WorldWideScience

Sample records for neural networks learning

  1. Neural networks and statistical learning

    CERN Document Server

    Du, Ke-Lin

    2014-01-01

    Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...

  2. Entropy Learning in Neural Network

    Directory of Open Access Journals (Sweden)

    Geok See Ng

    2017-12-01

    Full Text Available In this paper, entropy term is used in the learning phase of a neural network.  As learning progresses, more hidden nodes get into saturation.  The early creation of such hidden nodes may impair generalisation.  Hence entropy approach is proposed to dampen the early creation of such nodes.  The entropy learning also helps to increase the importance of relevant nodes while dampening the less important nodes.  At the end of learning, the less important nodes can then be eliminated to reduce the memory requirements of the neural network.

  3. Adaptive competitive learning neural networks

    Directory of Open Access Journals (Sweden)

    Ahmed R. Abas

    2013-11-01

    Full Text Available In this paper, the adaptive competitive learning (ACL neural network algorithm is proposed. This neural network not only groups similar input feature vectors together but also determines the appropriate number of groups of these vectors. This algorithm uses a new proposed criterion referred to as the ACL criterion. This criterion evaluates different clustering structures produced by the ACL neural network for an input data set. Then, it selects the best clustering structure and the corresponding network architecture for this data set. The selected structure is composed of the minimum number of clusters that are compact and balanced in their sizes. The selected network architecture is efficient, in terms of its complexity, as it contains the minimum number of neurons. Synaptic weight vectors of these neurons represent well-separated, compact and balanced clusters in the input data set. The performance of the ACL algorithm is evaluated and compared with the performance of a recently proposed algorithm in the literature in clustering an input data set and determining its number of clusters. Results show that the ACL algorithm is more accurate and robust in both determining the number of clusters and allocating input feature vectors into these clusters than the other algorithm especially with data sets that are sparsely distributed.

  4. Machine Learning Topological Invariants with Neural Networks

    Science.gov (United States)

    Zhang, Pengfei; Shen, Huitao; Zhai, Hui

    2018-02-01

    In this Letter we supervisedly train neural networks to distinguish different topological phases in the context of topological band insulators. After training with Hamiltonians of one-dimensional insulators with chiral symmetry, the neural network can predict their topological winding numbers with nearly 100% accuracy, even for Hamiltonians with larger winding numbers that are not included in the training data. These results show a remarkable success that the neural network can capture the global and nonlinear topological features of quantum phases from local inputs. By opening up the neural network, we confirm that the network does learn the discrete version of the winding number formula. We also make a couple of remarks regarding the role of the symmetry and the opposite effect of regularization techniques when applying machine learning to physical systems.

  5. Learning-parameter adjustment in neural networks

    Science.gov (United States)

    Heskes, Tom M.; Kappen, Bert

    1992-06-01

    We present a learning-parameter adjustment algorithm, valid for a large class of learning rules in neural-network literature. The algorithm follows directly from a consideration of the statistics of the weights in the network. The characteristic behavior of the algorithm is calculated, both in a fixed and a changing environment. A simple example, Widrow-Hoff learning for statistical classification, serves as an illustration.

  6. Logarithmic learning for generalized classifier neural network.

    Science.gov (United States)

    Ozyildirim, Buse Melis; Avci, Mutlu

    2014-12-01

    Generalized classifier neural network is introduced as an efficient classifier among the others. Unless the initial smoothing parameter value is close to the optimal one, generalized classifier neural network suffers from convergence problem and requires quite a long time to converge. In this work, to overcome this problem, a logarithmic learning approach is proposed. The proposed method uses logarithmic cost function instead of squared error. Minimization of this cost function reduces the number of iterations used for reaching the minima. The proposed method is tested on 15 different data sets and performance of logarithmic learning generalized classifier neural network is compared with that of standard one. Thanks to operation range of radial basis function included by generalized classifier neural network, proposed logarithmic approach and its derivative has continuous values. This makes it possible to adopt the advantage of logarithmic fast convergence by the proposed learning method. Due to fast convergence ability of logarithmic cost function, training time is maximally decreased to 99.2%. In addition to decrease in training time, classification performance may also be improved till 60%. According to the test results, while the proposed method provides a solution for time requirement problem of generalized classifier neural network, it may also improve the classification accuracy. The proposed method can be considered as an efficient way for reducing the time requirement problem of generalized classifier neural network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Learning drifting concepts with neural networks

    NARCIS (Netherlands)

    Biehl, Michael; Schwarze, Holm

    1993-01-01

    The learning of time-dependent concepts with a neural network is studied analytically and numerically. The linearly separable target rule is represented by an N-vector, whose time dependence is modelled by a random or deterministic drift process. A single-layer network is trained online using

  8. Deep learning in neural networks: an overview.

    Science.gov (United States)

    Schmidhuber, Jürgen

    2015-01-01

    In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

  9. Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis

    Directory of Open Access Journals (Sweden)

    Chernoded Andrey

    2017-01-01

    Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.

  10. Learning and coding in biological neural networks

    Science.gov (United States)

    Fiete, Ila Rani

    How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and

  11. Learning in Neural Networks: VLSI Implementation Strategies

    Science.gov (United States)

    Duong, Tuan Anh

    1995-01-01

    Fully-parallel hardware neural network implementations may be applied to high-speed recognition, classification, and mapping tasks in areas such as vision, or can be used as low-cost self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning is required not only to satisfy application requirements, but also to overcome hardware-imposed limitations such as reduced dynamic range of connections.

  12. Learning of N-layers neural network

    Directory of Open Access Journals (Sweden)

    Vladimír Konečný

    2005-01-01

    Full Text Available In the last decade we can observe increasing number of applications based on the Artificial Intelligence that are designed to solve problems from different areas of human activity. The reason why there is so much interest in these technologies is that the classical way of solutions does not exist or these technologies are not suitable because of their robustness. They are often used in applications like Business Intelligence that enable to obtain useful information for high-quality decision-making and to increase competitive advantage.One of the most widespread tools for the Artificial Intelligence are the artificial neural networks. Their high advantage is relative simplicity and the possibility of self-learning based on set of pattern situations.For the learning phase is the most commonly used algorithm back-propagation error (BPE. The base of BPE is the method minima of error function representing the sum of squared errors on outputs of neural net, for all patterns of the learning set. However, while performing BPE and in the first usage, we can find out that it is necessary to complete the handling of the learning factor by suitable method. The stability of the learning process and the rate of convergence depend on the selected method. In the article there are derived two functions: one function for the learning process management by the relative great error function value and the second function when the value of error function approximates to global minimum.The aim of the article is to introduce the BPE algorithm in compact matrix form for multilayer neural networks, the derivation of the learning factor handling method and the presentation of the results.

  13. Supervised Learning with Complex-valued Neural Networks

    CERN Document Server

    Suresh, Sundaram; Savitha, Ramasamy

    2013-01-01

    Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks.  Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computati...

  14. Do Convolutional Neural Networks Learn Class Hierarchy?

    Science.gov (United States)

    Bilal, Alsallakh; Jourabloo, Amin; Ye, Mao; Liu, Xiaoming; Ren, Liu

    2018-01-01

    Convolutional Neural Networks (CNNs) currently achieve state-of-the-art accuracy in image classification. With a growing number of classes, the accuracy usually drops as the possibilities of confusion increase. Interestingly, the class confusion patterns follow a hierarchical structure over the classes. We present visual-analytics methods to reveal and analyze this hierarchy of similar classes in relation with CNN-internal data. We found that this hierarchy not only dictates the confusion patterns between the classes, it furthermore dictates the learning behavior of CNNs. In particular, the early layers in these networks develop feature detectors that can separate high-level groups of classes quite well, even after a few training epochs. In contrast, the latter layers require substantially more epochs to develop specialized feature detectors that can separate individual classes. We demonstrate how these insights are key to significant improvement in accuracy by designing hierarchy-aware CNNs that accelerate model convergence and alleviate overfitting. We further demonstrate how our methods help in identifying various quality issues in the training data.

  15. Deep Learning Neural Networks in Cybersecurity - Managing Malware with AI

    OpenAIRE

    Rayle, Keith

    2017-01-01

    There’s a lot of talk about the benefits of deep learning (neural networks) and how it’s the new electricity that will power us into the future. Medical diagnosis, computer vision and speech recognition are all examples of use-cases where neural networks are being applied in our everyday business environment. This begs the question…what are the uses of neural-network applications for cyber security? How does the AI process work when applying neural networks to detect malicious software bombar...

  16. Fastest learning in small-world neural networks

    International Nuclear Information System (INIS)

    Simard, D.; Nadeau, L.; Kroeger, H.

    2005-01-01

    We investigate supervised learning in neural networks. We consider a multi-layered feed-forward network with back propagation. We find that the network of small-world connectivity reduces the learning error and learning time when compared to the networks of regular or random connectivity. Our study has potential applications in the domain of data-mining, image processing, speech recognition, and pattern recognition

  17. Introduction to spiking neural networks: Information processing, learning and applications.

    Science.gov (United States)

    Ponulak, Filip; Kasinski, Andrzej

    2011-01-01

    The concept that neural information is encoded in the firing rate of neurons has been the dominant paradigm in neurobiology for many years. This paradigm has also been adopted by the theory of artificial neural networks. Recent physiological experiments demonstrate, however, that in many parts of the nervous system, neural code is founded on the timing of individual action potentials. This finding has given rise to the emergence of a new class of neural models, called spiking neural networks. In this paper we summarize basic properties of spiking neurons and spiking networks. Our focus is, specifically, on models of spike-based information coding, synaptic plasticity and learning. We also survey real-life applications of spiking models. The paper is meant to be an introduction to spiking neural networks for scientists from various disciplines interested in spike-based neural processing.

  18. Using machine learning, neural networks and statistics to predict bankruptcy

    NARCIS (Netherlands)

    Pompe, P.P.M.; Feelders, A.J.; Feelders, A.J.

    1997-01-01

    Recent literature strongly suggests that machine learning approaches to classification outperform "classical" statistical methods. We make a comparison between the performance of linear discriminant analysis, classification trees, and neural networks in predicting corporate bankruptcy. Linear

  19. Boltzmann learning of parameters in cellular neural networks

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    1992-01-01

    The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified...

  20. Learning in neural networks based on a generalized fluctuation theorem

    Science.gov (United States)

    Hayakawa, Takashi; Aoyagi, Toshio

    2015-11-01

    Information maximization has been investigated as a possible mechanism of learning governing the self-organization that occurs within the neural systems of animals. Within the general context of models of neural systems bidirectionally interacting with environments, however, the role of information maximization remains to be elucidated. For bidirectionally interacting physical systems, universal laws describing the fluctuation they exhibit and the information they possess have recently been discovered. These laws are termed fluctuation theorems. In the present study, we formulate a theory of learning in neural networks bidirectionally interacting with environments based on the principle of information maximization. Our formulation begins with the introduction of a generalized fluctuation theorem, employing an interpretation appropriate for the present application, which differs from the original thermodynamic interpretation. We analytically and numerically demonstrate that the learning mechanism presented in our theory allows neural networks to efficiently explore their environments and optimally encode information about them.

  1. Learning and forgetting on asymmetric, diluted neural networks

    International Nuclear Information System (INIS)

    Derrida, B.; Nadal, J.P.

    1987-01-01

    It is possible to construct diluted asymmetric models of neural networks for which the dynamics can be calculated exactly. The authors test several learning schemes, in particular, models for which the values of the synapses remain bounded and depend on the history. Our analytical results on the relative efficiencies of the various learning schemes are qualitatively similar to the corresponding ones obtained numerically on fully connected symmetric networks

  2. Deep learning classification in asteroseismology using an improved neural network

    DEFF Research Database (Denmark)

    Hon, Marc; Stello, Dennis; Yu, Jie

    2018-01-01

    Deep learning in the form of 1D convolutional neural networks have previously been shown to be capable of efficiently classifying the evolutionary state of oscillating red giants into red giant branch stars and helium-core burning stars by recognizing visual features in their asteroseismic...... frequency spectra. We elaborate further on the deep learning method by developing an improved convolutional neural network classifier. To make our method useful for current and future space missions such as K2, TESS, and PLATO, we train classifiers that are able to classify the evolutionary states of lower...

  3. Self-teaching neural network learns difficult reactor control problem

    International Nuclear Information System (INIS)

    Jouse, W.C.

    1989-01-01

    A self-teaching neural network used as an adaptive controller quickly learns to control an unstable reactor configuration. The network models the behavior of a human operator. It is trained by allowing it to operate the reactivity control impulsively. It is punished whenever either the power or fuel temperature stray outside technical limits. Using a simple paradigm, the network constructs an internal representation of the punishment and of the reactor system. The reactor is constrained to small power orbits

  4. SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks.

    Science.gov (United States)

    Zenke, Friedemann; Ganguli, Surya

    2018-04-13

    A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in silico. Here we revisit the problem of supervised learning in temporally coding multilayer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric, and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike time patterns.

  5. Neural Network Machine Learning and Dimension Reduction for Data Visualization

    Science.gov (United States)

    Liles, Charles A.

    2014-01-01

    Neural network machine learning in computer science is a continuously developing field of study. Although neural network models have been developed which can accurately predict a numeric value or nominal classification, a general purpose method for constructing neural network architecture has yet to be developed. Computer scientists are often forced to rely on a trial-and-error process of developing and improving accurate neural network models. In many cases, models are constructed from a large number of input parameters. Understanding which input parameters have the greatest impact on the prediction of the model is often difficult to surmise, especially when the number of input variables is very high. This challenge is often labeled the "curse of dimensionality" in scientific fields. However, techniques exist for reducing the dimensionality of problems to just two dimensions. Once a problem's dimensions have been mapped to two dimensions, it can be easily plotted and understood by humans. The ability to visualize a multi-dimensional dataset can provide a means of identifying which input variables have the highest effect on determining a nominal or numeric output. Identifying these variables can provide a better means of training neural network models; models can be more easily and quickly trained using only input variables which appear to affect the outcome variable. The purpose of this project is to explore varying means of training neural networks and to utilize dimensional reduction for visualizing and understanding complex datasets.

  6. Thermodynamic efficiency of learning a rule in neural networks

    Science.gov (United States)

    Goldt, Sebastian; Seifert, Udo

    2017-11-01

    Biological systems have to build models from their sensory input data that allow them to efficiently process previously unseen inputs. Here, we study a neural network learning a binary classification rule for these inputs from examples provided by a teacher. We analyse the ability of the network to apply the rule to new inputs, that is to generalise from past experience. Using stochastic thermodynamics, we show that the thermodynamic costs of the learning process provide an upper bound on the amount of information that the network is able to learn from its teacher for both batch and online learning. This allows us to introduce a thermodynamic efficiency of learning. We analytically compute the dynamics and the efficiency of a noisy neural network performing online learning in the thermodynamic limit. In particular, we analyse three popular learning algorithms, namely Hebbian, Perceptron and AdaTron learning. Our work extends the methods of stochastic thermodynamics to a new type of learning problem and might form a suitable basis for investigating the thermodynamics of decision-making.

  7. Competitive Learning Neural Network Ensemble Weighted by Predicted Performance

    Science.gov (United States)

    Ye, Qiang

    2010-01-01

    Ensemble approaches have been shown to enhance classification by combining the outputs from a set of voting classifiers. Diversity in error patterns among base classifiers promotes ensemble performance. Multi-task learning is an important characteristic for Neural Network classifiers. Introducing a secondary output unit that receives different…

  8. Learning-induced pattern classification in a chaotic neural network

    International Nuclear Information System (INIS)

    Li, Yang; Zhu, Ping; Xie, Xiaoping; He, Guoguang; Aihara, Kazuyuki

    2012-01-01

    In this Letter, we propose a Hebbian learning rule with passive forgetting (HLRPF) for use in a chaotic neural network (CNN). We then define the indices based on the Euclidean distance to investigate the evolution of the weights in a simplified way. Numerical simulations demonstrate that, under suitable external stimulations, the CNN with the proposed HLRPF acts as a fuzzy-like pattern classifier that performs much better than an ordinary CNN. The results imply relationship between learning and recognition. -- Highlights: ► Proposing a Hebbian learning rule with passive forgetting (HLRPF). ► Defining indices to investigate the evolution of the weights simply. ► The chaotic neural network with HLRPF acts as a fuzzy-like pattern classifier. ► The pattern classifier ability of the network is improved much.

  9. Biologically-inspired Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the `biologically-inspired' approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks. We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  10. Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks

    OpenAIRE

    Shen, Li; Lin, Zhouchen; Huang, Qingming

    2015-01-01

    Learning deeper convolutional neural networks becomes a tendency in recent years. However, many empirical evidences suggest that performance improvement cannot be gained by simply stacking more layers. In this paper, we consider the issue from an information theoretical perspective, and propose a novel method Relay Backpropagation, that encourages the propagation of effective information through the network in training stage. By virtue of the method, we achieved the first place in ILSVRC 2015...

  11. A Multiobjective Sparse Feature Learning Model for Deep Neural Networks.

    Science.gov (United States)

    Gong, Maoguo; Liu, Jia; Li, Hao; Cai, Qing; Su, Linzhi

    2015-12-01

    Hierarchical deep neural networks are currently popular learning models for imitating the hierarchical architecture of human brain. Single-layer feature extractors are the bricks to build deep networks. Sparse feature learning models are popular models that can learn useful representations. But most of those models need a user-defined constant to control the sparsity of representations. In this paper, we propose a multiobjective sparse feature learning model based on the autoencoder. The parameters of the model are learnt by optimizing two objectives, reconstruction error and the sparsity of hidden units simultaneously to find a reasonable compromise between them automatically. We design a multiobjective induced learning procedure for this model based on a multiobjective evolutionary algorithm. In the experiments, we demonstrate that the learning procedure is effective, and the proposed multiobjective model can learn useful sparse features.

  12. Learning and Generalisation in Neural Networks with Local Preprocessing

    OpenAIRE

    Kutsia, Merab

    2007-01-01

    We study learning and generalisation ability of a specific two-layer feed-forward neural network and compare its properties to that of a simple perceptron. The input patterns are mapped nonlinearly onto a hidden layer, much larger than the input layer, and this mapping is either fixed or may result from an unsupervised learning process. Such preprocessing of initially uncorrelated random patterns results in the correlated patterns in the hidden layer. The hidden-to-output mapping of the net...

  13. Stochastic sensitivity analysis and Langevin simulation for neural network learning

    International Nuclear Information System (INIS)

    Koda, Masato

    1997-01-01

    A comprehensive theoretical framework is proposed for the learning of a class of gradient-type neural networks with an additive Gaussian white noise process. The study is based on stochastic sensitivity analysis techniques, and formal expressions are obtained for stochastic learning laws in terms of functional derivative sensitivity coefficients. The present method, based on Langevin simulation techniques, uses only the internal states of the network and ubiquitous noise to compute the learning information inherent in the stochastic correlation between noise signals and the performance functional. In particular, the method does not require the solution of adjoint equations of the back-propagation type. Thus, the present algorithm has the potential for efficiently learning network weights with significantly fewer computations. Application to an unfolded multi-layered network is described, and the results are compared with those obtained by using a back-propagation method

  14. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  15. Continuous Online Sequence Learning with an Unsupervised Neural Network Model.

    Science.gov (United States)

    Cui, Yuwei; Ahmad, Subutar; Hawkins, Jeff

    2016-09-14

    The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variableorder temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.

  16. Finite time convergent learning law for continuous neural networks.

    Science.gov (United States)

    Chairez, Isaac

    2014-02-01

    This paper addresses the design of a discontinuous finite time convergent learning law for neural networks with continuous dynamics. The neural network was used here to obtain a non-parametric model for uncertain systems described by a set of ordinary differential equations. The source of uncertainties was the presence of some external perturbations and poor knowledge of the nonlinear function describing the system dynamics. A new adaptive algorithm based on discontinuous algorithms was used to adjust the weights of the neural network. The adaptive algorithm was derived by means of a non-standard Lyapunov function that is lower semi-continuous and differentiable in almost the whole space. A compensator term was included in the identifier to reject some specific perturbations using a nonlinear robust algorithm. Two numerical examples demonstrated the improvements achieved by the learning algorithm introduced in this paper compared to classical schemes with continuous learning methods. The first one dealt with a benchmark problem used in the paper to explain how the discontinuous learning law works. The second one used the methane production model to show the benefits in engineering applications of the learning law proposed in this paper. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Deep learning with convolutional neural network in radiology.

    Science.gov (United States)

    Yasaka, Koichiro; Akai, Hiroyuki; Kunimatsu, Akira; Kiryu, Shigeru; Abe, Osamu

    2018-04-01

    Deep learning with a convolutional neural network (CNN) is gaining attention recently for its high performance in image recognition. Images themselves can be utilized in a learning process with this technique, and feature extraction in advance of the learning process is not required. Important features can be automatically learned. Thanks to the development of hardware and software in addition to techniques regarding deep learning, application of this technique to radiological images for predicting clinically useful information, such as the detection and the evaluation of lesions, etc., are beginning to be investigated. This article illustrates basic technical knowledge regarding deep learning with CNNs along the actual course (collecting data, implementing CNNs, and training and testing phases). Pitfalls regarding this technique and how to manage them are also illustrated. We also described some advanced topics of deep learning, results of recent clinical studies, and the future directions of clinical application of deep learning techniques.

  18. Noise-driven manifestation of learning in mature neural networks

    International Nuclear Information System (INIS)

    Monterola, Christopher; Saloma, Caesar

    2002-01-01

    We show that the generalization capability of a mature thresholding neural network to process above-threshold disturbances in a noise-free environment is extended to subthreshold disturbances by ambient noise without retraining. The ability to benefit from noise is intrinsic and does not have to be learned separately. Nonlinear dependence of sensitivity with noise strength is significantly narrower than in individual threshold systems. Noise has a minimal effect on network performance for above-threshold signals. We resolve two seemingly contradictory responses of trained networks to noise--their ability to benefit from its presence and their robustness against noisy strong disturbances

  19. QSAR modelling using combined simple competitive learning networks and RBF neural networks.

    Science.gov (United States)

    Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E

    2018-04-01

    The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.

  20. Neural network representation and learning of mappings and their derivatives

    Science.gov (United States)

    White, Halbert; Hornik, Kurt; Stinchcombe, Maxwell; Gallant, A. Ronald

    1991-01-01

    Discussed here are recent theorems proving that artificial neural networks are capable of approximating an arbitrary mapping and its derivatives as accurately as desired. This fact forms the basis for further results establishing the learnability of the desired approximations, using results from non-parametric statistics. These results have potential applications in robotics, chaotic dynamics, control, and sensitivity analysis. An example involving learning the transfer function and its derivatives for a chaotic map is discussed.

  1. Learning, memory, and the role of neural network architecture.

    Directory of Open Access Journals (Sweden)

    Ann M Hermundstad

    2011-06-01

    Full Text Available The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.

  2. A stochastic learning algorithm for layered neural networks

    International Nuclear Information System (INIS)

    Bartlett, E.B.; Uhrig, R.E.

    1992-01-01

    The random optimization method typically uses a Gaussian probability density function (PDF) to generate a random search vector. In this paper the random search technique is applied to the neural network training problem and is modified to dynamically seek out the optimal probability density function (OPDF) from which to select the search vector. The dynamic OPDF search process, combined with an auto-adaptive stratified sampling technique and a dynamic node architecture (DNA) learning scheme, completes the modifications of the basic method. The DNA technique determines the appropriate number of hidden nodes needed for a given training problem. By using DNA, researchers do not have to set the neural network architectures before training is initiated. The approach is applied to networks of generalized, fully interconnected, continuous perceptions. Computer simulation results are given

  3. Supervised learning in spiking neural networks with FORCE training.

    Science.gov (United States)

    Nicola, Wilten; Clopath, Claudia

    2017-12-20

    Populations of neurons display an extraordinary diversity in the behaviors they affect and display. Machine learning techniques have recently emerged that allow us to create networks of model neurons that display behaviors of similar complexity. Here we demonstrate the direct applicability of one such technique, the FORCE method, to spiking neural networks. We train these networks to mimic dynamical systems, classify inputs, and store discrete sequences that correspond to the notes of a song. Finally, we use FORCE training to create two biologically motivated model circuits. One is inspired by the zebra finch and successfully reproduces songbird singing. The second network is motivated by the hippocampus and is trained to store and replay a movie scene. FORCE trained networks reproduce behaviors comparable in complexity to their inspired circuits and yield information not easily obtainable with other techniques, such as behavioral responses to pharmacological manipulations and spike timing statistics.

  4. Markov Chain Monte Carlo Bayesian Learning for Neural Networks

    Science.gov (United States)

    Goodrich, Michael S.

    2011-01-01

    Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.

  5. Learning Orthographic Structure With Sequential Generative Neural Networks.

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-04-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated a sequential version of the restricted Boltzmann machine (RBM), a stochastic recurrent neural network that extracts high-order structure from sensory data through unsupervised generative learning and can encode contextual information in the form of internal, distributed representations. We assessed whether this type of network can extract the orthographic structure of English monosyllables by learning a generative model of the letter sequences forming a word training corpus. We show that the network learned an accurate probabilistic model of English graphotactics, which can be used to make predictions about the letter following a given context as well as to autonomously generate high-quality pseudowords. The model was compared to an extended version of simple recurrent networks, augmented with a stochastic process that allows autonomous generation of sequences, and to non-connectionist probabilistic models (n-grams and hidden Markov models). We conclude that sequential RBMs and stochastic simple recurrent networks are promising candidates for modeling cognition in the temporal domain. Copyright © 2015 Cognitive Science Society, Inc.

  6. Self-learning Monte Carlo with deep neural networks

    Science.gov (United States)

    Shen, Huitao; Liu, Junwei; Fu, Liang

    2018-05-01

    The self-learning Monte Carlo (SLMC) method is a general algorithm to speedup MC simulations. Its efficiency has been demonstrated in various systems by introducing an effective model to propose global moves in the configuration space. In this paper, we show that deep neural networks can be naturally incorporated into SLMC, and without any prior knowledge can learn the original model accurately and efficiently. Demonstrated in quantum impurity models, we reduce the complexity for a local update from O (β2) in Hirsch-Fye algorithm to O (β lnβ ) , which is a significant speedup especially for systems at low temperatures.

  7. Differential theory of learning for efficient neural network pattern recognition

    Science.gov (United States)

    Hampshire, John B., II; Vijaya Kumar, Bhagavatula

    1993-09-01

    We describe a new theory of differential learning by which a broad family of pattern classifiers (including many well-known neural network paradigms) can learn stochastic concepts efficiently. We describe the relationship between a classifier's ability to generate well to unseen test examples and the efficiency of the strategy by which it learns. We list a series of proofs that differential learning is efficient in its information and computational resource requirements, whereas traditional probabilistic learning strategies are not. The proofs are illustrated by a simple example that lends itself to closed-form analysis. We conclude with an optical character recognition task for which three different types of differentially generated classifiers generalize significantly better than their probabilistically generated counterparts.

  8. Relabeling exchange method (REM) for learning in neural networks

    Science.gov (United States)

    Wu, Wen; Mammone, Richard J.

    1994-02-01

    The supervised training of neural networks require the use of output labels which are usually arbitrarily assigned. In this paper it is shown that there is a significant difference in the rms error of learning when `optimal' label assignment schemes are used. We have investigated two efficient random search algorithms to solve the relabeling problem: the simulated annealing and the genetic algorithm. However, we found them to be computationally expensive. Therefore we shall introduce a new heuristic algorithm called the Relabeling Exchange Method (REM) which is computationally more attractive and produces optimal performance. REM has been used to organize the optimal structure for multi-layered perceptrons and neural tree networks. The method is a general one and can be implemented as a modification to standard training algorithms. The motivation of the new relabeling strategy is based on the present interpretation of dyslexia as an encoding problem.

  9. Neural-Fitted TD-Leaf Learning for Playing Othello With Structured Neural Networks

    NARCIS (Netherlands)

    van den Dries, Sjoerd; Wiering, Marco A.

    This paper describes a methodology for quickly learning to play games at a strong level. The methodology consists of a novel combination of three techniques, and a variety of experiments on the game of Othello demonstrates their usefulness. First, structures or topologies in neural network

  10. Outsmarting neural networks: an alternative paradigm for machine learning

    Energy Technology Data Exchange (ETDEWEB)

    Protopopescu, V.; Rao, N.S.V.

    1996-10-01

    We address three problems in machine learning, namely: (i) function learning, (ii) regression estimation, and (iii) sensor fusion, in the Probably and Approximately Correct (PAC) framework. We show that, under certain conditions, one can reduce the three problems above to the regression estimation. The latter is usually tackled with artificial neural networks (ANNs) that satisfy the PAC criteria, but have high computational complexity. We propose several computationally efficient PAC alternatives to ANNs to solve the regression estimation. Thereby we also provide efficient PAC solutions to the function learning and sensor fusion problems. The approach is based on cross-fertilizing concepts and methods from statistical estimation, nonlinear algorithms, and the theory of computational complexity, and is designed as part of a new, coherent paradigm for machine learning.

  11. A novel Bayesian learning method for information aggregation in modular neural networks

    DEFF Research Database (Denmark)

    Wang, Pan; Xu, Lida; Zhou, Shang-Ming

    2010-01-01

    Modular neural network is a popular neural network model which has many successful applications. In this paper, a sequential Bayesian learning (SBL) is proposed for modular neural networks aiming at efficiently aggregating the outputs of members of the ensemble. The experimental results on eight...... benchmark problems have demonstrated that the proposed method can perform information aggregation efficiently in data modeling....

