Hidden Neural Networks: A Framework for HMM/NN Hybrids
DEFF Research Database (Denmark)
Riis, Søren Kamaric; Krogh, Anders Stærmose
1997-01-01
This paper presents a general framework for hybrids of hidden Markov models (HMM) and neural networks (NN). In the new framework called hidden neural networks (HNN) the usual HMM probability parameters are replaced by neural network outputs. To ensure a probabilistic interpretation the HNN...... HMMs on TIMIT continuous speech recognition benchmarks. On the task of recognizing five broad phoneme classes an accuracy of 84% is obtained compared to 76% for a standard HMM. Additionally, we report a preliminary result of 69% accuracy on the TIMIT 39 phoneme task...
Neural networks (NN applied to the commercial properties valuation
Directory of Open Access Journals (Sweden)
J. M. Núñez Tabales
2017-03-01
Full Text Available Several agents, such as buyers and sellers, or local or tax authorities need to estimate the value of properties. There are different approaches to obtain the market price of a dwelling. Many papers have been produced in the academic literature for such purposes, but, these are, almost always, oriented to estimate hedonic prices of residential properties, such as houses or apartments. Here these methodologies are used in the field of estimate market price of commercial premises, using AI techniques. A case study is developed in Cordova —city in the South of Spain—. Neural Networks are an attractive alternative to the traditional hedonic modelling approaches, as they are better adapted to non-linearities of causal relationships and they also produce smaller valuation errors. It is also possible, from the NN model, to obtain implicit prices associated to the main attributes that can explain the variability of the market price of commercial properties.
A high performance k-NN approach using binary neural networks
Hodge, V J; Lees, K J; Austin, J L
2004-01-01
This paper evaluates a novel k-nearest neighbour (k-NN) classifier built from binary neural networks. The binary neural approach uses robust encoding to map standard ordinal, categorical and numeric data sets onto a binary neural network. The binary neural network uses high speed pattern matching to recall a candidate set of matching records, which are then processed by a conventional k-NN approach to determine the k-best matches. We compare various configurations of the binary approach to a ...
DEFF Research Database (Denmark)
Nielsen, Morten; Lund, Ole
2009-01-01
this binding event. RESULTS: Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the training data...... class II alleles, and is demonstrated to outperform other state-of-the-art MHC class II prediction methods. CONCLUSION: The NN-align method is competitive with the state-of-the-art MHC class II peptide binding prediction algorithms. The method is publicly available at http://www.cbs.dtu.dk/services/Net...
Directory of Open Access Journals (Sweden)
Lund Ole
2009-09-01
Full Text Available Abstract Background The major histocompatibility complex (MHC molecule plays a central role in controlling the adaptive immune response to infections. MHC class I molecules present peptides derived from intracellular proteins to cytotoxic T cells, whereas MHC class II molecules stimulate cellular and humoral immunity through presentation of extracellularly derived peptides to helper T cells. Identification of which peptides will bind a given MHC molecule is thus of great importance for the understanding of host-pathogen interactions, and large efforts have been placed in developing algorithms capable of predicting this binding event. Results Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the training data due to redundant binding core representation. Incorporation of information about the residues flanking the peptide-binding core is shown to significantly improve the prediction accuracy. The method is evaluated on a large-scale benchmark consisting of six independent data sets covering 14 human MHC class II alleles, and is demonstrated to outperform other state-of-the-art MHC class II prediction methods. Conclusion The NN-align method is competitive with the state-of-the-art MHC class II peptide binding prediction algorithms. The method is publicly available at http://www.cbs.dtu.dk/services/NetMHCII-2.0.
Segal-Rosenhaimer, M.; Knobelspiesse, K. D.; Redemann, J.; Cairns, B.; Alexandrov, M. D.
2016-12-01
The ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign is taking place in the South-East Atlantic during the Austral Spring for three consecutive years from 2016-2018. The study area encompasses one of the Earth's three semi-permanent subtropical Stratocumulus (Sc) cloud decks, and experiences very large aerosol optical depths, mainly biomass burning, originating from Africa. Over time, cloud optical depth (COD), lifetime and cloud microphysics (number concentration, effective radii Reff and precipitation) are expected to be influenced by indirect aerosol effects. These changes play a key role in the energetic balance of the region, and are part of the core investigation objectives of the ORACLES campaign, which acquires measurements of clean and polluted scenes of above cloud aerosols (ACA). Simultaneous retrievals of aerosol and cloud optical properties are being developed (e.g. MODIS, OMI), but still challenging, especially for passive, single viewing angle instruments. By comparison, multiangle polarimetric instruments like RSP (Research Scanning Polarimeter) show promise for detection and quantification of ACA, however, there are no operational retrieval algorithms available yet. Here we describe a new algorithm to retrieve cloud and aerosol optical properties from observations by RSP flown on the ER-2 and P-3 during the 2016 ORACLES campaign. The algorithm is based on training a NN, and is intended to retrieve aerosol and cloud properties simultaneously. However, the first step was to establish the retrieval scheme for low level Sc cloud optical properties. The NN training was based on simulated RSP total and polarized radiances for a range of COD, Reff, and effective variances, spanning 7 wavelength bands and 152 viewing zenith angles. Random and correlated noise were added to the simulations to achieve a more realistic representation of the signals. Before introducing the input variables to the network, the signals are projected
Kamaruddin, Saadi Bin Ahmad; Marponga Tolos, Siti; Hee, Pah Chin; Ghani, Nor Azura Md; Ramli, Norazan Mohamed; Nasir, Noorhamizah Binti Mohamed; Ksm Kader, Babul Salam Bin; Saiful Huq, Mohammad
2017-03-01
Neural framework has for quite a while been known for its ability to handle a complex nonlinear system without a logical model and can learn refined nonlinear associations gives. Theoretically, the most surely understood computation to set up the framework is the backpropagation (BP) count which relies on upon the minimization of the mean square error (MSE). However, this algorithm is not totally efficient in the presence of outliers which usually exist in dynamic data. This paper exhibits the modelling of quadriceps muscle model by utilizing counterfeit smart procedures named consolidated backpropagation neural network nonlinear autoregressive (BPNN-NAR) and backpropagation neural network nonlinear autoregressive moving average (BPNN-NARMA) models in view of utilitarian electrical incitement (FES). We adapted particle swarm optimization (PSO) approach to enhance the performance of backpropagation algorithm. In this research, a progression of tests utilizing FES was led. The information that is gotten is utilized to build up the quadriceps muscle model. 934 preparing information, 200 testing and 200 approval information set are utilized as a part of the improvement of muscle model. It was found that both BPNN-NAR and BPNN-NARMA performed well in modelling this type of data. As a conclusion, the neural network time series models performed reasonably efficient for non-linear modelling such as active properties of the quadriceps muscle with one input, namely output namely muscle force.
Hidden neural networks: application to speech recognition
DEFF Research Database (Denmark)
Riis, Søren Kamaric
1998-01-01
We evaluate the hidden neural network HMM/NN hybrid on two speech recognition benchmark tasks; (1) task independent isolated word recognition on the Phonebook database, and (2) recognition of broad phoneme classes in continuous speech from the TIMIT database. It is shown how hidden neural networks...
Directory of Open Access Journals (Sweden)
Schwindling Jerome
2010-04-01
Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.
New Neural Network Methods for Forecasting Regional Employment
Patuelli, R.; Reggiani, A; Nijkamp, P.; Blien, U.
2006-01-01
In this paper, a set of neural network (NN) models is developed to compute short-term forecasts of regional employment patterns in Germany. Neural networks are modern statistical tools based on learning algorithms that are able to process large amounts of data. Neural networks are enjoying
Artificial astrocytes improve neural network performance.
Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-04-19
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
Introduction to neural networks
James, Frederick E
1994-02-02
1. Introduction and overview of Artificial Neural Networks. 2,3. The Feed-forward Network as an inverse Problem, and results on the computational complexity of network training. 4.Physics applications of neural networks.
Neural Network-Based Segmentation of Textures Using Gabor Features
Ramakrishnan, AG; Raja, Kumar S; Ram, Ragu HV
2002-01-01
The effectiveness of Gabor filters for texture segmentation is well known. In this paper, we propose a texture identification scheme, based on a neural network (NN) using Gabor features. The features are derived from both the Gabor cosine and sine filters. Through experiments, we demonstrate the effectiveness of a NN based classifier using Gabor features for identifying textures in a controlled environment. The neural network used for texture identification is based on the multilayer perceptr...
Composite learning from adaptive backstepping neural network control.
Pan, Yongping; Sun, Tairen; Liu, Yiqi; Yu, Haoyong
2017-11-01
In existing neural network (NN) learning control methods, the trajectory of NN inputs must be recurrent to satisfy a stringent condition termed persistent excitation (PE) so that NN parameter convergence is obtainable. This paper focuses on command-filtered backstepping adaptive control for a class of strict-feedback nonlinear systems with functional uncertainties, where an NN composite learning technique is proposed to guarantee convergence of NN weights to their ideal values without the PE condition. In the NN composite learning, spatially localized NN approximation is employed to handle functional uncertainties, online historical data together with instantaneous data are exploited to generate prediction errors, and both tracking errors and prediction errors are employed to update NN weights. The influence of NN approximation errors on the control performance is also clearly shown. The distinctive feature of the proposed NN composite learning is that NN parameter convergence is guaranteed without the requirement of the trajectory of NN inputs being recurrent. Illustrative results have verified effectiveness and superiority of the proposed method compared with existing NN learning control methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prototype-Incorporated Emotional Neural Network.
Oyedotun, Oyebade K; Khashman, Adnan
2017-08-15
Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.
Energy Technology Data Exchange (ETDEWEB)
Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)
1996-12-31
The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.
PyNN: A Common Interface for Neuronal Network Simulators
Davison, Andrew P.; Brüderle, Daniel; Eppler, Jochen; Kremkow, Jens; Muller, Eilif; Pecevski, Dejan; Perrinet, Laurent; Yger, Pierre
2008-01-01
Computational neuroscience has produced a diversity of software for simulations of networks of spiking neurons, with both negative and positive consequences. On the one hand, each simulator uses its own programming or configuration language, leading to considerable difficulty in porting models from one simulator to another. This impedes communication between investigators and makes it harder to reproduce and build on the work of others. On the other hand, simulation results can be cross-checked between different simulators, giving greater confidence in their correctness, and each simulator has different optimizations, so the most appropriate simulator can be chosen for a given modelling task. A common programming interface to multiple simulators would reduce or eliminate the problems of simulator diversity while retaining the benefits. PyNN is such an interface, making it possible to write a simulation script once, using the Python programming language, and run it without modification on any supported simulator (currently NEURON, NEST, PCSIM, Brian and the Heidelberg VLSI neuromorphic hardware). PyNN increases the productivity of neuronal network modelling by providing high-level abstraction, by promoting code sharing and reuse, and by providing a foundation for simulator-agnostic analysis, visualization and data-management tools. PyNN increases the reliability of modelling studies by making it much easier to check results on multiple simulators. PyNN is open-source software and is available from http://neuralensemble.org/PyNN. PMID:19194529
PyNN: a common interface for neuronal network simulators
Directory of Open Access Journals (Sweden)
Andrew P Davison
2009-01-01
Full Text Available Computational neuroscience has produced a diversity of software for simulations of networks of spiking neurons, with both negative and positive consequences. On the one hand, each simulator uses its own programming or configuration language, leading to considerable difficulty in porting models from one simulator to another. This impedes communication between investigators and makes it harder to reproduce and build on the work of others. On the other hand, simulation results can be cross-checked between different simulators, giving greater confidence in their correctness, and each simulator has different optimizations, so the most appropriate simulator can be chosen for a given modelling task. A common programming interface to multiple simulators would reduce or eliminate the problems of simulator diversity while retaining the benefits. PyNN is such an interface, making it possible to write a simulation script once, using the Python programming language, and run it without modification on any supported simulator (currently NEURON, NEST, PCSIM, Brian and the Heidelberg VLSI neuromorphic hardware. PyNN increases the productivity of neuronal network modelling by providing high-level abstraction, by promoting code sharing and reuse, and by providing a foundation for simulator-agnostic analysis, visualization, and data-management tools. PyNN increases the reliability of modelling studies by making it much easier to check results on multiple simulators. PyNN is open-source software and is available from http://neuralensemble.org/PyNN.
Communication: Fitting potential energy surfaces with fundamental invariant neural network
Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H.
2016-08-01
A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.
Energy Technology Data Exchange (ETDEWEB)
Ammi, Yamina; Khaouane, Latifa; Hanini, Salah [University of Medea, Medea (Algeria)
2015-11-15
This work investigates the use of neural networks in modeling the rejection processes of organic compounds (neutral and ionic) by nanofiltration and reverse osmosis membranes. Three feed-forward neural network (NN) models, characterized by a similar structure (eleven neurons for NN1 and NN2 and twelve neurons for NN3 in the input layer, one hidden layer and one neuron in the output layer), are constructed with the aim of predicting the rejection of organic compounds (neutral and ionic). A set of 956 data points for NN1 and 701 data points for NN2 and NN3 were used to test the neural networks. 80%, 10%, and 10% of the total data were used, respectively, for the training, the validation, and the test of the three models. For the most promising neural network models, the predicted rejection values of the test dataset were compared to measured rejections values; good correlations were found (R= 0.9128 for NN1, R=0.9419 for NN2, and R=0.9527 for NN3). The root mean squared errors for the total dataset were 11.2430% for NN1, 9.0742% for NN2, and 8.2047% for NN3. Furthermore, the comparison between the predicted results and QSAR models shows that the neural network models gave far better.
Neural Networks for the Extraction of the ΛC Signal in p-Pb collisions at √sNN = 5.02 TeV
Giampaolo, Alberto
2016-01-01
The charmed baryon ΛC is of interest for the characterization of the quark-gluon plasma (QGP) created in Pb-Pb collisions, due to its sensitivity to c-quark thermalization and to the hadronization mechanisms. The measurement in pp an p-Pb collisions is of interest both as a reference for the Pb- Pb result and in the context of recent observations suggesting the possible creation of a QGP in small colliding systems. This project is focused on the study of the extraction of the ΛC signal in p-Pb collisions with the ALICE detector, through the usage of deep learning, a machine learning technique. In a few weeks we were able to reproduce the results of the existing BDT analysis with a simple shallow networks. In the 6 to 8 pT bin, deep networks using low-level variables get close to the performance of the topological variable analysis, but with the architectures tested in this project they do not seem to be able to outperform it.
Assessment of neural networks performance in modeling rainfall ...
African Journals Online (AJOL)
This paper presents the evaluation of performance of Neural Network (NN) model in predicting the behavioral pattern of rainfall depths of some locations in the North Central zones of Nigeria. The input to the model is the consecutive rainfall depths data obtained from the Nigerian Meteorological (NiMET) Agency. The neural ...
Manikumari, N.; Murugappan, A.; Vinodhini, G.
2017-07-01
Time series forecasting has gained remarkable interest of researchers in the last few decades. Neural networks based time series forecasting have been employed in various application areas. Reference Evapotranspiration (ETO) is one of the most important components of the hydrologic cycle and its precise assessment is vital in water balance and crop yield estimation, water resources system design and management. This work aimed at achieving accurate time series forecast of ETO using a combination of neural network approaches. This work was carried out using data collected in the command area of VEERANAM Tank during the period 2004 – 2014 in India. In this work, the Neural Network (NN) models were combined by ensemble learning in order to improve the accuracy for forecasting Daily ETO (for the year 2015). Bagged Neural Network (Bagged-NN) and Boosted Neural Network (Boosted-NN) ensemble learning were employed. It has been proved that Bagged-NN and Boosted-NN ensemble models are better than individual NN models in terms of accuracy. Among the ensemble models, Boosted-NN reduces the forecasting errors compared to Bagged-NN and individual NNs. Regression co-efficient, Mean Absolute Deviation, Mean Absolute Percentage error and Root Mean Square Error also ascertain that Boosted-NN lead to improved ETO forecasting performance.
Artificial Neural Network for Displacement Vectors Determination
Directory of Open Access Journals (Sweden)
P. Bohmann
1997-09-01
Full Text Available An artificial neural network (NN for displacement vectors (DV determination is presented in this paper. DV are computed in areas which are essential for image analysis and computer vision, in areas where are edges, lines, corners etc. These special features are found by edges operators with the following filtration. The filtration is performed by a threshold function. The next step is DV computation by 2D Hamming artificial neural network. A method of DV computation is based on the full search block matching algorithms. The pre-processing (edges finding is the reason why the correlation function is very simple, the process of DV determination needs less computation and the structure of the NN is simpler.
Directory of Open Access Journals (Sweden)
P.-Y. Chen
2009-01-01
Full Text Available This study proposes a neural network-family competition genetic algorithm (NN-FCGA for solving the electromagnetic (EM optimization and other general-purpose optimization problems. The NN-FCGA is a hybrid evolutionary-based algorithm, combining the good approximation performance of neural network (NN and the robust and effective optimum search ability of the family competition genetic algorithms (FCGA to accelerate the optimization process. In this study, the NN-FCGA is used to extract a set of optimal design parameters for two representative design examples: the multiple section low-pass filter and the polygonal electromagnetic absorber. Our results demonstrate that the optimal electromagnetic properties given by the NN-FCGA are comparable to those of the FCGA, but reducing a large amount of computation time and a well-trained NN model that can serve as a nonlinear approximator was developed during the optimization process of the NN-FCGA.
Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Ziaul Huque
2007-08-31
This is the final technical report for the project titled 'Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks'. The aim of the project was to develop an efficient chemistry model for combustion simulations. The reduced chemistry model was developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) was used via a new network topology known as Non-linear Principal Components Analysis (NPCA). A commonly used Multilayer Perceptron Neural Network (MLP-NN) was modified to implement NPCA-NN. The training rate of NPCA-NN was improved with the GEneralized Regression Neural Network (GRNN) based on kernel smoothing techniques. Kernel smoothing provides a simple way of finding structure in data set without the imposition of a parametric model. The trajectory data of the reaction mechanism was generated based on the optimization techniques of genetic algorithm (GA). The NPCA-NN algorithm was then used for the reduction of Dimethyl Ether (DME) mechanism. DME is a recently discovered fuel made from natural gas, (and other feedstock such as coal, biomass, and urban wastes) which can be used in compression ignition engines as a substitute for diesel. An in-house two-dimensional Computational Fluid Dynamics (CFD) code was developed based on Meshfree technique and time marching solution algorithm. The project also provided valuable research experience to two graduate students.
Evolving neural networks using a genetic algorithm for heartbeat classification.
Sekkal, Mansouria; Chikh, Mohamed Amine; Settouti, Nesma
2011-07-01
This study investigates the effectiveness of a genetic algorithm (GA) evolved neural network (NN) classifier and its application to the classification of premature ventricular contraction (PVC) beats. As there is no standard procedure to determine the network structure for complicated cases, generally the design of the NN would be dependent on the user's experience. To prevent this problem, we propose a neural classifier that uses a GA for the determination of optimal connections between neurons for better recognition. The MIT-BIH arrhythmia database is employed to evaluate its accuracy. First, the topology of the NN was determined using the trial and error method. Second, the genetic operators were carefully designed to optimize the neural network structure. Performance and accuracy of the two techniques are presented and compared. Copyright © 2011 Informa UK, Ltd.
Neural Networks: Implementations and Applications
Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.
1996-01-01
Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas
Capacitive MEMS accelerometer wide range modeling using artificial neural network
A. Baharodimehr; A. Abolfazl Suratgar; H. Sadeghi
2009-01-01
This paper presents a nonlinear model for a capacitive microelectromechanical accelerometer (MEMA). System parameters ofthe accelerometer are developed using the effect of cubic term of the folded‐flexure spring. To solve this equation, we use theFEA method. The neural network (NN) uses the Levenberg‐Marquardt (LM) method for training the system to have a moreaccurate response. The designed NN can identify and predict the displacement of the movable mass of accelerometer. Thesimulation result...
Capacitive MEMS accelerometer wide range modeling using artificial neural network
Directory of Open Access Journals (Sweden)
A. Baharodimehr
2009-08-01
Full Text Available This paper presents a nonlinear model for a capacitive microelectromechanical accelerometer (MEMA. System parameters ofthe accelerometer are developed using the effect of cubic term of the folded‐flexure spring. To solve this equation, we use theFEA method. The neural network (NN uses the Levenberg‐Marquardt (LM method for training the system to have a moreaccurate response. The designed NN can identify and predict the displacement of the movable mass of accelerometer. Thesimulation results are very promising.
Prediction horizon effects on stochastic modelling hints for neural networks
Energy Technology Data Exchange (ETDEWEB)
Drossu, R.; Obradovic, Z. [Washington State Univ., Pullman, WA (United States)
1995-12-31
The objective of this paper is to investigate the relationship between stochastic models and neural network (NN) approaches to time series modelling. Experiments on a complex real life prediction problem (entertainment video traffic) indicate that prior knowledge can be obtained through stochastic analysis both with respect to an appropriate NN architecture as well as to an appropriate sampling rate, in the case of a prediction horizon larger than one. An improvement of the obtained NN predictor is also proposed through a bias removal post-processing, resulting in much better performance than the best stochastic model.
A Soft Technique for Measuring Friction Force Using Neural Network
Directory of Open Access Journals (Sweden)
Sunan HUANG
2011-10-01
Full Text Available There are two approaches to measure a friction force: force sensor, software estimation algorithm. This paper will focus on software approach to measure friction. The proposed approach uses a neural network (NN to approximate the friction force in a mechanical system. Since the friction force considered is a speed-dependent function, a learning algorithm is adopted to update the NN weights so as to follow unknown friction behaviors. The advantage of the proposed friction estimation method is that it is based on the built NN model, and it does not require the force sensor measurement. Simulation test is given to verify the effectiveness of the proposed approach.
DEFF Research Database (Denmark)
Krogh, Anders Stærmose; Riis, Søren Kamaric
1999-01-01
A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...
DEFF Research Database (Denmark)
Hansen, Lars Kai; Salamon, Peter
1990-01-01
We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....
Critical Branching Neural Networks
Kello, Christopher T.
2013-01-01
It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…
A Formal Method for Verification and Validation of Neural Network High Assurance Systems Project
National Aeronautics and Space Administration — Our proposed innovation is to develop neural network (NN) rule extraction technology to a level where it can be incorporated into a software tool, we are calling...
Padgett, Mary L.; Desai, Utpal; Roppel, T.A.; White, Charles R.
1993-01-01
A design procedure is suggested for neural networks which accommodates the inclusion of such knowledge-based systems techniques as fuzzy logic and pairwise comparisons. The use of these procedures in the design of applications combines qualitative and quantitative factors with empirical data to yield a model with justifiable design and parameter selection procedures. The procedure is especially relevant to areas of back-propagation neural network design which are highly responsive to the use of precisely recorded expert knowledge.
Large-scale Multi-label Text Classification - Revisiting Neural Networks
Nam, Jinseok; Kim, Jungi; Mencía, Eneldo Loza; Gurevych, Iryna; Fürnkranz, Johannes
2013-01-01
Neural networks have recently been proposed for multi-label classification because they are able to capture and model label dependencies in the output layer. In this work, we investigate limitations of BP-MLL, a neural network (NN) architecture that aims at minimizing pairwise ranking error. Instead, we propose to use a comparably simple NN approach with recently proposed learning techniques for large-scale multi-label text classification tasks. In particular, we show that BP-MLL's ranking lo...
Respiratory signal prediction based on adaptive boosting and multi-layer perceptron neural network
Sun, W. Z.; Jiang, M. Y.; Ren, L.; Dang, J.; You, T.; Yin, F.-F.
2017-09-01
To improve the prediction accuracy of respiratory signals using adaptive boosting and multi-layer perceptron neural network (ADMLP-NN) for gated treatment of moving target in radiation therapy. The respiratory signals acquired using a real-time position management (RPM) device from 138 previous 4DCT scans were retrospectively used in this study. The ADMLP-NN was composed of several artificial neural networks (ANNs) which were used as weaker predictors to compose a stronger predictor. The respiratory signal was initially smoothed using a Savitzky-Golay finite impulse response smoothing filter (S-G filter). Then, several similar multi-layer perceptron neural networks (MLP-NNs) were configured to estimate future respiratory signal position from its previous positions. Finally, an adaptive boosting (Adaboost) decision algorithm was used to set weights for each MLP-NN based on the sample prediction error of each MLP-NN. Two prediction methods, MLP-NN and ADMLP-NN (MLP-NN plus adaptive boosting), were evaluated by calculating correlation coefficient and root-mean-square-error between true and predicted signals. For predicting 500 ms ahead of prediction, average correlation coefficients were improved from 0.83 (MLP-NN method) to 0.89 (ADMLP-NN method). The average of root-mean-square-error (relative unit) for 500 ms ahead of prediction using ADMLP-NN were reduced by 27.9%, compared to those using MLP-NN. The preliminary results demonstrate that the ADMLP-NN respiratory prediction method is more accurate than the MLP-NN method and can improve the respiration prediction accuracy.
Hyperbolic Hopfield neural networks.
Kobayashi, M
2013-02-01
In recent years, several neural networks using Clifford algebra have been studied. Clifford algebra is also called geometric algebra. Complex-valued Hopfield neural networks (CHNNs) are the most popular neural networks using Clifford algebra. The aim of this brief is to construct hyperbolic HNNs (HHNNs) as an analog of CHNNs. Hyperbolic algebra is a Clifford algebra based on Lorentzian geometry. In this brief, a hyperbolic neuron is defined in a manner analogous to a phasor neuron, which is a typical complex-valued neuron model. HHNNs share common concepts with CHNNs, such as the angle and energy. However, HHNNs and CHNNs are different in several aspects. The states of hyperbolic neurons do not form a circle, and, therefore, the start and end states are not identical. In the quantized version, unlike complex-valued neurons, hyperbolic neurons have an infinite number of states.
Padgett, Mary L. (Editor)
1993-01-01
The present conference discusses such neural networks (NN) related topics as their current development status, NN architectures, NN learning rules, NN optimization methods, NN temporal models, NN control methods, NN pattern recognition systems and applications, biological and biomedical applications of NNs, VLSI design techniques for NNs, NN systems simulation, fuzzy logic, and genetic algorithms. Attention is given to missileborne integrated NNs, adaptive-mixture NNs, implementable learning rules, an NN simulator for travelling salesman problem solutions, similarity-based forecasting, NN control of hypersonic aircraft takeoff, NN control of the Space Shuttle Arm, an adaptive NN robot manipulator controller, a synthetic approach to digital filtering, NNs for speech analysis, adaptive spline networks, an anticipatory fuzzy logic controller, and encoding operations for fuzzy associative memories.
Character Recognition Using Genetically Trained Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.
1998-10-01
Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the
Issues in the use of neural networks in information retrieval
Iatan, Iuliana F
2017-01-01
This book highlights the ability of neural networks (NNs) to be excellent pattern matchers and their importance in information retrieval (IR), which is based on index term matching. The book defines a new NN-based method for learning image similarity and describes how to use fuzzy Gaussian neural networks to predict personality. It introduces the fuzzy Clifford Gaussian network, and two concurrent neural models: (1) concurrent fuzzy nonlinear perceptron modules, and (2) concurrent fuzzy Gaussian neural network modules. Furthermore, it explains the design of a new model of fuzzy nonlinear perceptron based on alpha level sets and describes a recurrent fuzzy neural network model with a learning algorithm based on the improved particle swarm optimization method.
Introduction to Artificial Neural Networks
DEFF Research Database (Denmark)
Larsen, Jan
1999-01-01
The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....
Deconvolution using a neural network
Energy Technology Data Exchange (ETDEWEB)
Lehman, S.K.
1990-11-15
Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.
Artificial neural network modelling
Samarasinghe, Sandhya
2016-01-01
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .
Villarreal, James A.
1991-01-01
A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.
Kontrol Kecepatan Motor Induksi menggunakan Algoritma Backpropagation Neural Network
Directory of Open Access Journals (Sweden)
MUHAMMAD RUSWANDI DJALAL
2017-07-01
Full Text Available ABSTRAKBanyak strategi kontrol berbasis kecerdasan buatan telah diusulkan dalam penelitian seperti Fuzzy Logic dan Artificial Neural Network (ANN. Tujuan dari penelitian ini adalah untuk mendesain sebuah kontrol agar kecepatan motor induksi dapat diatur sesuai kebutuhan serta membandingkan kinerja motor induksi tanpa kontrol dan dengan kontrol. Dalam penelitian ini diusulkan sebuah metode artificial neural network untuk mengontrol kecepatan motor induksi tiga fasa. Kecepatan referensi motor diatur pada kecepatan 140 rad/s, 150 rad/s, dan 130 rad/s. Perubahan kecepatan diatur pada setiap interval 0.3 detik dan waktu simulasi maksimum adalah 0,9 detik. Kasus 1 tanpa kontrol, menunjukkan respon torka dan kecepatan dari motor induksi tiga fasa tanpa kontrol. Meskipun kecepatan motor induksi tiga fasa diatur berubah pada setiap 0,3 detik tidak akan mempengaruhi torka. Selain itu, motor induksi tiga fasa tanpa kontrol memiliki kinerja yang buruk dikarenakan kecepatan motor induksi tidak dapat diatur sesuai dengan kebutuhan. Kasus 2 dengan control backpropagation neural network, meskipun kecepatan motor induksi tiga fasa berubah pada setiap 0.3 detik tidak akan mempengaruhi torsi. Selain itu, kontrol backpropagation neural network memiliki kinerja yang baik dikarenakan kecepatan motor induksi dapat diatur sesuai dengan kebutuhan.Kata kunci: Backpropagation Neural Network (BPNN, NN Training, NN Testing, Motor.ABSTRACTMany artificial intelligence-based control strategies have been proposed in research such as Fuzzy Logic and Artificial Neural Network (ANN. The purpose of this research was design a control for the induction motor speed that could be adjusted as needed and compare the performance of induction motor without control and with control. In this research, it was proposed an artificial neural network method to control the speed of three-phase induction motors. The reference speed of motor was set at the rate of 140 rad / s, 150 rad / s, and 130
Neural networks for triggering
Energy Technology Data Exchange (ETDEWEB)
Denby, B. (Fermi National Accelerator Lab., Batavia, IL (USA)); Campbell, M. (Michigan Univ., Ann Arbor, MI (USA)); Bedeschi, F. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy)); Chriss, N.; Bowers, C. (Chicago Univ., IL (USA)); Nesti, F. (Scuola Normale Superiore, Pisa (Italy))
1990-01-01
Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.
Development of Ensemble Neural Network Convection Parameterizations for Climate Models
Energy Technology Data Exchange (ETDEWEB)
Fox-Rabinovitz, M. S.; Krasnopolsky, V. M.
2012-05-02
The novel neural network (NN) approach has been formulated and used for development of a NN ensemble stochastic convection parametrization for climate models. This fast parametrization is built based on data from Cloud Resolving Model (CRM) simulations initialized with and forced by TOGA-COARE data. The SAM (System for Atmospheric Modeling), developed by D. Randall, M. Khairoutdinov, and their collaborators, has been used for CRM simulations. The observational data are also used for validation of model simulations. The SAM-simulated data have been averaged and projected onto the GCM space of atmospheric states to implicitly define a stochastic convection parametrization. This parametrization is emulated using an ensemble of NNs. An ensemble of NNs with different NN parameters has been trained and tested. The inherent uncertainty of the stochastic convection parametrization derived in such a way is estimated. Due to these inherent uncertainties, NN ensemble is used to constitute a stochastic NN convection parametrization. The developed NN convection parametrization have been validated in a diagnostic CAM (CAM-NN) run vs. the control CAM run. Actually, CAM inputs have been used, at every time step of the control/original CAM integration, for parallel calculations of the NN convection parametrization (CAM-NN) to produce its outputs as a diagnostic byproduct. Total precipitation (P) and cloudiness (CLD) time series, diurnal cycles, and P and CLD distributions for the large Tropical Pacific Ocean for the parallel CAM-NN and CAM runs show similarity and consistency with the NCEP reanalysis. The P and CLD distributions for the tropical area for the parallel runs have been analyzed first for the TOGA-COARE boreal winter season (November 1992 through February 1993) and then for the winter seasons of the follow-up parallel decadal simulations. The obtained results are encouraging and practically meaningful. They show the validity of the NN approach. This constitutes an
Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai
2013-09-01
In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
Output feedback control of a quadrotor UAV using neural networks.
Dierks, Travis; Jagannathan, Sarangapani
2010-01-01
In this paper, a new nonlinear controller for a quadrotor unmanned aerial vehicle (UAV) is proposed using neural networks (NNs) and output feedback. The assumption on the availability of UAV dynamics is not always practical, especially in an outdoor environment. Therefore, in this work, an NN is introduced to learn the complete dynamics of the UAV online, including uncertain nonlinear terms like aerodynamic friction and blade flapping. Although a quadrotor UAV is underactuated, a novel NN virtual control input scheme is proposed which allows all six degrees of freedom (DOF) of the UAV to be controlled using only four control inputs. Furthermore, an NN observer is introduced to estimate the translational and angular velocities of the UAV, and an output feedback control law is developed in which only the position and the attitude of the UAV are considered measurable. It is shown using Lyapunov theory that the position, orientation, and velocity tracking errors, the virtual control and observer estimation errors, and the NN weight estimation errors for each NN are all semiglobally uniformly ultimately bounded (SGUUB) in the presence of bounded disturbances and NN functional reconstruction errors while simultaneously relaxing the separation principle. The effectiveness of proposed output feedback control scheme is then demonstrated in the presence of unknown nonlinear dynamics and disturbances, and simulation results are included to demonstrate the theoretical conjecture.
Daniel J. Leduc; Thomas G. Matney; Keith L. Belli; V. Clark Baldwin
2001-01-01
Artificial neural networks (NN) are becoming a popular estimation tool. Because they require no assumptions about the form of a fitting function, they can free the modeler from reliance on parametric approximating functions that may or may not satisfactorily fit the observed data. To date there have been few applications in forestry science, but as better NN software...
Forecasting of Market Clearing Price by Using GA Based Neural Network
Yang, Bo; Chen, Yun-Ping; Zhao, Zun-Lian; Han, Qi-Ye
Forecasting of Market Clearing Price (MCP) is important to economic benefits of electricity market participants. To accurately forecast MCP, a novel two-stage GA-based neural network model (GA-NN) is proposed. In the first stage, GA chromosome is designed into two parts: boolean coding part for neural network topology and real coding part for connection weights. By hybrid genetic operation of selection, crossover and mutation under the criterion of error minimization between the actual output and the desired output, optimal architecture of neural network is obtained. In the second stage, gradient learning algorithm with momentum rate is imposed on neural network with optimal architecture. After learning process, optimal connection weights are obtained. The proposed model is tested on MCP forecasting in California electricity market. The test results show that GA-NN has self-adaptive ability in its topology and connection weights and can obtain more accurate MCP forecasting values than BP neural network.
Non-linear feedback neural networks VLSI implementations and applications
Ansari, Mohd Samar
2014-01-01
This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation.
[Artificial neural networks in Neurosciences].
Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María
2011-11-01
This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.
Ab initio quality neural-network potential for sodium
Eshet, Hagai; Khaliullin, Rustam Z.; Kühne, Thomas D.; Behler, Jörg; Parrinello, Michele
2010-05-01
An interatomic potential for high-pressure high-temperature (HPHT) crystalline and liquid phases of sodium is created using a neural-network (NN) representation of the ab initio potential-energy surface. It is demonstrated that the NN potential provides an ab initio quality description of multiple properties of liquid sodium and bcc, fcc, and cI16 crystal phases in the P-T region up to 120 GPa and 1200 K. The unique combination of computational efficiency of the NN potential and its ability to reproduce quantitatively experimental properties of sodium in the wide P-T range enables molecular-dynamics simulations of physicochemical processes in HPHT sodium of unprecedented quality.
Using Artificial Neural Networks to Predict Stock Prices
Kozdraj, Tomasz
2009-01-01
Artificial neural networks constitute one of the most developed conception of artificial intelligence. They are based on pragmatic mathematical theories adopted to tasks resolution. A wide range of their applications also includes financial investments issues. The reason for NN's popularity is mainly connected with their ability to solve complex or not well recognized computational tasks, efficiency in finding solutions as well as the possibility of learning based on patterns or without them....
Heiden, Uwe
1980-01-01
The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica ted throughout the text. However, they are not explored in de tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be havior of neurons or neuron pools. In this respect the essay is writt...
SELECTING NEURAL NETWORK ARCHITECTURE FOR INVESTMENT PROFITABILITY PREDICTIONS
Directory of Open Access Journals (Sweden)
Marijana Zekić-Sušac
2012-07-01
Full Text Available After production and operations, finance and investments are one of the mostfrequent areas of neural network applications in business. The lack of standardizedparadigms that can determine the efficiency of certain NN architectures in a particularproblem domain is still present. The selection of NN architecture needs to take intoconsideration the type of the problem, the nature of the data in the model, as well as somestrategies based on result comparison. The paper describes previous research in that areaand suggests a forward strategy for selecting best NN algorithm and structure. Since thestrategy includes both parameter-based and variable-based testings, it can be used forselecting NN architectures as well as for extracting models. The backpropagation, radialbasis,modular, LVQ and probabilistic neural network algorithms were used on twoindependent sets: stock market and credit scoring data. The results show that neuralnetworks give better accuracy comparing to multiple regression and logistic regressionmodels. Since it is model-independant, the strategy can be used by researchers andprofessionals in other areas of application.
Optimasi parameter neural network pada data time series
Directory of Open Access Journals (Sweden)
Muzakir Hi Sultan
2014-05-01
Full Text Available Gempa bumi merupakan suatu pergerakan tanah yang terjadi secara tiba-tiba hingga menimbulkan getaran, besarnya kekuatan gempa dapat mengakibatkan bencana baik kerusakan maupun korban jiwa. Untuk mengantisipasi bencana yang akan datang maka diperlukan suatu model khususnya untuk meramalkan besarnya kekuatan gempa. Pada penelitian ini, digunakan model ARIMA dan model kombinasi dari Neural Network-Algoritma Genetik (NN-GA untuk memprediksi rata-rata kekuatan gempa bumi setiap bulan khususnya yang terjadi di wilayah Maluku Utara. Data yang digunakan adalah data kekuatan gempa berdasarkan skala richter yang diperoleh dari Badan Meteorologi, Klimatologi dan Geofisika (BMKG kota Ternate. Sebagai input pada model ARIMA dan NN-GA digunakan rata-rata kekuatan gempa bumi 36 bulan dan rata-rata kekuatan gempa 36 bulan berikutnya digunakan sebagai target untuk prediksi. Untuk meng-update parameter (bobot dari Neural Network digunakan metode Gradient Descent dan untuk mendapatkan parameter yang lebih optimal pada layer Output, maka di diterapkan Algoritma Genetik. Hasil peramalan dari kedua model kemudian dibandingkan dan model terbaik ditentukan dari nilai Mean square Error (MSE yang terkecil. dari hasil peramalan dengan model ARIMA diperoleh MSE sebesar 1.0125, sedangkan pada model NN-GA diperoleh MSE sebesar 0.9196. Nilai tersebut, menunjukkan bahwa model NN-GA lebih baik dari model ARIMA untuk peramalan rata-rata kekuatan gempa bumi beberapa bulan ke depan
NONLINEAR SYSTEM MODELING USING SINGLE NEURON CASCADED NEURAL NETWORK FOR REAL-TIME APPLICATIONS
Directory of Open Access Journals (Sweden)
S. Himavathi
2012-04-01
Full Text Available Neural Networks (NN have proved its efficacy for nonlinear system modeling. NN based controllers and estimators for nonlinear systems provide promising alternatives to the conventional counterpart. However, NN models have to meet the stringent requirements on execution time for its effective use in real time applications. This requires the NN model to be structurally compact and computationally less complex. In this paper a parametric method of analysis is adopted to determine the compact and faster NN model among various neural network architectures. This work proves through analysis and examples that the Single Neuron Cascaded (SNC architecture is distinct in providing compact and simpler models requiring lower execution time. The unique structural growth of SNC architecture enables automation in design. The SNC Network is shown to combine the advantages of both single and multilayer neural network architectures. Extensive analysis on selected architectures and their models for four benchmark nonlinear theoretical plants and a practical application are tested. A performance comparison of the NN models is presented to demonstrate the superiority of the single neuron cascaded architecture for online real time applications.
