organic chemistry reactions using machine learning to first identify the reaction type. In particular, we trained deep convolutional neural networks to predict the outcome of reactions based example reactions, using a new reaction fingerprint model. Due to the flexibility of neural networks, the system can attempt to predict reactions outside the domain where it was trained. We test this capability on problems from a popular organic chemistry textbook.
Neural network learning of optimal Kalman prediction and control
Linsker, Ralph
2008-01-01
Although there are many neural network (NN) algorithms for prediction and for control, and although methods for optimal estimation (including filtering and prediction) and for optimal control in linear systems were provided by Kalman in 1960 (with nonlinear extensions since then), there has been, to my knowledge, no NN algorithm that learns either Kalman prediction or Kalman control (apart from the special case of stationary control). Here we show how optimal Kalman prediction and control (KPC), as well as system identification, can be learned and executed by a recurrent neural network composed of linear-response nodes, using as input only a stream of noisy measurement data. The requirements of KPC appear to impose significant constraints on the allowed NN circuitry and signal flows. The NN architecture implied by these constraints bears certain resemblances to the local-circuit architecture of mammalian cerebral cortex. We discuss these resemblances, as well as caveats that limit our current ability to draw ...
Neural networks for the prediction organic chemistry reactions
Wei, Jennifer N.; Duvenaud, David; Aspuru-Guzik, Alán
2016-01-01
Reaction prediction remains one of the major challenges for organic chemistry, and is a pre-requisite for efficient synthetic planning. It is desirable to develop algorithms that, like humans, "learn" from being exposed to examples of the application of the rules of organic chemistry. We explore the use of neural networks for predicting reaction types, using a new reaction fingerprinting method. We combine this predictor with SMARTS transformations to build a system which, given a set of reag...
Predicting total solar irradiation values using artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Mubiru, J. [Department of Physics, Makerere University, P.O. Box 7062, Kampala (Uganda)
2008-10-15
This study explores the possibility of developing an artificial neural networks model that could be used to predict monthly average daily total solar irradiation on a horizontal surface for locations in Uganda based on geographical and meteorological data: latitude, longitude, altitude, sunshine duration, relative humidity and maximum temperature. Results have shown good agreement between the predicted and measured values of total solar irradiation. A correlation coefficient of 0.997 was obtained with mean bias error of 0.018 MJ/m{sup 2} and root mean square error of 0.131 MJ/m{sup 2}. Overall, the artificial neural networks model predicted with an accuracy of 0.1% of the mean absolute percentage error. (author)
Feature Selection for Neural Network Based Stock Prediction
Sugunnasil, Prompong; Somhom, Samerkae
We propose a new methodology of feature selection for stock movement prediction. The methodology is based upon finding those features which minimize the correlation relation function. We first produce all the combination of feature and evaluate each of them by using our evaluate function. We search through the generated set with hill climbing approach. The self-organizing map based stock prediction model is utilized as the prediction method. We conduct the experiment on data sets of the Microsoft Corporation, General Electric Co. and Ford Motor Co. The results show that our feature selection method can improve the efficiency of the neural network based stock prediction.
A novel neural network for the prediction of process variables
Institute of Scientific and Technical Information of China (English)
赵晓光; 陈丙珍; 何小荣
1995-01-01
A novel neural network, which forms a complex function in whole via multiple compounding of simple quadratic functions is presented. Generally, it approximates a process relationship by complicated polynomials. In practical problems, quite a lot of processes exhibit a polynomial relation, and within a certain range, processes without polynomial relations can also be approximated completely by polynomials. Therefore, this network can predict process variables more accurately. Theoretically, it can approximate any continuous functions. In this artide this network is investigated and its characteristics are analysed, then some examples to demonstrate its efficiency are presented.
Prediction of daily sea surface temperature using efficient neural networks
Patil, Kalpesh; Deo, Makaranad Chintamani
2017-04-01
Short-term prediction of sea surface temperature (SST) is commonly achieved through numerical models. Numerical approaches are more suitable for use over a large spatial domain than in a specific site because of the difficulties involved in resolving various physical sub-processes at local levels. Therefore, for a given location, a data-driven approach such as neural networks may provide a better alternative. The application of neural networks, however, needs a large experimentation in their architecture, training methods, and formation of appropriate input-output pairs. A network trained in this manner can provide more attractive results if the advances in network architecture are additionally considered. With this in mind, we propose the use of wavelet neural networks (WNNs) for prediction of daily SST values. The prediction of daily SST values was carried out using WNN over 5 days into the future at six different locations in the Indian Ocean. First, the accuracy of site-specific SST values predicted by a numerical model, ROMS, was assessed against the in situ records. The result pointed out the necessity for alternative approaches. First, traditional networks were tried and after noticing their poor performance, WNN was used. This approach produced attractive forecasts when judged through various error statistics. When all locations were viewed together, the mean absolute error was within 0.18 to 0.32 °C for a 5-day-ahead forecast. The WNN approach was thus found to add value to the numerical method of SST prediction when location-specific information is desired.
Prediction of daily sea surface temperature using efficient neural networks
Patil, Kalpesh; Deo, Makaranad Chintamani
2017-02-01
Short-term prediction of sea surface temperature (SST) is commonly achieved through numerical models. Numerical approaches are more suitable for use over a large spatial domain than in a specific site because of the difficulties involved in resolving various physical sub-processes at local levels. Therefore, for a given location, a data-driven approach such as neural networks may provide a better alternative. The application of neural networks, however, needs a large experimentation in their architecture, training methods, and formation of appropriate input-output pairs. A network trained in this manner can provide more attractive results if the advances in network architecture are additionally considered. With this in mind, we propose the use of wavelet neural networks (WNNs) for prediction of daily SST values. The prediction of daily SST values was carried out using WNN over 5 days into the future at six different locations in the Indian Ocean. First, the accuracy of site-specific SST values predicted by a numerical model, ROMS, was assessed against the in situ records. The result pointed out the necessity for alternative approaches. First, traditional networks were tried and after noticing their poor performance, WNN was used. This approach produced attractive forecasts when judged through various error statistics. When all locations were viewed together, the mean absolute error was within 0.18 to 0.32 °C for a 5-day-ahead forecast. The WNN approach was thus found to add value to the numerical method of SST prediction when location-specific information is desired.
A Recurrent Neural Network for Warpage Prediction in Injection Molding
Directory of Open Access Journals (Sweden)
A. Alvarado-Iniesta
2012-11-01
Full Text Available Injection molding is classified as one of the most flexible and economical manufacturing processes with high volumeof plastic molded parts. Causes of variations in the process are related to the vast number of factors acting during aregular production run, which directly impacts the quality of final products. A common quality trouble in finishedproducts is the presence of warpage. Thus, this study aimed to design a system based on recurrent neural networksto predict warpage defects in products manufactured through injection molding. Five process parameters areemployed for being considered to be critical and have a great impact on the warpage of plastic components. Thisstudy used the finite element analysis software Moldflow to simulate the injection molding process to collect data inorder to train and test the recurrent neural network. Recurrent neural networks were used to understand the dynamicsof the process and due to their memorization ability, warpage values might be predicted accurately. Results show thedesigned network works well in prediction tasks, overcoming those predictions generated by feedforward neuralnetworks.
Consumer Choice Prediction: Artificial Neural Networks versus Logistic Models
Directory of Open Access Journals (Sweden)
Christopher Gan
2005-01-01
Full Text Available Conventional econometric models, such as discriminant analysis and logistic regression have been used to predict consumer choice. However, in recent years, there has been a growing interest in applying artificial neural networks (ANN to analyse consumer behaviour and to model the consumer decision-making process. The purpose of this paper is to empirically compare the predictive power of the probability neural network (PNN, a special class of neural networks and a MLFN with a logistic model on consumers choices between electronic banking and non-electronic banking. Data for this analysis was obtained through a mail survey sent to 1,960 New Zealand households. The questionnaire gathered information on the factors consumers use to decide between electronic banking versus non-electronic banking. The factors include service quality dimensions, perceived risk factors, user input factors, price factors, service product characteristics and individual factors. In addition, demographic variables including age, gender, marital status, ethnic background, educational qualification, employment, income and area of residence are considered in the analysis. Empirical results showed that both ANN models (MLFN and PNN exhibit a higher overall percentage correct on consumer choice predictions than the logistic model. Furthermore, the PNN demonstrates to be the best predictive model since it has the highest overall percentage correct and a very low percentage error on both Type I and Type II errors.
Prediction of Electrochemical Machining Process Parameters using Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Hoda Hosny Abuzied
2012-01-01
Full Text Available Electrochemical machining (ECM is a non-traditional machining process used mainly to cut hard or difficult to cut metals, where the application of a more traditional process is not convenient. It offers several special advantages including higher machining rate, better precision and control, and a wider range of materials that can be machined. A suitable selection of machining parameters for the ECM process relies heavily on the operator’s technologies and experience because of their numerous and diverse range. Machining parameters provided by the machine tool builder cannot meet the operator’s requirements. So, artificial neural networks were introduced as an efficient approach to predict the values of resulting surface roughness and material removal rate. Many researchers usedartificial neural networks (ANN in improvement of ECM process and also in other nontraditional machining processes as well be seen in later sections. The present study is, initiated to predict values of some of resulting process parameters such as metal removal rate(MRR, and surface roughness (Ra using artificial neural networks based on variation of certain predominant parameters of an electrochemical broaching process such as applied voltage, feed rate and electrolyte flow rate. ANN was found to be an efficient approach as it reduced time & effort required to predict material removal rate & surface roughness if they were found experimentally using trial & error method. To validate the proposed approach the predicted values of surface roughness and material removal rate were compared with a previously obtained ones from the experimental work.
The application of neural networks to comprehensive prediction by seismology prediction method
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is called as the character parameter W0 describing enhancement of seismicity. We applied this method to space scanning of North China. The result shows that the mid-term anomalous zone of W0-value usually appeared obviously around the future epicenter 1～3 years before earthquake. It is effective to mid-term prediction.
Prediction of Concrete Compressive Strength by Evolutionary Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Mehdi Nikoo
2015-01-01
Full Text Available Compressive strength of concrete has been predicted using evolutionary artificial neural networks (EANNs as a combination of artificial neural network (ANN and evolutionary search procedures, such as genetic algorithms (GA. In this paper for purpose of constructing models samples of cylindrical concrete parts with different characteristics have been used with 173 experimental data patterns. Water-cement ratio, maximum sand size, amount of gravel, cement, 3/4 sand, 3/8 sand, and coefficient of soft sand parameters were considered as inputs; and using the ANN models, the compressive strength of concrete is calculated. Moreover, using GA, the number of layers and nodes and weights are optimized in ANN models. In order to evaluate the accuracy of the model, the optimized ANN model is compared with the multiple linear regression (MLR model. The results of simulation verify that the recommended ANN model enjoys more flexibility, capability, and accuracy in predicting the compressive strength of concrete.
Application of Neural Network for Concrete Carbonation Depth Prediction
Luo, Daming; Niu, Ditao; Dong, Zhenping
2014-01-01
Concrete carbonation is one of the most significant causes of deterioration of reinforced concrete structures in atmospheric environment. However, current models based on the laboratory tests cannot predict carbonation depth accurately. In this paper, the BP neural network is optimized by the particle swarm optimization (PSO) algorithm to establish the model of the length of the partial carbonation zone for concrete. After simulation training, the improved model is applied to a concrete bridg...
Application of Artificial Neural Networks for Predicting Generated Wind Power
Vijendra Singh
2016-01-01
This paper addresses design and development of an artificial neural network based system for prediction of wind energy produced by wind turbines. Now in the last decade, renewable energy emerged as an additional alternative source for electrical power generation. We need to assess wind power generation capacity by wind turbines because of its non-exhaustible nature. The power generation by electric wind turbines depends on the speed of wind, flow direction, fluctuations, density of air, gener...
A neural network model for short term river flow prediction
2006-01-01
International audience; This paper presents a model using rain gauge and weather radar data to predict the runoff of a small alpine catchment in Austria. The gapless spatial coverage of the radar is important to detect small convective shower cells, but managing such a huge amount of data is a demanding task for an artificial neural network. The method described here uses statistical analysis to reduce the amount of data and find an appropriate input vector. Based on this analysis, radar meas...
Using Neural Networks for Click Prediction of Sponsored Search
Baqapuri, Afroze Ibrahim; Trofimov, Ilya
2014-01-01
Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture for solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First we compare ANN with respect to other popular machine learning models being used for this ...
Successful prediction of horse racing results using a neural network
Allinson, N. M.; Merritt, D.
1991-01-01
Most application work within neural computing continues to employ multi-layer perceptrons (MLP). Though many variations of the fully interconnected feed-forward MLP, and even more variations of the back propagation learning rule, exist; the first section of the paper attempts to highlight several properties of these standard networks. The second section outlines an application-namely the prediction of horse racing results
Neural Networks for the Prediction of Organic Chemistry Reactions
2016-01-01
Reaction prediction remains one of the major challenges for organic chemistry and is a prerequisite for efficient synthetic planning. It is desirable to develop algorithms that, like humans, “learn” from being exposed to examples of the application of the rules of organic chemistry. We explore the use of neural networks for predicting reaction types, using a new reaction fingerprinting method. We combine this predictor with SMARTS transformations to build a system which, given a set of reagents and reactants, predicts the likely products. We test this method on problems from a popular organic chemistry textbook. PMID:27800555
Neural Networks for the Prediction of Organic Chemistry Reactions.
Wei, Jennifer N; Duvenaud, David; Aspuru-Guzik, Alán
2016-10-26
Reaction prediction remains one of the major challenges for organic chemistry and is a prerequisite for efficient synthetic planning. It is desirable to develop algorithms that, like humans, "learn" from being exposed to examples of the application of the rules of organic chemistry. We explore the use of neural networks for predicting reaction types, using a new reaction fingerprinting method. We combine this predictor with SMARTS transformations to build a system which, given a set of reagents and reactants, predicts the likely products. We test this method on problems from a popular organic chemistry textbook.
CNNcon: improved protein contact maps prediction using cascaded neural networks.
Directory of Open Access Journals (Sweden)
Wang Ding
Full Text Available BACKGROUNDS: Despite continuing progress in X-ray crystallography and high-field NMR spectroscopy for determination of three-dimensional protein structures, the number of unsolved and newly discovered sequences grows much faster than that of determined structures. Protein modeling methods can possibly bridge this huge sequence-structure gap with the development of computational science. A grand challenging problem is to predict three-dimensional protein structure from its primary structure (residues sequence alone. However, predicting residue contact maps is a crucial and promising intermediate step towards final three-dimensional structure prediction. Better predictions of local and non-local contacts between residues can transform protein sequence alignment to structure alignment, which can finally improve template based three-dimensional protein structure predictors greatly. METHODS: CNNcon, an improved multiple neural networks based contact map predictor using six sub-networks and one final cascade-network, was developed in this paper. Both the sub-networks and the final cascade-network were trained and tested with their corresponding data sets. While for testing, the target protein was first coded and then input to its corresponding sub-networks for prediction. After that, the intermediate results were input to the cascade-network to finish the final prediction. RESULTS: The CNNcon can accurately predict 58.86% in average of contacts at a distance cutoff of 8 Å for proteins with lengths ranging from 51 to 450. The comparison results show that the present method performs better than the compared state-of-the-art predictors. Particularly, the prediction accuracy keeps steady with the increase of protein sequence length. It indicates that the CNNcon overcomes the thin density problem, with which other current predictors have trouble. This advantage makes the method valuable to the prediction of long length proteins. As a result, the effective
Predicting developmental disorder in infants using an artificial neural network.
Directory of Open Access Journals (Sweden)
Farin Soleimani
2013-06-01
Full Text Available Early recognition of developmental disorders is an important goal, and equally important is avoiding misdiagnosing a disorder in a healthy child without pathology. The aim of the present study was to develop an artificial neural network using perinatal information to predict developmental disorder at infancy. A total of 1,232 mother-child dyads were recruited from 6,150 in the original data of Karaj, Alborz Province, Iran. Thousands of variables are examined in this data including basic characteristics, medical history, and variables related to infants. The validated Infant Neurological International Battery test was employed to assess the infant's development. The concordance indexes showed that true prediction of developmental disorder in the artificial neural network model, compared to the logistic regression model, was 83.1% vs. 79.5% and the area under ROC curves, calculated from testing data, were 0.79 and 0.68, respectively. In addition, specificity and sensitivity of the ANN model vs. LR model was calculated 93.2% vs. 92.7% and 39.1% vs. 21.7%. An artificial neural network performed significantly better than a logistic regression model.
Neural Network Based Popularity Prediction For IPTV System
Directory of Open Access Journals (Sweden)
Jun Li
2012-12-01
Full Text Available Internet protocol television (IPTV, being an emerging Internet application, plays an important and indispensable role in our daily life. In order to maximize user experience and on the same time to minimize service cost, we must take into pay attention to how to reduce the storage and transport costs. A lot of previous work has been done before to do this. There is a challenging problem in this: how to predict the popularities of videos as accurate as possible. To solve the problem, this paper presents a Neural Network model for the popularity prediction of the programs in the IPTV system. And we use the actual historical logs to validate our method. The historical logs are divided to two parts, one is used to train the neural network by extract input/output vectors, and the other part is used to verify the model. The experimental results from our validation show the Neural Network based method can gain better accuracy than the comparative method.
Predicting Developmental Disorder in Infants Using an Artificial Neural Network
Directory of Open Access Journals (Sweden)
Farin Soleimani
2013-06-01
Full Text Available Early recognition of developmental disorders is an important goal, and equally important is avoiding misdiagnosing a disorder in a healthy child without pathology. The aim of the present study was to develop an artificial neural network using perinatal information to predict developmental disorder at infancy. A total of 1,232 mother–child dyads were recruited from 6,150 in the original data of Karaj, Alborz Province, Iran. Thousands of variables are examined in this data including basic characteristics, medical history, and variables related to infants. The validated Infant Neurological International Battery test was employed to assess the infant’s development. The concordance indexes showed that true prediction of developmental disorder in the artificial neural network model, compared to the logistic regression model, was 83.1% vs. 79.5% and the area under ROC curves, calculated from testing data, were 0.79 and 0.68, respectively. In addition, specificity and sensitivity of the ANN model vs. LR model was calculated 93.2% vs. 92.7% and 39.1% vs. 21.7%. An artificial neural network performed significantly better than a logistic regression model.
Predicting developmental disorder in infants using an artificial neural network.
Soleimani, Farin; Teymouri, Robab; Biglarian, Akbar
2013-07-13
Early recognition of developmental disorders is an important goal, and equally important is avoiding misdiagnosing a disorder in a healthy child without pathology. The aim of the present study was to develop an artificial neural network using perinatal information to predict developmental disorder at infancy. A total of 1,232 mother-child dyads were recruited from 6,150 in the original data of Karaj, Alborz Province, Iran. Thousands of variables are examined in this data including basic characteristics, medical history, and variables related to infants. The validated Infant Neurological International Battery test was employed to assess the infant's development. The concordance indexes showed that true prediction of developmental disorder in the artificial neural network model, compared to the logistic regression model, was 83.1% vs. 79.5% and the area under ROC curves, calculated from testing data, were 0.79 and 0.68, respectively. In addition, specificity and sensitivity of the ANN model vs. LR model was calculated 93.2% vs. 92.7% and 39.1% vs. 21.7%. An artificial neural network performed significantly better than a logistic regression model.
Time series prediction by feedforward neural networks - is it difficult?
Rosen-Zvi, M; Kinzel, W
2003-01-01
The difficulties that a neural network faces when trying to learn from a quasi-periodic time series are studied analytically using a teacher-student scenario where the random input is divided into two macroscopic regions with different variances, 1 and 1/gamma sup 2 (gamma >> 1). The generalization error is found to decrease as epsilon sub g propor to exp(-alpha/gamma sup 2), where alpha is the number of examples per input dimension. In contradiction to this very slow vanishing generalization error, the next output prediction is found to be almost free of mistakes. This picture is consistent with learning quasi-periodic time series produced by feedforward neural networks, which is dominated by enhanced components of the Fourier spectrum of the input. Simulation results are in good agreement with the analytical results.
ATHENS SEASONAL VARIATION OF GROUND RESISTANCE PREDICTION USING NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
S. Anbazhagan
2015-10-01
Full Text Available The objective in ground resistance is to attain the most minimal ground safety esteem conceivable that bodes well monetarily and physically. An application of artificial neural networks (ANN to presage and relegation has been growing rapidly due to sundry unique characteristics of ANN models. A decent forecast is able to capture the dubiousness associated with those ground resistance. A portion of the key instabilities are soil composition, moisture content, temperature, ground electrodes and spacing of the electrodes. Propelled by this need, this paper endeavors to develop a generalized regression neural network (GRNN to predict the ground resistance. The GRNN has a single design parameter and expeditious learning and efficacious modeling for nonlinear time series. The precision of the forecast is applied to the Athens seasonal variation of ground resistance that shows the efficacy of the proposed approach.
Neural Networks for Muscle Forces Prediction in Cycling
Directory of Open Access Journals (Sweden)
Giulio Cecchini
2014-11-01
Full Text Available This paper documents the research towards the development of a system based on Artificial Neural Networks to predict muscle force patterns of an athlete during cycling. Two independent inverse problems must be solved for the force estimation: evaluation of the kinematic model and evaluation of the forces distribution along the limb. By solving repeatedly the two inverse problems for different subjects and conditions, a training pattern for an Artificial Neural Network was created. Then, the trained network was validated against an independent validation set, and compared to evaluate agreement between the two alternative approaches using Bland-Altman method. The obtained neural network for the different test patterns yields a normalized error well below 1% and the Bland-Altman plot shows a considerable correlation between the two methods. The new approach proposed herein allows a direct and fast computation for the inverse dynamics of a cyclist, opening the possibility of integrating such algorithm in a real time environment such as an embedded application.
Application of neural networks for the prediction of multidirectional magnetostriction
Baumgartinger, N; Pfützner, H; Krismanic, G
2000-01-01
This paper describes attempts to use artificial neural networks (ANNs) for the prediction of magnetostriction (MS) characteristics of transformer core materials. In this first approach, the ANNs were trained with data from a rotational single-sheet tester to predict MS in rolling direction (r.d.) as a function of material grade, amplitude and shape of multidirectional magnetisation as well as the level of additional mechanical stress. It is shown that ANNs are able to forecast the corresponding relative MS changes in an approximate way.
A neural network model for olfactory glomerular activity prediction
Soh, Zu; Tsuji, Toshio; Takiguchi, Noboru; Ohtake, Hisao
2012-12-01
Recently, the importance of odors and methods for their evaluation have seen increased emphasis, especially in the fragrance and food industries. Although odors can be characterized by their odorant components, their chemical information cannot be directly related to the flavors we perceive. Biological research has revealed that neuronal activity related to glomeruli (which form part of the olfactory system) is closely connected to odor qualities. Here we report on a neural network model of the olfactory system that can predict glomerular activity from odorant molecule structures. We also report on the learning and prediction ability of the proposed model.
Prediction horizon effects on stochastic modelling hints for neural networks
Energy Technology Data Exchange (ETDEWEB)
Drossu, R.; Obradovic, Z. [Washington State Univ., Pullman, WA (United States)
1995-12-31
The objective of this paper is to investigate the relationship between stochastic models and neural network (NN) approaches to time series modelling. Experiments on a complex real life prediction problem (entertainment video traffic) indicate that prior knowledge can be obtained through stochastic analysis both with respect to an appropriate NN architecture as well as to an appropriate sampling rate, in the case of a prediction horizon larger than one. An improvement of the obtained NN predictor is also proposed through a bias removal post-processing, resulting in much better performance than the best stochastic model.
A Neural Network Model for Prediction of Sound Quality
DEFF Research Database (Denmark)
Nielsen,, Lars Bramsløw
error on the test set. The overall concept proved functional, but further testing with data obtained from a new rating experiment is necessary to better assess the utility of this measure. The weights in the trained neural networks were analyzed to qualitatively interpret the relation between...... obtained in subjective sound quality rating experiments based on input data from an auditory model. Various types of input data and data representations from the auditory model were used as input data for the chosen network structure, which was a three-layer perceptron. This network was trained by means...... was evaluated for two types of test set extracted from the complete data set. With a test set consisting of mixed stimuli, the prediction error was only slightly larger than the statistical error in the training data itself. Using a particular group of stimuli for the test set, there was a systematic prediction...
Time Series Prediction based on Hybrid Neural Networks
Directory of Open Access Journals (Sweden)
S. A. Yarushev
2016-01-01
Full Text Available In this paper, we suggest to use hybrid approach to time series forecasting problem. In first part of paper, we create a literature review of time series forecasting methods based on hybrid neural networks and neuro-fuzzy approaches. Hybrid neural networks especially effective for specific types of applications such as forecasting or classification problem, in contrast to traditional monolithic neural networks. These classes of problems include problems with different characteristics in different modules. The main part of paper create a detailed overview of hybrid networks benefits, its architectures and performance under traditional neural networks. Hybrid neural networks models for time series forecasting are discussed in the paper. Experiments with modular neural networks are given.
Artificial neural network based particle size prediction of polymeric nanoparticles.
Youshia, John; Ali, Mohamed Ehab; Lamprecht, Alf
2017-10-01
Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificial neural network including these properties as input with particle size and polydispersity index as output. The established model successfully predicted particle size of nanoparticles covering a range of 70-400nm prepared from other polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and testing data, respectively. Polymer surface activity was found to have the highest impact on the particle size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted polymer properties affecting particle size and confirmed the usefulness of artificial neural networks in predicting the particle size and polydispersity of polymeric nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.
Using neural networks to predict the functionality of reconfigurable nano-material networks
Greff, Klaus; Damme, van Ruud; Koutnik, Jan; Broersma, Hajo; Mikhal, Julia; Lawrence, Celestine; Wiel, van der Wilfred; Schmidhuber, Jürgen
2017-01-01
This paper demonstrates how neural networks can be applied to model and predict the functional behaviour of disordered nano-particle and nano-tube networks. In recently published experimental work, nano-particle and nano-tube networks show promising functionality for future reconfigurable devices, w
Neural Network Based Model for Predicting Housing Market Performance
Institute of Scientific and Technical Information of China (English)
Ahmed Khalafallah
2008-01-01
The United States real estate market is currently facing its worst hit in two decades due to the slowdown of housing sales. The most affected by this decline are real estate investors and home develop-ers who are currently struggling to break-even financially on their investments. For these investors, it is of utmost importance to evaluate the current status of the market and predict its performance over the short-term in order to make appropriate financial decisions. This paper presents the development of artificial neu-ral network based models to support real estate investors and home developers in this critical task. The pa-per describes the decision variables, design methodology, and the implementation of these models. The models utilize historical market performance data sets to train the artificial neural networks in order to pre-dict unforeseen future performances. An application example is analyzed to demonstrate the model capabili-ties in analyzing and predicting the market performance. The model testing and validation showed that the error in prediction is in the range between -2% and +2%.
Wind speed prediction using statistical regression and neural network
Indian Academy of Sciences (India)
Makarand A Kulkarni; Sunil Patil; G V Rama; P N Sen
2008-08-01
Prediction of wind speed in the atmospheric boundary layer is important for wind energy assess- ment,satellite launching and aviation,etc.There are a few techniques available for wind speed prediction,which require a minimum number of input parameters.Four different statistical techniques,viz.,curve ﬁtting,Auto Regressive Integrated Moving Average Model (ARIMA),extrapolation with periodic function and Artiﬁcial Neural Networks (ANN)are employed to predict wind speed.These methods require wind speeds of previous hours as input.It has been found that wind speed can be predicted with a reasonable degree of accuracy using two methods,viz.,extrapolation using periodic curve ﬁtting and ANN and the other two methods are not very useful.
Recurrent neural networks-based multivariable system PID predictive control
Institute of Scientific and Technical Information of China (English)
ZHANG Yan; WANG Fanzhen; SONG Ying; CHEN Zengqiang; YUAN Zhuzhi
2007-01-01
A nonlinear proportion integration differentiation (PID) controller is proposed on the basis of recurrent neural networks,due to the difficulty of tuning the parameters of conventional PID controller.In the control process of nonlinear multivariable system,a decoupling controller was constructed,which took advantage of multi-nonlinear PID controllers in parallel.With the idea of predictive control,two multivariable predictive control strategies were established.One strategy involved the use of the general minimum variance control function on the basis of recursive multi-step predictive method.The other involved the adoption of multistep predictive cost energy to train the weights of the decoupling controller.Simulation studies have shown the efficiency of these strategies.
A Hybrid Neural Network Prediction Model of Air Ticket Sales
Directory of Open Access Journals (Sweden)
Han-Chen Huang
2013-11-01
Full Text Available Air ticket sales revenue is an important source of revenue for travel agencies, and if future air ticket sales revenue can be accurately forecast, travel agencies will be able to advance procurement to achieve a sufficient amount of cost-effective tickets. Therefore, this study applied the Artificial Neural Network (ANN and Genetic Algorithms (GA to establish a prediction model of travel agency air ticket sales revenue. By verifying the empirical data, this study proved that the established prediction model has accurate prediction power, and MAPE (mean absolute percentage error is only 9.11%. The established model can provide business operators with reliable and efficient prediction data as a reference for operational decisions.
A neural network model for short term river flow prediction
Teschl, R.; Randeu, W. L.
2006-07-01
This paper presents a model using rain gauge and weather radar data to predict the runoff of a small alpine catchment in Austria. The gapless spatial coverage of the radar is important to detect small convective shower cells, but managing such a huge amount of data is a demanding task for an artificial neural network. The method described here uses statistical analysis to reduce the amount of data and find an appropriate input vector. Based on this analysis, radar measurements (pixels) representing areas requiring approximately the same time to dewater are grouped.
A neural network model for short term river flow prediction
Directory of Open Access Journals (Sweden)
R. Teschl
2006-01-01
Full Text Available This paper presents a model using rain gauge and weather radar data to predict the runoff of a small alpine catchment in Austria. The gapless spatial coverage of the radar is important to detect small convective shower cells, but managing such a huge amount of data is a demanding task for an artificial neural network. The method described here uses statistical analysis to reduce the amount of data and find an appropriate input vector. Based on this analysis, radar measurements (pixels representing areas requiring approximately the same time to dewater are grouped.
Neural network predicts carrot volume with only three images
Hahn, Federico; Sanchez, Sergio
1998-09-01
A mechanism turned a vision camera around a fixed carrot taking 100 images of it. A 3D reconstruction finite element algorithm reproduced the volume using finite area triangles and morphological operations to optimize memory utilization. Volume from several carrots were calculated and correlated against real volume achieving a 98% success rate. Three images 120 degrees apart were acquired and the main features extracted. A neural network system was trained using the features, increasing the measuring speed and obtaining together with a regression algorithm an accuracy of 95% in predicting the real volume.
Application of Artificial Neural Networks in Canola Crop Yield Prediction
Directory of Open Access Journals (Sweden)
S. J. Sajadi
2014-02-01
Full Text Available Crop yield prediction has an important role in agricultural policies such as specification of the crop price. Crop yield prediction researches have been based on regression analysis. In this research canola yield was predicted using Artificial Neural Networks (ANN using 11 crop year climate data (1998-2009 in Gonbad-e-Kavoos region of Golestan province. ANN inputs were mean weekly rainfall, mean weekly temperature, mean weekly relative humidity and mean weekly sun shine hours and ANN output was canola yield (kg/ha. Multi-Layer Perceptron networks (MLP with Levenberg-Marquardt backpropagation learning algorithm was used for crop yield prediction and Root Mean Square Error (RMSE and square of the Correlation Coefficient (R2 criterions were used to evaluate the performance of the ANN. The obtained results show that the 13-20-1 network has the lowest RMSE equal to 101.235 and maximum value of R2 equal to 0.997 and is suitable for predicting canola yield with climate factors.
Convolutional neural network architectures for predicting DNA–protein binding
Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.
2016-01-01
Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608
PREDICTION OF FIGHT OR FLIGHT RESPONSE USING ARTIFICIAL NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
Abhijit Suresh
2014-01-01
Full Text Available The modern society has posed several threats to the public. Public security is declining with increasing anti-social behaviour. Cases of rape and terrorist attacks have become increasingly common and there is a strong demand for a security system to control such modalities. Anti-social behaviour is a key issue of public concern. Public perceptions, however, have been improving recently. The vital response to physical and emotional danger is called fight or flight response. It is a basic survival mechanism occurring in response to a specific stimulus, such as pain or the threat of danger. Predicting the flight and fight response is an important aspect to identify possible areas susceptible to such events and provide emergency assistance to the victims involved. This study analyses various physiological changes associated with fight or flight response and proposes an approach to predict measures that determines whether an individual is under fear caused due the perceived threat. The proposed approach uses feed forward neural networks with back propagation algorithm. With the physiological changes such as blood pressure, heart rate and respiratory rate as inputs, the optimal configuration of neural network was configured and the proposed system is able to predict the measure of fight or flight response with minimal error. By monitoring and identifying the fear measure it is possible to prevent or reduce the damage to the society by activities such as rape and terrorist attacks.
Application of Artificial Neural Networks for Predicting Generated Wind Power
Directory of Open Access Journals (Sweden)
Vijendra Singh
2016-03-01
Full Text Available This paper addresses design and development of an artificial neural network based system for prediction of wind energy produced by wind turbines. Now in the last decade, renewable energy emerged as an additional alternative source for electrical power generation. We need to assess wind power generation capacity by wind turbines because of its non-exhaustible nature. The power generation by electric wind turbines depends on the speed of wind, flow direction, fluctuations, density of air, generator hours, seasons of an area, and wind turbine position. During a particular season, wind power generation access can be increased. In such a case, wind energy generation prediction is crucial for transmission of generated wind energy to a power grid system. It is advisable for the wind power generation industry to predict wind power capacity to diagnose it. The present paper proposes an effort to apply artificial neural network technique for measurement of the wind energy generation capacity by wind farms in Harshnath, Sikar, Rajasthan, India.
Evaluation of the efficiency of artificial neural networks for genetic value prediction.
Silva, G N; Tomaz, R S; Sant'Anna, I C; Carneiro, V Q; Cruz, C D; Nascimento, M
2016-03-28
Artificial neural networks have shown great potential when applied to breeding programs. In this study, we propose the use of artificial neural networks as a viable alternative to conventional prediction methods. We conduct a thorough evaluation of the efficiency of these networks with respect to the prediction of breeding values. Therefore, we considered eight simulated scenarios, and for the purpose of genetic value prediction, seven statistical parameters in addition to the phenotypic mean in a network designed as a multilayer perceptron. After an evaluation of different network configurations, the results demonstrated the superiority of neural networks compared to estimation procedures based on linear models, and indicated high predictive accuracy and network efficiency.
Implementation of neural network based non-linear predictive
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1998-01-01
-linear systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi...
Implementation of neural network based non-linear predictive control
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1999-01-01
of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...
Prediction of Dried Durian Moisture Content Using Artificial Neural Networks
Husna, Marati; Purqon, Acep
2016-08-01
Moisture content has a crucial issue in post-harvest processing since it plays main role to estimate a quality of dried product. However, estimating the moisture content is difficult since it shows mathematically nonlinear systems and complex physical processes. We investigate the prediction of moisture content of dried product by using Artificial Neural Networks (ANN). Our sample is a Bengkulu's local durian that is dried using a microwave oven. Our results show that ANN can predict the moisture content by performing with R2 value is 98.47%. Moreover, the RMSE values is 3.97% and MSE values is 0.16%. Our results indicate that ANN model have high capability for predicting moisture content and it is potentially applied in post-harvest product, especially in drying product quality control.
Predictive vector quantization using a neural network approach
Mohsenian, Nader; Rizvi, Syed A.; Nasrabadi, Nasser M.
1993-07-01
A new predictive vector quantization (PVQ) technique capable of exploring the nonlinear dependencies in addition to the linear dependencies that exist between adjacent blocks (vectors) of pixels is introduced. The two components of the PVQ scheme, the vector predictor and the vector quantizer, are implemented by two different classes of neural networks. A multilayer perceptron is used for the predictive component and Kohonen self- organizing feature maps are used to design the codebook for the vector quantizer. The multilayer perceptron uses the nonlinearity condition associated with its processing units to perform a nonlinear vector prediction. The second component of the PVQ scheme vector quantizers the residual vector that is formed by subtracting the output of the perceptron from the original input vector. The joint-optimization task of designing the two components of the PVQ scheme is also achieved. Simulation results are presented for still images with high visual quality.
Prediction of littoral drift with artificial neural networks
Directory of Open Access Journals (Sweden)
A. K. Singh
2007-07-01
Full Text Available The amount of sand moving parallel to a coastline forms a prerequisite for many harbour design projects. Such information is currently obtained through various empirical formulae. Despite much research in the past an accurate and reliable estimation of the rate of sand drift has still remained as a problem. The current study addresses this issue through the use of artificial neural networks (ANN. Feed forward networks were developed to predict the sand drift from a variety of causative variables. The best network was selected after trying out many alternatives. In order to improve the accuracy further its outcome was used to develop another network. Such simple two-stage training yielded most satisfactory results. An equation combining the network and a non-linear regression is presented for quick field usage. An attempt was made to see how both ANN and statistical regression differ in processing the input information. The network was validated by confirming its consistency with the underlying physical process.
Prediction of littoral drift with artificial neural networks
Directory of Open Access Journals (Sweden)
A. K. Singh
2008-02-01
Full Text Available The amount of sand moving parallel to a coastline forms a prerequisite for many harbor design projects. Such information is currently obtained through various empirical formulae. Despite so many works in the past an accurate and reliable estimation of the rate of sand drift has still remained as a problem. The current study addresses this issue through the use of artificial neural networks (ANN. Feed forward networks were developed to predict the sand drift from a variety of causative variables. The best network was selected after trying out many alternatives. In order to improve the accuracy further its outcome was used to develop another network. Such simple two-stage training yielded most satisfactory results. An equation combining the network and a non-linear regression is presented for quick field usage. An attempt was made to see how both ANN and statistical regression differ in processing the input information. The network was validated by confirming its consistency with underlying physical process.
SIMULATION AND PREDICTION OF DEBRIS FLOW USING ARTIFICIAL NEURAL NETWORK
Institute of Scientific and Technical Information of China (English)
WANG Xie-kang; HUANG Er; CUI Peng
2003-01-01
Debris flow is one of the most destructive phenomena of natural hazards. Recently, major natural haz-ard, claiming human lives and assets, is due to debris flow in the world. Several practical methods for forecasting de-bris flow have been proposed, however, the accuracy of these methods is not high enough for practical use because of the stochastic and non-linear characteristics of debris flow. Artificial neural network has proven to be feasible and use-ful in developing models for nonlinear systems. On the other hand, predicting the future behavior based on a time se-ries of collected historical data is also an important tool in many scientific applications. In this study we present a three-layer feed-forward neural network model to forecast surge of debris flow according to the time series data collect-ed in the Jiangjia Ravine, situated in north part of Yunnan Province of China. The simulation and prediction of debris flow using the proposed approach shows this model is feasible, however, further studies are needed.
Experimental method to predict avalanches based on neural networks
Directory of Open Access Journals (Sweden)
V. V. Zhdanov
2016-01-01
Full Text Available The article presents results of experimental use of currently available statistical methods to classify the avalanche‑dangerous precipitations and snowfalls in the Kishi Almaty river basin. The avalanche service of Kazakhstan uses graphical methods for prediction of avalanches developed by I.V. Kondrashov and E.I. Kolesnikov. The main objective of this work was to develop a modern model that could be used directly at the avalanche stations. Classification of winter precipitations into dangerous snowfalls and non‑dangerous ones was performed by two following ways: the linear discriminant function (canonical analysis and artificial neural networks. Observational data on weather and avalanches in the gorge Kishi Almaty in the gorge Kishi Almaty were used as a training sample. Coefficients for the canonical variables were calculated by the software «Statistica» (Russian version 6.0, and then the necessary formula had been constructed. The accuracy of the above classification was 96%. Simulator by the authors L.N. Yasnitsky and F.М. Cherepanov was used to learn the neural networks. The trained neural network demonstrated 98% accuracy of the classification. Prepared statistical models are recommended to be tested at the snow‑avalanche stations. Results of the tests will be used for estimation of the model quality and its readiness for the operational work. In future, we plan to apply these models for classification of the avalanche danger by the five‑point international scale.
Prediction of proteasome cleavage motifs by neural networks
DEFF Research Database (Denmark)
Kesimir, C.; Nussbaum, A.K.; Schild, H.
2002-01-01
We present a predictive method that can simulate an essential step in the antigen presentation in higher vertebrates, namely the step involving the proteasomal degradation of polypeptides into fragments which have the potential to bind to MHC Class I molecules. Proteasomal cleavage prediction...... algorithms published so far were trained on data from in vitro digestion experiments with constitutive proteasomes. As a result, they did not take into account the characteristics of the structurally modified proteasomes-often called immunoproteasomes-found in cells stimulated by gamma-interferon under...... physiological conditions. Our algorithm has been trained not only on in vitro data, but also on MHC Class I ligand data, which reflect a combination of immunoproteasome and constitutive proteasome specificity. This feature, together with the use of neural networks, a non-linear classification technique, make...
Prediction of the plasma distribution using an artificial neural network
Institute of Scientific and Technical Information of China (English)
Li Wei; Chen JunFang; Wang Teng
2009-01-01
In this work, an artificial neural network (ANN) model is established using a back-propagation training algorithm in order to predict the plasma spatial distribution in an electron cyclotron resonance (ECR) - plasma-enhanced chemical vapor deposition (PECVD) plasma system. In our model, there are three layers: the input layer, the hidden layer and the output layer. The input layer is composed of five neurons: the radial position, the axial position, the gas pressure,the microwave power and the magnet coil current. The output layer is our target output neuron: the plasma density.The accuracy of our prediction is tested with the experimental data obtained by a Langmuir probe, and ANN results show a good agreement with the experimental data. It is concluded that ANN is a useful tool in dealing with some nonlinear problems of the plasma spatial distribution.
Prediction of users’ future requests using neural network
Directory of Open Access Journals (Sweden)
Seyedeh Foroozan Rashidi
2012-10-01
Full Text Available With the rapid growth of the World Wide Web, finding useful information from the Internet has become a critical issue. Automatic classification of user navigation patterns provides a useful tool to solve these problems. In this paper, we propose an approach for classification of users’ navigation patterns and prediction of users’ future requests. Users’ profiles are constructed based on Web log server files and one of clustering methods is implemented to users’ profiles for assigning navigation patterns. Finally, using neural network, recommender engine produces a relevant recommendation list of web pages to the active user. The preliminary results indicate that the proposed approach has high accuracy and coverage in prediction of users’ future requests.
Application of neural networks for the prediction of energy use in supermarket buildings
Energy Technology Data Exchange (ETDEWEB)
Suh, T.J.; Tassou, S.A.; Datta, D. [Brunel Univ., Uxbridge (United Kingdom); Marriott, D. [Safeway Stores 6 Millington, Middx (United Kingdom)
1996-12-31
This paper discusses the application of neural networks to predict energy consumption in commercial buildings. To date, many researchers have demonstrated that neural networks can be more reliable energy predictors than the traditional statistical approaches and can also form the basis for predictive controllers of HVAC equipment. This paper shows the preliminary results of research work at Brunel University for predicting the variation of electricity consumption in a supermarket building based on a neural network. A comparison of the prediction performance of the neural network and a traditional regression approach is presented.