  12. A learning algorithm for oscillatory cellular neural networks.

    Science.gov (United States)

    Ho, C Y.; Kurokawa, H

    1999-07-01

    We present a cellular type oscillatory neural network for temporal segregation of stationary input patterns. The model comprises an array of locally connected neural oscillators with connections limited to a 4-connected neighborhood. The architecture is reminiscent of the well-known cellular neural network that consists of local connection for feature extraction. By means of a novel learning rule and an initialization scheme, global synchronization can be accomplished without incurring any erroneous synchrony among uncorrelated objects. Each oscillator comprises two mutually coupled neurons, and neurons share a piecewise-linear activation function characteristic. The dynamics of traditional oscillatory models is simplified by using only one plastic synapse, and the overall complexity for hardware implementation is reduced. Based on the connectedness of image segments, it is shown that global synchronization and desynchronization can be achieved by means of locally connected synapses, and this opens up a tremendous application potential for the proposed architecture. Furthermore, by using special grouping synapses it is demonstrated that temporal segregation of overlapping gray-level and color segments can also be achieved. Finally, simulation results show that the learning rule proposed circumvents the problem of component mismatches, and hence facilitates a large-scale integration.

  13. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.

    Science.gov (United States)

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.

  14. Chaotic diagonal recurrent neural network

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)

  15. Supervised learning of probability distributions by neural networks

    Science.gov (United States)

    Baum, Eric B.; Wilczek, Frank

    1988-01-01

    Supervised learning algorithms for feedforward neural networks are investigated analytically. The back-propagation algorithm described by Werbos (1974), Parker (1985), and Rumelhart et al. (1986) is generalized by redefining the values of the input and output neurons as probabilities. The synaptic weights are then varied to follow gradients in the logarithm of likelihood rather than in the error. This modification is shown to provide a more rigorous theoretical basis for the algorithm and to permit more accurate predictions. A typical application involving a medical-diagnosis expert system is discussed.

  16. Forecasting financial asset processes: stochastic dynamics via learning neural networks.

    Science.gov (United States)

    Giebel, S; Rainer, M

    2010-01-01

    Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.

  17. Deep learning for steganalysis via convolutional neural networks

    Science.gov (United States)

    Qian, Yinlong; Dong, Jing; Wang, Wei; Tan, Tieniu

    2015-03-01

    Current work on steganalysis for digital images is focused on the construction of complex handcrafted features. This paper proposes a new paradigm for steganalysis to learn features automatically via deep learning models. We novelly propose a customized Convolutional Neural Network for steganalysis. The proposed model can capture the complex dependencies that are useful for steganalysis. Compared with existing schemes, this model can automatically learn feature representations with several convolutional layers. The feature extraction and classification steps are unified under a single architecture, which means the guidance of classification can be used during the feature extraction step. We demonstrate the effectiveness of the proposed model on three state-of-theart spatial domain steganographic algorithms - HUGO, WOW, and S-UNIWARD. Compared to the Spatial Rich Model (SRM), our model achieves comparable performance on BOSSbase and the realistic and large ImageNet database.

  18. Learning Errors by Radial Basis Function Neural Networks and Regularization Networks

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman; Vidnerová, Petra

    2009-01-01

    Roč. 1, č. 2 (2009), s. 49-57 ISSN 2005-4262 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : neural network * RBF networks * regularization * learning Subject RIV: IN - Informatics, Computer Science http://www.sersc.org/journals/IJGDC/vol2_no1/5.pdf

  19. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  20. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.

    Science.gov (United States)

    Walter, Florian; Röhrbein, Florian; Knoll, Alois

    2015-12-01

    The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Comparison between extreme learning machine and wavelet neural networks in data classification

    Science.gov (United States)

    Yahia, Siwar; Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2017-03-01

    Extreme learning Machine is a well known learning algorithm in the field of machine learning. It's about a feed forward neural network with a single-hidden layer. It is an extremely fast learning algorithm with good generalization performance. In this paper, we aim to compare the Extreme learning Machine with wavelet neural networks, which is a very used algorithm. We have used six benchmark data sets to evaluate each technique. These datasets Including Wisconsin Breast Cancer, Glass Identification, Ionosphere, Pima Indians Diabetes, Wine Recognition and Iris Plant. Experimental results have shown that both extreme learning machine and wavelet neural networks have reached good results.

  2. Ontology Mapping Neural Network: An Approach to Learning and Inferring Correspondences among Ontologies

    Science.gov (United States)

    Peng, Yefei

    2010-01-01

    An ontology mapping neural network (OMNN) is proposed in order to learn and infer correspondences among ontologies. It extends the Identical Elements Neural Network (IENN)'s ability to represent and map complex relationships. The learning dynamics of simultaneous (interlaced) training of similar tasks interact at the shared connections of the…

  3. Construction of Neural Networks for Realization of Localized Deep Learning

    Directory of Open Access Journals (Sweden)

    Charles K. Chui

    2018-05-01

    Full Text Available The subject of deep learning has recently attracted users of machine learning from various disciplines, including: medical diagnosis and bioinformatics, financial market analysis and online advertisement, speech and handwriting recognition, computer vision and natural language processing, time series forecasting, and search engines. However, theoretical development of deep learning is still at its infancy. The objective of this paper is to introduce a deep neural network (also called deep-net approach to localized manifold learning, with each hidden layer endowed with a specific learning task. For the purpose of illustrations, we only focus on deep-nets with three hidden layers, with the first layer for dimensionality reduction, the second layer for bias reduction, and the third layer for variance reduction. A feedback component is also designed to deal with outliers. The main theoretical result in this paper is the order O(m-2s/(2s+d of approximation of the regression function with regularity s, in terms of the number m of sample points, where the (unknown manifold dimension d replaces the dimension D of the sampling (Euclidean space for shallow nets.

  4. Transfer Learning with Convolutional Neural Networks for SAR Ship Recognition

    Science.gov (United States)

    Zhang, Di; Liu, Jia; Heng, Wang; Ren, Kaijun; Song, Junqiang

    2018-03-01

    Ship recognition is the backbone of marine surveillance systems. Recent deep learning methods, e.g. Convolutional Neural Networks (CNNs), have shown high performance for optical images. Learning CNNs, however, requires a number of annotated samples to estimate numerous model parameters, which prevents its application to Synthetic Aperture Radar (SAR) images due to the limited annotated training samples. Transfer learning has been a promising technique for applications with limited data. To this end, a novel SAR ship recognition method based on CNNs with transfer learning has been developed. In this work, we firstly start with a CNNs model that has been trained in advance on Moving and Stationary Target Acquisition and Recognition (MSTAR) database. Next, based on the knowledge gained from this image recognition task, we fine-tune the CNNs on a new task to recognize three types of ships in the OpenSARShip database. The experimental results show that our proposed approach can obviously increase the recognition rate comparing with the result of merely applying CNNs. In addition, compared to existing methods, the proposed method proves to be very competitive and can learn discriminative features directly from training data instead of requiring pre-specification or pre-selection manually.

  5. Convolutional neural network with transfer learning for rice type classification

    Science.gov (United States)

    Patel, Vaibhav Amit; Joshi, Manjunath V.

    2018-04-01

    Presently, rice type is identified manually by humans, which is time consuming and error prone. Therefore, there is a need to do this by machine which makes it faster with greater accuracy. This paper proposes a deep learning based method for classification of rice types. We propose two methods to classify the rice types. In the first method, we train a deep convolutional neural network (CNN) using the given segmented rice images. In the second method, we train a combination of a pretrained VGG16 network and the proposed method, while using transfer learning in which the weights of a pretrained network are used to achieve better accuracy. Our approach can also be used for classification of rice grain as broken or fine. We train a 5-class model for classifying rice types using 4000 training images and another 2- class model for the classification of broken and normal rice using 1600 training images. We observe that despite having distinct rice images, our architecture, pretrained on ImageNet data boosts classification accuracy significantly.

  6. Image Classification, Deep Learning and Convolutional Neural Networks : A Comparative Study of Machine Learning Frameworks

    OpenAIRE

    Airola, Rasmus; Hager, Kristoffer

    2017-01-01

    The use of machine learning and specifically neural networks is a growing trend in software development, and has grown immensely in the last couple of years in the light of an increasing need to handle big data and large information flows. Machine learning has a broad area of application, such as human-computer interaction, predicting stock prices, real-time translation, and self driving vehicles. Large companies such as Microsoft and Google have already implemented machine learning in some o...

  7. Biosignals learning and synthesis using deep neural networks.

    Science.gov (United States)

    Belo, David; Rodrigues, João; Vaz, João R; Pezarat-Correia, Pedro; Gamboa, Hugo

    2017-09-25

    Modeling physiological signals is a complex task both for understanding and synthesize biomedical signals. We propose a deep neural network model that learns and synthesizes biosignals, validated by the morphological equivalence of the original ones. This research could lead the creation of novel algorithms for signal reconstruction in heavily noisy data and source detection in biomedical engineering field. The present work explores the gated recurrent units (GRU) employed in the training of respiration (RESP), electromyograms (EMG) and electrocardiograms (ECG). Each signal is pre-processed, segmented and quantized in a specific number of classes, corresponding to the amplitude of each sample and fed to the model, which is composed by an embedded matrix, three GRU blocks and a softmax function. This network is trained by adjusting its internal parameters, acquiring the representation of the abstract notion of the next value based on the previous ones. The simulated signal was generated by forecasting a random value and re-feeding itself. The resulting generated signals are similar with the morphological expression of the originals. During the learning process, after a set of iterations, the model starts to grasp the basic morphological characteristics of the signal and later their cyclic characteristics. After training, these models' prediction are closer to the signals that trained them, specially the RESP and ECG. This synthesis mechanism has shown relevant results that inspire the use to characterize signals from other physiological sources.

  8. ELeaRNT: Evolutionary Learning of Rich Neural Network Topologies

    National Research Council Canada - National Science Library

    Matteucci, Matteo

    2006-01-01

    In this paper we present ELeaRNT an evolutionary strategy which evolves rich neural network topologies in order to find an optimal domain specific non linear function approximator with a good generalization performance...

  9. Neural networks

    International Nuclear Information System (INIS)

    Denby, Bruce; Lindsey, Clark; Lyons, Louis

    1992-01-01

    The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive

  10. Learning free energy landscapes using artificial neural networks.

    Science.gov (United States)

    Sidky, Hythem; Whitmer, Jonathan K

    2018-03-14

    Existing adaptive bias techniques, which seek to estimate free energies and physical properties from molecular simulations, are limited by their reliance on fixed kernels or basis sets which hinder their ability to efficiently conform to varied free energy landscapes. Further, user-specified parameters are in general non-intuitive yet significantly affect the convergence rate and accuracy of the free energy estimate. Here we propose a novel method, wherein artificial neural networks (ANNs) are used to develop an adaptive biasing potential which learns free energy landscapes. We demonstrate that this method is capable of rapidly adapting to complex free energy landscapes and is not prone to boundary or oscillation problems. The method is made robust to hyperparameters and overfitting through Bayesian regularization which penalizes network weights and auto-regulates the number of effective parameters in the network. ANN sampling represents a promising innovative approach which can resolve complex free energy landscapes in less time than conventional approaches while requiring minimal user input.

  11. Learning free energy landscapes using artificial neural networks

    Science.gov (United States)

    Sidky, Hythem; Whitmer, Jonathan K.

    2018-03-01

    Existing adaptive bias techniques, which seek to estimate free energies and physical properties from molecular simulations, are limited by their reliance on fixed kernels or basis sets which hinder their ability to efficiently conform to varied free energy landscapes. Further, user-specified parameters are in general non-intuitive yet significantly affect the convergence rate and accuracy of the free energy estimate. Here we propose a novel method, wherein artificial neural networks (ANNs) are used to develop an adaptive biasing potential which learns free energy landscapes. We demonstrate that this method is capable of rapidly adapting to complex free energy landscapes and is not prone to boundary or oscillation problems. The method is made robust to hyperparameters and overfitting through Bayesian regularization which penalizes network weights and auto-regulates the number of effective parameters in the network. ANN sampling represents a promising innovative approach which can resolve complex free energy landscapes in less time than conventional approaches while requiring minimal user input.

  12. Biomimetic Hybrid Feedback Feedforward Neural-Network Learning Control.

    Science.gov (United States)

    Pan, Yongping; Yu, Haoyong

    2017-06-01

    This brief presents a biomimetic hybrid feedback feedforward neural-network learning control (NNLC) strategy inspired by the human motor learning control mechanism for a class of uncertain nonlinear systems. The control structure includes a proportional-derivative controller acting as a feedback servo machine and a radial-basis-function (RBF) NN acting as a feedforward predictive machine. Under the sufficient constraints on control parameters, the closed-loop system achieves semiglobal practical exponential stability, such that an accurate NN approximation is guaranteed in a local region along recurrent reference trajectories. Compared with the existing NNLC methods, the novelties of the proposed method include: 1) the implementation of an adaptive NN control to guarantee plant states being recurrent is not needed, since recurrent reference signals rather than plant states are utilized as NN inputs, which greatly simplifies the analysis and synthesis of the NNLC and 2) the domain of NN approximation can be determined a priori by the given reference signals, which leads to an easy construction of the RBF-NNs. Simulation results have verified the effectiveness of this approach.

  13. A Telescopic Binary Learning Machine for Training Neural Networks.

    Science.gov (United States)

    Brunato, Mauro; Battiti, Roberto

    2017-03-01

    This paper proposes a new algorithm based on multiscale stochastic local search with binary representation for training neural networks [binary learning machine (BLM)]. We study the effects of neighborhood evaluation strategies, the effect of the number of bits per weight and that of the maximum weight range used for mapping binary strings to real values. Following this preliminary investigation, we propose a telescopic multiscale version of local search, where the number of bits is increased in an adaptive manner, leading to a faster search and to local minima of better quality. An analysis related to adapting the number of bits in a dynamic way is presented. The control on the number of bits, which happens in a natural manner in the proposed method, is effective to increase the generalization performance. The learning dynamics are discussed and validated on a highly nonlinear artificial problem and on real-world tasks in many application domains; BLM is finally applied to a problem requiring either feedforward or recurrent architectures for feedback control.

  14. Memory and learning in a class of neural network models

    International Nuclear Information System (INIS)

    Wallace, D.J.

    1986-01-01

    The author discusses memory and learning properties of the neural network model now identified with Hopfield's work. The model, how it attempts to abstract some key features of the nervous system, and the sense in which learning and memory are identified in the model are described. A brief report is presented on the important role of phase transitions in the model and their implications for memory capacity. The results of numerical simulations obtained using the ICL Distributed Array Processors at Edinburgh are presented. A summary is presented on how the fraction of images which are perfectly stored, depends on the number of nodes and the number of nominal images which one attempts to store using the prescription in Hopfield's paper. Results are presented on the second phase transition in the model, which corresponds to almost total loss of storage capacity as the number of nominal images is increased. Results are given on the performance of a new iterative algorithm for exact storage of up to N images in an N node model

  15. Neural networks for aircraft control

    Science.gov (United States)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  16. Maximum entropy methods for extracting the learned features of deep neural networks.

    Science.gov (United States)

    Finnegan, Alex; Song, Jun S

    2017-10-01

    New architectures of multilayer artificial neural networks and new methods for training them are rapidly revolutionizing the application of machine learning in diverse fields, including business, social science, physical sciences, and biology. Interpreting deep neural networks, however, currently remains elusive, and a critical challenge lies in understanding which meaningful features a network is actually learning. We present a general method for interpreting deep neural networks and extracting network-learned features from input data. We describe our algorithm in the context of biological sequence analysis. Our approach, based on ideas from statistical physics, samples from the maximum entropy distribution over possible sequences, anchored at an input sequence and subject to constraints implied by the empirical function learned by a network. Using our framework, we demonstrate that local transcription factor binding motifs can be identified from a network trained on ChIP-seq data and that nucleosome positioning signals are indeed learned by a network trained on chemical cleavage nucleosome maps. Imposing a further constraint on the maximum entropy distribution also allows us to probe whether a network is learning global sequence features, such as the high GC content in nucleosome-rich regions. This work thus provides valuable mathematical tools for interpreting and extracting learned features from feed-forward neural networks.

  17. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    Science.gov (United States)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  18. Adaptive Learning Rule for Hardware-based Deep Neural Networks Using Electronic Synapse Devices

    OpenAIRE

    Lim, Suhwan; Bae, Jong-Ho; Eum, Jai-Ho; Lee, Sungtae; Kim, Chul-Heung; Kwon, Dongseok; Park, Byung-Gook; Lee, Jong-Ho

    2017-01-01

    In this paper, we propose a learning rule based on a back-propagation (BP) algorithm that can be applied to a hardware-based deep neural network (HW-DNN) using electronic devices that exhibit discrete and limited conductance characteristics. This adaptive learning rule, which enables forward, backward propagation, as well as weight updates in hardware, is helpful during the implementation of power-efficient and high-speed deep neural networks. In simulations using a three-layer perceptron net...

  19. Learning by stimulation avoidance: A principle to control spiking neural networks dynamics.

    Science.gov (United States)

    Sinapayen, Lana; Masumori, Atsushi; Ikegami, Takashi

    2017-01-01

    Learning based on networks of real neurons, and learning based on biologically inspired models of neural networks, have yet to find general learning rules leading to widespread applications. In this paper, we argue for the existence of a principle allowing to steer the dynamics of a biologically inspired neural network. Using carefully timed external stimulation, the network can be driven towards a desired dynamical state. We term this principle "Learning by Stimulation Avoidance" (LSA). We demonstrate through simulation that the minimal sufficient conditions leading to LSA in artificial networks are also sufficient to reproduce learning results similar to those obtained in biological neurons by Shahaf and Marom, and in addition explains synaptic pruning. We examined the underlying mechanism by simulating a small network of 3 neurons, then scaled it up to a hundred neurons. We show that LSA has a higher explanatory power than existing hypotheses about the response of biological neural networks to external simulation, and can be used as a learning rule for an embodied application: learning of wall avoidance by a simulated robot. In other works, reinforcement learning with spiking networks can be obtained through global reward signals akin simulating the dopamine system; we believe that this is the first project demonstrating sensory-motor learning with random spiking networks through Hebbian learning relying on environmental conditions without a separate reward system.

  20. Parameter diagnostics of phases and phase transition learning by neural networks

    Science.gov (United States)

    Suchsland, Philippe; Wessel, Stefan

    2018-05-01

    We present an analysis of neural network-based machine learning schemes for phases and phase transitions in theoretical condensed matter research, focusing on neural networks with a single hidden layer. Such shallow neural networks were previously found to be efficient in classifying phases and locating phase transitions of various basic model systems. In order to rationalize the emergence of the classification process and for identifying any underlying physical quantities, it is feasible to examine the weight matrices and the convolutional filter kernels that result from the learning process of such shallow networks. Furthermore, we demonstrate how the learning-by-confusing scheme can be used, in combination with a simple threshold-value classification method, to diagnose the learning parameters of neural networks. In particular, we study the classification process of both fully-connected and convolutional neural networks for the two-dimensional Ising model with extended domain wall configurations included in the low-temperature regime. Moreover, we consider the two-dimensional XY model and contrast the performance of the learning-by-confusing scheme and convolutional neural networks trained on bare spin configurations to the case of preprocessed samples with respect to vortex configurations. We discuss these findings in relation to similar recent investigations and possible further applications.

  1. On the relationships between generative encodings, regularity, and learning abilities when evolving plastic artificial neural networks.

    Directory of Open Access Journals (Sweden)

    Paul Tonelli

    Full Text Available A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1 the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2 synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT. Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1 in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2 whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities.

  2. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization.

    Science.gov (United States)

    Kulkarni, Shruti R; Rajendran, Bipin

    2018-07-01

    We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. A Newton-type neural network learning algorithm

    International Nuclear Information System (INIS)

    Ivanov, V.V.; Puzynin, I.V.; Purehvdorzh, B.

    1993-01-01

    First- and second-order learning methods for feed-forward multilayer networks are considered. A Newton-type algorithm is proposed and compared with the common back-propagation algorithm. It is shown that the proposed algorithm provides better learning quality. Some recommendations for their usage are given. 11 refs.; 1 fig.; 1 tab

  4. Supervised Learning Based on Temporal Coding in Spiking Neural Networks.

    Science.gov (United States)

    Mostafa, Hesham

    2017-08-01

    Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.

  5. Breast Cancer Diagnosis using Artificial Neural Networks with Extreme Learning Techniques

    OpenAIRE

    Chandra Prasetyo Utomo; Aan Kardiana; Rika Yuliwulandari

    2014-01-01

    Breast cancer is the second cause of dead among women. Early detection followed by appropriate cancer treatment can reduce the deadly risk. Medical professionals can make mistakes while identifying a disease. The help of technology such as data mining and machine learning can substantially improve the diagnosis accuracy. Artificial Neural Networks (ANN) has been widely used in intelligent breast cancer diagnosis. However, the standard Gradient-Based Back Propagation Artificial Neural Networks...

  6. Single-hidden-layer feed-forward quantum neural network based on Grover learning.

    Science.gov (United States)

    Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min

    2013-09-01

    In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Network Enabled - Unresolved Residual Analysis and Learning (NEURAL)

    Science.gov (United States)

    Temple, D.; Poole, M.; Camp, M.

    Since the advent of modern computational capacity, machine learning algorithms and techniques have served as a method through which to solve numerous challenging problems. However, for machine learning methods to be effective and robust, sufficient data sets must be available; specifically, in the space domain, these are generally difficult to acquire. Rapidly evolving commercial space-situational awareness companies boast the capability to collect hundreds of thousands nightly observations of resident space objects (RSOs) using a ground-based optical sensor network. This provides the ability to maintain custody of and characterize thousands of objects persistently. With this information available, novel deep learning techniques can be implemented. The technique discussed in this paper utilizes deep learning to make distinctions between nightly data collects with and without maneuvers. Implementation of these techniques will allow the data collected from optical ground-based networks to enable well informed and timely the space domain decision making.

  8. "FORCE" learning in recurrent neural networks as data assimilation

    Science.gov (United States)

    Duane, Gregory S.

    2017-12-01

    It is shown that the "FORCE" algorithm for learning in arbitrarily connected networks of simple neuronal units can be cast as a Kalman Filter, with a particular state-dependent form for the background error covariances. The resulting interpretation has implications for initialization of the learning algorithm, leads to an extension to include interactions between the weight updates for different neurons, and can represent relationships within groups of multiple target output signals.

  9. Learning Based on CC1 and CC4 Neural Networks

    OpenAIRE

    Kak, Subhash

    2017-01-01

    We propose that a general learning system should have three kinds of agents corresponding to sensory, short-term, and long-term memory that implicitly will facilitate context-free and context-sensitive aspects of learning. These three agents perform mututally complementary functions that capture aspects of the human cognition system. We investigate the use of CC1 and CC4 networks for use as models of short-term and sensory memory.

  10. Learning characteristics of a space-time neural network as a tether skiprope observer

    Science.gov (United States)

    Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles

    1993-01-01

    The Software Technology Laboratory at the Johnson Space Center is testing a Space Time Neural Network (STNN) for observing tether oscillations present during retrieval of a tethered satellite. Proper identification of tether oscillations, known as 'skiprope' motion, is vital to safe retrieval of the tethered satellite. Our studies indicate that STNN has certain learning characteristics that must be understood properly to utilize this type of neural network for the tethered satellite problem. We present our findings on the learning characteristics including a learning rate versus momentum performance table.

  11. Learning Spatiotemporally Encoded Pattern Transformations in Structured Spiking Neural Networks.

    Science.gov (United States)

    Gardner, Brian; Sporea, Ioana; Grüning, André

    2015-12-01

    Information encoding in the nervous system is supported through the precise spike timings of neurons; however, an understanding of the underlying processes by which such representations are formed in the first place remains an open question. Here we examine how multilayered networks of spiking neurons can learn to encode for input patterns using a fully temporal coding scheme. To this end, we introduce a new supervised learning rule, MultilayerSpiker, that can train spiking networks containing hidden layer neurons to perform transformations between spatiotemporal input and output spike patterns. The performance of the proposed learning rule is demonstrated in terms of the number of pattern mappings it can learn, the complexity of network structures it can be used on, and its classification accuracy when using multispike-based encodings. In particular, the learning rule displays robustness against input noise and can generalize well on an example data set. Our approach contributes to both a systematic understanding of how computations might take place in the nervous system and a learning rule that displays strong technical capability.

  12. LEARNING ALGORITHM EFFECT ON MULTILAYER FEED FORWARD ARTIFICIAL NEURAL NETWORK PERFORMANCE IN IMAGE CODING

    Directory of Open Access Journals (Sweden)

    OMER MAHMOUD

    2007-08-01

    Full Text Available One of the essential factors that affect the performance of Artificial Neural Networks is the learning algorithm. The performance of Multilayer Feed Forward Artificial Neural Network performance in image compression using different learning algorithms is examined in this paper. Based on Gradient Descent, Conjugate Gradient, Quasi-Newton techniques three different error back propagation algorithms have been developed for use in training two types of neural networks, a single hidden layer network and three hidden layers network. The essence of this study is to investigate the most efficient and effective training methods for use in image compression and its subsequent applications. The obtained results show that the Quasi-Newton based algorithm has better performance as compared to the other two algorithms.

  13. Supervised neural network modeling: an empirical investigation into learning from imbalanced data with labeling errors.

    Science.gov (United States)

    Khoshgoftaar, Taghi M; Van Hulse, Jason; Napolitano, Amri

    2010-05-01

    Neural network algorithms such as multilayer perceptrons (MLPs) and radial basis function networks (RBFNets) have been used to construct learners which exhibit strong predictive performance. Two data related issues that can have a detrimental impact on supervised learning initiatives are class imbalance and labeling errors (or class noise). Imbalanced data can make it more difficult for the neural network learning algorithms to distinguish between examples of the various classes, and class noise can lead to the formulation of incorrect hypotheses. Both class imbalance and labeling errors are pervasive problems encountered in a wide variety of application domains. Many studies have been performed to investigate these problems in isolation, but few have focused on their combined effects. This study presents a comprehensive empirical investigation using neural network algorithms to learn from imbalanced data with labeling errors. In particular, the first component of our study investigates the impact of class noise and class imbalance on two common neural network learning algorithms, while the second component considers the ability of data sampling (which is commonly used to address the issue of class imbalance) to improve their performances. Our results, for which over two million models were trained and evaluated, show that conclusions drawn using the more commonly studied C4.5 classifier may not apply when using neural networks.

  14. Probabilistic neural network playing and learning Tic-Tac-Toe

    Czech Academy of Sciences Publication Activity Database

    Grim, Jiří; Somol, Petr; Pudil, Pavel

    2005-01-01

    Roč. 26, č. 12 (2005), s. 1866-1873 ISSN 0167-8655 R&D Projects: GA ČR GA402/02/1271; GA ČR GA402/03/1310; GA MŠk 1M0572 Grant - others:Comission EU(XE) FP6-507772 Institutional research plan: CEZ:AV0Z10750506 Keywords : neural networks * distribution mixtures * playing game s Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.138, year: 2005

  15. Continual and One-Shot Learning Through Neural Networks with Dynamic External Memory

    DEFF Research Database (Denmark)

    Lüders, Benno; Schläger, Mikkel; Korach, Aleksandra

    2017-01-01

    it easier to find unused memory location and therefor facilitates the evolution of continual learning networks. Our results suggest that augmenting evolving networks with an external memory component is not only a viable mechanism for adaptive behaviors in neuroevolution but also allows these networks...... a new task is learned. This paper takes a step in overcoming this limitation by building on the recently proposed Evolving Neural Turing Machine (ENTM) approach. In the ENTM, neural networks are augmented with an external memory component that they can write to and read from, which allows them to store...... associations quickly and over long periods of time. The results in this paper demonstrate that the ENTM is able to perform one-shot learning in reinforcement learning tasks without catastrophic forgetting of previously stored associations. Additionally, we introduce a new ENTM default jump mechanism that makes...

  16. Introduction to neural networks

    International Nuclear Information System (INIS)

    Pavlopoulos, P.

    1996-01-01

    This lecture is a presentation of today's research in neural computation. Neural computation is inspired by knowledge from neuro-science. It draws its methods in large degree from statistical physics and its potential applications lie mainly in computer science and engineering. Neural networks models are algorithms for cognitive tasks, such as learning and optimization, which are based on concepts derived from research into the nature of the brain. The lecture first gives an historical presentation of neural networks development and interest in performing complex tasks. Then, an exhaustive overview of data management and networks computation methods is given: the supervised learning and the associative memory problem, the capacity of networks, the Perceptron networks, the functional link networks, the Madaline (Multiple Adalines) networks, the back-propagation networks, the reduced coulomb energy (RCE) networks, the unsupervised learning and the competitive learning and vector quantization. An example of application in high energy physics is given with the trigger systems and track recognition system (track parametrization, event selection and particle identification) developed for the CPLEAR experiment detectors from the LEAR at CERN. (J.S.). 56 refs., 20 figs., 1 tab., 1 appendix

  17. Hypothetical Pattern Recognition Design Using Multi-Layer Perceptorn Neural Network For Supervised Learning

    Directory of Open Access Journals (Sweden)

    Md. Abdullah-al-mamun

    2015-08-01

    Full Text Available Abstract Humans are capable to identifying diverse shape in the different pattern in the real world as effortless fashion due to their intelligence is grow since born with facing several learning process. Same way we can prepared an machine using human like brain called Artificial Neural Network that can be recognize different pattern from the real world object. Although the various techniques is exists to implementation the pattern recognition but recently the artificial neural network approaches have been giving the significant attention. Because the approached of artificial neural network is like a human brain that is learn from different observation and give a decision the previously learning rule. Over the 50 years research now a days pattern recognition for machine learning using artificial neural network got a significant achievement. For this reason many real world problem can be solve by modeling the pattern recognition process. The objective of this paper is to present the theoretical concept for pattern recognition design using Multi-Layer Perceptorn neural networkin the algorithm of artificial Intelligence as the best possible way of utilizing available resources to make a decision that can be a human like performance.