A symmetry perceiving adaptive neural network and facial image recognition.
Sinha, P
1998-11-30
The paper deals with the forensic problem of comparing nearly from view and facial images for personal identification. The human recognition process for such problems, is primarily based on both holistic as well as feature-wise symmetry perception aided by subjective analysis for detecting ill-defined features. It has been attempted to approach the modelling of such a process by designing a robust symmetry perceiving adaptive neural network. The pair of images to be compared should be presented to the proposed neural network (NN) as source (input) and target images. The NN learns about the symmetry between the pair of images by analysing examples of associated feature pairs belonging to the source and the target images. In order to prepare a paired example of associated features for training purpose, when we select one particular feature on the source image as a unique pixel, we must associate it with the corresponding feature on the target image also. But, in practice, it is not always possible to fix the latter feature also as a unique pixel due to pictorial ambiguity. The robust or fault tolerant NN takes care of such a situation and allows fixing the associated target feature as a rectangular array of pixels, rather than fixing it as a unique pixel, which is pretty difficult to be done with certainty. From such a pair of sets of associated features, the NN searches out proper locations of the target features from the sets of ambiguous target features by a fuzzy analysis during its learning. If any of target features, searched out by the NN, lies outside the prespecified zone, the training of the NN is unsuccessful. This amounts to non-existence of symmetry between the pair of images and confirms non-identity. In case of a successful training, the NN gets adapted with appropriate symmetry relation between the pair of images and when the source image is input to the trained NN, it responds by outputting a processed source image which is superimposable over the
Neural Networks for Optimal Control
DEFF Research Database (Denmark)
Sørensen, O.
1995-01-01
Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... examined, and it appears that considering 'normal' neural network models with, say, 500 samples, the problem of over-fitting is neglible, and therefore it is not taken into consideration afterwards. Numerous model types, often met in control applications, are implemented as neural network models...... Kalmann filter) representing state space description. The potentials of neural networks for control of non-linear processes are also examined, focusing on three different groups of control concepts, all considered as generalizations of known linear control concepts to handle also non-linear processes...
Directory of Open Access Journals (Sweden)
Santosh Kumar Nanda
2011-01-01
Full Text Available Functional link-based neural network models were applied to predict opencast mining machineries noise. The paper analyzes the prediction capabilities of functional link neural network based noise prediction models vis-à-vis existing statistical models. In order to find the actual noise status in opencast mines, some of the popular noise prediction models, for example, ISO-9613-2, CONCAWE, VDI, and ENM, have been applied in mining and allied industries to predict the machineries noise by considering various attenuation factors. Functional link artificial neural network (FLANN, polynomial perceptron network (PPN, and Legendre neural network (LeNN were used to predict the machinery noise in opencast mines. The case study is based on data collected from an opencast coal mine of Orissa, India. From the present investigations, it could be concluded that the FLANN model give better noise prediction than the PPN and LeNN model.
An Optoelectronic Neural Network
Neil, Mark A. A.; White, Ian H.; Carroll, John E.
1990-02-01
We describe and present results of an optoelectronic neural network processing system. The system uses an algorithm based on the Hebbian learning rule to memorise a set of associated vector pairs. Recall occurs by the processing of the input vector with these stored associations in an incoherent optical vector multiplier using optical polarisation rotating liquid crystal spatial light modulators to store the vectors and an optical polarisation shadow casting technique to perform multiplications. Results are detected on a photodiode array and thresholded electronically by a controlling microcomputer. The processor is shown to work in autoassociative and heteroassociative modes with up to 10 stored memory vectors of length 64 (equivalent to 64 neurons) and a cycle time of 50ms. We discuss the limiting factors at work in this system, how they affect its scalability and the general applicability of its principles to other systems.
Neural Network Modeling to Predict Shelf Life of Greenhouse Lettuce
Directory of Open Access Journals (Sweden)
Wei-Chin Lin
2009-04-01
Full Text Available Greenhouse-grown butter lettuce (Lactuca sativa L. can potentially be stored for 21 days at constant 0°C. When storage temperature was increased to 5°C or 10°C, shelf life was shortened to 14 or 10 days, respectively, in our previous observations. Also, commercial shelf life of 7 to 10 days is common, due to postharvest temperature fluctuations. The objective of this study was to establish neural network (NN models to predict the remaining shelf life (RSL under fluctuating postharvest temperatures. A box of 12 - 24 lettuce heads constituted a sample unit. The end of the shelf life of each head was determined when it showed initial signs of decay or yellowing. Air temperatures inside a shipping box were recorded. Daily average temperatures in storage and averaged shelf life of each box were used as inputs, and the RSL was modeled as an output. An R2 of 0.57 could be observed when a simple NN structure was employed. Since the "future" (or remaining storage temperatures were unavailable at the time of making a prediction, a second NN model was introduced to accommodate a range of future temperatures and associated shelf lives. Using such 2-stage NN models, an R2 of 0.61 could be achieved for predicting RSL. This study indicated that NN modeling has potential for cold chain quality control and shelf life prediction.
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
simulated process and compared. The closing chapter describes some practical experiments, where the different control concepts and training methods are tested on the same practical process operating in very noisy environments. All tests confirm that neural networks also have the potential to be trained......The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...
Investigation of tt in the full hadronic final state at CDF with a neural network approach
Sidoti, A; Busetto, G; Castro, A; Dusini, S; Lazzizzera, I; Wyss, J
2001-01-01
In this work we present the results of a neural network (NN) approach to the measurement of the tt production cross-section and top mass in the all-hadronic channel, analyzing data collected at the Collider Detector at Fermilab (CDF) experiment. We have used a hardware implementation of a feedforward neural network, TOTEM, the product of a collaboration of INFN (Istituto Nazionale Fisica Nucleare)-IRST (Istituto per la Ricerca Scientifica e Tecnologica)-University of Trento, Italy. Particular attention has been paid to the evaluation of the systematics specifically related to the NN approach. The results are consistent with those obtained at CDF by conventional data selection techniques. (38 refs).
Neural-Network-Based Smart Sensor Framework Operating in a Harsh Environment
Directory of Open Access Journals (Sweden)
Chaudhari Narendra S
2005-01-01
Full Text Available We present an artificial neural-network- (NN- based smart interface framework for sensors operating in harsh environments. The NN-based sensor can automatically compensate for the nonlinear response characteristics and its nonlinear dependency on the environmental parameters, with high accuracy. To show the potential of the proposed NN-based framework, we provide results of a smart capacitive pressure sensor (CPS operating in a wide temperature range of 0 to . Through simulated experiments, we have shown that the NN-based CPS model is capable of providing pressure readout with a maximum full-scale (FS error of only over this temperature range. A novel scheme for estimating the ambient temperature from the sensor characteristics itself is proposed. For this purpose, a second NN is utilized to estimate the ambient temperature accurately from the knowledge of the offset capacitance of the CPS. A microcontroller-unit- (MCU- based implementation scheme is also provided.
Agarwal, Rahul Kumar; Hussain, Ikhlaq; Singh, Bhim
2017-03-16
This paper proposes an application of a least mean-square (LMS)-based neural network (NN) structure for the power quality improvement of a three-phase power distribution network under abnormal conditions. It uses a single-layer neuron structure for the control in a distribution static compensator (DSTATCOM) to attenuate the harmonics such as noise, bias, notches, dc offset, and distortion, injected in the grid current due to connection of several nonlinear loads. This admittance LMS-based NN structure has a simple architecture which reduces the computational complexity and burden which makes it easy to implement. A DSTATCOM is a custom power device which performs various functionalities such as harmonics attenuation, reactive power compensation, load balancing, zero voltage regulation, and power factor correction. Other main contribution of this paper involves operation of the system under abnormal conditions of distribution network which means noise and distortion in voltage and imbalance in three-phase voltages at the point of interconnection. For substantiating and demonstrating the performance of proposed control approach, simulations are carried on MATLAB/Simulink software and corresponding experimental tests are conducted on a developed prototype in the laboratory.
Yashchenko, Vitaliy A.
2000-03-01
On the basis of the analysis of scientific ideas reflecting the law in the structure and functioning the biological structures of a brain, and analysis and synthesis of knowledge, developed by various directions in Computer Science, also there were developed the bases of the theory of a new class neural-like growing networks, not having the analogue in world practice. In a base of neural-like growing networks the synthesis of knowledge developed by classical theories - semantic and neural of networks is. The first of them enable to form sense, as objects and connections between them in accordance with construction of the network. With thus each sense gets a separate a component of a network as top, connected to other tops. In common it quite corresponds to structure reflected in a brain, where each obvious concept is presented by certain structure and has designating symbol. Secondly, this network gets increased semantic clearness at the expense owing to formation not only connections between neural by elements, but also themselves of elements as such, i.e. here has a place not simply construction of a network by accommodation sense structures in environment neural of elements, and purely creation of most this environment, as of an equivalent of environment of memory. Thus neural-like growing networks are represented by the convenient apparatus for modeling of mechanisms of teleological thinking, as a fulfillment of certain psychophysiological of functions.
Static Voltage Stability Analysis by Using SVM and Neural Network
Directory of Open Access Journals (Sweden)
Mehdi Hajian
2013-01-01
Full Text Available Voltage stability is an important problem in power system networks. In this paper, in terms of static voltage stability, and application of Neural Networks (NN and Supported Vector Machine (SVM for estimating of voltage stability margin (VSM and predicting of voltage collapse has been investigated. This paper considers voltage stability in power system in two parts. The first part calculates static voltage stability margin by Radial Basis Function Neural Network (RBFNN. The advantage of the used method is high accuracy in online detecting the VSM. Whereas the second one, voltage collapse analysis of power system is performed by Probabilistic Neural Network (PNN and SVM. The obtained results in this paper indicate, that time and number of training samples of SVM, are less than NN. In this paper, a new model of training samples for detection system, using the normal distribution load curve at each load feeder, has been used. Voltage stability analysis is estimated by well-know L and VSM indexes. To demonstrate the validity of the proposed methods, IEEE 14 bus grid and the actual network of Yazd Province are used.
Indian Academy of Sciences (India)
differences between biological neural networks (BNNs) of the brain and ANN s. A thorough understanding of ... neurons. Artificial neural models are loosely based on biology since a complete understanding of the .... A learning scheme for updating a neuron's connections (weights) was proposed by Donald Hebb in 1949.
Neural networks and statistical learning
Du, Ke-Lin
2014-01-01
Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...
Memristor-based neural networks
Thomas, Andy
2013-03-01
The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them.
Pansharpening by Convolutional Neural Networks
National Research Council Canada - National Science Library
Masi, Giuseppe; Cozzolino, Davide; Verdoliva, Luisa; Scarpa, Giuseppe
2016-01-01
A new pansharpening method is proposed, based on convolutional neural networks. We adapt a simple and effective three-layer architecture recently proposed for super-resolution to the pansharpening problem...
What are artificial neural networks?
DEFF Research Database (Denmark)
Krogh, Anders
2008-01-01
Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...
Biologically Inspired Modular Neural Networks
Azam, Farooq
2000-01-01
This dissertation explores the modular learning in artificial neural networks that mainly driven by the inspiration from the neurobiological basis of the human learning. The presented modularization approaches to the neural network design and learning are inspired by the engineering, complexity, psychological and neurobiological aspects. The main theme of this dissertation is to explore the organization and functioning of the brain to discover new structural and learning ...
Portable Rule Extraction Method for Neural Network Decisions Reasoning
Directory of Open Access Journals (Sweden)
Darius PLIKYNAS
2005-08-01
Full Text Available Neural network (NN methods are sometimes useless in practical applications, because they are not properly tailored to the particular market's needs. We focus thereinafter specifically on financial market applications. NNs have not gained full acceptance here yet. One of the main reasons is the "Black Box" problem (lack of the NN decisions explanatory power. There are though some NN decisions rule extraction methods like decompositional, pedagogical or eclectic, but they suffer from low portability of the rule extraction technique across various neural net architectures, high level of granularity, algorithmic sophistication of the rule extraction technique etc. The authors propose to eliminate some known drawbacks using an innovative extension of the pedagogical approach. The idea is exposed by the use of a widespread MLP neural net (as a common tool in the financial problems' domain and SOM (input data space clusterization. The feedback of both nets' performance is related and targeted through the iteration cycle by achievement of the best matching between the decision space fragments and input data space clusters. Three sets of rules are generated algorithmically or by fuzzy membership functions. Empirical validation of the common financial benchmark problems is conducted with an appropriately prepared software solution.
Complex-Valued Neural Networks
Hirose, Akira
2012-01-01
This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu
2017-10-01
This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.
Spiking modular neural networks: A neural network modeling approach for hydrological processes
National Research Council Canada - National Science Library
Kamban Parasuraman; Amin Elshorbagy; Sean K. Carey
2006-01-01
.... In this study, a novel neural network model called the spiking modular neural networks (SMNNs) is proposed. An SMNN consists of an input layer, a spiking layer, and an associator neural network layer...
Artificial neural network modeling of DDGS flowability with varying process and storage parameters
Neural Network (NN) modeling techniques were used to predict flowability behavior in distillers dried grains with solubles (DDGS) prepared with varying CDS (10, 15, and 20%, wb), drying temperature (100, 200, and 300°C), cooling temperature (-12, 0, and 35°C) and cooling time (0 and 1 month) levels....
Neural network potential for Al-Mg-Si alloys
Kobayashi, Ryo; Giofré, Daniele; Junge, Till; Ceriotti, Michele; Curtin, William A.
2017-10-01
The 6000 series Al alloys, which include a few percent of Mg and Si, are important in automotive and aviation industries because of their low weight, as compared to steels, and the fact their strength can be greatly improved through engineered precipitation. To enable atomistic-level simulations of both the processing and performance of this important alloy system, a neural network (NN) potential for the ternary Al-Mg-Si has been created. Training of the NN uses an extensive database of properties computed using first-principles density functional theory, including complex precipitate phases in this alloy. The NN potential accurately reproduces most of the pure Al properties relevant to the mechanical behavior as well as heat of solution, solute-solute, and solute-vacancy interaction energies, and formation energies of small solute clusters and precipitates that are required for modeling the early stage of precipitation and mechanical strengthening. This success not only enables future detailed studies of Al-Mg-Si but also highlights the ability of NN methods to generate useful potentials in complex alloy systems.
Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.
2007-01-01
To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.
Neural network output feedback control of robot formations.
Dierks, Travis; Jagannathan, Sarangapani
2010-04-01
In this paper, a combined kinematic/torque output feedback control law is developed for leader-follower-based formation control using backstepping to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers. A neural network (NN) is introduced to approximate the dynamics of the follower and its leader using online weight tuning. Furthermore, a novel NN observer is designed to estimate the linear and angular velocities of both the follower robot and its leader. It is shown, by using the Lyapunov theory, that the errors for the entire formation are uniformly ultimately bounded while relaxing the separation principle. In addition, the stability of the formation in the presence of obstacles, is examined using Lyapunov methods, and by treating other robots in the formation as obstacles, collisions within the formation are prevented. Numerical results are provided to verify the theoretical conjectures.
Multigradient for Neural Networks for Equalizers
Directory of Open Access Journals (Sweden)
Chulhee Lee
2003-06-01
Full Text Available Recently, a new training algorithm, multigradient, has been published for neural networks and it is reported that the multigradient outperforms the backpropagation when neural networks are used as a classifier. When neural networks are used as an equalizer in communications, they can be viewed as a classifier. In this paper, we apply the multigradient algorithm to train the neural networks that are used as equalizers. Experiments show that the neural networks trained using the multigradient noticeably outperforms the neural networks trained by the backpropagation.
Multiprocessor Neural Network in Healthcare.
Godó, Zoltán Attila; Kiss, Gábor; Kocsis, Dénes
2015-01-01
A possible way of creating a multiprocessor artificial neural network is by the use of microcontrollers. The RISC processors' high performance and the large number of I/O ports mean they are greatly suitable for creating such a system. During our research, we wanted to see if it is possible to efficiently create interaction between the artifical neural network and the natural nervous system. To achieve as much analogy to the living nervous system as possible, we created a frequency-modulated analog connection between the units. Our system is connected to the living nervous system through 128 microelectrodes. Two-way communication is provided through A/D transformation, which is even capable of testing psychopharmacons. The microcontroller-based analog artificial neural network can play a great role in medical singal processing, such as ECG, EEG etc.
Noise Reduction Technique for Images using Radial Basis Function Neural Networks
Directory of Open Access Journals (Sweden)
Sander Ali Khowaja
2014-07-01
Full Text Available This paper presents a NN (Neural Network based model for reducing the noise from images. This is a RBF (Radial Basis Function network which is used to reduce the effect of noise and blurring from the captured images. The proposed network calculates the mean MSE (Mean Square Error and PSNR (Peak Signal to Noise Ratio of the noisy images. The proposed network has also been successfully applied to medical images. The performance of the trained RBF network has been compared with the MLP (Multilayer Perceptron Network and it has been demonstrated that the performance of the RBF network is better than the MLP network.
Directory of Open Access Journals (Sweden)
Suhartono Suhartono
2009-07-01
Full Text Available Neural network (NN is one of many method used to predict the electricity consumption per hour in many countries. NN method which is used in many previous studies is Feed-Forward Neural Network (FFNN or Autoregressive Neural Network(AR-NN. AR-NN model is not able to capture and explain the effect of moving average (MA order on a time series of data. This research was conducted with the purpose of reviewing the application of other types of NN, that is Elman-Recurrent Neural Network (Elman-RNN which could explain MA order effect and compare the result of prediction accuracy with multiple seasonal ARIMA (Autoregressive Integrated Moving Average models. As a case study, we used data electricity consumption per hour in Mengare Gresik. Result of analysis showed that the best of double seasonal Arima models suited to short-term forecasting in the case study data is ARIMA([1,2,3,4,6,7,9,10,14,21,33],1,8(0,1,124 (1,1,0168. This model produces a white noise residuals, but it does not have a normal distribution due to suspected outlier. Outlier detection in iterative produce 14 innovation outliers. There are 4 inputs of Elman-RNN network that were examined and tested for forecasting the data, the input according to lag Arima, input such as lag Arima plus 14 dummy outlier, inputs are the lag-multiples of 24 up to lag 480, and the inputs are lag 1 and lag multiples of 24+1. All of four network uses one hidden layer with tangent sigmoid activation function and one output with a linear function. The result of comparative forecast accuracy through value of MAPE out-sample showed that the fourth networks, namely Elman-RNN (22, 3, 1, is the best model for forecasting electricity consumption per hour in short term in Mengare Gresik.
Energy Technology Data Exchange (ETDEWEB)
Koh, Hee Seok; Kim, Hyun Duck [Kyungnam University, Masan (Korea, Republic of); Lee, Kwang Seok [Chinju National University (Korea, Republic of)
1996-02-01
In this paper, we proposed an estimation method of a posterior probability and PDF(Probability density function) using a feed forward neural network and code books of VQ(vector quantization). In this study, We estimates a posterior probability and probability density function, which compose a new parameter with well-known Mel cepstrum and verificate the performance for the five vowels taking from syllables by NN(neural network) and PNN(probabilistic neural network). In case of new parameter, showed the best result by probabilistic neural network and recognition rates are average 83.02%. (author). 7 refs., 4 figs., 3 tabs.
A recurrent neural network for solving bilevel linear programming problem.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie; Huang, Junjian
2014-04-01
In this brief, based on the method of penalty functions, a recurrent neural network (NN) modeled by means of a differential inclusion is proposed for solving the bilevel linear programming problem (BLPP). Compared with the existing NNs for BLPP, the model has the least number of state variables and simple structure. Using nonsmooth analysis, the theory of differential inclusions, and Lyapunov-like method, the equilibrium point sequence of the proposed NNs can approximately converge to an optimal solution of BLPP under certain conditions. Finally, the numerical simulations of a supply chain distribution model have shown excellent performance of the proposed recurrent NNs.
Generalization performance of regularized neural network models
DEFF Research Database (Denmark)
Larsen, Jan; Hansen, Lars Kai
1994-01-01
Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...
voltage compensation using artificial neural network
African Journals Online (AJOL)
Offor Theophilos
VOLTAGE COMPENSATION USING ARTIFICIAL NEURAL NETWORK: A CASE STUDY OF. RUMUOLA ... using artificial neural network (ANN) controller based dynamic voltage restorer (DVR). ... substation by simulating with sample of average voltage for Omerelu, Waterlines, Rumuola, Shell Industrial and Barracks.
Plant Growth Models Using Artificial Neural Networks
Bubenheim, David
1997-01-01
In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.
Kapania, Rakesh K.; Liu, Youhua
1998-01-01
The use of continuum models for the analysis of discrete built-up complex aerospace structures is an attractive idea especially at the conceptual and preliminary design stages. But the diversity of available continuum models and hard-to-use qualities of these models have prevented them from finding wide applications. In this regard, Artificial Neural Networks (ANN or NN) may have a great potential as these networks are universal approximators that can realize any continuous mapping, and can provide general mechanisms for building models from data whose input-output relationship can be highly nonlinear. The ultimate aim of the present work is to be able to build high fidelity continuum models for complex aerospace structures using the ANN. As a first step, the concepts and features of ANN are familiarized through the MATLAB NN Toolbox by simulating some representative mapping examples, including some problems in structural engineering. Then some further aspects and lessons learned about the NN training are discussed, including the performances of Feed-Forward and Radial Basis Function NN when dealing with noise-polluted data and the technique of cross-validation. Finally, as an example of using NN in continuum models, a lattice structure with repeating cells is represented by a continuum beam whose properties are provided by neural networks.
Neural networks and applications tutorial
Guyon, I.
1991-09-01
The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.
An Inertial Projection Neural Network for Solving Variational Inequalities.
He, Xing; Huang, Tingwen; Yu, Junzhi; Li, Chuandong; Li, Chaojie
2016-02-11
Recently, projection neural network (PNN) was proposed for solving monotone variational inequalities (VIs) and related convex optimization problems. In this paper, considering the inertial term into first order PNNs, an inertial PNN (IPNN) is also proposed for solving VIs. Under certain conditions, the IPNN is proved to be stable, and can be applied to solve a broader class of constrained optimization problems related to VIs. Compared with existing neural networks (NNs), the presence of the inertial term allows us to overcome some drawbacks of many NNs, which are constructed based on the steepest descent method, and this model is more convenient for exploring different Karush-Kuhn-Tucker optimal solution for nonconvex optimization problems. Finally, simulation results on three numerical examples show the effectiveness and performance of the proposed NN.
Optoelectronic Implementation of Neural Networks
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 9. Optoelectronic Implementation of Neural Networks - Use of Optics in Computing. R Ramachandran. General Article Volume 3 Issue 9 September 1998 pp 45-55. Fulltext. Click here to view fulltext PDF. Permanent link:
Aphasia Classification Using Neural Networks
DEFF Research Database (Denmark)
Axer, H.; Jantzen, Jan; Berks, G.
2000-01-01
A web-based software model (http://fuzzy.iau.dtu.dk/aphasia.nsf) was developed as an example for classification of aphasia using neural networks. Two multilayer perceptrons were used to classify the type of aphasia (Broca, Wernicke, anomic, global) according to the results in some subtests...
A NEURAL NETWORK BASED TRAFFIC-AWARE FORWARDING STRATEGY IN NAMED DATA NETWORKING
Directory of Open Access Journals (Sweden)
Parisa Bazmi
2016-11-01
Full Text Available Named Data Networking (NDN is a new Internet architecture which has been proposed to eliminate TCP/IP Internet architecture restrictions. This architecture is abstracting away the notion of host and working based on naming datagrams. However, one of the major challenges of NDN is supporting QoS-aware forwarding strategy so as to forward Interest packets intelligently over multiple paths based on the current network condition. In this paper, Neural Network (NN Based Traffic-aware Forwarding strategy (NNTF is introduced in order to determine an optimal path for Interest forwarding. NN is embedded in NDN routers to select next hop dynamically based on the path overload probability achieved from the NN. This solution is characterized by load balancing and QoS-awareness via monitoring the available path and forwarding data on the traffic-aware shortest path. The performance of NNTF is evaluated using ndnSIM which shows the efficiency of this scheme in terms of network QoS improvementof17.5% and 72% reduction in network delay and packet drop respectively.
Artificial Neural Networks in Image Processing for Early Detection of Breast Cancer.
Mehdy, M M; Ng, P Y; Shair, E F; Saleh, N I Md; Gomes, C
2017-01-01
Medical imaging techniques have widely been in use in the diagnosis and detection of breast cancer. The drawback of applying these techniques is the large time consumption in the manual diagnosis of each image pattern by a professional radiologist. Automated classifiers could substantially upgrade the diagnosis process, in terms of both accuracy and time requirement by distinguishing benign and malignant patterns automatically. Neural network (NN) plays an important role in this respect, especially in the application of breast cancer detection. Despite the large number of publications that describe the utilization of NN in various medical techniques, only a few reviews are available that guide the development of these algorithms to enhance the detection techniques with respect to specificity and sensitivity. The purpose of this review is to analyze the contents of recently published literature with special attention to techniques and states of the art of NN in medical imaging. We discuss the usage of NN in four different medical imaging applications to show that NN is not restricted to few areas of medicine. Types of NN used, along with the various types of feeding data, have been reviewed. We also address hybrid NN adaptation in breast cancer detection.
Artificial Neural Networks in Image Processing for Early Detection of Breast Cancer
Directory of Open Access Journals (Sweden)
M. M. Mehdy
2017-01-01
Full Text Available Medical imaging techniques have widely been in use in the diagnosis and detection of breast cancer. The drawback of applying these techniques is the large time consumption in the manual diagnosis of each image pattern by a professional radiologist. Automated classifiers could substantially upgrade the diagnosis process, in terms of both accuracy and time requirement by distinguishing benign and malignant patterns automatically. Neural network (NN plays an important role in this respect, especially in the application of breast cancer detection. Despite the large number of publications that describe the utilization of NN in various medical techniques, only a few reviews are available that guide the development of these algorithms to enhance the detection techniques with respect to specificity and sensitivity. The purpose of this review is to analyze the contents of recently published literature with special attention to techniques and states of the art of NN in medical imaging. We discuss the usage of NN in four different medical imaging applications to show that NN is not restricted to few areas of medicine. Types of NN used, along with the various types of feeding data, have been reviewed. We also address hybrid NN adaptation in breast cancer detection.
The European Narcolepsy Network (EU-NN) database.
Khatami, Ramin; Luca, Gianina; Baumann, Christian R; Bassetti, Claudio L; Bruni, Oliviero; Canellas, Francesca; Dauvilliers, Yves; Del Rio-Villegas, Rafael; Feketeova, Eva; Ferri, Raffaele; Geisler, Peter; Högl, Birgit; Jennum, Poul; Kornum, Birgitte R; Lecendreux, Michel; Martins-da-Silva, Antonio; Mathis, Johannes; Mayer, Geert; Paiva, Teresa; Partinen, Markku; Peraita-Adrados, Rosa; Plazzi, Guiseppe; Santamaria, Joan; Sonka, Karel; Riha, Renata; Tafti, Mehdi; Wierzbicka, Aleksandra; Young, Peter; Lammers, Gert Jan; Overeem, Sebastiaan
2016-06-01
Narcolepsy with cataplexy is a rare disease with an estimated prevalence of 0.02% in European populations. Narcolepsy shares many features of rare disorders, in particular the lack of awareness of the disease with serious consequences for healthcare supply. Similar to other rare diseases, only a few European countries have registered narcolepsy cases in databases of the International Classification of Diseases or in registries of the European health authorities. A promising approach to identify disease-specific adverse health effects and needs in healthcare delivery in the field of rare diseases is to establish a distributed expert network. A first and important step is to create a database that allows collection, storage and dissemination of data on narcolepsy in a comprehensive and systematic way. Here, the first prospective web-based European narcolepsy database hosted by the European Narcolepsy Network is introduced. The database structure, standardization of data acquisition and quality control procedures are described, and an overview provided of the first 1079 patients from 18 European specialized centres. Due to its standardization this continuously increasing data pool is most promising to provide a better insight into many unsolved aspects of narcolepsy and related disorders, including clear phenotype characterization of subtypes of narcolepsy, more precise epidemiological data and knowledge on the natural history of narcolepsy, expectations about treatment effects, identification of post-marketing medication side-effects, and will contribute to improve clinical trial designs and provide facilities to further develop phase III trials. © 2016 European Sleep Research Society.
Directory of Open Access Journals (Sweden)
Xingang Fu
2016-04-01
Full Text Available This paper investigates a novel recurrent neural network (NN-based vector control approach for single-phase grid-connected converters (GCCs with L (inductor, LC (inductor-capacitor and LCL (inductor-capacitor-inductor filters and provides their comparison study with the conventional standard vector control method. A single neural network controller replaces two current-loop PI controllers, and the NN training approximates the optimal control for the single-phase GCC system. The Levenberg–Marquardt (LM algorithm was used to train the NN controller based on the complete system equations without any decoupling policies. The proposed NN approach can solve the decoupling problem associated with the conventional vector control methods for L, LC and LCL-filter-based single-phase GCCs. Both simulation study and hardware experiments demonstrate that the neural network vector controller shows much more improved performance than that of conventional vector controllers, including faster response speed and lower overshoot. Especially, NN vector control could achieve very good performance using low switch frequency. More importantly, the neural network vector controller is a damping free controller, which is generally required by a conventional vector controller for an LCL-filter-based single-phase grid-connected converter and, therefore, can overcome the inefficiency problem caused by damping policies.
Analysis of neural networks through base functions
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.
Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more
Simplified LQG Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1997-01-01
A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...
Novel quantum inspired binary neural network algorithm
Indian Academy of Sciences (India)
In this paper, a quantum based binary neural network algorithm is proposed, named as novel quantum binary neural network algorithm (NQ-BNN). It forms a neural network structure by deciding weights and separability parameter in quantum based manner. Quantum computing concept represents solution probabilistically ...
The European Narcolepsy Network (EU-NN) database
DEFF Research Database (Denmark)
Khatami, Ramin; Luca, Gianina; Baumann, Christian R
2016-01-01
Narcolepsy with cataplexy is a rare disease with an estimated prevalence of 0.02% in European populations. Narcolepsy shares many features of rare disorders, in particular the lack of awareness of the disease with serious consequences for healthcare supply. Similar to other rare diseases, only...... a few European countries have registered narcolepsy cases in databases of the International Classification of Diseases or in registries of the European health authorities. A promising approach to identify disease-specific adverse health effects and needs in healthcare delivery in the field of rare...... diseases is to establish a distributed expert network. A first and important step is to create a database that allows collection, storage and dissemination of data on narcolepsy in a comprehensive and systematic way. Here, the first prospective web-based European narcolepsy database hosted by the European...
Jafri, Madiha J.; Ely, Jay J.; Vahala, Linda L.
2007-01-01
In this paper, neural network (NN) modeling is combined with fuzzy logic to estimate Interference Path Loss measurements on Airbus 319 and 320 airplanes. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structures and the communication/navigation system-of-concern. Modeled results are compared with measured data. Combining fuzzy logic and NN modeling is shown to improve estimates of measured data over estimates obtained with NN alone. A plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft.
Bildirici, Melike; Ersin, Özgür
2014-01-01
The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications.
Directory of Open Access Journals (Sweden)
Melike Bildirici
2014-01-01
Full Text Available The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100. Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray’s MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray’s MS-GARCH model. Therefore, the models are promising for various economic applications.
Directory of Open Access Journals (Sweden)
J. C. Ochoa-Rivera
2002-01-01
Full Text Available A model for multivariate streamflow generation is presented, based on a multilayer feedforward neural network. The structure of the model results from two components, the neural network (NN deterministic component and a random component which is assumed to be normally distributed. It is from this second component that the model achieves the ability to incorporate effectively the uncertainty associated with hydrological processes, making it valuable as a practical tool for synthetic generation of streamflow series. The NN topology and the corresponding analytical explicit formulation of the model are described in detail. The model is calibrated with a series of monthly inflows to two reservoir sites located in the Tagus River basin (Spain, while validation is performed through estimation of a set of statistics that is relevant for water resources systems planning and management. Among others, drought and storage statistics are computed and compared for both the synthetic and historical series. The performance of the NN-based model was compared to that of a standard autoregressive AR(2 model. Results show that NN represents a promising modelling alternative for simulation purposes, with interesting potential in the context of water resources systems management and optimisation. Keywords: neural networks, perceptron multilayer, error backpropagation, hydrological scenario generation, multivariate time-series..
Adaptive Sliding Mode Control of MEMS Gyroscope Based on Neural Network Approximation
Directory of Open Access Journals (Sweden)
Yuzheng Yang
2014-01-01
Full Text Available An adaptive sliding controller using radial basis function (RBF network to approximate the unknown system dynamics microelectromechanical systems (MEMS gyroscope sensor is proposed. Neural controller is proposed to approximate the unknown system model and sliding controller is employed to eliminate the approximation error and attenuate the model uncertainties and external disturbances. Online neural network (NN weight tuning algorithms, including correction terms, are designed based on Lyapunov stability theory, which can guarantee bounded tracking errors as well as bounded NN weights. The tracking error bound can be made arbitrarily small by increasing a certain feedback gain. Numerical simulation for a MEMS angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive neural control scheme and demonstrate the satisfactory tracking performance and robustness.
Dynamic properties of cellular neural networks
Directory of Open Access Journals (Sweden)
Angela Slavova
1993-01-01
Full Text Available Dynamic behavior of a new class of information-processing systems called Cellular Neural Networks is investigated. In this paper we introduce a small parameter in the state equation of a cellular neural network and we seek for periodic phenomena. New approach is used for proving stability of a cellular neural network by constructing Lyapunov's majorizing equations. This algorithm is helpful for finding a map from initial continuous state space of a cellular neural network into discrete output. A comparison between cellular neural networks and cellular automata is made.
Prediction of a model enzymatic acidolysis system using neural networks
Directory of Open Access Journals (Sweden)
Güven, Aytaç
2008-12-01
Full Text Available A model for the acidolysis of trinolein and palmitic acid under the catalysis of immobilized sn-1,3 specific lipase was presented in this study. A neural networks (NN based model was developed for the prediction of the concentrations of the major reaction products of this reaction (1-palmitoyl-2,3-oleoyl-glycerol (POO 1,3-dipalmitoyl-2-oleoyl-glycerol (POP and triolein (OOO. Substrate ratio (SR, reaction temperature (T and reaction time (t were used as input parameters. The optimal architecture of the proposed NN model, which consists of one input layer with three inputs, one hidden layer with seven neurons and one output layer with three outputs, wass able to predict the reaction products concentration with a mean square error (MSE of less than 1.5 and R2 of 0.999. and explicit formulation of the proposed NN is presented. Considerable good performance is achieved in modeling the acidolysis reaction using neuronal networks.En este estudio se presenta un modelo para la acidólisis de la trilinoleina y el ácido palmítico mediante la catálisis con una lipasa específica sn-1,3 inmovilizada. Un modelo basado en redes neuronales (NN ha sido desarrollado para la predicción de la concentración de los principales productos de esta reacción (1-palmitoil-2,3-oleoil-glicerol (POO, 1,3-dipalmitoil-2-oleoil-glicerol (POP y trioleina (OOO. Se han usado como parámetros de entrada: la proporción del sustrato (SR, la temperatura de reacción (T y el tiempo de reacción (t. La arquitectura óptima del modelo de NN propuesto, que consiste en una capa de entrada con tres entradas, una capa oculta con siete neuronas y una capa de salida con tres salidas, fue capaz de predecir la concentración de los productos de reacción con un error cuadrático medio (MSE de menos de 1.5 y una R2 de 0.999 . Se presenta una formulación explícita del modelo NN propuesto. Se obtienen muy buenos resultados en la predicción de la reacciones de acidólisis mediante el uso de
Neural network control of mobile robot formations using RISE feedback.
Dierks, Travis; Jagannathan, S
2009-04-01
In this paper, an asymptotically stable (AS) combined kinematic/torque control law is developed for leader-follower-based formation control using backstepping in order to accommodate the complete dynamics of the robots and the formation, and a neural network (NN) is introduced along with robust integral of the sign of the error feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are AS and that the NN weights are bounded as opposed to uniformly ultimately bounded stability which is typical with most NN controllers. Additionally, the stability of the formation in the presence of obstacles is examined using Lyapunov methods, and by treating other robots in the formation as obstacles, collisions within the formation do not occur. The asymptotic stability of the follower robots as well as the entire formation during an obstacle avoidance maneuver is demonstrated using Lyapunov methods, and numerical results are provided to verify the theoretical conjectures.
Neural Networks Methodology and Applications
Dreyfus, Gérard
2005-01-01
Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented...
Directory of Open Access Journals (Sweden)
Eline Janssens
2016-11-01
Full Text Available Speed is an important parameter of an inspection system. Inline computed tomography systems exist but are generally expensive. Moreover, their throughput is limited by the speed of the reconstruction algorithm. In this work, we propose a Neural Network-based Hilbert transform Filtered Backprojection (NN-hFBP method to reconstruct objects in an inline scanning environment in a fast and accurate way. Experiments based on apple X-ray scans show that the NN-hFBP method allows to reconstruct images with a substantially better tradeoff between image quality and reconstruction time.
Nonlinear System Identification Using Neural Networks Trained with Natural Gradient Descent
Directory of Open Access Journals (Sweden)
Ibnkahla Mohamed
2003-01-01
Full Text Available We use natural gradient (NG learning neural networks (NNs for modeling and identifying nonlinear systems with memory. The nonlinear system is comprised of a discrete-time linear filter followed by a zero-memory nonlinearity . The NN model is composed of a linear adaptive filter followed by a two-layer memoryless nonlinear NN. A Kalman filter-based technique and a search-and-converge method have been employed for the NG algorithm. It is shown that the NG descent learning significantly outperforms the ordinary gradient descent and the Levenberg-Marquardt (LM procedure in terms of convergence speed and mean squared error (MSE performance.
Energy Technology Data Exchange (ETDEWEB)
Artrith, Nongnuch; Morawietz, Tobias; Maschke, Marcus; Behler, Joerg [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)
2010-07-01
Recently, artificial neural networks (NN) trained to first-principles data have shown to provide accurate potential energy surfaces for systems containing a single atomic species. In this work we present an extension of the NN approach to multicomponent systems by introducing physically motivated terms to deal with long-range interactions. This is a necessary condition for studying binary systems and general multicomponent systems with significant charge transfer. The capabilities of the method are demonstrated for crystal structures, amorphous structures, clusters, and surfaces of zinc oxide as a benchmark system. We show that the predicted energies and forces are in excellent agreement with reference density-functional theory calculations.
Building an Early Warning System for Crude Oil Price Using Neural Network
Directory of Open Access Journals (Sweden)
Wonho Song
2010-12-01
Full Text Available In this paper, a crisis index for the oil price shock is defined and a neural network model is specified for the prediction of the crisis index. This paper contributes to the literature in three ways. First, we build an early warning system for crude oil price. Although the oil price became one of the most important price index recently, no research efforts have been made to build an early warning system for crude oil price. Second, the neural network (NN model is used to construct the early warning sysIn this paper, a crisis index for the oil price shock is defined and a neural network model is specified for the prediction of the crisis index. This paper contributes to the literature in three ways. First, we build an early warning system for crude oil price. Although the oil price became one of the most important price index recently, no research efforts have been made to build an early warning system for crude oil price. Second, the neural network (NN model is used to construct the early warning system. Most early warning systems are built based on the signaling approach. In this paper, we show that the neural network models are more flexible and have greater potential as EWS than the signaling approach. Third, we allow the multi-level crisis index. Previous models allowed only a zero/one crisis index whereas our model permits as many levels as possible. With this new model, we try to answer whether the oil price collapse following the historical peak in 2008 was predictable. We compare the results from the NN model with those from the ordered probit (OP model, and show that the oil price crisis and the following crash were predictable by the NN model, but not by the OP model.