Improving prediction of neural networks: a study of tow financial prediction tasks
Directory of Open Access Journals (Sweden)
Tarun K. Sen
2004-01-01
Full Text Available Neural networks are excellent mapping tools for complex financial data. Their mapping capabilities however do not always result in good generalizability for financial prediction models. Increasing the number of nodes and hidden layers in a neural network model produces better mapping of the data since the number of parameters available to the model increases. This is determinal to generalizabilitiy of the model since the model memorizes idiosyncratic patterns in the data. A neural network model can be expected to be more generalizable if the model architecture is made less complex by using fewer input nodes. In this study we simplify the neural network by eliminating input nodes that have the least contribution to the prediction of a desired outcome. We also provide a theoretical relationship of the sensitivity of output variables to the input variables under certain conditions. This research initiates an effort in identifying methods that would improve the generalizability of neural networks in financial prediction tasks by using mergers and bankruptcy models. The result indicates that incorporating more variables that appear relevant in a model does not necessarily improve prediction performance.
Committee neural network model for rock permeability prediction
Bagheripour, Parisa
2014-05-01
Quantitative formulation between conventional well log data and rock permeability, undoubtedly the most critical parameter of hydrocarbon reservoir, could be a potent tool for solving problems associated with almost all tasks involved in petroleum engineering. The present study proposes a novel approach in charge of the quest for high-accuracy method of permeability prediction. At the first stage, overlapping of conventional well log data (inputs) was eliminated by means of principal component analysis (PCA). Subsequently, rock permeability was predicted from extracted PCs using multi-layer perceptron (MLP), radial basis function (RBF), and generalized regression neural network (GRNN). Eventually, a committee neural network (CNN) was constructed by virtue of genetic algorithm (GA) to enhance the precision of ultimate permeability prediction. The values of rock permeability, derived from the MPL, RBF, and GRNN models, were used as inputs of CNN. The proposed CNN combines results of different ANNs to reap beneficial advantages of all models and consequently producing more accurate estimations. The GA, embedded in the structure of the CNN assigns a weight factor to each ANN which shows relative involvement of each ANN in overall prediction of rock permeability from PCs of conventional well logs. The proposed methodology was applied in Kangan and Dalan Formations, which are the major carbonate reservoir rocks of South Pars Gas Field-Iran. A group of 350 data points was used to establish the CNN model, and a group of 245 data points was employed to assess the reliability of constructed CNN model. Results showed that the CNN method performed better than individual intelligent systems performing alone.
Fei, Y; Hu, J; Li, W-Q; Wang, W; Zong, G-Q
2017-03-01
Essentials Predicting the occurrence of portosplenomesenteric vein thrombosis (PSMVT) is difficult. We studied 72 patients with acute pancreatitis. Artificial neural networks modeling was more accurate than logistic regression in predicting PSMVT. Additional predictive factors may be incorporated into artificial neural networks.
Prediction aluminum corrosion inhibitor efficiency using artificial neural network (ANN)
Ebrahimi, Sh; Kalhor, E. G.; Nabavi, S. R.; Alamiparvin, L.; Pogaku, R.
2016-06-01
In this study, activity of some Schiff bases as aluminum corrosion inhibitor was investigated using artificial neural network (ANN). Hence, corrosion inhibition efficiency of Schiff bases (in any type) were gathered from different references. Then these molecules were drawn and optimized in Hyperchem software. Molecular descriptors generating and descriptors selection were fulfilled by Dragon software and principal component analysis (PCA) method, respectively. These structural descriptors along with environmental descriptors (ambient temperature, time of exposure, pH and the concentration of inhibitor) were used as input variables. Furthermore, aluminum corrosion inhibition efficiency was used as output variable. Experimental data were split into three sets: training set (for model building) and test set (for model validation) and simulation (for general model). Modeling was performed by Multiple linear regression (MLR) methods and artificial neural network (ANN). The results obtained in linear models showed poor correlation between experimental and theoretical data. However nonlinear model presented satisfactory results. Higher correlation coefficient of ANN (R > 0.9) revealed that ANN can be successfully applied for prediction of aluminum corrosion inhibitor efficiency of Schiff bases in different environmental conditions.
Gust prediction via artificial hair sensor array and neural network
Pankonien, Alexander M.; Thapa Magar, Kaman S.; Beblo, Richard V.; Reich, Gregory W.
2017-04-01
Gust Load Alleviation (GLA) is an important aspect of flight dynamics and control that reduces structural loadings and enhances ride quality. In conventional GLA systems, the structural response to aerodynamic excitation informs the control scheme. A phase lag, imposed by inertia, between the excitation and the measurement inherently limits the effectiveness of these systems. Hence, direct measurement of the aerodynamic loading can eliminate this lag, providing valuable information for effective GLA system design. Distributed arrays of Artificial Hair Sensors (AHS) are ideal for surface flow measurements that can be used to predict other necessary parameters such as aerodynamic forces, moments, and turbulence. In previous work, the spatially distributed surface flow velocities obtained from an array of artificial hair sensors using a Single-State (or feedforward) Neural Network were found to be effective in estimating the steady aerodynamic parameters such as air speed, angle of attack, lift and moment coefficient. This paper extends the investigation of the same configuration to unsteady force and moment estimation, which is important for active GLA control design. Implementing a Recurrent Neural Network that includes previous-timestep sensor information, the hair sensor array is shown to be capable of capturing gust disturbances with a wide range of periods, reducing predictive error in lift and moment by 68% and 52% respectively. The L2 norms of the first layer of the weight matrices were compared showing a 23% emphasis on prior versus current information. The Recurrent architecture also improves robustness, exhibiting only a 30% increase in predictive error when undertrained as compared to a 170% increase by the Single-State NN. This diverse, localized information can thus be directly implemented into a control scheme that alleviates the gusts without waiting for a structural response or requiring user-intensive sensor calibration.
Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Jinxing Lai
2016-01-01
Full Text Available In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability.
Prediction of Shanghai Index based on Additive Legendre Neural Network
Directory of Open Access Journals (Sweden)
Yang Bin
2017-01-01
Full Text Available In this paper, a novel Legendre neural network model is proposed, namely additive Legendre neural network (ALNN. A new hybrid evolutionary method besed on binary particle swarm optimization (BPSO algorithm and firefly algorithm is proposed to optimize the structure and parameters of ALNN model. Shanghai stock exchange composite index is used to evaluate the performance of ALNN. Results reveal that ALNN performs better than LNN model.
Directory of Open Access Journals (Sweden)
Haibo Zhang
2016-08-01
Full Text Available The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network security situation, we build a network security situation prediction model based on Wavelet Neural Network (WNN with optimized parameters by the Improved Niche Genetic Algorithm (INGA. The proposed model adopts WNN which has strong nonlinear ability and fault-tolerance performance. Also, the parameters for WNN are optimized through the adaptive genetic algorithm (GA so that WNN searches more effectively. Considering the problem that the adaptive GA converges slowly and easily turns to the premature problem, we introduce a novel niche technology with a dynamic fuzzy clustering and elimination mechanism to solve the premature convergence of the GA. Our final simulation results show that the proposed INGA-WNN prediction model is more reliable and effective, and it achieves faster convergence-speed and higher prediction accuracy than the Genetic Algorithm-Wavelet Neural Network (GA-WNN, Genetic Algorithm-Back Propagation Neural Network (GA-BPNN and WNN.
Neural Network for Predicting Thermal Conductivity of Knit Materials
Directory of Open Access Journals (Sweden)
Faten Fayala, Ph.D.
2008-12-01
Full Text Available The major aim of comfort research is to find the comfort temperature for an individual or group. This subjective property can be evaluated by means of thermal conductivity as a physical characteristic of fabric. This phenomenon depends on many fabric parameters and it is difficult to study the effect of ones without changing the others. In addition, the non-linear relationship of fabric parameters and thermal conductivity handicap mathematical modelling. So a neural network approach was used to predict the thermal conductivity of knitting structure as a function of porosity, air permeability, weight and fiber conductivity. Data on thermal conductivity are measured by experiments carried out on jersey knitted structure.
Predicting concrete corrosion of sewers using artificial neural network.
Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo
2016-04-01
Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers.
A neural network model for predicting aquifer water level elevations.
Coppola, Emery A; Rana, Anthony J; Poulton, Mary M; Szidarovszky, Ferenc; Uhl, Vincent W
2005-01-01
Artificial neural networks (ANNs) were developed for accurately predicting potentiometric surface elevations (monitoring well water level elevations) in a semiconfined glacial sand and gravel aquifer under variable state, pumping extraction, and climate conditions. ANNs "learn" the system behavior of interest by processing representative data patterns through a mathematical structure analogous to the human brain. In this study, the ANNs used the initial water level measurements, production well extractions, and climate conditions to predict the final water level elevations 30 d into the future at two monitoring wells. A sensitivity analysis was conducted with the ANNs that quantified the importance of the various input predictor variables on final water level elevations. Unlike traditional physical-based models, ANNs do not require explicit characterization of the physical system and related physical data. Accordingly, ANN predictions were made on the basis of more easily quantifiable, measured variables, rather than physical model input parameters and conditions. This study demonstrates that ANNs can provide both excellent prediction capability and valuable sensitivity analyses, which can result in more appropriate ground water management strategies.
Neural Network Modeling to Predict Shelf Life of Greenhouse Lettuce
Directory of Open Access Journals (Sweden)
Wei-Chin Lin
2009-04-01
Full Text Available Greenhouse-grown butter lettuce (Lactuca sativa L. can potentially be stored for 21 days at constant 0°C. When storage temperature was increased to 5°C or 10°C, shelf life was shortened to 14 or 10 days, respectively, in our previous observations. Also, commercial shelf life of 7 to 10 days is common, due to postharvest temperature fluctuations. The objective of this study was to establish neural network (NN models to predict the remaining shelf life (RSL under fluctuating postharvest temperatures. A box of 12 - 24 lettuce heads constituted a sample unit. The end of the shelf life of each head was determined when it showed initial signs of decay or yellowing. Air temperatures inside a shipping box were recorded. Daily average temperatures in storage and averaged shelf life of each box were used as inputs, and the RSL was modeled as an output. An R2 of 0.57 could be observed when a simple NN structure was employed. Since the "future" (or remaining storage temperatures were unavailable at the time of making a prediction, a second NN model was introduced to accommodate a range of future temperatures and associated shelf lives. Using such 2-stage NN models, an R2 of 0.61 could be achieved for predicting RSL. This study indicated that NN modeling has potential for cold chain quality control and shelf life prediction.
Underwater vehicle sonar self-noise prediction based on genetic algorithms and neural network
Institute of Scientific and Technical Information of China (English)
WU Xiao-guang; SHI Zhong-kun
2006-01-01
The factors that influence underwater vehicle sonar self-noise are analyzed, and genetic algorithms and a back propagation (BP) neural network are combined to predict underwater vehicle sonar self-noise. The experimental results demonstrate that underwater vehicle sonar self-noise can be predicted accurately by a GA-BP neural network that is based on actual underwater vehicle sonar data.
Prediction and Research on Vegetable Price Based on Genetic Algorithm and Neural Network Model
Institute of Scientific and Technical Information of China (English)
2011-01-01
Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm and neural work.Taking mushrooms as an example,the parameters of the model are analyzed through experiment.In the end,the results of genetic algorithm and BP neural network are compared.The results show that the absolute error of prediction data is in the scale of 10%;in the scope that the absolute error in the prediction data is in the scope of 20% and 15%.The accuracy of genetic algorithm based on neutral network is higher than the BP neutral network model,especially the absolute error of prediction data is within the scope of 20%.The accuracy of genetic algorithm based on neural network is obviously better than BP neural network model,which represents the favorable generalization capability of the model.
Upset Prediction in Friction Welding Using Radial Basis Function Neural Network
Directory of Open Access Journals (Sweden)
Wei Liu
2013-01-01
Full Text Available This paper addresses the upset prediction problem of friction welded joints. Based on finite element simulations of inertia friction welding (IFW, a radial basis function (RBF neural network was developed initially to predict the final upset for a number of welding parameters. The predicted joint upset by the RBF neural network was compared to validated finite element simulations, producing an error of less than 8.16% which is reasonable. Furthermore, the effects of initial rotational speed and axial pressure on the upset were investigated in relation to energy conversion with the RBF neural network. The developed RBF neural network was also applied to linear friction welding (LFW and continuous drive friction welding (CDFW. The correlation coefficients of RBF prediction for LFW and CDFW were 0.963 and 0.998, respectively, which further suggest that an RBF neural network is an effective method for upset prediction of friction welded joints.
Training Data Requirement for a Neural Network to Predict Aerodynamic Coefficients
Korsmeyer, David (Technical Monitor); Rajkumar, T.; Bardina, Jorge
2003-01-01
Basic aerodynamic coefficients are modeled as functions of angle of attack, speed brake deflection angle, Mach number, and side slip angle. Most of the aerodynamic parameters can be well-fitted using polynomial functions. We previously demonstrated that a neural network is a fast, reliable way of predicting aerodynamic coefficients. We encountered few under fitted and/or over fitted results during prediction. The training data for the neural network are derived from wind tunnel test measurements and numerical simulations. The basic questions that arise are: how many training data points are required to produce an efficient neural network prediction, and which type of transfer functions should be used between the input-hidden layer and hidden-output layer. In this paper, a comparative study of the efficiency of neural network prediction based on different transfer functions and training dataset sizes is presented. The results of the neural network prediction reflect the sensitivity of the architecture, transfer functions, and training dataset size.
Study and Application of Fault Prediction Methods with Improved Reservoir Neural Networks
Institute of Scientific and Technical Information of China (English)
Qunxiong Zhu; Yiwen Jia; Di Peng; Yuan Xu
2014-01-01
Time-series prediction is one of the major methodologies used for fault prediction. The methods based on recur-rent neural networks have been widely used in time-series prediction for their remarkable non-liner mapping ability. As a new recurrent neural network, reservoir neural network can effectively process the time-series pre-diction. However, the il-posedness problem of reservoir neural networks has seriously restricted the generaliza-tion performance. In this paper, a fault prediction algorithm based on time-series is proposed using improved reservoir neural networks. The basic idea is taking structure risk into consideration, that is, the cost function in-volves not only the experience risk factor but also the structure risk factor. Thus a regulation coefficient is intro-duced to calculate the output weight of the reservoir neural network. As a result, the amplitude of output weight is effectively controlled and the il-posedness problem is solved. Because the training speed of ordinary reservoir networks is naturally fast, the improved reservoir networks for time-series prediction are good in speed and gen-eralization ability. Experiments on Mackey-Glass and sunspot time series prediction prove the effectiveness of the algorithm. The proposed algorithm is applied to TE process fault prediction. We first forecast some time-series obtained from TE and then predict the fault type adopting the static reservoirs with the predicted data. The final prediction correct rate reaches 81%.
Convolutional neural networks for prostate cancer recurrence prediction
Kumar, Neeraj; Verma, Ruchika; Arora, Ashish; Kumar, Abhay; Gupta, Sanchit; Sethi, Amit; Gann, Peter H.
2017-03-01
Accurate prediction of the treatment outcome is important for cancer treatment planning. We present an approach to predict prostate cancer (PCa) recurrence after radical prostatectomy using tissue images. We used a cohort whose case vs. control (recurrent vs. non-recurrent) status had been determined using post-treatment follow up. Further, to aid the development of novel biomarkers of PCa recurrence, cases and controls were paired based on matching of other predictive clinical variables such as Gleason grade, stage, age, and race. For this cohort, tissue resection microarray with up to four cores per patient was available. The proposed approach is based on deep learning, and its novelty lies in the use of two separate convolutional neural networks (CNNs) - one to detect individual nuclei even in the crowded areas, and the other to classify them. To detect nuclear centers in an image, the first CNN predicts distance transform of the underlying (but unknown) multi-nuclear map from the input HE image. The second CNN classifies the patches centered at nuclear centers into those belonging to cases or controls. Voting across patches extracted from image(s) of a patient yields the probability of recurrence for the patient. The proposed approach gave 0.81 AUC for a sample of 30 recurrent cases and 30 non-recurrent controls, after being trained on an independent set of 80 case-controls pairs. If validated further, such an approach might help in choosing between a combination of treatment options such as active surveillance, radical prostatectomy, radiation, and hormone therapy. It can also generalize to the prediction of treatment outcomes in other cancers.
Wave transmission prediction of multilayer floating breakwater using neural network
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Patil, S.G.; Hegde, A.V.
of floating breakwater. Training and testing of the network models are carried out for different hidden nodes and epochs. The results of network models are compared with the measured values. It is observed that the correlation (above 90%) between predicted...
Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control
Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.
1997-01-01
One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.
Competitive Learning Neural Network Ensemble Weighted by Predicted Performance
Ye, Qiang
2010-01-01
Ensemble approaches have been shown to enhance classification by combining the outputs from a set of voting classifiers. Diversity in error patterns among base classifiers promotes ensemble performance. Multi-task learning is an important characteristic for Neural Network classifiers. Introducing a secondary output unit that receives different…
Competitive Learning Neural Network Ensemble Weighted by Predicted Performance
Ye, Qiang
2010-01-01
Ensemble approaches have been shown to enhance classification by combining the outputs from a set of voting classifiers. Diversity in error patterns among base classifiers promotes ensemble performance. Multi-task learning is an important characteristic for Neural Network classifiers. Introducing a secondary output unit that receives different…
Reliable prediction of T-cell epitopes using neural networks with novel sequence representations
DEFF Research Database (Denmark)
Nielsen, Morten; Lundegaard, Claus; Worning, Peder
2003-01-01
of several neural networks derived using different sequence-encoding schemes has a performance superior to neural networks derived using a single sequence-encoding scheme. The new method is shown to have a performance that is substantially higher than that of other methods. By use of mutual information...... derived from different and novel sequence-encoding schemes and the ability of the neural network to be trained on data consisting of continuous binding affinities that gives the new method an improved performance. The difference in predictive performance between the neural network methods...
Predicting Semantic Descriptions from Medical Images with Convolutional Neural Networks.
Schlegl, Thomas; Waldstein, Sebastian M; Vogl, Wolf-Dieter; Schmidt-Erfurth, Ursula; Langs, Georg
2015-01-01
Learning representative computational models from medical imaging data requires large training data sets. Often, voxel-level annotation is unfeasible for sufficient amounts of data. An alternative to manual annotation, is to use the enormous amount of knowledge encoded in imaging data and corresponding reports generated during clinical routine. Weakly supervised learning approaches can link volume-level labels to image content but suffer from the typical label distributions in medical imaging data where only a small part consists of clinically relevant abnormal structures. In this paper we propose to use a semantic representation of clinical reports as a learning target that is predicted from imaging data by a convolutional neural network. We demonstrate how we can learn accurate voxel-level classifiers based on weak volume-level semantic descriptions on a set of 157 optical coherence tomography (OCT) volumes. We specifically show how semantic information increases classification accuracy for intraretinal cystoid fluid (IRC), subretinal fluid (SRF) and normal retinal tissue, and how the learning algorithm links semantic concepts to image content and geometry.
Optogenetics in Silicon: A Neural Processor for Predicting Optically Active Neural Networks.
Luo, Junwen; Nikolic, Konstantin; Evans, Benjamin D; Dong, Na; Sun, Xiaohan; Andras, Peter; Yakovlev, Alex; Degenaar, Patrick
2016-08-17
We present a reconfigurable neural processor for real-time simulation and prediction of opto-neural behaviour. We combined a detailed Hodgkin-Huxley CA3 neuron integrated with a four-state Channelrhodopsin-2 (ChR2) model into reconfigurable silicon hardware. Our architecture consists of a Field Programmable Gated Array (FPGA) with a custom-built computing data-path, a separate data management system and a memory approach based router. Advancements over previous work include the incorporation of short and long-term calcium and light-dependent ion channels in reconfigurable hardware. Also, the developed processor is computationally efficient, requiring only 0.03 ms processing time per sub-frame for a single neuron and 9.7 ms for a fully connected network of 500 neurons with a given FPGA frequency of 56.7 MHz. It can therefore be utilized for exploration of closed loop processing and tuning of biologically realistic optogenetic circuitry.
Optogenetics in Silicon: A Neural Processor for Predicting Optically Active Neural Networks.
Junwen Luo; Nikolic, Konstantin; Evans, Benjamin D; Na Dong; Xiaohan Sun; Andras, Peter; Yakovlev, Alex; Degenaar, Patrick
2017-02-01
We present a reconfigurable neural processor for real-time simulation and prediction of opto-neural behaviour. We combined a detailed Hodgkin-Huxley CA3 neuron integrated with a four-state Channelrhodopsin-2 (ChR2) model into reconfigurable silicon hardware. Our architecture consists of a Field Programmable Gated Array (FPGA) with a custom-built computing data-path, a separate data management system and a memory approach based router. Advancements over previous work include the incorporation of short and long-term calcium and light-dependent ion channels in reconfigurable hardware. Also, the developed processor is computationally efficient, requiring only 0.03 ms processing time per sub-frame for a single neuron and 9.7 ms for a fully connected network of 500 neurons with a given FPGA frequency of 56.7 MHz. It can therefore be utilized for exploration of closed loop processing and tuning of biologically realistic optogenetic circuitry.
NEURAL NETWORKS PREDICTION FOR SEISMIC RESPONSE OF STRUCTURE UNDER THE LEVENBERG-MARQUARDT ALGORITHM
Institute of Scientific and Technical Information of China (English)
徐赵东; 沈亚鹏; 李爱群
2003-01-01
Objective To investigate the prediction effect of neural networks for seismic response of structure under the Levenberg-Marquardt(LM) algorithm. Results Based on identification and prediction ability of neural networks for nonlinear systems, and combined with LM algorithm, a multi-layer forward networks is adopted to predict the seismic responses of structure. The networks is trained in batch by the shaking table test data of three-floor reinforced concrete structure firstly, then the seismic responses of structure are predicted under the unused excitation data, and the predict responses are compared with the experiment responses. The error curves between the prediction and the experimental results show the efficiency of the method. Conclusion LM algorithm has very good convergence rate, and the neural networks can predict the seismic response of the structure well.
An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.
Ranganayaki, V; Deepa, S N
2016-01-01
Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.
Prediction of the Performance of the Fabrics in Garment Manufacturing by Artificial Neural Network
Institute of Scientific and Technical Information of China (English)
LIU Kan; ZHANG Wei-yuan
2004-01-01
An artificial neural network is used to predict the performance of fabrics in clothing manufacturing. The predictions are based on fabric mechanical properties measured on the FAST system. The influences of the different ANN's construct on the convergence speed and the prediction accuracy are investigated. The result indicates that the BP neural network is an efficiency technique and has a wide prospect in the application to garment processing.
Predicting Students' Academic Performance Using Artificial Neural Networks: A Case Study
Ghaleb A. El-Refae; Qeethara Kadhim Al-Shayea
2010-01-01
Predicting students’ academic performance is critical for universities because strategic programs can be planned in improving or maintaining students’ performance. The goal of this study is to predict the factors affecting the university students' performance using Artificial Neural Networks (ANN) model. Various factors that may likely influence the performance of a student were identified. Generalized Regression Neural Network (GRNN) is used to predict the university students' performance. I...
Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.
2007-01-01
To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.
An improved BP artificial neural network algorithm for urban traffic flow intelligent prediction
Institute of Scientific and Technical Information of China (English)
XIONG Shi-yong; ZHANG Yi
2009-01-01
The traffic flow is interrelated to traffic congestion, the big traffic flow directly results in traffic congestion of some section. In this paper, on the basis of the research of overseas traffic accident, considering the characteristic of Chinese traffic, artificial neural network was used to predict traffic accident, and an improved BP artificial neural network model according with Chinese the situation of a country was proposed. The urban traffic flow prediction was simulated under the particular situation, the simulation result shows that the improved BP artificial neural network can fit the urban traffic flow prediction very well and have high performance.
Photovoltaic Power Prediction Based on Scene Simulation Knowledge Mining and Adaptive Neural Network
Directory of Open Access Journals (Sweden)
Dongxiao Niu
2013-01-01
Full Text Available Influenced by light, temperature, atmospheric pressure, and some other random factors, photovoltaic power has characteristics of volatility and intermittent. Accurately forecasting photovoltaic power can effectively improve security and stability of power grid system. The paper comprehensively analyzes influence of light intensity, day type, temperature, and season on photovoltaic power. According to the proposed scene simulation knowledge mining (SSKM technique, the influencing factors are clustered and fused into prediction model. Combining adaptive algorithm with neural network, adaptive neural network prediction model is established. Actual numerical example verifies the effectiveness and applicability of the proposed photovoltaic power prediction model based on scene simulation knowledge mining and adaptive neural network.
Artificial neural network accurately predicts hepatitis B surface antigen seroclearance.
Directory of Open Access Journals (Sweden)
Ming-Hua Zheng
Full Text Available BACKGROUND & AIMS: Hepatitis B surface antigen (HBsAg seroclearance and seroconversion are regarded as favorable outcomes of chronic hepatitis B (CHB. This study aimed to develop artificial neural networks (ANNs that could accurately predict HBsAg seroclearance or seroconversion on the basis of available serum variables. METHODS: Data from 203 untreated, HBeAg-negative CHB patients with spontaneous HBsAg seroclearance (63 with HBsAg seroconversion, and 203 age- and sex-matched HBeAg-negative controls were analyzed. ANNs and logistic regression models (LRMs were built and tested according to HBsAg seroclearance and seroconversion. Predictive accuracy was assessed with area under the receiver operating characteristic curve (AUROC. RESULTS: Serum quantitative HBsAg (qHBsAg and HBV DNA levels, qHBsAg and HBV DNA reduction were related to HBsAg seroclearance (P<0.001 and were used for ANN/LRM-HBsAg seroclearance building, whereas, qHBsAg reduction was not associated with ANN-HBsAg seroconversion (P = 0.197 and LRM-HBsAg seroconversion was solely based on qHBsAg (P = 0.01. For HBsAg seroclearance, AUROCs of ANN were 0.96, 0.93 and 0.95 for the training, testing and genotype B subgroups respectively. They were significantly higher than those of LRM, qHBsAg and HBV DNA (all P<0.05. Although the performance of ANN-HBsAg seroconversion (AUROC 0.757 was inferior to that for HBsAg seroclearance, it tended to be better than those of LRM, qHBsAg and HBV DNA. CONCLUSIONS: ANN identifies spontaneous HBsAg seroclearance in HBeAg-negative CHB patients with better accuracy, on the basis of easily available serum data. More useful predictors for HBsAg seroconversion are still needed to be explored in the future.
Prediction Model of Weekly Retail Price for Eggs Based on Chaotic Neural Network
Institute of Scientific and Technical Information of China (English)
LI Zhe-min; CUI Li-guo; XU Shi-wei; WENG Ling-yun; DONG Xiao-xia; LI Gan-qiong; YU Hai-peng
2013-01-01
This paper establishes a short-term prediction model of weekly retail prices for eggs based on chaotic neural network with the weekly retail prices of eggs from January 2008 to December 2012 in China. In the process of determining the structure of the chaotic neural network, the number of input layer nodes of the network is calculated by reconstructing phase space and computing its saturated embedding dimension, and then the number of hidden layer nodes is estimated by trial and error. Finally, this model is applied to predict the retail prices of eggs and compared with ARIMA. The result shows that the chaotic neural network has better nonlinear iftting ability and higher precision in the prediction of weekly retail price of eggs. The empirical result also shows that the chaotic neural network can be widely used in the ifeld of short-term prediction of agricultural prices.
A Predictive Neural Network-Based Cascade Control for pH Reactors
Directory of Open Access Journals (Sweden)
Mujahed AlDhaifallah
2016-01-01
Full Text Available This paper is concerned with the development of predictive neural network-based cascade control for pH reactors. The cascade structure consists of a master control loop (fuzzy proportional-integral and a slave one (predictive neural network. The master loop is chosen to be more accurate but slower than the slave one. The strong features found in cascade structure have been added to the inherent features in model predictive neural network. The neural network is used to alleviate modeling difficulties found with pH reactor and to predict its behavior. The parameters of predictive algorithm are determined using an optimization algorithm. The effectiveness and feasibility of the proposed design have been demonstrated using MatLab.
Energy Technology Data Exchange (ETDEWEB)
Mjalli, F.S.; Al-Asheh, S. [Chemical Engineering Department, Qatar University, Doha (Qatar)
2005-10-01
In this work advanced nonlinear neural networks based control system design algorithms are adopted to control a mechanistic model for an ethanol fermentation process. The process model equations for such systems are highly nonlinear. A neural network strategy has been implemented in this work for capturing the dynamics of the mechanistic model for the fermentation process. The neural network achieved has been validated against the mechanistic model. Two neural network based nonlinear control strategies have also been adopted using the model identified. The performance of the feedback linearization technique was compared to neural network model predictive control in terms of stability and set point tracking capabilities. Under servo conditions, the feedback linearization algorithm gave comparable tracking and stability. The feedback linearization controller achieved the control target faster than the model predictive one but with vigorous and sudden controller moves. (Abstract Copyright [2005], Wiley Periodicals, Inc.)
Prediction of Axial Capacity of Concrete-Filled Square Steel Tubes Using Neural Networks
Institute of Scientific and Technical Information of China (English)
Zhu Meichun; Wang Qingxiang; Feng Xiufeng
2005-01-01
The application of artificial neural network to predict the ultimate beating capacity of CFST ( concrete-filled square steel tubes)short columns under axial loading is explored. Input parameters consiste of concrete compressive strength, yield strength of steel tube, confinement index, sectional dimension and width-to-thickness ratio. The ultimate bearing capacity is the only output parameter. A multilayer feedforward neural network is used to describe the nonlinear relationships between the input and output variables.Fifty-five experimental data of CFST short columns under axial loading are used to train and test the neural network. A comparison between the neural network model and three parameter models shows that the neural network model possesses good accuracy and could be a practical method for predicting the ultimate strength of axially loaded CFST short columns.
Prediction of a model enzymatic acidolysis system using neural networks
Directory of Open Access Journals (Sweden)
Güven, Aytaç
2008-12-01
Full Text Available A model for the acidolysis of trinolein and palmitic acid under the catalysis of immobilized sn-1,3 specific lipase was presented in this study. A neural networks (NN based model was developed for the prediction of the concentrations of the major reaction products of this reaction (1-palmitoyl-2,3-oleoyl-glycerol (POO 1,3-dipalmitoyl-2-oleoyl-glycerol (POP and triolein (OOO. Substrate ratio (SR, reaction temperature (T and reaction time (t were used as input parameters. The optimal architecture of the proposed NN model, which consists of one input layer with three inputs, one hidden layer with seven neurons and one output layer with three outputs, wass able to predict the reaction products concentration with a mean square error (MSE of less than 1.5 and R2 of 0.999. and explicit formulation of the proposed NN is presented. Considerable good performance is achieved in modeling the acidolysis reaction using neuronal networks.En este estudio se presenta un modelo para la acidólisis de la trilinoleina y el ácido palmítico mediante la catálisis con una lipasa específica sn-1,3 inmovilizada. Un modelo basado en redes neuronales (NN ha sido desarrollado para la predicción de la concentración de los principales productos de esta reacción (1-palmitoil-2,3-oleoil-glicerol (POO, 1,3-dipalmitoil-2-oleoil-glicerol (POP y trioleina (OOO. Se han usado como parámetros de entrada: la proporción del sustrato (SR, la temperatura de reacción (T y el tiempo de reacción (t. La arquitectura óptima del modelo de NN propuesto, que consiste en una capa de entrada con tres entradas, una capa oculta con siete neuronas y una capa de salida con tres salidas, fue capaz de predecir la concentración de los productos de reacción con un error cuadrático medio (MSE de menos de 1.5 y una R2 de 0.999 . Se presenta una formulación explícita del modelo NN propuesto. Se obtienen muy buenos resultados en la predicción de la reacciones de acidólisis mediante el uso de
Using Artificial Neural Networks to Predict Stock Prices
Kozdraj, Tomasz
2009-01-01
Artificial neural networks constitute one of the most developed conception of artificial intelligence. They are based on pragmatic mathematical theories adopted to tasks resolution. A wide range of their applications also includes financial investments issues. The reason for NN's popularity is mainly connected with their ability to solve complex or not well recognized computational tasks, efficiency in finding solutions as well as the possibility of learning based on patterns or without them....
Nonlinear Time Series Prediction Using Chaotic Neural Networks
Institute of Scientific and Technical Information of China (English)
LI KePing; CHEN TianLun
2001-01-01
A nonlinear feedback term is introduced into the evaluation equation of weights of the backpropagation algorithm for neural network, the network becomes a chaotic one. For the purpose of that we can investigate how the different feedback terms affect the process of learning and forecasting, we use the model to forecast the nonlinear time series which is produced by Makey-Glass equation. By selecting the suitable feedback term, the system can escape from the local minima and converge to the global minimum or its approximate solutions, and the forecasting results are better than those of backpropagation algorithm.``
Rotation-invariant convolutional neural networks for galaxy morphology prediction
Dieleman, Sander; Willett, Kyle W.; Dambre, Joni
2015-06-01
Measuring the morphological parameters of galaxies is a key requirement for studying their formation and evolution. Surveys such as the Sloan Digital Sky Survey have resulted in the availability of very large collections of images, which have permitted population-wide analyses of galaxy morphology. Morphological analysis has traditionally been carried out mostly via visual inspection by trained experts, which is time consuming and does not scale to large (≳104) numbers of images. Although attempts have been made to build automated classification systems, these have not been able to achieve the desired level of accuracy. The Galaxy Zoo project successfully applied a crowdsourcing strategy, inviting online users to classify images by answering a series of questions. Unfortunately, even this approach does not scale well enough to keep up with the increasing availability of galaxy images. We present a deep neural network model for galaxy morphology classification which exploits translational and rotational symmetry. It was developed in the context of the Galaxy Challenge, an international competition to build the best model for morphology classification based on annotated images from the Galaxy Zoo project. For images with high agreement among the Galaxy Zoo participants, our model is able to reproduce their consensus with near-perfect accuracy (>99 per cent) for most questions. Confident model predictions are highly accurate, which makes the model suitable for filtering large collections of images and forwarding challenging images to experts for manual annotation. This approach greatly reduces the experts' workload without affecting accuracy. The application of these algorithms to larger sets of training data will be critical for analysing results from future surveys such as the Large Synoptic Survey Telescope.
Neural Network-Based Resistance Spot Welding Control and Quality Prediction
Energy Technology Data Exchange (ETDEWEB)
Allen, J.D., Jr.; Ivezic, N.D.; Zacharia, T.
1999-07-10
This paper describes the development and evaluation of neural network-based systems for industrial resistance spot welding process control and weld quality assessment. The developed systems utilize recurrent neural networks for process control and both recurrent networks and static networks for quality prediction. The first section describes a system capable of both welding process control and real-time weld quality assessment, The second describes the development and evaluation of a static neural network-based weld quality assessment system that relied on experimental design to limit the influence of environmental variability. Relevant data analysis methods are also discussed. The weld classifier resulting from the analysis successfldly balances predictive power and simplicity of interpretation. The results presented for both systems demonstrate clearly that neural networks can be employed to address two significant problems common to the resistance spot welding industry, control of the process itself, and non-destructive determination of resulting weld quality.
Experimental Parameter Tuning of Artificial Neural Network in Customer Churn Prediction
National Research Council Canada - National Science Library
Martin Fridrich
2017-01-01
Abstract Purpose of the article: The paper aim is to examine classification models, based on artificial neural networks through experimental parameter tuning, in domain of customer churn prediction in e-commerce retail...
BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.
Kawahara, Jeremy; Brown, Colin J; Miller, Steven P; Booth, Brian G; Chau, Vann; Grunau, Ruth E; Zwicker, Jill G; Hamarneh, Ghassan
2017-02-01
We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain.
Prediction of mechanical property of E4303 electrode using artificial neural network
Institute of Scientific and Technical Information of China (English)
徐越兰; 黄俊; 王克鸿
2004-01-01
Based on the method of artificial neural network, a new approach has been devised to predict the mechanical property of E4303 electrode. The outlined predication model for determining the mechanical property of electrode was built upon the production data. The research leverages a back propagation algorithm as the neural network's learning rule. The result indicates that there are positive correlations between the predicted results and the practical production data. Hence, using the neural network, predication of electrode property can be realized. For the first time, this research provides a more scientific method for designing electrode.
Determining the input dimension of a neural network for nonlinear time series prediction
Institute of Scientific and Technical Information of China (English)
张胜; 刘红星; 高敦堂; 都思丹
2003-01-01
Determining the input dimension of a feed-forward neural network for nonlinear time series prediction plays an important role in the modelling.The paper first summarizes the current methods for determining the input dimension of the neural network.Then inspired by the fact that the correlation dimension of a nonlinear dynamic system is the mostimportant feature of it,the paper presents a new idea that the input dimension of the neural network for nonlinear time series prediction can be taken as an integer just greater than or equal to the correlation dimension.Finally,some wlidation examples and results are given.
Building a Tax Predictive Model Based on the Cloud Neural Network
Institute of Scientific and Technical Information of China (English)
田永青; 李志; 朱仲英
2003-01-01
Tax is very important to the whole country, so a scientific tax predictive model is needed. This paper introduces the theory of the cloud model. On this basis, it presents a cloud neural network, and analyzes the main factors which influence the tax revenue. Then if proposes a tax predictive model based on the cloud neural network. The model combines the strongpoints of the cloud model and the neural network. The experiment and simulation results show the effectiveness of the algorithm in this paper.
Feed-forward neural network model for hunger and satiety related VAS score prediction
Krishnan, S.; Hendriks, H. F. J.; Hartvigsen, M.L.; Graaf, A.A. de
2016-01-01
Background: An artificial neural network approach was chosen to model the outcome of the complex signaling pathways in the gastro-intestinal tract and other peripheral organs that eventually produce the satiety feeling in the brain upon feeding. Methods: A multilayer feed-forward neural network was trained with sets of experimental data relating concentration-time courses of plasma satiety hormones to Visual Analog Scales (VAS) scores. The network successfully predicted VAS responses from set...
Use of Artificial Neural Network for Predicting the Mechanical Property of Low Carbon Steel
Somkuwar, Vandana
2013-01-01
For product development manufacturers and designers need information about the existing materials and new material and its properties as early as possible. This paper presents a method of predicting the properties of unknown material using artificial neural network. The developed neural network model is employed for simulations of the relationship between mechanical property and the chemical composition of low carbon steel. Simulating and analyzing result shows that network model can effectiv...
Neural network predicts sequence of TP53 gene based on DNA chip
DEFF Research Database (Denmark)
Spicker, J.S.; Wikman, F.; Lu, M.L.;
2002-01-01
We have trained an artificial neural network to predict the sequence of the human TP53 tumor suppressor gene based on a p53 GeneChip. The trained neural network uses as input the fluorescence intensities of DNA hybridized to oligonucleotides on the surface of the chip and makes between zero...... and four errors in the predicted 1300 bp sequence when tested on wild-type TP53 sequence....
Predicting Item Difficulty in a Reading Comprehension Test with an Artificial Neural Network.
Perkins, Kyle; And Others
1995-01-01
This article reports the results of using a three-layer back propagation artificial neural network to predict item difficulty in a reading comprehension test. Three classes of variables were examined: text structure, propositional analysis, and cognitive demand. Results demonstrate that the networks can consistently predict item difficulty. (JL)
Predicting Model forComplex Production Process Based on Dynamic Neural Network
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Based on the comparison of several methods of time series predicting, this paper points out that it is nec-essary to use dynamic neural network in modeling of complex production process. Because self-feedback and mutu-al-feedback are adopted among nodes at the same layer in Elman network, it has stronger ability of dynamic ap-proximation, and can describe any non-linear dynamic system. After the structure and mathematical description be-ing given, dynamic back-propagation (BP) algorithm of training weights of Elman neural network is deduced. Atlast, the network is used to predict ash content of black amber in jigging production process. The results show thatthis neural network is powerful in predicting and suitable for modeling, predicting, and controling of complex pro-duction process.
Robust recurrent neural network modeling for software fault detection and correction prediction
Energy Technology Data Exchange (ETDEWEB)
Hu, Q.P. [Quality and Innovation Research Centre, Department of Industrial and Systems Engineering, National University of Singapore, Singapore 119260 (Singapore)]. E-mail: g0305835@nus.edu.sg; Xie, M. [Quality and Innovation Research Centre, Department of Industrial and Systems Engineering, National University of Singapore, Singapore 119260 (Singapore)]. E-mail: mxie@nus.edu.sg; Ng, S.H. [Quality and Innovation Research Centre, Department of Industrial and Systems Engineering, National University of Singapore, Singapore 119260 (Singapore)]. E-mail: isensh@nus.edu.sg; Levitin, G. [Israel Electric Corporation, Reliability and Equipment Department, R and D Division, Aaifa 31000 (Israel)]. E-mail: levitin@iec.co.il
2007-03-15
Software fault detection and correction processes are related although different, and they should be studied together. A practical approach is to apply software reliability growth models to model fault detection, and fault correction process is assumed to be a delayed process. On the other hand, the artificial neural networks model, as a data-driven approach, tries to model these two processes together with no assumptions. Specifically, feedforward backpropagation networks have shown their advantages over analytical models in fault number predictions. In this paper, the following approach is explored. First, recurrent neural networks are applied to model these two processes together. Within this framework, a systematic networks configuration approach is developed with genetic algorithm according to the prediction performance. In order to provide robust predictions, an extra factor characterizing the dispersion of prediction repetitions is incorporated into the performance function. Comparisons with feedforward neural networks and analytical models are developed with respect to a real data set.
Autogenous shrinkage prediction on high-performance concrete of fly ash based on BP neural network
Wang, Baomin; Zhang, Wenping; Wang, Lijiu
2006-11-01
The article adopts test data of neural network for autogenous shrinkage to train and predict on the data which doesn't join training. The article's prediction is on the basis of common medium sand, 5-31.5mm limestone rubble, second class fly-ash, P.O42.5 silicate cement, considering factors include five ones such as ratio of water and cement, sand rate, content of cement, content of fly ash, etc.By adjusting various parameters of neural network structure, it obtains three optimized results of neural network simulation. The error between concrete autogtenous shrinkage value of neural network prediction and trial value is within 3%, which can meet requirement of the concrete engineering.
Dissolved oxygen prediction using a possibility theory based fuzzy neural network
Khan, Usman T.; Valeo, Caterina
2016-06-01
A new fuzzy neural network method to predict minimum dissolved oxygen (DO) concentration in a highly urbanised riverine environment (in Calgary, Canada) is proposed. The method uses abiotic factors (non-living, physical and chemical attributes) as inputs to the model, since the physical mechanisms governing DO in the river are largely unknown. A new two-step method to construct fuzzy numbers using observations is proposed. Then an existing fuzzy neural network is modified to account for fuzzy number inputs and also uses possibility theory based intervals to train the network. Results demonstrate that the method is particularly well suited to predicting low DO events in the Bow River. Model performance is compared with a fuzzy neural network with crisp inputs, as well as with a traditional neural network. Model output and a defuzzification technique are used to estimate the risk of low DO so that water resource managers can implement strategies to prevent the occurrence of low DO.
Artificial Neural Network for Monthly Rainfall Rate Prediction
Purnomo, H. D.; Hartomo, K. D.; Prasetyo, S. Y. J.