  18. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm

    International Nuclear Information System (INIS)

    Yu, Lean; Wang, Shouyang; Lai, Kin Keung

    2008-01-01

    In this study, an empirical mode decomposition (EMD) based neural network ensemble learning paradigm is proposed for world crude oil spot price forecasting. For this purpose, the original crude oil spot price series were first decomposed into a finite, and often small, number of intrinsic mode functions (IMFs). Then a three-layer feed-forward neural network (FNN) model was used to model each of the extracted IMFs, so that the tendencies of these IMFs could be accurately predicted. Finally, the prediction results of all IMFs are combined with an adaptive linear neural network (ALNN), to formulate an ensemble output for the original crude oil price series. For verification and testing, two main crude oil price series, West Texas Intermediate (WTI) crude oil spot price and Brent crude oil spot price, are used to test the effectiveness of the proposed EMD-based neural network ensemble learning methodology. Empirical results obtained demonstrate attractiveness of the proposed EMD-based neural network ensemble learning paradigm. (author)

  19. Chaos Synchronization Using Adaptive Dynamic Neural Network Controller with Variable Learning Rates

    Directory of Open Access Journals (Sweden)

    Chih-Hong Kao

    2011-01-01

    Full Text Available This paper addresses the synchronization of chaotic gyros with unknown parameters and external disturbance via an adaptive dynamic neural network control (ADNNC system. The proposed ADNNC system is composed of a neural controller and a smooth compensator. The neural controller uses a dynamic RBF (DRBF network to online approximate an ideal controller. The DRBF network can create new hidden neurons online if the input data falls outside the hidden layer and prune the insignificant hidden neurons online if the hidden neuron is inappropriate. The smooth compensator is designed to compensate for the approximation error between the neural controller and the ideal controller. Moreover, the variable learning rates of the parameter adaptation laws are derived based on a discrete-type Lyapunov function to speed up the convergence rate of the tracking error. Finally, the simulation results which verified the chaotic behavior of two nonlinear identical chaotic gyros can be synchronized using the proposed ADNNC scheme.

  20. Lifelong learning of human actions with deep neural network self-organization.

    Science.gov (United States)

    Parisi, German I; Tani, Jun; Weber, Cornelius; Wermter, Stefan

    2017-12-01

    Lifelong learning is fundamental in autonomous robotics for the acquisition and fine-tuning of knowledge through experience. However, conventional deep neural models for action recognition from videos do not account for lifelong learning but rather learn a batch of training data with a predefined number of action classes and samples. Thus, there is the need to develop learning systems with the ability to incrementally process available perceptual cues and to adapt their responses over time. We propose a self-organizing neural architecture for incrementally learning to classify human actions from video sequences. The architecture comprises growing self-organizing networks equipped with recurrent neurons for processing time-varying patterns. We use a set of hierarchically arranged recurrent networks for the unsupervised learning of action representations with increasingly large spatiotemporal receptive fields. Lifelong learning is achieved in terms of prediction-driven neural dynamics in which the growth and the adaptation of the recurrent networks are driven by their capability to reconstruct temporally ordered input sequences. Experimental results on a classification task using two action benchmark datasets show that our model is competitive with state-of-the-art methods for batch learning also when a significant number of sample labels are missing or corrupted during training sessions. Additional experiments show the ability of our model to adapt to non-stationary input avoiding catastrophic interference. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  2. Unsupervised learning in neural networks with short range synapses

    Science.gov (United States)

    Brunnet, L. G.; Agnes, E. J.; Mizusaki, B. E. P.; Erichsen, R., Jr.

    2013-01-01

    Different areas of the brain are involved in specific aspects of the information being processed both in learning and in memory formation. For example, the hippocampus is important in the consolidation of information from short-term memory to long-term memory, while emotional memory seems to be dealt by the amygdala. On the microscopic scale the underlying structures in these areas differ in the kind of neurons involved, in their connectivity, or in their clustering degree but, at this level, learning and memory are attributed to neuronal synapses mediated by longterm potentiation and long-term depression. In this work we explore the properties of a short range synaptic connection network, a nearest neighbor lattice composed mostly by excitatory neurons and a fraction of inhibitory ones. The mechanism of synaptic modification responsible for the emergence of memory is Spike-Timing-Dependent Plasticity (STDP), a Hebbian-like rule, where potentiation/depression is acquired when causal/non-causal spikes happen in a synapse involving two neurons. The system is intended to store and recognize memories associated to spatial external inputs presented as simple geometrical forms. The synaptic modifications are continuously applied to excitatory connections, including a homeostasis rule and STDP. In this work we explore the different scenarios under which a network with short range connections can accomplish the task of storing and recognizing simple connected patterns.

  3. A Closer Look at Deep Learning Neural Networks with Low-level Spectral Periodicity Features

    DEFF Research Database (Denmark)

    Sturm, Bob L.; Kereliuk, Corey; Pikrakis, Aggelos

    2014-01-01

    Systems built using deep learning neural networks trained on low-level spectral periodicity features (DeSPerF) reproduced the most “ground truth” of the systems submitted to the MIREX 2013 task, “Audio Latin Genre Classification.” To answer why this was the case, we take a closer look...

  4. Identifying beneficial task relations for multi-task learning in deep neural networks

    DEFF Research Database (Denmark)

    Bingel, Joachim; Søgaard, Anders

    2017-01-01

    Multi-task learning (MTL) in deep neural networks for NLP has recently received increasing interest due to some compelling benefits, including its potential to efficiently regularize models and to reduce the need for labeled data. While it has brought significant improvements in a number of NLP...

  5. Learning behavior and temporary minima of two-layer neural networks

    NARCIS (Netherlands)

    Annema, Anne J.; Hoen, Klaas; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    This paper presents a mathematical analysis of the occurrence of temporary minima during training of a single-output, two-layer neural network, with learning according to the back-propagation algorithm. A new vector decomposition method is introduced, which simplifies the mathematical analysis of

  6. The interchangeability of learning rate and gain in backpropagation neural networks

    NARCIS (Netherlands)

    Thimm, G.; Moerland, P.; Fiesler, E.

    1996-01-01

    The backpropagation algorithm is widely used for training multilayer neural networks. In this publication the gain of its activation function(s) is investigated. In specific, it is proven that changing the gain of the activation function is equivalent to changing the learning rate and the weights.

  7. Biologically-inspired On-chip Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the "biologically-inspired" approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks, We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  8. Machine learning of radial basis function neural network based on Kalman filter: Introduction

    Directory of Open Access Journals (Sweden)

    Vuković Najdan L.

    2014-01-01

    Full Text Available This paper analyzes machine learning of radial basis function neural network based on Kalman filtering. Three algorithms are derived: linearized Kalman filter, linearized information filter and unscented Kalman filter. We emphasize basic properties of these estimation algorithms, demonstrate how their advantages can be used for optimization of network parameters, derive mathematical models and show how they can be applied to model problems in engineering practice.

  9. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  10. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  11. A Self-Organizing Incremental Neural Network based on local distribution learning.

    Science.gov (United States)

    Xing, Youlu; Shi, Xiaofeng; Shen, Furao; Zhou, Ke; Zhao, Jinxi

    2016-12-01

    In this paper, we propose an unsupervised incremental learning neural network based on local distribution learning, which is called Local Distribution Self-Organizing Incremental Neural Network (LD-SOINN). The LD-SOINN combines the advantages of incremental learning and matrix learning. It can automatically discover suitable nodes to fit the learning data in an incremental way without a priori knowledge such as the structure of the network. The nodes of the network store rich local information regarding the learning data. The adaptive vigilance parameter guarantees that LD-SOINN is able to add new nodes for new knowledge automatically and the number of nodes will not grow unlimitedly. While the learning process continues, nodes that are close to each other and have similar principal components are merged to obtain a concise local representation, which we call a relaxation data representation. A denoising process based on density is designed to reduce the influence of noise. Experiments show that the LD-SOINN performs well on both artificial and real-word data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Adaptive neural network/expert system that learns fault diagnosis for different structures

    Science.gov (United States)

    Simon, Solomon H.

    1992-08-01

    Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.

  13. Application of artificial neural network with extreme learning machine for economic growth estimation

    Science.gov (United States)

    Milačić, Ljubiša; Jović, Srđan; Vujović, Tanja; Miljković, Jovica

    2017-01-01

    The purpose of this research is to develop and apply the artificial neural network (ANN) with extreme learning machine (ELM) to forecast gross domestic product (GDP) growth rate. The economic growth forecasting was analyzed based on agriculture, manufacturing, industry and services value added in GDP. The results were compared with ANN with back propagation (BP) learning approach since BP could be considered as conventional learning methodology. The reliability of the computational models was accessed based on simulation results and using several statistical indicators. Based on results, it was shown that ANN with ELM learning methodology can be applied effectively in applications of GDP forecasting.

  14. Parallelization of learning problems by artificial neural networks. Application in external radiotherapy

    International Nuclear Information System (INIS)

    Sauget, M.

    2007-12-01

    This research is about the application of neural networks used in the external radiotherapy domain. The goal is to elaborate a new evaluating system for the radiation dose distributions in heterogeneous environments. The al objective of this work is to build a complete tool kit to evaluate the optimal treatment planning. My st research point is about the conception of an incremental learning algorithm. The interest of my work is to combine different optimizations specialized in the function interpolation and to propose a new algorithm allowing to change the neural network architecture during the learning phase. This algorithm allows to minimise the al size of the neural network while keeping a good accuracy. The second part of my research is to parallelize the previous incremental learning algorithm. The goal of that work is to increase the speed of the learning step as well as the size of the learned dataset needed in a clinical case. For that, our incremental learning algorithm presents an original data decomposition with overlapping, together with a fault tolerance mechanism. My last research point is about a fast and accurate algorithm computing the radiation dose deposit in any heterogeneous environment. At the present time, the existing solutions used are not optimal. The fast solution are not accurate and do not give an optimal treatment planning. On the other hand, the accurate solutions are far too slow to be used in a clinical context. Our algorithm answers to this problem by bringing rapidity and accuracy. The concept is to use a neural network adequately learned together with a mechanism taking into account the environment changes. The advantages of this algorithm is to avoid the use of a complex physical code while keeping a good accuracy and reasonable computation times. (author)

  15. Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction.

    Science.gov (United States)

    Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng

    2017-04-10

    This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks.

  16. Learning representations for the early detection of sepsis with deep neural networks.

    Science.gov (United States)

    Kam, Hye Jin; Kim, Ha Young

    2017-10-01

    Sepsis is one of the leading causes of death in intensive care unit patients. Early detection of sepsis is vital because mortality increases as the sepsis stage worsens. This study aimed to develop detection models for the early stage of sepsis using deep learning methodologies, and to compare the feasibility and performance of the new deep learning methodology with those of the regression method with conventional temporal feature extraction. Study group selection adhered to the InSight model. The results of the deep learning-based models and the InSight model were compared. With deep feedforward networks, the area under the ROC curve (AUC) of the models were 0.887 and 0.915 for the InSight and the new feature sets, respectively. For the model with the combined feature set, the AUC was the same as that of the basic feature set (0.915). For the long short-term memory model, only the basic feature set was applied and the AUC improved to 0.929 compared with the existing 0.887 of the InSight model. The contributions of this paper can be summarized in three ways: (i) improved performance without feature extraction using domain knowledge, (ii) verification of feature extraction capability of deep neural networks through comparison with reference features, and (iii) improved performance with feedforward neural networks using long short-term memory, a neural network architecture that can learn sequential patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Picasso: A Modular Framework for Visualizing the Learning Process of Neural Network Image Classifiers

    Directory of Open Access Journals (Sweden)

    Ryan Henderson

    2017-09-01

    Full Text Available Picasso is a free open-source (Eclipse Public License web application written in Python for rendering standard visualizations useful for analyzing convolutional neural networks. Picasso ships with occlusion maps and saliency maps, two visualizations which help reveal issues that evaluation metrics like loss and accuracy might hide: for example, learning a proxy classification task. Picasso works with the Tensorflow deep learning framework, and Keras (when the model can be loaded into the Tensorflow backend. Picasso can be used with minimal configuration by deep learning researchers and engineers alike across various neural network architectures. Adding new visualizations is simple: the user can specify their visualization code and HTML template separately from the application code.

  18. Deep neural networks for direct, featureless learning through observation: The case of two-dimensional spin models

    Science.gov (United States)

    Mills, Kyle; Tamblyn, Isaac

    2018-03-01

    We demonstrate the capability of a convolutional deep neural network in predicting the nearest-neighbor energy of the 4 ×4 Ising model. Using its success at this task, we motivate the study of the larger 8 ×8 Ising model, showing that the deep neural network can learn the nearest-neighbor Ising Hamiltonian after only seeing a vanishingly small fraction of configuration space. Additionally, we show that the neural network has learned both the energy and magnetization operators with sufficient accuracy to replicate the low-temperature Ising phase transition. We then demonstrate the ability of the neural network to learn other spin models, teaching the convolutional deep neural network to accurately predict the long-range interaction of a screened Coulomb Hamiltonian, a sinusoidally attenuated screened Coulomb Hamiltonian, and a modified Potts model Hamiltonian. In the case of the long-range interaction, we demonstrate the ability of the neural network to recover the phase transition with equivalent accuracy to the numerically exact method. Furthermore, in the case of the long-range interaction, the benefits of the neural network become apparent; it is able to make predictions with a high degree of accuracy, and do so 1600 times faster than a CUDA-optimized exact calculation. Additionally, we demonstrate how the neural network succeeds at these tasks by looking at the weights learned in a simplified demonstration.

  19. Learning from neural control.

    Science.gov (United States)

    Wang, Cong; Hill, David J

    2006-01-01

    One of the amazing successes of biological systems is their ability to "learn by doing" and so adapt to their environment. In this paper, first, a deterministic learning mechanism is presented, by which an appropriately designed adaptive neural controller is capable of learning closed-loop system dynamics during tracking control to a periodic reference orbit. Among various neural network (NN) architectures, the localized radial basis function (RBF) network is employed. A property of persistence of excitation (PE) for RBF networks is established, and a partial PE condition of closed-loop signals, i.e., the PE condition of a regression subvector constructed out of the RBFs along a periodic state trajectory, is proven to be satisfied. Accurate NN approximation for closed-loop system dynamics is achieved in a local region along the periodic state trajectory, and a learning ability is implemented during a closed-loop feedback control process. Second, based on the deterministic learning mechanism, a neural learning control scheme is proposed which can effectively recall and reuse the learned knowledge to achieve closed-loop stability and improved control performance. The significance of this paper is that the presented deterministic learning mechanism and the neural learning control scheme provide elementary components toward the development of a biologically-plausible learning and control methodology. Simulation studies are included to demonstrate the effectiveness of the approach.

  20. Distributed Learning, Recognition, and Prediction by ART and ARTMAP Neural Networks.

    Science.gov (United States)

    Carpenter, Gail A.

    1997-11-01

    A class of adaptive resonance theory (ART) models for learning, recognition, and prediction with arbitrarily distributed code representations is introduced. Distributed ART neural networks combine the stable fast learning capabilities of winner-take-all ART systems with the noise tolerance and code compression capabilities of multilayer perceptrons. With a winner-take-all code, the unsupervised model dART reduces to fuzzy ART and the supervised model dARTMAP reduces to fuzzy ARTMAP. With a distributed code, these networks automatically apportion learned changes according to the degree of activation of each coding node, which permits fast as well as slow learning without catastrophic forgetting. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Thresholds increase monotonically during learning according to a principle of atrophy due to disuse. However, monotonic change at the synaptic level manifests itself as bidirectional change at the dynamic level, where the result of adaptation resembles long-term potentiation (LTP) for single-pulse or low frequency test inputs but can resemble long-term depression (LTD) for higher frequency test inputs. This paradoxical behavior is traced to dual computational properties of phasic and tonic coding signal components. A parallel distributed match-reset-search process also helps stabilize memory. Without the match-reset-search system, dART becomes a type of distributed competitive learning network.

  1. Biologically plausible learning in neural networks: a lesson from bacterial chemotaxis.

    Science.gov (United States)

    Shimansky, Yury P

    2009-12-01

    Learning processes in the brain are usually associated with plastic changes made to optimize the strength of connections between neurons. Although many details related to biophysical mechanisms of synaptic plasticity have been discovered, it is unclear how the concurrent performance of adaptive modifications in a huge number of spatial locations is organized to minimize a given objective function. Since direct experimental observation of even a relatively small subset of such changes is not feasible, computational modeling is an indispensable investigation tool for solving this problem. However, the conventional method of error back-propagation (EBP) employed for optimizing synaptic weights in artificial neural networks is not biologically plausible. This study based on computational experiments demonstrated that such optimization can be performed rather efficiently using the same general method that bacteria employ for moving closer to an attractant or away from a repellent. With regard to neural network optimization, this method consists of regulating the probability of an abrupt change in the direction of synaptic weight modification according to the temporal gradient of the objective function. Neural networks utilizing this method (regulation of modification probability, RMP) can be viewed as analogous to swimming in the multidimensional space of their parameters in the flow of biochemical agents carrying information about the optimality criterion. The efficiency of RMP is comparable to that of EBP, while RMP has several important advantages. Since the biological plausibility of RMP is beyond a reasonable doubt, the RMP concept provides a constructive framework for the experimental analysis of learning in natural neural networks.

  2. Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity

    Science.gov (United States)

    Mizusaki, Beatriz E. P.; Agnes, Everton J.; Erichsen, Rubem; Brunnet, Leonardo G.

    2017-08-01

    The plastic character of brain synapses is considered to be one of the foundations for the formation of memories. There are numerous kinds of such phenomenon currently described in the literature, but their role in the development of information pathways in neural networks with recurrent architectures is still not completely clear. In this paper we study the role of an activity-based process, called pre-synaptic dependent homeostatic scaling, in the organization of networks that yield precise-timed spiking patterns. It encodes spatio-temporal information in the synaptic weights as it associates a learned input with a specific response. We introduce a correlation measure to evaluate the precision of the spiking patterns and explore the effects of different inhibitory interactions and learning parameters. We find that large learning periods are important in order to improve the network learning capacity and discuss this ability in the presence of distinct inhibitory currents.

  3. Program Helps Simulate Neural Networks

    Science.gov (United States)

    Villarreal, James; Mcintire, Gary

    1993-01-01

    Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.

  4. Rotation Invariance Neural Network

    OpenAIRE

    Li, Shiyuan

    2017-01-01

    Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...

  5. Radial basis function neural networks with sequential learning MRAN and its applications

    CERN Document Server

    Sundararajan, N; Wei Lu Ying

    1999-01-01

    This book presents in detail the newly developed sequential learning algorithm for radial basis function neural networks, which realizes a minimal network. This algorithm, created by the authors, is referred to as Minimal Resource Allocation Networks (MRAN). The book describes the application of MRAN in different areas, including pattern recognition, time series prediction, system identification, control, communication and signal processing. Benchmark problems from these areas have been studied, and MRAN is compared with other algorithms. In order to make the book self-contained, a review of t

  6. Learning text representation using recurrent convolutional neural network with highway layers

    OpenAIRE

    Wen, Ying; Zhang, Weinan; Luo, Rui; Wang, Jun

    2016-01-01

    Recently, the rapid development of word embedding and neural networks has brought new inspiration to various NLP and IR tasks. In this paper, we describe a staged hybrid model combining Recurrent Convolutional Neural Networks (RCNN) with highway layers. The highway network module is incorporated in the middle takes the output of the bi-directional Recurrent Neural Network (Bi-RNN) module in the first stage and provides the Convolutional Neural Network (CNN) module in the last stage with the i...

  7. A Comparative Classification of Wheat Grains for Artificial Neural Network and Extreme Learning Machine

    OpenAIRE

    ASLAN, Muhammet Fatih; SABANCI, Kadir; YİĞİT, Enes; KAYABAŞI, Ahmet; TOKTAŞ, Abdurrahim; DUYSAK, Hüseyin

    2018-01-01

    In this study, classification of two types of wheat grainsinto bread and durum was carried out. The species of wheat grains in thisdataset are bread and durum and these species have equal samples in the datasetas 100 instances. Seven features, including width, height, area, perimeter,roundness, width and perimeter/area were extracted from each wheat grains. Classificationwas separately conducted by Artificial Neural Network (ANN) and Extreme Learning Machine (ELM)artificial intelligence techn...

  8. Identification of chaotic systems by neural network with hybrid learning algorithm

    International Nuclear Information System (INIS)

    Pan, S.-T.; Lai, C.-C.

    2008-01-01

    Based on the genetic algorithm (GA) and steepest descent method (SDM), this paper proposes a hybrid algorithm for the learning of neural networks to identify chaotic systems. The systems in question are the logistic map and the Duffing equation. Different identification schemes are used to identify both the logistic map and the Duffing equation, respectively. Simulation results show that our hybrid algorithm is more efficient than that of other methods

  9. Learning Orthographic Structure with Sequential Generative Neural Networks

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-01-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in…

  10. A new backpropagation learning algorithm for layered neural networks with nondifferentiable units.

    Science.gov (United States)

    Oohori, Takahumi; Naganuma, Hidenori; Watanabe, Kazuhisa

    2007-05-01

    We propose a digital version of the backpropagation algorithm (DBP) for three-layered neural networks with nondifferentiable binary units. This approach feeds teacher signals to both the middle and output layers, whereas with a simple perceptron, they are given only to the output layer. The additional teacher signals enable the DBP to update the coupling weights not only between the middle and output layers but also between the input and middle layers. A neural network based on DBP learning is fast and easy to implement in hardware. Simulation results for several linearly nonseparable problems such as XOR demonstrate that the DBP performs favorably when compared to the conventional approaches. Furthermore, in large-scale networks, simulation results indicate that the DBP provides high performance.

  11. Accelerating learning of neural networks with conjugate gradients for nuclear power plant applications

    International Nuclear Information System (INIS)

    Reifman, J.; Vitela, J.E.

    1994-01-01

    The method of conjugate gradients is used to expedite the learning process of feedforward multilayer artificial neural networks and to systematically update both the learning parameter and the momentum parameter at each training cycle. The mechanism for the occurrence of premature saturation of the network nodes observed with the back propagation algorithm is described, suggestions are made to eliminate this undesirable phenomenon, and the reason by which this phenomenon is precluded in the method of conjugate gradients is presented. The proposed method is compared with the standard back propagation algorithm in the training of neural networks to classify transient events in neural power plants simulated by the Midland Nuclear Power Plant Unit 2 simulator. The comparison results indicate that the rate of convergence of the proposed method is much greater than the standard back propagation, that it reduces both the number of training cycles and the CPU time, and that it is less sensitive to the choice of initial weights. The advantages of the method are more noticeable and important for problems where the network architecture consists of a large number of nodes, the training database is large, and a tight convergence criterion is desired

  12. Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images.

    Science.gov (United States)

    Cheng, Phillip M; Malhi, Harshawn S

    2017-04-01

    The purpose of this study is to evaluate transfer learning with deep convolutional neural networks for the classification of abdominal ultrasound images. Grayscale images from 185 consecutive clinical abdominal ultrasound studies were categorized into 11 categories based on the text annotation specified by the technologist for the image. Cropped images were rescaled to 256 × 256 resolution and randomized, with 4094 images from 136 studies constituting the training set, and 1423 images from 49 studies constituting the test set. The fully connected layers of two convolutional neural networks based on CaffeNet and VGGNet, previously trained on the 2012 Large Scale Visual Recognition Challenge data set, were retrained on the training set. Weights in the convolutional layers of each network were frozen to serve as fixed feature extractors. Accuracy on the test set was evaluated for each network. A radiologist experienced in abdominal ultrasound also independently classified the images in the test set into the same 11 categories. The CaffeNet network classified 77.3% of the test set images accurately (1100/1423 images), with a top-2 accuracy of 90.4% (1287/1423 images). The larger VGGNet network classified 77.9% of the test set accurately (1109/1423 images), with a top-2 accuracy of VGGNet was 89.7% (1276/1423 images). The radiologist classified 71.7% of the test set images correctly (1020/1423 images). The differences in classification accuracies between both neural networks and the radiologist were statistically significant (p convolutional neural networks may be used to construct effective classifiers for abdominal ultrasound images.

  13. Design and FPGA-implementation of multilayer neural networks with on-chip learning

    International Nuclear Information System (INIS)

    Haggag, S.S.M.Y

    2008-01-01

    Artificial Neural Networks (ANN) is used in many applications in the industry because of their parallel structure, high speed, and their ability to give easy solution to complicated problems. For example identifying the orange and apple in the sorting machine with neural network is easier than using image processing techniques to do the same thing. There are different software for designing, training, and testing the ANN, but in order to use the ANN in the industry, it should be implemented on hardware outside the computer. Neural networks are artificial systems inspired on the brain's cognitive behavior, which can learn tasks with some degree of complexity, such as signal processing, diagnosis, robotics, image processing, and pattern recognition. Many applications demand a high computing power and the traditional software implementation are not sufficient.This thesis presents design and FPGA implementation of Multilayer Neural Networks with On-chip learning in re-configurable hardware. Hardware implementation of neural network algorithm is very interesting due their high performance and they can easily be made parallel. The architecture proposed herein takes advantage of distinct data paths for the forward and backward propagation stages and a pipelined adaptation of the on- line backpropagation algorithm to significantly improve the performance of the learning phase. The architecture is easily scalable and able to cope with arbitrary network sizes with the same hardware. The implementation is targeted diagnosis of the Research Reactor accidents to avoid the risk of occurrence of a nuclear accident. The proposed designed circuits are implemented using Xilinx FPGA Chip XC40150xv and occupied 73% of Chip CLBs. It achieved 10.8 μs to take decision in the forward propagation compared with current software implemented of RPS which take 24 ms. The results show that the proposed architecture leads to significant speed up comparing to high end software solutions. On

  14. Gradient Learning in Spiking Neural Networks by Dynamic Perturbation of Conductances

    International Nuclear Information System (INIS)

    Fiete, Ila R.; Seung, H. Sebastian

    2006-01-01

    We present a method of estimating the gradient of an objective function with respect to the synaptic weights of a spiking neural network. The method works by measuring the fluctuations in the objective function in response to dynamic perturbation of the membrane conductances of the neurons. It is compatible with recurrent networks of conductance-based model neurons with dynamic synapses. The method can be interpreted as a biologically plausible synaptic learning rule, if the dynamic perturbations are generated by a special class of 'empiric' synapses driven by random spike trains from an external source

  15. Feed-Forward Neural Networks and Minimal Search Space Learning

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman

    2005-01-01

    Roč. 4, č. 12 (2005), s. 1867-1872 ISSN 1109-2750 R&D Projects: GA ČR GA201/05/0557 Institutional research plan: CEZ:AV0Z10300504 Keywords : search space * feed-forward networks * genetic algorithm s Subject RIV: BA - General Mathematics

  16. HIERtalker: A default hierarchy of high order neural networks that learns to read English aloud

    Energy Technology Data Exchange (ETDEWEB)

    An, Z.G.; Mniszewski, S.M.; Lee, Y.C.; Papcun, G.; Doolen, G.D.

    1988-01-01

    A new learning algorithm based on a default hierarchy of high order neural networks has been developed that is able to generalize as well as handle exceptions. It learns the ''building blocks'' or clusters of symbols in a stream that appear repeatedly and convey certain messages. The default hierarchy prevents a combinatoric explosion of rules. A simulator of such a hierarchy, HIERtalker, has been applied to the conversion of English words to phonemes. Achieved accuracy is 99% for trained words and ranges from 76% to 96% for sets of new words. 8 refs., 4 figs., 1 tab.

  17. A Model to Explain the Emergence of Reward Expectancy neurons using Reinforcement Learning and Neural Network

    OpenAIRE

    Shinya, Ishii; Munetaka, Shidara; Katsunari, Shibata

    2006-01-01

    In an experiment of multi-trial task to obtain a reward, reward expectancy neurons,###which responded only in the non-reward trials that are necessary to advance###toward the reward, have been observed in the anterior cingulate cortex of monkeys.###In this paper, to explain the emergence of the reward expectancy neuron in###terms of reinforcement learning theory, a model that consists of a recurrent neural###network trained based on reinforcement learning is proposed. The analysis of the###hi...

  18. Learning Networks, Networked Learning

    NARCIS (Netherlands)

    Sloep, Peter; Berlanga, Adriana

    2010-01-01

    Sloep, P. B., & Berlanga, A. J. (2011). Learning Networks, Networked Learning [Redes de Aprendizaje, Aprendizaje en Red]. Comunicar, XIX(37), 55-63. Retrieved from http://dx.doi.org/10.3916/C37-2011-02-05

  19. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.

    Directory of Open Access Journals (Sweden)

    Yoonsik Shim

    2016-10-01

    Full Text Available We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP. The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.

  20. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP.

    Science.gov (United States)

    Shim, Yoonsik; Philippides, Andrew; Staras, Kevin; Husbands, Phil

    2016-10-01

    We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM) networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.

  1. Nuclear power plant monitoring using real-time learning neural network

    International Nuclear Information System (INIS)

    Nabeshima, Kunihiko; Tuerkcan, E.; Ciftcioglu, O.

    1994-01-01

    In the present research, artificial neural network (ANN) with real-time adaptive learning is developed for the plant wide monitoring of Borssele Nuclear Power Plant (NPP). Adaptive ANN learning capability is integrated to the monitoring system so that robust and sensitive on-line monitoring is achieved in real-time environment. The major advantages provided by ANN are that system modelling is formed by means of measurement information obtained from a multi-output process system, explicit modelling is not required and the modelling is not restricted to linear systems. Also ANN can respond very fast to anomalous operational conditions. The real-time ANN learning methodology with adaptive real-time monitoring capability is described below for the wide-range and plant-wide data from an operating nuclear power plant. The layered neural network with error backpropagation algorithm for learning has three layers. The network type is auto-associative, inputs and outputs are exactly the same, using 12 plant signals. (author)

  2. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading.