The LILARTI neural network system
Energy Technology Data Exchange (ETDEWEB)
Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.
1992-10-01
The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.
Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Nelson Butuk
2005-12-01
This is an annual technical report for the work done over the last year (period ending 9/30/2005) on the project titled ''Mathematically Reduced Chemical Reaction Mechanism Using Neural Networks''. The aim of the project is to develop an efficient chemistry model for combustion simulations. The reduced chemistry model will be developed mathematically without the need of having extensive knowledge of the chemistry involved. To aid in the development of the model, Neural Networks (NN) will be used via a new network topology know as Non-linear Principal Components Analysis (NPCA). We report on the development of a novel procedure to speed up the training of NPCA. The same procedure termed L{sub 2}Boost can be used to increase the order of approximation of the Generalized Regression Neural Network (GRNN). It is pointed out that GRNN is a basic procedure for the emerging mesh free CFD. Also reported is an efficient simple approach of computing the derivatives of GRNN function approximation using complex variables or the Complex Step Method (CSM). The results presented demonstrate the significance of the methods developed and will be useful in many areas of applied science and engineering.
Practical neural network recipies in C++
Masters
2014-01-01
This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assum
Neural network modeling of emotion
Levine, Daniel S.
2007-03-01
This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.
Directory of Open Access Journals (Sweden)
Vladimir Krasnopolsky
2016-01-01
Full Text Available A neural network (NN technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived “ocean color” (OC data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA’s operational Visible Imaging Infrared Radiometer Suite (VIIRS are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed—signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013, and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN’s generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series.
MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION
Directory of Open Access Journals (Sweden)
Artur Popko
2013-06-01
Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.
Directory of Open Access Journals (Sweden)
Subanar Subanar
2006-01-01
Full Text Available Recently, one of the central topics for the neural networks (NN community is the issue of data preprocessing on the use of NN. In this paper, we will investigate this topic particularly on the effect of Decomposition method as data processing and the use of NN for modeling effectively time series with both trend and seasonal patterns. Limited empirical studies on seasonal time series forecasting with neural networks show that some find neural networks are able to model seasonality directly and prior deseasonalization is not necessary, and others conclude just the opposite. In this research, we study particularly on the effectiveness of data preprocessing, including detrending and deseasonalization by applying Decomposition method on NN modeling and forecasting performance. We use two kinds of data, simulation and real data. Simulation data are examined on multiplicative of trend and seasonality patterns. The results are compared to those obtained from the classical time series model. Our result shows that a combination of detrending and deseasonalization by applying Decomposition method is the effective data preprocessing on the use of NN for forecasting trend and seasonal time series.
Satellite image analysis using neural networks
Sheldon, Roger A.
1990-01-01
The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.
Fuzzy neural networks: theory and applications
Gupta, Madan M.
1994-10-01
During recent years, significant advances have been made in two distinct technological areas: fuzzy logic and computational neural networks. The theory of fuzzy logic provides a mathematical framework to capture the uncertainties associated with human cognitive processes, such as thinking and reasoning. It also provides a mathematical morphology to emulate certain perceptual and linguistic attributes associated with human cognition. On the other hand, the computational neural network paradigms have evolved in the process of understanding the incredible learning and adaptive features of neuronal mechanisms inherent in certain biological species. Computational neural networks replicate, on a small scale, some of the computational operations observed in biological learning and adaptation. The integration of these two fields, fuzzy logic and neural networks, have given birth to an emerging technological field -- fuzzy neural networks. Fuzzy neural networks, have the potential to capture the benefits of these two fascinating fields, fuzzy logic and neural networks, into a single framework. The intent of this tutorial paper is to describe the basic notions of biological and computational neuronal morphologies, and to describe the principles and architectures of fuzzy neural networks. Towards this goal, we develop a fuzzy neural architecture based upon the notion of T-norm and T-conorm connectives. An error-based learning scheme is described for this neural structure.
Pediatric Nutritional Requirements Determination with Neural Networks
Karlık, Bekir; Ece, Aydın
1998-01-01
To calculate daily nutritional requirements of children, a computer program has been developed based upon neural network. Three parameters, daily protein, energy and water requirements, were calculated through trained artificial neural networks using a database of 312 children The results were compared with those of calculated from dietary requirements tables of World Health Organisation. No significant difference was found between two calculations. In conclusion, a simple neural network may ...
Adaptive optimization and control using neural networks
Energy Technology Data Exchange (ETDEWEB)
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Bayesian regularization of neural networks.
Burden, Frank; Winkler, Dave
2008-01-01
Bayesian regularized artificial neural networks (BRANNs) are more robust than standard back-propagation nets and can reduce or eliminate the need for lengthy cross-validation. Bayesian regularization is a mathematical process that converts a nonlinear regression into a "well-posed" statistical problem in the manner of a ridge regression. The advantage of BRANNs is that the models are robust and the validation process, which scales as O(N2) in normal regression methods, such as back propagation, is unnecessary. These networks provide solutions to a number of problems that arise in QSAR modeling, such as choice of model, robustness of model, choice of validation set, size of validation effort, and optimization of network architecture. They are difficult to overtrain, since evidence procedures provide an objective Bayesian criterion for stopping training. They are also difficult to overfit, because the BRANN calculates and trains on a number of effective network parameters or weights, effectively turning off those that are not relevant. This effective number is usually considerably smaller than the number of weights in a standard fully connected back-propagation neural net. Automatic relevance determination (ARD) of the input variables can be used with BRANNs, and this allows the network to "estimate" the importance of each input. The ARD method ensures that irrelevant or highly correlated indices used in the modeling are neglected as well as showing which are the most important variables for modeling the activity data. This chapter outlines the equations that define the BRANN method plus a flowchart for producing a BRANN-QSAR model. Some results of the use of BRANNs on a number of data sets are illustrated and compared with other linear and nonlinear models.
Neural networks for nuclear spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T. [Pacific Northwest Lab., Richland, WA (United States)] [and others
1995-12-31
In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.
Neural network based system for equipment surveillance
Vilim, R.B.; Gross, K.C.; Wegerich, S.W.
1998-04-28
A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.
Fuzzy neural network theory and application
Liu, Puyin
2004-01-01
This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he
Pansharpening by Convolutional Neural Networks
Directory of Open Access Journals (Sweden)
Giuseppe Masi
2016-07-01
Full Text Available A new pansharpening method is proposed, based on convolutional neural networks. We adapt a simple and effective three-layer architecture recently proposed for super-resolution to the pansharpening problem. Moreover, to improve performance without increasing complexity, we augment the input by including several maps of nonlinear radiometric indices typical of remote sensing. Experiments on three representative datasets show the proposed method to provide very promising results, largely competitive with the current state of the art in terms of both full-reference and no-reference metrics, and also at a visual inspection.
Neural networks and perceptual learning
Tsodyks, Misha; Gilbert, Charles
2005-01-01
Sensory perception is a learned trait. The brain strategies we use to perceive the world are constantly modified by experience. With practice, we subconsciously become better at identifying familiar objects or distinguishing fine details in our environment. Current theoretical models simulate some properties of perceptual learning, but neglect the underlying cortical circuits. Future neural network models must incorporate the top-down alteration of cortical function by expectation or perceptual tasks. These newly found dynamic processes are challenging earlier views of static and feedforward processing of sensory information. PMID:15483598
Optimization with Potts Neural Networks
Söderberg, Bo
The Potts Neural Network approach to non-binary discrete optimization problems is described. It applies to problems that can be described as a set of elementary `multiple choice' options. Instead of the conventional binary (Ising) neurons, mean field Potts neurons, having several available states, are used to describe the elementary degrees of freedom of such problems. The dynamics consists of iterating the mean field equations with annealing until convergence. Due to its deterministic character, the method is quite fast. When applied to problems of Graph Partition and scheduling types, it produces very good solutions also for problems of considerable size.
Energy Technology Data Exchange (ETDEWEB)
Moncayo, S.; Manzoor, S.; Ugidos, T.; Navarro-Villoslada, F.; Caceres, J.O., E-mail: jcaceres@ucm.es
2014-11-01
A fast and minimally destructive method based on Laser Induced Breakdown Spectroscopy (LIBS) and Neural Networks (NN) has been developed and applied to the classification and discrimination of human bones and teeth fragments. The methodology can be useful in Disaster Victim Identification (DVI) tasks. The elemental compositions of bone and teeth samples provided enough information to achieve a correct discrimination and reassembling of different human remains. Individuals were classified with spectral correlation higher than 95%, regardless of the type of bone or tooth sample analyzed. No false positive or false negative was observed, demonstrating the high robustness and accuracy of the proposed methodology. - Highlights: • Classification and discrimination of human remains have been studied. • Remains were analyzed by Laser Induced Breakdown Spectroscopy (LIBS). • Neural Networks models (NN) were used. • Individuals were classified with spectral correlation higher than 95 %. • LIBS-NN showed the potential for rapid and cost-effective analysis.
Neural network L1 adaptive control of MIMO systems with nonlinear uncertainty.
Zhen, Hong-tao; Qi, Xiao-hui; Li, Jie; Tian, Qing-min
2014-01-01
An indirect adaptive controller is developed for a class of multiple-input multiple-output (MIMO) nonlinear systems with unknown uncertainties. This control system is comprised of an L 1 adaptive controller and an auxiliary neural network (NN) compensation controller. The L 1 adaptive controller has guaranteed transient response in addition to stable tracking. In this architecture, a low-pass filter is adopted to guarantee fast adaptive rate without generating high-frequency oscillations in control signals. The auxiliary compensation controller is designed to approximate the unknown nonlinear functions by MIMO RBF neural networks to suppress the influence of uncertainties. NN weights are tuned on-line with no prior training and the project operator ensures the weights bounded. The global stability of the closed-system is derived based on the Lyapunov function. Numerical simulations of an MIMO system coupled with nonlinear uncertainties are used to illustrate the practical potential of our theoretical results.
Neural network-based optimal adaptive output feedback control of a helicopter UAV.
Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani
2013-07-01
Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.
High-dimensional neural network potentials for metal surfaces: A prototype study for copper
Artrith, Nongnuch; Behler, Jörg
2012-01-01
The atomic environments at metal surfaces differ strongly from the bulk, and, in particular, in case of reconstructions or imperfections at “real surfaces,” very complicated atomic configurations can be present. This structural complexity poses a significant challenge for the development of accurate interatomic potentials suitable for large-scale molecular dynamics simulations. In recent years, artificial neural networks (NN) have become a promising new method for the construction of potential-energy surfaces for difficult systems. In the present work, we explore the applicability of such high-dimensional NN potentials to metal surfaces using copper as a benchmark system. A detailed analysis of the properties of bulk copper and of a wide range of surface structures shows that NN potentials can provide results of almost density functional theory (DFT) quality at a small fraction of the computational costs.
Fuzzy logic, neural networks, and soft computing
Zadeh, Lofti A.
1994-01-01
The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial
Bias correction in SMAP soil moisture assimilation using a neural network approach
Kolassa, J.; Reichle, R. H.; Gentine, P.; Alemohammad, S. H.; Prigent, C.; Aires, F.; Draper, C. S.; Liu, Q.
2016-12-01
Statistical techniques permit the retrieval of soil moisture estimates in a model climatology while retaining the spatial and temporal signatures of the satellite observations. As a consequence, they can be used to implement an alternative bias correction to the local cumulative distribution function matching typically used in soil moisture data assimilation (DA) systems. In this study, a statistical neural network (NN) retrieval algorithm is calibrated using SMAP brightness temperature observations and modeled soil moisture (which is also used to calibrate the SMAP Level 4 DA system). Daily values of surface soil moisture are estimated using the NN and then assimilated into the NASA Catchment model. We assess the skill of the NN retrieval and the assimilation estimates through a comprehensive comparison to in situ measurements from the SMAP core and sparse network sites. The NN method compares well against the official RTM based approach and is able to extract information from the SMAP observations that is complementary to the model. Additionally, we compare the NN method to more traditional bias correction approaches and analyze the potential of using spatially variable error estimates to improve the relative impact of observations in the assimilation.
Three dimensional living neural networks
Linnenberger, Anna; McLeod, Robert R.; Basta, Tamara; Stowell, Michael H. B.
2015-08-01
We investigate holographic optical tweezing combined with step-and-repeat maskless projection micro-stereolithography for fine control of 3D positioning of living cells within a 3D microstructured hydrogel grid. Samples were fabricated using three different cell lines; PC12, NT2/D1 and iPSC. PC12 cells are a rat cell line capable of differentiation into neuron-like cells NT2/D1 cells are a human cell line that exhibit biochemical and developmental properties similar to that of an early embryo and when exposed to retinoic acid the cells differentiate into human neurons useful for studies of human neurological disease. Finally induced pluripotent stem cells (iPSC) were utilized with the goal of future studies of neural networks fabricated from human iPSC derived neurons. Cells are positioned in the monomer solution with holographic optical tweezers at 1064 nm and then are encapsulated by photopolymerization of polyethylene glycol (PEG) hydrogels formed by thiol-ene photo-click chemistry via projection of a 512x512 spatial light modulator (SLM) illuminated at 405 nm. Fabricated samples are incubated in differentiation media such that cells cease to divide and begin to form axons or axon-like structures. By controlling the position of the cells within the encapsulating hydrogel structure the formation of the neural circuits is controlled. The samples fabricated with this system are a useful model for future studies of neural circuit formation, neurological disease, cellular communication, plasticity, and repair mechanisms.
The Laplacian spectrum of neural networks
de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.
2014-01-01
The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286
Neural networks with discontinuous/impact activations
Akhmet, Marat
2014-01-01
This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...
Hindcasting of storm waves using neural networks
Digital Repository Service at National Institute of Oceanography (India)
Rao, S.; Mandal, S.
of any exogenous input requirement makes the network attractive. A neural network is an information processing system modeled on the structure of the human brain. Its merit is the ability to deal with fuzzy information whose interrelation is ambiguous...
Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang
2010-09-01
This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.
Neural-Network-Based Fuzzy Logic Navigation Control for Intelligent Vehicles
Directory of Open Access Journals (Sweden)
Ahcene Farah
2002-06-01
Full Text Available This paper proposes a Neural-Network-Based Fuzzy logic system for navigation control of intelligent vehicles. First, the use of Neural Networks and Fuzzy Logic to provide intelligent vehicles with more autonomy and intelligence is discussed. Second, the system for the obstacle avoidance behavior is developed. Fuzzy Logic improves Neural Networks (NN obstacle avoidance approach by handling imprecision and rule-based approximate reasoning. This system must make the vehicle able, after supervised learning, to achieve two tasks: 1- to make one’s way towards its target by a NN, and 2- to avoid static or dynamic obstacles by a Fuzzy NN capturing the behavior of a human expert. Afterwards, two association phases between each task and the appropriate actions are carried out by Trial and Error learning and their coordination allows to decide the appropriate action. Finally, the simulation results display the generalization and adaptation abilities of the system by testing it in new unexplored environments.
Drift chamber tracking with neural networks
Energy Technology Data Exchange (ETDEWEB)
Lindsey, C.S.; Denby, B.; Haggerty, H.
1992-10-01
We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.
Neural network optimization, components, and design selection
Weller, Scott W.
1991-01-01
Neural Networks are part of a revived technology which has received a lot of hype in recent years. As is apt to happen in any hyped technology, jargon and predictions make its assimilation and application difficult. Nevertheless, Neural Networks have found use in a number of areas, working on non-trivial and non-contrived problems. For example, one net has been trained to "read", translating English text into phoneme sequences. Other applications of Neural Networks include data base manipulation and the solving of routing and classification types of optimization problems. It was their use in optimization that got me involved with Neural Networks. As it turned out, "optimization" used in this context was somewhat misleading, because while some network configurations could indeed solve certain kinds of optimization problems, the configuring or "training" of a Neural Network itself is an optimization problem, and most of the literature which talked about Neural Nets and optimization in the same breath did not speak to my goal of using Neural Nets to help solve lens optimization problems. I did eventually apply Neural Network to lens optimization, and I will touch on those results. The application of Neural Nets to the problem of lens selection was much more successful, and those results will dominate this paper.
Shen, Lin; Yang, Weitao
2018-02-13
Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in complex environment but very time consuming. The computational cost on QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive way. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of reaction dynamics, which provides a useful tool to study chemical or biochemical systems in solution or enzymes.
Radiation Behavior of Analog Neural Network Chip
Langenbacher, H.; Zee, F.; Daud, T.; Thakoor, A.
1996-01-01
A neural network experiment conducted for the Space Technology Research Vehicle (STRV-1) 1-b launched in June 1994. Identical sets of analog feed-forward neural network chips was used to study and compare the effects of space and ground radiation on the chips. Three failure mechanisms are noted.
Neural network approach to parton distributions fitting
Piccione, Andrea; Forte, Stefano; Latorre, Jose I.; Rojo, Joan; Piccione, Andrea; Rojo, Joan
2006-01-01
We will show an application of neural networks to extract information on the structure of hadrons. A Monte Carlo over experimental data is performed to correctly reproduce data errors and correlations. A neural network is then trained on each Monte Carlo replica via a genetic algorithm. Results on the proton and deuteron structure functions, and on the nonsinglet parton distribution will be shown.
Self-organization of neural networks
Energy Technology Data Exchange (ETDEWEB)
Clark, J.W.; Winston, J.V.; Rafelski, J.
1984-05-14
The plastic development of a neural-network model operating autonomously in discrete time is described by the temporal modification of interneuronal coupling strengths according to momentary neural activity. A simple algorithm (brainwashing) is found which, applied to nets with initially quasirandom connectivity, leads to model networks with properties conducive to the simulation of memory and learning phenomena. 18 references, 2 figures.
Medical image analysis with artificial neural networks.
Jiang, J; Trundle, P; Ren, J
2010-12-01
Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.
Genetic Algorithm Optimized Neural Networks Ensemble as ...
African Journals Online (AJOL)
Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) for the simultaneous spectrophotometric multicomponent analysis are suggested, with a study on the estimation of the components of an antihypertensive combination, namely, atenolol and losartan potassium.
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Application of Neural Networks for Energy Reconstruction
Damgov, Jordan
2002-01-01
The possibility to use Neural Networks for reconstruction ofthe energy deposited in the calorimetry system of the CMS detector is investigated. It is shown that using feed-forward neural network, good linearity, Gaussian energy distribution and good energy resolution can be achieved. Significant improvement of the energy resolution and linearity is reached in comparison with other weighting methods for energy reconstruction.
Neural Network to Solve Concave Games
Zixin Liu; Nengfa Wang
2014-01-01
The issue on neural network method to solve concave games is concerned. Combined with variational inequality, Ky Fan inequality, and projection equation, concave games are transformed into a neural network model. On the basis of the Lyapunov stable theory, some stability results are also given. Finally, two classic games’ simulation results are given to illustrate the theoretical results.
Recognizing changing seasonal patterns using neural networks
Ph.H.B.F. Franses (Philip Hans); G. Draisma (Gerrit)
1997-01-01
textabstractIn this paper we propose a graphical method based on an artificial neural network model to investigate how and when seasonal patterns in macroeconomic time series change over time. Neural networks are useful since the hidden layer units may become activated only in certain seasons or
Adaptive Neurons For Artificial Neural Networks
Tawel, Raoul
1990-01-01
Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.
Initialization of multilayer forecasting artifical neural networks
Bochkarev, Vladimir V.; Maslennikova, Yulia S.
2014-01-01
In this paper, a new method was developed for initialising artificial neural networks predicting dynamics of time series. Initial weighting coefficients were determined for neurons analogously to the case of a linear prediction filter. Moreover, to improve the accuracy of the initialization method for a multilayer neural network, some variants of decomposition of the transformation matrix corresponding to the linear prediction filter were suggested. The efficiency of the proposed neural netwo...
Directory of Open Access Journals (Sweden)
Manjunath Patel Gowdru Chandrashekarappa
2014-01-01
Full Text Available The present research work is focussed to develop an intelligent system to establish the input-output relationship utilizing forward and reverse mappings of artificial neural networks. Forward mapping aims at predicting the density and secondary dendrite arm spacing (SDAS from the known set of squeeze cast process parameters such as time delay, pressure duration, squeezes pressure, pouring temperature, and die temperature. An attempt is also made to meet the industrial requirements of developing the reverse model to predict the recommended squeeze cast parameters for the desired density and SDAS. Two different neural network based approaches have been proposed to carry out the said task, namely, back propagation neural network (BPNN and genetic algorithm neural network (GA-NN. The batch mode of training is employed for both supervised learning networks and requires huge training data. The requirement of huge training data is generated artificially at random using regression equation derived through real experiments carried out earlier by the same authors. The performances of BPNN and GA-NN models are compared among themselves with those of regression for ten test cases. The results show that both models are capable of making better predictions and the models can be effectively used in shop floor in selection of most influential parameters for the desired outputs.
International Conference on Artificial Neural Networks (ICANN)
Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics
2015-01-01
The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...
A neural network approach to smarter sensor networks for water quality monitoring.
O'Connor, Edel; Smeaton, Alan F; O'Connor, Noel E; Regan, Fiona
2012-01-01
Environmental monitoring is evolving towards large-scale and low-cost sensor networks operating reliability and autonomously over extended periods of time. Sophisticated analytical instrumentation such as chemo-bio sensors present inherent limitations because of the number of samples that they can take. In order to maximize their deployment lifetime, we propose the coordination of multiple heterogeneous information sources. We use rainfall radar images and information from a water depth sensor as input to a neural network (NN) to dictate the sampling frequency of a phosphate analyzer at the River Lee in Cork, Ireland. This approach shows varied performance for different times of the year but overall produces output that is very satisfactory for the application context in question. Our study demonstrates that even with limited training data, a system for controlling the sampling rate of the nutrient sensor can be set up and can improve the efficiency of the more sophisticated nodes of the sensor network.
Neural Based Orthogonal Data Fitting The EXIN Neural Networks
Cirrincione, Giansalvo
2008-01-01
Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Wh
Clustering: a neural network approach.
Du, K-L
2010-01-01
Clustering is a fundamental data analysis method. It is widely used for pattern recognition, feature extraction, vector quantization (VQ), image segmentation, function approximation, and data mining. As an unsupervised classification technique, clustering identifies some inherent structures present in a set of objects based on a similarity measure. Clustering methods can be based on statistical model identification (McLachlan & Basford, 1988) or competitive learning. In this paper, we give a comprehensive overview of competitive learning based clustering methods. Importance is attached to a number of competitive learning based clustering neural networks such as the self-organizing map (SOM), the learning vector quantization (LVQ), the neural gas, and the ART model, and clustering algorithms such as the C-means, mountain/subtractive clustering, and fuzzy C-means (FCM) algorithms. Associated topics such as the under-utilization problem, fuzzy clustering, robust clustering, clustering based on non-Euclidean distance measures, supervised clustering, hierarchical clustering as well as cluster validity are also described. Two examples are given to demonstrate the use of the clustering methods.
Complex-valued Neural Networks
Hirose, Akira
This paper reviews the features and applications of complex-valued neural networks (CVNNs). First we list the present application fields, and describe the advantages of the CVNNs in two application examples, namely, an adaptive plastic-landmine visualization system and an optical frequency-domain-multiplexed learning logic circuit. Then we briefly discuss the features of complex number itself to find that the phase rotation is the most significant concept, which is very useful in processing the information related to wave phenomena such as lightwave and electromagnetic wave. The CVNNs will also be an indispensable framework of the future microelectronic information-processing hardware where the quantum electron wave plays the principal role.
Collision avoidance using neural networks
Sugathan, Shilpa; Sowmya Shree, B. V.; Warrier, Mithila R.; Vidhyapathi, C. M.
2017-11-01
Now a days, accidents on roads are caused due to the negligence of drivers and pedestrians or due to unexpected obstacles that come into the vehicle’s path. In this paper, a model (robot) is developed to assist drivers for a smooth travel without accidents. It reacts to the real time obstacles on the four critical sides of the vehicle and takes necessary action. The sensor used for detecting the obstacle was an IR proximity sensor. A single layer perceptron neural network is used to train and test all possible combinations of sensors result by using Matlab (offline). A microcontroller (ARM Cortex-M3 LPC1768) is used to control the vehicle through the output data which is received from Matlab via serial communication. Hence, the vehicle becomes capable of reacting to any combination of real time obstacles.
Tampa Electric Neural Network Sootblowing
Energy Technology Data Exchange (ETDEWEB)
Mark A. Rhode
2003-12-31
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NO{sub x} formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent soot-blowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat
Tampa Electric Neural Network Sootblowing
Energy Technology Data Exchange (ETDEWEB)
Mark A. Rhode
2004-09-30
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NOx formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent sootblowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate
Tampa Electric Neural Network Sootblowing
Energy Technology Data Exchange (ETDEWEB)
Mark A. Rhode
2004-03-31
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NOx formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing co-funding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent sootblowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate
Study of Li atom diffusion in amorphous Li3PO4 with neural network potential
Li, Wenwen; Ando, Yasunobu; Minamitani, Emi; Watanabe, Satoshi
2017-12-01
To clarify atomic diffusion in amorphous materials, which is important in novel information and energy devices, theoretical methods having both reliability and computational speed are eagerly anticipated. In the present study, we applied neural network (NN) potentials, a recently developed machine learning technique, to the study of atom diffusion in amorphous materials, using Li3PO4 as a benchmark material. The NN potential was used together with the nudged elastic band, kinetic Monte Carlo, and molecular dynamics methods to characterize Li vacancy diffusion behavior in the amorphous Li3PO4 model. By comparing these results with corresponding DFT calculations, we found that the average error of the NN potential is 0.048 eV in calculating energy barriers of diffusion paths, and 0.041 eV in diffusion activation energy. Moreover, the diffusion coefficients obtained from molecular dynamics are always consistent with those from ab initio molecular dynamics simulation, while the computation speed of the NN potential is 3-4 orders of magnitude faster than DFT. Lastly, the structure of amorphous Li3PO4 and the ion transport properties in it were studied with the NN potential using a large supercell model containing more than 1000 atoms. The formation of P2O7 units was observed, which is consistent with the experimental characterization. The Li diffusion activation energy was estimated to be 0.55 eV, which agrees well with the experimental measurements.
Prediction of deformation characteristics of sintered aluminium preforms using neural networks
Selvakumar, N.; Radha, P.; Narayanasamy, R.; Davidson, M. Joseph
2004-07-01
Neural networks (NNs) are employed to study the deformation characteristics of sintered aluminium preforms. The proposed NN model has used the measured parameters, namely the load, the aspect ratio and the initial preform fractional density ratio to predict multiple material characteristics, namely the axial stress, the hoop stress, the hydrostatic stress, the axial strain, the hoop strain and the Poisson's ratio. The model is based on a 'four layered NN' with back propagation learning algorithm. The experimental set-up available in the laboratory has been used to get the training data for the sintered aluminium with various preform densities and different aspect ratios (0.50, 0.75 and 1.00) using MoS2 as lubricant. The predicted values from the proposed NN coincide well with the experimental values. In addition, a comparative study between the regression analysis and the NN revealed that the NN can predict the material characteristics of sintered aluminium preform better than regression polynomials within a few per cent error.
Stratified construction of neural network based interatomic models for multicomponent materials
Hajinazar, Samad; Shao, Junping; Kolmogorov, Aleksey N.
2017-01-01
Recent application of neural networks (NNs) to modeling interatomic interactions has shown the learning machines' encouragingly accurate performance for select elemental and multicomponent systems. In this study we explore the possibility of building a library of NN-based models by introducing a hierarchical NN training. In such a stratified procedure NNs for multicomponent systems are obtained by sequential training from the bottom up: first unaries, then binaries, and so on. Advantages of constructing NN sets with shared parameters include acceleration of the training process and intact description of the constituent systems. We use an automated generation of diverse structure sets for NN training on density functional theory-level reference energies. In the test case of Cu, Pd, Ag, Cu-Pd, Cu-Ag, Pd-Ag, and Cu-Pd-Ag systems, NNs trained in the traditional and stratified fashions are found to have essentially identical accuracy for defect energies, phonon dispersions, formation energies, etc. The models' robustness is further illustrated via unconstrained evolutionary structure searches in which the NN is used for the local optimization of crystal unit cells.
Program Aids Simulation Of Neural Networks
Baffes, Paul T.
1990-01-01
Computer program NETS - Tool for Development and Evaluation of Neural Networks - provides simulation of neural-network algorithms plus software environment for development of such algorithms. Enables user to customize patterns of connections between layers of network, and provides features for saving weight values of network, providing for more precise control over learning process. Consists of translating problem into format using input/output pairs, designing network configuration for problem, and finally training network with input/output pairs until acceptable error reached. Written in C.
Learning Processes of Layered Neural Networks
Fujiki, Sumiyoshi; FUJIKI, Nahomi, M.
1995-01-01
A positive reinforcement type learning algorithm is formulated for a stochastic feed-forward neural network, and a learning equation similar to that of the Boltzmann machine algorithm is obtained. By applying a mean field approximation to the same stochastic feed-forward neural network, a deterministic analog feed-forward network is obtained and the back-propagation learning rule is re-derived.
Neural network based adaptive control for nonlinear dynamic regimes
Shin, Yoonghyun
Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.
Adaptive Neural Network Nonparametric Identifier With Normalized Learning Laws.
Chairez, Isaac
2017-05-01
This paper addresses the design of a normalized convergent learning law for neural networks (NNs) with continuous dynamics. The NN is used here to obtain a nonparametric model for uncertain systems described by a set of ordinary differential equations. The source of uncertainties is the presence of some external perturbations and poor knowledge of the nonlinear function describing the system dynamics. A new adaptive algorithm based on normalized algorithms was used to adjust the weights of the NN. The adaptive algorithm was derived by means of a nonstandard logarithmic Lyapunov function (LLF). Two identifiers were designed using two variations of LLFs leading to a normalized learning law for the first identifier and a variable gain normalized learning law. In the case of the second identifier, the inclusion of normalized learning laws yields to reduce the size of the convergence region obtained as solution of the practical stability analysis. On the other hand, the velocity of convergence for the learning laws depends on the norm of errors in inverse form. This fact avoids the peaking transient behavior in the time evolution of weights that accelerates the convergence of identification error. A numerical example demonstrates the improvements achieved by the algorithm introduced in this paper compared with classical schemes with no-normalized continuous learning methods. A comparison of the identification performance achieved by the no-normalized identifier and the ones developed in this paper shows the benefits of the learning law proposed in this paper.
Modular representation of layered neural networks.
Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio
2018-01-01
Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Research of The Deeper Neural Networks
Directory of Open Access Journals (Sweden)
Xiao You Rong
2016-01-01
Full Text Available Neural networks (NNs have powerful computational abilities and could be used in a variety of applications; however, training these networks is still a difficult problem. With different network structures, many neural models have been constructed. In this report, a deeper neural networks (DNNs architecture is proposed. The training algorithm of deeper neural network insides searching the global optimal point in the actual error surface. Before the training algorithm is designed, the error surface of the deeper neural network is analyzed from simple to complicated, and the features of the error surface is obtained. Based on these characters, the initialization method and training algorithm of DNNs is designed. For the initialization, a block-uniform design method is proposed which separates the error surface into some blocks and finds the optimal block using the uniform design method. For the training algorithm, the improved gradient-descent method is proposed which adds a penalty term into the cost function of the old gradient descent method. This algorithm makes the network have a great approximating ability and keeps the network state stable. All of these improve the practicality of the neural network.
Neural network topology design for nonlinear control
Haecker, Jens; Rudolph, Stephan
2001-03-01
Neural networks, especially in nonlinear system identification and control applications, are typically considered to be black-boxes which are difficult to analyze and understand mathematically. Due to this reason, an in- depth mathematical analysis offering insight into the different neural network transformation layers based on a theoretical transformation scheme is desired, but up to now neither available nor known. In previous works it has been shown how proven engineering methods such as dimensional analysis and the Laplace transform may be used to construct a neural controller topology for time-invariant systems. Using the knowledge of neural correspondences of these two classical methods, the internal nodes of the network could also be successfully interpreted after training. As further extension to these works, the paper describes the latest of a theoretical interpretation framework describing the neural network transformation sequences in nonlinear system identification and control. This can be achieved By incorporation of the method of exact input-output linearization in the above mentioned two transform sequences of dimensional analysis and the Laplace transformation. Based on these three theoretical considerations neural network topologies may be designed in special situations by pure translation in the sense of a structural compilation of the known classical solutions into their correspondent neural topology. Based on known exemplary results, the paper synthesizes the proposed approach into the visionary goals of a structural compiler for neural networks. This structural compiler for neural networks is intended to automatically convert classical control formulations into their equivalent neural network structure based on the principles of equivalence between formula and operator, and operator and structure which are discussed in detail in this work.
Energy Technology Data Exchange (ETDEWEB)
Garcia, Silvia R; Romo, Miguel P; Mayoral, Juan M [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico)
2007-01-15
An extensive analysis of the strong ground motion Mexican data base was conducted using Soft Computing (SC) techniques. A Neural Network NN is used to estimate both orthogonal components of the horizontal (PGAh) and vertical (PGAv) peak ground accelerations measured at rock sites during Mexican subduction zone earthquakes. The work discusses the development, training, and testing of this neural model. Attenuation phenomenon was characterized in terms of magnitude, epicentral distance and focal depth. Neural approximators were used instead of traditional regression techniques due to their flexibility to deal with uncertainty and noise. NN predictions follow closely measured responses exhibiting forecasting capabilities better than those of most established attenuation relations for the Mexican subduction zone. Assessment of the NN, was also applied to subduction zones in Japan and North America. For the database used in this paper the NN and the-better-fitted- regression approach residuals are compared. [Spanish] Un analisis exhaustivo de la base de datos mexicana de sismos fuertes se llevo a cabo utilizando tecnicas de computo aproximado, SC (soft computing). En particular, una red neuronal, NN, es utilizada para estimar ambos componentes ortogonales de la maxima aceleracion horizontal del terreno, PGAh, y la vertical, PGAv, medidas en sitios en roca durante terremotos generados en la zona de subduccion de la Republica Mexicana. El trabajo discute el desarrollo, entrenamiento, y prueba de este modelo neuronal. El fenomeno de atenuacion fue caracterizado en terminos de la magnitud, la distancia epicentral y la profundidad focal. Aproximaciones neuronales fueron utilizadas en lugar de tecnicas de regresion tradicionales por su flexibilidad para tratar con incertidumbre y ruido en los datos. La NN sigue de cerca la respuesta medida exhibiendo capacidades predictivas mejores que las mostradas por muchas de las relaciones de atenuacion establecidas para la zona de
Genetic algorithm for neural networks optimization
Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta
2004-11-01
This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.
Estimation of Conditional Quantile using Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1999-01-01
The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....
Vectorized algorithms for spiking neural network simulation.
Brette, Romain; Goodman, Dan F M
2011-06-01
High-level languages (Matlab, Python) are popular in neuroscience because they are flexible and accelerate development. However, for simulating spiking neural networks, the cost of interpretation is a bottleneck. We describe a set of algorithms to simulate large spiking neural networks efficiently with high-level languages using vector-based operations. These algorithms constitute the core of Brian, a spiking neural network simulator written in the Python language. Vectorized simulation makes it possible to combine the flexibility of high-level languages with the computational efficiency usually associated with compiled languages.
Convolutional Neural Network for Image Recognition
Seifnashri, Sahand
2015-01-01
The aim of this project is to use machine learning techniques especially Convolutional Neural Networks for image processing. These techniques can be used for Quark-Gluon discrimination using calorimeters data, but unfortunately I didn’t manage to get the calorimeters data and I just used the Jet data fromminiaodsim(ak4 chs). The Jet data was not good enough for Convolutional Neural Network which is designed for ’image’ recognition. This report is made of twomain part, part one is mainly about implementing Convolutional Neural Network on unphysical data such as MNIST digits and CIFAR-10 dataset and part 2 is about the Jet data.
Neural Network and Letter Recognition.
Lee, Hue Yeon
Neural net architectures and learning algorithms that recognize hand written 36 alphanumeric characters are studied. The thin line input patterns written in 32 x 32 binary array are used. The system is comprised of two major components, viz. a preprocessing unit and a Recognition unit. The preprocessing unit in turn consists of three layers of neurons; the U-layer, the V-layer, and the C -layer. The functions of the U-layer is to extract local features by template matching. The correlation between the detected local features are considered. Through correlating neurons in a plane with their neighboring neurons, the V-layer would thicken the on-cells or lines that are groups of on-cells of the previous layer. These two correlations would yield some deformation tolerance and some of the rotational tolerance of the system. The C-layer then compresses data through the 'Gabor' transform. Pattern dependent choice of center and wavelengths of 'Gabor' filters is the cause of shift and scale tolerance of the system. Three different learning schemes had been investigated in the recognition unit, namely; the error back propagation learning with hidden units, a simple perceptron learning, and a competitive learning. Their performances were analyzed and compared. Since sometimes the network fails to distinguish between two letters that are inherently similar, additional ambiguity resolving neural nets are introduced on top of the above main neural net. The two dimensional Fourier transform is used as the preprocessing and the perceptron is used as the recognition unit of the ambiguity resolver. One hundred different person's handwriting sets are collected. Some of these are used as the training sets and the remainders are used as the test sets. The correct recognition rate of the system increases with the number of training sets and eventually saturates at a certain value. Similar recognition rates are obtained for the above three different learning algorithms. The minimum error
Nonequilibrium landscape theory of neural networks
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-01-01
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451
Neural Network for Estimating Conditional Distribution
DEFF Research Database (Denmark)
Schiøler, Henrik; Kulczycki, P.
Neural networks for estimating conditional distributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency is proved from a mild set of assumptions. A number of applications within...... statistcs, decision theory and signal processing are suggested, and a numerical example illustrating the capabilities of the elaborated network is given...
Different propagation speeds of recalled sequences in plastic spiking neural networks
Huang, Xuhui; Zheng, Zhigang; Hu, Gang; Wu, Si; Rasch, Malte J.
2015-03-01
Neural networks can generate spatiotemporal patterns of spike activity. Sequential activity learning and retrieval have been observed in many brain areas, and e.g. is crucial for coding of episodic memory in the hippocampus or generating temporal patterns during song production in birds. In a recent study, a sequential activity pattern was directly entrained onto the neural activity of the primary visual cortex (V1) of rats and subsequently successfully recalled by a local and transient trigger. It was observed that the speed of activity propagation in coordinates of the retinotopically organized neural tissue was constant during retrieval regardless how the speed of light stimulation sweeping across the visual field during training was varied. It is well known that spike-timing dependent plasticity (STDP) is a potential mechanism for embedding temporal sequences into neural network activity. How training and retrieval speeds relate to each other and how network and learning parameters influence retrieval speeds, however, is not well described. We here theoretically analyze sequential activity learning and retrieval in a recurrent neural network with realistic synaptic short-term dynamics and STDP. Testing multiple STDP rules, we confirm that sequence learning can be achieved by STDP. However, we found that a multiplicative nearest-neighbor (NN) weight update rule generated weight distributions and recall activities that best matched the experiments in V1. Using network simulations and mean-field analysis, we further investigated the learning mechanisms and the influence of network parameters on recall speeds. Our analysis suggests that a multiplicative STDP rule with dominant NN spike interaction might be implemented in V1 since recall speed was almost constant in an NMDA-dominant regime. Interestingly, in an AMPA-dominant regime, neural circuits might exhibit recall speeds that instead follow the change in stimulus speeds. This prediction could be tested in
Person Movement Prediction Using Neural Networks
Vintan, Lucian; Gellert, Arpad; Petzold, Jan; Ungerer, Theo
2006-01-01
Ubiquitous systems use context information to adapt appliance behavior to human needs. Even more convenience is reached if the appliance foresees the user's desires and acts proactively. This paper proposes neural prediction techniques to anticipate a person's next movement. We focus on neural predictors (multi-layer perceptron with back-propagation learning) with and without pre-training. The optimal configuration of the neural network is determined by evaluating movement sequences of real p...