2017-03-01
Rainfall rate forecasting plays an important role in various human activities. Rainfall forecasting is a challenging task due to the uncertainty of natural phenomena. In this paper, two neural network models are proposed for monthly rainfall rate forecasting. The performance of the proposed model is assesses based on monthly rainfall rate in Ampel, Boyolali, from 2001-2013. The experiment results show that the accuracy of the first model is much better than the accuracy of the second model. Its average accuracy is just above 98%, while the accuracy of the second model is approximately 75%. In additional, both models tend to perform better when the fluctuation of rainfall is low.
Directory of Open Access Journals (Sweden)
Marcia M. Lastre Valdes
2014-06-01
Full Text Available In this paper a review and analysis of the major theories and models that address the prediction of corporate bankruptcy and insolvency is made. Neural networks are a tool of most recent appearance, although in recent years have received considerable attention from the academic and professional world, and have started to be implemented in different models testing organizations insolvency based on neural computation. The purpose of this paper is to yield evidence of the usefulness of Artificial Neural Networks in the problem of bankruptcy prediction insolence or so compare its predictive ability with the methods commonly used in that context. The findings suggest that high predictive capabilities can be achieved using artificial neural networks, with qualitative and quantitative variables.
A System for Predicting Subcellular Localization of Yeast Genome Using Neural Network
Thampi, Sabu M
2007-01-01
The subcellular location of a protein can provide valuable information about its function. With the rapid increase of sequenced genomic data, the need for an automated and accurate tool to predict subcellular localization becomes increasingly important. Many efforts have been made to predict protein subcellular localization. This paper aims to merge the artificial neural networks and bioinformatics to predict the location of protein in yeast genome. We introduce a new subcellular prediction method based on a backpropagation neural network. The results show that the prediction within an error limit of 5 to 10 percentage can be achieved with the system.
Protein distance constraints predicted by neural networks and probability density functions
DEFF Research Database (Denmark)
Lund, Ole; Frimand, Kenneth; Gorodkin, Jan
1997-01-01
We predict interatomic C-α distances by two independent data driven methods. The first method uses statistically derived probability distributions of the pairwise distance between two amino acids, whilst the latter method consists of a neural network prediction approach equipped with windows taking....... The predictions are based on a data set derived using a new threshold similarity. We show that distances in proteins are predicted more accurately by neural networks than by probability density functions. We show that the accuracy of the predictions can be further increased by using sequence profiles. A threading...
Directory of Open Access Journals (Sweden)
Juan Manuel Lizarazo Marriaga
2010-04-01
Full Text Available The present study was conducted for predicting the compressive strength of concrete based on unit weight ultrasonic and pulse velocity (UPV for 41 different concrete mixtures. This research emerged from the need for a rapid test for predicting concrete’s compressive strength. The research was also conducted for predicting concrete’s electrical resistivity based on unit weight ultrasonic, pulse velocity (UPV and compressive strength with the same mixes. The prediction was made using simple regression analysis and artificial neural networks. The results revealed that artificial neural networks can be used for effectively predicting compressive strength and electrical resistivity.
Traffic control based on dahlin algorithm and neural network prediction in TAM networks
Institute of Scientific and Technical Information of China (English)
沈伟; 冯瑞; 邵惠鹤
2004-01-01
The propagation delay in networks has a great adverse effect on rate-based traffic control. This paper proposes the composite control based on Dab lin algorithm feedback control and neural network feedforward predictive compensation online for ABR (available bit rate) communication in ATM (asynchronous transfer mode) networks, which can overcome the adverse effect caused by the delay on the control rapidity and stability better. The theoretical analysis and simulation research show that the scheme can make sources respond to the changes of network status rapidly, avoid the congestion effectively and utilize the bandwidth sufficiently. Compared with PID (proportional-integral-derivative) control, cell loss rate is much lower, link utilization rate is much higher, and required buffer capacity is much smaller.
SELECTING NEURAL NETWORK ARCHITECTURE FOR INVESTMENT PROFITABILITY PREDICTIONS
Directory of Open Access Journals (Sweden)
Marijana Zekić-Sušac
2012-07-01
Full Text Available After production and operations, finance and investments are one of the mostfrequent areas of neural network applications in business. The lack of standardizedparadigms that can determine the efficiency of certain NN architectures in a particularproblem domain is still present. The selection of NN architecture needs to take intoconsideration the type of the problem, the nature of the data in the model, as well as somestrategies based on result comparison. The paper describes previous research in that areaand suggests a forward strategy for selecting best NN algorithm and structure. Since thestrategy includes both parameter-based and variable-based testings, it can be used forselecting NN architectures as well as for extracting models. The backpropagation, radialbasis,modular, LVQ and probabilistic neural network algorithms were used on twoindependent sets: stock market and credit scoring data. The results show that neuralnetworks give better accuracy comparing to multiple regression and logistic regressionmodels. Since it is model-independant, the strategy can be used by researchers andprofessionals in other areas of application.
Prediction of the thermal performance of a high-temperature furnace using neural networks
Energy Technology Data Exchange (ETDEWEB)
Ward, J.; Wilcox, S.J.; Payne, R. [University of Glamorgan, Pontypridd (United Kingdom). School of Design and Advanced Technology
1999-07-01
There has been considerable interest in recent years in the use of neural networks for control of combustion processes because of their ability to represent non-linear systems and their self-learning capabilities. This paper thus presents the results of a study of the ability of two different neural networks to match the outputs of a radiation zone model, which was used to predict the transient thermal performance of a gas-fired furnace. A series of small, single output neural networks were found to provide adequate representation of the mathematical model. (author)
Lozhkin, V.; Tarkhov, D.; Timofeev, V.; Lozhkina, O.; Vasilyev, A.
2016-11-01
The paper presents a novel differential neural network model estimating the dispersion of CO emissions from a peat fire near a highway. We have developed approaches for the optimization of the model on the base of simulated and experimental measurements of CO concentrations in the area of dispersion of the smoke cloud. The numerical solutions of the problem are presented in the form of neural network approximations by the Gaussian model and in the form of neural network approximate solutions of partial differential equations. The trained neural network model can be used for the prediction of emergency when wind speed and direction and other fire parameters are changing. The method is also recommended for the development of air quality monitoring and predicting information systems.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distributed ranges of the superconductive transition temperature (Tc) for complex oxides, and Tc values for cuprate superconductors. The calculated results indicated that the adjusted ANN can be used to predict superconductive properties for unknown oxides.
A Model to Predict Rolling Force of Finishing Stands with RBF Neural Networks
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In view of intrinsic imperfection of traditional models of rolling force, in order to improve the prediction accuracy of rolling force, a new method combining radial basis function (RBF) neural networks with traditional models to predict rolling force was proposed. The off-line simulation indicates that the predicted results are much more accurate than that with traditional models.
1990-01-01
A new recursive prediction error routine is compared with the backpropagation method of training neural networks. Results based on simulated systems, the prediction of Canadian Lynx data and the modelling of an automotive diesel engine indicate that the recursive prediction error algorithm is far superior to backpropagation.
Institute of Scientific and Technical Information of China (English)
LONG Jiangqi; LAN Fengchong; CHEN Jiqing; YU Ping
2009-01-01
For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM(R) Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.
ON-LINE STATE PREDICTION OF ENGINES BASED ON FLAT NEURAL NETWORK
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A flat neural network is designed for the on-line state prediction of engine. To reduce the computational cost of weight matrix, a fast recursive algorithm is derived according to the pseudoinverse formula of a partition matrix. Furthermore, the forgetting factor approach is introduced to improve predictive accuracy and robustness of the model. The experiment results indicate that the improved neural network is of good accuracy and strong robustness in prediction, and can apply for the on-line prediction of nonlinear multi input multi output systems like vehicle engines.
Breakout Prediction Based on BP Neural Network in Continuous Casting Process
Directory of Open Access Journals (Sweden)
Zhang Ben-guo
2016-01-01
Full Text Available An improved BP neural network model was presented by modifying the learning algorithm of the traditional BP neural network, based on the Levenberg-Marquardt algorithm, and was applied to the breakout prediction system in the continuous casting process. The results showed that the accuracy rate of the model for the temperature pattern of sticking breakout was 96.43%, and the quote rate was 100%, that verified the feasibility of the model.
Prediction Model for Fatigue Stiffness Decay of Concrete Beam Based on Neural Network
Institute of Scientific and Technical Information of China (English)
王海超; 何世钦; 贡金鑫
2003-01-01
With the method of neural network, the processes of fatigue stiffness decreasing and deflection increasing of reinforced concrete beams under cyclic loading were simulated. The simulating system was built with the given experimental data. The prediction model of neural network structure and the corresponding parameters were obtained. The precision and results were satisfied and could be used to investigate the fatigue properties of reinforced concrete beams in complex environment and under repeating loads.
Predicting the composition of flux-cored wire claded metal by a neural network
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In this paper, an artificial neural network method that can predict the chemical composition of deposited weld metal by CO2 Shielded Flux-Cored Wire Surfacing was studied. It is found that artificial neural network is a good approach on studying welding metallurgy processes that cannot be described by conventional mathematical methods. In the same time we explored a new way to study the no-equilibrium welding metallurgy processes.
Experimental Parameter Tuning of Artificial Neural Network in Customer Churn Prediction
Martin Fridrich
2017-01-01
Abstract Purpose of the article: The paper aim is to examine classification models, based on artificial neural networks through experimental parameter tuning, in domain of customer churn prediction in e-commerce retail. Methodology/methods: Key methods used are artificial neural network and conditional inference tree for further meta-analysis of the results. Fundamental logical methods such as deduction are also used. Scientific aim: To present and execute experimental design for per...
Directory of Open Access Journals (Sweden)
Luis Gonzaga Baca Ruiz
2016-08-01
Full Text Available This paper addresses the problem of energy consumption prediction using neural networks over a set of public buildings. Since energy consumption in the public sector comprises a substantial share of overall consumption, the prediction of such consumption represents a decisive issue in the achievement of energy savings. In our experiments, we use the data provided by an energy consumption monitoring system in a compound of faculties and research centers at the University of Granada, and provide a methodology to predict future energy consumption using nonlinear autoregressive (NAR and the nonlinear autoregressive neural network with exogenous inputs (NARX, respectively. Results reveal that NAR and NARX neural networks are both suitable for performing energy consumption prediction, but also that exogenous data may help to improve the accuracy of predictions.
Static and Transient Performance Prediction for CFB Boilers Using a Bayesian—Gaussian Neural Network
Institute of Scientific and Technical Information of China (English)
HaiwenYe; WeidouNi
1997-01-01
A bayesian-Gaussian Neural Network(BGNN)is put forward in this paper to predict the static and transient performance of Circulating Fluidized Bed(CFB) boilers.The advantages of this network over Back-Propagation Neural Networks(BPNNs),easier determination of topology,simpler and time saving in training process as well as self-organizing bility,make this network more practical in on-line performance prediction for complicatied processes,Simulation shows that this network is comparable to the BPNNs in predicting the performance of CFB boilers.Good and practical on-line performance predictions are essential for operation guide and model predictive control of CFB boilers,which are under research by the authors.
Directory of Open Access Journals (Sweden)
Sunday Iliya
2015-08-01
Full Text Available Abstract With spectrum becoming an ever scarcer resource it is critical that new communication systems utilize all the available frequency bands as efficiently as possible in time frequency and spatial domain. rHowever spectrum allocation policies most of the licensed spectrums grossly underutilized while the unlicensed spectrums are overcrowded. Hence all future wireless communication devices beequipped with cognitive capability to maximize quality of service QoS require a lot of time and energartificial intelligence and machine learning in cognitive radio deliver optimum performance. In this paper we proposed a novel way of spectrum holes prediction using artificial neural network ANN. The ANN was trained to adapt to the radio spectrum traffic of 20 channels and the trained network was used for prediction of future spectrum holes. The input of the neural network consist of a time domain vector of length six i.e. minute hour date day week and month. The output is a vector of length 20 each representing the probability of the channel being idle. The channels are ranked in order of decreasing probability of being idleminimizing We assumed that all the channels have the same noise and quality of service and only one vacant channel is needed for communication. The result of the spectrum holes search using ANN was compared with that of blind linear and blind stochastic search and was found to be superior. The performance of the ANN that was trained to predict the probability of the channels being idle outperformed the ANN that will predict the exact channel states busy or idle. In the ANN that was trained to predict the exact channels states all channels predicted to be idle are randomly searched until the first spectrum hole was found no information about search direction regarding which channel should be sensed first.
Markopoulos, Angelos P.; Georgiopoulos, Sotirios; Manolakos, Dimitrios E.
2016-03-01
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, namely the adaptive back propagation algorithm of the steepest descent with the use of momentum term, the back propagation Levenberg-Marquardt algorithm and the back propagation Bayesian algorithm. Moreover, radial basis function neural networks are examined. All the aforementioned algorithms are used for the prediction of surface roughness in milling, trained with the same input parameters and output data so that they can be compared. The advantages and disadvantages, in terms of the quality of the results, computational cost and time are identified. An algorithm for the selection of the spread constant is applied and tests are performed for the determination of the neural network with the best performance. The finally selected neural networks can satisfactorily predict the quality of the manufacturing process performed, through simulation and input-output surfaces for combinations of the input data, which correspond to milling cutting conditions.
Rotation-invariant convolutional neural networks for galaxy morphology prediction
Dieleman, Sander; Dambre, Joni
2015-01-01
Measuring the morphological parameters of galaxies is a key requirement for studying their formation and evolution. Surveys such as the Sloan Digital Sky Survey (SDSS) have resulted in the availability of very large collections of images, which have permitted population-wide analyses of galaxy morphology. Morphological analysis has traditionally been carried out mostly via visual inspection by trained experts, which is time-consuming and does not scale to large ($\\gtrsim10^4$) numbers of images. Although attempts have been made to build automated classification systems, these have not been able to achieve the desired level of accuracy. The Galaxy Zoo project successfully applied a crowdsourcing strategy, inviting online users to classify images by answering a series of questions. Unfortunately, even this approach does not scale well enough to keep up with the increasing availability of galaxy images. We present a deep neural network model for galaxy morphology classification which exploits translational and r...
Modeling and prediction of Turkey's electricity consumption using Artificial Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Kavaklioglu, Kadir; Ozturk, Harun Kemal; Canyurt, Olcay Ersel [Pamukkale University, Mechanical Engineering Department, Denizli (Turkey); Ceylan, Halim [Pamukkale University, Civil Engineering Department, Denizli (Turkey)
2009-11-15
Artificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer processing elements, respectively. These input-output network models are a result of relationships that exist among electricity consumption and several other socioeconomic variables. Electricity consumption is modeled as a function of economic indicators such as population, gross national product, imports and exports. It is also modeled using export-import ratio and time input only. Performance comparison among different models is made based on absolute and percentage mean square error. Electricity consumption of Turkey is predicted until 2027 using data from 1975 to 2006 along with other economic indicators. The results show that electricity consumption can be modeled using Artificial Neural Networks, and the models can be used to predict future electricity consumption. (author)
Directory of Open Access Journals (Sweden)
Ikhthison Mekongga
2014-02-01
Full Text Available The need for bandwidth has been increasing recently. This is because the development of internet infrastructure is also increasing so that we need an economic and efficient provider system. This can be achieved through good planning and a proper system. The prediction of the bandwidth consumption is one of the factors that support the planning for an efficient internet service provider system. Bandwidth consumption is predicted using ANN. ANN is an information processing system which has similar characteristics as the biologic al neural network. ANN is chosen to predict the consumption of the bandwidth because ANN has good approachability to non-linearity. The variable used in ANN is the historical load data. A bandwidth consumption information system was built using neural networks with a backpropagation algorithm to make the use of bandwidth more efficient in the future both in the rental rate of the bandwidth and in the usage of the bandwidth.Keywords: Forecasting, Bandwidth, Backpropagation
Directory of Open Access Journals (Sweden)
Milos Miljanovic
2012-02-01
Full Text Available The purpose of this paper is to perform evaluation of two different neural network architectures used for solving temporal problems, i.e. time series prediction. The data sets in this project include Mackey-Glass,Sunspots, and Standard & Poor's 500, the stock market index. The study also presents a comparison study on the two networks and their performance.
Institute of Scientific and Technical Information of China (English)
WANG Hong-bing; XU An-jun; AI Li-xiang; TIAN Nai-yuan
2012-01-01
The hybrid method composed of clustering and predicting stages is proposed to predict the endpoint phos- phorus content of molten steel in BOF （Basic Oxygen Furnace）. At the clustering stage, the weighted K-means is performed to generate some clusters with homogeneous data. The weights of factors influencing the target are calcu- lated using EWM （Entropy Weight Method）. At the predicting stage, one GMDH （Group Method of Data Handling） polynomial neural network is built for each cluster. And the predictive results from all the GMDH polynomial neural networks are integrated into a whole to be the result for the hybrid method. The hybrid method, GMDH polnomial neural network and BP neural network are employed for a comparison. The results show that the proposed hybrid method is effective in predicting the endpoint phosphorus content of molten steel in BOF. Furthermore, the hybrid method outperforms BP neural network and GMDH polynomial neural network.
Applying the Artificial Neural Network to Predict the Soil Responses in the DEM Simulation
Li, Z.; Chow, J. K.; Wang, Y. H.
2017-06-01
This paper aims to bridge the soil properties and the soil response in the discrete element method (DEM) simulation using the artificial neural network (ANN). The network was designed to output the stress-strain-volumetric response from inputting the soil properties. 31 biaxial shearing tests with varying soil parameters were generated using the DEM simulations. Based on these 31 training samples, a three-layer neural network was established. 2 extra samples were generated to examine the validity of the network, and the predicted curves using the ANN were well matched with those from the DEM simulations. Overall, the ANN was found promising in effectively modelling the soil behaviour.
Directory of Open Access Journals (Sweden)
S. Ramasundaram
2013-02-01
Full Text Available Prediction of compressive strength of concrete is very useful for economic constructions. The compressive strength can be estimated after 28 days of casting the specimen cubes or may be predictedbased on the quantum and quality of ingredients used in making the concrete. When the first one requires a 28-day time, the second one does have problem of accuracy. Hence, a hybrid model is proposed in which the concrete cube is cured using the microwave based accelerated curing procedure and the early strength is used to predict the 28-day strength. Feed-forward neural network model was used to predict compressive strength of the concrete after the microwave curing to ascertain the predictability of neural network models. The results indicate that the neural network models have a good scope for further study and implementations.
Study of predicting breakdown voltage of stator insulation in generator based on BP neural network
Institute of Scientific and Technical Information of China (English)
Jiang Yuao; Zhang Aide; Liu Libing; Du Yu; Gao Naikui; Peng Zongren
2007-01-01
The breakdown voltage plays an important role in evaluating residual life of stator insulation in generator. In this paper, we discussed BP neural network that was used to predict the breakdown voltage of stator insulation in generator of 300 MW/18 kV. At first the neural network has been trained by the samples that include the varieties of dielectric loss factor tanδ, the partial discharge parameters and breakdown voltage. Then we tried to predict the breakdown voltage of samples and stator insulations subjected to multi-stress aging by the trained neural network. We found that it's feasible and accurate to predict the voltage. This method can be applied to predict breakdown voltage of other generators which have the same insulation structure and material.
Applying Artificial Neural Network to Predict Semiconductor Machine Outliers
Directory of Open Access Journals (Sweden)
Keng-Chieh Yang
2013-01-01
Full Text Available Advanced semiconductor processes are produced by very sophisticated and complex machines. The demand of higher precision for the monitoring system is becoming more vital when the devices are shrunk into smaller sizes. The high quality and high solution checking mechanism must rely on the advanced information systems, such as fault detection and classification (FDC. FDC can timely detect the deviations of the machine parameters when the parameters deviate from the original value and exceed the range of the specification. This study adopts backpropagation neural network model and gray relational analysis as tools to analyze the data. This study uses FDC data to detect the semiconductor machine outliers. Data collected for network training are in three different intervals: 6-month period, 3-month period, and one-month period. The results demonstrate that 3-month period has the best result. However, 6-month period has the worst result. The findings indicate that machine deteriorates quickly after continuous use for 6 months. The equipment engineers and managers can take care of this phenomenon and make the production yield better.
Prediction of Inelastic Response Spectra Using Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Edén Bojórquez
2012-01-01
Full Text Available Several studies have been oriented to develop methodologies for estimating inelastic response of structures; however, the estimation of inelastic seismic response spectra requires complex analyses, in such a way that traditional methods can hardly get an acceptable error. In this paper, an Artificial Neural Network (ANN model is presented as an alternative to estimate inelastic response spectra for earthquake ground motion records. The moment magnitude (MW, fault mechanism (FM, Joyner-Boore distance (dJB, shear-wave velocity (Vs30, fundamental period of the structure (T1, and the maximum ductility (μu were selected as inputs of the ANN model. Fifty earthquake ground motions taken from the NGA database and recorded at sites with different types of soils are used during the training phase of the Feedforward Multilayer Perceptron model. The Backpropagation algorithm was selected to train the network. The ANN results present an acceptable concordance with the real seismic response spectra preserving the spectral shape between the actual and the estimated spectra.
A Study on Protein Residue Contacts Prediction by Recurrent Neural Network
Institute of Scientific and Technical Information of China (English)
Liu Gui-xia; Zhu Yuan-xian; Zhou Wen-gang; Huang Yan-xin; Zhou Chun-guang; Wang Rong-xing
2005-01-01
A new method was described for using a recurrent neural network with bias units to predict contact maps in proteins.The main inputs to the neural network include residues pairwise, residue classification according to hydrophobicity, polar,acidic, basic and secondary structure information and residue separation between two residues. In our work, a dataset was used which was composed of 53 globulin proteins of known 3D structure. An average predictive accuracy of 0. 29 was obtained. Our results demonstrate the viability of the approach for predicting contact maps.
Prediction of annual water consumption in Guangdong Province based on Bayesian neural network
Tian, Tao; Xue, Huifeng
2017-06-01
In the context of the implementation of the most stringent water resources management system, the role of water demand forecasting for regional water resources management is becoming increasingly significant. Based on the analysis of the influencing factors of water consumption in Guangdong Province, we made the forecast index system of annual water consumption, and constructed the forecast model of annual water consumption of BP neural network, then optimized the regularization BP neural network in utilization rate of water. The results showed that the average absolute percentage error of Bayesian neural network prediction model and BP neural network prediction model is 0.70% and 0.46% respectively. BP neural network model by Bayesian regularization is more ability to improve the accuracy of about 0.24%, more in line with the regional annual water demand forecast high precision requirements. Take the planning index value of Guangdong Province’s thirteen five plan into Bayesian neural network forecasting model, and its forecast value is 45.432 billion cubic meters, which will reach 456.04 billion cubic meters of red water in Guangdong Province in 2020.
Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)
2002-01-01
Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic
Prediction of protein hydration sites from sequence by modular neural networks
DEFF Research Database (Denmark)
Ehrlich, L.; Reczko, M.; Bohr, Henrik
1998-01-01
The hydration properties of a protein are important determinants of its structure and function. Here, modular neural networks are employed to predict ordered hydration sites using protein sequence information. First, secondary structure and solvent accessibility are predicted from sequence with t...
Gonzalez, Julie M. Byers; DesJardins, Stephen L.
This paper examines how predictive modeling can be used to study application behavior. A relatively new technique, artificial neural networks (ANNs), was applied to help predict which students were likely to get into a large Research I university. Data were obtained from a university in Iowa. Two cohorts were used, each containing approximately…
Application of Artificial Neural Network to Predicting Hardenability of Gear Steel
Institute of Scientific and Technical Information of China (English)
GAO Xiu-hua; QI Ke-min; DENG Tian-yong; QIU Chun-lin; ZHOU Ping; DU Xian-bin
2006-01-01
The prediction of the hardenability and chemical composition of gear steel was studied using artificial neural networks. A software was used to quantitatively forecast the hardenability by its chemical composition or the chemical composition by its hardenability. The prediction result is more precise than that obtained from the traditional method based on the simple mathematical regression model.
Prediction of Gas Holdup in Bubble Columns Using Artificial Neural Network
Institute of Scientific and Technical Information of China (English)
吴元欣; 罗湘华; 陈启明; 李定或; 李世荣; M.H.Al-Dahhan; M.P.Dudukovic
2003-01-01
A new correlation for the prediction of gas hod up in bubble columns was proposed based on an extensive experimental database set up from the literature published over last 30 years .The updated estimation method relying on artificial neural network,dimensional analysis and phenomenological approaches was used and the model prediction agreed with the experimental data with average relative error less than 10%.
Neural Network Approach to Predict Melt Temperature in Injection Molding Processes
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Among the processing conditions of injection molding, temperature of the melt entering the mold plays a significant role in determining the quality of molded parts. In our previous research, a neural network was developed to predict, the melt temperature in the barrel during the plastication phase. In this paper, a neural network is proposed to predict the melt temperature at the nozzle exit during the injection phase. A typical two layer neural network with back propagation learning rules is used to model the relationship between input and output in the injection phase. The preliminary results show that the network works well and may be used for on-line optimization and control of injection molding processes.
Putra, J. C. P.; Safrilah
2017-06-01
Artificial neural network approaches are useful to solve many complicated problems. It solves a number of problems in various areas such as engineering, medicine, business, manufacturing, etc. This paper presents an application of artificial neural network to predict a runway capacity at Juanda International Airport. An artificial neural network model of backpropagation and multi-layer perceptron is adopted to this research to learning process of runway capacity at Juanda International Airport. The results indicate that the training data is successfully recognizing the certain pattern of runway use at Juanda International Airport. Whereas, testing data indicate vice versa. Finally, it can be concluded that the approach of uniformity data and network architecture is the critical part to determine the accuracy of prediction results.
Prediction of operational parameters effect on coal flotation using artificial neural network
Institute of Scientific and Technical Information of China (English)
E. Jorjani; Sh. Mesroghli; S. Chehreh Chelgani
2008-01-01
Artificial neural network procedures were used to predict the combustible value (i.e. 100-Ash) and combustible recovery of coal flotation concentrate in different operational conditions. The pulp density, pH, rotation rate, coal particle size, dosage of collector, frother and conditioner were used as inputs to the network. Feed-forward artificial neural networks with 5-30-2-1 and 7-10-3-1 arrangements were capable to estimate the combustible value and combustible recovery of coal flotation concentrate respectively as the outputs. Quite satisfactory correlations of 1 and 0.91 in training and testing stages for combustible value and of 1 and 0.95 in training and testing stages for combustible recovery prediction were achieved. The proposed neural network models can be used to determine the most advantageous operational conditions for the expected concentrate assay and recovery in the coal flotation process.
Intelligent predicting approach of peritoneal fluid absorption rate based-on neural network
Institute of Scientific and Technical Information of China (English)
Mei ZHANG; Yueming HU; Tao WANG
2003-01-01
This paper addresses the important intelligent predicting problem of peritoneal absorption rate in the peritoneal dialysis treament process of renal failure. As the index of dialysis adequacy, KT/V and Ccr are widely used and accepted. However,growing evidence suggests that the fluid balance may play a critical role in dialysis adequacy and patient outcome. Peritoneal fluid absorption decreases the peritoneal fluid removal. Understanding the peritoneal fluid absorption rate will help clinicians to opthnize the dialysis dwell time. The neural network approach is applied to the prediction of peritoneal absorption rate. Compared with multivariable regression method, the experimental results showed that neural network method has an advantage over multivariable regression. The application of this predicting method based-on neural network in clinic is instructive.
3D porosity prediction from seismic inversion and neural networks
Leite, Emilson Pereira; Vidal, Alexandre Campane
2011-08-01
In this work, we address the problem of transforming seismic reflection data into an intrinsic rock property model. Specifically, we present an application of a methodology that allows interpreters to obtain effective porosity 3D maps from post-stack 3D seismic amplitude data, using measured density and sonic well log data as constraints. In this methodology, a 3D acoustic impedance model is calculated from seismic reflection amplitudes by applying an L1-norm sparse-spike inversion algorithm in the time domain, followed by a recursive inversion performed in the frequency domain. A 3D low-frequency impedance model is estimated by kriging interpolation of impedance values calculated from well log data. This low-frequency model is added to the inversion result which otherwise provides only a relative numerical scale. To convert acoustic impedance into a single reservoir property, a feed-forward Neural Network (NN) is trained, validated and tested using gamma-ray and acoustic impedance values observed at the well log positions as input and effective porosity values as target. The trained NN is then applied for the whole reservoir volume in order to obtain a 3D effective porosity model. While the particular conclusions drawn from the results obtained in this work cannot be generalized, such results suggest that this workflow can be applied successfully as an aid in reservoir characterization, especially when there is a strong non-linear relationship between effective porosity and acoustic impedance.
Protein distance constraints predicted by neural networks and probability density functions
DEFF Research Database (Denmark)
Lund, Ole; Frimand, Kenneth; Gorodkin, Jan;
1997-01-01
We predict interatomic C-α distances by two independent data driven methods. The first method uses statistically derived probability distributions of the pairwise distance between two amino acids, whilst the latter method consists of a neural network prediction approach equipped with windows taki...... method based on the predicted distances is presented. A homepage with software, predictions and data related to this paper is available at http://www.cbs.dtu.dk/services/CPHmodels/...
Energy Technology Data Exchange (ETDEWEB)
Modarres, Hamid Reza; Kor, Mohammad; Abkhoshk, Emad; Alfi, Alireza; Lower, James C.
2009-06-15
In recent years, use of artificial neural networks have increased for estimation of Hardgrove grindability index (HGI) of coals. For training of the neural networks, gradient descent methods such as Backpropagaition (BP) method are used frequently. However they originally showed good performance in some non-linearly separable problems, but have a very slow convergence and can get stuck in local minima. In this paper, to overcome the lack of gradient descent methods, a novel particle swarm optimization and artificial neural network was employed for predicting the HGI of Kentucky coals by featuring eight coal parameters. The proposed approach also compared with two kinds of artificial neural network (generalized regression neural network and back propagation neural network). Results indicate that the neural networks - particle swarm optimization method gave the most accurate HGI prediction.
Lin, Lan; Jin, Cong; Fu, Zhenrong; Zhang, Baiwen; Bin, Guangyu; Wu, Shuicai
2016-03-01
Brain ageing is followed by changes of the connectivity of white matter (WM) and changes of the grey matter (GM) concentration. Neurodegenerative disease is more vulnerable to an accelerated brain ageing, which is associated with prospective cognitive decline and disease severity. Accurate detection of accelerated ageing based on brain network analysis has a great potential for early interventions designed to hinder atypical brain changes. To capture the brain ageing, we proposed a novel computational approach for modeling the 112 normal older subjects (aged 50-79 years) brain age by connectivity analyses of networks of the brain. Our proposed method applied principal component analysis (PCA) to reduce the redundancy in network topological parameters. Back propagation artificial neural network (BPANN) improved by hybrid genetic algorithm (GA) and Levenberg-Marquardt (LM) algorithm is established to model the relation among principal components (PCs) and brain age. The predicted brain age is strongly correlated with chronological age (r=0.8). The model has mean absolute error (MAE) of 4.29 years. Therefore, we believe the method can provide a possible way to quantitatively describe the typical and atypical network organization of human brain and serve as a biomarker for presymptomatic detection of neurodegenerative diseases in the future.
Predicting recurrent aphthous ulceration using genetic algorithms-optimized neural networks
Directory of Open Access Journals (Sweden)
Najla S Dar-Odeh
2010-05-01
Full Text Available Najla S Dar-Odeh1, Othman M Alsmadi2, Faris Bakri3, Zaer Abu-Hammour2, Asem A Shehabi3, Mahmoud K Al-Omiri1, Shatha M K Abu-Hammad4, Hamzeh Al-Mashni4, Mohammad B Saeed4, Wael Muqbil4, Osama A Abu-Hammad1 1Faculty of Dentistry, 2Faculty of Engineering and Technology, 3Faculty of Medicine, University of Jordan, Amman, Jordan; 4Dental Department, University of Jordan Hospital, Amman, JordanObjective: To construct and optimize a neural network that is capable of predicting the occurrence of recurrent aphthous ulceration (RAU based on a set of appropriate input data.Participants and methods: Artificial neural networks (ANN software employing genetic algorithms to optimize the architecture neural networks was used. Input and output data of 86 participants (predisposing factors and status of the participants with regards to recurrent aphthous ulceration were used to construct and train the neural networks. The optimized neural networks were then tested using untrained data of a further 10 participants.Results: The optimized neural network, which produced the most accurate predictions for the presence or absence of recurrent aphthous ulceration was found to employ: gender, hematological (with or without ferritin and mycological data of the participants, frequency of tooth brushing, and consumption of vegetables and fruits.Conclusions: Factors appearing to be related to recurrent aphthous ulceration and appropriate for use as input data to construct ANNs that predict recurrent aphthous ulceration were found to include the following: gender, hemoglobin, serum vitamin B12, serum ferritin, red cell folate, salivary candidal colony count, frequency of tooth brushing, and the number of fruits or vegetables consumed daily.Keywords: artifical neural networks, recurrent, aphthous ulceration, ulcer
A Short-Term Climate Prediction Model Based on a Modular Fuzzy Neural Network
Institute of Scientific and Technical Information of China (English)
JIN Long; JIN Jian; YAO Cai
2005-01-01
In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the MFNN model for short-term climate prediction has advantages of simple structure, no hidden layer and stable network parameters because of the assembling of sound functions of the selfadaptive learning, association and fuzzy information processing of fuzzy mathematics and neural network methods. The case computational results of Guangxi flood season (JJA) rainfall show that the mean absolute error (MAE) and mean relative error (MRE) of the prediction during 1998-2002 are 68.8 mm and 9.78％, and in comparison with the regression method, under the conditions of the same predictors and period they are 97.8 mm and 12.28％ respectively. Furthermore, it is also found from the stability analysis of the modular model that the change of the prediction results of independent samples with training times in the stably convergent interval of the model is less than 1.3 mm. The obvious oscillation phenomenon of prediction results with training times, such as in the common back-propagation neural network (BPNN)model, does not occur, indicating a better practical application potential of the MFNN model.
Knowledge base and neural network approach for protein secondary structure prediction.
Patel, Maulika S; Mazumdar, Himanshu S
2014-11-21
Protein structure prediction is of great relevance given the abundant genomic and proteomic data generated by the genome sequencing projects. Protein secondary structure prediction is addressed as a sub task in determining the protein tertiary structure and function. In this paper, a novel algorithm, KB-PROSSP-NN, which is a combination of knowledge base and modeling of the exceptions in the knowledge base using neural networks for protein secondary structure prediction (PSSP), is proposed. The knowledge base is derived from a proteomic sequence-structure database and consists of the statistics of association between the 5-residue words and corresponding secondary structure. The predicted results obtained using knowledge base are refined with a Backpropogation neural network algorithm. Neural net models the exceptions of the knowledge base. The Q3 accuracy of 90% and 82% is achieved on the RS126 and CB396 test sets respectively which suggest improvement over existing state of art methods.
Energy Technology Data Exchange (ETDEWEB)
Marques Salgado, Cesar [Instituto de Engenharia Nuclear, DIRA/IEN/CNEN, Rio de Janeiro, CEP.: 21945-970-Caixa Postal 68550 (Brazil)], E-mail: otero@ien.gov.br; Brandao, Luis E.B. [Instituto de Engenharia Nuclear, DIRA/IEN/CNEN, Rio de Janeiro, CEP.: 21945-970-Caixa Postal 68550 (Brazil); Schirru, Roberto [Universidade Federal do Rio de Janeiro, PEN/COPPE-DNC/EE-CT, Rio de Janeiro, CEP.: 21941-972-Caixa Postal 68509 (Brazil); Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear, DIRA/IEN/CNEN, Rio de Janeiro, CEP.: 21945-970-Caixa Postal 68550 (Brazil); Silva, Ademir Xavier da [Universidade Federal do Rio de Janeiro, PEN/COPPE-DNC/EE-CT, Rio de Janeiro, CEP.: 21941-972-Caixa Postal 68509 (Brazil); Ramos, Robson [Instituto de Engenharia Nuclear, DIRA/IEN/CNEN, Rio de Janeiro, CEP.: 21945-970-Caixa Postal 68550 (Brazil)
2009-10-15
This work presents methodology based on nuclear technique and artificial neural network for volume fraction predictions in annular, stratified and homogeneous oil-water-gas regimes. Using principles of gamma-ray absorption and scattering together with an appropriate geometry, comprised of three detectors and a dual-energy gamma-ray source, it was possible to obtain data, which could be adequately correlated to the volume fractions of each phase by means of neural network. The MCNP-X code was used in order to provide the training data for the network.
Institute of Scientific and Technical Information of China (English)
E. Jorjani; A.H. Bagherieh; Sh. Mesroghli; S. Chehreh Chelgani
2008-01-01
The assay and recovery of rare earth elements (REEs) in the leaching process is being determined using expensive analytical methods: inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectroscopy (ICP-MS). A neural network model to predict the effects of operational variables on the lanthanum, cerium, yttrium, and neodymium recovery in the leaching of apatite concentrate is presented in this article. The effects of leaching time (10 to 40 min),pulp densities (30% to 50%), acid concentrations (20% to 60%), and agitation rates (100 to 200 r/min), were investigated and optimized on the recovery of REEs in the laboratory at a leaching temperature of 60οC. The obtained data in the laboratory optimization process were used for training and testing the neural network. The feed-forward artificial neural network with a 4-5-5-1 arrangement was capable of estimating the leaching recovery of REEs. The neural network predicted values were in good agreement with the experimental results. The correlations of R=1 in training stages, and R=0.971, 0.952, 0.985, and 0.98 in testing stages were a result of Ce, Nd, La, and Y recovery prediction respectively, and these values were usually acceptable. It was shown that the proposed neural network model accurately reproduced all the effects of the operation variables, and could be used in the simulation of a leaching plant for REEs.
Directory of Open Access Journals (Sweden)
Jingzhou Fei
2016-01-01
Full Text Available In this article, a novel artificial neural network integrating feed-forward back-propagation neural network with Gaussian kernel function is proposed for the prediction of compressor performance map. To demonstrate the potential capability of the proposed approach for the typical interpolated and extrapolated predictions, other two classical data-driven modeling methods including feed-forward back-propagation neural network and support vector machine are compared. An assessment is performed and discussed on the sensitivity of different models to the number of training samples (48 training samples, 32 training samples, and 18 training samples. All the results indicate that the proposed neural network in this article has superior prediction performance to the existing feed-forward back-propagation neural network and support vector machine, especially for the extrapolation with small samples. Furthermore, this study can be utilized in refining the existing performance-based modeling for improved simulation analysis, condition monitoring, and fault diagnosis of gas turbine compressor.
Neural network predictions of acoustical parameters in multi-purpose performance halls.
Cheung, L Y; Tang, S K
2013-09-01
A detailed binaural sound measurement was carried out in two multi-purpose performance halls of different seating capacities and designs in Hong Kong in the present study. The effectiveness of using neural network in the predictions of the acoustical properties using a limited number of measurement points was examined. The root-mean-square deviation from measurements, statistical parameter distribution matching, and the results of a t-test for vanishing mean difference between simulations and measurements were adopted as the evaluation criteria for the neural network performance. The audience locations relative to the sound source were used as the inputs to the neural network. Results show that the neural network training scheme using nine uniformly located measurement points in each specific hall area is the best choice regardless of the hall setting and design. It is also found that the neural network prediction of hall spaciousness does not require a large amount of training data, but the accuracy of the reverberance related parameter predictions increases with increasing volume of training data.
Mechanical Property Prediction of Commercially Pure Titanium Welds with Artificial Neural Network
Institute of Scientific and Technical Information of China (English)
Yanhong WEI; H.K.D.H.Bhadeshia; T. Sourmail
2005-01-01
Factors that affect weld mechanical properties of commercially pure titanium have been investigated using artificial neural networks. Input data were obtained from mechanical testing of single-pass, autogenous welds, and neural network models were used to predict the ultimate tensile strength, yield strength, elongation, reduction of area,Vickers hardness and Rockwell B hardness. The results show that both oxygen and nitrogen have the most significant effects on the strength while hydrogen has the least effect over the range investigated. Predictions of the mechanical properties are shown and agree well with those obtained using the 'oxygen equivalent' (OE) equations.
Prediction of protein hydration sites from sequence by modular neural networks
DEFF Research Database (Denmark)
Ehrlich, L.; Reczko, M.; Bohr, Henrik;
1998-01-01
The hydration properties of a protein are important determinants of its structure and function. Here, modular neural networks are employed to predict ordered hydration sites using protein sequence information. First, secondary structure and solvent accessibility are predicted from sequence with t...... provide insight into the mutual interdependencies between the location of ordered water sites and the structural and chemical characteristics of the protein residues.......The hydration properties of a protein are important determinants of its structure and function. Here, modular neural networks are employed to predict ordered hydration sites using protein sequence information. First, secondary structure and solvent accessibility are predicted from sequence with two...... structure and solvent accessibility and, using actual values of these properties, redidue hydration can be predicted to 77% accuracy with a Metthews coefficient of 0.43. However, predicted property data with an accuracy of 60-70% result in less than half the improvement in predictive performance observed...
Failure load prediction of single lap adhesive joints using artificial neural networks
Directory of Open Access Journals (Sweden)
Erdi Tosun
2016-06-01
Full Text Available The objective of this paper was to predict the failure load in single lap adhesive joints subjected to tensile loading by using artificial neural networks. Experimental data obtained from the literature cover the single lap adhesive joints with various geometric models under the tensile loading. The data are arranged in a format such that two input parameters cover the length and width of bond area in single lap adhesive joints and the corresponding output is the ultimate failure load. An artificial neural network model was developed to estimate relationship between failure loads by using geometric dimensions of bond area as input data. A three-layer feedforward artificial neural network that utilized Levenberg–Marquardt learning algorithm model was used in order to train network. It was observed that artificial neural network model can estimate failure load of single lap adhesive joints with acceptable error. Mean absolute percentage error and Nash–Sutcliffe coefficient of efficiency values of both training and testing data were 3.523 and 3.524 and 0.997 and 0.992, respectively. The results showed that the artificial neural network is an efficient alternative method to predict the failure load of single lap adhesive joints. Also estimated results are in very good agreement with the experimental data.
Use of Artificial Neural Networks for Prediction of Convective Heat Transfer in Evaporative Units
Directory of Open Access Journals (Sweden)
Romero-Méndez Ricardo
2014-01-01
Full Text Available Convective heat transfer prediction of evaporative processes is more complicated than the heat transfer prediction of single-phase convective processes. This is due to the fact that physical phenomena involved in evaporative processes are very complex and vary with the vapor quality that increases gradually as more fluid is evaporated. Power-law correlations used for prediction of evaporative convection have proved little accuracy when used in practical cases. In this investigation, neural-network-based models have been used as a tool for prediction of the thermal performance of evaporative units. For this purpose, experimental data were obtained in a facility that includes a counter-flow concentric pipes heat exchanger with R134a refrigerant flowing inside the circular section and temperature controlled warm water moving through the annular section. This work also included the construction of an inverse Rankine refrigeration cycle that was equipped with measurement devices, sensors and a data acquisition system to collect the experimental measurements under different operating conditions. Part of the data were used to train several neural-network configurations. The best neural-network model was then used for prediction purposes and the results obtained were compared with experimental data not used for training purposes. The results obtained in this investigation reveal the convenience of using artificial neural networks as accurate predictive tools for determining convective heat transfer rates of evaporative processes.
Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network
Energy Technology Data Exchange (ETDEWEB)
Liu, Y.P.; Wu, M.G.; Qian, J.X. [Institute of Industrial Control Technology, College of Info Science and Engineering, Zhejiang University, Hangzhou 310027 (China)
2007-02-15
Coal ash fusion temperature is important to boiler designers and operators of power plants. Fusion temperature is determined by the chemical composition of coal ash, however, their relationships are not precisely known. A novel neural network, ACO-BP neural network, is used to model coal ash fusion temperature based on its chemical composition. Ant colony optimization (ACO) is an ecological system algorithm, which draws its inspiration from the foraging behavior of real ants. A three-layer network is designed with 10 hidden nodes. The oxide contents consist of the inputs of the network and the fusion temperature is the output. Data on 80 typical Chinese coal ash samples were used for training and testing. Results show that ACO-BP neural network can obtain better performance compared with empirical formulas and BP neural network. The well-trained neural network can be used as a useful tool to predict coal ash fusion temperature according to the oxide contents of the coal ash. (author)
Prediction of flow stress of Ti-15-3 alloy with artificial neural network
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Hot compression experiments were conducted on Ti-15-3 alloy specimens using Gleeble-1500 Thermal Simulator．These tests were focused to obtain the flow stress data under various conditions of strain，strain rate and temperature. On the basis of these data， the predicting model for the nonlinear relation between flow stress and deformation strain，strain rate and temperature for Ti-15-3 alloy was developed with a back-propagation artificial neural network method. Results show that the neural network can reproduce the flow stress in the sampled data and predict the nonsampled data well. Thus the neural network method has been verified to be used to tackle hot deformation problems of Ti-15-3 alloy.
Neural Network Model for Prediction of Discharged from the Catchments of Langat River, Malaysia
Directory of Open Access Journals (Sweden)
Z. Ahmad
2010-09-01
Full Text Available Artificial neural networks have been shown to be able to approximate any continuous non-linear functions and have been used to build data base empirical models for non-linear processes. In this study, neural networks models were used to model the daily river flows or discharged in Langat River, Malaysia. Two possible ways of modelling were implemented which is by time series prediction and by the dynamics function of the system which include the past value of the discharged and also the rainfall in the input. The sum square error (SSE, residue analysis and correlation coefficient based on the observed and prediction output is chosen as the criteria of selection of which models is appropriate. It was found that the developed neural networks models using dynamics function provided satisfactory model discharges.
Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network
Institute of Scientific and Technical Information of China (English)
Ma Qian-Li; Zheng Qi-Lun; Peng Hong; Zhong Tan-Wei; Qin Jiang-Wei
2008-01-01
This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series,it estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent neural networks by co-evolutionary strategy.The searching space was separated into two subspaces and the individuals are trained in a parallel computational procedure.It can dynamically combine the embedding method with the capability of recurrent neural network to incorporate past experience due to internal recurrence.The effectiveness of CERNN is evaluated by using three benchmark chaotic time series data sets:the Lorenz series,Mackey-Glass series and real-world sun spot series.The simulation results show that CERNN improves the performances of multi-step-prediction of chaotic time series.
Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy
2002-01-01
A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.
Directory of Open Access Journals (Sweden)
Małgorzata Pawul
2016-09-01
Full Text Available Recently, a lot of attention was paid to the improvement of methods which are used to air quality forecasting. Artificial neural networks can be applied to model these problems. Their advantage is that they can solve the problem in the conditions of incomplete information, without the knowledge of the analytical relationship between the input and output data. In this paper we applied artificial neural networks to predict the PM 10 concentrations as factors determining the occurrence of smog phenomena. To create these networks we used meteorological data and concentrations of PM 10. The data were recorded in 2014 and 2015 at three measuring stations operating in Krakow under the State Environmental Monitoring. The best results were obtained by three-layer perceptron with back-propagation algorithm. The neural networks received a good fit in all cases.
Vickram, A S; Kamini, A Rao; Das, Raja; Pathy, M Ramesh; Parameswari, R; Archana, K; Sridharan, T B
2016-08-01
Seminal fluid is the secretion from many glands comprised of several organic and inorganic compounds including free amino acids, proteins, fructose, glucosidase, zinc, and other scavenging elements like Mg(2+), Ca(2+), K(+), and Na(+). Therefore, in the view of development of novel approaches and proper diagnosis to male infertility, overall understanding of the biochemical and molecular composition and its role in regulation of sperm quality is highly desirable. Perhaps this can be achieved through artificial intelligence. This study was aimed to elucidate and predict various biochemical markers present in human seminal plasma with three different neural network models. A total of 177 semen samples were collected for this research (both fertile and infertile samples) and immediately processed to prepare a semen analysis report, based on the protocol of the World Health Organization (WHO [2010]). The semen samples were then categorized into oligoasthenospermia (n=35), asthenospermia (n=35), azoospermia (n=22), normospermia (n=34), oligospermia (n=34), and control (n=17). The major biochemical parameters like total protein content, fructose, glucosidase, and zinc content were elucidated by standard protocols. All the biochemical markers were predicted by using three different artificial neural network (ANN) models with semen parameters as inputs. Of the three models, the back propagation neural network model (BPNN) yielded the best results with mean absolute error 0.025, -0.080, 0.166, and -0.057 for protein, fructose, glucosidase, and zinc, respectively. This suggests that BPNN can be used to predict biochemical parameters for the proper diagnosis of male infertility in assisted reproductive technology (ART) centres. AAS: absorption spectroscopy; AI: artificial intelligence; ANN: artificial neural networks; ART: assisted reproductive technology; BPNN: back propagation neural network model; DT: decision tress; MLP: multilayer perceptron; PESA: percutaneous
Habibi, Zohreh; Ertiaei, Abolhasan; Nikdad, Mohammad Sadegh; Mirmohseni, Atefeh Sadat; Afarideh, Mohsen; Heidari, Vahid; Saberi, Hooshang; Rezaei, Abdolreza Sheikh; Nejat, Farideh
2016-11-01
The relationships between shunt infection and predictive factors have not been previously investigated using Artificial Neural Network (ANN) model. The aim of this study was to develop an ANN model to predict shunt infection in a group of children with shunted hydrocephalus. Among more than 800 ventriculoperitoneal shunt procedures which had been performed between April 2000 and April 2011, 68 patients with shunt infection and 80 controls that fulfilled a set of meticulous inclusion/exclusion criteria were consecutively enrolled. Univariate analysis was performed for a long list of risk factors, and those with p value artificial neural networks can predict shunt infection with a high level of accuracy in children with shunted hydrocephalus. Also, the contribution of different risk factors in the prediction of shunt infection can be determined using the trained network.
Directory of Open Access Journals (Sweden)
Mona A. Hagras
2013-08-01
Full Text Available In the present study, Artificial Neural Networks (ANNs with different topologies have been evaluated to be used to predict hydrodynamic coefficients of permeable paneled breakwater. Two neural network models are constructed, one to predict wave transmission coefficient (Kt and another for the prediction of wave reflectioncoefficient (Kr. Back propagation algorithm was used to train a multi-layer feed-forward network (Levenberg Marquardt algorithm. The capability of ANN topologies to estimate these coefficients is evaluated using the Mean Squared Error (MSE. Based on training patterns of different ANNs, a 5-7-1 topology has been selected topredict both coefficients. The results of the developed ANN models proved that this technique is reliable in such field. A good match between the measured and predicted values was observed with correlation values varying in the range (0.9508-0.9805 for the training set and (0.9159-0.9877 for the testing set.
PREDICTION OF DEMAND FOR PRIMARY BOND OFFERINGS USING ARTIFICIAL NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
Michal Tkac
2014-12-01
Full Text Available Purpose: Primary bond markets represent an interesting investment opportunity not only for banks, insurance companies, and other institutional investors, but also for individuals looking for capital gains. Since offered securities vary in terms of their rating, industrial classification, coupon, or maturity, demand of buyers for particular offerings often overcomes issued volume and price of given bond on secondary market consequently rises. Investors might be regarded as consumers purchasing required service according to their specific preferences at desired price. This paper aims at analysis of demand for bonds on primary market using artificial neural networks.Design/methodology: We design a multilayered feedforward neural network trained by Levenberg-Marquardt algorithm in order to estimate demand for individual bonds based on parameters of particular offerings. Outcomes obtained by artificial neural network are compared with conventional econometric methods.Findings: Our results indicate that artificial neural network significantly outperformed standard econometric techniques and on examined sample of primary bond offerings achieved considerably better performance in terms of prediction accuracy and mean squared error.Originality: We show that proposed neural network is able to successfully predict demand for primary obligation offerings based on their specifications. Moreover, we identify relevant parameters of issues which are able to considerably affect total demand for given security. Our findings might not only help investors to detect marketable securities, but also enable issuing entities to increase demand for their bonds in order to decrease their offering price.
Ghosh, Arka
2011-01-01
Financial forecasting is an example of a signal processing problem which is challenging due to Small sample sizes, high noise, non-stationarity, and non-linearity,but fast forecasting of stock market price is very important for strategic business planning.Present study is aimed to develop a comparative predictive model with Feedforward Multilayer Artificial Neural Network & Recurrent Time Delay Neural Network for the Financial Timeseries Prediction.This study is developed with the help of historical stockprice dataset made available by GoogleFinance.To develop this prediction model Backpropagation method with Gradient Descent learning has been implemented.Finally the Neural Net, learned with said algorithm is found to be skillful predictor for non-stationary noisy Financial Timeseries.
Nonlinear model predictive control with guaraneed stability based on pesudolinear neural networks
Institute of Scientific and Technical Information of China (English)
WANG Yongji; WANG Hong
2004-01-01
A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor. It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.
Energy Technology Data Exchange (ETDEWEB)
Nedic, Vladimir, E-mail: vnedic@kg.ac.rs [Faculty of Philology and Arts, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac (Serbia); Despotovic, Danijela, E-mail: ddespotovic@kg.ac.rs [Faculty of Economics, University of Kragujevac, Djure Pucara Starog 3, 34000 Kragujevac (Serbia); Cvetanovic, Slobodan, E-mail: slobodan.cvetanovic@eknfak.ni.ac.rs [Faculty of Economics, University of Niš, Trg kralja Aleksandra Ujedinitelja, 18000 Niš (Serbia); Despotovic, Milan, E-mail: mdespotovic@kg.ac.rs [Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac (Serbia); Babic, Sasa, E-mail: babicsf@yahoo.com [College of Applied Mechanical Engineering, Trstenik (Serbia)
2014-11-15
Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. The output variable of the network is the equivalent noise level in the given time period L{sub eq}. Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model.
Ship Attitude Prediction Based on Input Delay Neural Network and Measurements of Gyroscopes
DEFF Research Database (Denmark)
Wang, Yunlong; N. Soltani, Mohsen; Hussain, Dil muhammed Akbar
2017-01-01
Due to the uncertainty and random nature of ocean waves, the accurate prediction of ship attitude is hard to be achieved, especially in high sea states. A ship attitude prediction method using Input Delay Neural Network (IDNN) is proposed in this paper. One of the advantages of this method is tha.......12 deg and 0.26 deg, respectively, when the prediction time is 2 sec. This precision is high enough for most attitude stabilization control systems....
Bahadir, Elif
2016-01-01
The purpose of this study is to examine a neural network based approach to predict achievement in graduate education for Elementary Mathematics prospective teachers. With the help of this study, it can be possible to make an effective prediction regarding the students' achievement in graduate education with Artificial Neural Networks (ANN). Two…
Investigation the Capability of Neural Network in Predicting Reverberation Time on Classroom
Directory of Open Access Journals (Sweden)
Musli Nizam Yahya
2011-05-01
Full Text Available The purpose of this paper is to investigate the capability of neural network in predicting a classroom’s reverberation time. A classroom in Oita University was chosen as a sample to obtain the virtual data (reverberation time based on 20 types of sound absorptions coefficients using Finite Element Method (FEM and Sabine equation. The capability of FEM has shown that it is able to simulate virtual data in each location of a classroom. To develop a neural network model, virtual data (721 data was taken from FEM for the learning process. The assessment was made by using testing subset (20% from 721 data to verify the performance. The testing’s means square error (MSE was 3.7751×10-4 and correlation coefficient (R2 was 0.992 approximately to 1. The optimum network used was 4 hidden nodes. Extended assessment was made using the unseen data (35 data and it showed that neural network prediction was approximately close to the actual data with MSE is 4.154×10-4. Basically, the capability of reverberation time prediction using neural network is shown in this paper.
Iterative prediction of chaotic time series using a recurrent neural network
Energy Technology Data Exchange (ETDEWEB)
Essawy, M.A.; Bodruzzaman, M. [Tennessee State Univ., Nashville, TN (United States). Dept. of Electrical and Computer Engineering; Shamsi, A.; Noel, S. [USDOE Morgantown Energy Technology Center, WV (United States)
1996-12-31
Chaotic systems are known for their unpredictability due to their sensitive dependence on initial conditions. When only time series measurements from such systems are available, neural network based models are preferred due to their simplicity, availability, and robustness. However, the type of neutral network used should be capable of modeling the highly non-linear behavior and the multi-attractor nature of such systems. In this paper the authors use a special type of recurrent neural network called the ``Dynamic System Imitator (DSI)``, that has been proven to be capable of modeling very complex dynamic behaviors. The DSI is a fully recurrent neural network that is specially designed to model a wide variety of dynamic systems. The prediction method presented in this paper is based upon predicting one step ahead in the time series, and using that predicted value to iteratively predict the following steps. This method was applied to chaotic time series generated from the logistic, Henon, and the cubic equations, in addition to experimental pressure drop time series measured from a Fluidized Bed Reactor (FBR), which is known to exhibit chaotic behavior. The time behavior and state space attractor of the actual and network synthetic chaotic time series were analyzed and compared. The correlation dimension and the Kolmogorov entropy for both the original and network synthetic data were computed. They were found to resemble each other, confirming the success of the DSI based chaotic system modeling.
Application of artificial neural networks to predict the deflections of reinforced concrete beams
Kaczmarek, Mateusz; Szymańska, Agnieszka
2016-06-01
Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.
Directory of Open Access Journals (Sweden)
Obie Farobie
2016-05-01
Full Text Available In this study, for the first time artificial neural network was used to predict biodiesel yield in supercritical tert-butyl methyl ether (MTBE. The experimental data of biodiesel yield conducted by varying four input factors (i.e. temperature, pressure, oil-to-MTBE molar ratio, and reaction time were used to elucidate artificial neural network model in order to predict biodiesel yield. The main goal of this study was to assess how accurately this artificial neural network model to predict biodiesel yield conducted under supercritical MTBE condition. The result shows that artificial neural network is a powerful tool for modeling and predicting biodiesel yield conducted under supercritical MTBE condition that was proven by a high value of coefficient of determination (R of 0.9969, 0.9899, and 0.9658 for training, validation, and testing, respectively. Using this approach, the highest biodiesel yield was determined of 0.93 mol/mol (corresponding to the actual biodiesel yield of 0.94 mol/mol that was achieved at 400 °C, under the reactor pressure of 10 MPa, oil-to-MTBE molar ratio of 1:40 within 15 min of reaction time.
Cascallar, Eduardo; Musso, Mariel; Kyndt, Eva; Dochy, Filip
2014-01-01
Two articles, Edelsbrunner and, Schneider (2013), and Nokelainen and Silander (2014) comment on Musso, Kyndt, Cascallar, and Dochy (2013). Several relevant issues are raised and some important clarifications are made in response to both commentaries. Predictive systems based on artificial neural networks continue to be the focus of current…
Mazvimavi, D.; Meijerink, A.M.J.; Savenije, H.H.G.; Stein, A.
2005-01-01
The feasibility of predicting flow characteristics from basin descriptors using multiple regression and neural networks has been investigated on 52 basins in Zimbabwe. Flow characteristics considered were average annual runoff, base flow index, flow duration curve, and average monthly runoff . Mean
Sabour, Mohammad Reza; Moftakhari Anasori Movahed, Saman
2017-02-01
The soil sorption partition coefficient logKoc is an indispensable parameter that can be used in assessing the environmental risk of organic chemicals. In order to predict soil sorption partition coefficient for different and even unknown compounds in a fast and accurate manner, a radial basis function neural network (RBFNN) model was developed. Eight topological descriptors of 800 organic compounds were used as inputs of the model. These 800 organic compounds were chosen from a large and very diverse data set. Generalized Regression Neural Network (GRNN) was utilized as the function in this neural network model due to its capability to adapt very quickly. Hence, it can be used to predict logKoc for new chemicals, as well. Out of total data set, 560 organic compounds were used for training and 240 to test efficiency of the model. The obtained results indicate that the model performance is very well. The correlation coefficients (R2) for training and test sets were 0.995 and 0.933, respectively. The root-mean square errors (RMSE) were 0.2321 for training set and 0.413 for test set. As the results for both training and test set are extremely satisfactory, the proposed neural network model can be employed not only to predict logKoc of known compounds, but also to be adaptive for prediction of this value precisely for new products that enter the market each year. Copyright © 2016 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Schwindling Jerome
2010-04-01
Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.
Shoaib, Muhammad; Shamseldin, Asaad Y.; Melville, Bruce W.; Khan, Mudasser Muneer
2016-04-01
In order to predict runoff accurately from a rainfall event, the multilayer perceptron type of neural network models are commonly used in hydrology. Furthermore, the wavelet coupled multilayer perceptron neural network (MLPNN) models has also been found superior relative to the simple neural network models which are not coupled with wavelet. However, the MLPNN models are considered as static and memory less networks and lack the ability to examine the temporal dimension of data. Recurrent neural network models, on the other hand, have the ability to learn from the preceding conditions of the system and hence considered as dynamic models. This study for the first time explores the potential of wavelet coupled time lagged recurrent neural network (TLRNN) models for runoff prediction using rainfall data. The Discrete Wavelet Transformation (DWT) is employed in this study to decompose the input rainfall data using six of the most commonly used wavelet functions. The performance of the simple and the wavelet coupled static MLPNN models is compared with their counterpart dynamic TLRNN models. The study found that the dynamic wavelet coupled TLRNN models can be considered as alternative to the static wavelet MLPNN models. The study also investigated the effect of memory depth on the performance of static and dynamic neural network models. The memory depth refers to how much past information (lagged data) is required as it is not known a priori. The db8 wavelet function is found to yield the best results with the static MLPNN models and with the TLRNN models having small memory depths. The performance of the wavelet coupled TLRNN models with large memory depths is found insensitive to the selection of the wavelet function as all wavelet functions have similar performance.
Neural Network Model for Prediction of Discharged from the Catchments of Langat River, Malaysia
2010-01-01
Artificial neural networks have been shown to be able to approximate any continuous non-linear functions and have been used to build data base empirical models for non-linear processes. In this study, neural networks models were used to model the daily river flows or discharged in Langat River, Malaysia. Two possible ways of modelling were implemented which is by time series prediction and by the dynamics function of the system which include the past value of the discharged and also th...
Modulation of grasping force in prosthetic hands using neural network-based predictive control.
Pasluosta, Cristian F; Chiu, Alan W L
2015-01-01
This chapter describes the implementation of a neural network-based predictive control system for driving a prosthetic hand. Nonlinearities associated with the electromechanical aspects of prosthetic devices present great challenges for precise control of this type of device. Model-based controllers may overcome this issue. Moreover, given the complexity of these kinds of electromechanical systems, neural network-based modeling arises as a good fit for modeling the fingers' dynamics. The results of simulations mimicking potential situations encountered during activities of daily living demonstrate the feasibility of this technique.
Artificial neural network modeling of jatropha oil fueled diesel engine for emission predictions
Directory of Open Access Journals (Sweden)
Ganapathy Thirunavukkarasu
2009-01-01
Full Text Available This paper deals with artificial neural network modeling of diesel engine fueled with jatropha oil to predict the unburned hydrocarbons, smoke, and NOx emissions. The experimental data from the literature have been used as the data base for the proposed neural network model development. For training the networks, the injection timing, injector opening pressure, plunger diameter, and engine load are used as the input layer. The outputs are hydrocarbons, smoke, and NOx emissions. The feed forward back propagation learning algorithms with two hidden layers are used in the networks. For each output a different network is developed with required topology. The artificial neural network models for hydrocarbons, smoke, and NOx emissions gave R2 values of 0.9976, 0.9976, and 0.9984 and mean percent errors of smaller than 2.7603, 4.9524, and 3.1136, respectively, for training data sets, while the R2 values of 0.9904, 0.9904, and 0.9942, and mean percent errors of smaller than 6.5557, 6.1072, and 4.4682, respectively, for testing data sets. The best linear fit of regression to the artificial neural network models of hydrocarbons, smoke, and NOx emissions gave the correlation coefficient values of 0.98, 0.995, and 0.997, respectively.
Predicting Subsurface Soil Layering and Landslide Risk with Artificial Neural Networks
DEFF Research Database (Denmark)
Farrokhzad, Farzad; Barari, Amin; Ibsen, Lars Bo
2011-01-01
the investigation of study area. The quality of the modeling is further improved by the application of some controlling techniques involved in ANN. Based on the obtained results and considering that the test data were not presented to the network in the training process, it can be stated that the trained neural...... networks are capable of predicting variations in the soil profile and assessing the landslide hazard with an acceptable level of confidence....
Performance of the Levenberg–Marquardt neural network approach in nuclear mass prediction
Zhang, Hai Fei; Hao Wang, Li; Yin, Jing Peng; Chen, Peng Hui; Zhang, Hong Fei
2017-04-01
Resorting to a neural network approach we refined several representative and sophisticated global nuclear mass models within the latest atomic mass evaluation (AME2012). In the training process, a quite robust algorithm named the Levenberg–Marquardt (LM) method is employed to determine the weights and biases of the neural network. As a result, this LM neural network approach demonstrates a very useful tool for further improving the accuracy of mass models. For a simple liquid drop formula the root mean square (rms) deviation between the predictions and the 2353 experimental known masses are sharply reduced from 2.455 MeV to 0.235 MeV, and for the other revisited mass models, the rms is remarkably improved by about 30%.
A Prediction Model of Peasants’ Income in China Based on BP Neural Network
Institute of Scientific and Technical Information of China (English)
2011-01-01
According to the related data affecting the peasants’ income in China in the years 1978-2008,a total of 13 indices are selected,such as agricultural population,output value of primary industry,and rural employees.Based on the standardized method and BP neural network method,the peasants’ income and the artificial neural network model are established and analyzed.Results show that the simulation value agrees well with the real value;the neural network model with improved BP algorithm has high prediction accuracy,rapid convergence rate and good generalization ability.Finally,suggestions are put forward to increase the peasants’ income,such as promoting the process of urbanization,developing small and medium-sized enterprises in rural areas,encouraging intensive operation,and strengthening the rural infrastructure and agricultural science and technology input.
CONTROL OF NONLINEAR PROCESS USING NEURAL NETWORK BASED MODEL PREDICTIVE CONTROL
Directory of Open Access Journals (Sweden)
Dr.A.TRIVEDI
2011-04-01
Full Text Available This paper presents a Neural Network based Model Predictive Control (NNMPC strategy to control nonlinear process. Multilayer Perceptron Neural Network (MLP is chosen to represent a Nonlinear Auto Regressive with eXogenous signal (NARX model of a nonlinear system. NARX dynamic model is based on feed-forward architecture and offers good approximation capabilities along with robustness and accuracy. Based on the identified neural model, a generalized predictive control (GPC algorithm is implemented to control the composition in acontinuous stirred tank reactor (CSTR, whose parameters are optimally determined by solving quadratic performance index using well known Levenberg-Marquardt and Quasi-Newton algorithm. NNMPC is tuned by selecting few horizon parameters and weighting factor. The tracking performance of the NNMPC is tested using different amplitude function as a reference signal on CSTR application. Also the robustness and performance is tested in the presence of disturbance on random reference signal.
Predicting soil sorption coefficients of organic chemicals using a neural network model
Energy Technology Data Exchange (ETDEWEB)
Gao, C.; Govind, R. [Univ. of Cincinnati, OH (United States). Dept. of Chemical Engineering; Tabak, H.H. [Environmental Protection Agency, Cincinnati, OH (United States)
1996-07-01
The soil/sediment adsorption partition coefficient normalized to organic carbon (K{sub oc}) is extensively used to assess the fate of organic chemicals in hazardous waste sites. Several attempts have been made to estimate the value of K{sub oc} from chemical structure or its parameters. The primary purpose of this study was to develop a nonlinear model for estimating K{sub oc} applicable to polar and nonpolar organics based on artificial neural networks using the octanol/water partition coefficient (K{sub ow}) and water solubility (S). An analytic equation was obtained by starting with a neural network, converging the bias and weight values using the available data on water solubility, octanol/water partition coefficient, and the normalized soil/sediment adsorption partition coefficient, and then combining the equations for each node in the final neural network. For the 119 chemicals in the training set, estimates using the neural network equation lie outside the 2{sigma} region (the standard deviation for the training set, {sigma} = 0.52) for only five chemicals, while all the chemicals in the test set lie within the 2{sigma} region. It was concluded that the neural network equation outperforms the linear models in fitting the K{sub oc} values for the training set and predicting them for the test set.
Directory of Open Access Journals (Sweden)
Xin Wang
2016-01-01
Full Text Available In social media, trust and distrust among users are important factors in helping users make decisions, dissect information, and receive recommendations. However, the sparsity and imbalance of social relations bring great difficulties and challenges in predicting trust and distrust. Meanwhile, there are numerous inducing factors to determine trust and distrust relations. The relationship among inducing factors may be dependency, independence, and conflicting. Dempster-Shafer theory and neural network are effective and efficient strategies to deal with these difficulties and challenges. In this paper, we study trust and distrust prediction based on the combination of Dempster-Shafer theory and neural network. We firstly analyze the inducing factors about trust and distrust, namely, homophily, status theory, and emotion tendency. Then, we quantify inducing factors of trust and distrust, take these features as evidences, and construct evidence prototype as input nodes of multilayer neural network. Finally, we propose a framework of predicting trust and distrust which uses multilayer neural network to model the implementing process of Dempster-Shafer theory in different hidden layers, aiming to overcome the disadvantage of Dempster-Shafer theory without optimization method. Experimental results on a real-world dataset demonstrate the effectiveness of the proposed framework.
Prediction of concrete compressive strength due to long term sulfate attack using neural network
Directory of Open Access Journals (Sweden)
Ahmed M. Diab
2014-09-01
Full Text Available This work was divided into two phases. Phase one included the validation of neural network to predict mortar and concrete properties due to sulfate attack. These properties were expansion, weight loss, and compressive strength loss. Assessment of concrete compressive strength up to 200 years due to sulfate attack was considered in phase two. The neural network model showed high validity on predicting compressive strength, expansion and weight loss due to sulfate attack. Design charts were constructed to predict concrete compressive strength loss. The inputs of these charts were cement content, water cement ratio, C3A content, and sulfate concentration. These charts can be used easily to predict the compressive strength loss after any certain age and sulfate concentration for different concrete compositions.
Energy Technology Data Exchange (ETDEWEB)
Tso, Geoffrey K.F.; Yau, Kelvin K.W. [City University of Hong Kong, Kowloon, Hong Kong (China). Department of Management Sciences
2007-09-15
This study presents three modeling techniques for the prediction of electricity energy consumption. In addition to the traditional regression analysis, decision tree and neural networks are considered. Model selection is based on the square root of average squared error. In an empirical application to an electricity energy consumption study, the decision tree and neural network models appear to be viable alternatives to the stepwise regression model in understanding energy consumption patterns and predicting energy consumption levels. With the emergence of the data mining approach for predictive modeling, different types of models can be built in a unified platform: to implement various modeling techniques, assess the performance of different models and select the most appropriate model for future prediction. (author)
Utama, R; Prosper, H B
2016-01-01
Besides their intrinsic nuclear-structure value, nuclear mass models are essential for astrophysical applications, such as r-process nucleosynthesis and neutron-star structure. To overcome the intrinsic limitations of existing "state-of-the-art" mass models, we propose a refinement based on a Bayesian Neural Network (BNN) formalism. A novel BNN approach is implemented with the goal of optimizing mass residuals between theory and experiment. A significant improvement (of about 40%) in the mass predictions of existing models is obtained after BNN refinement. Moreover, these improved results are now accompanied by proper statistical errors. Finally, by constructing a "world average" of these predictions, a mass model is obtained that is used to predict the composition of the outer crust of a neutron star. The power of the Bayesian neural network method has been successfully demonstrated by a systematic improvement in the accuracy of the predictions of nuclear masses. Extension to other nuclear observables is a n...
Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks
Hargraves, Rosalyn Hobson
2017-01-01
Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model. PMID:28250804
Application of artificial neural network for prediction of marine diesel engine performance
Mohd Noor, C. W.; Mamat, R.; Najafi, G.; Nik, W. B. Wan; Fadhil, M.
2015-12-01
This study deals with an artificial neural network (ANN) modelling of a marine diesel engine to predict the brake power, output torque, brake specific fuel consumption, brake thermal efficiency and volumetric efficiency. The input data for network training was gathered from engine laboratory testing running at various engine speed. The prediction model was developed based on standard back-propagation Levenberg-Marquardt training algorithm. The performance of the model was validated by comparing the prediction data sets with the measured experiment data. Results showed that the ANN model provided good agreement with the experimental data with high accuracy.
Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks.
Chande, Ruchi D; Hargraves, Rosalyn Hobson; Ortiz-Robinson, Norma; Wayne, Jennifer S
2017-01-01
Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.
Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Ruchi D. Chande
2017-01-01
Full Text Available Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.
Application of Artificial Neural Network in Predicting the Survival Rate of Gastric Cancer Patients
Biglarian, A; E. Hajizadeh; Kazemnejad, A; Zali, MR
2011-01-01
"nBackground: The aim of this study was to predict the survival rate of Iranian gastric cancer patients using the Cox proportional hazard and artificial neural network models as well as comparing the ability of these approaches in predicting the survival of these patients."nMethods: In this historical cohort study, the data gathered from 436 registered gastric cancer patients who have had surgery between 2002 and 2007 at the Taleghani Hospital (a referral center for gastrointestinal...
Small-time Scale Network Traffic Prediction Based on Complex-valued Neural Network
Yang, Bin
2017-07-01
Accurate models play an important role in capturing the significant characteristics of the network traffic, analyzing the network dynamic, and improving the forecasting accuracy for system dynamics. In this study, complex-valued neural network (CVNN) model is proposed to further improve the accuracy of small-time scale network traffic forecasting. Artificial bee colony (ABC) algorithm is proposed to optimize the complex-valued and real-valued parameters of CVNN model. Small-scale traffic measurements data namely the TCP traffic data is used to test the performance of CVNN model. Experimental results reveal that CVNN model forecasts the small-time scale network traffic measurement data very accurately
Prediction of Rolling Load in Hot Strip Mill by Innovations Feedback Neural Networks
Institute of Scientific and Technical Information of China (English)
ZHANG Li-yong; WANG Jun; MA Fu-ting
2007-01-01
Because the structure of the classical mathematical model of rolling load is simple, even with the self-adapting technology, it is difficult to accommodate the increasing dimensional accuracy. Motivated by this fact, an Innovations Feedback Neural Networks (IFNN) was presented based on the idea of Kalman prediction. The neural networks used the Back Propagation (BP) algorithm and applied it to the prediction of rolling load in hot strip mill. The theoretical results and the off-line simulation show that the prediction capability of IFNN is better than that of normal BP networks, namely, for the prediction of the rolling load in hot strip mill, the prediction precision of IFNN is higher than that of normal BP networks. Finally, a relative complete rolling load prediction system was developed on Windows 2003/XP platform using the OOP programming method and the SQL server2000 database. With this system, the rolling load of a 1700 strip mill was calculated, and the prediction results obtained correspond well with the field data. It shows that IFNN is valid for rolling load prediction.
Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng
2017-04-10
This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks.
Institute of Scientific and Technical Information of China (English)
YANG Yang; LI Kai-yang
2006-01-01
The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines the advantages of BP and GA. The prediction and training on the neural network are made respectively based on 4 structure classifications of protein so as to get higher rate of predication-the highest prediction rate 75.65%, the average prediction rate 65.04%.
Directory of Open Access Journals (Sweden)
Nahid Ardalani
2011-07-01
Full Text Available This article describes linear and nonlinear Artificial Neural Network(ANN-based predictors as Autoregressive Moving Average models with Auxiliary input (ARMAX process for Signal to Interference plus Noise Ratio (SINR prediction in Direct Sequence Code Division Multiple Access (DS/CDMA systems. The Multi Layer Perceptron (MLP neural network with nonlinear function is used as nonlinear neural network and Adaptive Linear (Adaline predictor is used as linear predictor. The problem of complexity of the MLP and Adaline structures is solved by using the Minimum Mean Squared Error (MMSE principle to select the optimal numbers of input and hidden nodes by try and error role. Simulation results show that both of MLP and Adaline optimal neural networks can track the effect of deep fading due to using a 1.8 GHZ carrier frequency at the urban mobile speeds of 10 km/h, 50 km/h and 120 km/h with tolerable estimation errors. Therefore, the neural networkbased predictor is well suitable SINR-based predictor in closedloop power control to combat multi path fading in CDMA systems.
Prediction Study on PCI Failure of Reactor Fuel Based on a Radial Basis Function Neural Network
Directory of Open Access Journals (Sweden)
Xinyu Wei
2016-01-01
Full Text Available Pellet-clad interaction (PCI is one of the major issues in fuel rod design and reactor core operation in water cooled reactors. The prediction of fuel rod failure by PCI is studied in this paper by the method of radial basis function neural network (RBFNN. The neural network is built through the analysis of the existing experimental data. It is concluded that it is a suitable way to reduce the calculation complexity. A self-organized RBFNN is used in our study, which can vary its structure dynamically in order to maintain the prediction accuracy. For the purpose of the appropriate network complexity and overall computational efficiency, the hidden neurons in the RBFNN can be changed online based on the neuron activity and mutual information. The presented method is tested by the experimental data from the reference, and the results demonstrate its effectiveness.
Hanson, Jack; Yang, Yuedong; Paliwal, Kuldip; Zhou, Yaoqi
2017-03-01
Capturing long-range interactions between structural but not sequence neighbors of proteins is a long-standing challenging problem in bioinformatics. Recently, long short-term memory (LSTM) networks have significantly improved the accuracy of speech and image classification problems by remembering useful past information in long sequential events. Here, we have implemented deep bidirectional LSTM recurrent neural networks in the problem of protein intrinsic disorder prediction. The new method, named SPOT-Disorder, has steadily improved over a similar method using a traditional, window-based neural network (SPINE-D) in all datasets tested without separate training on short and long disordered regions. Independent tests on four other datasets including the datasets from critical assessment of structure prediction (CASP) techniques and >10 000 annotated proteins from MobiDB, confirmed SPOT-Disorder as one of the best methods in disorder prediction. Moreover, initial studies indicate that the method is more accurate in predicting functional sites in disordered regions. These results highlight the usefulness combining LSTM with deep bidirectional recurrent neural networks in capturing non-local, long-range interactions for bioinformatics applications. SPOT-disorder is available as a web server and as a standalone program at: http://sparks-lab.org/server/SPOT-disorder/index.php . j.hanson@griffith.edu.au or yuedong.yang@griffith.edu.au or yaoqi.zhou@griffith.edu.au. Supplementary data is available at Bioinformatics online.
Tian, Wenliang; Meng, Fandi; Liu, Li; Li, Ying; Wang, Fuhui
2017-01-01
A concept for prediction of organic coatings, based on the alternating hydrostatic pressure (AHP) accelerated tests, has been presented. An AHP accelerated test with different pressure values has been employed to evaluate coating degradation. And a back-propagation artificial neural network (BP-ANN) has been established to predict the service property and the service lifetime of coatings. The pressure value (P), immersion time (t) and service property (impedance modulus |Z|) are utilized as the parameters of the network. The average accuracies of the predicted service property and immersion time by the established network are 98.6% and 84.8%, respectively. The combination of accelerated test and prediction method by BP-ANN is promising to evaluate and predict coating property used in deep sea.
NEURAL NETWORK MODELING IN PROBLEMS OF PREDICTION MODES OF ELECTRICAL GRIDS
Directory of Open Access Journals (Sweden)
A.N. Moroz
2016-03-01
Full Text Available Purpose. Form a neuro-fuzzy network based on temperature monitoring of overhead transmission line for the prediction modes of the electrical network. Methodology. To predict the load capacity of the overhead line architecture provides the use of neuro-fuzzy network based on temperature monitoring of overhead line. The proposed neuro-fuzzy network has a four-layer architecture with direct transmission of information. To create a full mesh network architecture based on hybrid neural elements with power estimation accuracy of the following two stages of the procedure: - in the first stage a core network (without power estimation accuracy is generated; - in the second stage architecture and network parameters are fixed obtained during the first stage, and it is added to the block estimation accuracy, the input signals which are all input, internal and output signals of the core network, as well as additional input signals. Results. Formed neuro-fuzzy network based on temperature monitoring of overhead line. Originality. A distinctive feature of the proposed network is the ability to process information specified in the different scales of measurement, and high performance for prediction modes mains. Practical value. The monitoring system will become a tool parameter is measuring the temperature of the wire, which will, based on a retrospective analysis of the accumulated information on the parameters to predict the thermal resistance of the HV line and as a result carry out the calculation of load capacity in real time.
Directory of Open Access Journals (Sweden)
Mohammad Fathian
2012-04-01
Full Text Available In this paper, the problem of predicting the exchange rate time series in the foreign exchange rate market is going to be solved using a time-delayed multilayer perceptron neural network with gold price as external factor. The input for the learning phase of the artificial neural network are the exchange rate data of the last five days plus the gold price in two different currencies of the exchange rate as the external factor for helping the artificial neural network improving its forecast accuracy. The five-day delay has been chosen because of the weekly cyclic behavior of the exchange rate time series with the consideration of two holidays in a week. The result of forecasts are then compared with using the multilayer peceptron neural network without gold price external factor by two most important evaluation techniques in the literature of exchange rate prediction. For the experimental analysis phase, the data of three important exchange rates of EUR/USD, GBP/USD, and USD/JPY are used.
Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.
Han, Hong-Gui; Zhang, Lu; Hou, Ying; Qiao, Jun-Fei
2016-02-01
A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.
Lin, Yang-Yin; Chang, Jyh-Yeong; Lin, Chin-Teng
2013-02-01
This paper presents a novel recurrent fuzzy neural network, called an interactively recurrent self-evolving fuzzy neural network (IRSFNN), for prediction and identification of dynamic systems. The recurrent structure in an IRSFNN is formed as an external loops and internal feedback by feeding the rule firing strength of each rule to others rules and itself. The consequent part in the IRSFNN is composed of a Takagi-Sugeno-Kang (TSK) or functional-link-based type. The proposed IRSFNN employs a functional link neural network (FLNN) to the consequent part of fuzzy rules for promoting the mapping ability. Unlike a TSK-type fuzzy neural network, the FLNN in the consequent part is a nonlinear function of input variables. An IRSFNNs learning starts with an empty rule base and all of the rules are generated and learned online through a simultaneous structure and parameter learning. An on-line clustering algorithm is effective in generating fuzzy rules. The consequent update parameters are derived by a variable-dimensional Kalman filter algorithm. The premise and recurrent parameters are learned through a gradient descent algorithm. We test the IRSFNN for the prediction and identification of dynamic plants and compare it to other well-known recurrent FNNs. The proposed model obtains enhanced performance results.
Neural network based automatic limit prediction and avoidance system and method
Calise, Anthony J. (Inventor); Prasad, Jonnalagadda V. R. (Inventor); Horn, Joseph F. (Inventor)
2001-01-01
A method for performance envelope boundary cueing for a vehicle control system comprises the steps of formulating a prediction system for a neural network and training the neural network to predict values of limited parameters as a function of current control positions and current vehicle operating conditions. The method further comprises the steps of applying the neural network to the control system of the vehicle, where the vehicle has capability for measuring current control positions and current vehicle operating conditions. The neural network generates a map of current control positions and vehicle operating conditions versus the limited parameters in a pre-determined vehicle operating condition. The method estimates critical control deflections from the current control positions required to drive the vehicle to a performance envelope boundary. Finally, the method comprises the steps of communicating the critical control deflection to the vehicle control system; and driving the vehicle control system to provide a tactile cue to an operator of the vehicle as the control positions approach the critical control deflections.
Power prediction in mobile communication systems using an optimal neural-network structure.
Gao, X M; Gao, X Z; Tanskanen, J A; Ovaska, S J
1997-01-01
Presents a novel neural-network-based predictor for received power level prediction in direct sequence code division multiple access (DS/CDMA) systems. The predictor consists of an adaptive linear element (Adaline) followed by a multilayer perceptron (MLP). An important but difficult problem in designing such a cascade predictor is to determine the complexity of the networks. We solve this problem by using the predictive minimum description length (PMDL) principle to select the optimal numbers of input and hidden nodes. This approach results in a predictor with both good noise attenuation and excellent generalization capability. The optimized neural networks are used for predictive filtering of very noisy Rayleigh fading signals with 1.8 GHz carrier frequency. Our results show that the optimal neural predictor can provide smoothed in-phase and quadrature signals with signal-to-noise ratio (SNR) gains of about 12 and 7 dB at the urban mobile speeds of 5 and 50 km/h, respectively. The corresponding power signal SNR gains are about 11 and 5 dB. Therefore, the neural predictor is well suitable for power control applications where ldquodelaylessrdquo noise attenuation and efficient reduction of fast fading are required.
The prediction of brick wall strengths with artificial neural networks model
Demir, Ali; Kumanlioglu, Ahmet Ali
2017-01-01
The aim of this study is to predict with Artificial Neural Networks (ANN) shear strength of brick masonry walls. Shear strength of the walls is determined with diagonal shear tests. It is very difficult to determine strengths of brick masonry walls with experimental procedures. Therefore, an Artificial Neural Networks model is developed with data obtained by investigating many papers from literature and experiments carried out by the authors. Finally, a good degree of coherency is obtained between the experimental and predicted data. The model that is developed makes it possible to easily predict shear strength of the masonry walls. Additionally, this model can be continuously trained with new data and its applicability range can easily be expanded.
Directory of Open Access Journals (Sweden)
ZHANG Yongzhi
2016-10-01
Full Text Available A dynamic fuzzy RBF neural network model was built to predict the mechanical properties of welded joints, and the purpose of the model was to overcome the shortcomings of static neural networks including structural identification, dynamic sample training and learning algorithm. The structure and parameters of the model are no longer head of default, dynamic adaptive adjustment in the training, suitable for dynamic sample data for learning, learning algorithm introduces hierarchical learning and fuzzy rule pruning strategy, to accelerate the training speed of model and make the model more compact. Simulation of the model was carried out by using three kinds of thickness and different process TC4 titanium alloy TIG welding test data. The results show that the model has higher prediction accuracy, which is suitable for predicting the mechanical properties of welded joints, and has opened up a new way for the on-line control of the welding process.
Prediction of Critical Currents for a Diluted Square Lattice Using Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Sajjad Ali Haider
2017-03-01
Full Text Available Studying critical currents, critical temperatures, and critical fields carries substantial importance in the field of superconductivity. In this work, we study critical currents in the current–voltage characteristics of a diluted-square lattice on an Nb film. Our measurements are based on a commercially available Physical Properties Measurement System, which may prove time consuming and costly for repeated measurements for a wide range of parameters. We therefore propose a technique based on artificial neural networks to facilitate extrapolation of these curves for unforeseen values of temperature and magnetic fields. We demonstrate that our proposed algorithm predicts the curves with an immaculate precision and minimal overhead, which may as well be adopted for prediction in other types of regular and diluted lattices. In addition, we present a detailed comparison between three artificial neural networks architectures with respect to their prediction efficiency, computation time, and number of iterations to converge to an optimal solution.