    Science.gov (United States)

    Li, Siqi; Jiang, Huiyan; Pang, Wenbo

    2017-05-01

    Accurate cell grading of cancerous tissue pathological image is of great importance in medical diagnosis and treatment. This paper proposes a joint multiple fully connected convolutional neural network with extreme learning machine (MFC-CNN-ELM) architecture for hepatocellular carcinoma (HCC) nuclei grading. First, in preprocessing stage, each grayscale image patch with the fixed size is obtained using center-proliferation segmentation (CPS) method and the corresponding labels are marked under the guidance of three pathologists. Next, a multiple fully connected convolutional neural network (MFC-CNN) is designed to extract the multi-form feature vectors of each input image automatically, which considers multi-scale contextual information of deep layer maps sufficiently. After that, a convolutional neural network extreme learning machine (CNN-ELM) model is proposed to grade HCC nuclei. Finally, a back propagation (BP) algorithm, which contains a new up-sample method, is utilized to train MFC-CNN-ELM architecture. The experiment comparison results demonstrate that our proposed MFC-CNN-ELM has superior performance compared with related works for HCC nuclei grading. Meanwhile, external validation using ICPR 2014 HEp-2 cell dataset shows the good generalization of our MFC-CNN-ELM architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Robust sequential learning of feedforward neural networks in the presence of heavy-tailed noise.

    Science.gov (United States)

    Vuković, Najdan; Miljković, Zoran

    2015-03-01

    Feedforward neural networks (FFNN) are among the most used neural networks for modeling of various nonlinear problems in engineering. In sequential and especially real time processing all neural networks models fail when faced with outliers. Outliers are found across a wide range of engineering problems. Recent research results in the field have shown that to avoid overfitting or divergence of the model, new approach is needed especially if FFNN is to run sequentially or in real time. To accommodate limitations of FFNN when training data contains a certain number of outliers, this paper presents new learning algorithm based on improvement of conventional extended Kalman filter (EKF). Extended Kalman filter robust to outliers (EKF-OR) is probabilistic generative model in which measurement noise covariance is not constant; the sequence of noise measurement covariance is modeled as stochastic process over the set of symmetric positive-definite matrices in which prior is modeled as inverse Wishart distribution. In each iteration EKF-OR simultaneously estimates noise estimates and current best estimate of FFNN parameters. Bayesian framework enables one to mathematically derive expressions, while analytical intractability of the Bayes' update step is solved by using structured variational approximation. All mathematical expressions in the paper are derived using the first principles. Extensive experimental study shows that FFNN trained with developed learning algorithm, achieves low prediction error and good generalization quality regardless of outliers' presence in training data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection.

    Science.gov (United States)

    Kim, Jihun; Kim, Jonghong; Jang, Gil-Jin; Lee, Minho

    2017-03-01

    Deep learning has received significant attention recently as a promising solution to many problems in the area of artificial intelligence. Among several deep learning architectures, convolutional neural networks (CNNs) demonstrate superior performance when compared to other machine learning methods in the applications of object detection and recognition. We use a CNN for image enhancement and the detection of driving lanes on motorways. In general, the process of lane detection consists of edge extraction and line detection. A CNN can be used to enhance the input images before lane detection by excluding noise and obstacles that are irrelevant to the edge detection result. However, training conventional CNNs requires considerable computation and a big dataset. Therefore, we suggest a new learning algorithm for CNNs using an extreme learning machine (ELM). The ELM is a fast learning method used to calculate network weights between output and hidden layers in a single iteration and thus, can dramatically reduce learning time while producing accurate results with minimal training data. A conventional ELM can be applied to networks with a single hidden layer; as such, we propose a stacked ELM architecture in the CNN framework. Further, we modify the backpropagation algorithm to find the targets of hidden layers and effectively learn network weights while maintaining performance. Experimental results confirm that the proposed method is effective in reducing learning time and improving performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A Neural Network Model to Learn Multiple Tasks under Dynamic Environments

    Science.gov (United States)

    Tsumori, Kenji; Ozawa, Seiichi

    When environments are dynamically changed for agents, the knowledge acquired in an environment might be useless in future. In such dynamic environments, agents should be able to not only acquire new knowledge but also modify old knowledge in learning. However, modifying all knowledge acquired before is not efficient because the knowledge once acquired may be useful again when similar environment reappears and some knowledge can be shared among different environments. To learn efficiently in such environments, we propose a neural network model that consists of the following modules: resource allocating network, long-term & short-term memory, and environment change detector. We evaluate the model under a class of dynamic environments where multiple function approximation tasks are sequentially given. The experimental results demonstrate that the proposed model possesses stable incremental learning, accurate environmental change detection, proper association and recall of old knowledge, and efficient knowledge transfer.

  6. A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.

    Directory of Open Access Journals (Sweden)

    Alireza Alemi

    2015-08-01

    Full Text Available Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the

  7. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  8. A Constrained Multi-Objective Learning Algorithm for Feed-Forward Neural Network Classifiers

    Directory of Open Access Journals (Sweden)

    M. Njah

    2017-06-01

    Full Text Available This paper proposes a new approach to address the optimal design of a Feed-forward Neural Network (FNN based classifier. The originality of the proposed methodology, called CMOA, lie in the use of a new constraint handling technique based on a self-adaptive penalty procedure in order to direct the entire search effort towards finding only Pareto optimal solutions that are acceptable. Neurons and connections of the FNN Classifier are dynamically built during the learning process. The approach includes differential evolution to create new individuals and then keeps only the non-dominated ones as the basis for the next generation. The designed FNN Classifier is applied to six binary classification benchmark problems, obtained from the UCI repository, and results indicated the advantages of the proposed approach over other existing multi-objective evolutionary neural networks classifiers reported recently in the literature.

  9. Single-Iteration Learning Algorithm for Feed-Forward Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, J.; Cogswell, R.; Protopopescu, V.

    1999-07-31

    A new methodology for neural learning is presented, whereby only a single iteration is required to train a feed-forward network with near-optimal results. To this aim, a virtual input layer is added to the multi-layer architecture. The virtual input layer is connected to the nominal input layer by a specird nonlinear transfer function, and to the fwst hidden layer by regular (linear) synapses. A sequence of alternating direction singular vrdue decompositions is then used to determine precisely the inter-layer synaptic weights. This algorithm exploits the known separability of the linear (inter-layer propagation) and nonlinear (neuron activation) aspects of information &ansfer within a neural network.

  10. Growing adaptive machines combining development and learning in artificial neural networks

    CERN Document Server

    Bredeche, Nicolas; Doursat, René

    2014-01-01

    The pursuit of artificial intelligence has been a highly active domain of research for decades, yielding exciting scientific insights and productive new technologies. In terms of generating intelligence, however, this pursuit has yielded only limited success. This book explores the hypothesis that adaptive growth is a means of moving forward. By emulating the biological process of development, we can incorporate desirable characteristics of natural neural systems into engineered designs, and thus move closer towards the creation of brain-like systems. The particular focus is on how to design artificial neural networks for engineering tasks. The book consists of contributions from 18 researchers, ranging from detailed reviews of recent domains by senior scientists, to exciting new contributions representing the state of the art in machine learning research. The book begins with broad overviews of artificial neurogenesis and bio-inspired machine learning, suitable both as an introduction to the domains and as a...

  11. Research of Dynamic Competitive Learning in Neural Networks

    Institute of Scientific and Technical Information of China (English)

    PAN Hao; CEN Li; ZHONG Luo

    2005-01-01

    Introduce a method of generation of new units within a cluster and a algorithm of generating new clusters.The model automatically builds up its dynamically growing internal representation structure during the learning process.Comparing model with other typical classification algorithm such as the Kohonen's self-organizing map, the model realizes a multilevel classification of the input pattern with an op tional accuracy and gives a strong support possibility for the parallel computational main processor. The idea is suitable for the high level storage of complex datas struetures for object recognition.

  12. Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas.

    Science.gov (United States)

    Chang, P; Grinband, J; Weinberg, B D; Bardis, M; Khy, M; Cadena, G; Su, M-Y; Cha, S; Filippi, C G; Bota, D; Baldi, P; Poisson, L M; Jain, R; Chow, D

    2018-05-10

    The World Health Organization has recently placed new emphasis on the integration of genetic information for gliomas. While tissue sampling remains the criterion standard, noninvasive imaging techniques may provide complimentary insight into clinically relevant genetic mutations. Our aim was to train a convolutional neural network to independently predict underlying molecular genetic mutation status in gliomas with high accuracy and identify the most predictive imaging features for each mutation. MR imaging data and molecular information were retrospectively obtained from The Cancer Imaging Archives for 259 patients with either low- or high-grade gliomas. A convolutional neural network was trained to classify isocitrate dehydrogenase 1 ( IDH1 ) mutation status, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase ( MGMT ) promotor methylation status. Principal component analysis of the final convolutional neural network layer was used to extract the key imaging features critical for successful classification. Classification had high accuracy: IDH1 mutation status, 94%; 1p/19q codeletion, 92%; and MGMT promotor methylation status, 83%. Each genetic category was also associated with distinctive imaging features such as definition of tumor margins, T1 and FLAIR suppression, extent of edema, extent of necrosis, and textural features. Our results indicate that for The Cancer Imaging Archives dataset, machine-learning approaches allow classification of individual genetic mutations of both low- and high-grade gliomas. We show that relevant MR imaging features acquired from an added dimensionality-reduction technique demonstrate that neural networks are capable of learning key imaging components without prior feature selection or human-directed training. © 2018 by American Journal of Neuroradiology.

  13. Criticality meets learning: Criticality signatures in a self-organizing recurrent neural network.

    Science.gov (United States)

    Del Papa, Bruno; Priesemann, Viola; Triesch, Jochen

    2017-01-01

    Many experiments have suggested that the brain operates close to a critical state, based on signatures of criticality such as power-law distributed neuronal avalanches. In neural network models, criticality is a dynamical state that maximizes information processing capacities, e.g. sensitivity to input, dynamical range and storage capacity, which makes it a favorable candidate state for brain function. Although models that self-organize towards a critical state have been proposed, the relation between criticality signatures and learning is still unclear. Here, we investigate signatures of criticality in a self-organizing recurrent neural network (SORN). Investigating criticality in the SORN is of particular interest because it has not been developed to show criticality. Instead, the SORN has been shown to exhibit spatio-temporal pattern learning through a combination of neural plasticity mechanisms and it reproduces a number of biological findings on neural variability and the statistics and fluctuations of synaptic efficacies. We show that, after a transient, the SORN spontaneously self-organizes into a dynamical state that shows criticality signatures comparable to those found in experiments. The plasticity mechanisms are necessary to attain that dynamical state, but not to maintain it. Furthermore, onset of external input transiently changes the slope of the avalanche distributions - matching recent experimental findings. Interestingly, the membrane noise level necessary for the occurrence of the criticality signatures reduces the model's performance in simple learning tasks. Overall, our work shows that the biologically inspired plasticity and homeostasis mechanisms responsible for the SORN's spatio-temporal learning abilities can give rise to criticality signatures in its activity when driven by random input, but these break down under the structured input of short repeating sequences.

  14. A Fusion Face Recognition Approach Based on 7-Layer Deep Learning Neural Network

    Directory of Open Access Journals (Sweden)

    Jianzheng Liu

    2016-01-01

    Full Text Available This paper presents a method for recognizing human faces with facial expression. In the proposed approach, a motion history image (MHI is employed to get the features in an expressive face. The face can be seen as a kind of physiological characteristic of a human and the expressions are behavioral characteristics. We fused the 2D images of a face and MHIs which were generated from the same face’s image sequences with expression. Then the fusion features were used to feed a 7-layer deep learning neural network. The previous 6 layers of the whole network can be seen as an autoencoder network which can reduce the dimension of the fusion features. The last layer of the network can be seen as a softmax regression; we used it to get the identification decision. Experimental results demonstrated that our proposed method performs favorably against several state-of-the-art methods.

  15. Efficient Online Learning Algorithms Based on LSTM Neural Networks.

    Science.gov (United States)

    Ergen, Tolga; Kozat, Suleyman Serdar

    2017-09-13

    We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.

  16. Using Deep Learning Neural Networks To Find Best Performing Audience Segments

    Directory of Open Access Journals (Sweden)

    Anup Badhe

    2015-08-01

    Full Text Available Finding the appropriate mobile audience for mobile advertising is always challenging since there are many data points that need to be considered and assimilated before a target segment can be created and used in ad serving by any ad server. Deep learning neural networks have been used in machine learning to use multiple processing layers to interpret large datasets with multiple dimensions to come up with a high-level characterization of the data. During a request for an advertisement and subsequently serving of the advertisement on the mobile device there are many trackers that are fired collecting a lot of data points. If the user likes the advertisement and clicks on it another set of trackers give additional information resulting from the click. This information is aggregated by the ad server and shown in its reporting console. The same information can form the basis of machine learning by feeding this information to a deep learning neural network to come up with audiences that can be targeted based on the product that is advertised.

  17. Recurrent fuzzy neural network by using feedback error learning approaches for LFC in interconnected power system

    International Nuclear Information System (INIS)

    Sabahi, Kamel; Teshnehlab, Mohammad; Shoorhedeli, Mahdi Aliyari

    2009-01-01

    In this study, a new adaptive controller based on modified feedback error learning (FEL) approaches is proposed for load frequency control (LFC) problem. The FEL strategy consists of intelligent and conventional controllers in feedforward and feedback paths, respectively. In this strategy, a conventional feedback controller (CFC), i.e. proportional, integral and derivative (PID) controller, is essential to guarantee global asymptotic stability of the overall system; and an intelligent feedforward controller (INFC) is adopted to learn the inverse of the controlled system. Therefore, when the INFC learns the inverse of controlled system, the tracking of reference signal is done properly. Generally, the CFC is designed at nominal operating conditions of the system and, therefore, fails to provide the best control performance as well as global stability over a wide range of changes in the operating conditions of the system. So, in this study a supervised controller (SC), a lookup table based controller, is addressed for tuning of the CFC. During abrupt changes of the power system parameters, the SC adjusts the PID parameters according to these operating conditions. Moreover, for improving the performance of overall system, a recurrent fuzzy neural network (RFNN) is adopted in INFC instead of the conventional neural network, which was used in past studies. The proposed FEL controller has been compared with the conventional feedback error learning controller (CFEL) and the PID controller through some performance indices

  18. Convolutional Neural Network Based on Extreme Learning Machine for Maritime Ships Recognition in Infrared Images.

    Science.gov (United States)

    Khellal, Atmane; Ma, Hongbin; Fei, Qing

    2018-05-09

    The success of Deep Learning models, notably convolutional neural networks (CNNs), makes them the favorable solution for object recognition systems in both visible and infrared domains. However, the lack of training data in the case of maritime ships research leads to poor performance due to the problem of overfitting. In addition, the back-propagation algorithm used to train CNN is very slow and requires tuning many hyperparameters. To overcome these weaknesses, we introduce a new approach fully based on Extreme Learning Machine (ELM) to learn useful CNN features and perform a fast and accurate classification, which is suitable for infrared-based recognition systems. The proposed approach combines an ELM based learning algorithm to train CNN for discriminative features extraction and an ELM based ensemble for classification. The experimental results on VAIS dataset, which is the largest dataset of maritime ships, confirm that the proposed approach outperforms the state-of-the-art models in term of generalization performance and training speed. For instance, the proposed model is up to 950 times faster than the traditional back-propagation based training of convolutional neural networks, primarily for low-level features extraction.

  19. EMG-Based Estimation of Limb Movement Using Deep Learning With Recurrent Convolutional Neural Networks.

    Science.gov (United States)

    Xia, Peng; Hu, Jie; Peng, Yinghong

    2017-10-25

    A novel model based on deep learning is proposed to estimate kinematic information for myoelectric control from multi-channel electromyogram (EMG) signals. The neural information of limb movement is embedded in EMG signals that are influenced by all kinds of factors. In order to overcome the negative effects of variability in signals, the proposed model employs the deep architecture combining convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The EMG signals are transformed to time-frequency frames as the input to the model. The limb movement is estimated by the model that is trained with the gradient descent and backpropagation procedure. We tested the model for simultaneous and proportional estimation of limb movement in eight healthy subjects and compared it with support vector regression (SVR) and CNNs on the same data set. The experimental studies show that the proposed model has higher estimation accuracy and better robustness with respect to time. The combination of CNNs and RNNs can improve the model performance compared with using CNNs alone. The model of deep architecture is promising in EMG decoding and optimization of network structures can increase the accuracy and robustness. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  20. Statistical learning problem of artificial neural network to control roofing process

    Directory of Open Access Journals (Sweden)

    Lapidus Azariy

    2017-01-01

    Full Text Available Now software developed on the basis of artificial neural networks (ANN has been actively implemented in construction companies to support decision-making in organization and management of construction processes. ANN learning is the main stage of its development. A key question for supervised learning is how many number of training examples we need to approximate the true relationship between network inputs and output with the desired accuracy. Also designing of ANN architecture is related to learning problem known as “curse of dimensionality”. This problem is important for the study of construction process management because of the difficulty to get training data from construction sites. In previous studies the authors have designed a 4-layer feedforward ANN with a unit model of 12-5-4-1 to approximate estimation and prediction of roofing process. This paper presented the statistical learning side of created ANN with simple-error-minimization algorithm. The sample size to efficient training and the confidence interval of network outputs defined. In conclusion the authors predicted successful ANN learning in a large construction business company within a short space of time.

  1. Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm.

    Science.gov (United States)

    Savareh, Behrouz Alizadeh; Emami, Hassan; Hajiabadi, Mohamadreza; Azimi, Seyed Majid; Ghafoori, Mahyar

    2018-05-29

    Manual brain tumor segmentation is a challenging task that requires the use of machine learning techniques. One of the machine learning techniques that has been given much attention is the convolutional neural network (CNN). The performance of the CNN can be enhanced by combining other data analysis tools such as wavelet transform. In this study, one of the famous implementations of CNN, a fully convolutional network (FCN), was used in brain tumor segmentation and its architecture was enhanced by wavelet transform. In this combination, a wavelet transform was used as a complementary and enhancing tool for CNN in brain tumor segmentation. Comparing the performance of basic FCN architecture against the wavelet-enhanced form revealed a remarkable superiority of enhanced architecture in brain tumor segmentation tasks. Using mathematical functions and enhancing tools such as wavelet transform and other mathematical functions can improve the performance of CNN in any image processing task such as segmentation and classification.

  2. Intelligent Image Recognition System for Marine Fouling Using Softmax Transfer Learning and Deep Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    C. S. Chin

    2017-01-01

    Full Text Available The control of biofouling on marine vessels is challenging and costly. Early detection before hull performance is significantly affected is desirable, especially if “grooming” is an option. Here, a system is described to detect marine fouling at an early stage of development. In this study, an image of fouling can be transferred wirelessly via a mobile network for analysis. The proposed system utilizes transfer learning and deep convolutional neural network (CNN to perform image recognition on the fouling image by classifying the detected fouling species and the density of fouling on the surface. Transfer learning using Google’s Inception V3 model with Softmax at last layer was carried out on a fouling database of 10 categories and 1825 images. Experimental results gave acceptable accuracies for fouling detection and recognition.

  3. White blood cells identification system based on convolutional deep neural learning networks.

    Science.gov (United States)

    Shahin, A I; Guo, Yanhui; Amin, K M; Sharawi, Amr A

    2017-11-16

    White blood cells (WBCs) differential counting yields valued information about human health and disease. The current developed automated cell morphology equipments perform differential count which is based on blood smear image analysis. Previous identification systems for WBCs consist of successive dependent stages; pre-processing, segmentation, feature extraction, feature selection, and classification. There is a real need to employ deep learning methodologies so that the performance of previous WBCs identification systems can be increased. Classifying small limited datasets through deep learning systems is a major challenge and should be investigated. In this paper, we propose a novel identification system for WBCs based on deep convolutional neural networks. Two methodologies based on transfer learning are followed: transfer learning based on deep activation features and fine-tuning of existed deep networks. Deep acrivation featues are extracted from several pre-trained networks and employed in a traditional identification system. Moreover, a novel end-to-end convolutional deep architecture called "WBCsNet" is proposed and built from scratch. Finally, a limited balanced WBCs dataset classification is performed through the WBCsNet as a pre-trained network. During our experiments, three different public WBCs datasets (2551 images) have been used which contain 5 healthy WBCs types. The overall system accuracy achieved by the proposed WBCsNet is (96.1%) which is more than different transfer learning approaches or even the previous traditional identification system. We also present features visualization for the WBCsNet activation which reflects higher response than the pre-trained activated one. a novel WBCs identification system based on deep learning theory is proposed and a high performance WBCsNet can be employed as a pre-trained network. Copyright © 2017. Published by Elsevier B.V.

  4. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  5. Some Issues of the Paradigm of Multi-learning Machine - Modular Neural Networks

    DEFF Research Database (Denmark)

    Wang, Pan; Feng, Shuai; Fan, Zhun

    2009-01-01

    This paper addresses some issues on the weighted linear integration of modular neural networks (MNN: a paradigm of hybrid multi-learning machines). First, from the general meaning of variable weights and variable elements synthesis, three basic kinds of integrated models are discussed...... a general form while the corresponding computational algorithms are described briefly. The authors present a new training algorithm of sub-networks named “'Expert in one thing and good at many' (EOGM).” In this algorithm, every sub-network is trained on a primary dataset with some of its near neighbors...... as the accessorial datasets. Simulated results with a kind of dynamic integration methods show the effectiveness of these algorithms, where the performance of the algorithm with EOGM is better than that of the algorithm with a common training method....

  6. Effect of signal noise on the learning capability of an artificial neural network

    International Nuclear Information System (INIS)

    Vega, J.J.; Reynoso, R.; Calvet, H. Carrillo

    2009-01-01

    Digital Pulse Shape Analysis (DPSA) by artificial neural networks (ANN) is becoming an important tool to extract relevant information from digitized signals in different areas. In this paper, we present a systematic evidence of how the concomitant noise that distorts the signals or patterns to be identified by an ANN set limits to its learning capability. Also, we present evidence that explains overtraining as a competition between the relevant pattern features, on the one side, against the signal noise, on the other side, as the main cause defining the shape of the error surface in weight space and, consequently, determining the steepest descent path that controls the ANN adaptation process.

  7. A Tsallis’ statistics based neural network model for novel word learning

    Science.gov (United States)

    Hadzibeganovic, Tarik; Cannas, Sergio A.

    2009-03-01

    We invoke the Tsallis entropy formalism, a nonextensive entropy measure, to include some degree of non-locality in a neural network that is used for simulation of novel word learning in adults. A generalization of the gradient descent dynamics, realized via nonextensive cost functions, is used as a learning rule in a simple perceptron. The model is first investigated for general properties, and then tested against the empirical data, gathered from simple memorization experiments involving two populations of linguistically different subjects. Numerical solutions of the model equations corresponded to the measured performance states of human learners. In particular, we found that the memorization tasks were executed with rather small but population-specific amounts of nonextensivity, quantified by the entropic index q. Our findings raise the possibility of using entropic nonextensivity as a means of characterizing the degree of complexity of learning in both natural and artificial systems.

  8. Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks.

    Science.gov (United States)

    Burt, Jeremy R; Torosdagli, Neslisah; Khosravan, Naji; RaviPrakash, Harish; Mortazi, Aliasghar; Tissavirasingham, Fiona; Hussein, Sarfaraz; Bagci, Ulas

    2018-04-10

    Deep learning has demonstrated tremendous revolutionary changes in the computing industry and its effects in radiology and imaging sciences have begun to dramatically change screening paradigms. Specifically, these advances have influenced the development of computer-aided detection and diagnosis (CAD) systems. These technologies have long been thought of as "second-opinion" tools for radiologists and clinicians. However, with significant improvements in deep neural networks, the diagnostic capabilities of learning algorithms are approaching levels of human expertise (radiologists, clinicians etc.), shifting the CAD paradigm from a "second opinion" tool to a more collaborative utility. This paper reviews recently developed CAD systems based on deep learning technologies for breast cancer diagnosis, explains their superiorities with respect to previously established systems, defines the methodologies behind the improved achievements including algorithmic developments, and describes remaining challenges in breast cancer screening and diagnosis. We also discuss possible future directions for new CAD models that continue to change as artificial intelligence algorithms evolve.

  9. Application of different entropy formalisms in a neural network for novel word learning

    Science.gov (United States)

    Khordad, R.; Rastegar Sedehi, H. R.

    2015-12-01

    In this paper novel word learning in adults is studied. For this goal, four entropy formalisms are employed to include some degree of non-locality in a neural network. The entropy formalisms are Tsallis, Landsberg-Vedral, Kaniadakis, and Abe entropies. First, we have analytically obtained non-extensive cost functions for the all entropies. Then, we have used a generalization of the gradient descent dynamics as a learning rule in a simple perceptron. The Langevin equations are numerically solved and the error function (learning curve) is obtained versus time for different values of the parameters. The influence of index q and number of neuron N on learning is investigated for the all entropies. It is found that learning is a decreasing function of time for the all entropies. The rate of learning for the Landsberg-Vedral entropy is slower than other entropies. The variation of learning with time for the Landsberg-Vedral entropy is not appreciable when the number of neurons increases. It is said that entropy formalism can be used as a means for studying the learning.

  10. Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks

    Science.gov (United States)

    Brosch, Tobias; Neumann, Heiko; Roelfsema, Pieter R.

    2015-01-01

    The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology). Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and computational studies

  11. Learning-Related Changes in Adolescents' Neural Networks during Hypothesis-Generating and Hypothesis-Understanding Training

    Science.gov (United States)

    Lee, Jun-Ki; Kwon, Yongju

    2012-01-01

    Fourteen science high school students participated in this study, which investigated neural-network plasticity associated with hypothesis-generating and hypothesis-understanding in learning. The students were divided into two groups and participated in either hypothesis-generating or hypothesis-understanding type learning programs, which were…

  12. Neural networks involved in learning lexical-semantic and syntactic information in a second language.

    Science.gov (United States)

    Mueller, Jutta L; Rueschemeyer, Shirley-Ann; Ono, Kentaro; Sugiura, Motoaki; Sadato, Norihiro; Nakamura, Akinori

    2014-01-01

    The present study used functional magnetic resonance imaging (fMRI) to investigate the neural correlates of language acquisition in a realistic learning environment. Japanese native speakers were trained in a miniature version of German prior to fMRI scanning. During scanning they listened to (1) familiar sentences, (2) sentences including a novel sentence structure, and (3) sentences containing a novel word while visual context provided referential information. Learning-related decreases of brain activation over time were found in a mainly left-hemispheric network comprising classical frontal and temporal language areas as well as parietal and subcortical regions and were largely overlapping for novel words and the novel sentence structure in initial stages of learning. Differences occurred at later stages of learning during which content-specific activation patterns in prefrontal, parietal and temporal cortices emerged. The results are taken as evidence for a domain-general network supporting the initial stages of language learning which dynamically adapts as learners become proficient.

  13. Neural network to diagnose lining condition

    Science.gov (United States)

    Yemelyanov, V. A.; Yemelyanova, N. Y.; Nedelkin, A. A.; Zarudnaya, M. V.

    2018-03-01

    The paper presents data on the problem of diagnosing the lining condition at the iron and steel works. The authors describe the neural network structure and software that are designed and developed to determine the lining burnout zones. The simulation results of the proposed neural networks are presented. The authors note the low learning and classification errors of the proposed neural networks. To realize the proposed neural network, the specialized software has been developed.

  14. The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding.

    Science.gov (United States)

    Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco

    2017-01-01

    The recent "deep learning revolution" in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems.

  15. Learning Control of Fixed-Wing Unmanned Aerial Vehicles Using Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Erdal Kayacan

    2017-01-01

    Full Text Available A learning control strategy is preferred for the control and guidance of a fixed-wing unmanned aerial vehicle to deal with lack of modeling and flight uncertainties. For learning the plant model as well as changing working conditions online, a fuzzy neural network (FNN is used in parallel with a conventional P (proportional controller. Among the learning algorithms in the literature, a derivative-free one, sliding mode control (SMC theory-based learning algorithm, is preferred as it has been proved to be computationally efficient in real-time applications. Its proven robustness and finite time converging nature make the learning algorithm appropriate for controlling an unmanned aerial vehicle as the computational power is always limited in unmanned aerial vehicles (UAVs. The parameter update rules and stability conditions of the learning are derived, and the proof of the stability of the learning algorithm is shown by using a candidate Lyapunov function. Intensive simulations are performed to illustrate the applicability of the proposed controller which includes the tracking of a three-dimensional trajectory by the UAV subject to time-varying wind conditions. The simulation results show the efficiency of the proposed control algorithm, especially in real-time control systems because of its computational efficiency.

  16. Causal Learning and Explanation of Deep Neural Networks via Autoencoded Activations

    OpenAIRE

    Harradon, Michael; Druce, Jeff; Ruttenberg, Brian

    2018-01-01

    Deep neural networks are complex and opaque. As they enter application in a variety of important and safety critical domains, users seek methods to explain their output predictions. We develop an approach to explaining deep neural networks by constructing causal models on salient concepts contained in a CNN. We develop methods to extract salient concepts throughout a target network by using autoencoders trained to extract human-understandable representations of network activations. We then bu...

  17. Early detection of incipient faults in power plants using accelerated neural network learning

    International Nuclear Information System (INIS)

    Parlos, A.G.; Jayakumar, M.; Atiya, A.