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
Chernoded, Andrey; Dudko, Lev; Myagkov, Igor; Volkov, Petr
2017-10-01
Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
Directory of Open Access Journals (Sweden)
Chernoded Andrey
2017-01-01
Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
Neural Network-Based Receiver in Band-Limited Communication System with MPPSK Modulation
Directory of Open Access Journals (Sweden)
Wang Zixin
2018-01-01
Full Text Available As a type of the spectrally efficient modulation, the m-ary phase position shift keying (MPPSK has been considered to meet the increasing spectrum requirement in the future wireless system. To limit the signal bandwidth and cancel the out-band interference the band-pass filters are used, which introduce the waveform distortion and inter-symbol interference (ISI. Therefore, a single hidden-layer neural network (NN-based receiver is proposed to jointly equalize and demodulate the received signal. The impulse response of the system is static and the network parameters can be obtained after off-line training. The number of the hidden nodes is also determined through simulations. Simulation results show that the NN-based receiver works well in the communication system with different allocated bandwidths. By observing the modified confusion matrix, the false symbol decision is relevant to modulation index, waveform distortions and the ISI.
Neural Network Target Identification System for False Alarm Reduction
Ye, David; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin
2009-01-01
A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feed forward back propagation neural network (NN) is then trained to classify each feature vector and remove false positives. This paper discusses the test of the system performance and parameter optimizations process which adapts the system to various targets and datasets. The test results show that the system was successful in substantially reducing the false positive rate when tested on a sonar image dataset.
Khaliullin, Rustam Z.; Eshet, Hagai; Kühne, Thomas D.; Behler, Jörg; Parrinello, Michele
2010-03-01
An interatomic potential for the diamond and graphite phases of carbon has been created using a neural-network (NN) representation of the ab initio potential energy surface. The NN potential combines the accuracy of a first-principles description of both phases with the efficiency of empirical force fields and allows one to perform a molecular-dynamics study, of ab initio quality, of the thermodynamics of graphite-diamond coexistence. Good agreement between the experimental and calculated coexistence curves is achieved if nuclear quantum effects are included in the simulation.
[Medical use of artificial neural networks].
Molnár, B; Papik, K; Schaefer, R; Dombóvári, Z; Fehér, J; Tulassay, Z
1998-01-04
The main aim of the research in medical diagnostics is to develop more exact, cost-effective and handsome systems, procedures and methods for supporting the clinicians. In their paper the authors introduce a new method that recently came into the focus referred to as artificial neural networks. Based on the literature of the past 5-6 years they give a brief review--highlighting the most important ones--showing the idea behind neural networks, what they are used for in the medical field. The definition, structure and operation of neural networks are discussed. In the application part they collect examples in order to give an insight in the neural network application research. It is emphasised that in the near future basically new diagnostic equipment can be developed based on this new technology in the field of ECG, EEG and macroscopic and microscopic image analysis systems.
Application of neural networks in coastal engineering
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
methods. That is why it is becoming popular in various fields including coastal engineering. Waves and tides will play important roles in coastal erosion or accretion. This paper briefly describes the back-propagation neural networks and its application...
Additive Feed Forward Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1999-01-01
This paper demonstrates a method to control a non-linear, multivariable, noisy process using trained neural networks. The basis for the method is a trained neural network controller acting as the inverse process model. A training method for obtaining such an inverse process model is applied....... A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...
Blood glucose prediction using neural network
Soh, Chit Siang; Zhang, Xiqin; Chen, Jianhong; Raveendran, P.; Soh, Phey Hong; Yeo, Joon Hock
2008-02-01
We used neural network for blood glucose level determination in this study. The data set used in this study was collected using a non-invasive blood glucose monitoring system with six laser diodes, each laser diode operating at distinct near infrared wavelength between 1500nm and 1800nm. The neural network is specifically used to determine blood glucose level of one individual who participated in an oral glucose tolerance test (OGTT) session. Partial least squares regression is also used for blood glucose level determination for the purpose of comparison with the neural network model. The neural network model performs better in the prediction of blood glucose level as compared with the partial least squares model.
PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK
Directory of Open Access Journals (Sweden)
R. Hadapiningradja Kusumodestoni
2015-11-01
Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.
Using Neural Networks in Diagnosing Breast Cancer
National Research Council Canada - National Science Library
Fogel, David
1997-01-01
.... In the current study, evolutionary programming is used to train neural networks and linear discriminant models to detect breast cancer in suspicious and microcalcifications using radiographic features and patient age...
Neural Networks in Mobile Robot Motion
Directory of Open Access Journals (Sweden)
Danica Janglová
2004-03-01
Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the “free” space using ultrasound range finder data. The second neural network “finds” a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.
Isolated Speech Recognition Using Artificial Neural Networks
National Research Council Canada - National Science Library
Polur, Prasad
2001-01-01
.... A small size vocabulary containing the words YES and NO is chosen. Spectral features using cepstral analysis are extracted per frame and imported to a feedforward neural network which uses a backpropagation with momentum training algorithm...
Control of autonomous robot using neural networks
Barton, Adam; Volna, Eva
2017-07-01
The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.
Neural Networks in Mobile Robot Motion
Directory of Open Access Journals (Sweden)
Danica Janglova
2008-11-01
Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the "free" space using ultrasound range finder data. The second neural network "finds" a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.
Artificial neural networks a practical course
da Silva, Ivan Nunes; Andrade Flauzino, Rogerio; Liboni, Luisa Helena Bartocci; dos Reis Alves, Silas Franco
2017-01-01
This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.
Constructive autoassociative neural network for facial recognition.
Directory of Open Access Journals (Sweden)
Bruno J T Fernandes
Full Text Available Autoassociative artificial neural networks have been used in many different computer vision applications. However, it is difficult to define the most suitable neural network architecture because this definition is based on previous knowledge and depends on the problem domain. To address this problem, we propose a constructive autoassociative neural network called CANet (Constructive Autoassociative Neural Network. CANet integrates the concepts of receptive fields and autoassociative memory in a dynamic architecture that changes the configuration of the receptive fields by adding new neurons in the hidden layer, while a pruning algorithm removes neurons from the output layer. Neurons in the CANet output layer present lateral inhibitory connections that improve the recognition rate. Experiments in face recognition and facial expression recognition show that the CANet outperforms other methods presented in the literature.
Genetic Algorithm Optimized Neural Networks Ensemble as ...
African Journals Online (AJOL)
NJD
Genetic Algorithm Optimized Neural Networks Ensemble as. Calibration Model for Simultaneous Spectrophotometric. Estimation of Atenolol and Losartan Potassium in Tablets. Dondeti Satyanarayana*, Kamarajan Kannan and Rajappan Manavalan. Department of Pharmacy, Annamalai University, Annamalainagar, Tamil ...
Directory of Open Access Journals (Sweden)
Erna Rusliana Muhamad Saleh
2014-02-01
Full Text Available Wafer is type of biscuit frequently found on expired condition in market, therefore prediction method should be implemented to avoid this condition. apart from the prediction of shelf-life of wafer done by laboratory test, which were time-consuming, expensive, required trained panelists, complex equipment and suitable ambience, artificial neural network (ANN based dielectric parameters was proposed in nthis study. The aim of study was to develop model to predict shelf-life employing aNN based capacitance parameter. Back propagation algorithm with trial and error was applied in variations of nodes per hidden layer, number of hidden layers, activation functions, the function of learnings and epochs. The result of study was the model was able to predict wafer shelf-life. The accuracy level was shown by low MSE value (0.01 and high coefficient correlation value (89.25%. Keywords: artificial Neural Network, shelf-life, waffer, dielectric, capacitance ABSTRAK Wafer adalah jenis makanan kering yang sering ditemukan kedaluwarsa. Penentuan masa kedaluwarsa dengan observasi laboratorium memiliki beberapa kelemahan, diantaranya memakan waktu, panelis terlatih, suasana yang tepat, biaya dan alat uji yang kompleks. alternatif solusinya adalah penggunaan artificial Neural Network (ANN berbasiskan parameter kapasitansi. Tujuan kerja ilmiah ini adalah untuk memprediksi masa kedaluwarsa wafer menggunakan aNN berbasiskan parameter kapasitansi. algoritma pembelajaran yang digunakan adalah Backpropagation dengan trial and error variasi jumlah node per hidden layer, jumlah hidden layer, fungsi aktivasi, fungsi pembelajaran dan epoch. Hasil prediksi menunjukkan bahwa aNN hasil pelatihan yang dikombinasikan dengan parameter kapasitansi mampu memprediksi masa kedaluwarsa wafer dengan MSE terendah 0,01 dan R tertinggi 89,25%. Kata kunci: Jaringan Syaraf Tiruan, masa kedaluwarsa, wafer, dielektrik, kapasitansi
Directory of Open Access Journals (Sweden)
Sajad Sabzi
2018-03-01
Full Text Available Accurate classification of fruit varieties in processing factories and during post-harvesting applications is a challenge that has been widely studied. This paper presents a novel approach to automatic fruit identification applied to three common varieties of oranges (Citrus sinensis L., namely Bam, Payvandi and Thomson. A total of 300 color images were used for the experiments, 100 samples for each orange variety, which are publicly available. After segmentation, 263 parameters, including texture, color and shape features, were extracted from each sample using image processing. Among them, the 6 most effective features were automatically selected by using a hybrid approach consisting of an artificial neural network and particle swarm optimization algorithm (ANN-PSO. Then, three different classifiers were applied and compared: hybrid artificial neural network – artificial bee colony (ANN-ABC; hybrid artificial neural network – harmony search (ANN-HS; and k-nearest neighbors (kNN. The experimental results show that the hybrid approaches outperform the results of kNN. The average correct classification rate of ANN-HS was 94.28%, while ANN-ABS achieved 96.70% accuracy with the available data, contrasting with the 70.9% baseline accuracy of kNN. Thus, this new proposed methodology provides a fast and accurate way to classify multiple fruits varieties, which can be easily implemented in processing factories. The main contribution of this work is that the method can be directly adapted to other use cases, since the selection of the optimal features and the configuration of the neural network are performed automatically using metaheuristic algorithms.
Applications of Pulse-Coupled Neural Networks
Ma, Yide; Wang, Zhaobin
2011-01-01
"Applications of Pulse-Coupled Neural Networks" explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields. This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science. Prof. Yide Ma conducts research on intelligent information processing, biomedical image processing, and embedded system development at the School of Information Sci
Neural networks as models of psychopathology.
Aakerlund, L; Hemmingsen, R
1998-04-01
Neural network modeling is situated between neurobiology, cognitive science, and neuropsychology. The structural and functional resemblance with biological computation has made artificial neural networks (ANN) useful for exploring the relationship between neurobiology and computational performance, i.e., cognition and behavior. This review provides an introduction to the theory of ANN and how they have linked theories from neurobiology and psychopathology in schizophrenia, affective disorders, and dementia.
A neural network simulation package in CLIPS
Bhatnagar, Himanshu; Krolak, Patrick D.; Mcgee, Brenda J.; Coleman, John
1990-01-01
The intrinsic similarity between the firing of a rule and the firing of a neuron has been captured in this research to provide a neural network development system within an existing production system (CLIPS). A very important by-product of this research has been the emergence of an integrated technique of using rule based systems in conjunction with the neural networks to solve complex problems. The systems provides a tool kit for an integrated use of the two techniques and is also extendible to accommodate other AI techniques like the semantic networks, connectionist networks, and even the petri nets. This integrated technique can be very useful in solving complex AI problems.
Logarithmic learning for generalized classifier neural network.
Ozyildirim, Buse Melis; Avci, Mutlu
2014-12-01
Generalized classifier neural network is introduced as an efficient classifier among the others. Unless the initial smoothing parameter value is close to the optimal one, generalized classifier neural network suffers from convergence problem and requires quite a long time to converge. In this work, to overcome this problem, a logarithmic learning approach is proposed. The proposed method uses logarithmic cost function instead of squared error. Minimization of this cost function reduces the number of iterations used for reaching the minima. The proposed method is tested on 15 different data sets and performance of logarithmic learning generalized classifier neural network is compared with that of standard one. Thanks to operation range of radial basis function included by generalized classifier neural network, proposed logarithmic approach and its derivative has continuous values. This makes it possible to adopt the advantage of logarithmic fast convergence by the proposed learning method. Due to fast convergence ability of logarithmic cost function, training time is maximally decreased to 99.2%. In addition to decrease in training time, classification performance may also be improved till 60%. According to the test results, while the proposed method provides a solution for time requirement problem of generalized classifier neural network, it may also improve the classification accuracy. The proposed method can be considered as an efficient way for reducing the time requirement problem of generalized classifier neural network. Copyright © 2014 Elsevier Ltd. All rights reserved.
Diabetic retinopathy screening using deep neural network.
Ramachandran, Nishanthan; Hong, Sheng Chiong; Sime, Mary J; Wilson, Graham A
2017-09-07
There is a burgeoning interest in the use of deep neural network in diabetic retinal screening. To determine whether a deep neural network could satisfactorily detect diabetic retinopathy that requires referral to an ophthalmologist from a local diabetic retinal screening programme and an international database. Retrospective audit. Diabetic retinal photos from Otago database photographed during October 2016 (485 photos), and 1200 photos from Messidor international database. Receiver operating characteristic curve to illustrate the ability of a deep neural network to identify referable diabetic retinopathy (moderate or worse diabetic retinopathy or exudates within one disc diameter of the fovea). Area under the receiver operating characteristic curve, sensitivity and specificity. For detecting referable diabetic retinopathy, the deep neural network had an area under receiver operating characteristic curve of 0.901 (95% confidence interval 0.807-0.995), with 84.6% sensitivity and 79.7% specificity for Otago and 0.980 (95% confidence interval 0.973-0.986), with 96.0% sensitivity and 90.0% specificity for Messidor. This study has shown that a deep neural network can detect referable diabetic retinopathy with sensitivities and specificities close to or better than 80% from both an international and a domestic (New Zealand) database. We believe that deep neural networks can be integrated into community screening once they can successfully detect both diabetic retinopathy and diabetic macular oedema. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI
Olyaee, Saeed; Hamedi, Samaneh
2011-02-01
In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.
Symbolic processing in neural networks
Neto, João Pedro; Hava T Siegelmann; Costa,J.Félix
2003-01-01
In this paper we show that programming languages can be translated into recurrent (analog, rational weighted) neural nets. Implementation of programming languages in neural nets turns to be not only theoretical exciting, but has also some practical implications in the recent efforts to merge symbolic and sub symbolic computation. To be of some use, it should be carried in a context of bounded resources. Herein, we show how to use resource bounds to speed up computations over neural nets, thro...
Analysis of Mars Express Ionogram Data via a Multilayer Artificial Neural Network
Wilkinson, Collin; Potter, Arron; Palmer, Greg; Duru, Firdevs
2017-01-01
Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), which is a low frequency radar on the Mars Express (MEX) Spacecraft, can provide electron plasma densities of the ionosphere local at the spacecraft in addition to densities obtained with remote sounding. The local electron densities are obtained, with a standard error of about 2%, by measuring the electron plasma frequencies with an electronic ruler on ionograms, which are plots of echo intensity as a function of time and frequency. This is done by using a tool created at the University of Iowa (Duru et al., 2008). This approach is time consuming due to the rapid accumulation of ionogram data. In 2013, results from an algorithm-based analysis of ionograms were reported by Andrews et al., but this method did not improve the human error. In the interest of fast, accurate data interpretation, a neural network (NN) has been created based on the Fast Artificial Neural Network C libraries. This NN consists of artificial neurons, with 4 layers of 12960, 10000, 1000 and 1 neuron(s) each, consecutively. This network was trained using 40 iterations of 1000 orbits. The algorithm-based method of Andrews et al. had a standard error of 40%, while the neural network has achieved error on the order of 20%.
Hindcasting cyclonic waves using neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Rao, S.; Chakravarty, N.V.
the backpropagation networks with updated algorithms are used in this paper. A brief description about the working of a back propagation neural network and three updated algorithms is given below. Backpropagation learning: Backpropagation is the most widely used... algorithm for supervised learning with multi layer feed forward networks. The idea of the backpropagation learning algorithm is the repeated application of the chain rule to compute the influence of each weight in the network with respect to an arbitrary...
Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach
2016-03-30
Undergraduate Student Paper Postgraduate Student Paper Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach...monitoring, flight parameter, nonlinear modeling, Artificial Neural Network , typical loadcase. Introduction Aircraft load monitoring is an... Neural Networks (ANN), i.e. the BP network and Kohonen Clustering Network , are applied and revised by Kalman Filter and Genetic Algorithm to build
Fin-and-tube condenser performance evaluation using neural networks
Energy Technology Data Exchange (ETDEWEB)
Zhao, Ling-Xiao [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [China R and D Center, Carrier Corporation, No. 3239 Shen Jiang Road, Shanghai 201206 (China)
2010-05-15
The paper presents neural network approach to performance evaluation of the fin-and-tube air-cooled condensers which are widely used in air-conditioning and refrigeration systems. Inputs of the neural network include refrigerant and air-flow rates, refrigerant inlet temperature and saturated temperature, and entering air dry-bulb temperature. Outputs of the neural network consist of the heating capacity and the pressure drops on both refrigerant and air sides. The multi-input multi-output (MIMO) neural network is separated into multi-input single-output (MISO) neural networks for training. Afterwards, the trained MISO neural networks are combined into a MIMO neural network, which indicates that the number of training data sets is determined by the biggest MISO neural network not the whole MIMO network. Compared with a validated first-principle model, the standard deviations of neural network models are less than 1.9%, and all errors fall into {+-}5%. (author)
On sparsely connected optimal neural networks
Energy Technology Data Exchange (ETDEWEB)
Beiu, V. [Los Alamos National Lab., NM (United States); Draghici, S. [Wayne State Univ., Detroit, MI (United States)
1997-10-01
This paper uses two different approaches to show that VLSI- and size-optimal discrete neural networks are obtained for small fan-in values. These have applications to hardware implementations of neural networks, but also reveal an intrinsic limitation of digital VLSI technology: its inability to cope with highly connected structures. The first approach is based on implementing F{sub n,m} functions. The authors show that this class of functions can be implemented in VLSI-optimal (i.e., minimizing AT{sup 2}) neural networks of small constant fan-ins. In order to estimate the area (A) and the delay (T) of such networks, the following cost functions will be used: (i) the connectivity and the number-of-bits for representing the weights and thresholds--for good estimates of the area; and (ii) the fan-ins and the length of the wires--for good approximates of the delay. The second approach is based on implementing Boolean functions for which the classical Shannon`s decomposition can be used. Such a solution has already been used to prove bounds on the size of fan-in 2 neural networks. They will generalize the result presented there to arbitrary fan-in, and prove that the size is minimized by small fan-in values. Finally, a size-optimal neural network of small constant fan-ins will be suggested for F{sub n,m} functions.
Artificial neural network intelligent method for prediction
Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi
2017-09-01
Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.
Estimating Conditional Distributions by Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1998-01-01
Neural Networks for estimating conditionaldistributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency property is considered from a mild set of assumptions. A number of applications...
Medical Text Classification using Convolutional Neural Networks
Hughes, Mark; Li, Irene; Kotoulas, Spyros; Suzumura, Toyotaro
2017-01-01
We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by about 15%.
Medical Text Classification Using Convolutional Neural Networks.
Hughes, Mark; Li, Irene; Kotoulas, Spyros; Suzumura, Toyotaro
2017-01-01
We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by about 15%.
Artificial Neural Networks and Instructional Technology.
Carlson, Patricia A.
1991-01-01
Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…
Visual Servoing from Deep Neural Networks
Bateux, Quentin; Marchand, Eric; Leitner, Jürgen; Chaumette, Francois; Corke, Peter
2017-01-01
International audience; We present a deep neural network-based method to perform high-precision, robust and real-time 6 DOF visual servoing. The paper describes how to create a dataset simulating various perturbations (occlusions and lighting conditions) from a single real-world image of the scene. A convolutional neural network is fine-tuned using this dataset to estimate the relative pose between two images of the same scene. The output of the network is then employed in a visual servoing c...
Design of Robust Neural Network Classifiers
DEFF Research Database (Denmark)
Larsen, Jan; Andersen, Lars Nonboe; Hintz-Madsen, Mads
1998-01-01
This paper addresses a new framework for designing robust neural network classifiers. The network is optimized using the maximum a posteriori technique, i.e., the cost function is the sum of the log-likelihood and a regularization term (prior). In order to perform robust classification, we present...... a modified likelihood function which incorporates the potential risk of outliers in the data. This leads to the introduction of a new parameter, the outlier probability. Designing the neural classifier involves optimization of network weights as well as outlier probability and regularization parameters. We...
Electronic device aspects of neural network memories
Lambe, J.; Moopenn, A.; Thakoor, A. P.
1985-01-01
The basic issues related to the electronic implementation of the neural network model (NNM) for content addressable memories are examined. A brief introduction to the principles of the NNM is followed by an analysis of the information storage of the neural network in the form of a binary connection matrix and the recall capability of such matrix memories based on a hardware simulation study. In addition, materials and device architecture issues involved in the future realization of such networks in VLSI-compatible ultrahigh-density memories are considered. A possible space application of such devices would be in the area of large-scale information storage without mechanical devices.
A quantum-implementable neural network model
Chen, Jialin; Wang, Lingli; Charbon, Edoardo
2017-10-01
A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.
Cu Diffusion in Amorphous Ta2O5 Studied with a Simplified Neural Network Potential
Li, Wenwen; Ando, Yasunobu; Watanabe, Satoshi
2017-10-01
Understanding atomistic details of diffusion processes in amorphous structures is becoming increasingly important due to the recent advances in various information and energy devices. Atomistic simulations based on the density functional theory (DFT) represent a powerful approach; however, the development of a method characterized by both high reliability and computational efficiency remains a challenge. In this study, a simple neural network (NN) interatomic potential is constructed from the results of DFT simulations to investigate the diffusion of a single Cu atom in amorphous Ta2O5. The proposed technique is as accurate as the DFT in predicting hopping paths and the corresponding barrier energies in a given amorphous structure. Although the developed NN-based approach exhibited some limitations since it was constructed specifically for Cu, the obtained results showed that the NN potential was able to satisfactorily describe the Cu diffusion behavior. Thus, the Cu diffusion activation energy calculated at low temperatures (between 500 and 800 K) using kinetic Monte Carlo simulations and the NN potential matched the experimental data reasonably well.
Directory of Open Access Journals (Sweden)
Roviras Daniel
2008-01-01
Full Text Available Abstract This paper presents adaptive predistortion techniques based on a feed-forward neural network (NN to linearize power amplifiers such as those used in satellite communications. Indeed, it presents the suitable NN structures which give the best performances for three satellite down links. The first link is a stationary memoryless travelling wave tube amplifier (TWTA, the second one is a nonstationary memoryless TWT amplifier while the third is an amplifier with memory modeled by a memoryless amplifier followed by a linear filter. Equally important, it puts forward the studies concerning the application of different NN training algorithms in order to determine the most prefermant for adaptive predistortions. This comparison examined through computer simulation for 64 carriers and 16-QAM OFDM system, with a Saleh's TWT amplifier, is based on some quality measure (mean square error, the required training time to reach a particular quality level, and computation complexity. The chosen adaptive predistortions (NN structures associated with an adaptive algorithm have a low complexity, fast convergence, and best performance.
Directory of Open Access Journals (Sweden)
Daniel Roviras
2008-08-01
Full Text Available This paper presents adaptive predistortion techniques based on a feed-forward neural network (NN to linearize power amplifiers such as those used in satellite communications. Indeed, it presents the suitable NN structures which give the best performances for three satellite down links. The first link is a stationary memoryless travelling wave tube amplifier (TWTA, the second one is a nonstationary memoryless TWT amplifier while the third is an amplifier with memory modeled by a memoryless amplifier followed by a linear filter. Equally important, it puts forward the studies concerning the application of different NN training algorithms in order to determine the most prefermant for adaptive predistortions. This comparison examined through computer simulation for 64 carriers and 16-QAM OFDM system, with a Saleh's TWT amplifier, is based on some quality measure (mean square error, the required training time to reach a particular quality level, and computation complexity. The chosen adaptive predistortions (NN structures associated with an adaptive algorithm have a low complexity, fast convergence, and best performance.
Vyas, Bhargav Y; Das, Biswarup; Maheshwari, Rudra Prakash
2016-08-01
This paper presents the Chebyshev neural network (ChNN) as an improved artificial intelligence technique for power system protection studies and examines the performances of two ChNN learning algorithms for fault classification of series compensated transmission line. The training algorithms are least-square Levenberg-Marquardt (LSLM) and recursive least-square algorithm with forgetting factor (RLSFF). The performances of these algorithms are assessed based on their generalization capability in relating the fault current parameters with an event of fault in the transmission line. The proposed algorithm is fast in response as it utilizes postfault samples of three phase currents measured at the relaying end corresponding to half-cycle duration only. After being trained with only a small part of the generated fault data, the algorithms have been tested over a large number of fault cases with wide variation of system and fault parameters. Based on the studies carried out in this paper, it has been found that although the RLSFF algorithm is faster for training the ChNN in the fault classification application for series compensated transmission lines, the LSLM algorithm has the best accuracy in testing. The results prove that the proposed ChNN-based method is accurate, fast, easy to design, and immune to the level of compensations. Thus, it is suitable for digital relaying applications.
Construction of high-dimensional neural network potentials using environment-dependent atom pairs.
Jose, K V Jovan; Artrith, Nongnuch; Behler, Jörg
2012-05-21
An accurate determination of the potential energy is the crucial step in computer simulations of chemical processes, but using electronic structure methods on-the-fly in molecular dynamics (MD) is computationally too demanding for many systems. Constructing more efficient interatomic potentials becomes intricate with increasing dimensionality of the potential-energy surface (PES), and for numerous systems the accuracy that can be achieved is still not satisfying and far from the reliability of first-principles calculations. Feed-forward neural networks (NNs) have a very flexible functional form, and in recent years they have been shown to be an accurate tool to construct efficient PESs. High-dimensional NN potentials based on environment-dependent atomic energy contributions have been presented for a number of materials. Still, these potentials may be improved by a more detailed structural description, e.g., in form of atom pairs, which directly reflect the atomic interactions and take the chemical environment into account. We present an implementation of an NN method based on atom pairs, and its accuracy and performance are compared to the atom-based NN approach using two very different systems, the methanol molecule and metallic copper. We find that both types of NN potentials provide an excellent description of both PESs, with the pair-based method yielding a slightly higher accuracy making it a competitive alternative for addressing complex systems in MD simulations.
Construction of high-dimensional neural network potentials using environment-dependent atom pairs
Jose, K. V. Jovan; Artrith, Nongnuch; Behler, Jörg
2012-05-01
An accurate determination of the potential energy is the crucial step in computer simulations of chemical processes, but using electronic structure methods on-the-fly in molecular dynamics (MD) is computationally too demanding for many systems. Constructing more efficient interatomic potentials becomes intricate with increasing dimensionality of the potential-energy surface (PES), and for numerous systems the accuracy that can be achieved is still not satisfying and far from the reliability of first-principles calculations. Feed-forward neural networks (NNs) have a very flexible functional form, and in recent years they have been shown to be an accurate tool to construct efficient PESs. High-dimensional NN potentials based on environment-dependent atomic energy contributions have been presented for a number of materials. Still, these potentials may be improved by a more detailed structural description, e.g., in form of atom pairs, which directly reflect the atomic interactions and take the chemical environment into account. We present an implementation of an NN method based on atom pairs, and its accuracy and performance are compared to the atom-based NN approach using two very different systems, the methanol molecule and metallic copper. We find that both types of NN potentials provide an excellent description of both PESs, with the pair-based method yielding a slightly higher accuracy making it a competitive alternative for addressing complex systems in MD simulations.
Santosa, H.; Hobara, Y.
2017-01-01
The electric field amplitude of very low frequency (VLF) transmitter from Hawaii (NPM) has been continuously recorded at Chofu (CHF), Tokyo, Japan. The VLF amplitude variability indicates lower ionospheric perturbation in the D region (60-90 km altitude range) around the NPM-CHF propagation path. We carried out the prediction of daily nighttime mean VLF amplitude by using Nonlinear Autoregressive with Exogenous Input Neural Network (NARX NN). The NARX NN model, which was built based on the daily input variables of various physical parameters such as stratospheric temperature, total column ozone, cosmic rays, Dst, and Kp indices possess good accuracy during the model building. The fitted model was constructed within the training period from 1 January 2011 to 4 February 2013 by using three algorithms, namely, Bayesian Neural Network (BRANN), Levenberg Marquardt Neural Network (LMANN), and Scaled Conjugate Gradient (SCG). The LMANN has the largest Pearson correlation coefficient (r) of 0.94 and smallest root-mean-square error (RMSE) of 1.19 dB. The constructed models by using LMANN were applied to predict the VLF amplitude from 5 February 2013 to 31 December 2013. As a result the one step (1 day) ahead predicted nighttime VLF amplitude has the r of 0.93 and RMSE of 2.25 dB. We conclude that the model built according to the proposed methodology provides good predictions of the electric field amplitude of VLF waves for NPM-CHF (midlatitude) propagation path.
Neural network optimization, components, and design selection
Weller, Scott W.
1990-07-01
Neural Networks are part of a revived technology which has received a lot of hype in recent years. As is apt to happen in any hyped technology, jargon and predictions make its assimilation and application difficult. Nevertheless, Neural Networks have found use in a number of areas, working on non-trivial and noncontrived problems. For example, one net has been trained to "read", translating English text into phoneme sequences. Other applications of Neural Networks include data base manipulation and the solving of muting and classification types of optimization problems. Neural Networks are constructed from neurons, which in electronics or software attempt to model but are not constrained by the real thing, i.e., neurons in our gray matter. Neurons are simple processing units connected to many other neurons over pathways which modify the incoming signals. A single synthetic neuron typically sums its weighted inputs, runs this sum through a non-linear function, and produces an output. In the brain, neurons are connected in a complex topology: in hardware/software the topology is typically much simpler, with neurons lying side by side, forming layers of neurons which connect to the layer of neurons which receive their outputs. This simplistic model is much easier to construct than the real thing, and yet can solve real problems. The information in a network, or its "memory", is completely contained in the weights on the connections from one neuron to another. Establishing these weights is called "training" the network. Some networks are trained by design -- once constructed no further learning takes place. Other types of networks require iterative training once wired up, but are not trainable once taught Still other types of networks can continue to learn after initial construction. The main benefit to using Neural Networks is their ability to work with conflicting or incomplete ("fuzzy") data sets. This ability and its usefulness will become evident in the following
Short-term estimation of GNSS TEC using a neural network model in Brazil
Ferreira, Arthur Amaral; Borges, Renato Alves; Paparini, Claudia; Ciraolo, Luigi; Radicella, Sandro M.
2017-10-01
This work presents a novel Neural Network (NN) model to estimate Total Electron Content (TEC) from Global Navigation Satellite Systems (GNSS) measurements in three distinct sectors in Brazil. The purpose of this work is to start the investigations on the development of a regional model that can be used to determine the vertical TEC over Brazil, aiming future applications on a near real-time frame estimations and short-term forecasting. The NN is used to estimate the GNSS TEC values at void locations, where no dual-frequency GNSS receiver that may be used as a source of data to GNSS TEC estimation is available. This approach is particularly useful for GNSS single-frequency users that rely on corrections of ionospheric range errors by TEC models. GNSS data from the first GLONASS network for research and development (GLONASS R&D network) installed in Latin America, and from the Brazilian Network for Continuous Monitoring of the GNSS (RMBC) were used on TEC calibration. The input parameters of the NN model are based on features known to influence TEC values, such as geographic location of the GNSS receiver, magnetic activity, seasonal and diurnal variations, and solar activity. Data from two ten-days periods (from DoY 154 to 163 and from 282 to 291) are used to train the network. Three distinct analyses have been carried out in order to assess time-varying and spatial performance of the model. At the spatial performance analysis, for each region, a set of stations is chosen to provide training data to the NN, and after the training procedure, the NN is used to estimate vTEC behavior for the test station which data were not presented to the NN in training process. An analysis is done by comparing, for each testing station, the estimated NN vTEC delivered by the NN and reference calibrated vTEC. Also, as a second analysis, the network ability to forecast one day after the time interval (DoY 292) based on information of the second period of investigation is also assessed
Neutron spectrometry with artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Rodriguez, J.M.; Mercado S, G.A. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Iniguez de la Torre Bayo, M.P. [Universidad de Valladolid, Valladolid (Spain); Barquero, R. [Hospital Universitario Rio Hortega, Valladolid (Spain); Arteaga A, T. [Envases de Zacatecas, S.A. de C.V., Zacatecas (Mexico)]. e-mail: rvega@cantera.reduaz.mx
2005-07-01
An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the {chi}{sup 2}-test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Neutron spectrometry using artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Vega-Carrillo, Hector Rene [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Unidad Academica de Ing. Electrica, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Unidad Academica de Matematicas, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]. E-mail: fermineutron@yahoo.com; Martin Hernandez-Davila, Victor [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Unidad Academica de Ing. Electrica, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico); Manzanares-Acuna, Eduardo [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico); Mercado Sanchez, Gema A. [Unidad Academica de Matematicas, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico); Pilar Iniguez de la Torre, Maria [Depto. Fisica Teorica, Molecular y Nuclear, Universidad de Valladolid, Valladolid (Spain); Barquero, Raquel [Hospital Universitario Rio Hortega, Valladolid (Spain); Palacios, Francisco; Mendez Villafane, Roberto [Depto. Fisica Teorica, Molecular y Nuclear, Universidad de Valladolid, Valladolid (Spain)]|[Universidad Europea Miguel de Cervantes, C. Padre Julio Chevalier No. 2, 47012 Valladolid (Spain); Arteaga Arteaga, Tarcicio [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Envases de Zacatecas, SA de CV, Parque Industrial de Calera de Victor Rosales, Zac. (Mexico); Manuel Ortiz Rodriguez, Jose [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Unidad Academica de Ing. Electrica, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)
2006-04-15
An artificial neural network has been designed to obtain neutron spectra from Bonner spheres spectrometer count rates. The neural network was trained using 129 neutron spectra. These include spectra from isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra based on mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. The re-binned spectra and the UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and their respective spectra were used as output during the neural network training. After training, the network was tested with the Bonner spheres count rates produced by folding a set of neutron spectra with the response matrix. This set contains data used during network training as well as data not used. Training and testing was carried out using the Matlab{sup (R)} program. To verify the network unfolding performance, the original and unfolded spectra were compared using the root mean square error. The use of artificial neural networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated with this ill-conditioned problem.
Antagonistic neural networks underlying differentiated leadership roles
Richard Eleftherios Boyatzis; Kylie eRochford; Anthony Ian Jack
2014-01-01
The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950’s. Recent research in neuroscience suggests that the division between task oriented and socio-emotional oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks -- the Task Positive Network (TPN) and the Default Mode Network (DMN). Neural activity in ...
Representations in neural network based empirical potentials
Cubuk, Ekin D.; Malone, Brad D.; Onat, Berk; Waterland, Amos; Kaxiras, Efthimios
2017-07-01
Many structural and mechanical properties of crystals, glasses, and biological macromolecules can be modeled from the local interactions between atoms. These interactions ultimately derive from the quantum nature of electrons, which can be prohibitively expensive to simulate. Machine learning has the potential to revolutionize materials modeling due to its ability to efficiently approximate complex functions. For example, neural networks can be trained to reproduce results of density functional theory calculations at a much lower cost. However, how neural networks reach their predictions is not well understood, which has led to them being used as a "black box" tool. This lack of understanding is not desirable especially for applications of neural networks in scientific inquiry. We argue that machine learning models trained on physical systems can be used as more than just approximations since they had to "learn" physical concepts in order to reproduce the labels they were trained on. We use dimensionality reduction techniques to study in detail the representation of silicon atoms at different stages in a neural network, which provides insight into how a neural network learns to model atomic interactions.
Community structure of complex networks based on continuous neural network
Dai, Ting-ting; Shan, Chang-ji; Dong, Yan-shou
2017-09-01
As a new subject, the research of complex networks has attracted the attention of researchers from different disciplines. Community structure is one of the key structures of complex networks, so it is a very important task to analyze the community structure of complex networks accurately. In this paper, we study the problem of extracting the community structure of complex networks, and propose a continuous neural network (CNN) algorithm. It is proved that for any given initial value, the continuous neural network algorithm converges to the eigenvector of the maximum eigenvalue of the network modularity matrix. Therefore, according to the stability of the evolution of the network symbol will be able to get two community structure.
Wu, Li-Bing; Yang, Guang-Hong
2017-03-01
This paper investigates the problem of adaptive output neural network (NN) control for a class of stochastic nonaffine and nonlinear systems with actuator dead-zone inputs. First, based on the intermediate value theorem, a novel design scheme that converts the nonaffine system into the corresponding affine system is developed. In particular, the priori knowledge of the bound of the derivative of the nonaffine and nonlinear functions is removed; then, by employing NNs to approximate the appropriate nonlinear functions, the corresponding adaptive NN tracking controller with the adjustable parameter updated laws is designed through a backstepping technique. Furthermore, it is shown that all the closed-loop signals are bounded in probability, and the system output tracking error can converge to a small neighborhood in the sense of a mean quartic value. Finally, experimental simulations are provided to demonstrate the efficiency of the proposed adaptive NN tracking control method.
Neural Network Observer-Based Finite-Time Formation Control of Mobile Robots
Directory of Open Access Journals (Sweden)
Caihong Zhang
2014-01-01
Full Text Available This paper addresses the leader-following formation problem of nonholonomic mobile robots. In the formation, only the pose (i.e., the position and direction angle of the leader robot can be obtained by the follower. First, the leader-following formation is transformed into special trajectory tracking. And then, a neural network (NN finite-time observer of the follower robot is designed to estimate the dynamics of the leader robot. Finally, finite-time formation control laws are developed for the follower robot to track the leader robot in the desired separation and bearing in finite time. The effectiveness of the proposed NN finite-time observer and the formation control laws are illustrated by both qualitative analysis and simulation results.
DEFF Research Database (Denmark)
Bhowmik, Subrata; Weber, Felix; Høgsberg, Jan Becker
2013-01-01
This paper presents a systematic design and training procedure for the feed-forward backpropagation neural network (NN) modeling of both forward and inverse behavior of a rotary magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper force as output...... an optimization procedure demonstrates accurate training of the NN architecture with only current and velocity as input states. For the inverse damper model, with current as output, the absolute value of velocity and force are used as input states to avoid negative current spikes when tracking a desired damper...... force. The forward and inverse damper models are trained and validated experimentally, combining a limited number of harmonic displacement records, and constant and half-sinusoidal current records. In general the validation shows accurate results for both forward and inverse damper models, where...
Learning from adaptive neural network output feedback control of a unicycle-type mobile robot.