Data Mining on Romanian Stock Market Using Neural Networks for Price Prediction
Directory of Open Access Journals (Sweden)
Magdalena Daniela NEMES
2013-01-01
Full Text Available Predicting future prices by using time series forecasting models has become a relevant trading strategy for most stock market players. Intuition and speculation are no longer reliable as many new trading strategies based on artificial intelligence emerge. Data mining represents a good source of information, as it ensures data processing in a convenient manner. Neural networks are considered useful prediction models when designing forecasting strategies. In this paper we present a series of neural networks designed for stock exchange rates forecasting applied on three Romanian stocks traded on the Bucharest Stock Exchange (BSE. A multistep ahead strategy was used in order to predict short-time price fluctuations. Later, the findings of our study can be integrated with an intelligent multi-agent system model which uses data mining and data stream processing techniques for helping users in the decision making process of buying or selling stocks.
Institute of Scientific and Technical Information of China (English)
Yingwei LI; Bingguo LIU; Jinhui PENG; Wei LI; Daifu HUANG; Libo ZHANG
2011-01-01
The incremental improved Back-Propagation (BP) neural network prediction model using the Levenberg-Marquardt algorithm based on optimizing theory is put forward,which can solve the problems existing in the process of calcinations for ammonium diuranate (ADU) by microwave heating,such as long testing cycle,high testing quantity,difficulty of optimization for process parameters. Many training data probably were offered by the way of increment batch and the limitation of the system memory could make the training data infeasible when the sample scale was large. The prediction model of the nonlinear system is built,which can effectively predict the experiment of microwave calcining of ADU,and the incremental improved BP neural network is very useful in overcoming the local minimum problem,finding the global optinal solution and accelerating the convergence speed.
Experimental Parameter Tuning of Artificial Neural Network in Customer Churn Prediction
Directory of Open Access Journals (Sweden)
Martin Fridrich
2017-06-01
Full Text Available Abstract Purpose of the article: The paper aim is to examine classification models, based on artificial neural networks through experimental parameter tuning, in domain of customer churn prediction in e-commerce retail. Methodology/methods: Key methods used are artificial neural network and conditional inference tree for further meta-analysis of the results. Fundamental logical methods such as deduction are also used. Scientific aim: To present and execute experimental design for performance evaluation and tuning of classification models, which are used for customer churn prediction. More specifically artificial neural networks are applied and examined. Findings: In defined context, it is concluded and statistically proven that feedforward 2-layer artificial neural network with trainlm function and regularization parameter set to 0 outperforms other classification models considered. Other parameters are not found to be as significant, however bearing computational costs in mind, simple and fast model such as 16-4-2 architecture with 250 training epochs suffices in practical application. Conclusions: Paper suggests process of machine learning pipeline with accent on classification model building and evaluation. Models are based on feedforward 2-layer artificial neural network, and are undergoing process of experimental parameter tuning. Obtained results are limited only to context of used dataset, however proposed machine learning pipeline with original use of conditional inference tree in meta-analysis are considered beneficial for further research. Suggested approach results in identification of classification model, which significantly outperforms other architectures and parameters devised. The solution leads to reliable and robust customer churn prediction. If properly implemented in business processes, it will lead to improved efficiency of customer churn management and customer relationship management in general.
An Assessment of a Proposed Hybrid Neural Network for Daily Flow Prediction in Arid Climate
Directory of Open Access Journals (Sweden)
Milad Jajarmizadeh
2014-01-01
Full Text Available Rainfall-runoff simulation in hydrology using artificial intelligence presents the nonlinear relationships using neural networks. In this study, a hybrid network presented as a feedforward modular neural network (FF-MNN has been developed to predict the daily rainfall-runoff of the Roodan watershed at the southern part of Iran. This FF-MNN has three layers—input, hidden, and output. The hidden layer has two types of neural expert or module. Hydrometeorological data of the catchment were collected for 21 years. Heuristic method was used to develop the MNN for exploring daily flow generalization. Two training algorithms, namely, backpropagation with momentum and Levenberg-Marquardt, were used. Sigmoid and linear transfer functions were employed to explore the network’s optimum behavior. Cross-validation and predictive uncertainty assessments were carried out to protect overtiring and overparameterization, respectively. Results showed that the FF-MNN could satisfactorily predict stream flow during testing period. The Nash-Sutcliff coefficient, coefficient of determination, and root mean square error obtained using MNN during training and test periods were 0.85, 0.85, and 39.4 and 0.57, 0.58, and 32.2, respectively. The predictive uncertainties for both periods were 0.39 and 0.44, respectively. Generally, the study showed that the FF-MNN can give promising prediction for rainfall-runoff relations.
Prediction of Extrusion Pressure And Product Deflection Of Using Artificial Neural Network
Directory of Open Access Journals (Sweden)
D.T. GUNDU
2013-01-01
Full Text Available - In this paper artificial neural network was used as a modeling tool for simulation and prediction of extrusion pressure and product deflection of extrudes of lead alloys. An extensive experimental program was undertaken to extrude a lead (Pb alloy on ELE Compact-1500 compression machine. The neural model of extrusion pressure and product deflection was developed based on groups of experiments carried out as samples, Eight (8 die bearing parameters (die bearing length, radius of curvature, slip angle, die angle, die ratio ram displacement, pocket depth and die diameter were used as inputs into the network architecture of 8 [4-3]2 2 in predicting the extrusion pressure and product deflection. After series of network architectures were trained using different training algorithms such as Levenberg-Marquardt, Bayesian Regulation, Resilient Backpropagation using MATLAB 7.9.0 (R20096, the LM8 [4-3]2 2 was selected as the most appropriate model. Prediction of the neural model exhibited reasonable correlation with the experimental extrusion pressure and product deflection. The predicted extrusion pressure and product deflection gave reasonable errors and higher correlation coefficients indicating that the model is robust for predicting extrusion pressure and product deflection.
Prediction of Anoxic Sulfide Biooxidation Under Various HRTs Using Artificial Neural Networks
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
During present investigation the data of a laboratory-scale anoxic sulfide oxidizing (ASO) reactor were used in a neural network system to predict its performance.Methods Five uncorrelated components of the influent wastewater were used as the artificial neural network model input to predict the output of the effluent using back-propagation and general regression algorithms. The best prediction performance is achieved when the data are preprocessed using principal components analysis (PCA) before they are fed to a back propagated neural network.Results Within the range of experimental conditions tested,it was concluded that the ANN model gave predictable results for nitrite removal from wastewater through ASO process. The model did not predict the formation of suffate to an acceptable manner.Conclusion Apart from experimentation,ANN model can help to simulate the results of such experiments in finding the best optimal choice for ASO based denitrification. Together with wastewater collection and the use of improved treatment systems and new technologies,better control of wastewater treatment plant (WTP) can lead to more effective maneuvers by its operators and,as a consequence,better effluent quality.
Gjaja, Marin N.
1997-11-01
Neural networks for supervised and unsupervised learning are developed and applied to problems in remote sensing, continuous map learning, and speech perception. Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART networks synthesize fuzzy logic and neural networks, and supervised ARTMAP networks incorporate ART modules for prediction and classification. New ART and ARTMAP methods resulting from analyses of data structure, parameter specification, and category selection are developed. Architectural modifications providing flexibility for a variety of applications are also introduced and explored. A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on fuzzy ARTMAP, is developed. System capabilities are tested on a challenging remote sensing problem, prediction of vegetation classes in the Cleveland National Forest from spectral and terrain features. After training at the pixel level, performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, back propagation neural networks, and K-nearest neighbor algorithms. Best performance is obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. This work forms the foundation for additional studies exploring fuzzy ARTMAP's capability to estimate class mixture composition for non-homogeneous sites. Exploratory simulations apply ARTMAP to the problem of learning continuous multidimensional mappings. A novel system architecture retains basic ARTMAP properties of incremental and fast learning in an on-line setting while adding components to solve this class of problems. The perceptual magnet effect is a language-specific phenomenon arising early in infant speech development that is characterized by a warping of speech sound perception. An
Usage of neural network to predict aluminium oxide layer thickness.
Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel
2015-01-01
This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A · dm(-2) and 3 A · dm(-2) for creating aluminium oxide layer.
water demand prediction using artificial neural network for ...
African Journals Online (AJOL)
user
2017-01-01
Jan 1, 2017 ... estimate water quantity and to make decisions that can prevent water scarcity. Timely ... network (ANN) and support vector machine (SVM) have led to new ... out the statistical methodology of Design of Experiments. (DOE) was .... is to implement the mechanism and systems that can be employed to forecast ...
The Prediction of Global Electron Content with Radial Basis Function Neural Network
Xue, J.
2016-12-01
The global electron content (GEC) is a sensitive indicator representing the dynamics of solar activities, which can faithfully reflect the global ionospheric variation.For understanding the global ionospheric variation in real time, it is important to predict the GEC through the observations of recent past. Since the change of GEC is complex, non-linear and time-varing, it is difficult to obtain a desirable prediction using the ordinary linear model. In this study, the Radial Basis Function (RBF) neural network method was used to predict the GEC through training the time series of significant length. The statistics were obtained by comparing the predictions with the measurements. It was found that the mean squared error(MSE) for the single-step prediction was within 0.24 TECu ^ 2 , while that for the multi-step prediction was less than 2 TECu ^ 2 . In addition, the Auto-Regressive and Moving Average Model (ARMA) method was also used for the GEC prediction. Comparison of the statistics of the two methods revealed that the performance of RBF nerual network is better than that of ARMA. Our study shows that the RBF neural network approach is capable of predicting the GEC with a superior performance.Furthermore, this provides a more accurate approach to understand the trend of the GEC.
Thermal power prediction of nuclear power plant using neural network and parity space model
Energy Technology Data Exchange (ETDEWEB)
Roh Myung-Sub,; Cheon Se-Woo,; Chang Soon-Heung,
1991-04-01
This paper reports on a power prediction system developed using an artificial neural network paradigm that was combined with a parity space signal validation technique. The parity space signal validation algorithm for the input preprocessing and the backpropagation network algorithm for the network learning are used for the power prediction system. A number of case studies were performed with emphasis on the applicability of the network in a steady-state high power level. The studies reveal that these algorithms can precisely predict the thermal power in a nuclear power plant. It also shows that the error signals resulting from instrumentation problems, even when the signals comprising various patterns are noisy or incomplete, can be properly treated.
Building energy use prediction and system identification using recurrent neural networks
Energy Technology Data Exchange (ETDEWEB)
Kreider, J.F.; Curtiss, P.; Dodier, R.; Krarti, M. [Univ. of Colorado, Boulder, CO (United States); Claridge, D.E.; Haberl, J.S. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering
1995-08-01
Following several successful applications of feedforward neural networks (NNs) to the building energy prediction problem a more difficult problem has been addressed recently: namely, the prediction of building energy consumption well into the future without knowledge of immediately past energy consumption. This paper will report results on a recent study of six months of hourly data recorded at the Zachry Engineering Center (ZEC) in College Station, TX. Also reported are results on finding the R and C values for buildings from networks trained on building data.
Prediction of Full-Scale Propulsion Power using Artificial Neural Networks
DEFF Research Database (Denmark)
Pedersen, Benjamin Pjedsted; Larsen, Jan
2009-01-01
Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature from four different loading conditions, together with hind cast data of wind and sea properties; and noon report data has been used to train an Artificial Neural Network for prediction...... of propulsion power. The model was optimized using a double cross validation procedure. The network was able to predict the propulsion power with accuracy between 0.8-1.7% using onboard measurement system data and 7% from manually acquired noon reports....
Prediction of Full-Scale Propulsion Power using Artificial Neural Networks
DEFF Research Database (Denmark)
Pedersen, Benjamin Pjedsted; Larsen, Jan
2009-01-01
Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature from four different loading conditions, together with hind cast data of wind and sea properties; and noon report data has been used to train an Artificial Neural Network for prediction...... of propulsion power. The model was optimized using a double cross validation procedure. The network was able to predict the propulsion power with accuracy between 0.8-1.7% using onboard measurement system data and 7% from manually acquired noon reports....
predicting water levels at kainji dam using artificial neural networks
African Journals Online (AJOL)
2013-03-01
Mar 1, 2013 ... number of power generation plants, existing ones are facing declining output due to ... become extremely popular for prediction and forecast- ing in a number of areas, ..... Monthly Weather Review, 126,. 1998, pp470–482. 12.
Dynamic Baysesian state-space model with a neural network for an online river flow prediction
Ham, Jonghwa; Hong, Yoon-Seok
2013-04-01
The usefulness of artificial neural networks in complex hydrological modeling has been demonstrated by successful applications. Several different types of neural network have been used for the hydrological modeling task but the multi-layer perceptron (MLP) neural network (also known as the feed-forward neural network) has enjoyed a predominant position because of its simplicity and its ability to provide good approximations. In many hydrological applications of MLP neural networks, the gradient descent-based batch learning algorithm such as back-propagation, quasi-Newton, Levenburg-Marquardt, and conjugate gradient algorithms has been used to optimize the cost function (usually by minimizing the error function in the prediction) by updating the parameters and structure in a neural network defined using a set of input-output training examples. Hydrological systems are highly with time-varying inputs and outputs, and are characterized by data that arrive sequentially. The gradient descent-based batch learning approaches that are implemented in MLP neural networks have significant disadvantages for online dynamic hydrological modeling because they could not update the model structure and parameter when a new set of hydrological measurement data becomes available. In addition, a large amount of training data is always required off-line with a long model training time. In this work, a dynamic nonlinear Bayesian state-space model with a multi-layer perceptron (MLP) neural network via a sequential Monte Carlo (SMC) learning algorithm is proposed for an online dynamic hydrological modeling. This proposed new method of modeling is herein known as MLP-SMC. The sequential Monte Carlo learning algorithm in the MLP-SMC is designed to evolve and adapt the weight of a MLP neural network sequentially in time on the arrival of each new item of hydrological data. The weight of a MLP neural network is treated as the unknown dynamic state variable in the dynamic Bayesian state
Geyer, Hannes; Mandischer, Martin; Ulbig, Peter
2001-01-01
In this paper we report results for the prediction of thermodynamic properties based on neural networks, evolutionary algorithms and a combination of them. We compare backpropagation trained networks and evolution strategy trained networks with two physical models. Experimental data for the enthalpy of vaporization were taken from the literature in our investigation. The input information for both neural network and physical models consists of parameters describing the molecular structure of ...
Vonk, E.; Jain, L.C.; Veelenturf, L.P.J.
1995-01-01
Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas
EPOXY INSULATORSâLIFETIME PREDICTION IMPLEMENTING NEURAL NETWORK TECHNIQUE
Directory of Open Access Journals (Sweden)
L. S. Nasrat
2012-01-01
Full Text Available Due to wide implementation of Epoxy insulators in industrial applications and its economic implications; development of various Epoxy insulator materials has to be evaluated along with a reliable prediction methodology of their lifetimes. In this study, a new methodology based on Artificial-Neural-Networks (ANN is developed to predict Epoxy insulators lifetime using laboratory measurements of their surface leakage current under accelerated aging. The effect of adding fillers with various concentration rates to the Epoxy insulators such as; Calcium Silicate (CaSiO2, Mica and Magnesium Oxide (Mg(OH2 on their lifetimes is compared with the base case (no filler and dry condition. Furthermore, the lifetime of each specimen under study is examined under various weather conditions such as dry, wet, salt wet (NaCl and hydro carbon solvent Naphtha. The obtained results are weighing against the experimental measured data based on two ANN techniques; i.e., Feed-Forward-Neural-Network (FNN and Recurrent-Neural-Network (RNN. The results obtained from the FNN and RNN are compared to validate the proposed methodology to predict the lifetime of epoxy insulators in terms of the type and percentage concentration of filler. The obtained Epoxy insulators predicted lifetime under various filler concentrations and weather conditions are compared and conclusions are reported.
Santosa, H.; Hobara, Y.
2017-01-01
The electric field amplitude of very low frequency (VLF) transmitter from Hawaii (NPM) has been continuously recorded at Chofu (CHF), Tokyo, Japan. The VLF amplitude variability indicates lower ionospheric perturbation in the D region (60-90 km altitude range) around the NPM-CHF propagation path. We carried out the prediction of daily nighttime mean VLF amplitude by using Nonlinear Autoregressive with Exogenous Input Neural Network (NARX NN). The NARX NN model, which was built based on the daily input variables of various physical parameters such as stratospheric temperature, total column ozone, cosmic rays, Dst, and Kp indices possess good accuracy during the model building. The fitted model was constructed within the training period from 1 January 2011 to 4 February 2013 by using three algorithms, namely, Bayesian Neural Network (BRANN), Levenberg Marquardt Neural Network (LMANN), and Scaled Conjugate Gradient (SCG). The LMANN has the largest Pearson correlation coefficient (r) of 0.94 and smallest root-mean-square error (RMSE) of 1.19 dB. The constructed models by using LMANN were applied to predict the VLF amplitude from 5 February 2013 to 31 December 2013. As a result the one step (1 day) ahead predicted nighttime VLF amplitude has the r of 0.93 and RMSE of 2.25 dB. We conclude that the model built according to the proposed methodology provides good predictions of the electric field amplitude of VLF waves for NPM-CHF (midlatitude) propagation path.
Zhao, Ningbo; Li, Zhiming
2017-05-19
To effectively predict the thermal conductivity and viscosity of alumina (Al₂O₃)-water nanofluids, an artificial neural network (ANN) approach was investigated in the present study. Firstly, using a two-step method, four Al₂O₃-water nanofluids were prepared respectively by dispersing different volume fractions (1.31%, 2.72%, 4.25%, and 5.92%) of nanoparticles with the average diameter of 30 nm. On this basis, the thermal conductivity and viscosity of the above nanofluids were analyzed experimentally under various temperatures ranging from 296 to 313 K. Then a radial basis function (RBF) neural network was constructed to predict the thermal conductivity and viscosity of Al₂O₃-water nanofluids as a function of nanoparticle volume fraction and temperature. The experimental results showed that both nanoparticle volume fraction and temperature could enhance the thermal conductivity of Al₂O₃-water nanofluids. However, the viscosity only depended strongly on Al₂O₃ nanoparticle volume fraction and was increased slightly by changing temperature. In addition, the comparative analysis revealed that the RBF neural network had an excellent ability to predict the thermal conductivity and viscosity of Al₂O₃-water nanofluids with the mean absolute percent errors of 0.5177% and 0.5618%, respectively. This demonstrated that the ANN provided an effective way to predict the thermophysical properties of nanofluids with limited experimental data.
Assembly Quality Prediction Based on Back-propagation Artificial Neural Network
Directory of Open Access Journals (Sweden)
He Yong-yi
2013-07-01
Full Text Available Because of the severe geometrical distortion induced by the optical system and the limited kinetic accuracy of mechanical system in the vision-based mobile-phone lens’s assembly system, the nonlinear, perspective distortion errors and the kinematics errors generally exist in the assembly process of the mobile-phone lens. It is necessary to predict the assembly quality of the vision-based mobile-phone lens’s pick-and-place system so as to eliminate the immediate effect on the assembling process before extracting quantitative assembling. Comparison with current research methods, the back-propagation artificial neural network is applied to predict the assembly quality of the vision-based mobile-phone lens’s pick-and-place system. Firstly, the mobile-phone lens’s assembly quality characteristics are defined and sampled; Secondly, a back-propagation artificial neural network of the mobile-phone lens’s assembly quality prediction is presented; Finally apply some training samples obtained from the experiments to train and test this back-propagation artificial neural network. The results show that the proposed method is effective to predict the assembly quality of the vision-based mobile-phone lens’s pick-and-place system with high accuracy and high reliability.
Rolling Force Prediction in Heavy Plate Rolling Based on Uniform Differential Neural Network
Directory of Open Access Journals (Sweden)
Fei Zhang
2016-01-01
Full Text Available Accurate prediction of the rolling force is critical to assuring the quality of the final product in steel manufacturing. Exit thickness of plate for each pass is calculated from roll gap, mill spring, and predicted roll force. Ideal pass scheduling is dependent on a precise prediction of the roll force in each pass. This paper will introduce a concept that allows obtaining the material model parameters directly from the rolling process on an industrial scale by the uniform differential neural network. On the basis of the characteristics that the uniform distribution can fully characterize the solution space and enhance the diversity of the population, uniformity research on differential evolution operator is made to get improved crossover with uniform distribution. When its original function is transferred with a transfer function, the uniform differential evolution algorithms can quickly solve complex optimization problems. Neural network structure and weights threshold are optimized by uniform differential evolution algorithm, and a uniform differential neural network is formed to improve rolling force prediction accuracy in process control system.
Investigation of the Prediction of Lightning Strikes Using Neural Networks
1990-10-11
1989: Artificial intelligence and lightning prediction. Final report to Universal Energy Systems on research Acronyms conducted during the summer of 1989...K’ Shuritle Sunway 31 - K Weather Tow 12 14-K Comera SitelS 17 - K Weather Twor 40S 18 - K CorencCoo Sit e 19 - K Weir, Twrg Aea 2K Cae,l 22K CameraS
Bahi, Jacques M; Couchot, Jean-François; Guyeux, Christophe; Salomon, Michel
2012-03-01
Many research works deal with chaotic neural networks for various fields of application. Unfortunately, up to now, these networks are usually claimed to be chaotic without any mathematical proof. The purpose of this paper is to establish, based on a rigorous theoretical framework, an equivalence between chaotic iterations according to Devaney and a particular class of neural networks. On the one hand, we show how to build such a network, on the other hand, we provide a method to check if a neural network is a chaotic one. Finally, the ability of classical feedforward multilayer perceptrons to learn sets of data obtained from a dynamical system is regarded. Various boolean functions are iterated on finite states. Iterations of some of them are proven to be chaotic as it is defined by Devaney. In that context, important differences occur in the training process, establishing with various neural networks that chaotic behaviors are far more difficult to learn.
Prediction of Protein Thermostability by an Efficient Neural Network Approach
Directory of Open Access Journals (Sweden)
Jalal Rezaeenour
2016-10-01
Full Text Available Introduction: Manipulation of protein stability is important for understanding the principles that govern protein thermostability, both in basic research and industrial applications. Various data mining techniques exist for prediction of thermostable proteins. Furthermore, ANN methods have attracted significant attention for prediction of thermostability, because they constitute an appropriate approach to mapping the non-linear input-output relationships and massive parallel computing. Method: An Extreme Learning Machine (ELM was applied to estimate thermal behavior of 1289 proteins. In the proposed algorithm, the parameters of ELM were optimized using a Genetic Algorithm (GA, which tuned a set of input variables, hidden layer biases, and input weights, to and enhance the prediction performance. The method was executed on a set of amino acids, yielding a total of 613 protein features. A number of feature selection algorithms were used to build subsets of the features. A total of 1289 protein samples and 613 protein features were calculated from UniProt database to understand features contributing to the enzymes’ thermostability and find out the main features that influence this valuable characteristic. Results:At the primary structure level, Gln, Glu and polar were the features that mostly contributed to protein thermostability. At the secondary structure level, Helix_S, Coil, and charged_Coil were the most important features affecting protein thermostability. These results suggest that the thermostability of proteins is mainly associated with primary structural features of the protein. According to the results, the influence of primary structure on the thermostabilty of a protein was more important than that of the secondary structure. It is shown that prediction accuracy of ELM (mean square error can improve dramatically using GA with error rates RMSE=0.004 and MAPE=0.1003. Conclusion: The proposed approach for forecasting problem
Directory of Open Access Journals (Sweden)
Raghavendra B. K
2010-11-01
Full Text Available A credit-risk evaluation decision involves processing huge volumes of raw data, and hence requires powerful data mining tools. Several techniques that were developed in machine learning have been used for financial credit-risk evaluation decisions. Data mining is the process of finding patterns and relations in large databases. Neural Networks are one of the popular tools for building predictive models in data mining. The major drawback of neural network is the curse of dimensionality which requires optimal feature subset. Feature selection is an important topic of research in data mining. Feature selection is the problem of choosing a small subset of features that optimally is necessary and sufficient to describe the target concept. In this research an attempt has been made to investigate the preprocessing framework for feature selection in credit scoring using neural network. Feature selection techniques like best first search, info gain etc. methods have been evaluated for the effectiveness of the classification of the risk groups on publicly available data sets. In particular, German, Australian, and Japanese credit rating data sets have been used for evaluation. The results have been conclusive about the effectiveness of feature selection for neural networks and validate the hypothesis of the research.
Hybrid Clustering-GWO-NARX neural network technique in predicting stock price
Das, Debashish; Safa Sadiq, Ali; Mirjalili, Seyedali; Noraziah, A.
2017-09-01
Prediction of stock price is one of the most challenging tasks due to nonlinear nature of the stock data. Though numerous attempts have been made to predict the stock price by applying various techniques, yet the predicted price is not always accurate and even the error rate is high to some extent. Consequently, this paper endeavours to determine an efficient stock prediction strategy by implementing a combinatorial method of Grey Wolf Optimizer (GWO), Clustering and Non Linear Autoregressive Exogenous (NARX) Technique. The study uses stock data from prominent stock market i.e. New York Stock Exchange (NYSE), NASDAQ and emerging stock market i.e. Malaysian Stock Market (Bursa Malaysia), Dhaka Stock Exchange (DSE). It applies K-means clustering algorithm to determine the most promising cluster, then MGWO is used to determine the classification rate and finally the stock price is predicted by applying NARX neural network algorithm. The prediction performance gained through experimentation is compared and assessed to guide the investors in making investment decision. The result through this technique is indeed promising as it has shown almost precise prediction and improved error rate. We have applied the hybrid Clustering-GWO-NARX neural network technique in predicting stock price. We intend to work with the effect of various factors in stock price movement and selection of parameters. We will further investigate the influence of company news either positive or negative in stock price movement. We would be also interested to predict the Stock indices.
Neural Network Based on Quantum Chemistry for Predicting Melting Point of Organic Compounds
Institute of Scientific and Technical Information of China (English)
Juan A. Lazzús
2009-01-01
The melting points of organic compounds were estimated using a combined method that includes a backpropagation neural network and quantitative structure property relationship (QSPR) parameters in quantum chemistry. Eleven descriptors that reflect the intermolec-ular forces and molecular symmetry were used as input variables. QSPR parameters were calculated using molecular modeling and PM3 semi-empirical molecular orbital theories. A total of 260 compounds were used to train the network, which was developed using MatLab. Then, the melting points of 73 other compounds were predicted and results were compared to experimental data from the literature. The study shows that the chosen artificial neural network and the quantitative structure property relationships method present an excellent alternative for the estimation of the melting point of an organic compound, with average absolute deviation of 5%.
Multi-Output Artificial Neural Network for Storm Surge Prediction in North Carolina
Bezuglov, Anton; Santiago, Reinaldo
2016-01-01
During hurricane seasons, emergency managers and other decision makers need accurate and `on-time' information on potential storm surge impacts. Fully dynamical computer models, such as the ADCIRC tide, storm surge, and wind-wave model take several hours to complete a forecast when configured at high spatial resolution. Additionally, statically meaningful ensembles of high-resolution models (needed for uncertainty estimation) cannot easily be computed in near real-time. This paper discusses an artificial neural network model for storm surge prediction in North Carolina. The network model provides fast, real-time storm surge estimates at coastal locations in North Carolina. The paper studies the performance of the neural network model vs. other models on synthetic and real hurricane data.
Prediction of IV curves for a superconducting thin film using artificial neural networks
Kamran, M.; Haider, S. A.; Akram, T.; Naqvi, S. R.; He, S. K.
2016-07-01
We propose a framework using artificial neural networks that predicts the IV characteristics of a superconducting thin film with square array of nano-engineered periodic antidots, called holes. We adopt the conventionally used commercial physical properties measurement system to obtain a dataset comprising transport measurements, and use this dataset to train our artificial neural network. Once trained, the model is capable of predicting the curve for varying temperature and magnetic flux values, which are cross validated by the physical properties measurement system. Consistent with the works in literature, our framework suggests Josephson Junctions like behavior near transition temperature and at stronger magnetic fields. Our study is important since repeated measurements using the conventional method are time consuming and costly; we demonstrate that the proposed method may be effectively used to classify the IV characteristics over a wide range of temperature and magnetic field values.
Directory of Open Access Journals (Sweden)
Pengyu Gao
2016-03-01
Full Text Available It is difficult to forecast the well productivity because of the complexity of vertical and horizontal developments in fluvial facies reservoir. This paper proposes a method based on Principal Component Analysis and Artificial Neural Network to predict well productivity of fluvial facies reservoir. The method summarizes the statistical reservoir factors and engineering factors that affect the well productivity, extracts information by applying the principal component analysis method and approximates arbitrary functions of the neural network to realize an accurate and efficient prediction on the fluvial facies reservoir well productivity. This method provides an effective way for forecasting the productivity of fluvial facies reservoir which is affected by multi-factors and complex mechanism. The study result shows that this method is a practical, effective, accurate and indirect productivity forecast method and is suitable for field application.
Directory of Open Access Journals (Sweden)
Qihong Chen
2014-01-01
Full Text Available This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX, and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell.
Chen, Qihong; Long, Rong; Quan, Shuhai; Zhang, Liyan
2014-01-01
This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell.
Respiratory signal prediction based on adaptive boosting and multi-layer perceptron neural network
Sun, W. Z.; Jiang, M. Y.; Ren, L.; Dang, J.; You, T.; Yin, F.-F.
2017-09-01
To improve the prediction accuracy of respiratory signals using adaptive boosting and multi-layer perceptron neural network (ADMLP-NN) for gated treatment of moving target in radiation therapy. The respiratory signals acquired using a real-time position management (RPM) device from 138 previous 4DCT scans were retrospectively used in this study. The ADMLP-NN was composed of several artificial neural networks (ANNs) which were used as weaker predictors to compose a stronger predictor. The respiratory signal was initially smoothed using a Savitzky-Golay finite impulse response smoothing filter (S-G filter). Then, several similar multi-layer perceptron neural networks (MLP-NNs) were configured to estimate future respiratory signal position from its previous positions. Finally, an adaptive boosting (Adaboost) decision algorithm was used to set weights for each MLP-NN based on the sample prediction error of each MLP-NN. Two prediction methods, MLP-NN and ADMLP-NN (MLP-NN plus adaptive boosting), were evaluated by calculating correlation coefficient and root-mean-square-error between true and predicted signals. For predicting 500 ms ahead of prediction, average correlation coefficients were improved from 0.83 (MLP-NN method) to 0.89 (ADMLP-NN method). The average of root-mean-square-error (relative unit) for 500 ms ahead of prediction using ADMLP-NN were reduced by 27.9%, compared to those using MLP-NN. The preliminary results demonstrate that the ADMLP-NN respiratory prediction method is more accurate than the MLP-NN method and can improve the respiration prediction accuracy.
Predicting musically induced emotions from physiological inputs: Linear and neural network models
Directory of Open Access Journals (Sweden)
Frank A. Russo
2013-08-01
Full Text Available Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of 'felt' emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants – heart rate, respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a nonlinear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The nonlinear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the nonlinear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.
The Use of Artificial Neural Network for Prediction of Dissolution Kinetics
Directory of Open Access Journals (Sweden)
H. Elçiçek
2014-01-01
Full Text Available Colemanite is a preferred boron mineral in industry, such as boric acid production, fabrication of heat resistant glass, and cleaning agents. Dissolution of the mineral is one of the most important processes for these industries. In this study, dissolution of colemanite was examined in water saturated with carbon dioxide solutions. Also, prediction of dissolution rate was determined using artificial neural networks (ANNs which are based on the multilayered perceptron. Reaction temperature, total pressure, stirring speed, solid/liquid ratio, particle size, and reaction time were selected as input parameters to predict the dissolution rate. Experimental dataset was used to train multilayer perceptron (MLP networks to allow for prediction of dissolution kinetics. Developing ANNs has provided highly accurate predictions in comparison with an obtained mathematical model used through regression method. We conclude that ANNs may be a preferred alternative approach instead of conventional statistical methods for prediction of boron minerals.
Prediction of Weld Penetration in FCAW of HSLA steel using Artificial Neural Networks
Asl, Y. Dadgar; Mostafa, N. B.; Panahizadeh R., V.; Seyedkashi, S. M. H.
2011-01-01
Flux-cored arc welding (FCAW) is a semiautomatic or automatic arc welding process that requires a continuously-fed consumable tubular electrode containing a flux. The main FCAW process parameters affecting the depth of penetration are welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed. Shallow depth of penetration may contribute to failure of a welded structure since penetration determines the stress-carrying capacity of a welded joint. To avoid such occurrences; the welding process parameters influencing the weld penetration must be properly selected to obtain an acceptable weld penetration and hence a high quality joint. Artificial neural networks (ANN), also called neural networks (NN), are computational models used to express complex non-linear relationships between input and output data. In this paper, artificial neural network (ANN) method is used to predict the effects of welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed on weld penetration depth in gas shielded FCAW of a grade of high strength low alloy steel. 32 experimental runs were carried out using the bead-on-plate welding technique. Weld penetrations were measured and on the basis of these 32 sets of experimental data, a feed-forward back-propagation neural network was created. 28 sets of the experiments were used as the training data and the remaining 4 sets were used for the testing phase of the network. The ANN has one hidden layer with eight neurons and is trained after 840 iterations. The comparison between the experimental results and ANN results showed that the trained network could predict the effects of the FCAW process parameters on weld penetration adequately.
Palika Chopra; Rajendra Kumar Sharma; Maneek Kumar
2016-01-01
An effort has been made to develop concrete compressive strength prediction models with the help of two emerging data mining techniques, namely, Artificial Neural Networks (ANNs) and Genetic Programming (GP). The data for analysis and model development was collected at 28-, 56-, and 91-day curing periods through experiments conducted in the laboratory under standard controlled conditions. The developed models have also been tested on in situ concrete data taken from literature. A comparison o...
Abdelkrim Moussaoui; Yacine Selaimia; Hadj A. Abbassi
2006-01-01
The authors discuss the combination of an Artificial Neural Network (ANN) with analytical models to improve the performance of the prediction model of finishing rolling force in hot strip rolling mill process. The suggested model was implemented using Bayesian Evidence based training algorithm. It was found that the Bayesian Evidence based approach provided a superior and smoother fit to the real rolling mill data. Completely independent set of real rolling data were used to evaluate the capa...
Institute of Scientific and Technical Information of China (English)
刘雪峰; 张利; 涂铭旌
2004-01-01
Quantitatively evaluation of antibacterial activities of inorganic antibacterial agents is an urgent problem to be solved. Using experimental data by an orthogonal design, a prediction model of the relation between conditions of preparing inorganic antibacterial agents and their antibacterial activities has been developed. This is accomplished by introducing BP artificial neural networks in the study of inorganic antibacterial agents..It provides a theoretical support for the development and research on inorganic antibacterial agents.
Non-Minimum Phase Nonlinear System Predictive Control Based on Local Recurrent Neural Networks
Institute of Scientific and Technical Information of China (English)
张燕; 陈增强; 袁著祉
2003-01-01
After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent PID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective.
Artificial Neural Network Model for Predicting Ultimate Tensile Capacity of Adhesive Anchors
Institute of Scientific and Technical Information of China (English)
XU Bo; WU Zhi-min; SONG Zhi-fei
2007-01-01
To predict the tensile capacity of adhesive anchors, a multilayered feed-forward neural network trained with the backpropagation algorithm is constructed. The ANN model have 5 inputs, including the compressive strength of concrete, tensile strength of concrete, anchor diameter, hole diameter, embedment of anchors, and ultimate load. The predictions obtained from the trained ANN show a good agreement with the experiments. Meanwhile, the predicted ultinate tensile capacity of anchors is close to the one calculated from the strength formula of the combined cone-bond failure model.
Ship motion extreme short time prediction of ship pitch based on diagonal recurrent neural network
Institute of Scientific and Technical Information of China (English)
SHEN Yan; XIE Mei-ping
2005-01-01
A DRNN (diagonal recurrent neural network) and its RPE (recurrent prediction error) learning algorithm are proposed in this paper .Using of the simple structure of DRNN can reduce the capacity of calculation. The principle of RPE learning algorithm is to adjust weights along the direction of Gauss-Newton. Meanwhile, it is unnecessary to calculate the second local derivative and the inverse matrixes, whose unbiasedness is proved. With application to the extremely short time prediction of large ship pitch, satisfactory results are obtained. Prediction effect of this algorithm is compared with that of auto-regression and periodical diagram method, and comparison results show that the proposed algorithm is feasible.
Automated system for load flow prediction in power substations using artificial neural networks
Directory of Open Access Journals (Sweden)
Arlys Michel Lastre Aleaga
2015-09-01
Full Text Available The load flow is of great importance in assisting the process of decision making and planning of generation, distribution and transmission of electricity. Ignorance of the values in this indicator, as well as their inappropriate prediction, difficult decision making and efficiency of the electricity service, and can cause undesirable situations such as; the on demand, overheating of the components that make up a substation, and incorrect planning processes electricity generation and distribution. Given the need for prediction of flow of electric charge of the substations in Ecuador this research proposes the concept for the development of an automated prediction system employing the use of Artificial Neural Networks.
Energy Technology Data Exchange (ETDEWEB)
Mazrou, Hakim [Division de Physique Radiologique, Centre de Recherche Nucleaire d' Alger (CRNA), 02 Boulevard Frantz, Fanon, B.P. 399, 16000 Alger (Algeria)], E-mail: mazrou_h@crna.dz
2009-10-15
The present work explores, through a comprehensive sensitivity study, a new methodology to find a suitable artificial neural network architecture which improves its performances capabilities in predicting two significant parameters in safety assessment i.e. the multiplication factor k{sub eff} and the fuel powers peaks P{sub max} of the benchmark 10 MW IAEA LEU core research reactor. The performances under consideration were the improvement of network predictions during the validation process and the speed up of computational time during the training phase. To reach this objective, we took benefit from Neural Network MATLAB Toolbox to carry out a widespread sensitivity study. Consequently, the speed up of several popular algorithms has been assessed during the training process. The comprehensive neural system was subsequently trained on different transfer functions, number of hidden neurons, levels of error and size of generalization corpus. Thus, using a personal computer with data created from preceding work, the final results obtained for the treated benchmark were improved in both network generalization phase and much more in computational time during the training process in comparison to the results obtained previously.
Directory of Open Access Journals (Sweden)
Chunhua Lu
2009-01-01
Full Text Available Two artificial neural networks (ANN, back-propagation neural network (BPNN and the radial basis function neural network (RBFNN, are proposed to predict the carbonation depth of prestressed concrete. In order to generate the training and testing data for the ANNs, an accelerated carbonation experiment was carried out, and the influence of stress level of concrete on carbonation process was taken into account especially. Then, based on the experimental results, the BPNN and RBFNN models which all take the stress level of concrete, water-cement ratio, cement-fine aggregate, cement-coarse aggregate ratio and testing age as input parameters were built and all the training and testing work was performed in MATLAB. It can be found that the two ANN models seem to have a high prediction and generalization capability in evaluation of carbonation depth, and the largest absolute percentage errors of BPNN and RBFNN are 10.88% and 8.46%, respectively. The RBFNN model shows a better prediction precision in comparison to BPNN model.
Prediction of blast-induced flyrock in Indian limestone mines using neural networks
Directory of Open Access Journals (Sweden)
R. Trivedi
2014-10-01
Full Text Available Frequency and scale of the blasting events are increasing to boost limestone production. Mines are approaching close to inhabited areas due to growing population and limited availability of land resources which has challenged the management to go for safe blasts with special reference to opencast mining. The study aims to predict the distance covered by the flyrock induced by blasting using artificial neural network (ANN and multi-variate regression analysis (MVRA for better assessment. Blast design and geotechnical parameters, such as linear charge concentration, burden, stemming length, specific charge, unconfined compressive strength (UCS, and rock quality designation (RQD, have been selected as input parameters and flyrock distance used as output parameter. ANN has been trained using 95 datasets of experimental blasts conducted in 4 opencast limestone mines in India. Thirty datasets have been used for testing and validation of trained neural network. Flyrock distances have been predicted by ANN, MVRA, as well as further calculated using motion analysis of flyrock projectiles and compared with the observed data. Back propagation neural network (BPNN has been proven to be a superior predictive tool when compared with MVRA.
Prediction of Crack for Drilling Process on Alumina Using Neural Network and Taguchi Method
Directory of Open Access Journals (Sweden)
Kingsun Lee
2015-01-01
Full Text Available This study analyzes a variety of significant drilling conditions on aluminum oxide (with L18 orthogonal array using a diamond drill. The drilling parameters evaluated are spindle speed, feed rate, depth of cut, and diamond abrasive size. An orthogonal array, signal-to-noise (S/N ratio, and analysis of variance (ANOVA are employed to analyze the effects of these drilling parameters. The results were confirmed by experiments, which indicated that the selected drilling parameters effectively reduce the crack. The neural network is applied to establish a model based on the relationship between input parameters (spindle speed, feed rate, depth of cut, and diamond abrasive size and output parameter (cracking area percentage. The neural network can predict individual crack in terms of input parameters, which provides faster and more automated model synthesis. Accurate prediction of crack ensures that poor drilling parameters are not suitable for machining products, avoiding the fabrication of poor-quality products. Confirmation experiments showed that neural network precisely predicted the cracking area percentage in drilling of alumina.
Indian Academy of Sciences (India)
Ali Nazari
2012-11-01
In the present work, percentage of water absorption of geopolymers made from seeded fly ash and rice husk bark ash has been predicted by artificial neural networks. Different specimens, made from a mixture of fly ash and rice husk bark ash in fine and coarse form together with alkali activatormade of water glass and NaOH solution, were subjected to permeability tests at 7 and 28 days of curing. The curing regime was different: one set cured at room temperature until reaching to 7 and 28 days and the other sets were oven cured for 36 h at a range of 40–90 °C and then cured at room temperature for 7 and 28 days. To build the model, training and testing using experimental results from 120 specimens were conducted. According to these input parameters, in the neural networks model, the percentage of water absorption of each specimen was predicted. The training and testing results in the neural networks model have shown a strong potential for predicting the percentage of water absorption of the geopolymer specimens.
Prediction of blast-induced flyrock in Indian limestone mines using neural networks
Institute of Scientific and Technical Information of China (English)
R. Trivedi; T.N. Singh; A.K. Raina
2014-01-01
Frequency and scale of the blasting events are increasing to boost limestone production. Mines are approaching close to inhabited areas due to growing population and limited availability of land resources which has challenged the management to go for safe blasts with special reference to opencast mining. The study aims to predict the distance covered by the flyrock induced by blasting using artificial neural network (ANN) and multi-variate regression analysis (MVRA) for better assessment. Blast design and geotechnical parameters, such as linear charge concentration, burden, stemming length, specific charge, unconfined compressive strength (UCS), and rock quality designation (RQD), have been selected as input parameters and flyrock distance used as output parameter. ANN has been trained using 95 datasets of experimental blasts conducted in 4 opencast limestone mines in India. Thirty datasets have been used for testing and validation of trained neural network. Flyrock distances have been predicted by ANN, MVRA, as well as further calculated using motion analysis of flyrock projectiles and compared with the observed data. Back propagation neural network (BPNN) has been proven to be a superior predictive tool when compared with MVRA.