    1992-01-01

    An important aspect of power plant automation is the development of computer systems able to detect and isolate incipient (slowly developing) faults at the earliest possible stages of their occurrence. In this paper, the development and testing of such a fault detection scheme is presented based on recognition of sensor signatures during various failure modes. An accelerated learning algorithm, namely adaptive backpropagation (ABP), has been developed that allows the training of a multilayer perceptron (MLP) network to a high degree of accuracy, with an order of magnitude improvement in convergence speed. An artificial neural network (ANN) has been successfully trained using the ABP algorithm, and it has been extensively tested with simulated data to detect and classify incipient faults of various types and severity and in the presence of varying sensor noise levels

  18. Validating the Use of Deep Learning Neural Networks for Correction of Large Hydrometric Datasets

    Science.gov (United States)

    Frazier, N.; Ogden, F. L.; Regina, J. A.; Cheng, Y.

    2017-12-01

    Collection and validation of Earth systems data can be time consuming and labor intensive. In particular, high resolution hydrometric data, including rainfall and streamflow measurements, are difficult to obtain due to a multitude of complicating factors. Measurement equipment is subject to clogs, environmental disturbances, and sensor drift. Manual intervention is typically required to identify, correct, and validate these data. Weirs can become clogged and the pressure transducer may float or drift over time. We typically employ a graphical tool called Time Series Editor to manually remove clogs and sensor drift from the data. However, this process is highly subjective and requires hydrological expertise. Two different people may produce two different data sets. To use this data for scientific discovery and model validation, a more consistent method is needed to processes this field data. Deep learning neural networks have proved to be excellent mechanisms for recognizing patterns in data. We explore the use of Recurrent Neural Networks (RNN) to capture the patterns in the data over time using various gating mechanisms (LSTM and GRU), network architectures, and hyper-parameters to build an automated data correction model. We also explore the required amount of manually corrected training data required to train the network for reasonable accuracy. The benefits of this approach are that the time to process a data set is significantly reduced, and the results are 100% reproducible after training is complete. Additionally, we train the RNN and calibrate a physically-based hydrological model against the same portion of data. Both the RNN and the model are applied to the remaining data using a split-sample methodology. Performance of the machine learning is evaluated for plausibility by comparing with the output of the hydrological model, and this analysis identifies potential periods where additional investigation is warranted.

  19. Learning Data Set Influence on Identification Accuracy of Gas Turbine Neural Network Model

    Science.gov (United States)

    Kuznetsov, A. V.; Makaryants, G. M.

    2018-01-01

    There are many gas turbine engine identification researches via dynamic neural network models. It should minimize errors between model and real object during identification process. Questions about training data set processing of neural networks are usually missed. This article presents a study about influence of data set type on gas turbine neural network model accuracy. The identification object is thermodynamic model of micro gas turbine engine. The thermodynamic model input signal is the fuel consumption and output signal is the engine rotor rotation frequency. Four types input signals was used for creating training and testing data sets of dynamic neural network models - step, fast, slow and mixed. Four dynamic neural networks were created based on these types of training data sets. Each neural network was tested via four types test data sets. In the result 16 transition processes from four neural networks and four test data sets from analogous solving results of thermodynamic model were compared. The errors comparison was made between all neural network errors in each test data set. In the comparison result it was shown error value ranges of each test data set. It is shown that error values ranges is small therefore the influence of data set types on identification accuracy is low.

  20. Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection

    Directory of Open Access Journals (Sweden)

    Haobo Lyu

    2016-06-01

    Full Text Available When exploited in remote sensing analysis, a reliable change rule with transfer ability can detect changes accurately and be applied widely. However, in practice, the complexity of land cover changes makes it difficult to use only one change rule or change feature learned from a given multi-temporal dataset to detect any other new target images without applying other learning processes. In this study, we consider the design of an efficient change rule having transferability to detect both binary and multi-class changes. The proposed method relies on an improved Long Short-Term Memory (LSTM model to acquire and record the change information of long-term sequence remote sensing data. In particular, a core memory cell is utilized to learn the change rule from the information concerning binary changes or multi-class changes. Three gates are utilized to control the input, output and update of the LSTM model for optimization. In addition, the learned rule can be applied to detect changes and transfer the change rule from one learned image to another new target multi-temporal image. In this study, binary experiments, transfer experiments and multi-class change experiments are exploited to demonstrate the superiority of our method. Three contributions of this work can be summarized as follows: (1 the proposed method can learn an effective change rule to provide reliable change information for multi-temporal images; (2 the learned change rule has good transferability for detecting changes in new target images without any extra learning process, and the new target images should have a multi-spectral distribution similar to that of the training images; and (3 to the authors’ best knowledge, this is the first time that deep learning in recurrent neural networks is exploited for change detection. In addition, under the framework of the proposed method, changes can be detected under both binary detection and multi-class change detection.

  1. A method for medulloblastoma tumor differentiation based on convolutional neural networks and transfer learning

    Science.gov (United States)

    Cruz-Roa, Angel; Arévalo, John; Judkins, Alexander; Madabhushi, Anant; González, Fabio

    2015-12-01

    Convolutional neural networks (CNN) have been very successful at addressing different computer vision tasks thanks to their ability to learn image representations directly from large amounts of labeled data. Features learned from a dataset can be used to represent images from a different dataset via an approach called transfer learning. In this paper we apply transfer learning to the challenging task of medulloblastoma tumor differentiation. We compare two different CNN models which were previously trained in two different domains (natural and histopathology images). The first CNN is a state-of-the-art approach in computer vision, a large and deep CNN with 16-layers, Visual Geometry Group (VGG) CNN. The second (IBCa-CNN) is a 2-layer CNN trained for invasive breast cancer tumor classification. Both CNNs are used as visual feature extractors of histopathology image regions of anaplastic and non-anaplastic medulloblastoma tumor from digitized whole-slide images. The features from the two models are used, separately, to train a softmax classifier to discriminate between anaplastic and non-anaplastic medulloblastoma image regions. Experimental results show that the transfer learning approach produce competitive results in comparison with the state of the art approaches for IBCa detection. Results also show that features extracted from the IBCa-CNN have better performance in comparison with features extracted from the VGG-CNN. The former obtains 89.8% while the latter obtains 76.6% in terms of average accuracy.

  2. DeepX: Deep Learning Accelerator for Restricted Boltzmann Machine Artificial Neural Networks.

    Science.gov (United States)

    Kim, Lok-Won

    2018-05-01

    Although there have been many decades of research and commercial presence on high performance general purpose processors, there are still many applications that require fully customized hardware architectures for further computational acceleration. Recently, deep learning has been successfully used to learn in a wide variety of applications, but their heavy computation demand has considerably limited their practical applications. This paper proposes a fully pipelined acceleration architecture to alleviate high computational demand of an artificial neural network (ANN) which is restricted Boltzmann machine (RBM) ANNs. The implemented RBM ANN accelerator (integrating network size, using 128 input cases per batch, and running at a 303-MHz clock frequency) integrated in a state-of-the art field-programmable gate array (FPGA) (Xilinx Virtex 7 XC7V-2000T) provides a computational performance of 301-billion connection-updates-per-second and about 193 times higher performance than a software solution running on general purpose processors. Most importantly, the architecture enables over 4 times (12 times in batch learning) higher performance compared with a previous work when both are implemented in an FPGA device (XC2VP70).

  3. Deep learning with convolutional neural networks for EEG decoding and visualization.

    Science.gov (United States)

    Schirrmeister, Robin Tibor; Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio

    2017-11-01

    Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end-to-end EEG analysis, but a better understanding of how to design and train ConvNets for end-to-end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task-related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG-based brain mapping. Hum Brain Mapp 38:5391-5420, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  4. Deep learning with convolutional neural networks for EEG decoding and visualization

    Science.gov (United States)

    Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio

    2017-01-01

    Abstract Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end‐to‐end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end‐to‐end EEG analysis, but a better understanding of how to design and train ConvNets for end‐to‐end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task‐related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG‐based brain mapping. Hum Brain Mapp 38:5391–5420, 2017. © 2017 Wiley Periodicals, Inc. PMID:28782865

  5. E-I balance emerges naturally from continuous Hebbian learning in autonomous neural networks.

    Science.gov (United States)

    Trapp, Philip; Echeveste, Rodrigo; Gros, Claudius

    2018-06-12

    Spontaneous brain activity is characterized in part by a balanced asynchronous chaotic state. Cortical recordings show that excitatory (E) and inhibitory (I) drivings in the E-I balanced state are substantially larger than the overall input. We show that such a state arises naturally in fully adapting networks which are deterministic, autonomously active and not subject to stochastic external or internal drivings. Temporary imbalances between excitatory and inhibitory inputs lead to large but short-lived activity bursts that stabilize irregular dynamics. We simulate autonomous networks of rate-encoding neurons for which all synaptic weights are plastic and subject to a Hebbian plasticity rule, the flux rule, that can be derived from the stationarity principle of statistical learning. Moreover, the average firing rate is regulated individually via a standard homeostatic adaption of the bias of each neuron's input-output non-linear function. Additionally, networks with and without short-term plasticity are considered. E-I balance may arise only when the mean excitatory and inhibitory weights are themselves balanced, modulo the overall activity level. We show that synaptic weight balance, which has been considered hitherto as given, naturally arises in autonomous neural networks when the here considered self-limiting Hebbian synaptic plasticity rule is continuously active.

  6. A neural network-based exploratory learning and motor planning system for co-robots

    Directory of Open Access Journals (Sweden)

    Byron V Galbraith

    2015-07-01

    Full Text Available Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or learning by doing, an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  7. An H(∞) control approach to robust learning of feedforward neural networks.

    Science.gov (United States)

    Jing, Xingjian

    2011-09-01

    A novel H(∞) robust control approach is proposed in this study to deal with the learning problems of feedforward neural networks (FNNs). The analysis and design of a desired weight update law for the FNN is transformed into a robust controller design problem for a discrete dynamic system in terms of the estimation error. The drawbacks of some existing learning algorithms can therefore be revealed, especially for the case that the output data is fast changing with respect to the input or the output data is corrupted by noise. Based on this approach, the optimal learning parameters can be found by utilizing the linear matrix inequality (LMI) optimization techniques to achieve a predefined H(∞) "noise" attenuation level. Several existing BP-type algorithms are shown to be special cases of the new H(∞)-learning algorithm. Theoretical analysis and several examples are provided to show the advantages of the new method. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. A Deep Learning based Approach to Reduced Order Modeling of Fluids using LSTM Neural Networks

    Science.gov (United States)

    Mohan, Arvind; Gaitonde, Datta

    2017-11-01

    Reduced Order Modeling (ROM) can be used as surrogates to prohibitively expensive simulations to model flow behavior for long time periods. ROM is predicated on extracting dominant spatio-temporal features of the flow from CFD or experimental datasets. We explore ROM development with a deep learning approach, which comprises of learning functional relationships between different variables in large datasets for predictive modeling. Although deep learning and related artificial intelligence based predictive modeling techniques have shown varied success in other fields, such approaches are in their initial stages of application to fluid dynamics. Here, we explore the application of the Long Short Term Memory (LSTM) neural network to sequential data, specifically to predict the time coefficients of Proper Orthogonal Decomposition (POD) modes of the flow for future timesteps, by training it on data at previous timesteps. The approach is demonstrated by constructing ROMs of several canonical flows. Additionally, we show that statistical estimates of stationarity in the training data can indicate a priori how amenable a given flow-field is to this approach. Finally, the potential and limitations of deep learning based ROM approaches will be elucidated and further developments discussed.

  9. A neural network-based exploratory learning and motor planning system for co-robots.

    Science.gov (United States)

    Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano

    2015-01-01

    Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  10. Interacting neural networks

    Science.gov (United States)

    Metzler, R.; Kinzel, W.; Kanter, I.

    2000-08-01

    Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random.

  11. Where's the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network.

    Directory of Open Access Journals (Sweden)

    Christoph Hartmann

    2015-12-01

    Full Text Available Even in the absence of sensory stimulation the brain is spontaneously active. This background "noise" seems to be the dominant cause of the notoriously high trial-to-trial variability of neural recordings. Recent experimental observations have extended our knowledge of trial-to-trial variability and spontaneous activity in several directions: 1. Trial-to-trial variability systematically decreases following the onset of a sensory stimulus or the start of a motor act. 2. Spontaneous activity states in sensory cortex outline the region of evoked sensory responses. 3. Across development, spontaneous activity aligns itself with typical evoked activity patterns. 4. The spontaneous brain activity prior to the presentation of an ambiguous stimulus predicts how the stimulus will be interpreted. At present it is unclear how these observations relate to each other and how they arise in cortical circuits. Here we demonstrate that all of these phenomena can be accounted for by a deterministic self-organizing recurrent neural network model (SORN, which learns a predictive model of its sensory environment. The SORN comprises recurrently coupled populations of excitatory and inhibitory threshold units and learns via a combination of spike-timing dependent plasticity (STDP and homeostatic plasticity mechanisms. Similar to balanced network architectures, units in the network show irregular activity and variable responses to inputs. Additionally, however, the SORN exhibits sequence learning abilities matching recent findings from visual cortex and the network's spontaneous activity reproduces the experimental findings mentioned above. Intriguingly, the network's behaviour is reminiscent of sampling-based probabilistic inference, suggesting that correlates of sampling-based inference can develop from the interaction of STDP and homeostasis in deterministic networks. We conclude that key observations on spontaneous brain activity and the variability of neural

  12. Artificial intelligence expert systems with neural network machine learning may assist decision-making for extractions in orthodontic treatment planning.

    Science.gov (United States)

    Takada, Kenji

    2016-09-01

    New approach for the diagnosis of extractions with neural network machine learning. Seok-Ki Jung and Tae-Woo Kim. Am J Orthod Dentofacial Orthop 2016;149:127-33. Not reported. Mathematical modeling. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Modeling a Neural Network as a Teaching Tool for the Learning of the Structure-Function Relationship

    Science.gov (United States)

    Salinas, Dino G.; Acevedo, Cristian; Gomez, Christian R.

    2010-01-01

    The authors describe an activity they have created in which students can visualize a theoretical neural network whose states evolve according to a well-known simple law. This activity provided an uncomplicated approach to a paradigm commonly represented through complex mathematical formulation. From their observations, students learned many basic…

  14. Neural Networks: Implementations and Applications

    OpenAIRE

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  15. Beam-column joint shear prediction using hybridized deep learning neural network with genetic algorithm

    Science.gov (United States)

    Mundher Yaseen, Zaher; Abdulmohsin Afan, Haitham; Tran, Minh-Tung

    2018-04-01

    Scientifically evidenced that beam-column joints are a critical point in the reinforced concrete (RC) structure under the fluctuation loads effects. In this novel hybrid data-intelligence model developed to predict the joint shear behavior of exterior beam-column structure frame. The hybrid data-intelligence model is called genetic algorithm integrated with deep learning neural network model (GA-DLNN). The genetic algorithm is used as prior modelling phase for the input approximation whereas the DLNN predictive model is used for the prediction phase. To demonstrate this structural problem, experimental data is collected from the literature that defined the dimensional and specimens’ properties. The attained findings evidenced the efficitveness of the hybrid GA-DLNN in modelling beam-column joint shear problem. In addition, the accurate prediction achived with less input variables owing to the feasibility of the evolutionary phase.

  16. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2015-01-01

    Full Text Available Artificial neural networks (ANNs have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  17. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning.

    Science.gov (United States)

    Liu, Yang; Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man

    2015-01-01

    Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  18. Bidirectional Joint Representation Learning with Symmetrical Deep Neural Networks for Multimodal and Crossmodal Applications

    OpenAIRE

    Vukotic , Vedran; Raymond , Christian; Gravier , Guillaume

    2016-01-01

    International audience; Common approaches to problems involving multiple modalities (classification, retrieval, hyperlinking, etc.) are early fusion of the initial modalities and crossmodal translation from one modality to the other. Recently, deep neural networks, especially deep autoencoders, have proven promising both for crossmodal translation and for early fusion via multimodal embedding. In this work, we propose a flexible cross-modal deep neural network architecture for multimodal and ...

  19. Hybrid Spintronic-CMOS Spiking Neural Network with On-Chip Learning: Devices, Circuits, and Systems

    Science.gov (United States)

    Sengupta, Abhronil; Banerjee, Aparajita; Roy, Kaushik

    2016-12-01

    Over the past decade, spiking neural networks (SNNs) have emerged as one of the popular architectures to emulate the brain. In SNNs, information is temporally encoded and communication between neurons is accomplished by means of spikes. In such networks, spike-timing-dependent plasticity mechanisms require the online programing of synapses based on the temporal information of spikes transmitted by spiking neurons. In this work, we propose a spintronic synapse with decoupled spike-transmission and programing-current paths. The spintronic synapse consists of a ferromagnet-heavy-metal heterostructure where the programing current through the heavy metal generates spin-orbit torque to modulate the device conductance. Low programing energy and fast programing times demonstrate the efficacy of the proposed device as a nanoelectronic synapse. We perform a simulation study based on an experimentally benchmarked device-simulation framework to demonstrate the interfacing of such spintronic synapses with CMOS neurons and learning circuits operating in the transistor subthreshold region to form a network of spiking neurons that can be utilized for pattern-recognition problems.

  20. Informative sensor selection and learning for prediction of lower limb kinematics using generative stochastic neural networks.

    Science.gov (United States)

    Eunsuk Chong; Taejin Choi; Hyungmin Kim; Seung-Jong Kim; Yoha Hwang; Jong Min Lee

    2017-07-01

    We propose a novel approach of selecting useful input sensors as well as learning a mathematical model for predicting lower limb joint kinematics. We applied a feature selection method based on the mutual information called the variational information maximization, which has been reported as the state-of-the-art work among information based feature selection methods. The main difficulty in applying the method is estimating reliable probability density of input and output data, especially when the data are high dimensional and real-valued. We addressed this problem by applying a generative stochastic neural network called the restricted Boltzmann machine, through which we could perform sampling based probability estimation. The mutual informations between inputs and outputs are evaluated in each backward sensor elimination step, and the least informative sensor is removed with its network connections. The entire network is fine-tuned by maximizing conditional likelihood in each step. Experimental results are shown for 4 healthy subjects walking with various speeds, recording 64 sensor measurements including electromyogram, acceleration, and foot-pressure sensors attached on both lower limbs for predicting hip and knee joint angles. For test set of walking with arbitrary speed, our results show that our suggested method can select informative sensors while maintaining a good prediction accuracy.

  1. Learning Low Dimensional Convolutional Neural Networks for High-Resolution Remote Sensing Image Retrieval

    Directory of Open Access Journals (Sweden)

    Weixun Zhou

    2017-05-01

    Full Text Available Learning powerful feature representations for image retrieval has always been a challenging task in the field of remote sensing. Traditional methods focus on extracting low-level hand-crafted features which are not only time-consuming but also tend to achieve unsatisfactory performance due to the complexity of remote sensing images. In this paper, we investigate how to extract deep feature representations based on convolutional neural networks (CNNs for high-resolution remote sensing image retrieval (HRRSIR. To this end, several effective schemes are proposed to generate powerful feature representations for HRRSIR. In the first scheme, a CNN pre-trained on a different problem is treated as a feature extractor since there are no sufficiently-sized remote sensing datasets to train a CNN from scratch. In the second scheme, we investigate learning features that are specific to our problem by first fine-tuning the pre-trained CNN on a remote sensing dataset and then proposing a novel CNN architecture based on convolutional layers and a three-layer perceptron. The novel CNN has fewer parameters than the pre-trained and fine-tuned CNNs and can learn low dimensional features from limited labelled images. The schemes are evaluated on several challenging, publicly available datasets. The results indicate that the proposed schemes, particularly the novel CNN, achieve state-of-the-art performance.

  2. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks.

    Science.gov (United States)

    Huynh, Benjamin Q; Li, Hui; Giger, Maryellen L

    2016-07-01

    Convolutional neural networks (CNNs) show potential for computer-aided diagnosis (CADx) by learning features directly from the image data instead of using analytically extracted features. However, CNNs are difficult to train from scratch for medical images due to small sample sizes and variations in tumor presentations. Instead, transfer learning can be used to extract tumor information from medical images via CNNs originally pretrained for nonmedical tasks, alleviating the need for large datasets. Our database includes 219 breast lesions (607 full-field digital mammographic images). We compared support vector machine classifiers based on the CNN-extracted image features and our prior computer-extracted tumor features in the task of distinguishing between benign and malignant breast lesions. Five-fold cross validation (by lesion) was conducted with the area under the receiver operating characteristic (ROC) curve as the performance metric. Results show that classifiers based on CNN-extracted features (with transfer learning) perform comparably to those using analytically extracted features [area under the ROC curve [Formula: see text

  3. Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network.

    Science.gov (United States)

    Li, Na; Zhao, Xinbo; Yang, Yongjia; Zou, Xiaochun

    2016-01-01

    Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN) as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.

  4. Neural networks and applications tutorial

    Science.gov (United States)

    Guyon, I.

    1991-09-01

    The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.

  5. An Introduction to Neural Networks for Hearing Aid Noise Recognition.

    Science.gov (United States)

    Kim, Jun W.; Tyler, Richard S.

    1995-01-01

    This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the…

  6. Evaluating the Visualization of What a Deep Neural Network Has Learned.

    Science.gov (United States)

    Samek, Wojciech; Binder, Alexander; Montavon, Gregoire; Lapuschkin, Sebastian; Muller, Klaus-Robert

    Deep neural networks (DNNs) have demonstrated impressive performance in complex machine learning tasks such as image classification or speech recognition. However, due to their multilayer nonlinear structure, they are not transparent, i.e., it is hard to grasp what makes them arrive at a particular classification or recognition decision, given a new unseen data sample. Recently, several approaches have been proposed enabling one to understand and interpret the reasoning embodied in a DNN for a single test image. These methods quantify the "importance" of individual pixels with respect to the classification decision and allow a visualization in terms of a heatmap in pixel/input space. While the usefulness of heatmaps can be judged subjectively by a human, an objective quality measure is missing. In this paper, we present a general methodology based on region perturbation for evaluating ordered collections of pixels such as heatmaps. We compare heatmaps computed by three different methods on the SUN397, ILSVRC2012, and MIT Places data sets. Our main result is that the recently proposed layer-wise relevance propagation algorithm qualitatively and quantitatively provides a better explanation of what made a DNN arrive at a particular classification decision than the sensitivity-based approach or the deconvolution method. We provide theoretical arguments to explain this result and discuss its practical implications. Finally, we investigate the use of heatmaps for unsupervised assessment of the neural network performance.Deep neural networks (DNNs) have demonstrated impressive performance in complex machine learning tasks such as image classification or speech recognition. However, due to their multilayer nonlinear structure, they are not transparent, i.e., it is hard to grasp what makes them arrive at a particular classification or recognition decision, given a new unseen data sample. Recently, several approaches have been proposed enabling one to understand and

  7. Introduction to Concepts in Artificial Neural Networks

    Science.gov (United States)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  8. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  9. Optoelectronic Implementation of Neural Networks

    Indian Academy of Sciences (India)

    neural networks, such as learning, adapting and copying by means of parallel ... to provide robust recognition of hand-printed English text. Engine idle and misfiring .... and s represents the bounded activation function of a neuron. It is typically ...

  10. Application of deep learning in determining IR precipitation occurrence: a Convolutional Neural Network model

    Science.gov (United States)

    Wang, C.; Hong, Y.

    2017-12-01

    Infrared (IR) information from Geostationary satellites can be used to retrieve precipitation at pretty high spatiotemporal resolutions. Traditional artificial intelligence (AI) methodologies, such as artificial neural networks (ANN), have been designed to build the relationship between near-surface precipitation and manually derived IR features in products including PERSIANN and PERSIANN-CCS. This study builds an automatic precipitation detection model based on IR data using Convolutional Neural Network (CNN) which is implemented by the newly developed deep learning framework, Caffe. The model judges whether there is rain or no rain at pixel level. Compared with traditional ANN methods, CNN can extract features inside the raw data automatically and thoroughly. In this study, IR data from GOES satellites and precipitation estimates from the next generation QPE (Q2) over the central United States are used as inputs and labels, respectively. The whole datasets during the study period (June to August in 2012) are randomly partitioned to three sub datasets (train, validation and test) to establish the model at the spatial resolution of 0.08°×0.08° and the temporal resolution of 1 hour. The experiments show great improvements of CNN in rain identification compared to the widely used IR-based precipitation product, i.e., PERSIANN-CCS. The overall gain in performance is about 30% for critical success index (CSI), 32% for probability of detection (POD) and 12% for false alarm ratio (FAR). Compared to other recent IR-based precipitation retrieval methods (e.g., PERSIANN-DL developed by University of California Irvine), our model is simpler with less parameters, but achieves equally or even better results. CNN has been applied in computer vision domain successfully, and our results prove the method is suitable for IR precipitation detection. Future studies can expand the application of CNN from precipitation occurrence decision to precipitation amount retrieval.

  11. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....

  12. CAPES: Unsupervised Storage Performance Tuning Using Neural Network-Based Deep Reinforcement Learning

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Parameter tuning is an important task of storage performance optimization. Current practice usually involves numerous tweak-benchmark cycles that are slow and costly. To address this issue, we developed CAPES, a model-less deep reinforcement learning-based unsupervised parameter tuning system driven by a deep neural network (DNN). It is designed to nd the optimal values of tunable parameters in computer systems, from a simple client-server system to a large data center, where human tuning can be costly and often cannot achieve optimal performance. CAPES takes periodic measurements of a target computer system’s state, and trains a DNN which uses Q-learning to suggest changes to the system’s current parameter values. CAPES is minimally intrusive, and can be deployed into a production system to collect training data and suggest tuning actions during the system’s daily operation. Evaluation of a prototype on a Lustre system demonstrates an increase in I/O throughput up to 45% at saturation point. About the...

  13. Classification of amyotrophic lateral sclerosis disease based on convolutional neural network and reinforcement sample learning algorithm.

    Science.gov (United States)

    Sengur, Abdulkadir; Akbulut, Yaman; Guo, Yanhui; Bajaj, Varun

    2017-12-01

    Electromyogram (EMG) signals contain useful information of the neuromuscular diseases like amyotrophic lateral sclerosis (ALS). ALS is a well-known brain disease, which can progressively degenerate the motor neurons. In this paper, we propose a deep learning based method for efficient classification of ALS and normal EMG signals. Spectrogram, continuous wavelet transform (CWT), and smoothed pseudo Wigner-Ville distribution (SPWVD) have been employed for time-frequency (T-F) representation of EMG signals. A convolutional neural network is employed to classify these features. In it, Two convolution layers, two pooling layer, a fully connected layer and a lost function layer is considered in CNN architecture. The CNN architecture is trained with the reinforcement sample learning strategy. The efficiency of the proposed implementation is tested on publicly available EMG dataset. The dataset contains 89 ALS and 133 normal EMG signals with 24 kHz sampling frequency. Experimental results show 96.80% accuracy. The obtained results are also compared with other methods, which show the superiority of the proposed method.

  14. Incipient fault detection and identification in process systems using accelerating neural network learning

    International Nuclear Information System (INIS)

    Parlos, A.G.; Muthusami, J.; Atiya, A.F.

    1994-01-01

    The objective of this paper is to present the development and numerical testing of a robust fault detection and identification (FDI) system using artificial neural networks (ANNs), for incipient (slowly developing) faults occurring in process systems. The challenge in using ANNs in FDI systems arises because of one's desire to detect faults of varying severity, faults from noisy sensors, and multiple simultaneous faults. To address these issues, it becomes essential to have a learning algorithm that ensures quick convergence to a high level of accuracy. A recently developed accelerated learning algorithm, namely a form of an adaptive back propagation (ABP) algorithm, is used for this purpose. The ABP algorithm is used for the development of an FDI system for a process composed of a direct current motor, a centrifugal pump, and the associated piping system. Simulation studies indicate that the FDI system has significantly high sensitivity to incipient fault severity, while exhibiting insensitivity to sensor noise. For multiple simultaneous faults, the FDI system detects the fault with the predominant signature. The major limitation of the developed FDI system is encountered when it is subjected to simultaneous faults with similar signatures. During such faults, the inherent limitation of pattern-recognition-based FDI methods becomes apparent. Thus, alternate, more sophisticated FDI methods become necessary to address such problems. Even though the effectiveness of pattern-recognition-based FDI methods using ANNs has been demonstrated, further testing using real-world data is necessary

  15. Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning.

    Science.gov (United States)

    Yousefi, Mina; Krzyżak, Adam; Suen, Ching Y

    2018-05-01

    Digital breast tomosynthesis (DBT) was developed in the field of breast cancer screening as a new tomographic technique to minimize the limitations of conventional digital mammography breast screening methods. A computer-aided detection (CAD) framework for mass detection in DBT has been developed and is described in this paper. The proposed framework operates on a set of two-dimensional (2D) slices. With plane-to-plane analysis on corresponding 2D slices from each DBT, it automatically learns complex patterns of 2D slices through a deep convolutional neural network (DCNN). It then applies multiple instance learning (MIL) with a randomized trees approach to classify DBT images based on extracted information from 2D slices. This CAD framework was developed and evaluated using 5040 2D image slices derived from 87 DBT volumes. The empirical results demonstrate that this proposed CAD framework achieves much better performance than CAD systems that use hand-crafted features and deep cardinality-restricted Bolzmann machines to detect masses in DBTs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks

    International Nuclear Information System (INIS)

    Nishitani, Y.; Kaneko, Y.; Ueda, M.; Fujii, E.; Morie, T.

    2012-01-01

    Spike-timing-dependent synaptic plasticity (STDP) is demonstrated in a synapse device based on a ferroelectric-gate field-effect transistor (FeFET). STDP is a key of the learning functions observed in human brains, where the synaptic weight changes only depending on the spike timing of the pre- and post-neurons. The FeFET is composed of the stacked oxide materials with ZnO/Pr(Zr,Ti)O 3 (PZT)/SrRuO 3 . In the FeFET, the channel conductance can be altered depending on the density of electrons induced by the polarization of PZT film, which can be controlled by applying the gate voltage in a non-volatile manner. Applying a pulse gate voltage enables the multi-valued modulation of the conductance, which is expected to be caused by a change in PZT polarization. This variation depends on the height and the duration of the pulse gate voltage. Utilizing these characteristics, symmetric and asymmetric STDP learning functions are successfully implemented in the FeFET-based synapse device by applying the non-linear pulse gate voltage generated from a set of two pulses in a sampling circuit, in which the two pulses correspond to the spikes from the pre- and post-neurons. The three-terminal structure of the synapse device enables the concurrent learning, in which the weight update can be performed without canceling signal transmission among neurons, while the neural networks using the previously reported two-terminal synapse devices need to stop signal transmission for learning.