Zeng, Wei; Wang, Qinghui; Liu, Fenglin; Wang, Ying
2016-03-01
This paper studies learning from adaptive neural network (NN) output feedback control of nonholonomic unicycle-type mobile robots. The major difficulties are caused by the unknown robot system dynamics and the unmeasurable states. To overcome these difficulties, a new adaptive control scheme is proposed including designing a new adaptive NN output feedback controller and two high-gain observers. It is shown that the stability of the closed-loop robot system and the convergence of tracking errors are guaranteed. The unknown robot system dynamics can be approximated by radial basis function NNs. When repeating same or similar control tasks, the learned knowledge can be recalled and reused to achieve guaranteed stability and better control performance, thereby avoiding the tremendous repeated training process of NNs. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Construction of an interatomic potential for zinc oxide surfaces by high-dimensional neural networks
Energy Technology Data Exchange (ETDEWEB)
Artrith, Nongnuch; Morawietz, Tobias; Behler, Joerg [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)
2011-07-01
Zinc oxide (ZnO) is a technologically important material with many applications, e.g. in heterogeneous catalysis. For theoretical studies of the structural properties of ZnO surfaces, defects, and crystal structures it is necessary to simulate large systems over long time-scales with sufficient accuracy. Often, the required system size is not accessible by computationally rather demanding density-functional theory (DFT) calculations. Recently, artificial Neural Networks (NN) trained to first principles data have shown to provide accurate potential-energy surfaces (PESs) for condensed systems. We present the construction and analysis of a NN PES for ZnO. The structural and energetic properties of bulk ZnO and ZnO surfaces are investigated using this potential and compared to DFT calculations.
A high-dimensional neural network potential-energy surface for zinc oxide
Energy Technology Data Exchange (ETDEWEB)
Artrith, Nongnuch; Maschke, Marcus; Behler, Joerg [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum (Germany)
2009-07-01
Zinc oxide is a technologically important material, for example as support in heterogeneous catalysis. In order to study a variety of interesting problems it is necessary to perform long simulations of large systems, which are beyond the capabilities of established methods like density-functional theory. Recently, artificial Neural Networks (NN) trained to first-principles data have shown to provide accurate potential energy surfaces for condensed systems, which are computationally very efficient to evaluate. However, so far these potentials have been applicable only to elemental systems. We show that by including physically derived terms it is possible to extend the NN methodology to multicomponent systems. The capabilities of the method are illustrated by first applications to zinc oxide.
Neural network interatomic potential for the phase change material GeTe
Sosso, Gabriele C.; Miceli, Giacomo; Caravati, Sebastiano; Behler, Jörg; Bernasconi, Marco
2012-05-01
GeTe is a prototypical phase change material of high interest for applications in optical and electronic nonvolatile memories. We present an interatomic potential for the bulk phases of GeTe, which is created using a neural network (NN) representation of the potential-energy surface obtained from reference calculations based on density functional theory. It is demonstrated that the NN potential provides a close to ab initio quality description of a number of properties of liquid, crystalline, and amorphous GeTe. The availability of a reliable classical potential allows addressing a number of issues of interest for the technological applications of phase change materials, which are presently beyond the capability of first-principles molecular dynamics simulations.
Flexible body control using neural networks
Mccullough, Claire L.
1992-01-01
Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.
Identification and Position Control of Marine Helm using Artificial Neural Network Neural Network
Directory of Open Access Journals (Sweden)
Hui ZHU
2008-02-01
Full Text Available If nonlinearities such as saturation of the amplifier gain and motor torque, gear backlash, and shaft compliances- just to name a few - are considered in the position control system of marine helm, traditional control methods are no longer sufficient to be used to improve the performance of the system. In this paper an alternative approach to traditional control methods - a neural network reference controller - is proposed to establish an adaptive control of the position of the marine helm to achieve the controlled variable at the command position. This neural network controller comprises of two neural networks. One is the plant model network used to identify the nonlinear system and the other the controller network used to control the output to follow the reference model. The experimental results demonstrate that this adaptive neural network reference controller has much better control performance than is obtained with traditional controllers.
Implementing Signature Neural Networks with Spiking Neurons.
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence
Implementing Signature Neural Networks with Spiking Neurons
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the
Training Deep Spiking Neural Networks Using Backpropagation.
Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael
2016-01-01
Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.
Memory-optimal neural network approximation
Bölcskei, Helmut; Grohs, Philipp; Kutyniok, Gitta; Petersen, Philipp
2017-08-01
We summarize the main results of a recent theory-developed by the authors-establishing fundamental lower bounds on the connectivity and memory requirements of deep neural networks as a function of the complexity of the function class to be approximated by the network. These bounds are shown to be achievable. Specifically, all function classes that are optimally approximated by a general class of representation systems-so-called affine systems-can be approximated by deep neural networks with minimal connectivity and memory requirements. Affine systems encompass a wealth of representation systems from applied harmonic analysis such as wavelets, shearlets, ridgelets, α-shearlets, and more generally α-molecules. This result elucidates a remarkable universality property of deep neural networks and shows that they achieve the optimum approximation properties of all affine systems combined. Finally, we present numerical experiments demonstrating that the standard stochastic gradient descent algorithm generates deep neural networks which provide close-to-optimal approximation rates at minimal connectivity. Moreover, stochastic gradient descent is found to actually learn approximations that are sparse in the representation system optimally sparsifying the function class the network is trained on.
Neural networks for sign language translation
Wilson, Beth J.; Anspach, Gretel
1993-09-01
A neural network is used to extract relevant features of sign language from video images of a person communicating in American Sign Language or Signed English. The key features are hand motion, hand location with respect to the body, and handshape. A modular hybrid design is under way to apply various techniques, including neural networks, in the development of a translation system that will facilitate communication between deaf and hearing people. One of the neural networks described here is used to classify video images of handshapes into their linguistic counterpart in American Sign Language. The video image is preprocessed to yield Fourier descriptors that encode the shape of the hand silhouette. These descriptors are then used as inputs to a neural network that classifies their shapes. The network is trained with various examples from different signers and is tested with new images from new signers. The results have shown that for coarse handshape classes, the network is invariant to the type of camera used to film the various signers and to the segmentation technique.
Genetic Algorithm Optimization of Artificial Neural Networks for Hydrological Modelling
Abrahart, R. J.
2004-05-01
operational specialization. The standard approach to neural-evolution is at the network level such that a population of working solutions is manipulated until the fittest member is found. SANE [Symbiotic Adaptive Neuro-Evolution]1 source code offers an alternative method based on co-operative co-evolution in which a population of hidden neurons is evolved. The task of each hidden neuron is to establish appropriate connections that will provide: [i] a functional solution and [ii] performance improvements. Each member of the population attempts to optimize one particular aspect of the overall modelling process and evolution can lead to several different forms of specialization. This method of adaptive evolution also facilitates the creation of symbiotic relationships in which individual members must co-operate with others - who must be present - to permit survival. 1http://www.cs.utexas.edu/users/nn/pages/software/abstracts.html#sane-c
Equivalence of Conventional and Modified Network of Generalized Neural Elements
Directory of Open Access Journals (Sweden)
E. V. Konovalov
2016-01-01
Full Text Available The article is devoted to the analysis of neural networks consisting of generalized neural elements. The first part of the article proposes a new neural network model — a modified network of generalized neural elements (MGNE-network. This network developes the model of generalized neural element, whose formal description contains some flaws. In the model of the MGNE-network these drawbacks are overcome. A neural network is introduced all at once, without preliminary description of the model of a single neural element and method of such elements interaction. The description of neural network mathematical model is simplified and makes it relatively easy to construct on its basis a simulation model to conduct numerical experiments. The model of the MGNE-network is universal, uniting properties of networks consisting of neurons-oscillators and neurons-detectors. In the second part of the article we prove the equivalence of the dynamics of the two considered neural networks: the network, consisting of classical generalized neural elements, and MGNE-network. We introduce the definition of equivalence in the functioning of the generalized neural element and the MGNE-network consisting of a single element. Then we introduce the definition of the equivalence of the dynamics of the two neural networks in general. It is determined the correlation of different parameters of the two considered neural network models. We discuss the issue of matching the initial conditions of the two considered neural network models. We prove the theorem about the equivalence of the dynamics of the two considered neural networks. This theorem allows us to apply all previously obtained results for the networks, consisting of classical generalized neural elements, to the MGNE-network.
Neural networks and particle physics
Peterson, Carsten
1993-01-01
1. Introduction : Structure of the Central Nervous System Generics2. Feed-forward networks, Perceptions, Function approximators3. Self-organisation, Feature Maps4. Feed-back Networks, The Hopfield model, Optimization problems, Feed-back, Networks, Deformable templates, Graph bisection
Directory of Open Access Journals (Sweden)
Halil Ibrahim Kurt
2015-01-01
Full Text Available In the current study, the effect of applied load, sliding speed, and type and weight percentages of reinforcements on the wear properties of ultrahigh molecular weight polyethylene (UHMWPE was theoretically studied. The extensive experimental results were taken from literature and modeled with artificial neural network (ANN. The feed forward (FF back-propagation (BP neural network (NN was used to predict the dry sliding wear behavior of UHMWPE composites. Eleven input vectors were used in the construction of the proposed NN. The carbon nanotube (CNT, carbon fiber (CF, graphene oxide (GO, and wollastonite additives are the main input parameters and the volume loss is the output parameter for the developed NN. It was observed that the sliding speed and applied load have a stronger effect on the volume loss of UHMWPE composites in comparison to other input parameters. The proper condition for achieving the desired wear behaviors of UHMWPE by tailoring the weight percentage and reinforcement particle size and composition was presented. The proposed NN model and the derived explicit form of mathematical formulation show good agreement with test results and can be used to predict the volume loss of UHMWPE composites.
Directory of Open Access Journals (Sweden)
Chunling DU
2012-03-01
Full Text Available In this work the condition of metallic structures are classified based on the acquired sensor data from a surface-mounted piezoelectric sensor/actuator network. The structures are aluminum plates with riveted holes and possible crack damage at these holes. A 400 kHz sine wave burst is used as diagnostic signals. The combination of time-domain S0 waves from received sensor signals is directly used as features and preprocessing is not needed for the dam age detection. Since the time sequence of the extracted S0 has a high dimension, principal component estimation is applied to reduce its dimension before entering NN (neural network training for classification. An LVQ (learning vector quantization NN is used to classify the conditions as healthy or damaged. A number of FEM (finite element modeling results are taken as inputs to the NN for training, since the simulated S0 waves agree well with the experimental results on real plates. The performance of the classification is then validated by using these testing results.
Cotton genotypes selection through artificial neural networks.
Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B
2017-09-27
Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.
Neural network approaches for noisy language modeling.
Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid
2013-11-01
Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.
GARCH based artificial neural networks in forecasting conditional variance of stock returns
Directory of Open Access Journals (Sweden)
Josip Arnerić
2014-12-01
Full Text Available Portfolio managers, option traders and market makers are all interested in volatility forecasting in order to get higher profits or less risky positions. Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most popular models in modelling volatility are GARCH type models because they can account excess kurtosis and asymmetric effects of financial time series. A standard GARCH(1,1 model usually indicates high persistence in the conditional variance, which may originate from structural changes. The first objective of this paper is to develop a parsimonious neural networks (NN model, which can capture the nonlinear relationship between past return innovations and conditional variance. Therefore, the goal is to develop a neural network with an appropriate recurrent connection in the context of nonlinear ARMA models, i.e., the Jordan neural network (JNN. The second objective of this paper is to determine if JNN outperforms the standard GARCH model. Out-of-sample forecasts of the JNN and the GARCH model will be compared to determine their predictive accuracy. The data set consists of returns of the CROBEX index daily closing prices obtained from the Zagreb Stock Exchange. The results indicate that the selected JNN(1,1,1 model has superior performances compared to the standard GARCH(1,1 model. The contribution of this paper can be seen in determining the appropriate NN that is comparable to the standard GARCH(1,1 model and its application in forecasting conditional variance of stock returns. Moreover, from the econometric perspective, NN models are used as a semi-parametric method that combines flexibility of nonparametric methods and the interpretability of parameters of parametric methods.
Directory of Open Access Journals (Sweden)
S. N. Naikwad
2009-01-01
Full Text Available A focused time lagged recurrent neural network (FTLR NN with gamma memory filter is designed to learn the subtle complex dynamics of a typical CSTR process. Continuous stirred tank reactor exhibits complex nonlinear operations where reaction is exothermic. It is noticed from literature review that process control of CSTR using neuro-fuzzy systems was attempted by many, but optimal neural network model for identification of CSTR process is not yet available. As CSTR process includes temporal relationship in the input-output mappings, time lagged recurrent neural network is particularly used for identification purpose. The standard back propagation algorithm with momentum term has been proposed in this model. The various parameters like number of processing elements, number of hidden layers, training and testing percentage, learning rule and transfer function in hidden and output layer are investigated on the basis of performance measures like MSE, NMSE, and correlation coefficient on testing data set. Finally effects of different norms are tested along with variation in gamma memory filter. It is demonstrated that dynamic NN model has a remarkable system identification capability for the problems considered in this paper. Thus FTLR NN with gamma memory filter can be used to learn underlying highly nonlinear dynamics of the system, which is a major contribution of this paper.
Artificial neural network in cosmic landscape
Liu, Junyu
2017-12-01
In this paper we propose that artificial neural network, the basis of machine learning, is useful to generate the inflationary landscape from a cosmological point of view. Traditional numerical simulations of a global cosmic landscape typically need an exponential complexity when the number of fields is large. However, a basic application of artificial neural network could solve the problem based on the universal approximation theorem of the multilayer perceptron. A toy model in inflation with multiple light fields is investigated numerically as an example of such an application.
Top tagging with deep neural networks [Vidyo
CERN. Geneva
2017-01-01
Recent literature on deep neural networks for top tagging has focussed on image based techniques or multivariate approaches using high level jet substructure variables. Here, we take a sequential approach to this task by using anordered sequence of energy deposits as training inputs. Unlike previous approaches, this strategy does not result in a loss of information during pixelization or the calculation of high level features. We also propose new preprocessing methods that do not alter key physical quantities such as jet mass. We compare the performance of this approach to standard tagging techniques and present results evaluating the robustness of the neural network to pileup.
Automatic identification of species with neural networks.
Hernández-Serna, Andrés; Jiménez-Segura, Luz Fernanda
2014-01-01
A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.
Automatic identification of species with neural networks
Directory of Open Access Journals (Sweden)
Andrés Hernández-Serna
2014-11-01
Full Text Available A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.
Pulse image recognition using fuzzy neural network.
Xu, L S; Meng, Max Q -H; Wang, K Q
2007-01-01
The automatic recognition of pulse images is the key in the research of computerized pulse diagnosis. In order to automatically differentiate the pulse patterns by using small samples, a fuzzy neural network to classify pulse images based on the knowledge of experts in traditional Chinese pulse diagnosis was designed. The designed classifier can make hard decision and soft decision for identifying 18 patterns of pulse images at the accuracy of 91%, which is better than the results that achieved by back-propagation neural network.
Assessing Landslide Hazard Using Artificial Neural Network
DEFF Research Database (Denmark)
Farrokhzad, Farzad; Choobbasti, Asskar Janalizadeh; Barari, Amin
2011-01-01
failure" which is main concentration of the current research and "liquefaction failure". Shear failures along shear planes occur when the shear stress along the sliding surfaces exceed the effective shear strength. These slides have been referred to as landslide. An expert system based on artificial...... neural network has been developed for use in the stability evaluation of slopes under various geological conditions and engineering requirements. The Artificial neural network model of this research uses slope characteristics as input and leads to the output in form of the probability of failure...
Neural networks advances and applications 2
Gelenbe, E
1992-01-01
The present volume is a natural follow-up to Neural Networks: Advances and Applications which appeared one year previously. As the title indicates, it combines the presentation of recent methodological results concerning computational models and results inspired by neural networks, and of well-documented applications which illustrate the use of such models in the solution of difficult problems. The volume is balanced with respect to these two orientations: it contains six papers concerning methodological developments and five papers concerning applications and examples illustrating the theoret
Human Face Recognition Using Convolutional Neural Networks
Directory of Open Access Journals (Sweden)
Răzvan-Daniel Albu
2009-10-01
Full Text Available In this paper, I present a novel hybrid face recognition approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns. The convolutional network extracts successively larger features in a hierarchical set of layers. With the weights of the trained neural networks there are created kernel windows used for feature extraction in a 3-stage algorithm. I present experimental results illustrating the efficiency of the proposed approach. I use a database of 796 images of 159 individuals from Reims University which contains quite a high degree of variability in expression, pose, and facial details.
SAR ATR Based on Convolutional Neural Network
Directory of Open Access Journals (Sweden)
Tian Zhuangzhuang
2016-06-01
Full Text Available This study presents a new method of Synthetic Aperture Radar (SAR image target recognition based on a convolutional neural network. First, we introduce a class separability measure into the cost function to improve this network’s ability to distinguish between categories. Then, we extract SAR image features using the improved convolutional neural network and classify these features using a support vector machine. Experimental results using moving and stationary target acquisition and recognition SAR datasets prove the validity of this method.
Directory of Open Access Journals (Sweden)
M.R. Mosavi
2016-01-01
Full Text Available This paper presents a new method to estimate the time of important earthquakes in Hormozgan region with magnitude greater than 5.5 based on the Radial Basis Function (RBF Neural Network (NN models. Input vector to the network is composed of different seismicity rates between main events that are calculated in convenient and reliable way to create optimized training methods. It helps network with a limited number of training data to estimation. It is common for earthquakes modeling by data-driven methods in this case. In addition, the proposed method is combined with Rosenberg cluster method to remove aftershocks events from the history of catalog for NN to better process the data. The results show that created RBF model successfully estimates the interevent times between large and sequence earthquakes that can be used as a tool to predict earthquake, so that comparison with other NN structure, for example Multi-Layer Perceptron (MLP NN, reveals the superiority of the proposed method. Because of superiority proposed method has higher accuracy, lower costs and simpler network structure.
Yan, Liang; Zhang, Lu; Zhu, Bo; Zhang, Jingying; Jiao, Zongxia
2017-10-01
Permanent magnet spherical actuator (PMSA) is a multi-variable featured and inter-axis coupled nonlinear system, which unavoidably compromises its motion control implementation. Uncertainties such as external load and friction torque of ball bearing and manufacturing errors also influence motion performance significantly. Therefore, the objective of this paper is to propose a controller based on a single neural adaptive (SNA) algorithm and a neural network (NN) identifier optimized with a particle swarm optimization (PSO) algorithm to improve the motion stability of PMSA with three-dimensional magnet arrays. The dynamic model and computed torque model are formulated for the spherical actuator, and a dynamic decoupling control algorithm is developed. By utilizing the global-optimization property of the PSO algorithm, the NN identifier is trained to avoid locally optimal solution and achieve high-precision compensations to uncertainties. The employment of the SNA controller helps to reduce the effect of compensation errors and convert the system to a stable one, even if there is difference between the compensations and uncertainties due to external disturbances. A simulation model is established, and experiments are conducted on the research prototype to validate the proposed control algorithm. The amplitude of the parameter perturbation is set to 5%, 10%, and 15%, respectively. The strong robustness of the proposed hybrid algorithm is validated by the abundant simulation data. It shows that the proposed algorithm can effectively compensate the influence of uncertainties and eliminate the effect of inter-axis couplings of the spherical actuator.
Exploiting network redundancy for low-cost neural network realizations.
Keegstra, H; Jansen, WJ; Nijhuis, JAG; Spaanenburg, L; Stevens, H; Udding, JT
1996-01-01
A method is presented to optimize a trained neural network for physical realization styles. Target architectures are embedded microcontrollers or standard cell based ASIC designs. The approach exploits the redundancy in the network, required for successful training, to replace the synaptic weighting
Directory of Open Access Journals (Sweden)
Levente Czumbil
2015-12-01
Full Text Available The current paper presents an artificial intelligence based technique applied in the investigation of electromagnetic interference problems between high voltage power lines (HVPL and nearby underground metallic pipelines (MP. An artificial neural network (NN solution has been implemented by the authors to evaluate the inductive coupling between HVPL and MP for different constructive geometries of an electromagnetic interference problem considering a multi-layer soil structure. Obtained results are compared to solutions provided by a finite element method (FEM based analysis and considered as reference. The advantage of the proposed method yields in a simplified computation model compared to FEM, and implicitly a lower computational time.
Discrete-time adaptive backstepping nonlinear control via high-order neural networks.
Alanis, Alma Y; Sanchez, Edgar N; Loukianov, Alexander G
2007-07-01
This paper deals with adaptive tracking for discrete-time multiple-input-multiple-output (MIMO) nonlinear systems in presence of bounded disturbances. In this paper, a high-order neural network (HONN) structure is used to approximate a control law designed by the backstepping technique, applied to a block strict feedback form (BSFF). This paper also includes the respective stability analysis, on the basis of the Lyapunov approach, for the whole controlled system, including the extended Kalman filter (EKF)-based NN learning algorithm. Applicability of the scheme is illustrated via simulation for a discrete-time nonlinear model of an electric induction motor.
Removing Epistemological Bias From Empirical Observation of Neural Networks
Waldron, Ronan
1994-01-01
Also in Proceedings of the International Joint Conference on Neural Networks, Nagoya, Japan. This paper addresses the application of neural network research to a theory of autonomous systems. Neural networks, while enjoying considerable success in autonomous systems applications, have failed to provide a firm theoretical underpinning to neural systems embedded in their natural ecological context. This paper proposes a stochastic formulation of such an embedding. A neural sys...
Parameter Identification by Bayes Decision and Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1994-01-01
The problem of parameter identification by Bayes point estimation using neural networks is investigated.......The problem of parameter identification by Bayes point estimation using neural networks is investigated....
On The Comparison of Artificial Neural Network (ANN) and ...
African Journals Online (AJOL)
West African Journal of Industrial and Academic Research ... This work presented the results of an experimental comparison of two models: Multinomial Logistic Regression (MLR) and Artificial Neural Network (ANN) for ... Keywords: Multinomial Logistic Regression, Artificial Neural Network, Correct classification rate.
A NEURAL OSCILLATOR-NETWORK MODEL OF TEMPORAL PATTERN GENERATION
Schomaker, Lambert
Most contemporary neural network models deal with essentially static, perceptual problems of classification and transformation. Models such as multi-layer feedforward perceptrons generally do not incorporate time as an essential dimension, whereas biological neural networks are inherently temporal
Neural networks of human nature and nurture
Directory of Open Access Journals (Sweden)
Daniel S. Levine
2009-11-01
Full Text Available Neural network methods have facilitated the unification of several unfortunate splits in psychology, including nature versus nurture. We review the contributions of this methodology and then discuss tentative network theories of caring behavior, of uncaring behavior, and of how the frontal lobes are involved in the choices between them. The implications of our theory are optimistic about the prospects of society to encourage the human potential for caring.
Directory of Open Access Journals (Sweden)
Ming-Shyan Wang
2015-01-01
Full Text Available An automatic guided vehicle (AGV is extensively used for productions in a flexible manufacture system with high efficiency and high flexibility. A servomotor-based AGV is designed and implemented in this paper. In order to steer the AGV to go along a predefined path with corner or arc, the conventional proportional-integral-derivative (PID control is used in the system. However, it is difficult to tune PID gains at various conditions. As a result, the neural network (NN control is considered to assist the PID control for gain tuning. The experimental results are first provided to verify the correctness of the neural network plus PID control for 400 W-motor control system. Secondly, the AGV includes two sets of the designed motor systems and CAN BUS transmission so that it can move along the straight line and curve paths shown in the taped videos.
Directory of Open Access Journals (Sweden)
Oscar Castillo
2013-01-01
Full Text Available Neural networks (NNs, type-1 fuzzy logic systems (T1FLSs, and interval type-2 fuzzy logic systems (IT2FLSs have been shown to be universal approximators, which means that they can approximate any nonlinear continuous function. Recent research shows that embedding an IT2FLS on an NN can be very effective for a wide number of nonlinear complex systems, especially when handling imperfect or incomplete information. In this paper we show, based on the Stone-Weierstrass theorem, that an interval type-2 fuzzy neural network (IT2FNN is a universal approximator, which uses a set of rules and interval type-2 membership functions (IT2MFs for this purpose. Simulation results of nonlinear function identification using the IT2FNN for one and three variables and for the Mackey-Glass chaotic time series prediction are presented to illustrate the concept of universal approximation.
Chaotic Extension Neural Network-Based Fault Diagnosis Method for Solar Photovoltaic Systems
Directory of Open Access Journals (Sweden)
Kuo-Nan Yu
2014-01-01
Full Text Available At present, the solar photovoltaic system is extensively used. However, once a fault occurs, it is inspected manually, which is not economical. In order to remedy the defect of unavailable fault diagnosis at any irradiance and temperature in the literature with chaos synchronization based intelligent fault diagnosis for photovoltaic systems proposed by Hsieh et al., this study proposed a chaotic extension fault diagnosis method combined with error back propagation neural network to overcome this problem. It used the nn toolbox of matlab 2010 for simulation and comparison, measured current irradiance and temperature, and used the maximum power point tracking (MPPT for chaotic extraction of eigenvalue. The range of extension field was determined by neural network. Finally, the voltage eigenvalue obtained from current temperature and irradiance was used for the fault diagnosis. Comparing the diagnostic rates with the results by Hsieh et al., this scheme can obtain better diagnostic rates when the irradiances or the temperatures are changed.
Neural network for sonogram gap filling
DEFF Research Database (Denmark)
Klebæk, Henrik; Jensen, Jørgen Arendt; Hansen, Lars Kai
1995-01-01
a neural network for predicting mean frequency of the velocity signal and its variance. The neural network then predicts the evolution of the mean and variance in the gaps, and the sonogram and audio signal are reconstructed from these. The technique is applied on in-vivo data from the carotid artery...... in the sonogram and in the audio signal, rendering the audio signal useless, thus making diagnosis difficult. The current goal for ultrasound scanners is to maintain a high refresh rate for the B-mode image and at the same time attain a high maximum velocity in the sonogram display. This precludes the intermixing...... series, and is shown to yield better results, i.e., the variances of the predictions are lower. The ability of the neural predictor to reconstruct both the sonogram and the audio signal, when only 50% of the time is used for velocity data acquisition, is demonstrated for the in-vivo data...
Digital Neural Networks for New Media
Spaanenburg, Lambert; Malki, Suleyman
Neural Networks perform computationally intensive tasks offering smart solutions for many new media applications. A number of analog and mixed digital/analog implementations have been proposed to smooth the algorithmic gap. But gradually, the digital implementation has become feasible, and the dedicated neural processor is on the horizon. A notable example is the Cellular Neural Network (CNN). The analog direction has matured for low-power, smart vision sensors; the digital direction is gradually being shaped into an IP-core for algorithm acceleration, especially for use in FPGA-based high-performance systems. The chapter discusses the next step towards a flexible and scalable multi-core engine using Application-Specific Integrated Processors (ASIP). This topographic engine can serve many new media tasks, as illustrated by novel applications in Homeland Security. We conclude with a view on the CNN kaleidoscope for the year 2020.
Optimizing neural network models: motivation and case studies
Harp, S A; T. Samad
2012-01-01
Practical successes have been achieved with neural network models in a variety of domains, including energy-related industry. The large, complex design space presented by neural networks is only minimally explored in current practice. The satisfactory results that nevertheless have been obtained testify that neural networks are a robust modeling technology; at the same time, however, the lack of a systematic design approach implies that the best neural network models generally rem...
Dynamic Object Identification with SOM-based neural networks
Directory of Open Access Journals (Sweden)
Aleksey Averkin
2014-03-01
Full Text Available In this article a number of neural networks based on self-organizing maps, that can be successfully used for dynamic object identification, is described. Unique SOM-based modular neural networks with vector quantized associative memory and recurrent self-organizing maps as modules are presented. The structured algorithms of learning and operation of such SOM-based neural networks are described in details, also some experimental results and comparison with some other neural networks are given.
Stock Price Prediction Based on Procedural Neural Networks
Jiuzhen Liang; Wei Song; Mei Wang
2011-01-01
We present a spatiotemporal model, namely, procedural neural networks for stock price prediction. Compared with some successful traditional models on simulating stock market, such as BNN (backpropagation neural networks, HMM (hidden Markov model) and SVM (support vector machine)), the procedural neural network model processes both spacial and temporal information synchronously without slide time window, which is typically used in the well-known recurrent neural networks. Two differen...
Computational capabilities of graph neural networks.
Scarselli, Franco; Gori, Marco; Tsoi, Ah Chung; Hagenbuchner, Markus; Monfardini, Gabriele
2009-01-01
In this paper, we will consider the approximation properties of a recently introduced neural network model called graph neural network (GNN), which can be used to process-structured data inputs, e.g., acyclic graphs, cyclic graphs, and directed or undirected graphs. This class of neural networks implements a function tau(G,n) is an element of IR(m) that maps a graph G and one of its nodes n onto an m-dimensional Euclidean space. We characterize the functions that can be approximated by GNNs, in probability, up to any prescribed degree of precision. This set contains the maps that satisfy a property called preservation of the unfolding equivalence, and includes most of the practically useful functions on graphs; the only known exception is when the input graph contains particular patterns of symmetries when unfolding equivalence may not be preserved. The result can be considered an extension of the universal approximation property established for the classic feedforward neural networks (FNNs). Some experimental examples are used to show the computational capabilities of the proposed model.
Parameter estimation using compensatory neural networks
Indian Academy of Sciences (India)
Proposed here is a new neuron model, a basis for Compensatory Neural Network Architecture (CNNA), which not only reduces the total number of interconnections among neurons but also reduces the total computing time for training. The suggested model has properties of the basic neuron model as well as the higher ...
Based on BP Neural Network Stock Prediction
Liu, Xiangwei; Ma, Xin
2012-01-01
The stock market has a high profit and high risk features, on the stock market analysis and prediction research has been paid attention to by people. Stock price trend is a complex nonlinear function, so the price has certain predictability. This article mainly with improved BP neural network (BPNN) to set up the stock market prediction model, and…
Epileptiform spike detection via convolutional neural networks
DEFF Research Database (Denmark)
Johansen, Alexander Rosenberg; Jin, Jing; Maszczyk, Tomasz
2016-01-01
The EEG of epileptic patients often contains sharp waveforms called "spikes", occurring between seizures. Detecting such spikes is crucial for diagnosing epilepsy. In this paper, we develop a convolutional neural network (CNN) for detecting spikes in EEG of epileptic patients in an automated...
Artificial neural networks and support vector mac
Indian Academy of Sciences (India)
Quantitative structure-property relationships of electroluminescent materials: Artificial neural networks and support vector machines to predict electroluminescence of organic molecules. ALANA FERNANDES GOLIN and RICARDO STEFANI. ∗. Laboratório de Estudos de Materiais (LEMAT), Instituto de Ciências Exatas e da ...
Neural Networks for protein Structure Prediction
DEFF Research Database (Denmark)
Bohr, Henrik
1998-01-01
This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...
Towards semen quality assessment using neural networks
DEFF Research Database (Denmark)
Linneberg, Christian; Salamon, P.; Svarer, C.
1994-01-01
The paper presents the methodology and results from a neural net based classification of human sperm head morphology. The methodology uses a preprocessing scheme in which invariant Fourier descriptors are lumped into “energy” bands. The resulting networks are pruned using optimal brain damage...
Convolutional Neural Networks for SAR Image Segmentation
DEFF Research Database (Denmark)
Malmgren-Hansen, David; Nobel-Jørgensen, Morten
2015-01-01
Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...
Convolutional Neural Networks - Generalizability and Interpretations
DEFF Research Database (Denmark)
Malmgren-Hansen, David
from data despite it being limited in amount or context representation. Within Machine Learning this thesis focuses on Convolutional Neural Networks for Computer Vision. The research aims to answer how to explore a model's generalizability to the whole population of data samples and how to interpret...
Visualization of neural networks using saliency maps
DEFF Research Database (Denmark)
Mørch, Niels J.S.; Kjems, Ulrik; Hansen, Lars Kai
1995-01-01
The saliency map is proposed as a new method for understanding and visualizing the nonlinearities embedded in feedforward neural networks, with emphasis on the ill-posed case, where the dimensionality of the input-field by far exceeds the number of examples. Several levels of approximations...
Separable explanations of neural network decisions
DEFF Research Database (Denmark)
Rieger, Laura
2017-01-01
Deep Taylor Decomposition is a method used to explain neural network decisions. When applying this method to non-dominant classifications, the resulting explanation does not reflect important features for the chosen classification. We propose that this is caused by the dense layers and propose...
Fast Fingerprint Classification with Deep Neural Network
DEFF Research Database (Denmark)
Michelsanti, Daniel; Guichi, Yanis; Ene, Andreea-Daniela
2017-01-01
. In this work we evaluate the performance of two pre-trained convolutional neural networks fine-tuned on the NIST SD4 benchmark database. The obtained results show that this approach is comparable with other results in the literature, with the advantage of a fast feature extraction stage....
Empirical generalization assessment of neural network models
DEFF Research Database (Denmark)
Larsen, Jan; Hansen, Lars Kai
1995-01-01
This paper addresses the assessment of generalization performance of neural network models by use of empirical techniques. We suggest to use the cross-validation scheme combined with a resampling technique to obtain an estimate of the generalization performance distribution of a specific model...
Localizing Tortoise Nests by Neural Networks.
Directory of Open Access Journals (Sweden)
Roberto Barbuti
Full Text Available The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating. Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN. We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours, the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.
Feature to prototype transition in neural networks
Krotov, Dmitry; Hopfield, John
Models of associative memory with higher order (higher than quadratic) interactions, and their relationship to neural networks used in deep learning are discussed. Associative memory is conventionally described by recurrent neural networks with dynamical convergence to stable points. Deep learning typically uses feedforward neural nets without dynamics. However, a simple duality relates these two different views when applied to problems of pattern classification. From the perspective of associative memory such models deserve attention because they make it possible to store a much larger number of memories, compared to the quadratic case. In the dual description, these models correspond to feedforward neural networks with one hidden layer and unusual activation functions transmitting the activities of the visible neurons to the hidden layer. These activation functions are rectified polynomials of a higher degree rather than the rectified linear functions used in deep learning. The network learns representations of the data in terms of features for rectified linear functions, but as the power in the activation function is increased there is a gradual shift to a prototype-based representation, the two extreme regimes of pattern recognition known in cognitive psychology. Simons Center for Systems Biology.
Applying Artificial Neural Networks for Face Recognition
Directory of Open Access Journals (Sweden)
Thai Hoang Le
2011-01-01
Full Text Available This paper introduces some novel models for all steps of a face recognition system. In the step of face detection, we propose a hybrid model combining AdaBoost and Artificial Neural Network (ABANN to solve the process efficiently. In the next step, labeled faces detected by ABANN will be aligned by Active Shape Model and Multi Layer Perceptron. In this alignment step, we propose a new 2D local texture model based on Multi Layer Perceptron. The classifier of the model significantly improves the accuracy and the robustness of local searching on faces with expression variation and ambiguous contours. In the feature extraction step, we describe a methodology for improving the efficiency by the association of two methods: geometric feature based method and Independent Component Analysis method. In the face matching step, we apply a model combining many Neural Networks for matching geometric features of human face. The model links many Neural Networks together, so we call it Multi Artificial Neural Network. MIT + CMU database is used for evaluating our proposed methods for face detection and alignment. Finally, the experimental results of all steps on CallTech database show the feasibility of our proposed model.
drinking water treatment using artificial neural network
African Journals Online (AJOL)
ogwueleka
synaptic weights are used to store the knowledge.” The neural network approach is a branch of artificial intelligence. The ANN is based on a model of the human neurological system that consists of basic computing elements (called neurons) interconnected together (Figure 1). The model used for all classification attempts.
Artificial neural networks in neutron dosimetry
Energy Technology Data Exchange (ETDEWEB)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. de Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)
2005-07-01
An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the {chi}{sup 2}- test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Learning chaotic attractors by neural networks
Bakker, R; Schouten, JC; Giles, CL; Takens, F; van den Bleek, CM
2000-01-01
An algorithm is introduced that trains a neural network to identify chaotic dynamics from a single measured time series. During training, the algorithm learns to short-term predict the time series. At the same time a criterion, developed by Diks, van Zwet, Takens, and de Goede (1996) is monitored
Nonlinear Time Series Analysis via Neural Networks
Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin
This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.
Neural networks, penalty logic and optimality theory
Blutner, R.; Benz, A.; Blutner, R.
2009-01-01
Ever since the discovery of neural networks, there has been a controversy between two modes of information processing. On the one hand, symbolic systems have proven indispensable for our understanding of higher intelligence, especially when cognitive domains like language and reasoning are examined.
Image inpainting using a neural network
Directory of Open Access Journals (Sweden)
Gapon Nikolay
2017-01-01
Full Text Available The paper describes a new method of two-dimensional signals reconstruction by restoring static images. A new method of spatial reconstruction of static images based on a geometric model using a neural network is proposed, it is based on the search for similar blocks and copying them into the region of distorted or missing pixel values.
Foetal ECG recovery using dynamic neural networks.
Camps-Valls, Gustavo; Martínez-Sober, Marcelino; Soria-Olivas, Emilio; Magdalena-Benedito, Rafael; Calpe-Maravilla, Javier; Guerrero-Martínez, Juan
2004-07-01
Non-invasive electrocardiography has proven to be a very interesting method for obtaining information about the foetus state and thus to assure its well-being during pregnancy. One of the main applications in this field is foetal electrocardiogram (ECG) recovery by means of automatic methods. Evident problems found in the literature are the limited number of available registers, the lack of performance indicators, and the limited use of non-linear adaptive methods. In order to circumvent these problems, we first introduce the generation of synthetic registers and discuss the influence of different kinds of noise to the modelling. Second, a method which is based on numerical (correlation coefficient) and statistical (analysis of variance, ANOVA) measures allows us to select the best recovery model. Finally, finite impulse response (FIR) and gamma neural networks are included in the adaptive noise cancellation (ANC) scheme in order to provide highly non-linear, dynamic capabilities to the recovery model. Neural networks are benchmarked with classical adaptive methods such as the least mean squares (LMS) and the normalized LMS (NLMS) algorithms in simulated and real registers and some conclusions are drawn. For synthetic registers, the most determinant factor in the identification of the models is the foetal-maternal signal-to-noise ratio (SNR). In addition, as the electromyogram contribution becomes more relevant, neural networks clearly outperform the LMS-based algorithm. From the ANOVA test, we found statistical differences between LMS-based models and neural models when complex situations (high foetal-maternal and foetal-noise SNRs) were present. These conclusions were confirmed after doing robustness tests on synthetic registers, visual inspection of the recovered signals and calculation of the recognition rates of foetal R-peaks for real situations. Finally, the best compromise between model complexity and outcomes was provided by the FIR neural network. Both
MBVCNN: Joint convolutional neural networks method for image recognition
Tong, Tong; Mu, Xiaodong; Zhang, Li; Yi, Zhaoxiang; Hu, Pei
2017-05-01
Aiming at the problem of objects in image recognition rectangle, but objects which are input into convolutional neural networks square, the object recognition model was put forward which was based on BING method to realize object estimate, used vectorization of convolutional neural networks to realize input square image in convolutional networks, therefore, built joint convolution neural networks, which achieve multiple size image input. Verified by experiments, the accuracy of multi-object image recognition was improved by 6.70% compared with single vectorization of convolutional neural networks. Therefore, image recognition method of joint convolutional neural networks can enhance the accuracy in image recognition, especially for target in rectangular shape.
Directory of Open Access Journals (Sweden)
S. Anbazhagan
2012-07-01
Full Text Available There is a general consensus that the movement of electricity price is crucial for electricity market. The binary electricity price classification method is as an alternative to numerical electricity price forecasting due to high forecasting errors in various approaches. This paper proposes a binary classification of day-ahead electricity prices that could be realized using discrete cosine transforms (DCT based neural network (NN approach (DCT-NN. These electricity price classifications are important because all market participants do not to know the exact value of future prices in their decision-making process. In this paper, classifications of electricity market prices with respect to pre-specified electricity price threshold are used. In this proposed approach, all time series (historical price series are transformed from time domain to frequency domain using DCT. These discriminative spectral co-efficient forms the set of input features and are classified using NN. The binary classification NN and the proposed DCT-NN were developed and compared to check the performance. The simulation results show that the proposed method provides a better and efficient method for day-ahead deregulated electricity market of mainland Spain.