Directory of Open Access Journals (Sweden)
Md. Moqbul Hossain
2013-01-01
Full Text Available Ground water arsenic contamination is a well known health and environmental problem in Bangladesh. Sources of this heavy metal are known to be geogenic, however, the processes of its release into groundwater are poorly understood phenomena. In quest of mitigation of the problem it is necessary to predict probable contamination before it causes any damage to human health. Hence our research has been carried out to find the factor relations of arsenic contamination and develop an arsenic contamination prediction model. Researchers have generally agreed that the elevated concentration of arsenic is affected by several factors such as soil reaction (pH, organic matter content, geology, iron content, etc. However, the variability of concentration within short lateral and vertical intervals, and the inter-relationships of variables among themselves, make the statistical analyses highly non-linear and difficult to converge with a meaningful relationship. Artificial Neural Networks (ANN comes in handy for such a black box type problem. This research uses Back propagation Neural Networks (BPNN to train and validate the data derived from Geographic Information System (GIS spatial distribution grids. The neural network architecture with (6-20-1 pattern was able to predict the arsenic concentration with reasonable accuracy.
Evaluation and prediction of solar radiation for energy management based on neural networks
Aldoshina, O. V.; Van Tai, Dinh
2017-08-01
Currently, there is a high rate of distribution of renewable energy sources and distributed power generation based on intelligent networks; therefore, meteorological forecasts are particularly useful for planning and managing the energy system in order to increase its overall efficiency and productivity. The application of artificial neural networks (ANN) in the field of photovoltaic energy is presented in this article. Implemented in this study, two periodically repeating dynamic ANS, that are the concentration of the time delay of a neural network (CTDNN) and the non-linear autoregression of a network with exogenous inputs of the NAEI, are used in the development of a model for estimating and daily forecasting of solar radiation. ANN show good productivity, as reliable and accurate models of daily solar radiation are obtained. This allows to successfully predict the photovoltaic output power for this installation. The potential of the proposed method for controlling the energy of the electrical network is shown using the example of the application of the NAEI network for predicting the electric load.
Directory of Open Access Journals (Sweden)
Hamid R. Khosravani
2016-01-01
Full Text Available Energy consumption has been increasing steadily due to globalization and industrialization. Studies have shown that buildings are responsible for the biggest proportion of energy consumption; for example in European Union countries, energy consumption in buildings represents around 40% of the total energy consumption. In order to control energy consumption in buildings, different policies have been proposed, from utilizing bioclimatic architectures to the use of predictive models within control approaches. There are mainly three groups of predictive models including engineering, statistical and artificial intelligence models. Nowadays, artificial intelligence models such as neural networks and support vector machines have also been proposed because of their high potential capabilities of performing accurate nonlinear mappings between inputs and outputs in real environments which are not free of noise. The main objective of this paper is to compare a neural network model which was designed utilizing statistical and analytical methods, with a group of neural network models designed benefiting from a multi objective genetic algorithm. Moreover, the neural network models were compared to a naïve autoregressive baseline model. The models are intended to predict electric power demand at the Solar Energy Research Center (Centro de Investigación en Energía SOLar or CIESOL in Spanish bioclimatic building located at the University of Almeria, Spain. Experimental results show that the models obtained from the multi objective genetic algorithm (MOGA perform comparably to the model obtained through a statistical and analytical approach, but they use only 0.8% of data samples and have lower model complexity.
Directory of Open Access Journals (Sweden)
Okut Hayrettin
2011-10-01
Full Text Available Abstract Background In the study of associations between genomic data and complex phenotypes there may be relationships that are not amenable to parametric statistical modeling. Such associations have been investigated mainly using single-marker and Bayesian linear regression models that differ in their distributions, but that assume additive inheritance while ignoring interactions and non-linearity. When interactions have been included in the model, their effects have entered linearly. There is a growing interest in non-parametric methods for predicting quantitative traits based on reproducing kernel Hilbert spaces regressions on markers and radial basis functions. Artificial neural networks (ANN provide an alternative, because these act as universal approximators of complex functions and can capture non-linear relationships between predictors and responses, with the interplay among variables learned adaptively. ANNs are interesting candidates for analysis of traits affected by cryptic forms of gene action. Results We investigated various Bayesian ANN architectures using for predicting phenotypes in two data sets consisting of milk production in Jersey cows and yield of inbred lines of wheat. For the Jerseys, predictor variables were derived from pedigree and molecular marker (35,798 single nucleotide polymorphisms, SNPS information on 297 individually cows. The wheat data represented 599 lines, each genotyped with 1,279 markers. The ability of predicting fat, milk and protein yield was low when using pedigrees, but it was better when SNPs were employed, irrespective of the ANN trained. Predictive ability was even better in wheat because the trait was a mean, as opposed to an individual phenotype in cows. Non-linear neural networks outperformed a linear model in predictive ability in both data sets, but more clearly in wheat. Conclusion Results suggest that neural networks may be useful for predicting complex traits using high
Modeling and Simulation of Time Series Prediction Based on Dynic Neural Network
Institute of Scientific and Technical Information of China (English)
王雪松; 程玉虎; 彭光正
2004-01-01
Molding and simulation of time series prediction based on dynic neural network(NN) are studied. Prediction model for non-linear and time-varying system is proposed based on dynic Jordan NN. Aiming at the intrinsic defects of back-propagation (BP) algorithm that cannot update network weights incrementally, a hybrid algorithm combining the temporal difference (TD) method with BP algorithm to train Jordan NN is put forward. The proposed method is applied to predict the ash content of clean coal in jigging production real-time and multi-step. A practical exple is also given and its application results indicate that the method has better performance than others and also offers a beneficial reference to the prediction of nonlinear time series.
Prediction of compressibility parameters of the soils using artificial neural network.
Kurnaz, T Fikret; Dagdeviren, Ugur; Yildiz, Murat; Ozkan, Ozhan
2016-01-01
The compression index and recompression index are one of the important compressibility parameters to determine the settlement calculation for fine-grained soil layers. These parameters can be determined by carrying out laboratory oedometer test on undisturbed samples; however, the test is quite time-consuming and expensive. Therefore, many empirical formulas based on regression analysis have been presented to estimate the compressibility parameters using soil index properties. In this paper, an artificial neural network (ANN) model is suggested for prediction of compressibility parameters from basic soil properties. For this purpose, the input parameters are selected as the natural water content, initial void ratio, liquid limit and plasticity index. In this model, two output parameters, including compression index and recompression index, are predicted in a combined network structure. As the result of the study, proposed ANN model is successful for the prediction of the compression index, however the predicted recompression index values are not satisfying compared to the compression index.
Institute of Scientific and Technical Information of China (English)
Juanhua SU; Qiming DONG; Ping LIU; Hejun LI; Buxi KANG
2003-01-01
A supervised artificial neural network (ANN) to model the nonlinear relationship between parameters of thermomechanical treatment processes with respect to hardness and conductivity properties was proposed for Cu-Cr-Zr alloy. The improved model was developed by the Levenberg-Marquardt training algorithm. A basic repository on the domain knowledge of thermomechanical treatment processes is established via sufficient data acquisition by the network. The results showed that the ANN system is an effective way and can be successfully used to predict and analyze the properties of Cu-Cr-Zr alloy.
DEFF Research Database (Denmark)
Kjaer, J; Høj, L; Fox, Z
2008-01-01
OBJECTIVES: Genotypic interpretation systems extrapolate observed associations in datasets to predict viral susceptibility to antiretroviral drugs (ARVs) for given isolates. We aimed to develop and validate an approach using artificial neural networks (ANNs) that employ descriptors...
National Research Council Canada - National Science Library
Kerh, T; Lin, J. S; Gunaratnam, D
2012-01-01
.... This paper is therefore aimed at developing a neural network model, based on available microtremor measurement and on-site soil boring test data, for predicting peak ground acceleration at a site...
The Prediction of Concrete Temperature during Curing Using Regression and Artificial Neural Network
Directory of Open Access Journals (Sweden)
Zahra Najafi
2013-01-01
Full Text Available Cement hydration plays a vital role in the temperature development of early-age concrete due to the heat generation. Concrete temperature affects the workability, and its measurement is an important element in any quality control program. In this regard, a method, which estimates the concrete temperature during curing, is very valuable. In this paper, multivariable regression and neural network methods were used for estimating concrete temperature. In order to achieve this purpose, ten laboratory cylindrical specimens were prepared under controlled situation, and concrete temperature was measured by thermistors existent in vibrating wire strain gauges. Input data variables consist of time (hour, environment temperature, water to cement ratio, aggregate content, height, and specimen diameter. Concrete temperature has been measured in ten different concrete specimens. Nonlinear regression achieved the determined coefficient ( of 0.873. By using the same input set, the artificial neural network predicted concrete temperature with higher of 0.999. The results show that artificial neural network method significantly can be used to predict concrete temperature when regression results do not have appropriate accuracy.
Artificial neural network models for prediction of intestinal permeability of oligopeptides
Directory of Open Access Journals (Sweden)
Kim Min-Kook
2007-07-01
Full Text Available Abstract Background Oral delivery is a highly desirable property for candidate drugs under development. Computational modeling could provide a quick and inexpensive way to assess the intestinal permeability of a molecule. Although there have been several studies aimed at predicting the intestinal absorption of chemical compounds, there have been no attempts to predict intestinal permeability on the basis of peptide sequence information. To develop models for predicting the intestinal permeability of peptides, we adopted an artificial neural network as a machine-learning algorithm. The positive control data consisted of intestinal barrier-permeable peptides obtained by the peroral phage display technique, and the negative control data were prepared from random sequences. Results The capacity of our models to make appropriate predictions was validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC curve (the ROC score. The training and test set statistics indicated that our models were of strikingly good quality and could discriminate between permeable and random sequences with a high level of confidence. Conclusion We developed artificial neural network models to predict the intestinal permeabilities of oligopeptides on the basis of peptide sequence information. Both binary and VHSE (principal components score Vectors of Hydrophobic, Steric and Electronic properties descriptors produced statistically significant training models; the models with simple neural network architectures showed slightly greater predictive power than those with complex ones. We anticipate that our models will be applicable to the selection of intestinal barrier-permeable peptides for generating peptide drugs or peptidomimetics.
Directory of Open Access Journals (Sweden)
Hüseyin BUDAK
2012-11-01
Full Text Available Credit scoring is a vital topic for Banks since there is a need to use limited financial sources more effectively. There are several credit scoring methods that are used by Banks. One of them is to estimate whether a credit demanding customer’s repayment order will be regular or not. In this study, artificial neural networks and logistic regression analysis have been used to provide a support to the Banks’ credit risk prediction and to estimate whether a credit demanding customers’ repayment order will be regular or not. The results of the study showed that artificial neural networks method is more reliable than logistic regression analysis while estimating a credit demanding customer’s repayment order.
Agha, Salah R; Alnahhal, Mohammed J
2012-11-01
The current study investigates the possibility of obtaining the anthropometric dimensions, critical to school furniture design, without measuring all of them. The study first selects some anthropometric dimensions that are easy to measure. Two methods are then used to check if these easy-to-measure dimensions can predict the dimensions critical to the furniture design. These methods are multiple linear regression and neural networks. Each dimension that is deemed necessary to ergonomically design school furniture is expressed as a function of some other measured anthropometric dimensions. Results show that out of the five dimensions needed for chair design, four can be related to other dimensions that can be measured while children are standing. Therefore, the method suggested here would definitely save time and effort and avoid the difficulty of dealing with students while measuring these dimensions. In general, it was found that neural networks perform better than multiple linear regression in the current study.
One Prediction Model Based on BP Neural Network for Newcastle Disease
Wang, Hongbin; Gong, Duqiang; Xiao, Jianhua; Zhang, Ru; Li, Lin
The purpose of this paper is to investigate the correlation between meteorological factors and Newcastle disease incidence, and to determine the key factors that affect Newcastle disease. Having built BP neural network forecasting model by Matlab 7.0 software, we tested the performance of the model according to the coefficient of determination (R2) and absolute values of the difference between predictive value and practical incidence. The result showed that 6 kinds of meteorological factors determined, and the model's coefficient of determination is 0.760, and the performance of the model is very good. Finally, we build Newcastle disease forecasting model, and apply BP neural network theory in animal disease forecasting research firstly.
Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.
Ko, Chien-Ho
2013-01-01
Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.
All India summer monsoon rainfall prediction using an artificial neural network
Energy Technology Data Exchange (ETDEWEB)
Sahai, A.K.; Soman, M.K.; Satyan, V. [Indian Inst. of Tropical Meteorol., Pune (India). Climate and Global Modelling Div.
2000-04-01
The prediction of Indian summer monsoon rainfall (ISMR) on a seasonal time scales has been attempted by various research groups using different techniques including artificial neural networks. The prediction of ISMR on monthly and seasonal time scales is not only scientifically challenging but is also important for planning and devising agricultural strategies. This article describes the artificial neural network (ANN) technique with error- back-propagation algorithm to provide prediction (hindcast) of ISMR on monthly and seasonal time scales. The ANN technique is applied to the five time series of June, July, August, September monthly means and seasonal mean (June+July+August+September) rainfall from 1871 to 1994 based on Parthasarathy data set. The previous five years values from all the five time-series were used to train the ANN to predict for the next year. The details of the models used are discussed. Various statistics are calculated to examine the performance of the models and it is found that the models could be used as a forecasting tool on seasonal and monthly time scales. It is observed by various researchers that with the passage of time the relationships between various predictors and Indian monsoon are changing, leading to changes in monsoon predictability. This issue is discussed and it is found that the monsoon system inherently has a decadal scale variation in predictability. (orig.)
Research on the Prediction Model of CPU Utilization Based on ARIMA-BP Neural Network
Directory of Open Access Journals (Sweden)
Wang Jina
2016-01-01
Full Text Available The dynamic deployment technology of the virtual machine is one of the current cloud computing research focuses. The traditional methods mainly work after the degradation of the service performance that usually lag. To solve the problem a new prediction model based on the CPU utilization is constructed in this paper. A reference offered by the new prediction model of the CPU utilization is provided to the VM dynamic deployment process which will speed to finish the deployment process before the degradation of the service performance. By this method it not only ensure the quality of services but also improve the server performance and resource utilization. The new prediction method of the CPU utilization based on the ARIMA-BP neural network mainly include four parts: preprocess the collected data, build the predictive model of ARIMA-BP neural network, modify the nonlinear residuals of the time series by the BP prediction algorithm and obtain the prediction results by analyzing the above data comprehensively.
Yan, Li; Liu, Li
2010-07-01
An approach of using near infrared spectroscopy combined with BP neural network method was investigated for the prediction of fibre contents of textile mixture materials. The near infrared spectra of 56 textile mixture samples with different cotton and wool contents were obtained, in which 41 samples were used for the calibration set, 10 samples were used for the validation set, while 5 for the prediction set. The wavelet transform (WT) was utilized for the spectra data compression, which combined with BP neural network (BP) was specially introduced. According to the standards of absolute error (AE), mean absolute error (MAE) and root mean square error (RMSE), a calibration model of WT-ca3-BP (41-17-2) was achieved for prediction of fibre contents of textile mixture materials. The calibration set was in combination with validation set as a new calibration set, an upgraded WT-ca3-BP (51-17-2) model appeared, its mean absolute error (MAE) was less than 0.41%, root mean square error (RMSE) was less than 0.54% and a satisfying prediction precision was achieved for unknown samples. The results indicated that near infrared spectroscopy could be successfully applied for prediction of fibre contents of textile mixture materials and upgraded WT-ca3-BP model could achieve a best prediction results.
Basant, Nikita; Gupta, Shikha; Singh, Kunwar P
2016-03-01
Organic solvents are widely used chemicals and the neurotoxic properties of some are well established. In this study, we established nonlinear qualitative and quantitative structure-toxicity relationship (STR) models for predicting neurotoxic classes and neurotoxicity of structurally diverse solvents in rodent test species following OECD guideline principles for model development. Probabilistic neural network (PNN) based qualitative and generalized regression neural network (GRNN) based quantitative STR models were constructed using neurotoxicity data from rat and mouse studies. Further, interspecies correlation based quantitative activity-activity relationship (QAAR) and global QSTR models were also developed using the combined data set of both rodent species for predicting the neurotoxicity of solvents. The constructed models were validated through deriving several statistical coefficients for the test data and the prediction and generalization abilities of these models were evaluated. The qualitative STR models (rat and mouse) yielded classification accuracies of 92.86% in the test data sets, whereas, the quantitative STRs yielded correlation (R(2)) of >0.93 between the measured and model predicted toxicity values in both the test data (rat and mouse). The prediction accuracies of the QAAR (R(2) 0.859) and global STR (R(2) 0.945) models were comparable to those of the independent local STR models. The results suggest the ability of the developed QSTR models to reliably predict binary neurotoxicity classes and the endpoint neurotoxicities of the structurally diverse organic solvents.
Using Long-Short-Term-Memory Recurrent Neural Networks to Predict Aviation Engine Vibrations
ElSaid, AbdElRahman Ahmed
This thesis examines building viable Recurrent Neural Networks (RNN) using Long Short Term Memory (LSTM) neurons to predict aircraft engine vibrations. The different networks are trained on a large database of flight data records obtained from an airline containing flights that suffered from excessive vibration. RNNs can provide a more generalizable and robust method for prediction over analytical calculations of engine vibration, as analytical calculations must be solved iteratively based on specific empirical engine parameters, and this database contains multiple types of engines. Further, LSTM RNNs provide a "memory" of the contribution of previous time series data which can further improve predictions of future vibration values. LSTM RNNs were used over traditional RNNs, as those suffer from vanishing/exploding gradients when trained with back propagation. The study managed to predict vibration values for 1, 5, 10, and 20 seconds in the future, with 2.84% 3.3%, 5.51% and 10.19% mean absolute error, respectively. These neural networks provide a promising means for the future development of warning systems so that suitable actions can be taken before the occurrence of excess vibration to avoid unfavorable situations during flight.
Time-Delay Artificial Neural Network Computing Models for Predicting Shelf Life of Processed Cheese
Directory of Open Access Journals (Sweden)
Sumit Goyal
2012-04-01
Full Text Available This paper presents the capability of Time–delay artificial neural network models for predicting shelf life of processed cheese. Datasets were divided into two subsets (30 for training and 6 for validation. Models with single and multi layers were developed and compared with each other. Mean Square Error, Root Mean Square Error, Coefficient of Determination and Nash -
Sutcliffo Coefficient were used as performance evaluators, Time- delay model predicted the shelf life of processed cheese as 28.25 days, which is very close to experimental shelf life of 30 days.
Arora, Sanchi; Laha, Animesh; Majumdar, Abhijit; Butola, Bhupendra Singh
2017-08-01
Prediction models for the viscosity curve of a shear thickening fluid (STF) over a wide range of shear rate at different temperatures were developed using phenomenological and artificial neural network (ANN) models. STF containing 65% (w/w) silica nanoparticles was prepared using polyethylene glycol (PEG) as dispersion medium, and tested for rheological behavior at different temperatures. The experimental data set was divided into training data and testing data for the model development and validation, respectively. For both the models, the viscosity of STF was estimated for all the zones with good fit between experimental and predicted viscosity, for both training and testing data sets.
Neural-network predictive control for nonlinear dynamic systems with time-delay.
Huang, Jin-Quan; Lewis, F L
2003-01-01
A new recurrent neural-network predictive feedback control structure for a class of uncertain nonlinear dynamic time-delay systems in canonical form is developed and analyzed. The dynamic system has constant input and feedback time delays due to a communications channel. The proposed control structure consists of a linearized subsystem local to the controlled plant and a remote predictive controller located at the master command station. In the local linearized subsystem, a recurrent neural network with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant. No linearity in the unknown parameters is required. No preliminary off-line weight learning is needed. The remote controller is a modified Smith predictor that provides prediction and maintains the desired tracking performance; an extra robustifying term is needed to guarantee stability. Rigorous stability proofs are given using Lyapunov analysis. The result is an adaptive neural net compensation scheme for unknown nonlinear systems with time delays. A simulation example is provided to demonstrate the effectiveness of the proposed control strategy.
Institute of Scientific and Technical Information of China (English)
Wengang Zhang; Anthony T.C. Goh
2016-01-01
Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved. In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configu-ration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines (MARS), as an alternative to neural net-works, to approximate the relationship between the inputs and dependent response, and to mathe-matically interpret the relationship between the various parameters. In this paper, the Back propagation neural network (BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses (MCS), Maximum tensile stresses (MTS), and Blow per foot (BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions.
Prediction of SYM-H index by NARX neural network from IMF and solar wind data
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
SYM-H is one of the important indices for space weather. It indicates the intensity of magnetic storm, similarly to Dst index but with much higher time-resolution. In this paper an artificial neural network (ANN) of Nonlinear Auto Regressive with eXogenous inputs (NARX) has been developed to predict SYM-H index from solar wind and IMF data. In comparison with usual BP and Elman network, the new NRAX model shows much better prediction capability. For 15 testing great storms including 5 super-storms of Min. SYM-H < -200 nT, the cross-correlation of SYM-H indices between NARX network predicted and really observed is 0.91 as a whole. For the 5 individual super-storms, the lowest coefficients is 0.91 relating to the super-storm of March 2001 with Min.SYM-H of -434 nT; while for the two super-storms with Min. SYM-H ranging from -300 nT to -400 nT, the correlations reach as high as 0.93 and 0.96 respectively. The remarkable improvement of the model performance can be attributed to such a key feedback from the network output of SYM-H with a suitable length (about 120 min) to the input, which implies that some information on the quasi real-time ring currents with a proper length of history does its work in the prediction. It tells us that, in addition to the direct driving by solar wind and IMF, the own status of the ring current plays an important role in its evolution especially for recovery phase and must properly be considered in storm-time SYM-H prediction by ANN. The neural network model of NARX developed in this paper provides an effective way to achieve it.
Prediction of Atmospheric Pressure at Ground Level using Artificial Neural Network
Directory of Open Access Journals (Sweden)
Angshuman Ray
2013-01-01
Full Text Available Prediction of Atmospheric Pressure is one important and challenging task that needs lot of attention and study for analyzing atmospheric conditions. Advent of digital computers and development of data driven artificial intelligence approaches like Artificial Neural Networks (ANN have helped in numerical prediction of pressure. However, very few works have been done till now in this area. The present study developed an ANN model based on the past observations of several meteorological parameters like temperature, humidity, air pressure and vapour pressure as an input for training the model. The novel architecture of the proposed model contains several multilayer perceptron network (MLP to realize better performance. The model is enriched by analysis of alternative hybrid model of k-means clustering and MLP. The improvement of the performance in the prediction accuracy has been demonstrated by the automatic selection of the appropriate cluster
Directory of Open Access Journals (Sweden)
Narayanan Manikandan
2016-01-01
Full Text Available Software development life cycle has been characterized by destructive disconnects between activities like planning, analysis, design, and programming. Particularly software developed with prediction based results is always a big challenge for designers. Time series data forecasting like currency exchange, stock prices, and weather report are some of the areas where an extensive research is going on for the last three decades. In the initial days, the problems with financial analysis and prediction were solved by statistical models and methods. For the last two decades, a large number of Artificial Neural Networks based learning models have been proposed to solve the problems of financial data and get accurate results in prediction of the future trends and prices. This paper addressed some architectural design related issues for performance improvement through vectorising the strengths of multivariate econometric time series models and Artificial Neural Networks. It provides an adaptive approach for predicting exchange rates and it can be called hybrid methodology for predicting exchange rates. This framework is tested for finding the accuracy and performance of parallel algorithms used.
Manikandan, Narayanan; Subha, Srinivasan
2016-01-01
Software development life cycle has been characterized by destructive disconnects between activities like planning, analysis, design, and programming. Particularly software developed with prediction based results is always a big challenge for designers. Time series data forecasting like currency exchange, stock prices, and weather report are some of the areas where an extensive research is going on for the last three decades. In the initial days, the problems with financial analysis and prediction were solved by statistical models and methods. For the last two decades, a large number of Artificial Neural Networks based learning models have been proposed to solve the problems of financial data and get accurate results in prediction of the future trends and prices. This paper addressed some architectural design related issues for performance improvement through vectorising the strengths of multivariate econometric time series models and Artificial Neural Networks. It provides an adaptive approach for predicting exchange rates and it can be called hybrid methodology for predicting exchange rates. This framework is tested for finding the accuracy and performance of parallel algorithms used. PMID:26881271
Nonlinear model identification and adaptive model predictive control using neural networks.
Akpan, Vincent A; Hassapis, George D
2011-04-01
This paper presents two new adaptive model predictive control algorithms, both consisting of an on-line process identification part and a predictive control part. Both parts are executed at each sampling instant. The predictive control part of the first algorithm is the Nonlinear Model Predictive Control strategy and the control part of the second algorithm is the Generalized Predictive Control strategy. In the identification parts of both algorithms the process model is approximated by a series-parallel neural network structure which is trained by a recursive least squares (ARLS) method. The two control algorithms have been applied to: 1) the temperature control of a fluidized bed furnace reactor (FBFR) of a pilot plant and 2) the auto-pilot control of an F-16 aircraft. The training and validation data of the neural network are obtained from the open-loop simulation of the FBFR and the nonlinear F-16 aircraft models. The identification and control simulation results show that the first algorithm outperforms the second one at the expense of extra computation time.
Manikandan, Narayanan; Subha, Srinivasan
2016-01-01
Software development life cycle has been characterized by destructive disconnects between activities like planning, analysis, design, and programming. Particularly software developed with prediction based results is always a big challenge for designers. Time series data forecasting like currency exchange, stock prices, and weather report are some of the areas where an extensive research is going on for the last three decades. In the initial days, the problems with financial analysis and prediction were solved by statistical models and methods. For the last two decades, a large number of Artificial Neural Networks based learning models have been proposed to solve the problems of financial data and get accurate results in prediction of the future trends and prices. This paper addressed some architectural design related issues for performance improvement through vectorising the strengths of multivariate econometric time series models and Artificial Neural Networks. It provides an adaptive approach for predicting exchange rates and it can be called hybrid methodology for predicting exchange rates. This framework is tested for finding the accuracy and performance of parallel algorithms used.
Directory of Open Access Journals (Sweden)
Muhammad Zubair Rehman
2011-01-01
Full Text Available Noise-Induced Hearing Loss (NIHL has become a major source of health problem in industrial workers due to continuous exposure to high frequency sounds emitting from the machines. In the past, several studies have been carried-out to identify NIHL industrial workers. Unfortunately, these studies neglected some important factors that directly affect hearing ability in human. Artificial Neural Network (ANN provides very effective way to predict hearing loss in humans. However, the training process for an ANN required the designers to arbitrarily select parameters such as network topology, initial weights and biases, learning rate value, the activation function, value for gain in activation function and momentum. An improper choice of any of these parameters can result in slow convergence or even network paralysis, where the training process comes to a standstill or get stuck at local minima. Therefore, this current study focuses on proposing a new framework on using Gradient Descent Back Propagation Neural Network model with an improvement on the momentum value to identify the important factors that directly affect the hearing ability of industrial workers. Results from the prediction will be used in determining the environmental health hazards which affect the workers health.
Analysis of Leakage Current to Predict Insulator Flashover Using Artificial Neural Network
Directory of Open Access Journals (Sweden)
N. Narmadhai
2011-01-01
Full Text Available Problem statement: The phenomenon of flashover in polluted insulators has been continued by the study of the characteristics of contaminating layers deposited on the surface of insulators in high voltage laboratories. In the literature, Experimental investigations have been carried out on a real insulator or a flat plate model of insulators under high voltage application. This study proposed the Equivalent insulator flat plate model for studying the flashover phenomena due to pollution under wet conditions even at low voltage. Laboratory based tests were carried out on the model under AC voltage at different pollution levels. Different concentrations of salt solution has been prepared using sodium chloride, Kaolin and distilled water representing the various contaminations. Leakage current during the experimental studies were measured for various polluted conditions. Approach: A new model of Vc = f (V, Iinitial, Iem, Iemax and Iσ based on artificial neural network has been developed to predict flashover from the analysis of leakage current. The input variable to the artificial neural network are mean (Imean, Maximum(Imax and standard deviation(Iσ of leakage current extracted along with the initial value of leakage current Iinitial and the input voltage(V.The target obtained was used to evaluate the performance of the neural network model. Results: The optimum process has been carried out based on the training accuracy measured by RMSE, the network converged to a threshold of 0.0001.The trained model prediction is in good agreement with the actual results and the R2 value of the developed model is 0.99996. Conclusion: The developed ANN model is well-suited for the analysis of leakage current to predict flashover on the insulator surface with high accuracy.
Directory of Open Access Journals (Sweden)
Mohammed Abo-Zahhad
2014-07-01
Full Text Available Human Genome Project has led to a huge inflow of genomic data. After the completion of human genome sequencing, more and more effort is being put into identification of splicing sites of exons and introns (donor and acceptor sites. These invite bioinformatics to analysis the genome sequences and identify the location of exon and intron boundaries or in other words prediction of splicing sites. Prediction of splice sites in genic regions of DNA sequence is one of the most challenging aspects of gene structure recognition. Over the last two decades, artificial neural networks gradually became one of the essential tools in bioinformatics. In this paper artificial neural networks with different numerical mapping techniques have been employed for building integrated model for splice site prediction in genes. An artificial neural network is trained and then used to find splice sites in human genes. A comparison between different mapping methods using trained neural network in terms of their precision in prediction of donor and acceptor sites will be presented in this paper. Training and measuring performance of neural network are carried out using sequences of the human genome (GRch37/hg19- chr21. Simulation results indicate that using Electron-Ion Interaction Potential numerical mapping method with neural network yields to the best performance in prediction.
Prediction of geomagnetic storms from solar wind data with the use of a neural network
Directory of Open Access Journals (Sweden)
H. Lundstedt
Full Text Available An artificial feed-forward neural network with one hidden layer and error back-propagation learning is used to predict the geomagnetic activity index (D_{st} one hour in advance. The B_{z}-component and Σ_{Bz}, the density, and the velocity of the solar wind are used as input to the network. The network is trained on data covering a total of 8700 h, extracted from the 25-year period from 1963 to 1987, taken from the NSSDC data base. The performance of the network is examined with test data, not included in the training set, which covers 386 h and includes four different storms. Whilst the network predicts the initial and main phase well, the recovery phase is not modelled correctly, implying that a single hidden layer error back-propagation network is not enough, if the measured D_{st} is not available instantaneously. The performance of the network is independent of whether the raw parameters are used, or the electric field and square root of the dynamical pressure.
Sensitivity Analysis of Wavelet Neural Network Model for Short-Term Traffic Volume Prediction
Directory of Open Access Journals (Sweden)
Jinxing Shen
2013-01-01
Full Text Available In order to achieve a more accurate and robust traffic volume prediction model, the sensitivity of wavelet neural network model (WNNM is analyzed in this study. Based on real loop detector data which is provided by traffic police detachment of Maanshan, WNNM is discussed with different numbers of input neurons, different number of hidden neurons, and traffic volume for different time intervals. The test results show that the performance of WNNM depends heavily on network parameters and time interval of traffic volume. In addition, the WNNM with 4 input neurons and 6 hidden neurons is the optimal predictor with more accuracy, stability, and adaptability. At the same time, a much better prediction record will be achieved with the time interval of traffic volume are 15 minutes. In addition, the optimized WNNM is compared with the widely used back-propagation neural network (BPNN. The comparison results indicated that WNNM produce much lower values of MAE, MAPE, and VAPE than BPNN, which proves that WNNM performs better on short-term traffic volume prediction.
An Imperialist Competitive Algorithm Artificial Neural Network Method to Predict Runoff
Ashraf Vaghefi, S.; Mousavi, S. J.; Abbaspour, K. C.; Yang, H.
2012-04-01
Modeling of rainfall-runoff relationship is important in view of many uses of water resources. Artificial Neural Networks (ANNs) are able to extract the relation between the rainfall and runoff without addressing the physics behind the process. Using back propagation (BP) method to train weights of ANNs may lead to problems in predicting low flows. This paper provides a procedure for application of artificial neural networks trained by Imperialist Competitive Algorithm (ICA) to flow forecasting in Karkheh watershed in southwest of Iran. The monthly hydrometric and climatic data in ANN existed for the period of 1982 to 2002. The results of this study indicated that ANNs rainfall-runoff models trained by ICA predicted daily flow more accurately than those trained by BP. Coefficient of determination for predicted runoffs in training and validating phases in ICA method were 0.97 and 0.93, respectively, while 0.93 and 0.91 were obtained in BP method. The mean squared error of the networks (MSE) for both ICA and BP methods were measured for training and testing data. The accuracy of the model performance was acceptable in both methods, although ICA's results were slightly more accurate.
A hybrid deep neural network and physically based distributed model for river stage prediction
hitokoto, Masayuki; sakuraba, Masaaki
2016-04-01
We developed the real-time river stage prediction model, using the hybrid deep neural network and physically based distributed model. As the basic model, 4 layer feed-forward artificial neural network (ANN) was used. As a network training method, the deep learning technique was applied. To optimize the network weight, the stochastic gradient descent method based on the back propagation method was used. As a pre-training method, the denoising autoencoder was used. Input of the ANN model is hourly change of water level and hourly rainfall, output data is water level of downstream station. In general, the desirable input of the ANN has strong correlation with the output. In conceptual hydrological model such as tank model and storage-function model, river discharge is governed by the catchment storage. Therefore, the change of the catchment storage, downstream discharge subtracted from rainfall, can be the potent input candidate of the ANN model instead of rainfall. From this point of view, the hybrid deep neural network and physically based distributed model was developed. The prediction procedure of the hybrid model is as follows; first, downstream discharge was calculated by the distributed model, and then estimates the hourly change of catchment storage form rainfall and calculated discharge as the input of the ANN model, and finally the ANN model was calculated. In the training phase, hourly change of catchment storage can be calculated by the observed rainfall and discharge data. The developed model was applied to the one catchment of the OOYODO River, one of the first-grade river in Japan. The modeled catchment is 695 square km. For the training data, 5 water level gauging station and 14 rain-gauge station in the catchment was used. The training floods, superior 24 events, were selected during the period of 2005-2014. Prediction was made up to 6 hours, and 6 models were developed for each prediction time. To set the proper learning parameters and network
Directory of Open Access Journals (Sweden)
Mohammad Karim Sohrabi
2016-03-01
Full Text Available Background: Warfarin is one of the most common oral anticoagulant, which role is to prevent the clots. The dose of this medicine is very important because changes can be dangerous for patients. Diagnosis is difficult for physicians because increase and decrease in use of warfarin is so dangerous for patients. Identifying the clinical and genetic features involved in determining dose could be useful to predict using data mining techniques. The aim of this paper is to provide a convenient way to select the clinical and genetic features to determine the dose of warfarin using artificial neural networks (ANN and evaluate it in order to predict the dose patients. Methods: This experimental study, was investigate from April to May 2014 on 552 patients in Tehran Heart Center Hospital (THC candidates for warfarin anticoagulant therapy within the international normalized ratio (INR therapeutic target. Factors affecting the dose include clinical characteristics and genetic extracted, and different methods of feature selection based on genetic algorithm and particle swarm optimization (PSO and evaluation function neural networks in MATLAB (MathWorks, MA, USA, were performed. Results: Between algorithms used, particle swarm optimization algorithm accuracy was more appropriate, for the mean square error (MSE, root mean square error (RMSE and mean absolute error (MAE were 0.0262, 0.1621 and 0.1164, respectively. Conclusion: In this article, the most important characteristics were identified using methods of feature selection and the stable dose had been predicted based on artificial neural networks. The output is acceptable and with less features, it is possible to achieve the prediction warfarin dose accurately. Since the prescribed dose for the patients is important, the output of the obtained model can be used as a decision support system.
Artificial neural network implementation of a near-ideal error prediction controller
Mcvey, Eugene S.; Taylor, Lynore Denise
1992-01-01
A theory has been developed at the University of Virginia which explains the effects of including an ideal predictor in the forward loop of a linear error-sampled system. It has been shown that the presence of this ideal predictor tends to stabilize the class of systems considered. A prediction controller is merely a system which anticipates a signal or part of a signal before it actually occurs. It is understood that an exact prediction controller is physically unrealizable. However, in systems where the input tends to be repetitive or limited, (i.e., not random) near ideal prediction is possible. In order for the controller to act as a stability compensator, the predictor must be designed in a way that allows it to learn the expected error response of the system. In this way, an unstable system will become stable by including the predicted error in the system transfer function. Previous and current prediction controller include pattern recognition developments and fast-time simulation which are applicable to the analysis of linear sampled data type systems. The use of pattern recognition techniques, along with a template matching scheme, has been proposed as one realizable type of near-ideal prediction. Since many, if not most, systems are repeatedly subjected to similar inputs, it was proposed that an adaptive mechanism be used to 'learn' the correct predicted error response. Once the system has learned the response of all the expected inputs, it is necessary only to recognize the type of input with a template matching mechanism and then to use the correct predicted error to drive the system. Suggested here is an alternate approach to the realization of a near-ideal error prediction controller, one designed using Neural Networks. Neural Networks are good at recognizing patterns such as system responses, and the back-propagation architecture makes use of a template matching scheme. In using this type of error prediction, it is assumed that the system error
Lo, Benjamin W Y; Macdonald, R Loch; Baker, Andrew; Levine, Mitchell A H
2013-01-01
The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients). Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs). Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique) denoted cut-off points for poor prognosis at greater than 2.5 clusters. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication.
Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.
2017-02-01
An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.
Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.
2016-06-01
An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.
The value of "black-box" neural network modeling in subsurface flow prediction
Paleologos, E.; Skitzi, I.; Katsifarakis, K.
2012-04-01
In several hydrologic cases the complexity of the processes involved tied in with the uncertainty in the subsurface geologic environment, geometries, and boundary conditions cannot be addressed by constitutive relationships, either in a deterministic or a stochastic framework. "Black-box" models are used routinely in surface hydrologic predictions, but in subsurface hydrology there is still a tendency to rely on physical descriptions, even in problems where the geometry, the medium, the processes, the boundary conditions are largely unknown. Subsurface flow in karstic environments exemplifies all the above complexities and uncertainties rendering the use of physical models impractical. The current study uses neural networks to exemplify that "black-box" models can provide useful predictions even in the absence of physical process descriptions. Daily discharges of two springs lying in a karstic environment were simulated for a period of two and a half years with the use of a multi-layer perceptron back-propagation neural network. Missing discharge values were supplemented by assuming linear relationships during base flow conditions, thus extending the length of the data record during the network's training phase and improving its performance. The time lag between precipitation and spring discharge differed significantly for the two springs indicating that in karstic environments hydraulic behavior is dominated, even within a few hundred meters, by local conditions. Optimum training results were attained with a Levenberg-Marquardt algorithm resulting in a network architecture consisting of two input layer neurons, four hidden layer neurons, and one output layer neuron, the spring's discharge. The neural network's predictions captured the behavior for both springs and followed very closely the discontinuities in the discharge time series. Under/over-estimation of observed discharges for the two springs remained below 3%, with the exception of a few local maxima where
Prediction of monthly mean daily global solar radiation using Artificial Neural Network
Indian Academy of Sciences (India)
V Sivamadhavi; R Samuel Selvaraj
2012-12-01
In this study, a multilayer feed forward (MLFF) neural network based on back propagation algorithm was developed, trained, and tested to predict monthly mean daily global radiation in Tamil Nadu, India. Various geographical, solar and meteorological parameters of three different locations with diverse climatic conditions were used as input parameters. Out of 565 available data, 530 were used for training and the rest were used for testing the artificial neural network (ANN). A 3-layer and a 4-layer MLFF networks were developed and the performance of the developed models was evaluated based on mean bias error, mean absolute percentage error, root mean squared error and Student’s -test. The 3-layer MLFF network developed in this study did not give uniform results for the three chosen locations. Hence, a 4-layer MLFF network was developed and the average value of the mean absolute percentage error was found to be 5.47%. Values of global radiation obtained using the model were in excellent agreement with measured values. Results of this study show that the designed ANN model can be used to estimate monthly mean daily global radiation of any place in Tamil Nadu where measured global radiation data are not available.
Directory of Open Access Journals (Sweden)
F Gheshlaghi
2016-04-01
the analytical and statistical methods. It is expected that the neural network can more accurately predict the rolling resistance. In this study, the neural network for experimental data was trained and the relationship among some parameters of velocity, dynamic load and tire pressure and rolling resistance were evaluated. Materials and Methods: The soil bin and single wheel tester of Biosystem Engineering Mechanics Department of Urmia University was used in this study. This soil bin has 24 m length, 2 m width and 1 m depth including a single-wheel tester and the carrier. Tester consists of four horizontal arms and a vertical arm to vertical load. The S-shaped load cells were employed in horizontal arms with a load capacity of 200 kg and another 500 kg in the vertical arm was embedded. The tire used in this study was a general pneumatic tire (Good year 9.5L-14, 6 ply In this study, artificial neural networks were used for optimizing the rolling resistance by 35 neurons, 6 inputs and 1 output choices. Comparison of neural network models according to the mean square error and correlation coefficient was used. In addition, 60% of the data on training, 20% on test and finally 20% of the credits was allocated to the validation and Output parameter of the neural network model has determined the tire rolling resistance. Finally, this study predicts the effects of changing parameters of tire pressure, vertical load and velocity on rolling resistance using a trained neural network. Results and Discussion: Based on obtained error of Levenberg- Marquardt algorithm, neural network with 35 neurons in the hidden layer with sigmoid tangent function and one neuron in the output layer with linear actuator function were selected. The regression coefficient of tested network is 0.92 which seems acceptable, considering the complexity of the studied process. Some of the input parameters to the network are speed, pressure and vertical load which their relationship with the rolling
Archambeau, Cédric; Delbeke, Jean; Veraart, Claude; Verleysen, Michel
2004-11-01
Within the framework of the OPTIVIP project, an optic nerve based visual prosthesis is developed in order to restore partial vision to the blind. One of the main challenges is to understand, decode and model the physiological process linking the stimulating parameters to the visual sensations produced in the visual field of a blind volunteer. We propose to use adaptive neural techniques. Two prediction models are investigated. The first one is a grey-box model exploiting the neurophysiological knowledge available up to now. It combines a neurophysiological model with artificial neural networks, such as multi-layer perceptrons and radial basis function networks, in order to predict the features of the visual perceptions. The second model is entirely of the black-box type. We show that both models provide satisfactory prediction tools and achieve similar prediction accuracies. Moreover, we demonstrate that significant improvement (25%) was gained with respect to linear statistical methods, suggesting that the biological process is strongly non-linear.
Cui, Yiqian; Shi, Junyou; Wang, Zili
2015-11-01
Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction.
Directory of Open Access Journals (Sweden)
Palika Chopra
2016-01-01
Full Text Available An effort has been made to develop concrete compressive strength prediction models with the help of two emerging data mining techniques, namely, Artificial Neural Networks (ANNs and Genetic Programming (GP. The data for analysis and model development was collected at 28-, 56-, and 91-day curing periods through experiments conducted in the laboratory under standard controlled conditions. The developed models have also been tested on in situ concrete data taken from literature. A comparison of the prediction results obtained using both the models is presented and it can be inferred that the ANN model with the training function Levenberg-Marquardt (LM for the prediction of concrete compressive strength is the best prediction tool.
Bankruptcy prediction for credit risk using neural networks: a survey and new results.