  17. Multi-Objective Reinforcement Learning-Based Deep Neural Networks for Cognitive Space Communications

    Science.gov (United States)

    Ferreria, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.

    2017-01-01

    Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.

  18. Mode Choice Modeling Using Artificial Neural Networks

    OpenAIRE

    Edara, Praveen Kumar

    2003-01-01

    Artificial intelligence techniques have produced excellent results in many diverse fields of engineering. Techniques such as neural networks and fuzzy systems have found their way into transportation engineering. In recent years, neural networks are being used instead of regression techniques for travel demand forecasting purposes. The basic reason lies in the fact that neural networks are able to capture complex relationships and learn from examples and also able to adapt when new data becom...

  19. Dynamic training algorithm for dynamic neural networks

    International Nuclear Information System (INIS)

    Tan, Y.; Van Cauwenberghe, A.; Liu, Z.

    1996-01-01

    The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper

  20. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  1. Adaptive Graph Convolutional Neural Networks

    OpenAIRE

    Li, Ruoyu; Wang, Sheng; Zhu, Feiyun; Huang, Junzhou

    2018-01-01

    Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for eac...

  2. Universal perceptron and DNA-like learning algorithm for binary neural networks: LSBF and PBF implementations.

    Science.gov (United States)

    Chen, Fangyue; Chen, Guanrong Ron; He, Guolong; Xu, Xiubin; He, Qinbin

    2009-10-01

    Universal perceptron (UP), a generalization of Rosenblatt's perceptron, is considered in this paper, which is capable of implementing all Boolean functions (BFs). In the classification of BFs, there are: 1) linearly separable Boolean function (LSBF) class, 2) parity Boolean function (PBF) class, and 3) non-LSBF and non-PBF class. To implement these functions, UP takes different kinds of simple topological structures in which each contains at most one hidden layer along with the smallest possible number of hidden neurons. Inspired by the concept of DNA sequences in biological systems, a novel learning algorithm named DNA-like learning is developed, which is able to quickly train a network with any prescribed BF. The focus is on performing LSBF and PBF by a single-layer perceptron (SLP) with the new algorithm. Two criteria for LSBF and PBF are proposed, respectively, and a new measure for a BF, named nonlinearly separable degree (NLSD), is introduced. In the sense of this measure, the PBF is the most complex one. The new algorithm has many advantages including, in particular, fast running speed, good robustness, and no need of considering the convergence property. For example, the number of iterations and computations in implementing the basic 2-bit logic operations such as AND, OR, and XOR by using the new algorithm is far smaller than the ones needed by using other existing algorithms such as error-correction (EC) and backpropagation (BP) algorithms. Moreover, the synaptic weights and threshold values derived from UP can be directly used in designing of the template of cellular neural networks (CNNs), which has been considered as a new spatial-temporal sensory computing paradigm.

  3. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks.

    Science.gov (United States)

    Kim, D H; MacKinnon, T

    2018-05-01

    To identify the extent to which transfer learning from deep convolutional neural networks (CNNs), pre-trained on non-medical images, can be used for automated fracture detection on plain radiographs. The top layer of the Inception v3 network was re-trained using lateral wrist radiographs to produce a model for the classification of new studies as either "fracture" or "no fracture". The model was trained on a total of 11,112 images, after an eightfold data augmentation technique, from an initial set of 1,389 radiographs (695 "fracture" and 694 "no fracture"). The training data set was split 80:10:10 into training, validation, and test groups, respectively. An additional 100 wrist radiographs, comprising 50 "fracture" and 50 "no fracture" images, were used for final testing and statistical analysis. The area under the receiver operator characteristic curve (AUC) for this test was 0.954. Setting the diagnostic cut-off at a threshold designed to maximise both sensitivity and specificity resulted in values of 0.9 and 0.88, respectively. The AUC scores for this test were comparable to state-of-the-art providing proof of concept for transfer learning from CNNs in fracture detection on plain radiographs. This was achieved using only a moderate sample size. This technique is largely transferable, and therefore, has many potential applications in medical imaging, which may lead to significant improvements in workflow productivity and in clinical risk reduction. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  4. Superior Generalization Capability of Hardware-Learing Algorithm Developed for Self-Learning Neuron-MOS Neural Networks

    Science.gov (United States)

    Kondo, Shuhei; Shibata, Tadashi; Ohmi, Tadahiro

    1995-02-01

    We have investigated the learning performance of the hardware backpropagation (HBP) algorithm, a hardware-oriented learning algorithm developed for the self-learning architecture of neural networks constructed using neuron MOS (metal-oxide-semiconductor) transistors. The solution to finding a mirror symmetry axis in a 4×4 binary pixel array was tested by computer simulation based on the HBP algorithm. Despite the inherent restrictions imposed on the hardware-learning algorithm, HBP exhibits equivalent learning performance to that of the original backpropagation (BP) algorithm when all the pertinent parameters are optimized. Very importantly, we have found that HBP has a superior generalization capability over BP; namely, HBP exhibits higher performance in solving problems that the network has not yet learnt.

  5. Neural networks in signal processing

    International Nuclear Information System (INIS)

    Govil, R.

    2000-01-01

    Nuclear Engineering has matured during the last decade. In research and design, control, supervision, maintenance and production, mathematical models and theories are used extensively. In all such applications signal processing is embedded in the process. Artificial Neural Networks (ANN), because of their nonlinear, adaptive nature are well suited to such applications where the classical assumptions of linearity and second order Gaussian noise statistics cannot be made. ANN's can be treated as nonparametric techniques, which can model an underlying process from example data. They can also adopt their model parameters to statistical change with time. Algorithms in the framework of Neural Networks in Signal processing have found new applications potentials in the field of Nuclear Engineering. This paper reviews the fundamentals of Neural Networks in signal processing and their applications in tasks such as recognition/identification and control. The topics covered include dynamic modeling, model based ANN's, statistical learning, eigen structure based processing and generalization structures. (orig.)

  6. Parallel consensual neural networks.

    Science.gov (United States)

    Benediktsson, J A; Sveinsson, J R; Ersoy, O K; Swain, P H

    1997-01-01

    A new type of a neural-network architecture, the parallel consensual neural network (PCNN), is introduced and applied in classification/data fusion of multisource remote sensing and geographic data. The PCNN architecture is based on statistical consensus theory and involves using stage neural networks with transformed input data. The input data are transformed several times and the different transformed data are used as if they were independent inputs. The independent inputs are first classified using the stage neural networks. The output responses from the stage networks are then weighted and combined to make a consensual decision. In this paper, optimization methods are used in order to weight the outputs from the stage networks. Two approaches are proposed to compute the data transforms for the PCNN, one for binary data and another for analog data. The analog approach uses wavelet packets. The experimental results obtained with the proposed approach show that the PCNN outperforms both a conjugate-gradient backpropagation neural network and conventional statistical methods in terms of overall classification accuracy of test data.

  7. Drive Control Scheme of Electric Power Assisted Wheelchair Based on Neural Network Learning of Human Wheelchair Operation Characteristics

    Science.gov (United States)

    Tanohata, Naoki; Seki, Hirokazu

    This paper describes a novel drive control scheme of electric power assisted wheelchairs based on neural network learning of human wheelchair operation characteristics. “Electric power assisted wheelchair” which enhances the drive force of the operator by employing electric motors is expected to be widely used as a mobility support system for elderly and disabled people. However, some handicapped people with paralysis of the muscles of one side of the body cannot maneuver the wheelchair as desired because of the difference in the right and left input force. Therefore, this study proposes a neural network learning system of such human wheelchair operation characteristics and a drive control scheme with variable distribution and assistance ratios. Some driving experiments will be performed to confirm the effectiveness of the proposed control system.

  8. Memory in Neural Networks and Glasses

    NARCIS (Netherlands)

    Heerema, M.

    2000-01-01

    The thesis tries and models a neural network in a way which, at essential points, is biologically realistic. In a biological context, the changes of the synapses of the neural network are most often described by what is called `Hebb's learning rule'. On careful analysis it is, in fact, nothing but a

  9. Fuzzy neural network theory and application

    CERN Document Server

    Liu, Puyin

    2004-01-01

    This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he

  10. Boolean Factor Analysis by Attractor Neural Network

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2007-01-01

    Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007

  11. Controlling the chaotic discrete-Hénon system using a feedforward neural network with an adaptive learning rate

    OpenAIRE

    GÖKCE, Kürşad; UYAROĞLU, Yılmaz

    2013-01-01

    This paper proposes a feedforward neural network-based control scheme to control the chaotic trajectories of a discrete-Hénon map in order to stay within an acceptable distance from the stable fixed point. An adaptive learning back propagation algorithm with online training is employed to improve the effectiveness of the proposed method. The simulation study carried in the discrete-Hénon system verifies the validity of the proposed control system.

  12. Micro-Doppler Based Classification of Human Aquatic Activities via Transfer Learning of Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Jinhee Park

    2016-11-01

    Full Text Available Accurate classification of human aquatic activities using radar has a variety of potential applications such as rescue operations and border patrols. Nevertheless, the classification of activities on water using radar has not been extensively studied, unlike the case on dry ground, due to its unique challenge. Namely, not only is the radar cross section of a human on water small, but the micro-Doppler signatures are much noisier due to water drops and waves. In this paper, we first investigate whether discriminative signatures could be obtained for activities on water through a simulation study. Then, we show how we can effectively achieve high classification accuracy by applying deep convolutional neural networks (DCNN directly to the spectrogram of real measurement data. From the five-fold cross-validation on our dataset, which consists of five aquatic activities, we report that the conventional feature-based scheme only achieves an accuracy of 45.1%. In contrast, the DCNN trained using only the collected data attains 66.7%, and the transfer learned DCNN, which takes a DCNN pre-trained on a RGB image dataset and fine-tunes the parameters using the collected data, achieves a much higher 80.3%, which is a significant performance boost.

  13. Transfer learning with convolutional neural networks for lesion classification on clinical breast tomosynthesis

    Science.gov (United States)

    Mendel, Kayla R.; Li, Hui; Sheth, Deepa; Giger, Maryellen L.

    2018-02-01

    With growing adoption of digital breast tomosynthesis (DBT) in breast cancer screening protocols, it is important to compare the performance of computer-aided diagnosis (CAD) in the diagnosis of breast lesions on DBT images compared to conventional full-field digital mammography (FFDM). In this study, we retrospectively collected FFDM and DBT images of 78 lesions from 76 patients, each containing lesions that were biopsy-proven as either malignant or benign. A square region of interest (ROI) was placed to fully cover the lesion on each FFDM, DBT synthesized 2D images, and DBT key slice images in the cranial-caudal (CC) and mediolateral-oblique (MLO) views. Features were extracted on each ROI using a pre-trained convolutional neural network (CNN). These features were then input to a support vector machine (SVM) classifier, and area under the ROC curve (AUC) was used as the figure of merit. We found that in both the CC view and MLO view, the synthesized 2D image performed best (AUC = 0.814, AUC = 0.881 respectively) in the task of lesion characterization. Small database size was a key limitation in this study, and could lead to overfitting in the application of the SVM classifier. In future work, we plan to expand this dataset and to explore more robust deep learning methodology such as fine-tuning.

  14. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts.

    Science.gov (United States)

    Cocos, Anne; Fiks, Alexander G; Masino, Aaron J

    2017-07-01

    Social media is an important pharmacovigilance data source for adverse drug reaction (ADR) identification. Human review of social media data is infeasible due to data quantity, thus natural language processing techniques are necessary. Social media includes informal vocabulary and irregular grammar, which challenge natural language processing methods. Our objective is to develop a scalable, deep-learning approach that exceeds state-of-the-art ADR detection performance in social media. We developed a recurrent neural network (RNN) model that labels words in an input sequence with ADR membership tags. The only input features are word-embedding vectors, which can be formed through task-independent pretraining or during ADR detection training. Our best-performing RNN model used pretrained word embeddings created from a large, non-domain-specific Twitter dataset. It achieved an approximate match F-measure of 0.755 for ADR identification on the dataset, compared to 0.631 for a baseline lexicon system and 0.65 for the state-of-the-art conditional random field model. Feature analysis indicated that semantic information in pretrained word embeddings boosted sensitivity and, combined with contextual awareness captured in the RNN, precision. Our model required no task-specific feature engineering, suggesting generalizability to additional sequence-labeling tasks. Learning curve analysis showed that our model reached optimal performance with fewer training examples than the other models. ADR detection performance in social media is significantly improved by using a contextually aware model and word embeddings formed from large, unlabeled datasets. The approach reduces manual data-labeling requirements and is scalable to large social media datasets. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Hyperresponsiveness of the Neural Fear Network During Fear Conditioning and Extinction Learning in Male Cocaine Users

    NARCIS (Netherlands)

    Kaag, A.M.; Levar, N.; Woutersen, K.; Homberg, J.R.; Brink, W. van den; Reneman, L.; Wingen, G. van

    2016-01-01

    OBJECTIVE: The authors investigated whether cocaine use disorder is associated with abnormalities in the neural underpinnings of aversive conditioning and extinction learning, as these processes may play an important role in the development and persistence of drug abuse. METHOD: Forty male regular

  16. Adaptive Learning and Thinking Style to Improve E-Learning Environment Using Neural Network (ALTENN) Model

    OpenAIRE

    Dagez, Hanan Ettaher; Ambarka, Ali Elghali

    2015-01-01

     In recent years we have witnessed an increasingly heightened awareness of the potential benefits of adaptively in e-learning. This has been mainly driven by the realization that the ideal of individualized learning (i.e., learning tailored to the specific requirements and preferences of the individual) cannot be achieved, especially at a “massive” scale, using traditional approaches. In e-learning when the learning style of the student is not compatible with the teaching style of the teacher...

  17. Learning in Artificial Neural Systems

    Science.gov (United States)

    Matheus, Christopher J.; Hohensee, William E.

    1987-01-01

    This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.

  18. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network.

    Science.gov (United States)

    Gilra, Aditya; Gerstner, Wulfram

    2017-11-27

    The brain needs to predict how the body reacts to motor commands, but how a network of spiking neurons can learn non-linear body dynamics using local, online and stable learning rules is unclear. Here, we present a supervised learning scheme for the feedforward and recurrent connections in a network of heterogeneous spiking neurons. The error in the output is fed back through fixed random connections with a negative gain, causing the network to follow the desired dynamics. The rule for Feedback-based Online Local Learning Of Weights (FOLLOW) is local in the sense that weight changes depend on the presynaptic activity and the error signal projected onto the postsynaptic neuron. We provide examples of learning linear, non-linear and chaotic dynamics, as well as the dynamics of a two-link arm. Under reasonable approximations, we show, using the Lyapunov method, that FOLLOW learning is uniformly stable, with the error going to zero asymptotically.

  19. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin, E-mail: xmli@cqu.edu.cn [Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044 (China); College of Automation, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  20. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    International Nuclear Information System (INIS)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-01-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing

  1. Simplification of neural network model for predicting local power distributions of BWR fuel bundle using learning algorithm with forgetting

    International Nuclear Information System (INIS)

    Tanabe, Akira; Yamamoto, Toru; Shinfuku, Kimihiro; Nakamae, Takuji; Nishide, Fusayo.

    1995-01-01

    Previously a two-layered neural network model was developed to predict the relation between fissile enrichment of each fuel rod and local power distribution in a BWR fuel bundle. This model was obtained intuitively based on 33 patterns of training signals after an intensive survey of the models. Recently, a learning algorithm with forgetting was reported to simplify neural network models. It is an interesting subject what kind of model will be obtained if this algorithm is applied to the complex three-layered model which learns the same training signals. A three-layered model which is expanded to have direct connections between the 1st and the 3rd layer elements has been constructed and the learning method of normal back propagation was applied first to this model. The forgetting algorithm was then added to this learning process. The connections concerned with the 2nd layer elements disappeared and the 2nd layer has become unnecessary. It took a longer computing time by an order to learn the same training signals than the simple back propagation, but the two-layered model was obtained autonomously from the expanded three-layered model. (author)

  2. Fast, Simple and Accurate Handwritten Digit Classification by Training Shallow Neural Network Classifiers with the 'Extreme Learning Machine' Algorithm.

    Directory of Open Access Journals (Sweden)

    Mark D McDonnell

    Full Text Available Recent advances in training deep (multi-layer architectures have inspired a renaissance in neural network use. For example, deep convolutional networks are becoming the default option for difficult tasks on large datasets, such as image and speech recognition. However, here we show that error rates below 1% on the MNIST handwritten digit benchmark can be replicated with shallow non-convolutional neural networks. This is achieved by training such networks using the 'Extreme Learning Machine' (ELM approach, which also enables a very rapid training time (∼ 10 minutes. Adding distortions, as is common practise for MNIST, reduces error rates even further. Our methods are also shown to be capable of achieving less than 5.5% error rates on the NORB image database. To achieve these results, we introduce several enhancements to the standard ELM algorithm, which individually and in combination can significantly improve performance. The main innovation is to ensure each hidden-unit operates only on a randomly sized and positioned patch of each image. This form of random 'receptive field' sampling of the input ensures the input weight matrix is sparse, with about 90% of weights equal to zero. Furthermore, combining our methods with a small number of iterations of a single-batch backpropagation method can significantly reduce the number of hidden-units required to achieve a particular performance. Our close to state-of-the-art results for MNIST and NORB suggest that the ease of use and accuracy of the ELM algorithm for designing a single-hidden-layer neural network classifier should cause it to be given greater consideration either as a standalone method for simpler problems, or as the final classification stage in deep neural networks applied to more difficult problems.

  3. Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach.

    Science.gov (United States)

    Paiva, Joana S; Cardoso, João; Pereira, Tânia

    2018-01-01

    The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system. The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN). SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available. The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks

    KAUST Repository

    Umarov, Ramzan

    2017-02-03

    Accurate computational identification of promoters remains a challenge as these key DNA regulatory regions have variable structures composed of functional motifs that provide gene-specific initiation of transcription. In this paper we utilize Convolutional Neural Networks (CNN) to analyze sequence characteristics of prokaryotic and eukaryotic promoters and build their predictive models. We trained a similar CNN architecture on promoters of five distant organisms: human, mouse, plant (Arabidopsis), and two bacteria (Escherichia coli and Bacillus subtilis). We found that CNN trained on sigma70 subclass of Escherichia coli promoter gives an excellent classification of promoters and non-promoter sequences (Sn = 0.90, Sp = 0.96, CC = 0.84). The Bacillus subtilis promoters identification CNN model achieves Sn = 0.91, Sp = 0.95, and CC = 0.86. For human, mouse and Arabidopsis promoters we employed CNNs for identification of two well-known promoter classes (TATA and non-TATA promoters). CNN models nicely recognize these complex functional regions. For human promoters Sn/Sp/CC accuracy of prediction reached 0.95/0.98/0,90 on TATA and 0.90/0.98/0.89 for non-TATA promoter sequences, respectively. For Arabidopsis we observed Sn/Sp/CC 0.95/0.97/0.91 (TATA) and 0.94/0.94/0.86 (non-TATA) promoters. Thus, the developed CNN models, implemented in CNNProm program, demonstrated the ability of deep learning approach to grasp complex promoter sequence characteristics and achieve significantly higher accuracy compared to the previously developed promoter prediction programs. We also propose random substitution procedure to discover positionally conserved promoter functional elements. As the suggested approach does not require knowledge of any specific promoter features, it can be easily extended to identify promoters and other complex functional regions in sequences of many other and especially newly sequenced genomes. The CNNProm program is available to run at web server http://www.softberry.com.

  5. Local Dynamics in Trained Recurrent Neural Networks.

    Science.gov (United States)

    Rivkind, Alexander; Barak, Omri

    2017-06-23

    Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.

  6. Local Dynamics in Trained Recurrent Neural Networks

    Science.gov (United States)

    Rivkind, Alexander; Barak, Omri

    2017-06-01

    Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.

  7. Intelligent neural network diagnostic system

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2010-01-01

    Recently, artificial neural network (ANN) has made a significant mark in the domain of diagnostic applications. Neural networks are used to implement complex non-linear mappings (functions) using simple elementary units interrelated through connections with adaptive weights. The performance of the ANN is mainly depending on their topology structure and weights. Some systems have been developed using genetic algorithm (GA) to optimize the topology of the ANN. But, they suffer from some limitations. They are : (1) The computation time requires for training the ANN several time reaching for the average weight required, (2) Slowness of GA for optimization process and (3) Fitness noise appeared in the optimization of ANN. This research suggests new issues to overcome these limitations for finding optimal neural network architectures to learn particular problems. This proposed methodology is used to develop a diagnostic neural network system. It has been applied for a 600 MW turbo-generator as a case of real complex systems. The proposed system has proved its significant performance compared to two common methods used in the diagnostic applications.

  8. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands

    Science.gov (United States)

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too. PMID:27656140

  9. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands.

    Science.gov (United States)

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too.

  10. Deconvolution using a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S.K.

    1990-11-15

    Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.

  11. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  12. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  13. A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction.

    Science.gov (United States)

    Chen, C P; Wan, J Z

    1999-01-01

    A fast learning algorithm is proposed to find an optimal weights of the flat neural networks (especially, the functional-link network). Although the flat networks are used for nonlinear function approximation, they can be formulated as linear systems. Thus, the weights of the networks can be solved easily using a linear least-square method. This formulation makes it easier to update the weights instantly for both a new added pattern and a new added enhancement node. A dynamic stepwise updating algorithm is proposed to update the weights of the system on-the-fly. The model is tested on several time-series data including an infrared laser data set, a chaotic time-series, a monthly flour price data set, and a nonlinear system identification problem. The simulation results are compared to existing models in which more complex architectures and more costly training are needed. The results indicate that the proposed model is very attractive to real-time processes.

  14. A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks.

    Science.gov (United States)

    Siri, Benoît; Berry, Hugues; Cessac, Bruno; Delord, Bruno; Quoy, Mathias

    2008-12-01

    We present a mathematical analysis of the effects of Hebbian learning in random recurrent neural networks, with a generic Hebbian learning rule, including passive forgetting and different timescales, for neuronal activity and learning dynamics. Previous numerical work has reported that Hebbian learning drives the system from chaos to a steady state through a sequence of bifurcations. Here, we interpret these results mathematically and show that these effects, involving a complex coupling between neuronal dynamics and synaptic graph structure, can be analyzed using Jacobian matrices, which introduce both a structural and a dynamical point of view on neural network evolution. Furthermore, we show that sensitivity to a learned pattern is maximal when the largest Lyapunov exponent is close to 0. We discuss how neural networks may take advantage of this regime of high functional interest.

  15. Neural Networks and Micromechanics

    Science.gov (United States)

    Kussul, Ernst; Baidyk, Tatiana; Wunsch, Donald C.

    The title of the book, "Neural Networks and Micromechanics," seems artificial. However, the scientific and technological developments in recent decades demonstrate a very close connection between the two different areas of neural networks and micromechanics. The purpose of this book is to demonstrate this connection. Some artificial intelligence (AI) methods, including neural networks, could be used to improve automation system performance in manufacturing processes. However, the implementation of these AI methods within industry is rather slow because of the high cost of conducting experiments using conventional manufacturing and AI systems. To lower the cost, we have developed special micromechanical equipment that is similar to conventional mechanical equipment but of much smaller size and therefore of lower cost. This equipment could be used to evaluate different AI methods in an easy and inexpensive way. The proved methods could be transferred to industry through appropriate scaling. In this book, we describe the prototypes of low cost microequipment for manufacturing processes and the implementation of some AI methods to increase precision, such as computer vision systems based on neural networks for microdevice assembly and genetic algorithms for microequipment characterization and the increase of microequipment precision.

  16. Cooperative learning neural network output feedback control of uncertain nonlinear multi-agent systems under directed topologies

    Science.gov (United States)

    Wang, W.; Wang, D.; Peng, Z. H.

    2017-09-01

    Without assuming that the communication topologies among the neural network (NN) weights are to be undirected and the states of each agent are measurable, the cooperative learning NN output feedback control is addressed for uncertain nonlinear multi-agent systems with identical structures in strict-feedback form. By establishing directed communication topologies among NN weights to share their learned knowledge, NNs with cooperative learning laws are employed to identify the uncertainties. By designing NN-based κ-filter observers to estimate the unmeasurable states, a new cooperative learning output feedback control scheme is proposed to guarantee that the system outputs can track nonidentical reference signals with bounded tracking errors. A simulation example is given to demonstrate the effectiveness of the theoretical results.

  17. Neural network recognition of mammographic lesions

    International Nuclear Information System (INIS)

    Oldham, W.J.B.; Downes, P.T.; Hunter, V.

    1987-01-01

    A method for recognition of mammographic lesions through the use of neural networks is presented. Neural networks have exhibited the ability to learn the shape andinternal structure of patterns. Digitized mammograms containing circumscribed and stelate lesions were used to train a feedfoward synchronous neural network that self-organizes to stable attractor states. Encoding of data for submission to the network was accomplished by performing a fractal analysis of the digitized image. This results in scale invariant representation of the lesions. Results are discussed

  18. Comment on 'Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study'.

    Science.gov (United States)

    Valdes, Gilmer; Interian, Yannet

    2018-03-15

    The application of machine learning (ML) presents tremendous opportunities for the field of oncology, thus we read 'Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study' with great interest. In this article, the authors used state of the art techniques: a pre-trained convolutional neural network (VGG-16 CNN), transfer learning, data augmentation, drop out and early stopping, all of which are directly responsible for the success and the excitement that these algorithms have created in other fields. We believe that the use of these techniques can offer tremendous opportunities in the field of Medical Physics and as such we would like to praise the authors for their pioneering application to the field of Radiation Oncology. That being said, given that the field of Medical Physics has unique characteristics that differentiate us from those fields where these techniques have been applied successfully, we would like to raise some points for future discussion and follow up studies that could help the community understand the limitations and nuances of deep learning techniques.

  19. Deep learning with convolutional neural networks: a resource for the control of robotic prosthetic hands via electromyography

    Directory of Open Access Journals (Sweden)

    Manfredo Atzori

    2016-09-01

    Full Text Available Motivation: Natural control methods based on surface electromyography and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications and commercial prostheses are in the best case capable to offer natural control for only a few movements. Objective: In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its capabilities for the natural control of robotic hands via surface electromyography by providing a baseline on a large number of intact and amputated subjects. Methods: We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 hand amputated subjects. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets.Results: The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods but lower than the results obtained with the best reference methods in our tests. Significance: The results show that convolutional neural networks with a very simple architecture can produce accuracy comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters can be fundamental for the analysis of surface electromyography data. Finally, the results suggest that deeper and more complex networks may increase dexterous control robustness, thus contributing to bridge the gap between the market and scientific research

  20. Why Traditional Expository Teaching-Learning Approaches May Founder? An Experimental Examination of Neural Networks in Biology Learning

    Science.gov (United States)

    Lee, Jun-Ki; Kwon, Yong-Ju

    2011-01-01

    Using functional magnetic resonance imaging (fMRI), this study investigates and discusses neurological explanations for, and the educational implications of, the neural network activations involved in hypothesis-generating and hypothesis-understanding for biology education. Two sets of task paradigms about biological phenomena were designed:…

  1. Cascade Convolutional Neural Network Based on Transfer-Learning for Aircraft Detection on High-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Bin Pan

    2017-01-01

    Full Text Available Aircraft detection from high-resolution remote sensing images is important for civil and military applications. Recently, detection methods based on deep learning have rapidly advanced. However, they require numerous samples to train the detection model and cannot be directly used to efficiently handle large-area remote sensing images. A weakly supervised learning method (WSLM can detect a target with few samples. However, it cannot extract an adequate number of features, and the detection accuracy requires improvement. We propose a cascade convolutional neural network (CCNN framework based on transfer-learning and geometric feature constraints (GFC for aircraft detection. It achieves high accuracy and efficient detection with relatively few samples. A high-accuracy detection model is first obtained using transfer-learning to fine-tune pretrained models with few samples. Then, a GFC region proposal filtering method improves detection efficiency. The CCNN framework completes the aircraft detection for large-area remote sensing images. The framework first-level network is an image classifier, which filters the entire image, excluding most areas with no aircraft. The second-level network is an object detector, which rapidly detects aircraft from the first-level network output. Compared with WSLM, detection accuracy increased by 3.66%, false detection decreased by 64%, and missed detection decreased by 23.1%.

  2. International Conference on Artificial Neural Networks (ICANN)

    CERN Document Server

    Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics

    2015-01-01

    The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...

  3. Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Cha, Kenny H.; Richter, Caleb D.

    2017-12-01

    Transfer learning in deep convolutional neural networks (DCNNs) is an important step in its application to medical imaging tasks. We propose a multi-task transfer learning DCNN with the aim of translating the ‘knowledge’ learned from non-medical images to medical diagnostic tasks through supervised training and increasing the generalization capabilities of DCNNs by simultaneously learning auxiliary tasks. We studied this approach in an important application: classification of malignant and benign breast masses. With Institutional Review Board (IRB) approval, digitized screen-film mammograms (SFMs) and digital mammograms (DMs) were collected from our patient files and additional SFMs were obtained from the Digital Database for Screening Mammography. The data set consisted of 2242 views with 2454 masses (1057 malignant, 1397 benign). In single-task transfer learning, the DCNN was trained and tested on SFMs. In multi-task transfer learning, SFMs and DMs were used to train the DCNN, which was then tested on SFMs. N-fold cross-validation with the training set was used for training and parameter optimization. On the independent test set, the multi-task transfer learning DCNN was found to have significantly (p  =  0.007) higher performance compared to the single-task transfer learning DCNN. This study demonstrates that multi-task transfer learning may be an effective approach for training DCNN in medical imaging applications when training samples from a single modality are limited.