Analysis of neural networks in terms of domain functions
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, Lambert
Despite their success-story, artificial neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more as a
Extracting knowledge from supervised neural networks in image processing
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, Lambert; Jain, R.; Abraham, A.; Faucher, C.; van der Zwaag, B.J.
Despite their success-story, artificial neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a “magic tool��? but possibly even more as a
neural network based load frequency control for restructuring power
African Journals Online (AJOL)
2012-03-01
Mar 1, 2012 ... Abstract. In this study, an artificial neural network (ANN) application of load frequency control. (LFC) of a Multi-Area power system by using a neural network controller is presented. The comparison between a conventional Proportional Integral (PI) controller and the proposed artificial neural networks ...
Artificial Neural Network Modeling of an Inverse Fluidized Bed ...
African Journals Online (AJOL)
The application of neural networks to model a laboratory scale inverse fluidized bed reactor has been studied. A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological ...
Time series prediction with simple recurrent neural networks ...
African Journals Online (AJOL)
Simple recurrent neural networks are widely used in time series prediction. Most researchers and application developers often choose arbitrarily between Elman or Jordan simple recurrent neural networks for their applications. A hybrid of the two called Elman-Jordan (or Multi-recurrent) neural network is also being used.
Application of radial basis neural network for state estimation of ...
African Journals Online (AJOL)
user
An original application of radial basis function (RBF) neural network for power system state estimation is proposed in this paper. The property of massive parallelism of neural networks is employed for this. The application of RBF neural network for state estimation is investigated by testing its applicability on a IEEE 14 bus ...
The Artifical Neural Network as means for modeling Nonlinear Systems
Drábek Oldøich; Taufer Ivan
1998-01-01
The paper deals with nonlinear system identification based on neural network. The topic of this publication is simulation of training and testing a neural network. A contribution is assigned to technologists which are good at the clasical identification problems but their knowledges about identification based on neural network are only on the stage of theoretical bases.
The Artifical Neural Network as means for modeling Nonlinear Systems
Directory of Open Access Journals (Sweden)
Drábek Oldøich
1998-12-01
Full Text Available The paper deals with nonlinear system identification based on neural network. The topic of this publication is simulation of training and testing a neural network. A contribution is assigned to technologists which are good at the clasical identification problems but their knowledges about identification based on neural network are only on the stage of theoretical bases.
Algorithm For A Self-Growing Neural Network
Cios, Krzysztof J.
1996-01-01
CID3 algorithm simulates self-growing neural network. Constructs decision trees equivalent to hidden layers of neural network. Based on ID3 algorithm, which dynamically generates decision tree while minimizing entropy of information. CID3 algorithm generates feedforward neural network by use of either crisp or fuzzy measure of entropy.
Directory of Open Access Journals (Sweden)
J. B. Habarulema
2012-05-01
Full Text Available In this work, results obtained by investigating the application of different neural network backpropagation training algorithms are presented. This was done to assess the performance accuracy of each training algorithm in total electron content (TEC estimations using identical datasets in models development and verification processes. Investigated training algorithms are standard backpropagation (SBP, backpropagation with weight delay (BPWD, backpropagation with momentum (BPM term, backpropagation with chunkwise weight update (BPC and backpropagation for batch (BPB training. These five algorithms are inbuilt functions within the Stuttgart Neural Network Simulator (SNNS and the main objective was to find out the training algorithm that generates the minimum error between the TEC derived from Global Positioning System (GPS observations and the modelled TEC data. Another investigated algorithm is the MatLab based Levenberg-Marquardt backpropagation (L-MBP, which achieves convergence after the least number of iterations during training. In this paper, neural network (NN models were developed using hourly TEC data (for 8 years: 2000–2007 derived from GPS observations over a receiver station located at Sutherland (SUTH (32.38° S, 20.81° E, South Africa. Verification of the NN models for all algorithms considered was performed on both "seen" and "unseen" data. Hourly TEC values over SUTH for 2003 formed the "seen" dataset. The "unseen" dataset consisted of hourly TEC data for 2002 and 2008 over Cape Town (CPTN (33.95° S, 18.47° E and SUTH, respectively. The models' verification showed that all algorithms investigated provide comparable results statistically, but differ significantly in terms of time required to achieve convergence during input-output data training/learning. This paper therefore provides a guide to neural network users for choosing appropriate algorithms based on the availability of computation capabilities used for research.
Caco-2 cell permeability modelling: a neural network coupled genetic algorithm approach
Di Fenza, Armida; Alagona, Giuliano; Ghio, Caterina; Leonardi, Riccardo; Giolitti, Alessandro; Madami, Andrea
2007-04-01
The ability to cross the intestinal cell membrane is a fundamental prerequisite of a drug compound. However, the experimental measurement of such an important property is a costly and highly time consuming step of the drug development process because it is necessary to synthesize the compound first. Therefore, in silico modelling of intestinal absorption, which can be carried out at very early stages of drug design, is an appealing alternative procedure which is based mainly on multivariate statistical analysis such as partial least squares (PLS) and neural networks (NN). Our implementation of neural network models for the prediction of intestinal absorption is based on the correlation of Caco-2 cell apparent permeability ( P app) values, as a measure of intestinal absorption, to the structures of two different data sets of drug candidates. Several molecular descriptors of the compounds were calculated and the optimal subsets were selected using a genetic algorithm; therefore, the method was indicated as Genetic Algorithm-Neural Network (GA-NN). A methodology combining a genetic algorithm search with neural network analysis applied to the modelling of Caco-2 P app has never been presented before, although the two procedures have been already employed separately. Moreover, we provide new Caco-2 cell permeability measurements for more than two hundred compounds. Interestingly, the selected descriptors show to possess physico-chemical connotations which are in excellent accordance with the well known relevant molecular properties involved in the cellular membrane permeation phenomenon: hydrophilicity, hydrogen bonding propensity, hydrophobicity and molecular size. The predictive ability of the models, although rather good for a preliminary study, is somewhat affected by the poor precision of the experimental Caco-2 measurements. Finally, the generalization ability of one model was checked on an external test set not derived from the data sets used to build the models
Directory of Open Access Journals (Sweden)
J. B. Habarulema
2012-05-01
Full Text Available In this work, results obtained by investigating the application of different neural network backpropagation training algorithms are presented. This was done to assess the performance accuracy of each training algorithm in total electron content (TEC estimations using identical datasets in models development and verification processes. Investigated training algorithms are standard backpropagation (SBP, backpropagation with weight delay (BPWD, backpropagation with momentum (BPM term, backpropagation with chunkwise weight update (BPC and backpropagation for batch (BPB training. These five algorithms are inbuilt functions within the Stuttgart Neural Network Simulator (SNNS and the main objective was to find out the training algorithm that generates the minimum error between the TEC derived from Global Positioning System (GPS observations and the modelled TEC data. Another investigated algorithm is the MatLab based Levenberg-Marquardt backpropagation (L-MBP, which achieves convergence after the least number of iterations during training. In this paper, neural network (NN models were developed using hourly TEC data (for 8 years: 2000–2007 derived from GPS observations over a receiver station located at Sutherland (SUTH (32.38° S, 20.81° E, South Africa. Verification of the NN models for all algorithms considered was performed on both "seen" and "unseen" data. Hourly TEC values over SUTH for 2003 formed the "seen" dataset. The "unseen" dataset consisted of hourly TEC data for 2002 and 2008 over Cape Town (CPTN (33.95° S, 18.47° E and SUTH, respectively. The models' verification showed that all algorithms investigated provide comparable results statistically, but differ significantly in terms of time required to achieve convergence during input-output data training/learning. This paper therefore provides a guide to neural network users for choosing appropriate algorithms based on the availability of computation capabilities used for research.
Optical implementation of neural networks
Yu, Francis T. S.; Guo, Ruyan
2002-12-01
An adaptive optical neuro-computing (ONC) using inexpensive pocket size liquid crystal televisions (LCTVs) had been developed by the graduate students in the Electro-Optics Laboratory at The Pennsylvania State University. Although this neuro-computing has only 8×8=64 neurons, it can be easily extended to 16×20=320 neurons. The major advantages of this LCTV architecture as compared with other reported ONCs, are low cost and the flexibility to operate. To test the performance, several neural net models are used. These models are Interpattern Association, Hetero-association and unsupervised learning algorithms. The system design considerations and experimental demonstrations are also included.
Assimilation of neural network soil moisture in land surface models
Rodriguez-Fernandez, Nemesio; de Rosnay, Patricia; Albergel, Clement; Aires, Filipe; Prigent, Catherine; Kerr, Yann; Richaume, Philippe; Muñoz-Sabater, Joaquin; Drusch, Matthias
2017-04-01
In this study a set of land surface data assimilation (DA) experiments making use of satellite derived soil moisture (SM) are presented. These experiments have two objectives: (1) to test the information content of satellite remote sensing of soil moisture for numerical weather prediction (NWP) models, and (2) to test a simplified assimilation of these data through the use of a Neural Network (NN) retrieval. Advanced Scatterometer (ASCAT) and Soil Moisture and Ocean Salinity (SMOS) data were used. The SMOS soil moisture dataset was obtained specifically for this project training a NN using SMOS brightness temperatures as input and using as reference for the training European Centre for Medium-Range Weather Forecasts (ECMWF) H-TESSEL SM fields. In this way, the SMOS NN SM dataset has a similar climatology to that of the model and it does not present a global bias with respect to the model. The DA experiments are computed using a surface-only Land Data Assimilation System (so-LDAS) based on the HTESSEL land surface model. This system is very computationally efficient and allows to perform long surface assimilation experiments (one whole year, 2012). SMOS NN SM DA experiments are compared to ASCAT SM DA experiments. In both cases, experiments with and without 2 m air temperature and relative humidity DA are discussed using different observation errors for the ASCAT and SMOS datasets. Seasonal, geographical and soil-depth-related differences between the results of those experiments are presented and discussed. The different SM analysed fields are evaluated against a large number of in situ measurements of SM. On average, the SM analysis gives in general similar results to the model open loop with no assimilation even if significant differences can be seen for specific sites with in situ measurements. The sensitivity to observation errors to the SM dataset slightly differs depending on the networks of in situ measurements, however it is relatively low for the tests
Identifying Jets Using Artifical Neural Networks
Rosand, Benjamin; Caines, Helen; Checa, Sofia
2017-09-01
We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.
A neural network-based foF2 model for a single station in the polar cap
Athieno, R.; Jayachandran, P. T.; Themens, D. R.
2017-06-01
A neural network (NN) model has been developed for the critical frequency of the F2 layer (foF2) at Resolute (74.70°N, 265.10°E) using data obtained from the Space Physics Interactive Data Resource (no longer available) for the period between 1975 and 1995. This model is a first step toward addressing the discrepancies of the International Reference Ionosphere (IRI) foF2 or peak electron density (NmF2) at high latitudes recently presented by Themens et al. (2014). The performance of the NN model has been evaluated using foF2 data obtained from the Canadian Advanced Digital Ionosonde at Resolute (74.75°N, 265.00°E) for the period between 2009 and 2013, in comparison with the IRI predictions. The 2012 version and the International Union of Radio Science option of IRI have been used. The NN nighttime monthly median foF2 variation demonstrates good agreement with observations compared to the IRI. The NN model is able to reproduce the enhancements in foF2 during the equinoxes and also shows an improvement during disturbed days. Root mean square errors were computed between hourly and monthly median model predictions and observations, and on the whole, the NN model seems to perform better during low solar activity and the equinoxes. The NN model shows an improvement in performance on average by 26.638% for hourly foF2 and 32.636% for monthly median foF2, compared to 7.877% obtained for the same station by the most recent NN model that attempted to predict foF2 at a polar cap station (Oyeyemi and Poole, 2005).
Artificial neural networks as quantum associative memory
Hamilton, Kathleen; Schrock, Jonathan; Imam, Neena; Humble, Travis
We present results related to the recall accuracy and capacity of Hopfield networks implemented on commercially available quantum annealers. The use of Hopfield networks and artificial neural networks as content-addressable memories offer robust storage and retrieval of classical information, however, implementation of these models using currently available quantum annealers faces several challenges: the limits of precision when setting synaptic weights, the effects of spurious spin-glass states and minor embedding of densely connected graphs into fixed-connectivity hardware. We consider neural networks which are less than fully-connected, and also consider neural networks which contain multiple sparsely connected clusters. We discuss the effect of weak edge dilution on the accuracy of memory recall, and discuss how the multiple clique structure affects the storage capacity. Our work focuses on storage of patterns which can be embedded into physical hardware containing n States Department of Defense and used resources of the Computational Research and Development Programs as Oak Ridge National Laboratory under Contract No. DE-AC0500OR22725 with the U. S. Department of Energy.
Hybrid discrete-time neural networks.
Cao, Hongjun; Ibarz, Borja
2010-11-13
Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.
Computationally Efficient Neural Network Intrusion Security Awareness
Energy Technology Data Exchange (ETDEWEB)
Todd Vollmer; Milos Manic
2009-08-01
An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.
Matrix representation of a Neural Network
DEFF Research Database (Denmark)
Christensen, Bjørn Klint
Processing, by David Rummelhart (Rummelhart 1986) for an easy-to-read introduction. What the paper does explain is how a matrix representation of a neural net allows for a very simple implementation. The matrix representation is introduced in (Rummelhart 1986, chapter 9), but only for a two-layer linear...... network and the feedforward algorithm. This paper develops the idea further to three-layer non-linear networks and the backpropagation algorithm. Figure 1 shows the layout of a three-layer network. There are I input nodes, J hidden nodes and K output nodes all indexed from 0. Bias-node for the hidden...
Reconstruction of periodic signals using neural networks
Directory of Open Access Journals (Sweden)
José Danilo Rairán Antolines
2014-01-01
Full Text Available In this paper, we reconstruct a periodic signal by using two neural networks. The first network is trained to approximate the period of a signal, and the second network estimates the corresponding coefficients of the signal's Fourier expansion. The reconstruction strategy consists in minimizing the mean-square error via backpro-pagation algorithms over a single neuron with a sine transfer function. Additionally, this paper presents mathematical proof about the quality of the approximation as well as a first modification of the algorithm, which requires less data to reach the same estimation; thus making the algorithm suitable for real-time implementations.
Neural networks: Application to medical imaging
Clarke, Laurence P.
1994-01-01
The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.
Fuzzy logic and neural network technologies
Villarreal, James A.; Lea, Robert N.; Savely, Robert T.
1992-01-01
Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.
A Topological Perspective of Neural Network Structure
Sizemore, Ann; Giusti, Chad; Cieslak, Matthew; Grafton, Scott; Bassett, Danielle
The wiring patterns of white matter tracts between brain regions inform functional capabilities of the neural network. Indeed, densely connected and cyclically arranged cognitive systems may communicate and thus perform distinctly. However, previously employed graph theoretical statistics are local in nature and thus insensitive to such global structure. Here we present an investigation of the structural neural network in eight healthy individuals using persistent homology. An extension of homology to weighted networks, persistent homology records both circuits and cliques (all-to-all connected subgraphs) through a repetitive thresholding process, thus perceiving structural motifs. We report structural features found across patients and discuss brain regions responsible for these patterns, finally considering the implications of such motifs in relation to cognitive function.
Tumor Diagnosis Using Backpropagation Neural Network Method
Ma, Lixing; Looney, Carl; Sukuta, Sydney; Bruch, Reinhard; Afanasyeva, Natalia
1998-05-01
For characterization of skin cancer, an artificial neural network (ANN) method has been developed to diagnose normal tissue, benign tumor and melanoma. The pattern recognition is based on a three-layer neural network fuzzy learning system. In this study, the input neuron data set is the Fourier Transform infrared (FT-IR)spectrum obtained by a new Fiberoptic Evanescent Wave Fourier Transform Infrared (FEW-FTIR) spectroscopy method in the range of 1480 to 1850 cm-1. Ten input features are extracted from the absorbency values in this region. A single hidden layer of neural nodes with sigmoids activation functions clusters the feature space into small subclasses and the output nodes are separated in different nonconvex classes to permit nonlinear discrimination of disease states. The output is classified as three classes: normal tissue, benign tumor and melanoma. The results obtained from the neural network pattern recognition are shown to be consistent with traditional medical diagnosis. Input features have also been extracted from the absorbency spectra using chemical factor analysis. These abstract features or factors are also used in the classification.
Bernazzani, Luca; Duce, Celia; Micheli, Alessio; Mollica, Vincenzo; Sperduti, Alessandro; Starita, Antonina; Tiné, Maria Rosaria
2006-01-01
In this paper, we report on the potential of a recently developed neural network for structures applied to the prediction of physical chemical properties of compounds. The proposed recursive neural network (RecNN) model is able to directly take as input a structured representation of the molecule and to model a direct and adaptive relationship between the molecular structure and target property. Therefore, it combines in a learning system the flexibility and general advantages of a neural network model with the representational power of a structured domain. As a result, a completely new approach to quantitative structure-activity relationship/quantitative structure-property relationship (QSPR/QSAR) analysis is obtained. An original representation of the molecular structures has been developed accounting for both the occurrence of specific atoms/groups and the topological relationships among them. Gibbs free energy of solvation in water, Delta(solv)G degrees , has been chosen as a benchmark for the model. The different approaches proposed in the literature for the prediction of this property have been reconsidered from a general perspective. The advantages of RecNN as a suitable tool for the automatization of fundamental parts of the QSPR/QSAR analysis have been highlighted. The RecNN model has been applied to the analysis of the Delta(solv)G degrees in water of 138 monofunctional acyclic organic compounds and tested on an external data set of 33 compounds. As a result of the statistical analysis, we obtained, for the predictive accuracy estimated on the test set, correlation coefficient R = 0.9985, standard deviation S = 0.68 kJ mol(-1), and mean absolute error MAE = 0.46 kJ mol(-1). The inherent ability of RecNN to abstract chemical knowledge through the adaptive learning process has been investigated by principal components analysis of the internal representations computed by the network. It has been found that the model recognizes the chemical compounds on the
Automated diagnosis of rolling bearings using MRA and neural networks
Castejón, C.; Lara, O.; García-Prada, J. C.
2010-01-01
Any industry needs an efficient predictive plan in order to optimize the management of resources and improve the economy of the plant by reducing unnecessary costs and increasing the level of safety. A great percentage of breakdowns in productive processes are caused by bearings. They begin to deteriorate from early stages of their functional life, also called the incipient level. This manuscript develops an automated diagnosis of rolling bearings based on the analysis and classification of signature vibrations. The novelty of this work is the application of the methodology proposed for data collected from a quasi-real industrial machine, where rolling bearings support the radial and axial loads the bearings are designed for. Multiresolution analysis (MRA) is used in a first stage in order to extract the most interesting features from signals. Features will be used in a second stage as inputs of a supervised neural network (NN) for classification purposes. Experimental results carried out in a real system show the soundness of the method which detects four bearing conditions (normal, inner race fault, outer race fault and ball fault) in a very incipient stage.
Phase Diagram of Spiking Neural Networks
Directory of Open Access Journals (Sweden)
Hamed eSeyed-Allaei
2015-03-01
Full Text Available In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probablilty of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations. but here, I take a different perspective, inspired by evolution. I simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable by nature. Networks which are configured according to the common values, have the best dynamic range in response to an impulse and their dynamic range is more robust in respect to synaptic weights. In fact, evolution has favored networks of best dynamic range. I present a phase diagram that shows the dynamic ranges of different networks of different parameteres. This phase diagram gives an insight into the space of parameters -- excitatory to inhibitory ratio, sparseness of connections and synaptic weights. It may serve as a guideline to decide about the values of parameters in a simulation of spiking neural network.
Andreon, S.; Gargiulo, G.; Longo, G.; Tagliaferri, R.; Capuano, N.
2000-12-01
Astronomical wide-field imaging performed with new large-format CCD detectors poses data reduction problems of unprecedented scale, which are difficult to deal with using traditional interactive tools. We present here NExt (Neural Extractor), a new neural network (NN) based package capable of detecting objects and performing both deblending and star/galaxy classification in an automatic way. Traditionally, in astronomical images, objects are first distinguished from the noisy background by searching for sets of connected pixels having brightnesses above a given threshold; they are then classified as stars or as galaxies through diagnostic diagrams having variables chosen according to the astronomer's taste and experience. In the extraction step, assuming that images are well sampled, NExt requires only the simplest a priori definition of `what an object is' (i.e. it keeps all structures composed of more than one pixel) and performs the detection via an unsupervised NN, approaching detection as a clustering problem that has been thoroughly studied in the artificial intelligence literature. The first part of the NExt procedure consists of an optimal compression of the redundant information contained in the pixels via a mapping from pixel intensities to a subspace individualized through principal component analysis. At magnitudes fainter than the completeness limit, stars are usually almost indistinguishable from galaxies, and therefore the parameters characterizing the two classes do not lie in disconnected subspaces, thus preventing the use of unsupervised methods. We therefore adopted a supervised NN (i.e. a NN that first finds the rules to classify objects from examples and then applies them to the whole data set). In practice, each object is classified depending on its membership of the regions mapping the input feature space in the training set. In order to obtain an objective and reliable classification, instead of using an arbitrarily defined set of features
Fuzzy logic and neural networks basic concepts & application
Alavala, Chennakesava R
2008-01-01
About the Book: The primary purpose of this book is to provide the student with a comprehensive knowledge of basic concepts of fuzzy logic and neural networks. The hybridization of fuzzy logic and neural networks is also included. No previous knowledge of fuzzy logic and neural networks is required. Fuzzy logic and neural networks have been discussed in detail through illustrative examples, methods and generic applications. Extensive and carefully selected references is an invaluable resource for further study of fuzzy logic and neural networks. Each chapter is followed by a question bank
Deep Gate Recurrent Neural Network
2016-11-22
distribution, e.g. a particular book. In this experiment, we use a collection of writings by Nietzsche to train our network. In total, this corpus contains...sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics : Human Language Technologies, pages 142–150...Portland, Oregon, USA, June 2011. Association for Com- putational Linguistics . URL http://www.aclweb.org/anthology/P11-1015. Maja J Matari, Complex
A Projection Neural Network for Constrained Quadratic Minimax Optimization.
Liu, Qingshan; Wang, Jun
2015-11-01
This paper presents a projection neural network described by a dynamic system for solving constrained quadratic minimax programming problems. Sufficient conditions based on a linear matrix inequality are provided for global convergence of the proposed neural network. Compared with some of the existing neural networks for quadratic minimax optimization, the proposed neural network in this paper is capable of solving more general constrained quadratic minimax optimization problems, and the designed neural network does not include any parameter. Moreover, the neural network has lower model complexities, the number of state variables of which is equal to that of the dimension of the optimization problems. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.
Directory of Open Access Journals (Sweden)
M. Sreeshakthy
2016-01-01
Full Text Available Department of Computer Science and Engineering,Anna University Regional Centre, Coimbatore, Indiam.sribtechit@gmail.comJ. PreethiDepartment of Computer Science and EngineeringAnna University Regional Centre, Coimbatore, Indiapreethi17j@yahoo.comEmotions are very important in human decision handling, interaction and cognitive process. In this paper describes that recognize the human emotions from DEAP EEG dataset with different kind of methods. Audio – video based stimuli is used to extract the emotions. EEG signal is divided into different bands using discrete wavelet transformation with db8 wavelet function for further process. Statistical and energy based features are extracted from the bands, based on the features emotions are classified with feed forward neural network with weight optimized algorithm like PSO. Before that the particular band has to be selected based on the training performance of neural networks and then the emotions are classified. In this experimental result describes that the gamma and alpha bands are provides the accurate classification result with average classification rate of 90.3% of using NNRBF, 90.325% of using PNN, 96.3% of using PSO trained NN, 98.1 of using Cuckoo trained NN. At last the emotions are classified into two different groups like valence and arousal. Based on that identifies the person normal and abnormal behavioral using classified emotion.
Computer-Aided Diagnosis of Parkinson's Disease Using Enhanced Probabilistic Neural Network.
Hirschauer, Thomas J; Adeli, Hojjat; Buford, John A
2015-11-01
Early and accurate diagnosis of Parkinson's disease (PD) remains challenging. Neuropathological studies using brain bank specimens have estimated that a large percentages of clinical diagnoses of PD may be incorrect especially in the early stages. In this paper, a comprehensive computer model is presented for the diagnosis of PD based on motor, non-motor, and neuroimaging features using the recently-developed enhanced probabilistic neural network (EPNN). The model is tested for differentiating PD patients from those with scans without evidence of dopaminergic deficit (SWEDDs) using the Parkinson's Progression Markers Initiative (PPMI) database, an observational, multi-center study designed to identify PD biomarkers for diagnosis and disease progression. The results are compared to four other commonly-used machine learning algorithms: the probabilistic neural network (PNN), support vector machine (SVM), k-nearest neighbors (k-NN) algorithm, and classification tree (CT). The EPNN had the highest classification accuracy at 92.5% followed by the PNN (91.6%), k-NN (90.8%) and CT (90.2%). The EPNN exhibited an accuracy of 98.6% when classifying healthy control (HC) versus PD, higher than any previous studies.
Directory of Open Access Journals (Sweden)
J. Uwamahoro
2012-06-01
Full Text Available Estimating the geoeffectiveness of solar events is of significant importance for space weather modelling and prediction. This paper describes the development of a neural network-based model for estimating the probability occurrence of geomagnetic storms following halo coronal mass ejection (CME and related interplanetary (IP events. This model incorporates both solar and IP variable inputs that characterize geoeffective halo CMEs. Solar inputs include numeric values of the halo CME angular width (AW, the CME speed (Vcme, and the comprehensive flare index (cfi, which represents the flaring activity associated with halo CMEs. IP parameters used as inputs are the numeric peak values of the solar wind speed (Vsw and the southward Z-component of the interplanetary magnetic field (IMF or Bs. IP inputs were considered within a 5-day time window after a halo CME eruption. The neural network (NN model training and testing data sets were constructed based on 1202 halo CMEs (both full and partial halo and their properties observed between 1997 and 2006. The performance of the developed NN model was tested using a validation data set (not part of the training data set covering the years 2000 and 2005. Under the condition of halo CME occurrence, this model could capture 100% of the subsequent intense geomagnetic storms (Dst ≤ −100 nT. For moderate storms (−100 < Dst ≤ −50, the model is successful up to 75%. This model's estimate of the storm occurrence rate from halo CMEs is estimated at a probability of 86%.
Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong
2017-01-01
A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model.
Sears, Edie Seldon
2000-12-01
A remote sensing study using reflectance and fluorescence spectra of hydroponically grown Lactuca sativa (lettuce) canopies was conducted. An optical receiver was designed and constructed to interface with a commercial fiber optic spectrometer for data acquisition. Optical parameters were varied to determine effects of field of view and distance to target on vegetation stress assessment over the test plant growth cycle. Feedforward backpropagation neural networks (NN) were implemented to predict the presence of canopy stress. Effects of spatial and spectral resolutions on stress predictions of the neural network were also examined. Visual inspection and fresh mass values failed to differentiate among controls, plants cultivated with 25% of the recommended concentration of phosphorous (P), and those cultivated with 25% nitrogen (N) based on fresh mass and visual inspection. The NN's were trained on input vectors created using reflectance and test day, fluorescence and test day, and reflectance, fluorescence, and test day. Four networks were created representing four levels of spectral resolution: 100-nm NN, 10-nm NN, 1-nm NN, and 0.1-nm NN. The 10-nm resolution was found to be sufficient for classifying extreme nitrogen deficiency in freestanding hydroponic lettuce. As a result of leaf angle and canopy structure broadband scattering intensity in the 700-nm to 1000-nm range was found to be the most useful portion of the spectrum in this study. More subtle effects of "greenness" and fluorescence emission were believed to be obscured by canopy structure and leaf orientation. As field of view was not as found to be as significant as originally believed, systems implementing higher repetitions over more uniformly oriented, i.e. smaller, flatter, target areas would provide for more discernible neural network input vectors. It is believed that this technique holds considerable promise for early detection of extreme nitrogen deficiency. Further research is recommended using
Entry Abort Determination Using Non-Adaptive Neural Networks for Mars Precision Landers
Graybeal, Sarah R.; Kranzusch, Kara M.
2005-01-01
The 2009 Mars Science Laboratory (MSL) will attempt the first precision landing on Mars using a modified version of the Apollo Earth entry guidance program. The guidance routine, Entry Terminal Point Controller (ETPC), commands the deployment of a supersonic parachute after converging the range to the landing target. For very dispersed cases, ETPC may not converge the range to the target and safely command parachute deployment within Mach number and dynamic pressure constraints. A full-lift up abort can save 85% of these failed trajectories while abandoning the precision landing objective. Though current MSL requirements do not call for an abort capability, an autonomous abort capability may be desired, for this mission or future Mars precision landers, to make the vehicle more robust. The application of artificial neural networks (NNs) as an abort determination technique was evaluated by personnel at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC). In order to implement an abort, a failed trajectory needs to be recognized in real time. Abort determination is dependent upon several trajectory parameters whose relationships to vehicle survival are not well understood, and yet the lander must be trained to recognize unsafe situations. Artificial neural networks (NNs) provide a way to model these parameters and can provide MSL with the artificial intelligence necessary to independently declare an abort. Using the 2009 Mars Science Laboratory (MSL) mission as a case study, a non-adaptive NN was designed, trained and tested using Monte Carlo simulations of MSL descent and incorporated into ETPC. Neural network theory, the development history of the MSL NN, and initial testing with severe dust storm entry trajectory cases are discussed in Reference 1 and will not be repeated here. That analysis demonstrated that NNs are capable of recognizing failed descent trajectories and can significantly increase the survivability of MSL for very
Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS
Directory of Open Access Journals (Sweden)
Christopher Bergmeir
2012-01-01
Full Text Available Neural networks are important standard machine learning procedures for classification and regression. We describe the R package RSNNS that provides a convenient interface to the popular Stuttgart Neural Network Simulator SNNS. The main features are (a encapsulation of the relevant SNNS parts in a C++ class, for sequential and parallel usage of different networks, (b accessibility of all of the SNNSalgorithmic functionality from R using a low-level interface, and (c a high-level interface for convenient, R-style usage of many standard neural network procedures. The package also includes functions for visualization and analysis of the models and the training procedures, as well as functions for data input/output from/to the original SNNSfile formats.
Intrinsic Bond Energies from a Bonds-in-Molecules Neural Network.
Yao, Kun; Herr, John E; Brown, Seth N; Parkhill, John
2017-06-15
Neural networks are being used to make new types of empirical chemical models as inexpensive as force fields, but with accuracy similar to the ab initio methods used to build them. In this work, we present a neural network that predicts the energies of molecules as a sum of intrinsic bond energies. The network learns the total energies of the popular GDB9 database to a competitive MAE of 0.94 kcal/mol on molecules outside of its training set, is naturally linearly scaling, and applicable to molecules consisting of thousands of bonds. More importantly, it gives chemical insight into the relative strengths of bonds as a function of their molecular environment, despite only being trained on total energy information. We show that the network makes predictions of relative bond strengths in good agreement with measured trends and human predictions. A Bonds-in-Molecules Neural Network (BIM-NN) learns heuristic relative bond strengths like expert synthetic chemists, and compares well with ab initio bond order measures such as NBO analysis.
Directory of Open Access Journals (Sweden)
Arash Mirabzadeh
2013-01-01
Full Text Available Background: Antipsychotic monotherapy or polypharmacy (concurrent use of two or more antipsychotics are used for treating patients with psychiatric disorders (PDs. Usually, antipsychotic monotherapy has a lower cost than polypharmacy. This study aimed to predict the cost of antipsychotic medications (AM of psychiatric patients in Iran. Materials and Methods: For this purpose, 790 patients with PDs who were discharged between June and September 2010 were selected from Razi Psychiatric Hospital, Tehran, Iran. For cost prediction of AM of PD, neural network (NN and multiple linear regression (MLR models were used. Analysis of data was performed with R 2.15.1 software. Results: Mean ± standard deviation (SD of the duration of hospitalization (days in patients who were on monotherapy and polypharmacy was 31.19 ± 15.55 and 36.69 ± 15.93, respectively (P < 0.001. Mean and median costs of medication for monotherapy (n = 507 were $8.25 and $6.23 and for polypharmacy (n =192 were $13.30 and $9.48, respectively (P = 0.001. The important variables for cost prediction of AM were duration of hospitalization, type of treatment, and type of psychiatric ward in the MLR model, and duration of hospitalization, type of diagnosed disorder, type of treatment, age, Chlorpromazine dosage, and duration of disorder in the NN model. Conclusion: Our findings showed that the artificial NN (ANN model can be used as a flexible model for cost prediction of AM.
Directory of Open Access Journals (Sweden)
Driss Cherqaoui
2004-01-01
Full Text Available Abstract: Human Immunodeficiency Virus type 1 (HIV-1 reverse transcriptase is an important target for chemotherapeutic agents against the AIDS disease. 4,5,6,7-Tetrahydro-5-methylimidazo[4,5,1-jk][1,4]benzodiazepin-2(1H-ones (TIBO derivatives are potent non-nucleoside reverse transcriptase inhibitors (NNRTIs. In the present work, quantitative structure-activity relationship (QSAR analysis for a set of 82 TIBO derivatives has been investigated by means of a three-layered neural network (NN. It has been shown that NN can be a potential tool in the investigation of QSAR analysis compared with the models given in the literature. NN gave good statistical results both in fitting and prediction processes (0.861 Ã¢Â‰Â¤ rÃ‚Â² Ã¢Â‰Â¤ 0.928, 0.839 Ã¢Â‰Â¤qÃ‚Â² Ã¢Â‰Â¤ 0.845. The relevant factors controlling the anti-HIV-1 activity of TIBO derivatives have been identified. The results are along the same lines as those of our previous studies on HEPT derivatives and indicate the importance of the hydrophobic parameter in modeling the QSAR for TIBO derivatives.
Directory of Open Access Journals (Sweden)
Amir LAKZIAN
2010-09-01
Full Text Available This paper presents the comparison of three different approaches to estimate soil water content at defined values of soil water potential based on selected parameters of soil solid phase. Forty different sampling locations in northeast of Iran were selected and undisturbed samples were taken to measure the water content at field capacity (FC, -33 kPa, and permanent wilting point (PWP, -1500 kPa. At each location solid particle of each sample including the percentage of sand, silt and clay were measured. Organic carbon percentage and soil texture were also determined for each soil sample at each location. Three different techniques including pattern recognition approach (k nearest neighbour, k-NN, Artificial Neural Network (ANN and pedotransfer functions (PTF were used to predict the soil water at each sampling location. Mean square deviation (MSD and its components, index of agreement (d, root mean square difference (RMSD and normalized RMSD (RMSDr were used to evaluate the performance of all the three approaches. Our results showed that k-NN and PTF performed better than ANN in prediction of water content at both FC and PWP matric potential. Various statistics criteria for simulation performance also indicated that between kNN and PTF, the former, predicted water content at PWP more accurate than PTF, however both approach showed a similar accuracy to predict water content at FC.
Prediction of Potential Hit Song and Musical Genre Using Artificial Neural Networks
Monterola, Christopher; Abundo, Cheryl; Tugaff, Jeric; Venturina, Lorcel Ericka
Accurately quantifying the goodness of music based on the seemingly subjective taste of the public is a multi-million industry. Recording companies can make sound decisions on which songs or artists to prioritize if accurate forecasting is achieved. We extract 56 single-valued musical features (e.g. pitch and tempo) from 380 Original Pilipino Music (OPM) songs (190 are hit songs) released from 2004 to 2006. Based on an effect size criterion which measures a variable's discriminating power, the 20 highest ranked features are fed to a classifier tasked to predict hit songs. We show that regardless of musical genre, a trained feed-forward neural network (NN) can predict potential hit songs with an average accuracy of ΦNN = 81%. The accuracy is about +20% higher than those of standard classifiers such as linear discriminant analysis (LDA, ΦLDA = 61%) and classification and regression trees (CART, ΦCART = 57%). Both LDA and CART are above the proportional chance criterion (PCC, ΦPCC = 50%) but are slightly below the suggested acceptable classifier requirement of 1.25*ΦPCC = 63%. Utilizing a similar procedure, we demonstrate that different genres (ballad, alternative rock or rock) of OPM songs can be automatically classified with near perfect accuracy using LDA or NN but only around 77% using CART.
Investment Valuation Analysis with Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Hüseyin İNCE
2017-07-01
Full Text Available This paper shows that discounted cash flow and net present value, which are traditional investment valuation models, can be combined with artificial neural network model forecasting. The main inputs for the valuation models, such as revenue, costs, capital expenditure, and their growth rates, are heavily related to sector dynamics and macroeconomics. The growth rates of those inputs are related to inflation and exchange rates. Therefore, predicting inflation and exchange rates is a critical issue for the valuation output. In this paper, the Turkish economy’s inflation rate and the exchange rate of USD/TRY are forecast by artificial neural networks and implemented to the discounted cash flow model. Finally, the results are benchmarked with conventional practices.
Evaluating neural networks and artificial intelligence systems
Alberts, David S.
1994-02-01
Systems have no intrinsic value in and of themselves, but rather derive value from the contributions they make to the missions, decisions, and tasks they are intended to support. The estimation of the cost-effectiveness of systems is a prerequisite for rational planning, budgeting, and investment documents. Neural network and expert system applications, although similar in their incorporation of a significant amount of decision-making capability, differ from each other in ways that affect the manner in which they can be evaluated. Both these types of systems are, by definition, evolutionary systems, which also impacts their evaluation. This paper discusses key aspects of neural network and expert system applications and their impact on the evaluation process. A practical approach or methodology for evaluating a certain class of expert systems that are particularly difficult to measure using traditional evaluation approaches is presented.
Neural Network Program Package for Prosody Modeling
Directory of Open Access Journals (Sweden)
J. Santarius
2004-04-01
Full Text Available This contribution describes the programme for one part of theautomatic Text-to-Speech (TTS synthesis. Some experiments (for example[14] documented the considerable improvement of the naturalness ofsynthetic speech, but this approach requires completing the inputfeature values by hand. This completing takes a lot of time for bigfiles. We need to improve the prosody by other approaches which useonly automatically classified features (input parameters. Theartificial neural network (ANN approach is used for the modeling ofprosody parameters. The program package contains all modules necessaryfor the text and speech signal pre-processing, neural network training,sensitivity analysis, result processing and a module for the creationof the input data protocol for Czech speech synthesizer ARTIC [1].
Supervised Sequence Labelling with Recurrent Neural Networks
Graves, Alex
2012-01-01
Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional...
Hierarchical Neural Network Structures for Phoneme Recognition
Vasquez, Daniel; Minker, Wolfgang
2013-01-01
In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach.
Fault Diagnosis of Power System Based on Improved Genetic Optimized BP-NN
Directory of Open Access Journals (Sweden)
Yuan Pu
2015-01-01
Full Text Available BP neural network (Back-Propagation Neural Network, BP-NN is one of the most widely neural network models and is applied to fault diagnosis of power system currently. BP neural network has good self-learning and adaptive ability and generalization ability, but the operation process is easy to fall into local minima. Genetic algorithm has global optimization features, and crossover is the most important operation of the Genetic Algorithm. In this paper, we can modify the crossover of traditional Genetic Algorithm, using improved genetic algorithm optimized BP neural network training initial weights and thresholds, to avoid the problem of BP neural network fall into local minima. The results of analysis by an example, the method can efficiently diagnose network fault location, and improve fault-tolerance and grid fault diagnosis effect.