Atiya, A F
2001-01-01
The prediction of corporate bankruptcies is an important and widely studied topic since it can have significant impact on bank lending decisions and profitability. This work presents two contributions. First we review the topic of bankruptcy prediction, with emphasis on neural-network (NN) models. Second, we develop an NN bankruptcy prediction model. Inspired by one of the traditional credit risk models developed by Merton (1974), we propose novel indicators for the NN system. We show that the use of these indicators in addition to traditional financial ratio indicators provides a significant improvement in the (out-of-sample) prediction accuracy (from 81.46% to 85.5% for a three-year-ahead forecast).
Potential of artificial neural network technology for predicting shelf life of processed cheese
Directory of Open Access Journals (Sweden)
Sumit Goyal
Full Text Available Radial basis (fewer neurons artificial neural network (ANN models were developed for predicting the shelf life of processed cheese stored at 7-8o C. Mean square error, root mean square error, coefficient of determination and nash - sutcliffo coefficient were applied in order to compare the prediction ability of the developed models. Soluble nitrogen, pH; standard plate count, yeast & mouldcount, and spore count were the input parameters, while sensory score was output parameter for the developed model. The developed model showed very good correlation between actual data and predicted data with high coefficient of determination and nash - sutcliffo coefficient besides low root mean square error, suggesting that the developed model is quite efficient in predicting the shelf life of processed cheese.
Lin, Jing-Fung; Sheu, Jer-Jia
2016-06-01
Citric acid coated (citrate-stabilized) magnetite (Fe3O4) magnetic nanoparticles have been conducted and applied in the biomedical fields. Using Taguchi-based measured retardances as the training data, an artificial neural network (ANN) model was developed for the prediction of retardance in citric acid (CA) coated ferrofluid (FF). According to the ANN simulation results in the training stage, the correlation coefficient between predicted retardances and measured retardances was found to be as high as 0.9999998. Based on the well-trained ANN model, the predicted retardance at excellent program from Taguchi method showed less error of 2.17% compared with a multiple regression (MR) analysis of statistical significance. Meanwhile, the parameter analysis at excellent program by the ANN model had the guiding significance to find out a possible program for the maximum retardance. It was concluded that the proposed ANN model had high ability for the prediction of retardance in CA coated FF.
Prediction of Rolling Force Using AN Adaptive Neural Network Model during Cold Rolling of Thin Strip
Xie, H. B.; Jiang, Z. Y.; Tieu, A. K.; Liu, X. H.; Wang, G. D.
Customers for cold rolled strip products expect the good flatness and surface finish, consistent metallurgical properties and accurate strip thickness. These requirements demand accurate prediction model for rolling parameters. This paper presents a set-up optimization system developed to predict the rolling force during cold strip rolling. As the rolling force has the very nonlinear and time-varying characteristics, conventional methods with simple mathematical models and a coarse learning scheme are not sufficient to achieve a good prediction for rolling force. In this work, all the factors that influence the rolling force are analyzed. A hybrid mathematical roll force model and an adaptive neural network have been improved by adjusting the adaptive learning algorithm. A good agreement between the calculated results and measured values verifies that the approach is applicable in the prediction of rolling force during cold rolling of thin strips, and the developed model is efficient and stable.
Directory of Open Access Journals (Sweden)
Abdelkrim Moussaoui
2006-01-01
Full Text Available The authors discuss the combination of an Artificial Neural Network (ANN with analytical models to improve the performance of the prediction model of finishing rolling force in hot strip rolling mill process. The suggested model was implemented using Bayesian Evidence based training algorithm. It was found that the Bayesian Evidence based approach provided a superior and smoother fit to the real rolling mill data. Completely independent set of real rolling data were used to evaluate the capacity of the fitted ANN model to predict the unseen regions of data. As a result, test rolls obtained by the suggested hybrid model have shown high prediction quality comparatively to the usual empirical prediction models.
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong Yeong; Kim, Ju Hyun; Yoo, Kwae Hwan; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)
2015-03-15
Recently, severe accidents in nuclear power plants (NPPs) have become a global concern. The aim of this paper is to predict the hydrogen buildup within containment resulting from severe accidents. The prediction was based on NPPs of an optimized power reactor 1,000. The increase in the hydrogen concentration in severe accidents is one of the major factors that threaten the integrity of the containment. A method using a fuzzy neural network (FNN) was applied to predict the hydrogen concentration in the containment. The FNN model was developed and verified based on simulation data acquired by simulating MAAP4 code for optimized power reactor 1,000. The FNN model is expected to assist operators to prevent a hydrogen explosion in severe accident situations and manage the accident properly because they are able to predict the changes in the trend of hydrogen concentration at the beginning of real accidents by using the developed FNN model.
Directory of Open Access Journals (Sweden)
Alaa F. Sheta
2015-07-01
Full Text Available Obtaining accurate prediction of stock index sig-nificantly helps decision maker to take correct actions to develop a better economy. The inability to predict fluctuation of the stock market might cause serious profit loss. The challenge is that we always deal with dynamic market which is influenced by many factors. They include political, financial and reserve occasions. Thus, stable, robust and adaptive approaches which can provide models have the capability to accurately predict stock index are urgently needed. In this paper, we explore the use of Artificial Neural Networks (ANNs and Support Vector Machines (SVM to build prediction models for the S&P 500 stock index. We will also show how traditional models such as multiple linear regression (MLR behave in this case. The developed models will be evaluated and compared based on a number of evaluation criteria.
Time-dependent prediction degredation assessment of neural-networks-based TEC forecasting models
Directory of Open Access Journals (Sweden)
Th. D. Xenos
2003-01-01
Full Text Available An estimation of the difference in TEC prediction accuracy achieved when the prediction varies from 1 h to 7 days in advance is described using classical neural networks. Hourly-daily Faraday-rotation derived TEC measurements from Florence are used. It is shown that the prediction accuracy for the examined dataset, though degrading when time span increases, is always high. In fact, when a relative prediction error margin of ± 10% is considered, the population percentage included therein is almost always well above the 55%. It is found that the results are highly dependent on season and the dataset wealth, whereas they highly depend on the foF2 - TEC variability difference and on hysteresis-like effect between these two ionospheric characteristics.
Energy Technology Data Exchange (ETDEWEB)
Altan Dombayci, Oemer [Department of Technical Programmes, Denizli Vocational College, Pamukkale University, 20070 Denizli (Turkey); Goelcue, Mustafa [Department of Mechanical Education, Technical Education Faculty, Pamukkale University, 20070 Denizli (Turkey)
2009-04-15
The objective of this paper is to develop an artificial neural network (ANN) model which can be used to predict daily mean ambient temperatures in Denizli, south-western Turkey. In order to train the model, temperature values, measured by The Turkish State Meteorological Service over three years (2003-2005) were used as training data and the values of 2006 were used as testing data. In order to determine the optimal network architecture, various network architectures were designed; different training algorithms were used; the number of neuron and hidden layer and transfer functions in the hidden layer/output layer were changed. The predictions were performed by taking different number of hidden layer neurons between 3 and 30. The best result was obtained when the number of the neurons is 6. The selected ANN model of a multi-layer consists of 3 inputs, 6 hidden neurons and 1 output. Training of the network was performed by using Levenberg-Marquardt (LM) feed-forward backpropagation algorithms. A computer program was performed under Matlab 6.5 software. For each network, fraction of variance (R{sup 2}) and root-mean squared error (RMSE) values were calculated and compared. The results show that the ANN approach is a reliable model for ambient temperature prediction. (author)
Energy Technology Data Exchange (ETDEWEB)
Kreider, J.F.; Curtiss, P.; Dodier, R.; Krarti, M. [Univ. of Colorado, Boulder, CO (United States); Claridge, D.E.; Haberl, J.S. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering
1995-11-01
Following several successful applications of feedforward neural networks (NNs) to the building energy prediction problem a more difficult problem has been addressed recently: namely, the prediction of building energy consumption well into the future without knowledge of immediately past energy consumption. This paper reports results of a recent study of six months of hourly data recorded at the Zachry Engineering Center (ZEC) in College Station, Texas. An early study demonstrated the success of NNs used as predictors for hourly consumption of electricity, chilled water and hot water for the ZEC. Relatively simple networks with less than a dozen inputs were able to predict these three hourly, whole building energy end uses to within errors of 5--10% RMS, the difference depending on the specifics of energy type and time of year. These predictions were made for selected future months given network training data of between one and three past months. Inputs to these networks included measured energy consumption for one or two immediately past hours. Such data are available, for example, if one is trying to conduct hourly diagnostics on heating, ventilating and air conditioning (HVAC) systems in commercial buildings. The success of this study prompted a second study of a more difficult problem. In this case, the goal was to predict energy consumption into the future without knowledge of consumption of the various energies for the immediate past. Such a prediction is of value when estimating what a building, retrofitted with energy conservation features, would have consumed had it not been retrofitted. This prediction can be compared to actual consumption to estimate the savings, if any, that accrue due to the installation of the energy conservation subsystems or components. Because one is predicting for several months, not for one hour, into the future, the problem is more difficult. Results presented show that recurrent NNs can be used for this prediction task.
Directory of Open Access Journals (Sweden)
Jemli Rim
2010-01-01
Full Text Available The main difficulty for natural disaster insurance derives from the uncertainty of an event's damages. Insurers cannot precisely appreciate the weight of natural hazards because of risk dependences. Insurability under uncertainty first requires an accurate assessment of entire damages. Insured and insurers both win when premiums calculate risk properly. In such cases, coverage will be available and affordable. Using the artificial neural network - a technique rooted in artificial intelligence - insurers can predict annual natural disaster losses. There are many types of artificial neural network models. In this paper we use the multilayer perceptron neural network, the most accommodated to the prediction task. In fact, if we provide the natural disaster explanatory variables to the developed neural network, it calculates perfectly the potential annual losses for the studied country.
Prediction on the seasonal behavior of hydrogen sulfide using a neural network model.
Kim, Byungwhan; Lee, Joogong; Jang, Jungyoung; Han, Dongil; Kim, Ki-Hyun
2011-05-05
Models to predict seasonal hydrogen sulfide (H2S) concentrations were constructed using neural networks. To this end, two types of generalized regression neural networks and radial basis function networks are considered and optimized. The input data for H2S were collected from August 2005 to Fall 2006 from a huge industrial complex located in Ansan City, Korea. Three types of seasonal groupings were prepared and one optimized model is built for each dataset. These optimized models were then used for the analysis of the sensitivity and main effect of the parameters. H2S was noted to be very sensitive to rainfall during the spring and summer. In the autumn, its sensitivity showed a strong dependency on wind speed and pressure. Pressure was identified as the most influential parameter during the spring and summer. In the autumn, relative humidity overwhelmingly affected H2S. It was noted that H2S maintained an inverse relationship with a number of parameters (e.g., radiation, wind speed, or dew-point temperature). In contrast, it exhibited a declining trend with a decrease in pressure. An increase in radiation was likely to decrease during spring and summer, but the opposite trend was predicted for the autumn. The overall results of this study thus suggest that the behavior of H2S can be accounted for by a diverse combination of meteorological parameters across seasons.
Prediction on the Seasonal Behavior of Hydrogen Sulfide Using a Neural Network Model
Directory of Open Access Journals (Sweden)
Byungwhan Kim
2011-01-01
Full Text Available Models to predict seasonal hydrogen sulfide (H2S concentrations were constructed using neural networks. To this end, two types of generalized regression neural networks and radial basis function networks are considered and optimized. The input data for H2S were collected from August 2005 to Fall 2006 from a huge industrial complex located in Ansan City, Korea. Three types of seasonal groupings were prepared and one optimized model is built for each dataset. These optimized models were then used for the analysis of the sensitivity and main effect of the parameters. H2S was noted to be very sensitive to rainfall during the spring and summer. In the autumn, its sensitivity showed a strong dependency on wind speed and pressure. Pressure was identified as the most influential parameter during the spring and summer. In the autumn, relative humidity overwhelmingly affected H2S. It was noted that H2S maintained an inverse relationship with a number of parameters (e.g., radiation, wind speed, or dew-point temperature. In contrast, it exhibited a declining trend with a decrease in pressure. An increase in radiation was likely to decrease during spring and summer, but the opposite trend was predicted for the autumn. The overall results of this study thus suggest that the behavior of H2S can be accounted for by a diverse combination of meteorological parameters across seasons.
What are artificial neural networks?
DEFF Research Database (Denmark)
Krogh, Anders
2008-01-01
Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...
NEURAL NETWORK BP MODEL APPROXIMATION AND PREDICTION OF COMPLICATED WEATHER SYSTEMS
Institute of Scientific and Technical Information of China (English)
张韧; 余志豪; 蒋全荣
2001-01-01
An artificial neural network BP model and its revised algorithm are used to approximate quite successfully a Lorenz chaotic dynamic system and the mapping relation is established between the indices of Southern Oscillation and equatorial zonal wind and lagged equatorial eastern Pacific sea surface temperature (SST) in the context of NCEP/NCAR data, and thereby a model is prepared.The constructed net model shows fairly high fit precision and feasible prediction accuracy, thus making itself of some usefulness to the prognosis of intricate weather systems.
Prediction of flow stresses at high temperatures with artificial neural networks
Institute of Scientific and Technical Information of China (English)
汪凌云; 郑廷顺; 刘雪峰; 黄光杰
2001-01-01
On the basis of the data obtained on Gleeble-1500 Thermal Simulator， the predicting models for the relation between stable flow stress during high temperature plastic deformation and deformation strain, strain rate and temperature for 1420 Al-Li alloy have been developed with BP artificial neural networks method. The results show that the model on basis of BPNN is practical and it reflects the actual feature of the deforming process. It states that the difference between the actual value and the output of the model is in order of 5%.
Application of neural network to prediction of plate finish cooling temperature
Institute of Scientific and Technical Information of China (English)
WANG Bing-xing; ZHANG Dian-hua; WANG Jun; YU Ming; ZHOU Na; CAO Guang-ming
2008-01-01
To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathematical model were brought forward to predict the plate FCT. The relationship between the self-learning factor of heat transfer coefficient and its influencing parameters such as plate thickness, start cooling temperature, was investigated. Simulative calculation indicates that the deficiency of FCT control system is overcome completely, the accuracy of FCT is obviously improved and the difference between the calculated and target FCT is controlled between-15 ℃ and 15 ℃.
Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Aminmohammad Saberian
2014-01-01
Full Text Available This paper presents a solar power modelling method using artificial neural networks (ANNs. Two neural network structures, namely, general regression neural network (GRNN feedforward back propagation (FFBP, have been used to model a photovoltaic panel output power and approximate the generated power. Both neural networks have four inputs and one output. The inputs are maximum temperature, minimum temperature, mean temperature, and irradiance; the output is the power. The data used in this paper started from January 1, 2006, until December 31, 2010. The five years of data were split into two parts: 2006–2008 and 2009-2010; the first part was used for training and the second part was used for testing the neural networks. A mathematical equation is used to estimate the generated power. At the end, both of these networks have shown good modelling performance; however, FFBP has shown a better performance comparing with GRNN.
Prediction of road traffic death rate using neural networks optimised by genetic algorithm.
Jafari, Seyed Ali; Jahandideh, Sepideh; Jahandideh, Mina; Asadabadi, Ebrahim Barzegari
2015-01-01
Road traffic injuries (RTIs) are realised as a main cause of public health problems at global, regional and national levels. Therefore, prediction of road traffic death rate will be helpful in its management. Based on this fact, we used an artificial neural network model optimised through Genetic algorithm to predict mortality. In this study, a five-fold cross-validation procedure on a data set containing total of 178 countries was used to verify the performance of models. The best-fit model was selected according to the root mean square errors (RMSE). Genetic algorithm, as a powerful model which has not been introduced in prediction of mortality to this extent in previous studies, showed high performance. The lowest RMSE obtained was 0.0808. Such satisfactory results could be attributed to the use of Genetic algorithm as a powerful optimiser which selects the best input feature set to be fed into the neural networks. Seven factors have been known as the most effective factors on the road traffic mortality rate by high accuracy. The gained results displayed that our model is very promising and may play a useful role in developing a better method for assessing the influence of road traffic mortality risk factors.
Prediction of zeolite-cement-sand unconfined compressive strength using polynomial neural network
MolaAbasi, H.; Shooshpasha, I.
2016-04-01
The improvement of local soils with cement and zeolite can provide great benefits, including strengthening slopes in slope stability problems, stabilizing problematic soils and preventing soil liquefaction. Recently, dosage methodologies are being developed for improved soils based on a rational criterion as it exists in concrete technology. There are numerous earlier studies showing the possibility of relating Unconfined Compressive Strength (UCS) and Cemented sand (CS) parameters (voids/cement ratio) as a power function fits. Taking into account the fact that the existing equations are incapable of estimating UCS for zeolite cemented sand mixture (ZCS) well, artificial intelligence methods are used for forecasting them. Polynomial-type neural network is applied to estimate the UCS from more simply determined index properties such as zeolite and cement content, porosity as well as curing time. In order to assess the merits of the proposed approach, a total number of 216 unconfined compressive tests have been done. A comparison is carried out between the experimentally measured UCS with the predictions in order to evaluate the performance of the current method. The results demonstrate that generalized polynomial-type neural network has a great ability for prediction of the UCS. At the end sensitivity analysis of the polynomial model is applied to study the influence of input parameters on model output. The sensitivity analysis reveals that cement and zeolite content have significant influence on predicting UCS.
Directory of Open Access Journals (Sweden)
AbdelHamid Ajbar
2015-01-01
Full Text Available Accurate forecast of municipal water production is critically important for arid and oil rich countries such as Saudi Arabia which depend on costly desalination plants to satisfy the growing water demand. Achieving the desired prediction accuracy is a challenging task since the forecast model should take into consideration a variety of factors such as economic development, climate conditions and population growth. The task is further complicated given that Mecca city is visited regularly by large numbers during specific months in the year due to religious reasons. This study develops a neural network model for forecasting the monthly and annual water demand for Mecca city, Saudi Arabia. The proposed model used historic records of water production and estimated visitors’ distribution to calibrate a neural network model for water demand forecast. The explanatory variables included annually-varying variables such as household income, persons per household, and city population, along with monthly-varying variables such as expected number of visitors each month and maximum monthly temperature. The NN prediction outperforms that of a regular econometric model. The latter is adjusted such that it can provide monthly and annual predictions.
Statistical Modeling and Prediction for Tourism Economy Using Dendritic Neural Network
Yu, Ying; Wang, Yirui; Tang, Zheng
2017-01-01
With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model) is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model) to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient. PMID:28246527
Directory of Open Access Journals (Sweden)
Elham Ghoochani
2011-03-01
Full Text Available Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigue. Muscle fatigue in shoulders and neck is one of the most prevalent problems reported with computer users especially during typing. Surface electromyography (SEMG signals are used for detecting muscle fatigue as a non-invasive method. Material and Methods: Nine healthy females volunteered for signal recoding during typing. EMG signals were recorded from the trapezius muscle, which is subjected to muscle fatigue during typing. After signal analysis and feature extraction, detecting and predicting muscle fatigue was performed by using the MLP artificial neural network. Results: Recorded signals were analyzed in time and frequency domains for feature extraction. Results of classification showed that the MLP neural network can detect and predict muscle fatigue during typing with 80.79 % ± 1.04% accuracy. Conclusion: Intelligent classification and prediction of muscle fatigue can have many applications in human factors engineering (ergonomics, rehabilitation engineering and biofeedback equipment for mitigating the injuries of repetitive works.
Directory of Open Access Journals (Sweden)
MINA HAGHDADI
2010-10-01
Full Text Available In the present work, a quantitative structure–activity relationship (QSAR method was used to predict the psychometric activity values (as mescaline unit, log MU of 48 phenylalkylamine derivatives from their density functional theory (DFT calculated molecular descriptors and an artificial neural network (ANN. In the first step, the molecular descriptors were obtained by DFT calculation at the 6-311G level of theory. Then the stepwise multiple linear regression method was employed to screen the descriptor spaces. In the next step, an artificial neural network and multiple linear regressions (MLR models were developed to construct nonlinear and linear QSAR models, respectively. The standard errors in the prediction of log MU by the MLR model were 0.398, 0.443 and 0.427 for training, internal and external test sets, respectively, while these values for the ANN model were 0.132, 0.197 and 0.202, respectively. The obtained results show the applicability of QSAR approaches by using ANN techniques in prediction of log MU of phenylalkylamine derivatives from their DFT-calculated molecular descriptors.
Statistical Modeling and Prediction for Tourism Economy Using Dendritic Neural Network.
Yu, Ying; Wang, Yirui; Gao, Shangce; Tang, Zheng
2017-01-01
With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model) is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model) to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient.
Directory of Open Access Journals (Sweden)
Qeethara Al-Shayea
2013-01-01
Full Text Available Protection of the environment from medical waste hazards is becoming a serious problem. There is a big relation between medical waste and disease injury. The main idea of this study is predict the relation between medical wastes and diseases in Hashemite Kingdom of Jordan using Artificial Neural Networks (ANNs model. There are six predictor parameters associated with solid and liquid wastes in the medical services sector which are affecting the diseases injury. This study deals with two types of diseases the first one is acute hepatitis and the other is typhoid. Generalized Regression Neural Network (GRNN is used to predict the diseases injury. It is noticed a significant improvement in the prediction made by GRNN due to its generalization property. Results showed that all six parameters associated with solid and liquid medical wastes which have the largest regression value affect the acute hepatitis injuries and the typhoid injuries. It is also showed that the medical waste affected the typhoid injuries in large percentage so the regression is very large.
Predicting all-cause risk of 30-day hospital readmission using artificial neural networks.
Jamei, Mehdi; Nisnevich, Aleksandr; Wetchler, Everett; Sudat, Sylvia; Liu, Eric
2017-01-01
Avoidable hospital readmissions not only contribute to the high costs of healthcare in the US, but also have an impact on the quality of care for patients. Large scale adoption of Electronic Health Records (EHR) has created the opportunity to proactively identify patients with high risk of hospital readmission, and apply effective interventions to mitigate that risk. To that end, in the past, numerous machine-learning models have been employed to predict the risk of 30-day hospital readmission. However, the need for an accurate and real-time predictive model, suitable for hospital setting applications still exists. Here, using data from more than 300,000 hospital stays in California from Sutter Health's EHR system, we built and tested an artificial neural network (NN) model based on Google's TensorFlow library. Through comparison with other traditional and non-traditional models, we demonstrated that neural networks are great candidates to capture the complexity and interdependency of various data fields in EHRs. LACE, the current industry standard, showed a precision (PPV) of 0.20 in identifying high-risk patients in our database. In contrast, our NN model yielded a PPV of 0.24, which is a 20% improvement over LACE. Additionally, we discussed the predictive power of Social Determinants of Health (SDoH) data, and presented a simple cost analysis to assist hospitalists in implementing helpful and cost-effective post-discharge interventions.
Directory of Open Access Journals (Sweden)
Fonseca Rasmus
2009-10-01
Full Text Available Abstract Background Predicting the three-dimensional structure of a protein from its amino acid sequence is currently one of the most challenging problems in bioinformatics. The internal structure of helices and sheets is highly recurrent and help reduce the search space significantly. However, random coil segments make up nearly 40% of proteins and they do not have any apparent recurrent patterns, which complicates overall prediction accuracy of protein structure prediction methods. Luckily, previous work has indicated that coil segments are in fact not completely random in structure and flanking residues do seem to have a significant influence on the dihedral angles adopted by the individual amino acids in coil segments. In this work we attempt to predict a probability distribution of these dihedral angles based on the flanking residues. While attempts to predict dihedral angles of coil segments have been done previously, none have, to our knowledge, presented comparable results for the probability distribution of dihedral angles. Results In this paper we develop an artificial neural network that uses an input-window of amino acids to predict a dihedral angle probability distribution for the middle residue in the input-window. The trained neural network shows a significant improvement (4-68% in predicting the most probable bin (covering a 30° × 30° area of the dihedral angle space for all amino acids in the data set compared to baseline statistics. An accuracy comparable to that of secondary structure prediction (≈ 80% is achieved by observing the 20 bins with highest output values. Conclusion Many different protein structure prediction methods exist and each uses different tools and auxiliary predictions to help determine the native structure. In this work the sequence is used to predict local context dependent dihedral angle propensities in coil-regions. This predicted distribution can potentially improve tertiary structure prediction
Energy Technology Data Exchange (ETDEWEB)
Souto, Kelling C.; Nunes, Wallace W. [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro, Nilopolis, RJ (Brazil). Lab. de Aplicacoes Computacionais; Machado, Marcelo D., E-mail: dornemd@eletronuclear.gov.b [ELETROBRAS Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Gerencia de Combustivel Nuclear - GCN.T
2011-07-01
Safety performance indicators have been developed to provide a quantitative indication of the performance and safety in various industry sectors. These indexes can provide assess to aspects ranging from production, design, and human performance up to management issues in accordance with policy, objectives and goals of the company. The use of safety performance indicators in nuclear power plants around the world is a reality. However, it is necessary to periodically set goal values. Such goals are targets relating to each of the indicators to be achieved by the plant over a predetermined period of operation. The current process of defining these goals is carried out by experts in a subjective way, based on actual data from the plant, and comparison with global indices. Artificial neural networks are computational techniques that present a mathematical model inspired by the neural structure of intelligent organisms that acquire knowledge through experience. This paper proposes an artificial neural network model aimed at predicting values of goals to be used in the evaluation of safety performance indicators for nuclear power plants. (author)
Energy Technology Data Exchange (ETDEWEB)
Souto, Kelling C.; Nunes, Wallace W. [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro, Nilopolis, RJ (Brazil). Lab. de Aplicacoes Computacionais; Machado, Marcelo D., E-mail: dornemd@eletronuclear.gov.b [ELETROBRAS Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Gerencia de Combustivel Nuclear - GCN.T
2011-07-01
Safety performance indicators have been developed to provide a quantitative indication of the performance and safety in various industry sectors. These indexes can provide assess to aspects ranging from production, design, and human performance up to management issues in accordance with policy, objectives and goals of the company. The use of safety performance indicators in nuclear power plants around the world is a reality. However, it is necessary to periodically set goal values. Such goals are targets relating to each of the indicators to be achieved by the plant over a predetermined period of operation. The current process of defining these goals is carried out by experts in a subjective way, based on actual data from the plant, and comparison with global indices. Artificial neural networks are computational techniques that present a mathematical model inspired by the neural structure of intelligent organisms that acquire knowledge through experience. This paper proposes an artificial neural network model aimed at predicting values of goals to be used in the evaluation of safety performance indicators for nuclear power plants. (author)
Corrigan, B W; Mayo, P R; Jamali, F
1997-02-01
Neural network (NN) computation is computer modeling based in part on simulation of the structure and function of the brain. These modeling techniques have been found useful as pattern recognition tools. In the present study, data including age, sex, height, weight, serum creatinine concentration, dose, dosing interval, and time of measurement were collected from 240 patients with various diseases being treated with gentamicin in a general hospital setting. The patient records were randomly divided into two sets: a training set of 220 patients used to develop relationships between input and output variables (peak and trough plasma concentrations) and a testing set (blinded from the NN) of 20 to test the NN. The network model was the back-propagation, feed-forward model. Various networks were tested, and the most accurate networks for peak and trough (calculated as mean percent error, root mean squared error of the testing group, and tau value between observed and predicted values) were reported. The results indicate that NNs can predict gentamicin serum concentrations accurately from various input data over a range of patient ages and renal function and may offer advantages over traditional dose prediction methods for gentamicin.
PREDICTION OF BOD AND COD OF A REFINERY WASTEWATER USING MULTILAYER ARTIFICIAL NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
Eldon Raj Rene
2008-06-01
Full Text Available In the recent past, artificial neural networks (ANNs have shown the ability to learn and capture non-linear static or dynamic behaviour among variables based on the given set of data. Since the knowledge of internal procedure is not necessary, the modelling can take place with minimum previous knowledge about the process through proper training of the network. In the present study, 12 ANN based models were proposed to predict the Biochemical Oxygen Demand (BOD5 and Chemical Oxygen Demand (COD concentrations of wastewater generated from the effluent treatment plant of a petrochemical industry. By employing the standard back error propagation (BEP algorithm, the network was trained with 103 data points for water quality indices such as Total Suspended Solids (TSS, Total Dissolved Solids (TDS, Phenol concentration, Ammoniacal Nitrogen (AMN, Total Organic Carbon (TOC and Kjeldahl’s Nitrogen (KJN to predict BOD and COD. After appropriate training, the network was tested with a separate test data and the best model was chosen based on the sum square error (training and percentage average relative error (% ARE for testing. The results from this study reveal that ANNs can be accurate and efficacious in predicting unknown concentrations of water quality parameters through its versatile training process.
Vuurpijl, L.G.
1998-01-01
In this thesis, two platforms for simulating artificial neural networks are discussed: MIMD-parallel processor systems as an execution platform and neurosimulators as a research and development platform. Because of the parallelism encountered in neural networks, distributed processor systems seem to
Vuurpijl, L.G.
1998-01-01
In this thesis, two platforms for simulating artificial neural networks are discussed: MIMD-parallel processor systems as an execution platform and neurosimulators as a research and development platform. Because of the parallelism encountered in neural networks, distributed processor systems seem to
Feed-forward neural network model for hunger and satiety related VAS score prediction
Krishnan, S.; Hendriks, H.F.J.; Hartvigsen, M.L.; Graaf, A.A. de
2016-01-01
Background: An artificial neural network approach was chosen to model the outcome of the complex signaling pathways in the gastro-intestinal tract and other peripheral organs that eventually produce the satiety feeling in the brain upon feeding. Methods: A multilayer feed-forward neural network was
Feed-forward neural network model for hunger and satiety related VAS score prediction
Krishnan, S.; Hendriks, H.F.J.; Hartvigsen, M.L.; Graaf, A.A. de
2016-01-01
Background: An artificial neural network approach was chosen to model the outcome of the complex signaling pathways in the gastro-intestinal tract and other peripheral organs that eventually produce the satiety feeling in the brain upon feeding. Methods: A multilayer feed-forward neural network was
Institute of Scientific and Technical Information of China (English)
Ghiasi Majid; Askarnejad Nematollah; Dindarloo Saeid R.; Shamsoddini Hamed
2016-01-01
The most important objective of blasting in open pit mines is rock fragmentation. Prediction of produced boulders (oversized crushed rocks) is a key parameter in designing blast patterns. In this study, the amount of boulder produced in blasting operations of Golegohar iron ore open pit mine, Iran was pre-dicted via multiple regression method and artificial neural networks. Results of 33 blasts in the mine were collected for modeling. Input variables were: joints spacing, density and uniaxial compressive strength of the intact rock, burden, spacing, stemming, bench height to burden ratio, and specific charge. The dependent variable was ratio of boulder volume to pattern volume. Both techniques were successful in predicting the ratio. In this study, the multiple regression method was superior with coefficient of determination and root mean squared error values of 0.89 and 0.19, respectively.
Artificial Neural Network Turbulent Modeling for Predicting the Pressure Drop of Nanofluid
Directory of Open Access Journals (Sweden)
M. S. Youssef
2013-10-01
Full Text Available An Artificial Neural Network (ANN model was developed to predict the pressure drop of titanium dioxide-water (TiO2-water. The model was developed based on experimentally measured data. Experimental measurements of fully developed turbulent flow in pipe at different particle volumetric concentrations, nanoparticle diameters, nanofluid temperature and Reynolds number were used to construct the proposed model. The ANN model was validated by comparing the predicted results with the experimental measured data at different experimental conditions. It was shown that, the present ANN model performed well in predicting the pressure drop of TiO2-water nanofluid under different flow conditions with a high degree of accuracy.
PREDICTING STUDENT ACADEMIC PERFORMANCE IN BLENDED LEARNING USING ARTIFICIAL NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
Nick Z. Zacharis
2016-09-01
Full Text Available Along with the spreading of online education, the importance of active support of students involved in online learning processes has grown. The application of artificial intelligence in education allows instructors to analyze data extracted from university servers, identify patterns of student behavior and develop interventions for struggling students. This study used student data stored in a Moodle server and predicted student success in course, based on four learning activities - communication via emails, collaborative content creation with wiki, content interaction measured by files viewed and self-evaluation through online quizzes. Next, a model based on the Multi-Layer Perceptron Neural Network was trained to predict student performance on a blended learning course environment. The model predicted the performance of students with correct classification rate, CCR, of 98.3%.
DEFF Research Database (Denmark)
Pedersen, Anders Gorm; Nielsen, Henrik
1997-01-01
Translation in eukaryotes does not always start at the first AUG in an mRNA, implying that context information also plays a role.This makes prediction of translation initiation sites a non-trivial task, especially when analysing EST and genome data where the entire mature mRNA sequence is not known...... and global sequence information. Furthermore, analysis of false predictions shows that AUGs in frame with the actual start codon are more frequently selected than out-of-frame AUGs, suggesting that our nteworks use reading frame detection. A number of conflicts between neural network predictions and database...... annotations are analysed in detail, leading to identification of possible database errors....
DELAMINATION PREDICTION IN DRILLING OF CFRP COMPOSITES USING ARTIFICIAL NEURAL NETWORK
Directory of Open Access Journals (Sweden)
K. PALANIKUMAR
2011-04-01
Full Text Available Carbon fibre reinforced plastic (CFRP materials play a major role in the applications of aeronautic, aerospace, sporting and transportation industries. Machining is indispensible and hence drilling of CFRP materials is considered in this present study with respect to spindle speed in rpm, drill size in mm and feed in mm/min. Delamination is one of the major defects to be dealt with. The experiments are carried out using computer numerical control machine and the results are applied to an artificial neural network (ANN for the prediction of delamination factor at the exit plane of the CFRP material. It is found that ANN model predicts the delamination for any given set of machining parameters with a maximum error of 0.81% and a minimum error of 0.03%. Thus an ANN model is highly suitable for the prediction of delamination in CFRP materials.
Application of neural networks and support vector machine for significant wave height prediction
Directory of Open Access Journals (Sweden)
Jadran Berbić
2017-07-01
Full Text Available For the purposes of planning and operation of maritime activities, information about wave height dynamics is of great importance. In the paper, real-time prediction of significant wave heights for the following 0.5–5.5 h is provided, using information from 3 or more time points. In the first stage, predictions are made by varying the quantity of significant wave heights from previous time points and various ways of using data are discussed. Afterwards, in the best model, according to the criteria of practicality and accuracy, the influence of wind is taken into account. Predictions are made using two machine learning methods – artificial neural networks (ANN and support vector machine (SVM. The models were built using the built-in functions of software Weka, developed by Waikato University, New Zealand.
Flare Occurrence Prediction based on Convolution Neural Network using SOHO MDI data
Yi, Kangwoo; Moon, Yong-Jae; Park, Eunsu; Shin, Seulki
2017-08-01
In this study we apply Convolution Neural Network(CNN) to solar flare occurrence prediction with various parameter options using the 00:00 UT MDI images from 1996 to 2010 (total 4962 images). We assume that only X, M and C class flares correspond to “flare occurrence” and the others to “non-flare”. We have attempted to look for the best options for the models with two CNN pre-trained models (AlexNet and GoogLeNet), by modifying training images and changing hyper parameters. Our major results from this study are as follows. First, the flare occurrence predictions are relatively good with about 80 % accuracies. Second, both flare prediction models based on AlexNet and GoogLeNet have similar results but AlexNet is faster than GoogLeNet. Third, modifying the training images to reduce the projection effect is not effective.
Chen, R. H.; Su, G. H.; Qiu, S. Z.; Fukuda, Kenji
2010-03-01
In this paper, an artificial neural network (ANN) for predicting critical heat flux (CHF) of concentric-tube open thermosiphon has been trained successfully based on the experimental data from the literature. The dimensionless input parameters of the ANN are density ratio, ρ l/ ρ v; the ratio of the heated tube length to the inner diameter of the outer tube, L/ D i; the ratio of frictional area, d i/( D i + d o); and the ratio of equivalent heated diameter to characteristic bubble size, D he/[ σ/ g( ρ l- ρ v)]0.5, the output is Kutateladze number, Ku. The predicted values of ANN are found to be in reasonable agreement with the actual values from the experiments with a mean relative error (MRE) of 8.46%. New correlations for predicting CHF were also proposed by using genetic algorithm (GA) and succeeded to correlate the existing CHF data with better accuracy than the existing empirical correlations.
Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction.
Li, Zhencai; Wang, Yang; Liu, Zhen
2016-01-01
The purpose of this work is to investigate the accurate trajectory tracking control of a wheeled mobile robot (WMR) based on the slip model prediction. Generally, a nonholonomic WMR may increase the slippage risk, when traveling on outdoor unstructured terrain (such as longitudinal and lateral slippage of wheels). In order to control a WMR stably and accurately under the effect of slippage, an unscented Kalman filter and neural networks (NNs) are applied to estimate the slip model in real time. This method exploits the model approximating capabilities of nonlinear state-space NN, and the unscented Kalman filter is used to train NN's weights online. The slip parameters can be estimated and used to predict the time series of deviation velocity, which can be used to compensate control inputs of a WMR. The results of numerical simulation show that the desired trajectory tracking control can be performed by predicting the nonlinear slip model.
Directory of Open Access Journals (Sweden)
Farzaneh Ahmadzadeh
2013-06-01
Full Text Available The liner of an ore grinding mill is a critical component in the grinding process, necessary for both high metal recovery and shell protection. From an economic point of view, it is important to keep mill liners in operation as long as possible, minimising the downtime for maintenance or repair. Therefore, predicting their wear is crucial. This paper tests different methods of predicting wear in the context of remaining height and remaining life of the liners. The key concern is to make decisions on replacement and maintenance without stopping the mill for extra inspection as this leads to financial savings. The paper applies linear multiple regression and artificial neural networks (ANN techniques to determine the most suitable methodology for predicting wear. The advantages of the ANN model over the traditional approach of multiple regression analysis include its high accuracy.
Neural network based prediction of roughing and finishing times in a hot strip mill
Directory of Open Access Journals (Sweden)
Colla, V.
2010-02-01
Full Text Available The paper presents a model based on neural networks which is able to predict the time required to pass the different gauges of a roughing and finishing mill as function of some slab features and process parameters. The final aim of the work is to increase the rolling efficiency while avoiding collisions and queues that cause time and energy losses. Neural networks are suitable to this prediction task as they are particularly able to cope with unknown non linear relationships between input and output variables. Moreover they can learn from real industrial data and therefore do not require prior assumptions or mathematical modelling of the process and transferability is ensured by the possibility to use different databases coming from different rolling mills. In the paper, two different kinds of neural network- based models have been proposed, their performances have been discussed and compared.
En este artículo se presenta un modelo basado en redes neuronales capaz de predecir el tiempo necesario para pasar las diferentes galgas de un tren desbastador y acabador en función de ciertas características del desbaste y parámetros de proceso. El objetivo final es aumentar la eficacia de la laminación evitando colisiones y colas que provoquen pérdidas de tiempo y energía. Se propone utilizar para esta tarea redes neuronales por su capacidad de predicción en aquellos casos en los que existen relaciones no lineales desconocidas entre las variables de entrada y las de salida. Además, son capaces de aprender de datos industriales reales y, por tanto, no requieren suposiciones previas o modelos matemáticos del proceso, estando la transferibilidad asegurada ya que es posible utilizar distintas bases de datos procedentes de diferentes trenes de laminación.
Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär
2017-02-01
The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.
Attenuation prediction for fade mitigation using neural network with in situ learning algorithm
Roy, Bijoy; Acharya, Rajat; Sivaraman, M. R.
2012-01-01
Increasing demand of bandwidth in communication satellites has forced satellite links to be designed in Ku bands and above. But at these frequencies, rain and other tropospheric elements result in large attenuation. To mitigate the tropospheric attenuation of microwave satellite signals above 10 GHz using any standard Fade Mitigation Technique (FMT), it is essential to have a priori knowledge about the level of attenuation. Hence, short-term rain attenuation prediction models play a key role in maintaining the link in which necessary compensation can be applied depending on the early information of attenuation. This paper presents a method of attenuation prediction using Adaptive Artificial Neural Network. Here In situ Learning Algorithm (ILA) has been used to enable the system to track the non-stationary nature of the attenuation. To validate this, Ku Band data, collected at three different sites in India have been used for the purpose of prediction. The performance of the algorithm is determined through the estimation of prediction accuracy by comparing the predicted values with the measured data. Results obtained using the mentioned technique shows considerably good accuracy even up to 20 s of prediction interval with acceptable ratio between the under and over predictions. The prediction performance is evaluated for different prediction intervals. Furthermore the present model is also compared with the persistence model and the relative performance is quantified.
Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network
Institute of Scientific and Technical Information of China (English)
Juan A. Lazzús
2011-01-01
Natural and chaotic time series are predicted using an artificial neural network (ANN) based on particle swarm optimization (PSO).Firstly,the hybrid ANN+PSO algorithm is applied on Mackey-Glass series in the short-term prediction x(t + 6),using the current value x(t) and the past values:x(t - 6),x(t - 12),x(t - 18).Then,this method is applied on solar radiation data using the values of the past years:x(t - 1),...,x(t - 4).The results show that the ANN+PSO method is a very powerful tool for making predictions of natural and chaotic time series.Chaotic time series is an important research and application area.Several models for time series data can have many forms and represent different stochastic processes.Time series contain much information about dynamic systems.[1] These systems are usually modeled by delay-differential equations.[2]%Natural and chaotic time series are predicted using an artificial neural network (ANN) based on particle swarm optimization (PSO). Firstly, the hybrid ANN+PSO algorithm is applied on Mackey-Glass series in the short-term prediction x(t + 6), using the current value x(t) and the past values: x(t - 6), x(t - 12), x(t - 18). Then, this method is applied on solar radiation data using the values of the past years: x(t - 1), ..., x(t - 4). The results show that the ANN+PSO method is a very powerful tool for making predictions of natural and chaotic time series.
Directory of Open Access Journals (Sweden)
Juliana Yim
2009-06-01
Full Text Available This paper looks at the ability of a relatively new technique, hybrid ANN’s, to predict corporate distress in Brazil. These models are compared with traditional statistical techniques and conventional ANN models. The results suggest that hybrid neural networks outperform all other models in predicting firms in financial distress one year prior to the event. This suggests that for researchers, policymakers and others interested in early warning systems, hybrid networks may be a useful tool for predicting firm failure.
Directory of Open Access Journals (Sweden)
Juliana Yim
2005-01-01
Full Text Available This paper looks at the ability of a relatively new technique, hybrid ANN's, to predict corporate distress in Brazil. These models are compared with traditional statistical techniques and conventional ANN models. The results suggest that hybrid neural networks outperform all other models in predicting firms in financial distress one year prior to the event. This suggests that for researchers, policymakers and others interested in early warning systems, hybrid networks may be a useful tool for predicting firm failure.
Directory of Open Access Journals (Sweden)
Shahram Paydar
2016-01-01
fine needle aspiration and surgical histopathology results. The results matched in 63.5% of subjects. On the other hand, fine needle aspiration biopsy results falsely predicted malignant thyroid nodules in 16% of cases (false-negative. In 20.5% of subjects, fine needle aspiration was falsely positive for thyroid malignancy. The Resilient back Propagation (RP training algorithm lead to acceptable accuracy in prediction for the designed artificial neural network (64.66% by the cross- validation method. Under the cross-validation method, a back propagation algorithm that used the resilient back propagation protocol - the accuracy in prediction for the trained artificial neural network was 64.66%. Conclusion: An extensive bio-statistically validated artificial neural network of certain clinical, paraclinical and individual given inputs (predictors has the capability to stratify the malignancy risk of a thyroid nodule in order to individualize patient care. This risk assessment model (tool can virtually minimize unnecessary diagnostic thyroid surgeries as well as FNA misleading.