  4. Improved transformer protection using probabilistic neural network ...

    African Journals Online (AJOL)

    user

    secure and dependable protection for power transformers. Owing to its superior learning and generalization capabilities Artificial. Neural Network (ANN) can considerably enhance the scope of WI method. ANN approach is faster, robust and easier to implement than the conventional waveform approach. The use of neural ...

  5. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography.

    Science.gov (United States)

    Samala, Ravi K; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A; Wei, Jun; Cha, Kenny

    2016-12-01

    Develop a computer-aided detection (CAD) system for masses in digital breast tomosynthesis (DBT) volume using a deep convolutional neural network (DCNN) with transfer learning from mammograms. A data set containing 2282 digitized film and digital mammograms and 324 DBT volumes were collected with IRB approval. The mass of interest on the images was marked by an experienced breast radiologist as reference standard. The data set was partitioned into a training set (2282 mammograms with 2461 masses and 230 DBT views with 228 masses) and an independent test set (94 DBT views with 89 masses). For DCNN training, the region of interest (ROI) containing the mass (true positive) was extracted from each image. False positive (FP) ROIs were identified at prescreening by their previously developed CAD systems. After data augmentation, a total of 45 072 mammographic ROIs and 37 450 DBT ROIs were obtained. Data normalization and reduction of non-uniformity in the ROIs across heterogeneous data was achieved using a background correction method applied to each ROI. A DCNN with four convolutional layers and three fully connected (FC) layers was first trained on the mammography data. Jittering and dropout techniques were used to reduce overfitting. After training with the mammographic ROIs, all weights in the first three convolutional layers were frozen, and only the last convolution layer and the FC layers were randomly initialized again and trained using the DBT training ROIs. The authors compared the performances of two CAD systems for mass detection in DBT: one used the DCNN-based approach and the other used their previously developed feature-based approach for FP reduction. The prescreening stage was identical in both systems, passing the same set of mass candidates to the FP reduction stage. For the feature-based CAD system, 3D clustering and active contour method was used for segmentation; morphological, gray level, and texture features were extracted and merged with a

  6. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system.

    Science.gov (United States)

    Born, Jannis; Galeazzi, Juan M; Stringer, Simon M

    2017-01-01

    A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning

  7. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system

    Science.gov (United States)

    Born, Jannis; Stringer, Simon M.

    2017-01-01

    A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning

  8. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system.

    Directory of Open Access Journals (Sweden)

    Jannis Born

    Full Text Available A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior

  9. Equilibrium point control of a monkey arm simulator by a fast learning tree structured artificial neural network.

    Science.gov (United States)

    Dornay, M; Sanger, T D

    1993-01-01

    A planar 17 muscle model of the monkey's arm based on realistic biomechanical measurements was simulated on a Symbolics Lisp Machine. The simulator implements the equilibrium point hypothesis for the control of arm movements. Given initial and final desired positions, it generates a minimum-jerk desired trajectory of the hand and uses the backdriving algorithm to determine an appropriate sequence of motor commands to the muscles (Flash 1987; Mussa-Ivaldi et al. 1991; Dornay 1991b). These motor commands specify a temporal sequence of stable (attractive) equilibrium positions which lead to the desired hand movement. A strong disadvantage of the simulator is that it has no memory of previous computations. Determining the desired trajectory using the minimum-jerk model is instantaneous, but the laborious backdriving algorithm is slow, and can take up to one hour for some trajectories. The complexity of the required computations makes it a poor model for biological motor control. We propose a computationally simpler and more biologically plausible method for control which achieves the benefits of the backdriving algorithm. A fast learning, tree-structured network (Sanger 1991c) was trained to remember the knowledge obtained by the backdriving algorithm. The neural network learned the nonlinear mapping from a 2-dimensional cartesian planar hand position (x,y) to a 17-dimensional motor command space (u1, . . ., u17). Learning 20 training trajectories, each composed of 26 sample points [[x,y], [u1, . . ., u17] took only 20 min on a Sun-4 Sparc workstation. After the learning stage, new, untrained test trajectories as well as the original trajectories of the hand were given to the neural network as input. The network calculated the required motor commands for these movements. The resulting movements were close to the desired ones for both the training and test cases.

  10. The advantage of flexible neuronal tunings in neural network models for motor learning

    OpenAIRE

    Marongelli, Ellisha N.; Thoroughman, Kurt A.

    2013-01-01

    Human motor adaptation to novel environments is often modeled by a basis function network that transforms desired movement properties into estimated forces. This network employs a layer of nodes that have fixed broad tunings that generalize across the input domain. Learning is achieved by updating the weights of these nodes in response to training experience. This conventional model is unable to account for rapid flexibility observed in human spatial generalization during motor adaptation. Ho...

  11. Transfer Learning for Video Recognition with Scarce Training Data for Deep Convolutional Neural Network

    OpenAIRE

    Su, Yu-Chuan; Chiu, Tzu-Hsuan; Yeh, Chun-Yen; Huang, Hsin-Fu; Hsu, Winston H.

    2014-01-01

    Unconstrained video recognition and Deep Convolution Network (DCN) are two active topics in computer vision recently. In this work, we apply DCNs as frame-based recognizers for video recognition. Our preliminary studies, however, show that video corpora with complete ground truth are usually not large and diverse enough to learn a robust model. The networks trained directly on the video data set suffer from significant overfitting and have poor recognition rate on the test set. The same lack-...

  12. Prototype-Incorporated Emotional Neural Network.

    Science.gov (United States)

    Oyedotun, Oyebade K; Khashman, Adnan

    2017-08-15

    Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.

  13. Tensor Basis Neural Network v. 1.0 (beta)

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-28

    This software package can be used to build, train, and test a neural network machine learning model. The neural network architecture is specifically designed to embed tensor invariance properties by enforcing that the model predictions sit on an invariant tensor basis. This neural network architecture can be used in developing constitutive models for applications such as turbulence modeling, materials science, and electromagnetism.

  14. Automated Detection of Fronts using a Deep Learning Convolutional Neural Network

    Science.gov (United States)

    Biard, J. C.; Kunkel, K.; Racah, E.

    2017-12-01

    A deeper understanding of climate model simulations and the future effects of global warming on extreme weather can be attained through direct analyses of the phenomena that produce weather. Such analyses require these phenomena to be identified in automatic, unbiased, and comprehensive ways. Atmospheric fronts are centrally important weather phenomena because of the variety of significant weather events, such as thunderstorms, directly associated with them. In current operational meteorology, fronts are identified and drawn visually based on the approximate spatial coincidence of a number of quasi-linear localized features - a trough (relative minimum) in air pressure in combination with gradients in air temperature and/or humidity and a shift in wind, and are categorized as cold, warm, stationary, or occluded, with each type exhibiting somewhat different characteristics. Fronts are extended in space with one dimension much larger than the other (often represented by complex curved lines), which poses a significant challenge for automated approaches. We addressed this challenge by using a Deep Learning Convolutional Neural Network (CNN) to automatically identify and classify fronts. The CNN was trained using a "truth" dataset of front locations identified by National Weather Service meteorologists as part of operational 3-hourly surface analyses. The input to the CNN is a set of 5 gridded fields of surface atmospheric variables, including 2m temperature, 2m specific humidity, surface pressure, and the two components of the 10m horizontal wind velocity vector at 3-hr resolution. The output is a set of feature maps containing the per - grid cell probabilities for the presence of the 4 front types. The CNN was trained on a subset of the data and then used to produce front probabilities for each 3-hr time snapshot over a 14-year period covering the continental United States and some adjacent areas. The total frequencies of fronts derived from the CNN outputs matches

  15. Neural network regulation driven by autonomous neural firings

    Science.gov (United States)

    Cho, Myoung Won

    2016-07-01

    Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.

  16. Neural networks for triggering

    International Nuclear Information System (INIS)

    Denby, B.; Campbell, M.; Bedeschi, F.; Chriss, N.; Bowers, C.; Nesti, F.

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab

  17. Genetic algorithm for neural networks optimization

    Science.gov (United States)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  18. Convolutional Neural Network for Image Recognition

    CERN Document Server

    Seifnashri, Sahand

    2015-01-01

    The aim of this project is to use machine learning techniques especially Convolutional Neural Networks for image processing. These techniques can be used for Quark-Gluon discrimination using calorimeters data, but unfortunately I didn’t manage to get the calorimeters data and I just used the Jet data fromminiaodsim(ak4 chs). The Jet data was not good enough for Convolutional Neural Network which is designed for ’image’ recognition. This report is made of twomain part, part one is mainly about implementing Convolutional Neural Network on unphysical data such as MNIST digits and CIFAR-10 dataset and part 2 is about the Jet data.

  19. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-05-01

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Using neural networks in software repositories

    Science.gov (United States)

    Eichmann, David (Editor); Srinivas, Kankanahalli; Boetticher, G.

    1992-01-01

    The first topic is an exploration of the use of neural network techniques to improve the effectiveness of retrieval in software repositories. The second topic relates to a series of experiments conducted to evaluate the feasibility of using adaptive neural networks as a means of deriving (or more specifically, learning) measures on software. Taken together, these two efforts illuminate a very promising mechanism supporting software infrastructures - one based upon a flexible and responsive technology.

  1. Extraction of Built-Up Areas Using Convolutional Neural Networks and Transfer Learning from SENTINEL-2 Satellite Images

    Science.gov (United States)

    Bramhe, V. S.; Ghosh, S. K.; Garg, P. K.

    2018-04-01

    With rapid globalization, the extent of built-up areas is continuously increasing. Extraction of features for classifying built-up areas that are more robust and abstract is a leading research topic from past many years. Although, various studies have been carried out where spatial information along with spectral features has been utilized to enhance the accuracy of classification. Still, these feature extraction techniques require a large number of user-specific parameters and generally application specific. On the other hand, recently introduced Deep Learning (DL) techniques requires less number of parameters to represent more abstract aspects of the data without any manual effort. Since, it is difficult to acquire high-resolution datasets for applications that require large scale monitoring of areas. Therefore, in this study Sentinel-2 image has been used for built-up areas extraction. In this work, pre-trained Convolutional Neural Networks (ConvNets) i.e. Inception v3 and VGGNet are employed for transfer learning. Since these networks are trained on generic images of ImageNet dataset which are having very different characteristics from satellite images. Therefore, weights of networks are fine-tuned using data derived from Sentinel-2 images. To compare the accuracies with existing shallow networks, two state of art classifiers i.e. Gaussian Support Vector Machine (SVM) and Back-Propagation Neural Network (BP-NN) are also implemented. Both SVM and BP-NN gives 84.31 % and 82.86 % overall accuracies respectively. Inception-v3 and VGGNet gives 89.43 % of overall accuracy using fine-tuned VGGNet and 92.10 % when using Inception-v3. The results indicate high accuracy of proposed fine-tuned ConvNets on a 4-channel Sentinel-2 dataset for built-up area extraction.

  2. EXTRACTION OF BUILT-UP AREAS USING CONVOLUTIONAL NEURAL NETWORKS AND TRANSFER LEARNING FROM SENTINEL-2 SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    V. S. Bramhe

    2018-04-01

    Full Text Available With rapid globalization, the extent of built-up areas is continuously increasing. Extraction of features for classifying built-up areas that are more robust and abstract is a leading research topic from past many years. Although, various studies have been carried out where spatial information along with spectral features has been utilized to enhance the accuracy of classification. Still, these feature extraction techniques require a large number of user-specific parameters and generally application specific. On the other hand, recently introduced Deep Learning (DL techniques requires less number of parameters to represent more abstract aspects of the data without any manual effort. Since, it is difficult to acquire high-resolution datasets for applications that require large scale monitoring of areas. Therefore, in this study Sentinel-2 image has been used for built-up areas extraction. In this work, pre-trained Convolutional Neural Networks (ConvNets i.e. Inception v3 and VGGNet are employed for transfer learning. Since these networks are trained on generic images of ImageNet dataset which are having very different characteristics from satellite images. Therefore, weights of networks are fine-tuned using data derived from Sentinel-2 images. To compare the accuracies with existing shallow networks, two state of art classifiers i.e. Gaussian Support Vector Machine (SVM and Back-Propagation Neural Network (BP-NN are also implemented. Both SVM and BP-NN gives 84.31 % and 82.86 % overall accuracies respectively. Inception-v3 and VGGNet gives 89.43 % of overall accuracy using fine-tuned VGGNet and 92.10 % when using Inception-v3. The results indicate high accuracy of proposed fine-tuned ConvNets on a 4-channel Sentinel-2 dataset for built-up area extraction.

  3. Finger language recognition based on ensemble artificial neural network learning using armband EMG sensors.

    Science.gov (United States)

    Kim, Seongjung; Kim, Jongman; Ahn, Soonjae; Kim, Youngho

    2018-04-18

    Deaf people use sign or finger languages for communication, but these methods of communication are very specialized. For this reason, the deaf can suffer from social inequalities and financial losses due to their communication restrictions. In this study, we developed a finger language recognition algorithm based on an ensemble artificial neural network (E-ANN) using an armband system with 8-channel electromyography (EMG) sensors. The developed algorithm was composed of signal acquisition, filtering, segmentation, feature extraction and an E-ANN based classifier that was evaluated with the Korean finger language (14 consonants, 17 vowels and 7 numbers) in 17 subjects. E-ANN was categorized according to the number of classifiers (1 to 10) and size of training data (50 to 1500). The accuracy of the E-ANN-based classifier was obtained by 5-fold cross validation and compared with an artificial neural network (ANN)-based classifier. As the number of classifiers (1 to 8) and size of training data (50 to 300) increased, the average accuracy of the E-ANN-based classifier increased and the standard deviation decreased. The optimal E-ANN was composed with eight classifiers and 300 size of training data, and the accuracy of the E-ANN was significantly higher than that of the general ANN.

  4. Artificial Neural Network Approach in Laboratory Test Reporting:  Learning Algorithms.

    Science.gov (United States)

    Demirci, Ferhat; Akan, Pinar; Kume, Tuncay; Sisman, Ali Riza; Erbayraktar, Zubeyde; Sevinc, Suleyman

    2016-08-01

    In the field of laboratory medicine, minimizing errors and establishing standardization is only possible by predefined processes. The aim of this study was to build an experimental decision algorithm model open to improvement that would efficiently and rapidly evaluate the results of biochemical tests with critical values by evaluating multiple factors concurrently. The experimental model was built by Weka software (Weka, Waikato, New Zealand) based on the artificial neural network method. Data were received from Dokuz Eylül University Central Laboratory. "Training sets" were developed for our experimental model to teach the evaluation criteria. After training the system, "test sets" developed for different conditions were used to statistically assess the validity of the model. After developing the decision algorithm with three iterations of training, no result was verified that was refused by the laboratory specialist. The sensitivity of the model was 91% and specificity was 100%. The estimated κ score was 0.950. This is the first study based on an artificial neural network to build an experimental assessment and decision algorithm model. By integrating our trained algorithm model into a laboratory information system, it may be possible to reduce employees' workload without compromising patient safety. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Evolutionary pruning of transfer learned deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis.

    Science.gov (United States)

    Samala, Ravi K; Chan, Heang-Ping; Hadjiiski, Lubomir M; Helvie, Mark A; Richter, Caleb; Cha, Kenny

    2018-05-01

    Deep learning models are highly parameterized, resulting in difficulty in inference and transfer learning for image recognition tasks. In this work, we propose a layered pathway evolution method to compress a deep convolutional neural network (DCNN) for classification of masses in digital breast tomosynthesis (DBT). The objective is to prune the number of tunable parameters while preserving the classification accuracy. In the first stage transfer learning, 19 632 augmented regions-of-interest (ROIs) from 2454 mass lesions on mammograms were used to train a pre-trained DCNN on ImageNet. In the second stage transfer learning, the DCNN was used as a feature extractor followed by feature selection and random forest classification. The pathway evolution was performed using genetic algorithm in an iterative approach with tournament selection driven by count-preserving crossover and mutation. The second stage was trained with 9120 DBT ROIs from 228 mass lesions using leave-one-case-out cross-validation. The DCNN was reduced by 87% in the number of neurons, 34% in the number of parameters, and 95% in the number of multiply-and-add operations required in the convolutional layers. The test AUC on 89 mass lesions from 94 independent DBT cases before and after pruning were 0.88 and 0.90, respectively, and the difference was not statistically significant (p  >  0.05). The proposed DCNN compression approach can reduce the number of required operations by 95% while maintaining the classification performance. The approach can be extended to other deep neural networks and imaging tasks where transfer learning is appropriate.

  6. Evolutionary pruning of transfer learned deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Richter, Caleb; Cha, Kenny

    2018-05-01

    Deep learning models are highly parameterized, resulting in difficulty in inference and transfer learning for image recognition tasks. In this work, we propose a layered pathway evolution method to compress a deep convolutional neural network (DCNN) for classification of masses in digital breast tomosynthesis (DBT). The objective is to prune the number of tunable parameters while preserving the classification accuracy. In the first stage transfer learning, 19 632 augmented regions-of-interest (ROIs) from 2454 mass lesions on mammograms were used to train a pre-trained DCNN on ImageNet. In the second stage transfer learning, the DCNN was used as a feature extractor followed by feature selection and random forest classification. The pathway evolution was performed using genetic algorithm in an iterative approach with tournament selection driven by count-preserving crossover and mutation. The second stage was trained with 9120 DBT ROIs from 228 mass lesions using leave-one-case-out cross-validation. The DCNN was reduced by 87% in the number of neurons, 34% in the number of parameters, and 95% in the number of multiply-and-add operations required in the convolutional layers. The test AUC on 89 mass lesions from 94 independent DBT cases before and after pruning were 0.88 and 0.90, respectively, and the difference was not statistically significant (p  >  0.05). The proposed DCNN compression approach can reduce the number of required operations by 95% while maintaining the classification performance. The approach can be extended to other deep neural networks and imaging tasks where transfer learning is appropriate.

  7. End-to-End Deep Neural Networks and Transfer Learning for Automatic Analysis of Nation-State Malware

    Directory of Open Access Journals (Sweden)

    Ishai Rosenberg

    2018-05-01

    Full Text Available Malware allegedly developed by nation-states, also known as advanced persistent threats (APT, are becoming more common. The task of attributing an APT to a specific nation-state or classifying it to the correct APT family is challenging for several reasons. First, each nation-state has more than a single cyber unit that develops such malware, rendering traditional authorship attribution algorithms useless. Furthermore, the dataset of such available APTs is still extremely small. Finally, those APTs use state-of-the-art evasion techniques, making feature extraction challenging. In this paper, we use a deep neural network (DNN as a classifier for nation-state APT attribution. We record the dynamic behavior of the APT when run in a sandbox and use it as raw input for the neural network, allowing the DNN to learn high level feature abstractions of the APTs itself. We also use the same raw features for APT family classification. Finally, we use the feature abstractions learned by the APT family classifier to solve the attribution problem. Using a test set of 1000 Chinese and Russian developed APTs, we achieved an accuracy rate of 98.6%

  8. Biased Dropout and Crossmap Dropout: Learning towards effective Dropout regularization in convolutional neural network.

    Science.gov (United States)

    Poernomo, Alvin; Kang, Dae-Ki

    2018-08-01

    Training a deep neural network with a large number of parameters often leads to overfitting problem. Recently, Dropout has been introduced as a simple, yet effective regularization approach to combat overfitting in such models. Although Dropout has shown remarkable results on many deep neural network cases, its actual effect on CNN has not been thoroughly explored. Moreover, training a Dropout model will significantly increase the training time as it takes longer time to converge than a non-Dropout model with the same architecture. To deal with these issues, we address Biased Dropout and Crossmap Dropout, two novel approaches of Dropout extension based on the behavior of hidden units in CNN model. Biased Dropout divides the hidden units in a certain layer into two groups based on their magnitude and applies different Dropout rate to each group appropriately. Hidden units with higher activation value, which give more contributions to the network final performance, will be retained by a lower Dropout rate, while units with lower activation value will be exposed to a higher Dropout rate to compensate the previous part. The second approach is Crossmap Dropout, which is an extension of the regular Dropout in convolution layer. Each feature map in a convolution layer has a strong correlation between each other, particularly in every identical pixel location in each feature map. Crossmap Dropout tries to maintain this important correlation yet at the same time break the correlation between each adjacent pixel with respect to all feature maps by applying the same Dropout mask to all feature maps, so that all pixels or units in equivalent positions in each feature map will be either dropped or active during training. Our experiment with various benchmark datasets shows that our approaches provide better generalization than the regular Dropout. Moreover, our Biased Dropout takes faster time to converge during training phase, suggesting that assigning noise appropriately in

  9. On structure-exploiting trust-region regularized nonlinear least squares algorithms for neural-network learning.

    Science.gov (United States)

    Mizutani, Eiji; Demmel, James W

    2003-01-01

    This paper briefly introduces our numerical linear algebra approaches for solving structured nonlinear least squares problems arising from 'multiple-output' neural-network (NN) models. Our algorithms feature trust-region regularization, and exploit sparsity of either the 'block-angular' residual Jacobian matrix or the 'block-arrow' Gauss-Newton Hessian (or Fisher information matrix in statistical sense) depending on problem scale so as to render a large class of NN-learning algorithms 'efficient' in both memory and operation costs. Using a relatively large real-world nonlinear regression application, we shall explain algorithmic strengths and weaknesses, analyzing simulation results obtained by both direct and iterative trust-region algorithms with two distinct NN models: 'multilayer perceptrons' (MLP) and 'complementary mixtures of MLP-experts' (or neuro-fuzzy modular networks).

  10. Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network

    Science.gov (United States)

    Fang, Kuai; Shen, Chaopeng; Kifer, Daniel; Yang, Xiao

    2017-11-01

    The Soil Moisture Active Passive (SMAP) mission has delivered valuable sensing of surface soil moisture since 2015. However, it has a short time span and irregular revisit schedules. Utilizing a state-of-the-art time series deep learning neural network, Long Short-Term Memory (LSTM), we created a system that predicts SMAP level-3 moisture product with atmospheric forcings, model-simulated moisture, and static physiographic attributes as inputs. The system removes most of the bias with model simulations and improves predicted moisture climatology, achieving small test root-mean-square errors (0.87 for over 75% of Continental United States, including the forested southeast. As the first application of LSTM in hydrology, we show the proposed network avoids overfitting and is robust for both temporal and spatial extrapolation tests. LSTM generalizes well across regions with distinct climates and environmental settings. With high fidelity to SMAP, LSTM shows great potential for hindcasting, data assimilation, and weather forecasting.

  11. Vision-based mobile robot navigation through deep convolutional neural networks and end-to-end learning

    Science.gov (United States)

    Zhang, Yachu; Zhao, Yuejin; Liu, Ming; Dong, Liquan; Kong, Lingqin; Liu, Lingling

    2017-09-01

    In contrast to humans, who use only visual information for navigation, many mobile robots use laser scanners and ultrasonic sensors along with vision cameras to navigate. This work proposes a vision-based robot control algorithm based on deep convolutional neural networks. We create a large 15-layer convolutional neural network learning system and achieve the advanced recognition performance. Our system is trained from end to end to map raw input images to direction in supervised mode. The images of data sets are collected in a wide variety of weather conditions and lighting conditions. Besides, the data sets are augmented by adding Gaussian noise and Salt-and-pepper noise to avoid overfitting. The algorithm is verified by two experiments, which are line tracking and obstacle avoidance. The line tracking experiment is proceeded in order to track the desired path which is composed of straight and curved lines. The goal of obstacle avoidance experiment is to avoid the obstacles indoor. Finally, we get 3.29% error rate on the training set and 5.1% error rate on the test set in the line tracking experiment, 1.8% error rate on the training set and less than 5% error rate on the test set in the obstacle avoidance experiment. During the actual test, the robot can follow the runway centerline outdoor and avoid the obstacle in the room accurately. The result confirms the effectiveness of the algorithm and our improvement in the network structure and train parameters

  12. Incorporating deep learning with convolutional neural networks and position specific scoring matrices for identifying electron transport proteins.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen

    2017-09-05

    In several years, deep learning is a modern machine learning technique using in a variety of fields with state-of-the-art performance. Therefore, utilization of deep learning to enhance performance is also an important solution for current bioinformatics field. In this study, we try to use deep learning via convolutional neural networks and position specific scoring matrices to identify electron transport proteins, which is an important molecular function in transmembrane proteins. Our deep learning method can approach a precise model for identifying of electron transport proteins with achieved sensitivity of 80.3%, specificity of 94.4%, and accuracy of 92.3%, with MCC of 0.71 for independent dataset. The proposed technique can serve as a powerful tool for identifying electron transport proteins and can help biologists understand the function of the electron transport proteins. Moreover, this study provides a basis for further research that can enrich a field of applying deep learning in bioinformatics. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Spiking Neural Networks with Unsupervised Learning Based on STDP Using Resistive Synaptic Devices and Analog CMOS Neuron Circuit.

    Science.gov (United States)

    Kwon, Min-Woo; Baek, Myung-Hyun; Hwang, Sungmin; Kim, Sungjun; Park, Byung-Gook

    2018-09-01

    We designed the CMOS analog integrate and fire (I&F) neuron circuit can drive resistive synaptic device. The neuron circuit consists of a current mirror for spatial integration, a capacitor for temporal integration, asymmetric negative and positive pulse generation part, a refractory part, and finally a back-propagation pulse generation part for learning of the synaptic devices. The resistive synaptic devices were fabricated using HfOx switching layer by atomic layer deposition (ALD). The resistive synaptic device had gradual set and reset characteristics and the conductance was adjusted by spike-timing-dependent-plasticity (STDP) learning rule. We carried out circuit simulation of synaptic device and CMOS neuron circuit. And we have developed an unsupervised spiking neural networks (SNNs) for 5 × 5 pattern recognition and classification using the neuron circuit and synaptic devices. The hardware-based SNNs can autonomously and efficiently control the weight updates of the synapses between neurons, without the aid of software calculations.

  14. Unsupervised learning of mixture models based on swarm intelligence and neural networks with optimal completion using incomplete data

    Directory of Open Access Journals (Sweden)

    Ahmed R. Abas

    2012-07-01

    Full Text Available In this paper, a new algorithm is presented for unsupervised learning of finite mixture models (FMMs using data set with missing values. This algorithm overcomes the local optima problem of the Expectation-Maximization (EM algorithm via integrating the EM algorithm with Particle Swarm Optimization (PSO. In addition, the proposed algorithm overcomes the problem of biased estimation due to overlapping clusters in estimating missing values in the input data set by integrating locally-tuned general regression neural networks with Optimal Completion Strategy (OCS. A comparison study shows the superiority of the proposed algorithm over other algorithms commonly used in the literature in unsupervised learning of FMM parameters that result in minimum mis-classification errors when used in clustering incomplete data set that is generated from overlapping clusters and these clusters are largely different in their sizes.

  15. Deformable image registration using convolutional neural networks

    NARCIS (Netherlands)

    Eppenhof, Koen A.J.; Lafarge, Maxime W.; Moeskops, Pim; Veta, Mitko; Pluim, Josien P.W.

    2018-01-01

    Deformable image registration can be time-consuming and often needs extensive parameterization to perform well on a specific application. We present a step towards a registration framework based on a three-dimensional convolutional neural network. The network directly learns transformations between

  16. Artificial Neural Networks and Instructional Technology.

    Science.gov (United States)

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…

  17. Deep learning quick reference useful hacks for training and optimizing deep neural networks with TensorFlow and Keras

    CERN Document Server

    Bernico, Michael

    2018-01-01

    This book is a practical guide to applying deep neural networks including MLPs, CNNs, LSTMs, and more in Keras and TensorFlow. Packed with useful hacks to solve real-world challenges along with the supported math and theory around each topic, this book will be a quick reference for training and optimize your deep neural networks.

  18. A Deep Learning Algorithm of Neural Network for the Parameterization of Typhoon-Ocean Feedback in Typhoon Forecast Models

    Science.gov (United States)

    Jiang, Guo-Qing; Xu, Jing; Wei, Jun

    2018-04-01

    Two algorithms based on machine learning neural networks are proposed—the shallow learning (S-L) and deep learning (D-L) algorithms—that can potentially be used in atmosphere-only typhoon forecast models to provide flow-dependent typhoon-induced sea surface temperature cooling (SSTC) for improving typhoon predictions. The major challenge of existing SSTC algorithms in forecast models is how to accurately predict SSTC induced by an upcoming typhoon, which requires information not only from historical data but more importantly also from the target typhoon itself. The S-L algorithm composes of a single layer of neurons with mixed atmospheric and oceanic factors. Such a structure is found to be unable to represent correctly the physical typhoon-ocean interaction. It tends to produce an unstable SSTC distribution, for which any perturbations may lead to changes in both SSTC pattern and strength. The D-L algorithm extends the neural network to a 4 × 5 neuron matrix with atmospheric and oceanic factors being separated in different layers of neurons, so that the machine learning can determine the roles of atmospheric and oceanic factors in shaping the SSTC. Therefore, it produces a stable crescent-shaped SSTC distribution, with its large-scale pattern determined mainly by atmospheric factors (e.g., winds) and small-scale features by oceanic factors (e.g., eddies). Sensitivity experiments reveal that the D-L algorithms improve maximum wind intensity errors by 60-70% for four case study simulations, compared to their atmosphere-only model runs.