Predicting the random drift of MEMS gyroscope based on K-means clustering and OLS RBF Neural Network
Wang, Zhen-yu; Zhang, Li-jie
2017-10-01
Measure error of the sensor can be effectively compensated with prediction. Aiming at large random drift error of MEMS(Micro Electro Mechanical System))gyroscope, an improved learning algorithm of Radial Basis Function(RBF) Neural Network(NN) based on K-means clustering and Orthogonal Least-Squares (OLS) is proposed in this paper. The algorithm selects the typical samples as the initial cluster centers of RBF NN firstly, candidates centers with K-means algorithm secondly, and optimizes the candidate centers with OLS algorithm thirdly, which makes the network structure simpler and makes the prediction performance better. Experimental results show that the proposed K-means clustering OLS learning algorithm can predict the random drift of MEMS gyroscope effectively, the prediction error of which is 9.8019e-007°/s and the prediction time of which is 2.4169e-006s
Neural Network Solves "Traveling-Salesman" Problem
Thakoor, Anilkumar P.; Moopenn, Alexander W.
1990-01-01
Experimental electronic neural network solves "traveling-salesman" problem. Plans round trip of minimum distance among N cities, visiting every city once and only once (without backtracking). This problem is paradigm of many problems of global optimization (e.g., routing or allocation of resources) occuring in industry, business, and government. Applied to large number of cities (or resources), circuits of this kind expected to solve problem faster and more cheaply.
Learning in Neural Networks: VLSI Implementation Strategies
Duong, Tuan Anh
1995-01-01
Fully-parallel hardware neural network implementations may be applied to high-speed recognition, classification, and mapping tasks in areas such as vision, or can be used as low-cost self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning is required not only to satisfy application requirements, but also to overcome hardware-imposed limitations such as reduced dynamic range of connections.
Convolutional Neural Networks for Font Classification
Tensmeyer, Chris; Saunders, Daniel; Martinez, Tony
2017-01-01
Classifying pages or text lines into font categories aids transcription because single font Optical Character Recognition (OCR) is generally more accurate than omni-font OCR. We present a simple framework based on Convolutional Neural Networks (CNNs), where a CNN is trained to classify small patches of text into predefined font classes. To classify page or line images, we average the CNN predictions over densely extracted patches. We show that this method achieves state-of-the-art performance...
Deep Learning in Neural Networks: An Overview
Schmidhuber, Juergen
2014-01-01
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium. Shallow and deep learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpr...
A Dynamic Neural Network Approach to CBM
2011-03-15
Therefore post-processing is needed to extract the time difference between corresponding events from which to calculate the crankshaft rotational speed...potentially already available from existing sensors (such as a crankshaft timing device) and a Neural Network processor to carry out the calculation . As...files are designated with the “_genmod” suffix. These files were the sources for the training and testing sets and made the extraction process easy
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, Lars J.; Keller, Paul E.
1997-01-01
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.
Identifying Tracks Duplicates via Neural Network
Sunjerga, Antonio; CERN. Geneva. EP Department
2017-01-01
The goal of the project is to study feasibility of state of the art machine learning techniques in track reconstruction. Machine learning techniques provide promising ways to speed up the pattern recognition of tracks by adding more intelligence in the algorithms. Implementation of neural network to process of track duplicates identifying will be discussed. Different approaches are shown and results are compared to method that is currently in use.
Multilingual Text Detection with Nonlinear Neural Network
Directory of Open Access Journals (Sweden)
Lin Li
2015-01-01
Full Text Available Multilingual text detection in natural scenes is still a challenging task in computer vision. In this paper, we apply an unsupervised learning algorithm to learn language-independent stroke feature and combine unsupervised stroke feature learning and automatically multilayer feature extraction to improve the representational power of text feature. We also develop a novel nonlinear network based on traditional Convolutional Neural Network that is able to detect multilingual text regions in the images. The proposed method is evaluated on standard benchmarks and multilingual dataset and demonstrates improvement over the previous work.
Guarneri, Paolo; Rocca, Gianpiero; Gobbi, Massimiliano
2008-09-01
This paper deals with the simulation of the tire/suspension dynamics by using recurrent neural networks (RNNs). RNNs are derived from the multilayer feedforward neural networks, by adding feedback connections between output and input layers. The optimal network architecture derives from a parametric analysis based on the optimal tradeoff between network accuracy and size. The neural network can be trained with experimental data obtained in the laboratory from simulated road profiles (cleats). The results obtained from the neural network demonstrate good agreement with the experimental results over a wide range of operation conditions. The NN model can be effectively applied as a part of vehicle system model to accurately predict elastic bushings and tire dynamics behavior. Although the neural network model, as a black-box model, does not provide a good insight of the physical behavior of the tire/suspension system, it is a useful tool for assessing vehicle ride and noise, vibration, harshness (NVH) performance due to its good computational efficiency and accuracy.
Forecasting Energy Commodity Prices Using Neural Networks
Directory of Open Access Journals (Sweden)
Massimo Panella
2012-01-01
Full Text Available A new machine learning approach for price modeling is proposed. The use of neural networks as an advanced signal processing tool may be successfully used to model and forecast energy commodity prices, such as crude oil, coal, natural gas, and electricity prices. Energy commodities have shown explosive growth in the last decade. They have become a new asset class used also for investment purposes. This creates a huge demand for better modeling as what occurred in the stock markets in the 1970s. Their price behavior presents unique features causing complex dynamics whose prediction is regarded as a challenging task. The use of a Mixture of Gaussian neural network may provide significant improvements with respect to other well-known models. We propose a computationally efficient learning of this neural network using the maximum likelihood estimation approach to calibrate the parameters. The optimal model is identified using a hierarchical constructive procedure that progressively increases the model complexity. Extensive computer simulations validate the proposed approach and provide an accurate description of commodities prices dynamics.
Flood estimation: a neural network approach
Energy Technology Data Exchange (ETDEWEB)
Swain, P.C.; Seshachalam, C.; Umamahesh, N.V. [Regional Engineering Coll., Warangal (India). Water and Environment Div.
2000-07-01
The artificial neural network (ANN) approach described in this study aims at predicting the flood flow into a reservoir. This differs from the traditional methods of flow prediction in the sense that it belongs to a class of data driven approaches, where as the traditional methods are model driven. Physical processes influencing the occurrences of streamflow in a river are highly complex, and are very difficult to be modelled by available statistical or deterministic models. ANNs provide model free solutions and hence can be expected to be appropriate in these conditions. Non-linearity, adaptivity, evidential response and fault tolerance are additional properties and capabilities of the neural networks. This paper highlights the applicability of neural networks for predicting daily flood flow taking the Hirakud reservoir on river Mahanadi in Orissa, India as the case study. The correlation between the observed and predicted flows and the relative error are considered to measure the performance of the model. The correlation between the observed and the modelled flows are computed to be 0.9467 in testing phase of the model. (orig.)
Identifying Broadband Rotational Spectra with Neural Networks
Zaleski, Daniel P.; Prozument, Kirill
2017-06-01
A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.
Artificial Neural Network Model for Predicting Compressive
Directory of Open Access Journals (Sweden)
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Artificial neural network applications in ionospheric studies
Directory of Open Access Journals (Sweden)
L. R. Cander
1998-06-01
Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.
Improved Extension Neural Network and Its Applications
Directory of Open Access Journals (Sweden)
Yu Zhou
2014-01-01
Full Text Available Extension neural network (ENN is a new neural network that is a combination of extension theory and artificial neural network (ANN. The learning algorithm of ENN is based on supervised learning algorithm. One of important issues in the field of classification and recognition of ENN is how to achieve the best possible classifier with a small number of labeled training data. Training data selection is an effective approach to solve this issue. In this work, in order to improve the supervised learning performance and expand the engineering application range of ENN, we use a novel data selection method based on shadowed sets to refine the training data set of ENN. Firstly, we use clustering algorithm to label the data and induce shadowed sets. Then, in the framework of shadowed sets, the samples located around each cluster centers (core data and the borders between clusters (boundary data are selected as training data. Lastly, we use selected data to train ENN. Compared with traditional ENN, the proposed improved ENN (IENN has a better performance. Moreover, IENN is independent of the supervised learning algorithms and initial labeled data. Experimental results verify the effectiveness and applicability of our proposed work.
CALIBRATION OF ONLINE ANALYZERS USING NEURAL NETWORKS
Energy Technology Data Exchange (ETDEWEB)
Rajive Ganguli; Daniel E. Walsh; Shaohai Yu
2003-12-05
Neural networks were used to calibrate an online ash analyzer at the Usibelli Coal Mine, Healy, Alaska, by relating the Americium and Cesium counts to the ash content. A total of 104 samples were collected from the mine, with 47 being from screened coal, and the rest being from unscreened coal. Each sample corresponded to 20 seconds of coal on the running conveyor belt. Neural network modeling used the quick stop training procedure. Therefore, the samples were split into training, calibration and prediction subsets. Special techniques, using genetic algorithms, were developed to representatively split the sample into the three subsets. Two separate approaches were tried. In one approach, the screened and unscreened coal was modeled separately. In another, a single model was developed for the entire dataset. No advantage was seen from modeling the two subsets separately. The neural network method performed very well on average but not individually, i.e. though each prediction was unreliable, the average of a few predictions was close to the true average. Thus, the method demonstrated that the analyzers were accurate at 2-3 minutes intervals (average of 6-9 samples), but not at 20 seconds (each prediction).
UAV Trajectory Modeling Using Neural Networks
Xue, Min
2017-01-01
Massive small unmanned aerial vehicles are envisioned to operate in the near future. While there are lots of research problems need to be addressed before dense operations can happen, trajectory modeling remains as one of the keys to understand and develop policies, regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The fidelity requirement of a small unmanned vehicle trajectory model is high because these vehicles are sensitive to winds due to their small size and low operational altitude. Both vehicle control systems and dynamic models are needed for trajectory modeling, which makes the modeling a great challenge, especially considering the fact that manufactures are not willing to share their control systems. This work proposed to use a neural network approach for modelling small unmanned vehicle's trajectory without knowing its control system and bypassing exhaustive efforts for aerodynamic parameter identification. As a proof of concept, instead of collecting data from flight tests, this work used the trajectory data generated by a mathematical vehicle model for training and testing the neural network. The results showed great promise because the trained neural network can predict 4D trajectories accurately, and prediction errors were less than 2:0 meters in both temporal and spatial dimensions.
A neural network model for texture discrimination.
Xing, J; Gerstein, G L
1993-01-01
A model of texture discrimination in visual cortex was built using a feedforward network with lateral interactions among relatively realistic spiking neural elements. The elements have various membrane currents, equilibrium potentials and time constants, with action potentials and synapses. The model is derived from the modified programs of MacGregor (1987). Gabor-like filters are applied to overlapping regions in the original image; the neural network with lateral excitatory and inhibitory interactions then compares and adjusts the Gabor amplitudes in order to produce the actual texture discrimination. Finally, a combination layer selects and groups various representations in the output of the network to form the final transformed image material. We show that both texture segmentation and detection of texture boundaries can be represented in the firing activity of such a network for a wide variety of synthetic to natural images. Performance details depend most strongly on the global balance of strengths of the excitatory and inhibitory lateral interconnections. The spatial distribution of lateral connective strengths has relatively little effect. Detailed temporal firing activities of single elements in the lateral connected network were examined under various stimulus conditions. Results show (as in area 17 of cortex) that a single element's response to image features local to its receptive field can be altered by changes in the global context.
Categorization in neural networks and prosopagnosia
Virasoro, M. A.
1989-12-01
Prosopagnosia is a syndrome characterized by a generalized difficulty to visually recognize individual patterns among those that are similar, and can therefore be said to belong to the same category. I suggest that the existence of this disfunction may be an important clue for understanding the categorization process in the brain. In this direction the performance of neural networks under random destruction of synapses is analysed. It is found that in almost every network that stores correlated patterns the coding of the discriminating details between individuals inside a class is more sensitive to noise or to random destruction than the coding that distinguishes between classes. It follows that a process of death and/or deterioration at an intermediate level of intensity, even if it acts randomly on the network may lead to a malfunctioning of the network that resembles prosopagnosia.
Artificial Neural Network Analysis of Xinhui Pericarpium Citri ...
African Journals Online (AJOL)
Purpose: To develop an effective analytical method to distinguish old peels of Xinhui Pericarpium citri reticulatae (XPCR) stored for > 3 years from new peels stored for < 3 years. Methods: Artificial neural networks (ANN) models, including general regression neural network (GRNN) and multi-layer feedforward neural ...
UAV Trajectory Modeling Using Neural Networks
Xue, Min
2017-01-01
Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural
Evolutionary Algorithms For Neural Networks Binary And Real Data Classification
Directory of Open Access Journals (Sweden)
Dr. Hanan A.R. Akkar
2015-08-01
Full Text Available Artificial neural networks are complex networks emulating the way human rational neurons process data. They have been widely used generally in prediction clustering classification and association. The training algorithms that used to determine the network weights are almost the most important factor that influence the neural networks performance. Recently many meta-heuristic and Evolutionary algorithms are employed to optimize neural networks weights to achieve better neural performance. This paper aims to use recently proposed algorithms for optimizing neural networks weights comparing these algorithms performance with other classical meta-heuristic algorithms used for the same purpose. However to evaluate the performance of such algorithms for training neural networks we examine such algorithms to classify four opposite binary XOR clusters and classification of continuous real data sets such as Iris and Ecoli.
Runoff Modelling in Urban Storm Drainage by Neural Networks
DEFF Research Database (Denmark)
Rasmussen, Michael R.; Brorsen, Michael; Schaarup-Jensen, Kjeld
1995-01-01
A neural network is used to simulate folw and water levels in a sewer system. The calibration of th neural network is based on a few measured events and the network is validated against measureed events as well as flow simulated with the MOUSE model (Lindberg and Joergensen, 1986). The neural...... network is used to compute flow or water level at selected points in the sewer system, and to forecast the flow from a small residential area. The main advantages of the neural network are the build-in self calibration procedure and high speed performance, but the neural network cannot be used to extract...... knowledge of the runoff process. The neural network was found to simulate 150 times faster than e.g. the MOUSE model....
Network traffic anomaly prediction using Artificial Neural Network
Ciptaningtyas, Hening Titi; Fatichah, Chastine; Sabila, Altea
2017-03-01
As the excessive increase of internet usage, the malicious software (malware) has also increase significantly. Malware is software developed by hacker for illegal purpose(s), such as stealing data and identity, causing computer damage, or denying service to other user[1]. Malware which attack computer or server often triggers network traffic anomaly phenomena. Based on Sophos's report[2], Indonesia is the riskiest country of malware attack and it also has high network traffic anomaly. This research uses Artificial Neural Network (ANN) to predict network traffic anomaly based on malware attack in Indonesia which is recorded by Id-SIRTII/CC (Indonesia Security Incident Response Team on Internet Infrastructure/Coordination Center). The case study is the highest malware attack (SQL injection) which has happened in three consecutive years: 2012, 2013, and 2014[4]. The data series is preprocessed first, then the network traffic anomaly is predicted using Artificial Neural Network and using two weight update algorithms: Gradient Descent and Momentum. Error of prediction is calculated using Mean Squared Error (MSE) [7]. The experimental result shows that MSE for SQL Injection is 0.03856. So, this approach can be used to predict network traffic anomaly.
Neural network controller for underwater work ROV. Suichu sagyoyo ROV no neural network controller
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Y.; Kidoshi, H.; Arahata, M.; Shoji, K.; Takahashi, Y. (Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan))
1993-07-01
The previous underwater work ROV (remotely operated vehicle) has been controlled manually because its dynamic properties are changeable underwater. Ishikawajima-Harima Heavy Industries (IHI) has applied a neural network to an adaptive controller for the ROV. This paper describes objectives of the research, design of control logic, and tank experiments on a model ROV. For the neural network, manual operation was used to provide the initial learning data for the neural network in order to initialize control parameters for optimization. The model ROV was designed to achieve and maintain constant depth in normal operation. As a consequence of the tank experiments, it was demonstrated that the controller can acquire skill of operators, can further improve the acquired skill of operators, and can construct an automatic control system autonomically even if any dynamic properties are not known. 6 refs., 8 figs.
Directory of Open Access Journals (Sweden)
Kit eCheung
2016-01-01
Full Text Available NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs. Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimised performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP rule for learning. A 6-FPGA system can simulate a network of up to approximately 600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation.
Cheung, Kit; Schultz, Simon R; Luk, Wayne
2015-01-01
NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation.
Cheung, Kit; Schultz, Simon R.; Luk, Wayne
2016-01-01
NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation. PMID:26834542
Marginalization in Random Nonlinear Neural Networks
Vasudeva Raju, Rajkumar; Pitkow, Xaq
2015-03-01
Computations involved in tasks like causal reasoning in the brain require a type of probabilistic inference known as marginalization. Marginalization corresponds to averaging over irrelevant variables to obtain the probability of the variables of interest. This is a fundamental operation that arises whenever input stimuli depend on several variables, but only some are task-relevant. Animals often exhibit behavior consistent with marginalizing over some variables, but the neural substrate of this computation is unknown. It has been previously shown (Beck et al. 2011) that marginalization can be performed optimally by a deterministic nonlinear network that implements a quadratic interaction of neural activity with divisive normalization. We show that a simpler network can perform essentially the same computation. These Random Nonlinear Networks (RNN) are feedforward networks with one hidden layer, sigmoidal activation functions, and normally-distributed weights connecting the input and hidden layers. We train the output weights connecting the hidden units to an output population, such that the output model accurately represents a desired marginal probability distribution without significant information loss compared to optimal marginalization. Simulations for the case of linear coordinate transformations show that the RNN model has good marginalization performance, except for highly uncertain inputs that have low amplitude population responses. Behavioral experiments, based on these results, could then be used to identify if this model does indeed explain how the brain performs marginalization.
Neural Network Model of memory retrieval
Directory of Open Access Journals (Sweden)
Stefano eRecanatesi
2015-12-01
Full Text Available Human memory can store large amount of information. Nevertheless, recalling is often achallenging task. In a classical free recall paradigm, where participants are asked to repeat abriefly presented list of words, people make mistakes for lists as short as 5 words. We present amodel for memory retrieval based on a Hopfield neural network where transition between itemsare determined by similarities in their long-term memory representations. Meanfield analysis ofthe model reveals stable states of the network corresponding (1 to single memory representationsand (2 intersection between memory representations. We show that oscillating feedback inhibitionin the presence of noise induces transitions between these states triggering the retrieval ofdifferent memories. The network dynamics qualitatively predicts the distribution of time intervalsrequired to recall new memory items observed in experiments. It shows that items having largernumber of neurons in their representation are statistically easier to recall and reveals possiblebottlenecks in our ability of retrieving memories. Overall, we propose a neural network model ofinformation retrieval broadly compatible with experimental observations and is consistent with ourrecent graphical model (Romani et al., 2013.
Directory of Open Access Journals (Sweden)
Vladimir M. Krasnopolsky
2013-01-01
Full Text Available A novel approach based on the neural network (NN ensemble technique is formulated and used for development of a NN stochastic convection parameterization for climate and numerical weather prediction (NWP models. This fast parameterization is built based on learning from data simulated by a cloud-resolving model (CRM initialized with and forced by the observed meteorological data available for 4-month boreal winter from November 1992 to February 1993. CRM-simulated data were averaged and processed to implicitly define a stochastic convection parameterization. This parameterization is learned from the data using an ensemble of NNs. The NN ensemble members are trained and tested. The inherent uncertainty of the stochastic convection parameterization derived following this approach is estimated. The newly developed NN convection parameterization has been tested in National Center of Atmospheric Research (NCAR Community Atmospheric Model (CAM. It produced reasonable and promising decadal climate simulations for a large tropical Pacific region. The extent of the adaptive ability of the developed NN parameterization to the changes in the model environment is briefly discussed. This paper is devoted to a proof of concept and discusses methodology, initial results, and the major challenges of using the NN technique for developing convection parameterizations for climate and NWP models.
Tranulis, C; Durand, L G; Senhadji, L; Pibarot, P
2002-03-01
The objective of the study was to develop a non-invasive method for the estimation of pulmonary arterial pressure (PAP) using a neural network (NN) and features extracted from the second heart sound (S2). To obtain the information required to train and test the NN, an animal model of pulmonary hypertension (PHT) was developed, and nine pigs were investigated. During the experiments, the electrocardiogram, phonocardiogram and PAP were recorded. Subsequently, between 15 and 50 S2 heart sounds were isolated for each PAP stage and for each animal studied. A Coiflet wavelet decomposition and a pseudo smoothed Wigner-Ville distribution were used to extract features from the S2 sounds and train a one-hidden-layer NN using two-thirds of the data. The NN performance was tested on the remaining one-third of the data. NN estimates of the systolic and mean PAPs were obtained for each S2 and then ensemble averaged over the 15-50 S2 sounds selected for each PAP stage. The standard errors between the mean and systolic PAPs estimated by the NN and those measured with a catheter were 6.0 mmHg and 8.4 mmHg, respectively, and the correlation coefficients were 0.89 and 0.86, respectively. The classification accuracy, using 23 mmHg mean PAP and 30 mmHg systolic PAP thresholds between normal PAP and PHT, was 97% and 91%, respectively.
Tranulis, Constantin; Durand, Louis-Gilles; Senhadji, Lotfi; Pibarot, Philippe
2002-01-01
The objective of this study was to develop a non-invasive method for the estimation of pulmonary arterial pressure (PAP) using a neural network (NN) and features extracted from the second heart sound (S2). To obtain the information required to train and test the NN, an animal model of pulmonary hypertension (PHT) was developed and 9 pigs were investigated. During the experiments, the electrocardiogram, the phonocardiogram, and the PAP were recorded. Subsequently, between 15 and 50 S2 were isolated for each PAP stage and for each animal studied. A Coiflet wavelet decomposition and a pseudo smoothed Wigner-Ville distribution were used to extract features from the S2 and train a one-hidden layer NN using 2/3 of the data. The NN performance was tested on the remaining 1/3 of the data. NN estimates of the systolic and mean PAPs were obtained for each S2 and then ensemble averaged over the 15 to 50 S2 selected for each PAP stage. The standard errors between the mean and systolic PAPs estimated by the NN and those measured with a catheter were of 6.0 mmHg and 8.4 mmHg, respectively, and the correlation coefficients were 0.89 and 0.86, respectively. The classification accuracy, using a 23 mmHg mean PAP and a 30 mmHg systolic PAP thresholds between normal PAP and PHT was 97% and 91% respectively. PMID:12043802
Volcanic ash detection and retrievals using MODIS data by means of neural networks
Directory of Open Access Journals (Sweden)
M. Picchiani
2011-12-01
Full Text Available Volcanic ash clouds detection and retrieval represent a key issue for aviation safety due to the harming effects on aircraft. A lesson learned from the recent Eyjafjallajokull eruption is the need to obtain accurate and reliable retrievals on a real time basis.
In this work we have developed a fast and accurate Neural Network (NN approach to detect and retrieve volcanic ash cloud properties from the Moderate Resolution Imaging Spectroradiometer (MODIS data in the Thermal InfraRed (TIR spectral range. Some measurements collected during the 2001, 2002 and 2006 Mt. Etna volcano eruptions have been considered as test cases.
The ash detection and retrievals obtained from the Brightness Temperature Difference (BTD algorithm are used as training for the NN procedure that consists in two separate steps: ash detection and ash mass retrieval. The ash detection is reduced to a classification problem by identifying two classes: "ashy" and "non-ashy" pixels in the MODIS images. Then the ash mass is estimated by means of the NN, replicating the BTD-based model performances. A segmentation procedure has also been tested to remove the false ash pixels detection induced by the presence of high meteorological clouds. The segmentation procedure shows a clear advantage in terms of classification accuracy: the main drawback is the loss of information on ash clouds distal part.
The results obtained are very encouraging; indeed the ash detection accuracy is greater than 90%, while a mean RMSE equal to 0.365 t km^{−2} has been obtained for the ash mass retrieval. Moreover, the NN quickness in results delivering makes the procedure extremely attractive in all the cases when the rapid response time of the system is a mandatory requirement.
Neural Network Control of Asymmetrical Multilevel Converters
Directory of Open Access Journals (Sweden)
Patrice WIRA
2009-12-01
Full Text Available This paper proposes a neural implementation of a harmonic eliminationstrategy (HES to control a Uniform Step Asymmetrical Multilevel Inverter(USAMI. The mapping between the modulation rate and the requiredswitching angles is learned and approximated with a Multi-Layer Perceptron(MLP neural network. After learning, appropriate switching angles can bedetermined with the neural network leading to a low-computational-costneural controller which is well suited for real-time applications. Thistechnique can be applied to multilevel inverters with any number of levels. Asan example, a nine-level inverter and an eleven-level inverter are consideredand the optimum switching angles are calculated on-line. Comparisons to thewell-known sinusoidal pulse-width modulation (SPWM have been carriedout in order to evaluate the performance of the proposed approach. Simulationresults demonstrate the technical advantages of the proposed neuralimplementation over the conventional method (SPWM in eliminatingharmonics while controlling a nine-level and eleven-level USAMI. Thisneural approach is applied for the supply of an asynchronous machine andresults show that it ensures a highest quality torque by efficiently cancelingthe harmonics generated by the inverters.
Taylor, M.; Kosmopoulos, P. G.; Kazadzis, S.; Keramitsoglou, I.; Kiranoudis, C. T.
2016-01-01
This paper reports on the development of a neural network (NN) model for instantaneous and accurate estimation of solar radiation spectra and budgets geared toward satellite cloud data using a ≈2.4 M record, high-spectral resolution look up table (LUT) generated with the radiative transfer model libRadtran. Two NN solvers, one for clear sky conditions dominated by aerosol and one for cloudy skies, were trained on a normally-distributed and multiparametric subset of the LUT that spans a very broad class of atmospheric and meteorological conditions as inputs with corresponding high resolution solar irradiance target spectra as outputs. The NN solvers were tested by feeding them with a large (10 K record) ;off-grid; random subset of the LUT spanning the training data space, and then comparing simulated outputs with target values provided by the LUT. The NN solvers demonstrated a capability to interpolate accurately over the entire multiparametric space. Once trained, the NN solvers allow for high-speed estimation of solar radiation spectra with high spectral resolution (1 nm) and for a quantification of the effect of aerosol and cloud optical parameters on the solar radiation budget without the need for a massive database. The cloudy sky NN solver was applied to high spatial resolution (54 K pixel) cloud data extracted from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat Second Generation 3 (MSG3) satellite and demonstrated that coherent maps of spectrally-integrated global horizontal irradiance at this resolution can be produced on the order of 1 min.
Wang, Yonggang; Li, Deng; Lu, Xiaoming; Cheng, Xinyi; Wang, Liwei
2014-10-01
Continuous crystal-based positron emission tomography (PET) detectors could be an ideal alternative for current high-resolution pixelated PET detectors if the issues of high performance γ interaction position estimation and its real-time implementation are solved. Unfortunately, existing position estimators are not very feasible for implementation on field-programmable gate array (FPGA). In this paper, we propose a new self-organizing map neural network-based nearest neighbor (SOM-NN) positioning scheme aiming not only at providing high performance, but also at being realistic for FPGA implementation. Benefitting from the SOM feature mapping mechanism, the large set of input reference events at each calibration position is approximated by a small set of prototypes, and the computation of the nearest neighbor searching for unknown events is largely reduced. Using our experimental data, the scheme was evaluated, optimized and compared with the smoothed k-NN method. The spatial resolutions of full-width-at-half-maximum (FWHM) of both methods averaged over the center axis of the detector were obtained as 1.87 ±0.17 mm and 1.92 ±0.09 mm, respectively. The test results show that the SOM-NN scheme has an equivalent positioning performance with the smoothed k-NN method, but the amount of computation is only about one-tenth of the smoothed k-NN method. In addition, the algorithm structure of the SOM-NN scheme is more feasible for implementation on FPGA. It has the potential to realize real-time position estimation on an FPGA with a high-event processing throughput.
Takiyama, Ken
2017-12-01
How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.
Flood routing modelling with Artificial Neural Networks
Directory of Open Access Journals (Sweden)
R. Peters
2006-01-01
Full Text Available For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks. To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting. In order to solve this problem we tested the application of Artificial Neural Networks (ANN. First studies show the ability of adequately trained multilayer feedforward networks (MLFN to reproduce the model performance.
Granular neural networks, pattern recognition and bioinformatics
Pal, Sankar K; Ganivada, Avatharam
2017-01-01
This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinf...
Quantum generalisation of feedforward neural networks
Wan, Kwok Ho; Dahlsten, Oscar; Kristjánsson, Hlér; Gardner, Robert; Kim, M. S.
2017-09-01
We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding ancillary bits. Then they are generalised to being quantum reversible, i.e., unitary (the classical networks we generalise are called feedforward, and have step-function activation functions). The quantum network can be trained efficiently using gradient descent on a cost function to perform quantum generalisations of classical tasks. We demonstrate numerically that it can: (i) compress quantum states onto a minimal number of qubits, creating a quantum autoencoder, and (ii) discover quantum communication protocols such as teleportation. Our general recipe is theoretical and implementation-independent. The quantum neuron module can naturally be implemented photonically.
Neurale Netwerken en Radarsystemen (Neural Networks and Radar Systems)
1989-08-01
en/of de vorn van de intagratiefunctie te veranderen. In de macste artificiale NN zien we beide vormen van lange-termijngebeugan toegepast worden...34problemen". Neuronaal onderzoek levert maar zeer karige aanwijzingen over do signaalverwerking. Een veelbeid van modellen over de celverking is in het
The Usage of Neural Networks for the Medical Diagnosis
Malyshevska, Kateryna
2009-01-01
The problem of cancer diagnosis from multi-channel images using the neural networks is investigated. The goal of this work is to classify the different tissue types which are used to determine the cancer risk. The radial basis function networks and backpropagation neural networks are used for classification. The results of experiments are presented.
Daily Nigerian peak load forecasting using artificial neural network ...
African Journals Online (AJOL)
A daily peak load forecasting technique that uses artificial neural network with seasonal indices is presented in this paper. A neural network of relatively smaller size than the main prediction network is used to predict the daily peak load for a period of one year over which the actual daily load data are available using one ...
Prediction of Parametric Roll Resonance by Multilayer Perceptron Neural Network
DEFF Research Database (Denmark)
Míguez González, M; López Peña, F.; Díaz Casás, V.
2011-01-01
acknowledged in the last few years. This work proposes a prediction system based on a multilayer perceptron (MP) neural network. The training and testing of the MP network is accomplished by feeding it with simulated data of a three degrees-of-freedom nonlinear model of a fishing vessel. The neural network...
Advances in Artificial Neural Networks - Methodological Development and Application
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...
Particle swarm optimization of a neural network model in a ...
Indian Academy of Sciences (India)
This paper presents a particle swarm optimization (PSO) technique to train an artificial neural network (ANN) for prediction of flank wear in drilling, and compares the network performance with that of the back propagation neural network (BPNN). This analysis is carried out following a series of experiments employing high ...
A multi-scale hybrid neural network retrieval model for dust storm detection, a study in Asia
Wong, Man Sing; Xiao, Fei; Nichol, Janet; Fung, Jimmy; Kim, Jhoon; Campbell, James; Chan, P. W.
2015-05-01
Dust storms are known to have adverse effects on human health and significant impact on weather, air quality, hydrological cycle, and ecosystem. Atmospheric dust loading is also one of the large uncertainties in global climate modeling, due to its significant impact on the radiation budget and atmospheric stability. Observations of dust storms in humid tropical south China (e.g. Hong Kong), are challenging due to high industrial pollution from the nearby Pearl River Delta region. This study develops a method for dust storm detection by combining ground station observations (PM10 concentration, AERONET data), geostationary satellite images (MTSAT), and numerical weather and climatic forecasting products (WRF/Chem). The method is based on a hybrid neural network (NN) retrieval model for two scales: (i) a NN model for near real-time detection of dust storms at broader regional scale; (ii) a NN model for detailed dust storm mapping for Hong Kong and Taiwan. A feed-forward multilayer perceptron (MLP) NN, trained using back propagation (BP) algorithm, was developed and validated by the k-fold cross validation approach. The accuracy of the near real-time detection MLP-BP network is 96.6%, and the accuracies for the detailed MLP-BP neural network for Hong Kong and Taiwan is 74.8%. This newly automated multi-scale hybrid method can be used to give advance near real-time mapping of dust storms for environmental authorities and the public. It is also beneficial for identifying spatial locations of adverse air quality conditions, and estimates of low visibility associated with dust events for port and airport authorities.
Dimopoulos, Ioannis F; Tsiros, Ioannis X; Serelis, Konstantinos; Chronopoulou, Aikaterini
2004-12-01
Neural networks (NNs) have the ability to model a wide range of complex nonlinearities. A major disadvantage of NNs, however, is their instability, especially under conditions of sparse, noisy, and limited data sets. In this paper, different combining network methods are used to benefit from the existence of local minima and from the instabilities of NNs. A nonlinear k-fold cross-validation method is used to test the performance of the various networks and also to develop and select a set of networks that exhibits a low correlation of errors. The various NN models are applied to estimate the spatial patterns of atmospherically transported and deposited lead (Pb) in soils around an historical industrial air emission point source. It is shown that the resulting ensemble networks consistently give superior predictions compared with the individual networks because, for the ensemble networks, R2 values were found to be higher than 0.9 while, for the contributing individual networks, values for R2 ranged between 0.35 and 0.85. It is concluded that combining networks can be adopted as an important component in the application of artificial NN techniques in applied air quality studies.
Survey on Neural Networks Used for Medical Image Processing.
Shi, Zhenghao; He, Lifeng; Suzuki, Kenji; Nakamura, Tsuyoshi; Itoh, Hidenori
2009-02-01
This paper aims to present a review of neural networks used in medical image processing. We classify neural networks by its processing goals and the nature of medical images. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of neural network application for medical image processing and an outlook for the future research are also discussed. By this survey, we try to answer the following two important questions: (1) What are the major applications of neural networks in medical image processing now and in the nearby future? (2) What are the major strengths and weakness of applying neural networks for solving medical image processing tasks? We believe that this would be very helpful researchers who are involved in medical image processing with neural network techniques.
Permeability prediction in shale gas reservoirs using Neural Network
Aliouane, Leila; Ouadfeul, Sid-Ali
2017-04-01
Here, we suggest the use of the artificial neural network for permeability prediction in shale gas reservoirs using artificial neural network. Prediction of Permeability in shale gas reservoirs is a complicated task that requires new models where Darcy's fluid flow model is not suitable. Proposed idea is based on the training of neural network machine using the set of well-logs data as an input and the measured permeability as an output. In this case the Multilayer Perceptron neural network machines is used with Levenberg Marquardt algorithm. Application to two horizontal wells drilled in the Barnett shale formation exhibit the power of neural network model to resolve such as problem. Keywords: Artificial neural network, permeability, prediction , shale gas.
Financial Time Series Prediction Using Elman Recurrent Random Neural Networks
Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli
2016-01-01
In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423
Feedforward Backpropagation Neural Networks in Prediction of Farmer Risk Preferences
Kastens, Terry L.; Featherstone, Allen M.
1996-01-01
An out-of-sample prediction of Kansas farmers' responses to five surveyed questions involving risk is used to compare ordered multinomial logistic regression models with feedforward backpropagation neural network models. Although the logistic models often predict more accurately than the neural network models in a mean-squared error sense, the neural network models are shown to be more accommodating of loss functions associated with a desire to predict certain combinations of categorical resp...
Classification of behavior using unsupervised temporal neural networks
Energy Technology Data Exchange (ETDEWEB)
Adair, K.L. [Florida State Univ., Tallahassee, FL (United States). Dept. of Computer Science; Argo, P. [Los Alamos National Lab., NM (United States)
1998-03-01
Adding recurrent connections to unsupervised neural networks used for clustering creates a temporal neural network which clusters a sequence of inputs as they appear over time. The model presented combines the Jordan architecture with the unsupervised learning technique Adaptive Resonance Theory, Fuzzy ART. The combination yields a neural network capable of quickly clustering sequential pattern sequences as the sequences are generated. The applicability of the architecture is illustrated through a facility monitoring problem.
Pixel-wise Segmentation of Street with Neural Networks
Bittel, Sebastian; Kaiser, Vitali; Teichmann, Marvin; Thoma, Martin
2015-01-01
Pixel-wise street segmentation of photographs taken from a drivers perspective is important for self-driving cars and can also support other object recognition tasks. A framework called SST was developed to examine the accuracy and execution time of different neural networks. The best neural network achieved an $F_1$-score of 89.5% with a simple feedforward neural network which trained to solve a regression task.
Survey on Neural Networks Used for Medical Image Processing
Shi, Zhenghao; He, Lifeng; Suzuki, Kenji; Nakamura, Tsuyoshi; Itoh, Hidenori
2009-01-01
This paper aims to present a review of neural networks used in medical image processing. We classify neural networks by its processing goals and the nature of medical images. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of neural network application for medical image processing and an outlook for the future research are also discussed. By this survey, we try to answer the following two important questions: (1) Wh...
One pass learning for generalized classifier neural network.
Ozyildirim, Buse Melis; Avci, Mutlu
2016-01-01
Generalized classifier neural network introduced as a kind of radial basis function neural network, uses gradient descent based optimized smoothing parameter value to provide efficient classification. However, optimization consumes quite a long time and may cause a drawback. In this work, one pass learning for generalized classifier neural network is proposed to overcome this disadvantage. Proposed method utilizes standard deviation of each class to calculate corresponding smoothing parameter. Since different datasets may have different standard deviations and data distributions, proposed method tries to handle these differences by defining two functions for smoothing parameter calculation. Thresholding is applied to determine which function will be used. One of these functions is defined for datasets having different range of values. It provides balanced smoothing parameters for these datasets through logarithmic function and changing the operation range to lower boundary. On the other hand, the other function calculates smoothing parameter value for classes having standard deviation smaller than the threshold value. Proposed method is tested on 14 datasets and performance of one pass learning generalized classifier neural network is compared with that of probabilistic neural network, radial basis function neural network, extreme learning machines, and standard and logarithmic learning generalized classifier neural network in MATLAB environment. One pass learning generalized classifier neural network provides more than a thousand times faster classification than standard and logarithmic generalized classifier neural network. Due to its classification accuracy and speed, one pass generalized classifier neural network can be considered as an efficient alternative to probabilistic neural network. Test results show that proposed method overcomes computational drawback of generalized classifier neural network and may increase the classification performance. Copyright
Neural networks analysis on SSME vibration simulation data
Lo, Ching F.; Wu, Kewei
1993-01-01
The neural networks method is applied to investigate the feasibility in detecting anomalies in turbopump vibration of SSME to supplement the statistical method utilized in the prototype system. The investigation of neural networks analysis is conducted using SSME vibration data from a NASA developed numerical simulator. The limited application of neural networks to the HPFTP has also shown the effectiveness in diagnosing the anomalies of turbopump vibrations.
A Neural Network-Based Interval Pattern Matcher
Directory of Open Access Journals (Sweden)
Jing Lu
2015-07-01
Full Text Available One of the most important roles in the machine learning area is to classify, and neural networks are very important classifiers. However, traditional neural networks cannot identify intervals, let alone classify them. To improve their identification ability, we propose a neural network-based interval matcher in our paper. After summarizing the theoretical construction of the model, we take a simple and a practical weather forecasting experiment, which show that the recognizer accuracy reaches 100% and that is promising.
Discrete Orthogonal Transforms and Neural Networks for Image Interpolation
Directory of Open Access Journals (Sweden)
J. Polec
1999-09-01
Full Text Available In this contribution we present transform and neural network approaches to the interpolation of images. From transform point of view, the principles from [1] are modified for 1st and 2nd order interpolation. We present several new interpolation discrete orthogonal transforms. From neural network point of view, we present interpolation possibilities of multilayer perceptrons. We use various configurations of neural networks for 1st and 2nd order interpolation. The results are compared by means of tables.