Energy Technology Data Exchange (ETDEWEB)
Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)
1996-12-31
The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.
Directory of Open Access Journals (Sweden)
Yi-jun Liu
2015-12-01
Full Text Available Childhood nephrotic syndrome is a chronic disease harmful to growth of children. Scientific and accurate prediction of negative conversion days for children with nephrotic syndrome offers potential benefits for treatment of patients and helps achieve better cure effect. In this study, the improved backpropagation neural network with momentum is used for prediction. Momentum speeds up convergence and maintains the generalization performance of the neural network, and therefore overcomes weaknesses of the standard backpropagation algorithm. The three-tier network structure is constructed. Eight indicators including age, lgG, lgA and lgM, etc. are selected for network inputs. The scientific computing software of MATLAB and its neural network tools are used to create model and predict. The training sample of twenty-eight cases is used to train the neural network. The test sample of six typical cases belonging to six different age groups respectively is used to test the predictive model. The low mean absolute error of predictive results is achieved at 0.83. The experimental results of the small-size sample show that the proposed approach is to some degree applicable for the prediction of negative conversion days of childhood nephrotic syndrome.
Hartman, Jessica H; Cothren, Steven D; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A; Miller, Grover P
2013-07-01
Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (k(cat), K(m), and k(cat)/K(m)), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (k(cat) and K(m)) were more consistent with experimental values than those for catalytic efficiency (k(cat)/K(m)). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds.
Hartman, Jessica H.; Cothren, Steven D.; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A.; Miller, Grover P.
2013-01-01
Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (kcat, Km, and kcat/Km), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (kcat and Km) were more consistent with experimental values than those for catalytic efficiency (kcat/Km). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds. PMID:23673224
Artificial Neural Networks to Predict the Power Output of a PV Panel
Directory of Open Access Journals (Sweden)
Valerio Lo Brano
2014-01-01
Full Text Available The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs for the power energy output forecasting of photovoltaic (PV modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP, a recursive neural network (RNN, and a gamma memory (GM trained with the back propagation. In order to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air temperature, solar irradiance, and wind speed along with historical power output data available for the two test modules. The model validation was performed by comparing model predictions with power output data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting problem and identified the best topology.
Modeling and Prediction of Coal Ash Fusion Temperature based on BP Neural Network
Directory of Open Access Journals (Sweden)
Miao Suzhen
2016-01-01
Full Text Available Coal ash is the residual generated from combustion of coal. The ash fusion temperature (AFT of coal gives detail information on the suitability of a coal source for gasification procedures, and specifically to which extent ash agglomeration or clinkering is likely to occur within the gasifier. To investigate the contribution of oxides in coal ash to AFT, data of coal ash chemical compositions and Softening Temperature (ST in different regions of China were collected in this work and a BP neural network model was established by XD-APC PLATFORM. In the BP model, the inputs were the ash compositions and the output was the ST. In addition, the ash fusion temperature prediction model was obtained by industrial data and the model was generalized by different industrial data. Compared to empirical formulas, the BP neural network obtained better results. By different tests, the best result and the best configurations for the model were obtained: hidden layer nodes of the BP network was setted as three, the component contents (SiO2, Al2O3, Fe2O3, CaO, MgO were used as inputs and ST was used as output of the model.
Adaptive Predictive Inverse Control of Offshore Jacket Platform Based on Rough Neural Network
Institute of Scientific and Technical Information of China (English)
CUI Hong-yu; ZHAO De-you; ZHOU Ping
2009-01-01
The offshore jacket platform is a complex and time-varying nonlinear system,which can be excited of harmful vibration by external loads.It is difficult to obtain an ideal control performance for passive control methods or traditional active control methods based on accurate mathematic model.In this paper,an adaptive inverse control method is proposed on the basis of novel rough neural networks (RNN) to control the harmful vibration of the offshore jacket platform,and the offshore jacket platform model is established by dynamic stiffness matrix (DSM) method.Benefited from the nonlinear processing ability of the neural networks and data interpretation ability of the rough set theory,RNN is utilized to identify the predictive inverse model of the offshore jacket platform system.Then the identified model is used as the adaptive predictive inverse controller to control the harmful vibration caused by wave and wind loads,and to deal with the delay problem caused by signal transmission in the control process.The numerical results show that the constructed novel RNN has advantages such as clear structure,fast training speed and strong error-tolerance ability,and the proposed method based on RNN can effectively control the harmfid vibration of the offshore jacket platform.
Bakhtiarizadeh, Mohammad Reza; Moradi-Shahrbabak, Mohammad; Ebrahimi, Mansour; Ebrahimie, Esmaeil
2014-09-07
Due to the central roles of lipid binding proteins (LBPs) in many biological processes, sequence based identification of LBPs is of great interest. The major challenge is that LBPs are diverse in sequence, structure, and function which results in low accuracy of sequence homology based methods. Therefore, there is a need for developing alternative functional prediction methods irrespective of sequence similarity. To identify LBPs from non-LBPs, the performances of support vector machine (SVM) and neural network were compared in this study. Comprehensive protein features and various techniques were employed to create datasets. Five-fold cross-validation (CV) and independent evaluation (IE) tests were used to assess the validity of the two methods. The results indicated that SVM outperforms neural network. SVM achieved 89.28% (CV) and 89.55% (IE) overall accuracy in identification of LBPs from non-LBPs and 92.06% (CV) and 92.90% (IE) (in average) for classification of different LBPs classes. Increasing the number and the range of extracted protein features as well as optimization of the SVM parameters significantly increased the efficiency of LBPs class prediction in comparison to the only previous report in this field. Altogether, the results showed that the SVM algorithm can be run on broad, computationally calculated protein features and offers a promising tool in detection of LBPs classes. The proposed approach has the potential to integrate and improve the common sequence alignment based methods.
Peak Ground Acceleration Prediction by Artificial Neural Networks for Northwestern Turkey
Directory of Open Access Journals (Sweden)
Kemal Günaydın
2008-01-01
Full Text Available Three different artificial neural network (ANN methods, namely, feed-forward back-propagation (FFBP, radial basis function (RBF, and generalized regression neural networks (GRNNs were applied to predict peak ground acceleration (PGA. Ninety five three-component records from 15 ground motions that occurred in Northwestern Turkey between 1999 and 2001 were used during the applications. The earthquake moment magnitude, hypocentral distance, focal depth, and site conditions were used as inputs to estimate PGA for vertical (U-D, east-west (E-W, and north-south (N-S directions. The direction of the maximum PGA of the three components was also added to the input layer to obtain the maximum PGA. Testing stage results of three ANN methods indicated that the FFBPs were superior to the GRNN and the RBF for all directions. The PGA values obtained from the FFBP were modified by linear regression analysis. The results showed that these modifications increased the prediction performances.
Institute of Scientific and Technical Information of China (English)
ZHANG Wei; LIANG Cheng-hao
2005-01-01
Image processing technique was employed to analyze pitting corrosion morphologies of 304 stainless steel exposed to FeCl3 environments. BP neural network models were developed for the prediction of pitting corrosion mass loss using the obtained data of the total and the average pit areas which were extracted from pitting binary image. The results showed that the predicted results obtained by the 2-5-1 type BP neural network model are in good agreement with the experimental data of pitting corrosion mass loss. The maximum relative error of prediction is 6.78%.
Directory of Open Access Journals (Sweden)
Héliton Pandorfi
2016-06-01
Full Text Available ABSTRACT This study aimed to investigate the applicability of artificial neural networks (ANNs in the prediction of evapotranspiration of sweet pepper cultivated in a greenhouse. The used data encompass the second crop cycle, from September 2013 to February 2014, constituting 135 days of daily meteorological data, referring to the following variables: temperature and relative air humidity, wind speed and solar radiation (input variables, as well as evapotranspiration (output variable, determined using data obtained by load-cell weighing lysimeter. The recorded data were divided into three sets for training, testing and validation. The ANN learning model recognized the evapotranspiration patterns with acceptable accuracy, with mean square error of 0.005, in comparison to the data recorded in the lysimeter, with coefficient of determination of 0.87, demonstrating the best approximation for the 4-21-1 network architecture, with multilayers, error back-propagation learning algorithm and learning rate of 0.01.
Institute of Scientific and Technical Information of China (English)
GONG Huanchun
2014-01-01
In order to diagnose the unit economic performance online,the radial basis function (RBF) process neural network with two hidden layers was introduced to online prediction of steam turbine exhaust enthalpy.Thus,the model reflecting complicated relationship between the steam turbine exhaust enthalpy and the relative operation parameters was established.Moreover,the enthalpy of final stage extraction steam and exhaust from a 300 MW unit turbine was taken as the example to perform the online calculation. The results show that,the average relative error of this method is less than 1%,so the accuracy of this al-gorithm is higher than that of the BP neutral network.Furthermore,this method has advantages of high convergence rate,simple structure and high accuracy.
Li, Xiang; Peng, Ling; Yao, Xiaojing; Cui, Shaolong; Hu, Yuan; You, Chengzeng; Chi, Tianhe
2017-09-08
Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13-24 h prediction tasks (MAPE = 31.47%). Copyright © 2017 Elsevier Ltd. All rights reserved.
Cho, Kyung Hwa; Sthiannopkao, Suthipong; Pachepsky, Yakov A; Kim, Kyoung-Woong; Kim, Joon Ha
2011-11-01
The arsenic (As) contamination of groundwater has increasingly been recognized as a major global issue of concern. As groundwater resources are one of most important freshwater sources for water supplies in Southeast Asian countries, it is important to investigate the spatial distribution of As contamination and evaluate the health risk of As for these countries. The detection of As contamination in groundwater resources, however, can create a substantial labor and cost burden for Southeast Asian countries. Therefore, modeling approaches for As concentration using conventional on-site measurement data can be an alternative to quantify the As contamination. The objective of this study is to evaluate the predictive performance of four different models; specifically, multiple linear regression (MLR), principal component regression (PCR), artificial neural network (ANN), and the combination of principal components and an artificial neural network (PC-ANN) in the prediction of As concentration, and to provide assessment tools for Southeast Asian countries including Cambodia, Laos, and Thailand. The modeling results show that the prediction accuracy of PC-ANN (Nash-Sutcliffe model efficiency coefficients: 0.98 (traning step) and 0.71 (validation step)) is superior among the four different models. This finding can be explained by the fact that the PC-ANN not only solves the problem of collinearity of input variables, but also reflects the presence of high variability in observed As concentrations. We expect that the model developed in this work can be used to predict As concentrations using conventional water quality data obtained from on-site measurements, and can further provide reliable and predictive information for public health management policies. Copyright © 2011 Elsevier Ltd. All rights reserved.
Prediction Model of Soil Nutrients Loss Based on Artificial Neural Network
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian － River basin. The results by calculating show that the solution based on BP algorithms are consis tent with those based multiple－variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible.
Zhang, Xingyu; Kim, Joyce; Patzer, Rachel E; Pitts, Stephen R; Patzer, Aaron; Schrager, Justin D
2017-08-16
To describe and compare logistic regression and neural network modeling strategies to predict hospital admission or transfer following initial presentation to Emergency Department (ED) triage with and without the addition of natural language processing elements. Using data from the National Hospital Ambulatory Medical Care Survey (NHAMCS), a cross-sectional probability sample of United States EDs from 2012 and 2013 survey years, we developed several predictive models with the outcome being admission to the hospital or transfer vs. discharge home. We included patient characteristics immediately available after the patient has presented to the ED and undergone a triage process. We used this information to construct logistic regression (LR) and multilayer neural network models (MLNN) which included natural language processing (NLP) and principal component analysis from the patient's reason for visit. Ten-fold cross validation was used to test the predictive capacity of each model and receiver operating curves (AUC) were then calculated for each model. Of the 47,200 ED visits from 642 hospitals, 6,335 (13.42%) resulted in hospital admission (or transfer). A total of 48 principal components were extracted by NLP from the reason for visit fields, which explained 75% of the overall variance for hospitalization. In the model including only structured variables, the AUC was 0.824 (95% CI 0.818-0.830) for logistic regression and 0.823 (95% CI 0.817-0.829) for MLNN. Models including only free-text information generated AUC of 0.742 (95% CI 0.731- 0.753) for logistic regression and 0.753 (95% CI 0.742-0.764) for MLNN. When both structured variables and free text variables were included, the AUC reached 0.846 (95% CI 0.839-0.853) for logistic regression and 0.844 (95% CI 0.836-0.852) for MLNN. The predictive accuracy of hospital admission or transfer for patients who presented to ED triage overall was good, and was improved with the inclusion of free text data from a patient
An artificial neural network to predict resting energy expenditure in obesity.
Disse, Emmanuel; Ledoux, Séverine; Bétry, Cécile; Caussy, Cyrielle; Maitrepierre, Christine; Coupaye, Muriel; Laville, Martine; Simon, Chantal
2017-09-01
The resting energy expenditure (REE) determination is important in nutrition for adequate dietary prescription. The gold standard i.e. indirect calorimetry is not available in clinical settings. Thus, several predictive equations have been developed, but they lack of accuracy in subjects with extreme weight including obese populations. Artificial neural networks (ANN) are useful predictive tools in the area of artificial intelligence, used in numerous clinical fields. The aim of this study was to determine the relevance of ANN in predicting REE in obesity. A Multi-Layer Perceptron (MLP) feed-forward neural network with a back propagation algorithm was created and cross-validated in a cohort of 565 obese subjects (BMI within 30-50 kg m(-2)) with weight, height, sex and age as clinical inputs and REE measured by indirect calorimetry as output. The predictive performances of ANN were compared to those of 23 predictive REE equations in the training set and in two independent sets of 100 and 237 obese subjects for external validation. Among the 23 established prediction equations for REE evaluated, the Harris & Benedict equations recalculated by Roza were the most accurate for the obese population, followed by the USA DRI, Müller and the original Harris & Benedict equations. The final 5-fold cross-validated three-layer 4-3-1 feed-forward back propagation ANN model developed in that study improved precision and accuracy of REE prediction over linear equations (precision = 68.1%, MAPE = 8.6% and RMSPE = 210 kcal/d), independently from BMI subgroups within 30-50 kg m(-2). External validation confirmed the better predictive performances of ANN model (precision = 73% and 65%, MAPE = 7.7% and 8.6%, RMSPE = 187 kcal/d and 200 kcal/d in the 2 independent datasets) for the prediction of REE in obese subjects. We developed and validated an ANN model for the prediction of REE in obese subjects that is more precise and accurate than established REE predictive
Tang, S. Y.; Lee, J. S.; Loh, S. P.; Tham, H. J.
2017-06-01
The objectives of this study were to use Artificial Neural Network (ANN) to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of process variables such as concentration of osmotic solution, immersion temperature and immersion time on the above mentioned physical properties were studied. The colour of the samples was measured using a colorimeter and the net colour difference changes, ΔE were determined. The texture was measured in terms of hardness by using a Texture Analyzer. As for the shrinkage, displacement of volume method was applied and percentage of shrinkage was obtained in terms of volume changes. A feed-forward backpropagation network with sigmoidal function was developed and best network configuration was chosen based on the highest correlation coefficients between the experimental values versus predicted values. As a comparison, Response Surface Methodology (RSM) statistical analysis was also employed. The performances of both RSM and ANN modelling were evaluated based on absolute average deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability as compared to RSM. The relative importance of the variables on the physical properties were also determined by using connection weight approach in ANN. It was found that solution concentration showed the highest influence on all three physical properties.
Predicting body fat percentage based on gender, age and BMI by using artificial neural networks.
Kupusinac, Aleksandar; Stokić, Edita; Doroslovački, Rade
2014-02-01
In the human body, the relation between fat and fat-free mass (muscles, bones etc.) is necessary for the diagnosis of obesity and prediction of its comorbidities. Numerous formulas, such as Deurenberg et al., Gallagher et al., Jackson and Pollock, Jackson et al. etc., are available to predict body fat percentage (BF%) from gender (GEN), age (AGE) and body mass index (BMI). These formulas are all fairly similar and widely applicable, since they provide an easy, low-cost and non-invasive prediction of BF%. This paper presents a program solution for predicting BF% based on artificial neural network (ANN). ANN training, validation and testing are done by randomly divided dataset that includes 2755 subjects: 1332 women (GEN = 0) and 1423 men (GEN = 1), with AGE from 18 to 88 y and BMI from 16.60 to 64.60 kg/m(2). BF% was estimated by using Tanita bioelectrical impedance measurements (Tanita Corporation, Tokyo, Japan). ANN inputs are: GEN, AGE and BMI, and output is BF%. The predictive accuracy of our solution is 80.43%. The main goal of this paper is to promote a new approach to predicting BF% that has same complexity and costs but higher predictive accuracy than above-mentioned formulas.
Dynamic prediction of gas emission based on wavelet neural network toolbox
Institute of Scientific and Technical Information of China (English)
Yu-Min PAN; Yong-Hong DENG; Quan-Zhu ZHANG; Peng-Qian XUE
2013-01-01
This paper presents a method for dynamically predicting gas emission quantity based on the wavelet neural network (WNN) toolbox.Such a method is able to predict the gas emission quantity in adjacent subsequent time intervals through training the WNN with even time-interval samples.The method builds successive new model with the width of sliding window remaining invariable so as to obtain a dynamic prediction method for gas emission quantity.Furthermore,the method performs prediction by a self-developed WNN toolbox.Experiments indicate that such a model can overcome the deficiencies of the traditional static prediction model and can fully make use of the feature extraction capability of wavelet base function to reflect the geological feature of gas emission quantity dynamically.The method is characterized by simplicity,flexibility,small data scale,fast convergence rate and high prediction precision.In addition,the method is also characterized by certainty and repeatability of the predicted results.The effectiveness of this method is confirmed by simulation results.Therefore,this method will exert practical significance on promoting the application of WNN.
DEFF Research Database (Denmark)
Buus, S; Lauemøller, S L; Worning, P
2003-01-01
We have generated Artificial Neural Networks (ANN) capable of performing sensitive, quantitative predictions of peptide binding to the MHC class I molecule, HLA-A*0204. We have shown that such quantitative ANN are superior to conventional classification ANN, that have been trained to predict...
Li, Qiongge; Chan, Maria F
2017-01-01
Over half of cancer patients receive radiotherapy (RT) as partial or full cancer treatment. Daily quality assurance (QA) of RT in cancer treatment closely monitors the performance of the medical linear accelerator (Linac) and is critical for continuous improvement of patient safety and quality of care. Cumulative longitudinal QA measurements are valuable for understanding the behavior of the Linac and allow physicists to identify trends in the output and take preventive actions. In this study, artificial neural networks (ANNs) and autoregressive moving average (ARMA) time-series prediction modeling techniques were both applied to 5-year daily Linac QA data. Verification tests and other evaluations were then performed for all models. Preliminary results showed that ANN time-series predictive modeling has more advantages over ARMA techniques for accurate and effective applicability in the dosimetry and QA field.
A hybrid neural network system for prediction and recognition of promoter regions in human genome
Institute of Scientific and Technical Information of China (English)
CHEN Chuan-bo; LI Tao
2005-01-01
This paper proposes a high specificity and sensitivity algorithm called PromPredictor for recognizing promoter regions in the human genome. PromPredictor extracts compositional features and CpG islands information from genomic sequence,feeding these features as input for a hybrid neural network system (HNN) and then applies the HNN for prediction. It combines a novel promoter recognition model, coding theory, feature selection and dimensionality reduction with machine learning algorithm.Evaluation on Human chromosome 22 was ～66% in sensitivity and ～48% in specificity. Comparison with two other systems revealed that our method had superior sensitivity and specificity in predicting promoter regions. PromPredictor is written in MATLAB and requires Matlab to run. PromPredictor is freely available at http://www.whtelecom.com/Prompredictor.htm.
Energy Technology Data Exchange (ETDEWEB)
Banu, P. S. Noori; Rani, S. Devaki [Dept. of Metallurgical Engineering, Jawaharlal Nehru Technological University, HyderabadI (India)
2016-08-15
In view of emerging applications of alpha+beta titanium alloys in aerospace and defense, we have aimed to develop a Back propagation neural network (BPNN) model capable of predicting the properties of these alloys as functions of alloy composition and/or thermomechanical processing parameters. The optimized BPNN model architecture was based on the sigmoid transfer function and has one hidden layer with ten nodes. The BPNN model showed excellent predictability of five properties: Tensile strength (r: 0.96), yield strength (r: 0.93), beta transus (r: 0.96), specific heat capacity (r: 1.00) and density (r: 0.99). The developed BPNN model was in agreement with the experimental data in demonstrating the individual effects of alloying elements in modulating the above properties. This model can serve as the platform for the design and development of new alpha+beta titanium alloys in order to attain desired strength, density and specific heat capacity.
Energy Technology Data Exchange (ETDEWEB)
Mohebbi, Ali; Taheri, Mahboobeh; Soltani, Ataollah [Department of Chemical Engineering, College of Engineering, Shahid Bahonar University of Kerman, Kerman (Iran)
2008-12-15
In this study, a new approach for the auto-design of a neural network based on genetic algorithm (GA) has been used to predict saturated liquid density for 19 pure and 6 mixed refrigerants. The experimental data including Pitzer's acentric factor, reduced temperature and reduced saturated liquid density have been used to create a GA-ANN model. The results from the model are compared with the experimental data, Hankinson and Thomson and Riedel methods, and Spencer and Danner modification of Rackett methods. GA-ANN model is the best for the prediction of liquid density with an average of absolute percent deviation of 1.46 and 3.53 for 14 pure and 6 mixed refrigerants, respectively. (author)
Neural Network for the Prediction of Retrofitting/Reconditioning/Upgradation cost of CNC Machines
Directory of Open Access Journals (Sweden)
BHUPENDRA MISHRA
2011-10-01
Full Text Available The main objective of this paper is to predict the Retrofitting/Reconditioning/Upgradation cost of used CNC Machines in manufacturing industries so as to optimize the capital investments on these activities. I find that neural network can be used to predict these costs, as there is no known relationship between the cost underconsideration and the factors responsible for the retrofitting/reconditioning/upgradation. Although few replacement model based on depreciation value of the CNC Machine, but this model fails to account the effect of technological obsolescence, mechanical condition of the machine and the substantial change in the productiontechnology and valid only for the capital retirement, but not able to determine the Retrofitting/Reconditioning/Up-gradation projects and their costing.
Radial Basis Function Neural Networks Based QSPR for the Prediction of log P
Institute of Scientific and Technical Information of China (English)
姚小军; 范波涛; 等
2002-01-01
Quantitative structure-property relationship(QSPR) method is used to study the correlation models between the structures of a set of diverse organic compounds and their log P.Molecular descriptors calculated from strucure alone are used to describe the molecular structures.A subset of the calcualted descriptors,selected using forward stepwise regression,is used in the QSPR models development.Multiple linear regression (MLR) and radial basis function neural networks (RBFNNs) are utilied to construct the linear and non-linear correlation model,respectively,The optimal QSPR model developed is based on a 7-17-1 RBFNNs architecture using sever calculated molecular descriptors .The root mean square errors in predictions for the training,predicting and overall data sets are 0.284,0.327 and 0.291 log P units respectively.
Constructive neural network learning
Lin, Shaobo; Zeng, Jinshan; Zhang, Xiaoqin
2016-01-01
In this paper, we aim at developing scalable neural network-type learning systems. Motivated by the idea of "constructive neural networks" in approximation theory, we focus on "constructing" rather than "training" feed-forward neural networks (FNNs) for learning, and propose a novel FNNs learning system called the constructive feed-forward neural network (CFN). Theoretically, we prove that the proposed method not only overcomes the classical saturation problem for FNN approximation, but also ...
Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network
Energy Technology Data Exchange (ETDEWEB)
Susmikanti, Mike, E-mail: mike@batan.go.id [Center for Development of Nuclear Informatics, National Nuclear Energy Agency, PUSPIPTEK, Tangerang (Indonesia); Sulistyo, Jos, E-mail: soj@batan.go.id [Center for Nuclear Facilities Engineering, National Nuclear Energy Agency, PUSPIPTEK, Tangerang (Indonesia)
2014-09-30
Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to develop code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix.
Bernazzani, Luca; Duce, Celia; Micheli, Alessio; Mollica, Vincenzo; Sperduti, Alessandro; Starita, Antonina; Tiné, Maria Rosaria
2006-01-01
In this paper, we report on the potential of a recently developed neural network for structures applied to the prediction of physical chemical properties of compounds. The proposed recursive neural network (RecNN) model is able to directly take as input a structured representation of the molecule and to model a direct and adaptive relationship between the molecular structure and target property. Therefore, it combines in a learning system the flexibility and general advantages of a neural network model with the representational power of a structured domain. As a result, a completely new approach to quantitative structure-activity relationship/quantitative structure-property relationship (QSPR/QSAR) analysis is obtained. An original representation of the molecular structures has been developed accounting for both the occurrence of specific atoms/groups and the topological relationships among them. Gibbs free energy of solvation in water, Delta(solv)G degrees , has been chosen as a benchmark for the model. The different approaches proposed in the literature for the prediction of this property have been reconsidered from a general perspective. The advantages of RecNN as a suitable tool for the automatization of fundamental parts of the QSPR/QSAR analysis have been highlighted. The RecNN model has been applied to the analysis of the Delta(solv)G degrees in water of 138 monofunctional acyclic organic compounds and tested on an external data set of 33 compounds. As a result of the statistical analysis, we obtained, for the predictive accuracy estimated on the test set, correlation coefficient R = 0.9985, standard deviation S = 0.68 kJ mol(-1), and mean absolute error MAE = 0.46 kJ mol(-1). The inherent ability of RecNN to abstract chemical knowledge through the adaptive learning process has been investigated by principal components analysis of the internal representations computed by the network. It has been found that the model recognizes the chemical compounds on the
Energy Technology Data Exchange (ETDEWEB)
Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com [Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi (India); Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001 (India); Gupta, Shikha; Rai, Premanjali [Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi (India); Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001 (India)
2013-10-15
Robust global models capable of discriminating positive and non-positive carcinogens; and predicting carcinogenic potency of chemicals in rodents were developed. The dataset of 834 structurally diverse chemicals extracted from Carcinogenic Potency Database (CPDB) was used which contained 466 positive and 368 non-positive carcinogens. Twelve non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals and nonlinearity in the data were evaluated using Tanimoto similarity index and Brock–Dechert–Scheinkman statistics. Probabilistic neural network (PNN) and generalized regression neural network (GRNN) models were constructed for classification and function optimization problems using the carcinogenicity end point in rat. Validation of the models was performed using the internal and external procedures employing a wide series of statistical checks. PNN constructed using five descriptors rendered classification accuracy of 92.09% in complete rat data. The PNN model rendered classification accuracies of 91.77%, 80.70% and 92.08% in mouse, hamster and pesticide data, respectively. The GRNN constructed with nine descriptors yielded correlation coefficient of 0.896 between the measured and predicted carcinogenic potency with mean squared error (MSE) of 0.44 in complete rat data. The rat carcinogenicity model (GRNN) applied to the mouse and hamster data yielded correlation coefficient and MSE of 0.758, 0.71 and 0.760, 0.46, respectively. The results suggest for wide applicability of the inter-species models in predicting carcinogenic potency of chemicals. Both the PNN and GRNN (inter-species) models constructed here can be useful tools in predicting the carcinogenicity of new chemicals for regulatory purposes. - Graphical abstract: Figure (a) shows classification accuracies (positive and non-positive carcinogens) in rat, mouse, hamster, and pesticide data yielded by optimal PNN model. Figure (b) shows generalization and predictive
Neural Network Modeling and Prediction of Methane Fraction in Biogas from Landfill Bioreactors
Directory of Open Access Journals (Sweden)
A Ghavidel
2009-09-01
Full Text Available "n "nBackgrounds and Objectives:A number of different technologies have recently been studied todetermine the best use of biogas, however, to choose optimize technologies of using biogas for energy recovery it is necessary to monitor and predict the methane percentage of biogas. In this study, a method is proposed for predicting the methane fraction in landfill gas originating from Labscalelandfill bioreactors, based on neural network."nMaterials and Methods: In this study, two different systems were applied, to predict the methane fraction in landfill gas as a final product of anaerobic digestion, we used the leachate specifications as input parameters. In system I (C1, the leachate generated from a fresh-waste reactor was drained to recirculation tank, and recycled. In System II (C2, the leachate generated from a fresh waste landfill reactor was fed through a well-decomposed refuse landfill reactor, and at the same time, the leachate generated from a well-decomposed refuse landfill reactor recycled to a fresh waste landfill reactor."nResults: There is very good agreement in the trends between forecasted and measured data. R valuesare 0.999 and 0.997, and the obtained Root mean square error values are 1.098 and 2.387 for training and test data, respectively"nConclusion: The proposed method can significantly predict the methane fraction in landfill gasoriginating and, consequently, neural network can be use to optimize the dimensions of a plant using biogas for energy (i.e. heat and/or electricity recovery and monitoring system.
Directory of Open Access Journals (Sweden)
Petros-Pavlos Ypsilantis
Full Text Available Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient's response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a "radiomics" approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models.
Ypsilantis, Petros-Pavlos; Siddique, Musib; Sohn, Hyon-Mok; Davies, Andrew; Cook, Gary; Goh, Vicky; Montana, Giovanni
2015-01-01
Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient's response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a "radiomics" approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models.
Shin, Dae-Kyu; Lee, Dae-Young; Kim, Kyung-Chan; Hwang, Junga; Kim, Jaehun
2016-04-01
Geosynchronous satellites are often exposed to energetic electrons, the flux of which varies often to a large extent. Since the electrons can cause irreparable damage to the satellites, efforts to develop electron flux prediction models have long been made until recently. In this study, we adopt a neural network scheme to construct a prediction model for the geosynchronous electron flux in a wide energy range (40 keV to >2 MeV) and at a high time resolution (as based on 5 min resolution data). As the model inputs, we take the solar wind variables, geomagnetic indices, and geosynchronous electron fluxes themselves. We also take into account the magnetic local time (MLT) dependence of the geosynchronous electron fluxes. We use the electron data from two geosynchronous satellites, GOES 13 and 15, and apply the same neural network scheme separately to each of the GOES satellite data. We focus on the dependence of prediction capability on satellite's magnetic latitude and MLT as well as particle energy. Our model prediction works less efficiently for magnetic latitudes more away from the equator (thus for GOES 13 than for GOES 15) and for MLTs nearer to midnight than noon. The magnetic latitude dependence is most significant for an intermediate energy range (a few hundreds of keV), and the MLT dependence is largest for the lowest energy (40 keV). We interpret this based on degree of variance in the electron fluxes, which depends on magnetic latitude and MLT at geosynchronous orbit as well as particle energy. We demonstrate how substorms affect the flux variance.
Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M; Aguiar, Javier M; Carro, Belén
2012-10-17
This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.
Directory of Open Access Journals (Sweden)
Belén Carro
2012-10-01
Full Text Available This paper presents a system based on an Artificial Neural Network (ANN for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN. A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.
Institute of Scientific and Technical Information of China (English)
ZHANGHui—ning; XUAn-jun; CUIJian; HEDong—feng; TIANNai——yuan
2012-01-01
In order to improve the accuracy of model for terminative temperature in steelmaking, it is necessary to predict and control before decarburization. Thus, an optimization neural network model of terminative temperature in the process of dephosphorization by laying correlative degree weights to all input factors related was used. Then sim- ulation experiment of model newly established is conducted utilizing 210 data from a domestic steel plant. The results show that hit rate arrives at 56.45~~ when error is within plus or minus 5%, and the value is 100% when within ~10%. Comparing to the traditional neural network prediction model, the accuracy almost increases by 6. 839o//oo. Thus, the simulation prediction fits the real perfectly, which accounts for that neural network model for terminative tempera- ture based on grey theory can reflect accurately the practice in dephosphorization. Naturally, this method is effective and nraeticahle.
Institute of Scientific and Technical Information of China (English)
Qiuwang WANG; Gongnan XIE; Ming ZENG; Laiqin LUO
2006-01-01
This work used artificial neural network (ANN) to predict the heat transfer rates of shell-and-tube heat exchangers with segmental baffles or continuous helical baffles, based on limited experimental data. The Back Propagation (BP) algorithm was used in training the networks. Different network configurations were also studied. The deviation between the predicted results and experimental data was less than 2%. Comparison with correlation for prediction shows ANN superiority. It is recommended that ANN can be easily used to predict the performances of thermal systems in engineering applications, especially to model heat exchangers for heat transfer analysis.
Generalized classifier neural network.
Ozyildirim, Buse Melis; Avci, Mutlu
2013-03-01
In this work a new radial basis function based classification neural network named as generalized classifier neural network, is proposed. The proposed generalized classifier neural network has five layers, unlike other radial basis function based neural networks such as generalized regression neural network and probabilistic neural network. They are input, pattern, summation, normalization and output layers. In addition to topological difference, the proposed neural network has gradient descent based optimization of smoothing parameter approach and diverge effect term added calculation improvements. Diverge effect term is an improvement on summation layer calculation to supply additional separation ability and flexibility. Performance of generalized classifier neural network is compared with that of the probabilistic neural network, multilayer perceptron algorithm and radial basis function neural network on 9 different data sets and with that of generalized regression neural network on 3 different data sets include only two classes in MATLAB environment. Better classification performance up to %89 is observed. Improved classification performances proved the effectivity of the proposed neural network.
Directory of Open Access Journals (Sweden)
S.O. Starkov
2017-06-01
Full Text Available Reactors with heavy water coolants and moderators have been used extensively in today's power industry. Monitoring of the moderator condition plays an important role in ensuring normal operation of a power plant. A cellular neural network, the architecture of which has been adapted for hardware implementation, is proposed for use in a system for prediction of the heavy water moderator temperature. A reactor model composed in accordance with the CANDU Darlington heavy water reactor design was used to form the training sample collection and to control correct operation of the neural network structure. The sample components for the adjustment and configuration of the network topology include key parameters that characterize the energy generation process in the core. The paper considers the feasibility of the temperature prediction only for the calandria's central cross-section. To solve this problem, the cellular neural network architecture has been designed, and major parts of the digital computational element and methods for their implementation based on an FPLD have also been developed. The method is described for organizing an optical coupling between individual neural modules within the network, which enables not only the restructuring of the topology in the training process, but also the assignment of priorities for the propagation of the information signals of neurons depending on the activity in a situation analysis at the neural network structure inlet. Asynchronous activation of cells was used based on an oscillating fractal network, the basis for which was a modified ring oscillator. The efficiency of training the proposed architecture using stochastic diffusion search algorithms is evaluated. A comparative analysis of the model behavior and the results of the neural network operation have shown that the use of the neural network approach is effective in safety systems of power plants.
Olawoyin, Richard
2016-10-01
The backpropagation (BP) artificial neural network (ANN) is a renowned and extensively functional mathematical tool used for time-series predictions and approximations; which also define results for non-linear functions. ANNs are vital tools in the predictions of toxicant levels, such as polycyclic aromatic hydrocarbons (PAH) potentially derived from anthropogenic activities in the microenvironment. In the present work, BP ANN was used as a prediction tool to study the potential toxicity of PAH carcinogens (PAHcarc) in soils. Soil samples (16 × 4 = 64) were collected from locations in South-southern Nigeria. The concentration of PAHcarc in laboratory cultivated white melilot, Melilotus alba roots grown on treated soils was predicted using ANN model training. Results indicated the Levenberg-Marquardt back-propagation training algorithm converged in 2.5E+04 epochs at an average RMSE value of 1.06E-06. The averagedR(2) comparison between the measured and predicted outputs was 0.9994. It may be deduced from this study that, analytical processes involving environmental risk assessment as used in this study can successfully provide prompt prediction and source identification of major soil toxicants.
EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm
Kim, Seong Gon; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali
2016-12-01
We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation.
Energy Technology Data Exchange (ETDEWEB)
Lin, Jing-Fung, E-mail: jacklin@cc.feu.edu.tw [Department of Industrial Design, Far East University, Taiwan, ROC (China); Sheu, Jer-Jia [Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Taiwan, ROC (China)
2016-06-01
Citric acid coated (citrate-stabilized) magnetite (Fe{sub 3}O{sub 4}) magnetic nanoparticles have been conducted and applied in the biomedical fields. Using Taguchi-based measured retardances as the training data, an artificial neural network (ANN) model was developed for the prediction of retardance in citric acid (CA) coated ferrofluid (FF). According to the ANN simulation results in the training stage, the correlation coefficient between predicted retardances and measured retardances was found to be as high as 0.9999998. Based on the well-trained ANN model, the predicted retardance at excellent program from Taguchi method showed less error of 2.17% compared with a multiple regression (MR) analysis of statistical significance. Meanwhile, the parameter analysis at excellent program by the ANN model had the guiding significance to find out a possible program for the maximum retardance. It was concluded that the proposed ANN model had high ability for the prediction of retardance in CA coated FF. - Highlights: • The feedforward ANN is applied for modeling of retardance in CA coated FFs. • ANN can predict the retardance at excellent program with acceptable error to MR. • The proposed ANN has high ability for the prediction of retardance.
Directory of Open Access Journals (Sweden)
Montri Inthachot
2016-01-01
Full Text Available This study investigated the use of Artificial Neural Network (ANN and Genetic Algorithm (GA for prediction of Thailand’s SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid’s prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span.
Jump neural network for real-time prediction of glucose concentration.
Zecchin, Chiara; Facchinetti, Andrea; Sparacino, Giovanni; Cobelli, Claudio
2015-01-01
Prediction of the future value of a variable is of central importance in a wide variety of fields, including economy and finance, meteorology, informatics, and, last but not least important, medicine. For example, in the therapy of Type 1 Diabetes (T1D), in which, for patient safety, glucose concentration in the blood should be maintained in a defined normoglycemic range, the ability to forecast glucose concentration in the short-term (with a prediction horizon of around 30 min) might be sufficient to reduce the incidence of hypoglycemic and hyperglycemic events. Neural Network (NN) approaches are suitable for prediction purposes because of their ability to model nonlinear dynamics and handle in their inputs signals coming from different domains. In this chapter we illustrate the design of a jump NN glucose prediction algorithm that exploits past glucose concentration data, measured in real-time by a minimally invasive continuous glucose monitoring (CGM) sensor, and information on ingested carbohydrates, supplied by the patient himself or herself. The methodology is assessed by tuning the NN on data of ten T1D individuals and then testing it on a dataset of ten different subjects. Results with a prediction horizon of 30 min show that prediction of glucose concentration in T1D via NN is feasible and sufficiently accurate. The average time anticipation obtained is compatible with the generation of preventive hypoglycemic and hyperglycemic alerts and the improvement of artificial pancreas performance.
Qiu, Mingyue; Song, Yu
2016-01-01
In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders' expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day's price of the Japanese stock market index by using an optimized artificial neural network (ANN) model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA). We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately.
Nair, Archana; Singh, Gurjeet; Mohanty, U. C.
2017-08-01
The monthly prediction of summer monsoon rainfall is very challenging because of its complex and chaotic nature. In this study, a non-linear technique known as Artificial Neural Network (ANN) has been employed on the outputs of Global Climate Models (GCMs) to bring out the vagaries inherent in monthly rainfall prediction. The GCMs that are considered in the study are from the International Research Institute (IRI) (2-tier CCM3v6) and the National Centre for Environmental Prediction (Coupled-CFSv2). The ANN technique is applied on different ensemble members of the individual GCMs to obtain monthly scale prediction over India as a whole and over its spatial grid points. In the present study, a double-cross-validation and simple randomization technique was used to avoid the over-fitting during training process of the ANN model. The performance of the ANN-predicted rainfall from GCMs is judged by analysing the absolute error, box plots, percentile and difference in linear error in probability space. Results suggest that there is significant improvement in prediction skill of these GCMs after applying the ANN technique. The performance analysis reveals that the ANN model is able to capture the year to year variations in monsoon months with fairly good accuracy in extreme years as well. ANN model is also able to simulate the correct signs of rainfall anomalies over different spatial points of the Indian domain.
Neural Network Based Response Prediction of rTMS in Major Depressive Disorder Using QEEG Cordance
Ozekes, Serhat; Gultekin, Selahattin; Tarhan, Nevzat; Hizli Sayar, Gokben; Bayram, Ali
2015-01-01
Objective The combination of repetitive transcranial magnetic stimulation (rTMS), a non-pharmacological form of therapy for treating major depressive disorder (MDD), and electroencephalogram (EEG) is a valuable tool for investigating the functional connectivity in the brain. This study aims to explore whether pre-treating frontal quantitative EEG (QEEG) cordance is associated with response to rTMS treatment among MDD patients by using an artificial intelligence approach, artificial neural network (ANN). Methods The artificial neural network using pre-treatment cordance of frontal QEEG classification was carried out to identify responder or non-responder to rTMS treatment among 55 MDD subjects. The classification performance was evaluated using k-fold cross-validation. Results The ANN classification identified responders to rTMS treatment with a sensitivity of 93.33%, and its overall accuracy reached to 89.09%. Area under Receiver Operating Characteristic (ROC) curve (AUC) value for responder detection using 6, 8 and 10 fold cross validation were 0.917, 0.823 and 0.894 respectively. Conclusion Potential utility of ANN approach method can be used as a clinical tool in administering rTMS therapy to a targeted group of subjects suffering from MDD. This methodology is more potentially useful to the clinician as prediction is possible using EEG data collected before this treatment process is initiated. It is worth using feature selection algorithms to raise the sensitivity and accuracy values. PMID:25670947
Predictive ion source control using artificial neural network for RFT-30 cyclotron
Energy Technology Data Exchange (ETDEWEB)
Kong, Young Bae, E-mail: ybkong@kaeri.re.kr; Hur, Min Goo; Lee, Eun Je; Park, Jeong Hoon; Park, Yong Dae; Yang, Seung Dae
2016-01-11
An RFT-30 cyclotron is a 30 MeV proton accelerator for radioisotope production and fundamental research. The ion source of the RFT-30 cyclotron creates plasma from hydrogen gas and transports an ion beam into the center region of the cyclotron. Ion source control is used to search source parameters for best quality of the ion beam. Ion source control in a real system is a difficult and time consuming task, and the operator should search the source parameters by manipulating the cyclotron directly. In this paper, we propose an artificial neural network based predictive control approach for the RFT-30 ion source. The proposed approach constructs the ion source model by using an artificial neural network and finds the optimized parameters with the simulated annealing algorithm. To analyze the performance of the proposed approach, we evaluated the simulations with the experimental data of the ion source. The performance results show that the proposed approach can provide an efficient way to analyze and control the ion source of the RFT-30 cyclotron.
Chellali, M R; Abderrahim, H; Hamou, A; Nebatti, A; Janovec, J
2016-07-01
Neural network (NN) models were evaluated for the prediction of suspended particulates with aerodynamic diameter less than 10-μm (PM10) concentrations. The model evaluation work considered the sequential hourly concentration time series of PM10, which were measured at El Hamma station in Algiers. Artificial neural network models were developed using a combination of meteorological and time-scale as input variables. The results were rather satisfactory, with values of the coefficient of correlation (R (2)) for independent test sets ranging between 0.60 and 0.85 and values of the index of agreement (IA) between 0.87 and 0.96. In addition, the root mean square error (RMSE), the mean absolute error (MAE), the normalized mean squared error (NMSE), the absolute relative percentage error (ARPE), the fractional bias (FB), and the fractional variance (FS) were calculated to assess the performance of the model. It was seen that the overall performance of model 3 was better than models 1 and 2.