Neural Networks for Modeling and Control of Particle Accelerators
Edelen, A.L.; Chase, B.E.; Edstrom, D.; Milton, S.V.; Stabile, P.
2016-01-01
We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.
Training product unit neural networks with genetic algorithms
Janson, D. J.; Frenzel, J. F.; Thelen, D. C.
1991-01-01
The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.
Wave transmission prediction of multilayer floating breakwater using neural network
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Patil, S.G.; Hegde, A.V.
in unison to solve a specific problem. The network learns through examples, so it requires good examples to train properly and further a trained network model can be used for prediction purpose. Proceedings of ICOE 2009 Wave transmission... prediction of multilayer floating breakwater using neural network 577 In order to allow the network to learn both non-linear and linear relationships between input nodes and output nodes, multiple-layer neural networks are often used...
Vargas-Meléndez, Leandro; Boada, Beatriz L; Boada, María Jesús L; Gauchía, Antonio; Díaz, Vicente
2016-08-31
This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a "pseudo-roll angle" through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors' estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator.
Directory of Open Access Journals (Sweden)
Yiming Jiang
2016-01-01
Full Text Available Over the last few decades, the intelligent control methods such as fuzzy logic control (FLC and neural network (NN control have been successfully used in various applications. The rapid development of digital computer based control systems requires control signals to be calculated in a digital or discrete-time form. In this background, the intelligent control methods developed for discrete-time systems have drawn great attentions. This survey aims to present a summary of the state of the art of the design of FLC and NN-based intelligent control for discrete-time systems. For discrete-time FLC systems, numerous remarkable design approaches are introduced and a series of efficient methods to deal with the robustness, stability, and time delay of FLC discrete-time systems are recommended. Techniques for NN-based intelligent control for discrete-time systems, such as adaptive methods and adaptive dynamic programming approaches, are also reviewed. Overall, this paper is devoted to make a brief summary for recent progresses in FLC and NN-based intelligent control design for discrete-time systems as well as to present our thoughts and considerations of recent trends and potential research directions in this area.
Ahmed, Sam; El-Habashi, Ahmed; Lovko, Vincent
2017-05-01
Preliminary results of previous work had shown a Neural Network (NN) technique developed by us as effective in detecting Karenia brevis Harmful Algal Blooms (KB HABs) plaguing West Florida Shelf (WFS) from VIIRS satellite observations. We extend comparisons of NN retrievals against a data set of near simultaneous in-situ measurements in the WFS spanning the 2012-2016 period for which there was available VIIRS data. Specifically we looked for match ups where the overlap time windows between satellite observations and in-situ measurements were 15 minutes and 100 minutes. We then compare the accuracy of the NN retrievals against the in-situ measurements, with the accuracies achieved with similar of retrievals using OC3, GIOP, QAA and RGCI algorithms. The NN technique exhibited the best retrieval accuracy statistics. The retrievals for all the algorithms very clearly showed the impact of temporal variations of the KB HABS on retrieval accuracies. Thus, retrievals using a 15 minutes overlap window between satellite observations and in-situ measurements yielded much higher accuracies than those with the 100 minutes overlap window. Temporal variabilities were also studied, using consecutive overlapping VIIRS images. These variabilities, as well as the patchiness of KB blooms were also confirmed by a set of in-situ measurements near Sarasota, FL.
Parameterizing Stellar Spectra Using Deep Neural Networks
Li, Xiang-Ru; Pan, Ru-Yang; Duan, Fu-Qing
2017-03-01
Large-scale sky surveys are observing massive amounts of stellar spectra. The large number of stellar spectra makes it necessary to automatically parameterize spectral data, which in turn helps in statistically exploring properties related to the atmospheric parameters. This work focuses on designing an automatic scheme to estimate effective temperature ({T}{eff}), surface gravity ({log}g) and metallicity [Fe/H] from stellar spectra. A scheme based on three deep neural networks (DNNs) is proposed. This scheme consists of the following three procedures: first, the configuration of a DNN is initialized using a series of autoencoder neural networks; second, the DNN is fine-tuned using a gradient descent scheme; third, three atmospheric parameters {T}{eff}, {log}g and [Fe/H] are estimated using the computed DNNs. The constructed DNN is a neural network with six layers (one input layer, one output layer and four hidden layers), for which the number of nodes in the six layers are 3821, 1000, 500, 100, 30 and 1, respectively. This proposed scheme was tested on both real spectra and theoretical spectra from Kurucz’s new opacity distribution function models. Test errors are measured with mean absolute errors (MAEs). The errors on real spectra from the Sloan Digital Sky Survey (SDSS) are 0.1477, 0.0048 and 0.1129 dex for {log}g, {log}{T}{eff} and [Fe/H] (64.85 K for {T}{eff}), respectively. Regarding theoretical spectra from Kurucz’s new opacity distribution function models, the MAE of the test errors are 0.0182, 0.0011 and 0.0112 dex for {log}g, {log}{T}{eff} and [Fe/H] (14.90 K for {T}{eff}), respectively.
Precipitation Nowcast using Deep Recurrent Neural Network
Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.
2016-12-01
An accurate precipitation nowcast (0-6 hours) with a fine temporal and spatial resolution has always been an important prerequisite for flood warning, streamflow prediction and risk management. Most of the popular approaches used for forecasting precipitation can be categorized into two groups. One type of precipitation forecast relies on numerical modeling of the physical dynamics of atmosphere and another is based on empirical and statistical regression models derived by local hydrologists or meteorologists. Given the recent advances in artificial intelligence, in this study a powerful Deep Recurrent Neural Network, termed as Long Short-Term Memory (LSTM) model, is creatively used to extract the patterns and forecast the spatial and temporal variability of Cloud Top Brightness Temperature (CTBT) observed from GOES satellite. Then, a 0-6 hours precipitation nowcast is produced using a Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) algorithm, in which the CTBT nowcast is used as the PERSIANN algorithm's raw inputs. Two case studies over the continental U.S. have been conducted that demonstrate the improvement of proposed approach as compared to a classical Feed Forward Neural Network and a couple simple regression models. The advantages and disadvantages of the proposed method are summarized with regard to its capability of pattern recognition through time, handling of vanishing gradient during model learning, and working with sparse data. The studies show that the LSTM model performs better than other methods, and it is able to learn the temporal evolution of the precipitation events through over 1000 time lags. The uniqueness of PERSIANN's algorithm enables an alternative precipitation nowcast approach as demonstrated in this study, in which the CTBT prediction is produced and used as the inputs for generating precipitation nowcast.
Hybrid Model GSTAR-SUR-NN For Precipitation Data
Agus Dwi Sulistyono; Waego Hadi Nugroho; Rahma Fitriani; Atiek Iriani
2016-01-01
Spatio-temporal model that have been developed such as Space-Time Autoregressive (STAR) model, Generalized Space-Time Autoregressive (GSTAR), GSTAR-OLS and GSTAR-SUR. Besides spatio-temporal phenomena, in daily life, we often find nonlinear phenomena, uncommon patterns and unidentified characteristics of the data. One of current developed nonlinear model is a neural network. This study is conducted to form a hybrid model GSTAR-SUR-NN to develop spatio-temporal model that has better prediction...
Advances in Artificial Neural Networks – Methodological Development and Application
Directory of Open Access Journals (Sweden)
Yanbo Huang
2009-08-01
Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological
Robustness of the ATLAS pixel clustering neural network algorithm
AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration
2016-01-01
Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. In the ATLAS track reconstruction algorithm, an artificial neural network is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The robustness of the neural network algorithm is presented, probing its sensitivity to uncertainties in the detector conditions. The robustness is studied by evaluating the stability of the algorithm's performance under a range of variations in the inputs to the neural networks. Within reasonable variation magnitudes, the neural networks prove to be robust to most variation types.
Decoding small surface codes with feedforward neural networks
Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen
2018-01-01
Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.
Optical-Correlator Neural Network Based On Neocognitron
Chao, Tien-Hsin; Stoner, William W.
1994-01-01
Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.
Material procedure quality forecast based on genetic BP neural network
Zheng, Bao-Hua
2017-07-01
Material procedure quality forecast plays an important role in quality control. This paper proposes a prediction model based on genetic algorithm (GA) and back propagation (BP) neural network. It can obtain the initial weights and thresholds of optimized BP neural network with the GA global search ability. A material process quality prediction model with the optimized BP neural network is adopted to predict the error of future process to measure the accuracy of process quality. The results show that the proposed method has the advantages of high accuracy and fast convergence rate compared with BP neural network.
Neural network models: Insights and prescriptions from practical applications
Energy Technology Data Exchange (ETDEWEB)
Samad, T. [Honeywell Technology Center, Minneapolis, MN (United States)
1995-12-31
Neural networks are no longer just a research topic; numerous applications are now testament to their practical utility. In the course of developing these applications, researchers and practitioners have been faced with a variety of issues. This paper briefly discusses several of these, noting in particular the rich connections between neural networks and other, more conventional technologies. A more comprehensive version of this paper is under preparation that will include illustrations on real examples. Neural networks are being applied in several different ways. Our focus here is on neural networks as modeling technology. However, much of the discussion is also relevant to other types of applications such as classification, control, and optimization.
Power converters and AC electrical drives with linear neural networks
Cirrincione, Maurizio
2012-01-01
The first book of its kind, Power Converters and AC Electrical Drives with Linear Neural Networks systematically explores the application of neural networks in the field of power electronics, with particular emphasis on the sensorless control of AC drives. It presents the classical theory based on space-vectors in identification, discusses control of electrical drives and power converters, and examines improvements that can be attained when using linear neural networks. The book integrates power electronics and electrical drives with artificial neural networks (ANN). Organized into four parts,
Liquefaction Microzonation of Babol City Using Artificial Neural Network
DEFF Research Database (Denmark)
Farrokhzad, F.; Choobbasti, A.J.; Barari, Amin
2012-01-01
that will be less susceptible to damage during earthquakes. The scope of present study is to prepare the liquefaction microzonation map for the Babol city based on Seed and Idriss (1983) method using artificial neural network. Artificial neural network (ANN) is one of the artificial intelligence (AI) approaches...... is proposed in this paper. To meet this objective, an effort is made to introduce a total of 30 boreholes data in an area of 7 km2 which includes the results of field tests into the neural network model and the prediction of artificial neural network is checked in some test boreholes, finally the liquefaction...
A hardware implementation of neural network with modified HANNIBAL architecture
Energy Technology Data Exchange (ETDEWEB)
Lee, Bum youb; Chung, Duck Jin [Inha University, Inchon (Korea, Republic of)
1996-03-01
A digital hardware architecture for artificial neural network with learning capability is described in this paper. It is a modified hardware architecture known as HANNIBAL(Hardware Architecture for Neural Networks Implementing Back propagation Algorithm Learning). For implementing an efficient neural network hardware, we analyzed various type of multiplier which is major function block of neuro-processor cell. With this result, we design a efficient digital neural network hardware using serial/parallel multiplier, and test the operation. We also analyze the hardware efficiency with logic level simulation. (author). 14 refs., 10 figs., 3 tabs.
Neural network and its application to CT imaging
Energy Technology Data Exchange (ETDEWEB)
Nikravesh, M.; Kovscek, A.R.; Patzek, T.W. [Lawrence Berkeley National Lab., CA (United States)] [and others
1997-02-01
We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.
Ocean wave forecasting using recurrent neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
to the biological neurons, works on the input and output passing through a hidden layer. The ANN used here is a data- oriented modeling technique to find relations between input and output patterns by self learning and without any fixed mathematical form assumed... = 1/p ? Ep (2) Where, Ep = ? ? (Tk ?Ok)2 (3) p is the total number of training patterns; Tk is the actual output and Ok is the predicted output at kth output node. In the learning process of backpropagation neural network...
Convolutional neural networks and face recognition task
Sochenkova, A.; Sochenkov, I.; Makovetskii, A.; Vokhmintsev, A.; Melnikov, A.
2017-09-01
Computer vision tasks are remaining very important for the last couple of years. One of the most complicated problems in computer vision is face recognition that could be used in security systems to provide safety and to identify person among the others. There is a variety of different approaches to solve this task, but there is still no universal solution that would give adequate results in some cases. Current paper presents following approach. Firstly, we extract an area containing face, then we use Canny edge detector. On the next stage we use convolutional neural networks (CNN) to finally solve face recognition and person identification task.
Convolution neural networks for ship type recognition
Rainey, Katie; Reeder, John D.; Corelli, Alexander G.
2016-05-01
Algorithms to automatically recognize ship type from satellite imagery are desired for numerous maritime applications. This task is difficult, and example imagery accurately labeled with ship type is hard to obtain. Convolutional neural networks (CNNs) have shown promise in image recognition settings, but many of these applications rely on the availability of thousands of example images for training. This work attempts to under- stand for which types of ship recognition tasks CNNs might be well suited. We report the results of baseline experiments applying a CNN to several ship type classification tasks, and discuss many of the considerations that must be made in approaching this problem.
Artificial Neural Network applied to lightning flashes
Gin, R. B.; Guedes, D.; Bianchi, R.
2013-05-01
The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a
Defect detection on videos using neural network
Directory of Open Access Journals (Sweden)
Sizyakin Roman
2017-01-01
Full Text Available In this paper, we consider a method for defects detection in a video sequence, which consists of three main steps; frame compensation, preprocessing by a detector, which is base on the ranking of pixel values, and the classification of all pixels having anomalous values using convolutional neural networks. The effectiveness of the proposed method shown in comparison with the known techniques on several frames of the video sequence with damaged in natural conditions. The analysis of the obtained results indicates the high efficiency of the proposed method. The additional use of machine learning as postprocessing significantly reduce the likelihood of false alarm.
Directory of Open Access Journals (Sweden)
W. L. C. Rutten
2006-01-01
Full Text Available One type of future, improved neural interface is the “cultured probe”. It is a hybrid type of neural information transducer or prosthesis, for stimulation and/or recording of neural activity. It would consist of a microelectrode array (MEA on a planar substrate, each electrode being covered and surrounded by a local circularly confined network (“island” of cultured neurons. The main purpose of the local networks is that they act as biofriendly intermediates for collateral sprouts from the in vivo system, thus allowing for an effective and selective neuron–electrode interface. As a secondary purpose, one may envisage future information processing applications of these intermediary networks. In this paper, first, progress is shown on how substrates can be chemically modified to confine developing networks, cultured from dissociated rat cortex cells, to “islands” surrounding an electrode site. Additional coating of neurophobic, polyimide-coated substrate by triblock-copolymer coating enhances neurophilic-neurophobic adhesion contrast. Secondly, results are given on neuronal activity in patterned, unconnected and connected, circular “island” networks. For connected islands, the larger the island diameter (50, 100 or 150 μm, the more spontaneous activity is seen. Also, activity may show a very high degree of synchronization between two islands. For unconnected islands, activity may start at 22 days in vitro (DIV, which is two weeks later than in unpatterned networks.
Artificial neural network for prediction of distant metastasis in colorectal cancer.
Biglarian, Akbar; Bakhshi, Enayatollah; Gohari, Mahmood Reza; Khodabakhshi, Reza
2012-01-01
Artificial neural networks (ANNs) are flexible and nonlinear models which can be used by clinical oncologists in medical research as decision making tools. This study aimed to predict distant metastasis (DM) of colorectal cancer (CRC) patients using an ANN model. The data of this study were gathered from 1219 registered CRC patients at the Research Center for Gastroenterology and Liver Disease of Shahid Beheshti University of Medical Sciences, Tehran, Iran (January 2002 and October 2007). For prediction of DM in CRC patients, neural network (NN) and logistic regression (LR) models were used. Then, the concordance index (C index) and the area under receiver operating characteristic curve (AUROC) were used for comparison of neural network and logistic regression models. Data analysis was performed with R 2.14.1 software. The C indices of ANN and LR models for colon cancer data were calculated to be 0.812 and 0.779, respectively. Based on testing dataset, the AUROC for ANN and LR models were 0.82 and 0.77, respectively. This means that the accuracy of ANN prediction was better than for LR prediction. The ANN model is a suitable method for predicting DM and in that case is suggested as a good classifier that usefulness to treatment goals.
A Comparative Study of Neural Networks and ANFIS for Forecasting Attendance Rate of Soccer Games
Directory of Open Access Journals (Sweden)
Mehmet Şahin
2017-11-01
Full Text Available The main purpose of this study was to develop and apply a neural network (NN approach and an adaptive neuro-fuzzy inference system (ANFIS model for forecasting the attendance rates at soccer games. The models were designed based on the characteristics of the problem. Past real data was used. Training data was used for training the models, and the testing data was used for evaluating the performance of the forecasting models. The obtained forecasting results were compared to the actual data and to each other. To evaluate the performance of the models, two statistical indicators, Mean Absolute Deviation (MAD and mean absolute percent error (MAPE, were used. Based on the results, the proposed neural network approach and the ANFIS model were shown to be effective in forecasting attendance at soccer games. The neural network approach performed better than the ANFIS model. The main contribution of this study is to introduce two effective techniques for estimating attendance at sports games. This is the first attempt to use an ANFIS model for that purpose.
Sonar discrimination of cylinders from different angles using neural networks neural networks
DEFF Research Database (Denmark)
Andersen, Lars Nonboe; Au, Whiwlow; Larsen, Jan
1999-01-01
This paper describes an underwater object discrimination system applied to recognize cylinders of various compositions from different angles. The system is based on a new combination of simulated dolphin clicks, simulated auditory filters and artificial neural networks. The model demonstrates its...
Characterization of Early Cortical Neural Network ...
We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentially absent on DIV 2 and developed rapidly between DIV 5 and 12. Spiking activity was primarily sporadic and unorganized at early DIV, and became progressively more organized with time in culture, with bursting parameters, synchrony and network bursting increasing between DIV 5 and 12. We selected 12 features to describe network activity and principal components analysis using these features demonstrated a general segregation of data by age at both the well and plate levels. Using a combination of random forest classifiers and Support Vector Machines, we demonstrated that 4 features (CV of within burst ISI, CV of IBI, network spike rate and burst rate) were sufficient to predict the age (either DIV 5, 7, 9 or 12) of each well recording with >65% accuracy. When restricting the classification problem to a binary decision, we found that classification improved dramatically, e.g. 95% accuracy for discriminating DIV 5 vs DIV 12 wells. Further, we present a novel resampling approach to determine the number of wells that might be needed for conducting comparisons of different treatments using mwMEA plates. Overall, these results demonstrate that network development on mwMEA plates is similar to
Stable architectures for deep neural networks
Haber, Eldad; Ruthotto, Lars
2018-01-01
Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.
Phase diagram of spiking neural networks.
Seyed-Allaei, Hamed
2015-01-01
In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probability of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations, and trials and errors, but here, I take a different perspective, inspired by evolution, I systematically simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable. I stimulate networks with pulses and then measure their: dynamic range, dominant frequency of population activities, total duration of activities, maximum rate of population and the occurrence time of maximum rate. The results are organized in phase diagram. This phase diagram gives an insight into the space of parameters - excitatory to inhibitory ratio, sparseness of connections and synaptic weights. This phase diagram can be used to decide the parameters of a model. The phase diagrams show that networks which are configured according to the common values, have a good dynamic range in response to an impulse and their dynamic range is robust in respect to synaptic weights, and for some synaptic weights they oscillates in α or β frequencies, independent of external stimuli.
An efficient neural network approach to dynamic robot motion planning.
Yang, S X; Meng, M
2000-03-01
In this paper, a biologically inspired neural network approach to real-time collision-free motion planning of mobile robots or robot manipulators in a nonstationary environment is proposed. Each neuron in the topologically organized neural network has only local connections, whose neural dynamics is characterized by a shunting equation. Thus the computational complexity linearly depends on the neural network size. The real-time robot motion is planned through the dynamic activity landscape of the neural network without any prior knowledge of the dynamic environment, without explicitly searching over the free workspace or the collision paths, and without any learning procedures. Therefore it is computationally efficient. The global stability of the neural network is guaranteed by qualitative analysis and the Lyapunov stability theory. The effectiveness and efficiency of the proposed approach are demonstrated through simulation studies.
Directory of Open Access Journals (Sweden)
T. Lakhlifi
2003-04-01
Full Text Available Abstract: From a series of 50 MK801 derivative molecules, a selected set of 44 compounds was submitted to a principal components analysis (PCA, a multiple regression analysis (MRA, and a neural network (NN. This study shows that the compounds' activity correlates reasonably well with the selected descriptors encoding the chemical structures. The correlation coefficients calculated by MRA and there after by NN, r = 0.986 and r = 0.974 respectively, are fairly good to evaluate a quantitative model, and to predict activity for MK801 derivatives. To test the performance of this model, the activities of the remained set of 6 compounds are deduced from the proposed quantitative model, by NN. This study proved that the predictive power of this model is relevant.
Programmable synaptic chip for electronic neural networks
Moopenn, A.; Langenbacher, H.; Thakoor, A. P.; Khanna, S. K.
1988-01-01
A binary synaptic matrix chip has been developed for electronic neural networks. The matrix chip contains a programmable 32X32 array of 'long channel' NMOSFET binary connection elements implemented in a 3-micron bulk CMOS process. Since the neurons are kept off-chip, the synaptic chip serves as a 'cascadable' building block for a multi-chip synaptic network as large as 512X512 in size. As an alternative to the programmable NMOSFET (long channel) connection elements, tailored thin film resistors are deposited, in series with FET switches, on some CMOS test chips, to obtain the weak synaptic connections. Although deposition and patterning of the resistors require additional processing steps, they promise substantial savings in silicon area. The performance of synaptic chip in a 32-neuron breadboard system in an associative memory test application is discussed.
Dynamics of macro- and microscopic neural networks
DEFF Research Database (Denmark)
Mikkelsen, Kaare
2014-01-01
GN), which is a class of signals with a non-trivial low-frequency component. It is assumed that certain characteristica about the low-frequency component can yield information about the neural processes behind the signal. The method has been used in a range of different studies over the course of the past 10...... that the method continues to find use, of which examples are presented. In the second part of the thesis, numerical simulations of networks of neurons are described. To simplify the analysis, a relatively simpled neuron model - Leaky Integrate and Fire - is chosen. The strengths of the connections between...... shown that the syncronizing effect of the plasticity disappears when the strengths of the connections are frozen in time. Subsequently, the so-called ``Sisyphus'' mechanism is discussed, which is shown to cause slow fluctuations in the both the network synchronization and the strengths...
A Convolutional Neural Network Neutrino Event Classifier
Aurisano, A; Rocco, D; Himmel, A; Messier, M D; Niner, E; Pawloski, G; Psihas, F; Sousa, A; Vahle, P
2016-01-01
Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.
Brain tumor segmentation with Deep Neural Networks.
Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo
2017-01-01
In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster. Copyright © 2016 Elsevier B.V. All rights reserved.
Artificial neural networks in pancreatic disease.
Bartosch-Härlid, A; Andersson, B; Aho, U; Nilsson, J; Andersson, R
2008-07-01
An artificial neural network (ANNs) is a non-linear pattern recognition technique that is rapidly gaining in popularity in medical decision-making. This study investigated the use of ANNs for diagnostic and prognostic purposes in pancreatic disease, especially acute pancreatitis and pancreatic cancer. PubMed was searched for articles on the use of ANNs in pancreatic diseases using the MeSH terms 'neural networks (computer)', 'pancreatic neoplasms', 'pancreatitis' and 'pancreatic diseases'. A systematic review of the articles was performed. Eleven articles were identified, published between 1993 and 2007. The situations that lend themselves best to analysis by ANNs are complex multifactorial relationships, medical decisions when a second opinion is needed and when automated interpretation is required, for example in a situation of an inadequate number of experts. Conventional linear models have limitations in terms of diagnosis and prediction of outcome in acute pancreatitis and pancreatic cancer. Management of these disorders can be improved by applying ANNs to existing clinical parameters and newly established gene expression profiles. (c) 2008 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.
BOUNDARY DEPTH INFORMATION USING HOPFIELD NEURAL NETWORK
Directory of Open Access Journals (Sweden)
S. Xu
2016-06-01
Full Text Available Depth information is widely used for representation, reconstruction and modeling of 3D scene. Generally two kinds of methods can obtain the depth information. One is to use the distance cues from the depth camera, but the results heavily depend on the device, and the accuracy is degraded greatly when the distance from the object is increased. The other one uses the binocular cues from the matching to obtain the depth information. It is more and more mature and convenient to collect the depth information of different scenes by stereo matching methods. In the objective function, the data term is to ensure that the difference between the matched pixels is small, and the smoothness term is to smooth the neighbors with different disparities. Nonetheless, the smoothness term blurs the boundary depth information of the object which becomes the bottleneck of the stereo matching. This paper proposes a novel energy function for the boundary to keep the discontinuities and uses the Hopfield neural network to solve the optimization. We first extract the region of interest areas which are the boundary pixels in original images. Then, we develop the boundary energy function to calculate the matching cost. At last, we solve the optimization globally by the Hopfield neural network. The Middlebury stereo benchmark is used to test the proposed method, and results show that our boundary depth information is more accurate than other state-of-the-art methods and can be used to optimize the results of other stereo matching methods.
Maximum Entropy Approaches to Living Neural Networks
Directory of Open Access Journals (Sweden)
John M. Beggs
2010-01-01
Full Text Available Understanding how ensembles of neurons collectively interact will be a key step in developing a mechanistic theory of cognitive processes. Recent progress in multineuron recording and analysis techniques has generated tremendous excitement over the physiology of living neural networks. One of the key developments driving this interest is a new class of models based on the principle of maximum entropy. Maximum entropy models have been reported to account for spatial correlation structure in ensembles of neurons recorded from several different types of data. Importantly, these models require only information about the firing rates of individual neurons and their pairwise correlations. If this approach is generally applicable, it would drastically simplify the problem of understanding how neural networks behave. Given the interest in this method, several groups now have worked to extend maximum entropy models to account for temporal correlations. Here, we review how maximum entropy models have been applied to neuronal ensemble data to account for spatial and temporal correlations. We also discuss criticisms of the maximum entropy approach that argue that it is not generally applicable to larger ensembles of neurons. We conclude that future maximum entropy models will need to address three issues: temporal correlations, higher-order correlations, and larger ensemble sizes. Finally, we provide a brief list of topics for future research.
Neural network analysis for hazardous waste characterization
Energy Technology Data Exchange (ETDEWEB)
Misra, M.; Pratt, L.Y.; Farris, C. [Colorado School of Mines, Golden, CO (United States)] [and others
1995-12-31
This paper is a summary of our work in developing a system for interpreting electromagnetic (EM) and magnetic sensor information from the dig face characterization experimental cell at INEL to determine the depth and nature of buried objects. This project contained three primary components: (1) development and evaluation of several geophysical interpolation schemes for correcting missing or noisy data, (2) development and evaluation of several wavelet compression schemes for removing redundancies from the data, and (3) construction of two neural networks that used the results of steps (1) and (2) to determine the depth and nature of buried objects. This work is a proof-of-concept study that demonstrates the feasibility of this approach. The resulting system was able to determine the nature of buried objects correctly 87% of the time and was able to locate a buried object to within an average error of 0.8 feet. These statistics were gathered based on a large test set and so can be considered reliable. Considering the limited nature of this study, these results strongly indicate the feasibility of this approach, and the importance of appropriate preprocessing of neural network input data.
Object Classification Using Substance Based Neural Network
Directory of Open Access Journals (Sweden)
P. Sengottuvelan
2014-01-01
Full Text Available Object recognition has shown tremendous increase in the field of image analysis. The required set of image objects is identified and retrieved on the basis of object recognition. In this paper, we propose a novel classification technique called substance based image classification (SIC using a wavelet neural network. The foremost task of SIC is to remove the surrounding regions from an image to reduce the misclassified portion and to effectively reflect the shape of an object. At first, the image to be extracted is performed with SIC system through the segmentation of the image. Next, in order to attain more accurate information, with the extracted set of regions, the wavelet transform is applied for extracting the configured set of features. Finally, using the neural network classifier model, misclassification over the given natural images and further background images are removed from the given natural image using the LSEG segmentation. Moreover, to increase the accuracy of object classification, SIC system involves the removal of the regions in the surrounding image. Performance evaluation reveals that the proposed SIC system reduces the occurrence of misclassification and reflects the exact shape of an object to approximately 10–15%.
Robust/optimal temperature profile control of a high-speed aerospace vehicle using neural networks.
Yadav, Vivek; Padhi, Radhakant; Balakrishnan, S N
2007-07-01
An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A 1-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.
Energy coding in neural network with inhibitory neurons.
Wang, Ziyin; Wang, Rubin; Fang, Ruiyan
2015-04-01
This paper aimed at assessing and comparing the effects of the inhibitory neurons in the neural network on the neural energy distribution, and the network activities in the absence of the inhibitory neurons to understand the nature of neural energy distribution and neural energy coding. Stimulus, synchronous oscillation has significant difference between neural networks with and without inhibitory neurons, and this difference can be quantitatively evaluated by the characteristic energy distribution. In addition, the synchronous oscillation difference of the neural activity can be quantitatively described by change of the energy distribution if the network parameters are gradually adjusted. Compared with traditional method of correlation coefficient analysis, the quantitative indicators based on nervous energy distribution characteristics are more effective in reflecting the dynamic features of the neural network activities. Meanwhile, this neural coding method from a global perspective of neural activity effectively avoids the current defects of neural encoding and decoding theory and enormous difficulties encountered. Our studies have shown that neural energy coding is a new coding theory with high efficiency and great potential.
Learning of N-layers neural network
Directory of Open Access Journals (Sweden)
Vladimír Konečný
2005-01-01
Full Text Available In the last decade we can observe increasing number of applications based on the Artificial Intelligence that are designed to solve problems from different areas of human activity. The reason why there is so much interest in these technologies is that the classical way of solutions does not exist or these technologies are not suitable because of their robustness. They are often used in applications like Business Intelligence that enable to obtain useful information for high-quality decision-making and to increase competitive advantage.One of the most widespread tools for the Artificial Intelligence are the artificial neural networks. Their high advantage is relative simplicity and the possibility of self-learning based on set of pattern situations.For the learning phase is the most commonly used algorithm back-propagation error (BPE. The base of BPE is the method minima of error function representing the sum of squared errors on outputs of neural net, for all patterns of the learning set. However, while performing BPE and in the first usage, we can find out that it is necessary to complete the handling of the learning factor by suitable method. The stability of the learning process and the rate of convergence depend on the selected method. In the article there are derived two functions: one function for the learning process management by the relative great error function value and the second function when the value of error function approximates to global minimum.The aim of the article is to introduce the BPE algorithm in compact matrix form for multilayer neural networks, the derivation of the learning factor handling method and the presentation of the results.
Energy Technology Data Exchange (ETDEWEB)
Ortiz R, J. M. [Escuela Politecnica Superior, Departamento de Electrotecnia y Electronica, Avda. Menendez Pidal s/n, Cordoba (Spain); Martinez B, M. R.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego D, E.; Lorente F, A. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, ETSI Industriales, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Mendez V, R.; Los Arcos M, J. M.; Guerrero A, J. E., E-mail: morvymm@yahoo.com.m [CIEMAT, Laboratorio de Metrologia de Radiaciones Ionizantes, Avda. Complutense 22, 28040 Madrid (Spain)
2011-02-15
With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks (Ann) have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Ann still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning Ann parameters. In recent years the use of hybrid technologies, combining Ann and genetic algorithms, has been utilized to. In this work, several Ann topologies were trained and tested using Ann and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out. (Author)
Semantic segmentation of bioimages using convolutional neural networks
CSIR Research Space (South Africa)
Wiehman, S
2016-07-01
Full Text Available Convolutional neural networks have shown great promise in both general image segmentation problems as well as bioimage segmentation. In this paper, the application of different convolutional network architectures is explored on the C. elegans live...
Artificial neural networks with an infinite number of nodes
Blekas, K.; Lagaris, I. E.
2017-10-01
A new class of Artificial Neural Networks is described incorporating a node density function and functional weights. This network containing an infinite number of nodes, excels in generalizing and possesses a superior extrapolation capability.
Altered Synchronizations among Neural Networks in Geriatric Depression.
Wang, Lihong; Chou, Ying-Hui; Potter, Guy G; Steffens, David C
2015-01-01
Although major depression has been considered as a manifestation of discoordinated activity between affective and cognitive neural networks, only a few studies have examined the relationships among neural networks directly. Because of the known disconnection theory, geriatric depression could be a useful model in studying the interactions among different networks. In the present study, using independent component analysis to identify intrinsically connected neural networks, we investigated the alterations in synchronizations among neural networks in geriatric depression to better understand the underlying neural mechanisms. Resting-state fMRI data was collected from thirty-two patients with geriatric depression and thirty-two age-matched never-depressed controls. We compared the resting-state activities between the two groups in the default-mode, central executive, attention, salience, and affective networks as well as correlations among these networks. The depression group showed stronger activity than the controls in an affective network, specifically within the orbitofrontal region. However, unlike the never-depressed controls, geriatric depression group lacked synchronized/antisynchronized activity between the affective network and the other networks. Those depressed patients with lower executive function has greater synchronization between the salience network with the executive and affective networks. Our results demonstrate the effectiveness of the between-network analyses in examining neural models for geriatric depression.
Adaptive training of feedforward neural networks by Kalman filtering
Energy Technology Data Exchange (ETDEWEB)
Ciftcioglu, Oe. [Istanbul Technical Univ. (Turkey). Dept. of Electrical Engineering; Tuerkcan, E. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)
1995-02-01
Adaptive training of feedforward neural networks by Kalman filtering is described. Adaptive training is particularly important in estimation by neural network in real-time environmental where the trained network is used for system estimation while the network is further trained by means of the information provided by the experienced/exercised ongoing operation. As result of this, neural network adapts itself to a changing environment to perform its mission without recourse to re-training. The performance of the training method is demonstrated by means of actual process signals from a nuclear power plant. (orig.).
Automated Modeling of Microwave Structures by Enhanced Neural Networks
Directory of Open Access Journals (Sweden)
Z. Raida
2006-12-01
Full Text Available The paper describes the methodology of the automated creation of neural models of microwave structures. During the creation process, artificial neural networks are trained using the combination of the particle swarm optimization and the quasi-Newton method to avoid critical training problems of the conventional neural nets. In the paper, neural networks are used to approximate the behavior of a planar microwave filter (moment method, Zeland IE3D. In order to evaluate the efficiency of neural modeling, global optimizations are performed using numerical models and neural ones. Both approaches are compared from the viewpoint of CPU-time demands and the accuracy. Considering conclusions, methodological recommendations for including neural networks to the microwave design are formulated.
Quantum Entanglement in Neural Network States
Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.
2017-04-01
Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the
Neural networks to formulate special fats
Directory of Open Access Journals (Sweden)
Garcia, R. K.
2012-09-01
Full Text Available Neural networks are a branch of artificial intelligence based on the structure and development of biological systems, having as its main characteristic the ability to learn and generalize knowledge. They are used for solving complex problems for which traditional computing systems have a low efficiency. To date, applications have been proposed for different sectors and activities. In the area of fats and oils, the use of neural networks has focused mainly on two issues: the detection of adulteration and the development of fatty products. The formulation of fats for specific uses is the classic case of a complex problem where an expert or group of experts defines the proportions of each base, which, when mixed, provide the specifications for the desired product. Some conventional computer systems are currently available to assist the experts; however, these systems have some shortcomings. This article describes in detail a system for formulating fatty products, shortenings or special fats, from three or more components by using neural networks (MIX. All stages of development, including design, construction, training, evaluation, and operation of the network will be outlined.
Las redes neuronales son una rama de la inteligencia artificial basadas en la estructura y funcionamiento de sistemas biológicos, teniendo como principal característica la capacidad de aprender y generalizar conocimiento. Estas son utilizadas en la resolución de problemas complejos, en los cuales los sistemas computacionales tradicionales presentan una eficiencia baja. Hasta la fecha, han sido propuestas aplicaciones para los más diversos sectores y actividades. En el área de grasas y aceites, la utilización de redes neuronales se ha concentrado principalmente en dos asuntos: la detección de adulteraciones y la formulación de productos grasos. La formulación de grasas para uso específico es el caso clásico de problema complejo donde un experto o grupo de
Quantum Entanglement in Neural Network States
Directory of Open Access Journals (Sweden)
Dong-Ling Deng
2017-05-01
Full Text Available Machine learning, one of today’s most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our
Design of FPGA Based Neural Network Controller for Earth Station Power System
Directory of Open Access Journals (Sweden)
Hassen T. Dorrah
2012-06-01
Full Text Available Automation of generating hardware description language code from neural networks models can highly decrease time of implementation those networks into a digital devices, thus significant money savings. To implement the neural network into hardware designer, it is required to translate generated model into device structure. VHDL language is used to describe those networks into hardware. VHDL code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic of the earth station and the satellite power systems using ModelSim PE 6.6 simulator tool. Integration between MATLAB and VHDL is used to save execution time of computation. The results shows that a good agreement between MATLAB and VHDL and a fast/flexible feed forward NN which is capable of dealing with floating point arithmetic operations; minimum number of CLB slices; and good speed of performance. FPGA synthesis results are obtained with view RTL schematic and technology schematic from Xilinix tool. Minimum number of utilized resources is obtained by using Xilinix VERTIX5.
Moncayo, S.; Manzoor, S.; Ugidos, T.; Navarro-Villoslada, F.; Caceres, J. O.
2014-11-01
A fast and minimally destructive method based on Laser Induced Breakdown Spectroscopy (LIBS) and Neural Networks (NN) has been developed and applied to the classification and discrimination of human bones and teeth fragments. The methodology can be useful in Disaster Victim Identification (DVI) tasks. The elemental compositions of bone and teeth samples provided enough information to achieve a correct discrimination and reassembling of different human remains. Individuals were classified with spectral correlation higher than 95%, regardless of the type of bone or tooth sample analyzed. No false positive or false negative was observed, demonstrating the high robustness and accuracy of the proposed methodology.
Rod-Shaped Neural Units for Aligned 3D Neural Network Connection.
Kato-Negishi, Midori; Onoe, Hiroaki; Ito, Akane; Takeuchi, Shoji
2017-08-01
This paper proposes neural tissue units with aligned nerve fibers (called rod-shaped neural units) that connect neural networks with aligned neurons. To make the proposed units, 3D fiber-shaped neural tissues covered with a calcium alginate hydrogel layer are prepared with a microfluidic system and are cut in an accurate and reproducible manner. These units have aligned nerve fibers inside the hydrogel layer and connectable points on both ends. By connecting the units with a poly(dimethylsiloxane) guide, 3D neural tissues can be constructed and maintained for more than two weeks of culture. In addition, neural networks can be formed between the different neural units via synaptic connections. Experimental results indicate that the proposed rod-shaped neural units are effective tools for the construction of spatially complex connections with aligned nerve fibers in vitro. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multiple image sensor data fusion through artificial neural networks
With multisensor data fusion technology, the data from multiple sensors are fused in order to make a more accurate estimation of the environment through measurement, processing and analysis. Artificial neural networks are the computational models that mimic biological neural networks. With high per...
Behaviour in O of the Neural Networks Training Cost
DEFF Research Database (Denmark)
Goutte, Cyril
1998-01-01
We study the behaviour in zero of the derivatives of the cost function used when training non-linear neural networks. It is shown that a fair number offirst, second and higher order derivatives vanish in zero, validating the belief that 0 is a peculiar and potentially harmful location....... These calculations arerelated to practical and theoretical aspects of neural networks training....
Neural network model to control an experimental chaotic pendulum
Bakker, R; Schouten, JC; Takens, F; vandenBleek, CM
1996-01-01
A feedforward neural network was trained to predict the motion of an experimental, driven, and damped pendulum operating in a chaotic regime. The network learned the behavior of the pendulum from a time series of the pendulum's angle, the single measured variable. The validity of the neural