  19. Trimaran Resistance Artificial Neural Network

    Science.gov (United States)

    2011-01-01

    11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to

  20. Application of neural network to CT

    International Nuclear Information System (INIS)

    Ma, Xiao-Feng; Takeda, Tatsuoki

    1999-01-01

    This paper presents a new method for two-dimensional image reconstruction by using a multilayer neural network. Multilayer neural networks are extensively investigated and practically applied to solution of various problems such as inverse problems or time series prediction problems. From learning an input-output mapping from a set of examples, neural networks can be regarded as synthesizing an approximation of multidimensional function (that is, solving the problem of hypersurface reconstruction, including smoothing and interpolation). From this viewpoint, neural networks are well suited to the solution of CT image reconstruction. Though a conventionally used object function of a neural network is composed of a sum of squared errors of the output data, we can define an object function composed of a sum of residue of an integral equation. By employing an appropriate line integral for this integral equation, we can construct a neural network that can be used for CT. We applied this method to some model problems and obtained satisfactory results. As it is not necessary to discretized the integral equation using this reconstruction method, therefore it is application to the problem of complicated geometrical shapes is also feasible. Moreover, in neural networks, interpolation is performed quite smoothly, as a result, inverse mapping can be achieved smoothly even in case of including experimental and numerical errors, However, use of conventional back propagation technique for optimization leads to an expensive computation cost. To overcome this drawback, 2nd order optimization methods or parallel computing will be applied in future. (J.P.N.)

  1. Neural network error correction for solving coupled ordinary differential equations

    Science.gov (United States)

    Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.

    1992-01-01

    A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.

  2. Fractional-order gradient descent learning of BP neural networks with Caputo derivative.

    Science.gov (United States)

    Wang, Jian; Wen, Yanqing; Gou, Yida; Ye, Zhenyun; Chen, Hua

    2017-05-01

    Fractional calculus has been found to be a promising area of research for information processing and modeling of some physical systems. In this paper, we propose a fractional gradient descent method for the backpropagation (BP) training of neural networks. In particular, the Caputo derivative is employed to evaluate the fractional-order gradient of the error defined as the traditional quadratic energy function. The monotonicity and weak (strong) convergence of the proposed approach are proved in detail. Two simulations have been implemented to illustrate the performance of presented fractional-order BP algorithm on three small datasets and one large dataset. The numerical simulations effectively verify the theoretical observations of this paper as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. COGNITIVE LEARNING OF INTELLIGENCE SYSTEMS USING NEURAL NETWORKS: EVIDENCE FROM THE AUSTRALIAN CAPITAL MARKETS

    Directory of Open Access Journals (Sweden)

    Joachim Tan

    2002-01-01

    Full Text Available Artificial neural networks (ANNs allow users to improve forecasts through pattern recognition. The purpose of this paper is to validate ANNs as a detection tool in four financial markets. This study investigates whether market inefficiencies exist using ANN as a model. It also investigates whether additional publicly available information can provide investors with a trading advantage. In finance, any forecasting advantage obtained through the use of publicly available information albeit internal or/and external market factors suggest inefficiencies in the financial markets. In this paper, we explore the efficiency of the United States, Japan, Hong Kong and Australia. In Australia, using the ASX 200 index, we demonstrate how the inclusion of external information to our ANN improves our forecasting. Our results show accounting for external market signals significantly improves forecasts of the ASX200 index by an additional 10 percent. This suggests the inclusion of publicly available information from other markets, can improve predictions and returns for investors.

  4. Recent progresses of neural network unsupervised learning: I. Independent component analyses generalizing PCA

    Science.gov (United States)

    Szu, Harold H.

    1999-03-01

    The early vision principle of redundancy reduction of 108 sensor excitations is understandable from computer vision viewpoint toward sparse edge maps. It is only recently derived using a truly unsupervised learning paradigm of artificial neural networks (ANN). In fact, the biological vision, Hubel- Wiesel edge maps, is reproduced seeking the underlying independent components analyses (ICA) among 102 image samples by maximizing the ANN output entropy (partial)H(V)/(partial)[W] equals (partial)[W]/(partial)t. When a pair of newborn eyes or ears meet the bustling and hustling world without supervision, they seek ICA by comparing 2 sensory measurements (x1(t), x2(t))T equalsV X(t). Assuming a linear and instantaneous mixture model of the external world X(t) equals [A] S(t), where both the mixing matrix ([A] equalsV [a1, a2] of ICA vectors and the source percentages (s1(t), s2(t))T equalsV S(t) are unknown, we seek the independent sources approximately equals [I] where the approximated sign indicates that higher order statistics (HOS) may not be trivial. Without a teacher, the ANN weight matrix [W] equalsV [w1, w2] adjusts the outputs V(t) equals tanh([W]X(t)) approximately equals [W]X(t) until no desired outputs except the (Gaussian) 'garbage' (neither YES '1' nor NO '-1' but at linear may-be range 'origin 0') defined by Gaussian covariance G equals [I] equals [W][A] the internal knowledge representation [W], as the inverse of the external world matrix [A]-1. To unify IC, PCA, ANN & HOS theories since 1991 (advanced by Jutten & Herault, Comon, Oja, Bell-Sejnowski, Amari-Cichocki, Cardoso), the LYAPONOV function L(v1,...,vn, w1,...wn,) equals E(v1,...,vn) - H(w1,...wn) is constructed as the HELMHOTZ free energy to prove both convergences of supervised energy E and unsupervised entropy H learning. Consequently, rather using the faithful but dumb computer: 'GARBAGE-IN, GARBAGE-OUT,' the smarter neurocomputer will be equipped with an unsupervised learning that extracts

  5. Associative memory for online learning in noisy environments using self-organizing incremental neural network.

    Science.gov (United States)

    Sudo, Akihito; Sato, Akihiro; Hasegawa, Osamu

    2009-06-01

    Associative memory operating in a real environment must perform well in online incremental learning and be robust to noisy data because noisy associative patterns are presented sequentially in a real environment. We propose a novel associative memory that satisfies these requirements. Using the proposed method, new associative pairs that are presented sequentially can be learned accurately without forgetting previously learned patterns. The memory size of the proposed method increases adaptively with learning patterns. Therefore, it suffers neither redundancy nor insufficiency of memory size, even in an environment in which the maximum number of associative pairs to be presented is unknown before learning. Noisy inputs in real environments are classifiable into two types: noise-added original patterns and faultily presented random patterns. The proposed method deals with two types of noise. To our knowledge, no conventional associative memory addresses noise of both types. The proposed associative memory performs as a bidirectional one-to-many or many-to-one associative memory and deals not only with bipolar data, but also with real-valued data. Results demonstrate that the proposed method's features are important for application to an intelligent robot operating in a real environment. The originality of our work consists of two points: employing a growing self-organizing network for an associative memory, and discussing what features are necessary for an associative memory for an intelligent robot and proposing an associative memory that satisfies those requirements.

  6. PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    R. Hadapiningradja Kusumodestoni

    2015-11-01

    Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.

  7. Sentiment analysis: a comparison of deep learning neural network algorithm with SVM and naϊve Bayes for Indonesian text

    Science.gov (United States)

    Calvin Frans Mariel, Wahyu; Mariyah, Siti; Pramana, Setia

    2018-03-01

    Deep learning is a new era of machine learning techniques that essentially imitate the structure and function of the human brain. It is a development of deeper Artificial Neural Network (ANN) that uses more than one hidden layer. Deep Learning Neural Network has a great ability on recognizing patterns from various data types such as picture, audio, text, and many more. In this paper, the authors tries to measure that algorithm’s ability by applying it into the text classification. The classification task herein is done by considering the content of sentiment in a text which is also called as sentiment analysis. By using several combinations of text preprocessing and feature extraction techniques, we aim to compare the precise modelling results of Deep Learning Neural Network with the other two commonly used algorithms, the Naϊve Bayes and Support Vector Machine (SVM). This algorithm comparison uses Indonesian text data with balanced and unbalanced sentiment composition. Based on the experimental simulation, Deep Learning Neural Network clearly outperforms the Naϊve Bayes and SVM and offers a better F-1 Score while for the best feature extraction technique which improves that modelling result is Bigram.

  8. Deep learning classification in asteroseismology using an improved neural network: results on 15 000 Kepler red giants and applications to K2 and TESS data

    Science.gov (United States)

    Hon, Marc; Stello, Dennis; Yu, Jie

    2018-05-01

    Deep learning in the form of 1D convolutional neural networks have previously been shown to be capable of efficiently classifying the evolutionary state of oscillating red giants into red giant branch stars and helium-core burning stars by recognizing visual features in their asteroseismic frequency spectra. We elaborate further on the deep learning method by developing an improved convolutional neural network classifier. To make our method useful for current and future space missions such as K2, TESS, and PLATO, we train classifiers that are able to classify the evolutionary states of lower frequency resolution spectra expected from these missions. Additionally, we provide new classifications for 8633 Kepler red giants, out of which 426 have previously not been classified using asteroseismology. This brings the total to 14983 Kepler red giants classified with our new neural network. We also verify that our classifiers are remarkably robust to suboptimal data, including low signal-to-noise and incorrect training truth labels.

  9. Nonequilibrium landscape theory of neural networks.

    Science.gov (United States)

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-11-05

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.

  10. Nonequilibrium landscape theory of neural networks

    Science.gov (United States)

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-01-01

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451

  11. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks.

    Science.gov (United States)

    Lakhani, Paras; Sundaram, Baskaran

    2017-08-01

    Purpose To evaluate the efficacy of deep convolutional neural networks (DCNNs) for detecting tuberculosis (TB) on chest radiographs. Materials and Methods Four deidentified HIPAA-compliant datasets were used in this study that were exempted from review by the institutional review board, which consisted of 1007 posteroanterior chest radiographs. The datasets were split into training (68.0%), validation (17.1%), and test (14.9%). Two different DCNNs, AlexNet and GoogLeNet, were used to classify the images as having manifestations of pulmonary TB or as healthy. Both untrained and pretrained networks on ImageNet were used, and augmentation with multiple preprocessing techniques. Ensembles were performed on the best-performing algorithms. For cases where the classifiers were in disagreement, an independent board-certified cardiothoracic radiologist blindly interpreted the images to evaluate a potential radiologist-augmented workflow. Receiver operating characteristic curves and areas under the curve (AUCs) were used to assess model performance by using the DeLong method for statistical comparison of receiver operating characteristic curves. Results The best-performing classifier had an AUC of 0.99, which was an ensemble of the AlexNet and GoogLeNet DCNNs. The AUCs of the pretrained models were greater than that of the untrained models (P chest radiography with an AUC of 0.99. A radiologist-augmented approach for cases where there was disagreement among the classifiers further improved accuracy. © RSNA, 2017.

  12. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  13. A compound memristive synapse model for statistical learning through STDP in spiking neural networks.

    Science.gov (United States)

    Bill, Johannes; Legenstein, Robert

    2014-01-01

    Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compound memristive synapse, that circumvents this problem by the use of memristors with binary memristive states. A compound memristive synapse employs multiple bistable memristors in parallel to jointly form one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the computational implications of synaptic plasticity in the compound synapse by integrating the recently observed phenomenon of stochastic filament formation into an abstract model of stochastic switching. Using this abstract model, we first show how standard pulsing schemes give rise to spike-timing dependent plasticity (STDP) with a stabilizing weight dependence in compound synapses. In a next step, we study unsupervised learning with compound synapses in networks of spiking neurons organized in a winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP implements generalized Expectation-Maximization in the spiking network. Specifically, the emergent synapse configuration represents the most salient features of the input distribution in a Mixture-of-Gaussians generative model. Furthermore, the network's spike response to spiking input streams approximates a well-defined Bayesian posterior distribution. We show in computer simulations how such networks learn to represent high-dimensional distributions over images of handwritten digits with high fidelity even in presence of substantial device variations and under severe noise conditions. Therefore, the compound memristive synapse may provide a synaptic design principle for future neuromorphic architectures.

  14. Neural Networks for Optimal Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1995-01-01

    Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....

  15. Neural networks at the Tevatron

    International Nuclear Information System (INIS)

    Badgett, W.; Burkett, K.; Campbell, M.K.; Wu, D.Y.; Bianchin, S.; DeNardi, M.; Pauletta, G.; Santi, L.; Caner, A.; Denby, B.; Haggerty, H.; Lindsey, C.S.; Wainer, N.; Dall'Agata, M.; Johns, K.; Dickson, M.; Stanco, L.; Wyss, J.L.

    1992-10-01

    This paper summarizes neural network applications at the Fermilab Tevatron, including the first online hardware application in high energy physics (muon tracking): the CDF and DO neural network triggers; offline quark/gluon discrimination at CDF; ND a new tool for top to multijets recognition at CDF

  16. Neural Networks for the Beginner.

    Science.gov (United States)

    Snyder, Robin M.

    Motivated by the brain, neural networks are a right-brained approach to artificial intelligence that is used to recognize patterns based on previous training. In practice, one would not program an expert system to recognize a pattern and one would not train a neural network to make decisions from rules; but one could combine the best features of…

  17. Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database.

    Science.gov (United States)

    Choi, Joon Yul; Yoo, Tae Keun; Seo, Jeong Gi; Kwak, Jiyong; Um, Terry Taewoong; Rim, Tyler Hyungtaek

    2017-01-01

    Deep learning emerges as a powerful tool for analyzing medical images. Retinal disease detection by using computer-aided diagnosis from fundus image has emerged as a new method. We applied deep learning convolutional neural network by using MatConvNet for an automated detection of multiple retinal diseases with fundus photographs involved in STructured Analysis of the REtina (STARE) database. Dataset was built by expanding data on 10 categories, including normal retina and nine retinal diseases. The optimal outcomes were acquired by using a random forest transfer learning based on VGG-19 architecture. The classification results depended greatly on the number of categories. As the number of categories increased, the performance of deep learning models was diminished. When all 10 categories were included, we obtained results with an accuracy of 30.5%, relative classifier information (RCI) of 0.052, and Cohen's kappa of 0.224. Considering three integrated normal, background diabetic retinopathy, and dry age-related macular degeneration, the multi-categorical classifier showed accuracy of 72.8%, 0.283 RCI, and 0.577 kappa. In addition, several ensemble classifiers enhanced the multi-categorical classification performance. The transfer learning incorporated with ensemble classifier of clustering and voting approach presented the best performance with accuracy of 36.7%, 0.053 RCI, and 0.225 kappa in the 10 retinal diseases classification problem. First, due to the small size of datasets, the deep learning techniques in this study were ineffective to be applied in clinics where numerous patients suffering from various types of retinal disorders visit for diagnosis and treatment. Second, we found that the transfer learning incorporated with ensemble classifiers can improve the classification performance in order to detect multi-categorical retinal diseases. Further studies should confirm the effectiveness of algorithms with large datasets obtained from hospitals.

  18. Convolutional Neural Network for Multi-Source Deep Learning Crop Classification in Ukraine

    Science.gov (United States)

    Lavreniuk, M. S.

    2016-12-01

    Land cover and crop type maps are one of the most essential inputs when dealing with environmental and agriculture monitoring tasks [1]. During long time neural network (NN) approach was one of the most efficient and popular approach for most applications, including crop classification using remote sensing data, with high an overall accuracy (OA) [2]. In the last years the most popular and efficient method for multi-sensor and multi-temporal land cover classification is convolution neural networks (CNNs). Taking into account presence clouds in optical data, self-organizing Kohonen maps (SOMs) are used to restore missing pixel values in a time series of optical imagery from Landsat-8 satellite. After missing data restoration, optical data from Landsat-8 was merged with Sentinel-1A radar data for better crop types discrimination [3]. An ensemble of CNNs is proposed for multi-temporal satellite images supervised classification. Each CNN in the corresponding ensemble is a 1-d CNN with 4 layers implemented using the Google's library TensorFlow. The efficiency of the proposed approach was tested on a time-series of Landsat-8 and Sentinel-1A images over the JECAM test site (Kyiv region) in Ukraine in 2015. Overall classification accuracy for ensemble of CNNs was 93.5% that outperformed an ensemble of multi-layer perceptrons (MLPs) by +0.8% and allowed us to better discriminate summer crops, in particular maize and soybeans. For 2016 we would like to validate this method using Sentinel-1 and Sentinel-2 data for Ukraine territory within ESA project on country level demonstration Sen2Agri. 1. A. Kolotii et al., "Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine," The Int. Arch. of Photogram., Rem. Sens. and Spatial Inform. Scie., vol. 40, no. 7, pp. 39-44, 2015. 2. F. Waldner et al., "Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity," Int. Journal of Rem. Sens. vol. 37, no. 14, pp

  19. Are Student Evaluations of Teaching Effectiveness Valid for Measuring Student Learning Outcomes in Business Related Classes? A Neural Network and Bayesian Analyses

    Science.gov (United States)

    Galbraith, Craig S.; Merrill, Gregory B.; Kline, Doug M.

    2012-01-01

    In this study we investigate the underlying relational structure between student evaluations of teaching effectiveness (SETEs) and achievement of student learning outcomes in 116 business related courses. Utilizing traditional statistical techniques, a neural network analysis and a Bayesian data reduction and classification algorithm, we find…

  20. Artificial neural networks in NDT

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamed

    2001-01-01

    Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)

  1. Deep Recurrent Convolutional Neural Network: Improving Performance For Speech Recognition

    OpenAIRE

    Zhang, Zewang; Sun, Zheng; Liu, Jiaqi; Chen, Jingwen; Huo, Zhao; Zhang, Xiao

    2016-01-01

    A deep learning approach has been widely applied in sequence modeling problems. In terms of automatic speech recognition (ASR), its performance has significantly been improved by increasing large speech corpus and deeper neural network. Especially, recurrent neural network and deep convolutional neural network have been applied in ASR successfully. Given the arising problem of training speed, we build a novel deep recurrent convolutional network for acoustic modeling and then apply deep resid...

  2. A compound memristive synapse model for statistical learning through STDP in spiking neural networks

    Directory of Open Access Journals (Sweden)

    Johannes eBill

    2014-12-01

    Full Text Available Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compound memristive synapse, that circumvents this problem by the use of memristors with binary memristive states. A compound memristive synapse employs multiple bistable memristors in parallel to jointly form one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the computational implications of synaptic plasticity in the compound synapse by integrating the recently observed phenomenon of stochastic filament formation into an abstract model of stochastic switching. Using this abstract model, we first show how standard pulsing schemes give rise to spike-timing dependent plasticity (STDP with a stabilizing weight dependence in compound synapses. In a next step, we study unsupervised learning with compound synapses in networks of spiking neurons organized in a winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP implements generalized Expectation-Maximization in the spiking network. Specifically, the emergent synapse configuration represents the most salient features of the input distribution in a Mixture-of-Gaussians generative model. Furthermore, the network’s spike response to spiking input streams approximates a well-defined Bayesian posterior distribution. We show in computer simulations how such networks learn to represent high-dimensional distributions over images of handwritten digits with high fidelity even in presence of substantial device variations and under severe noise conditions. Therefore, the compound memristive synapse may provide a synaptic design principle for future neuromorphic

  3. The advantage of flexible neuronal tunings in neural network models for motor learning

    Directory of Open Access Journals (Sweden)

    Ellisha N Marongelli

    2013-07-01

    Full Text Available Human motor adaptation to novel environments is often modeled by a basis function network that transforms desired movement properties into estimated forces. This network employs a layer of nodes that have fixed broad tunings that generalize across the input domain. Learning is achieved by updating the weights of these nodes in response to training experience. This conventional model is unable to account for rapid flexibility observed in human spatial generalization during motor adaptation. However, added plasticity in the breadths of the basis function tunings can achieve this flexibility, and several neurophysiological experiments have revealed flexibility in tunings of sensorimotor neurons. We found a model, Locally Weighted Projection Regression (LWPR, which uniquely possesses the structure of a basis function network in which both the weights and tuning widths of the nodes are updated incrementally during adaptation. We presented this LWPR model with training functions of different spatial complexities and monitored incremental updates to receptive field sizes. An inverse pattern of dependence of receptive field adaptation on experienced error became evident, underlying both a relationship between generalization and complexity, and a unique behavior in which generalization always narrows after a sudden switch in environmental complexity. These results implicate a model with a flexible structure, like LWPR, as a viable alternative model for human motor adaptation that can account for previously observed plasticity in spatial generalization. This theory can be tested by using the behaviors observed in our experiments as novel hypotheses in human studies.

  4. The advantage of flexible neuronal tunings in neural network models for motor learning

    Science.gov (United States)

    Marongelli, Ellisha N.; Thoroughman, Kurt A.

    2013-01-01

    Human motor adaptation to novel environments is often modeled by a basis function network that transforms desired movement properties into estimated forces. This network employs a layer of nodes that have fixed broad tunings that generalize across the input domain. Learning is achieved by updating the weights of these nodes in response to training experience. This conventional model is unable to account for rapid flexibility observed in human spatial generalization during motor adaptation. However, added plasticity in the widths of the basis function tunings can achieve this flexibility, and several neurophysiological experiments have revealed flexibility in tunings of sensorimotor neurons. We found a model, Locally Weighted Projection Regression (LWPR), which uniquely possesses the structure of a basis function network in which both the weights and tuning widths of the nodes are updated incrementally during adaptation. We presented this LWPR model with training functions of different spatial complexities and monitored incremental updates to receptive field widths. An inverse pattern of dependence of receptive field adaptation on experienced error became evident, underlying both a relationship between generalization and complexity, and a unique behavior in which generalization always narrows after a sudden switch in environmental complexity. These results implicate a model that is flexible in both basis function widths and weights, like LWPR, as a viable alternative model for human motor adaptation that can account for previously observed plasticity in spatial generalization. This theory can be tested by using the behaviors observed in our experiments as novel hypotheses in human studies. PMID:23888141

  5. NEURAL NETWORKS FOR STOCK MARKET OPTION PRICING

    Directory of Open Access Journals (Sweden)

    Sergey A. Sannikov

    2017-03-01

    Full Text Available Introduction: The use of neural networks for non-linear models helps to understand where linear model drawbacks, coused by their specification, reveal themselves. This paper attempts to find this out. The objective of research is to determine the meaning of “option prices calculation using neural networks”. Materials and Methods: We use two kinds of variables: endogenous (variables included in the model of neural network and variables affecting on the model (permanent disturbance. Results: All data are divided into 3 sets: learning, affirming and testing. All selected variables are normalised from 0 to 1. Extreme values of income were shortcut. Discussion and Conclusions: Using the 33-14-1 neural network with direct links we obtained two sets of forecasts. Optimal criteria of strategies in stock markets’ option pricing were developed.

  6. Predicting Expressive Dynamics in Piano Performances using Neural Networks

    NARCIS (Netherlands)

    van Herwaarden, Sam; Grachten, Maarten; de Haas, W. Bas

    2014-01-01

    This paper presents a model for predicting expressive accentuation in piano performances with neural networks. Using Restricted Boltzmann Machines (RBMs), features are learned from performance data, after which these features are used to predict performed loudness. During feature learning, data

  7. Anti-pairing in learning of a neural network with redundant hidden units

    International Nuclear Information System (INIS)

    Kwon, Chulan; Kim, Hyong Kyun

    2005-01-01

    We study the statistical mechanics of learning from examples between the two-layered committee machines with different numbers of hidden units using the replica theory. The number M of hidden units of the student network is larger than the number M T of those of the target network called the teacher. We choose the networks to have binary synaptic weights, ±1, which makes it possible to compare the calculation with the Monte Carlo simulation. We propose an effective teacher as a virtual target network which has the same M hidden units as the student and gives identical outputs with those of the original teacher. This is a way of making a conjecture for a ground state of a thermodynamic system, given by the weights of the effective teacher in our study. We suppose that the weights on M T hidden units of the effective teacher are the same as those of the original teacher while those on M - M T redundant hidden units are composed of anti-pairs, {1, - 1}, with probability 1 - p in the limit p → 0. For p = 0 exact, there are no terms related to the effective teacher in the calculation, for the contributions of anti-pairs to outputs are exactly cancelled. In the limit p → 0, however, we find that the learnt weights of the student are actually equivalent to those of the suggested effective teacher, which is not possible from the calculation for p = 0. p plays the role of a symmetry breaking parameter for anti-pairing ordering, which is analogous to the magnetic field for the Ising model. A first-order phase transition is found to be signalled by breaking of symmetry in permuting hidden units. Above a critical number of examples, the student is shown to learn perfectly the effective teacher. Anti-pairing can be measured by a set of order parameters; zero in the permutation-symmetric phase and nonzero in the permutation symmetry breaking phase. Results from the Monte Carlo simulation are shown to be in good agreement with those from the replica calculation

  8. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...

  9. Neural network based multiscale image restoration approach

    Science.gov (United States)

    de Castro, Ana Paula A.; da Silva, José D. S.

    2007-02-01

    This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.

  10. Multi-modular neural networks for the classification of e+e- hadronic events

    International Nuclear Information System (INIS)

    Proriol, J.

    1994-01-01

    Some multi-modular neural network methods of classifying e + e - hadronic events are presented. We compare the performances of the following neural networks: MLP (multilayer perceptron), MLP and LVQ (learning vector quantization) trained sequentially, and MLP and RBF (radial basis function) trained sequentially. We introduce a MLP-RBF cooperative neural network. Our last study is a multi-MLP neural network. (orig.)

  11. Neural networks. A new analytical tool, applicable also in nuclear technology

    International Nuclear Information System (INIS)

    Stritar, A.

    1992-01-01

    The basic concept of neural networks and back propagation learning algorithm are described. The behaviour of typical neural network is demonstrated on a simple graphical case. A short literature survey about the application of neural networks in nuclear science and engineering is made. The application of the neural network to the probability density calculation is shown. (author) [sl

  12. Automated Grading of Gliomas using Deep Learning in Digital Pathology Images: A modular approach with ensemble of convolutional neural networks.

    Science.gov (United States)

    Ertosun, Mehmet Günhan; Rubin, Daniel L

    2015-01-01

    Brain glioma is the most common primary malignant brain tumors in adults with different pathologic subtypes: Lower Grade Glioma (LGG) Grade II, Lower Grade Glioma (LGG) Grade III, and Glioblastoma Multiforme (GBM) Grade IV. The survival and treatment options are highly dependent of this glioma grade. We propose a deep learning-based, modular classification pipeline for automated grading of gliomas using digital pathology images. Whole tissue digitized images of pathology slides obtained from The Cancer Genome Atlas (TCGA) were used to train our deep learning modules. Our modular pipeline provides diagnostic quality statistics, such as precision, sensitivity and specificity, of the individual deep learning modules, and (1) facilitates training given the limited data in this domain, (2) enables exploration of different deep learning structures for each module, (3) leads to developing less complex modules that are simpler to analyze, and (4) provides flexibility, permitting use of single modules within the framework or use of other modeling or machine learning applications, such as probabilistic graphical models or support vector machines. Our modular approach helps us meet the requirements of minimum accuracy levels that are demanded by the context of different decision points within a multi-class classification scheme. Convolutional Neural Networks are trained for each module for each sub-task with more than 90% classification accuracies on validation data set, and achieved classification accuracy of 96% for the task of GBM vs LGG classification, 71% for further identifying the grade of LGG into Grade II or Grade III on independent data set coming from new patients from the multi-institutional repository.

  13. Feature to prototype transition in neural networks

    Science.gov (United States)

    Krotov, Dmitry; Hopfield, John

    Models of associative memory with higher order (higher than quadratic) interactions, and their relationship to neural networks used in deep learning are discussed. Associative memory is conventionally described by recurrent neural networks with dynamical convergence to stable points. Deep learning typically uses feedforward neural nets without dynamics. However, a simple duality relates these two different views when applied to problems of pattern classification. From the perspective of associative memory such models deserve attention because they make it possible to store a much larger number of memories, compared to the quadratic case. In the dual description, these models correspond to feedforward neural networks with one hidden layer and unusual activation functions transmitting the activities of the visible neurons to the hidden layer. These activation functions are rectified polynomials of a higher degree rather than the rectified linear functions used in deep learning. The network learns representations of the data in terms of features for rectified linear functions, but as the power in the activation function is increased there is a gradual shift to a prototype-based representation, the two extreme regimes of pattern recognition known in cognitive psychology. Simons Center for Systems Biology.

  14. Convolutional Neural Networks - Generalizability and Interpretations

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David

    from data despite it being limited in amount or context representation. Within Machine Learning this thesis focuses on Convolutional Neural Networks for Computer Vision. The research aims to answer how to explore a model's generalizability to the whole population of data samples and how to interpret...

  15. Novel quantum inspired binary neural network algorithm

    Indian Academy of Sciences (India)

    This parameter is taken as the threshold of neuron for learning of neural network. This algorithm is tested with three benchmark datasets and ... Author Affiliations. OM PRAKASH PATEL1 ARUNA TIWARI. Department of Computer Science and Engineering, Indian Institute of Technology Indore, Indore 453552, India ...

  16. Parameter estimation using compensatory neural networks

    Indian Academy of Sciences (India)

    of interconnections among neurons but also reduces the total computing time for training. The suggested model has properties of the basic neuron ..... Engelbrecht A P, Cloete I, Geldenhuys J, Zurada J M 1995 Automatic scaling using gamma learning for feedforward neural networks. From natural to artificial computing.

  17. Parallelization of learning problems by artificial neural networks. Application in external radiotherapy; Parallelisation de problemes d'apprentissage par des reseaux neuronaux artificiels. Application en radiotherapie externe

    Energy Technology Data Exchange (ETDEWEB)

    Sauget, M

    2007-12-15

    This research is about the application of neural networks used in the external radiotherapy domain. The goal is to elaborate a new evaluating system for the radiation dose distributions in heterogeneous environments. The al objective of this work is to build a complete tool kit to evaluate the optimal treatment planning. My st research point is about the conception of an incremental learning algorithm. The interest of my work is to combine different optimizations specialized in the function interpolation and to propose a new algorithm allowing to change the neural network architecture during the learning phase. This algorithm allows to minimise the al size of the neural network while keeping a good accuracy. The second part of my research is to parallelize the previous incremental learning algorithm. The goal of that work is to increase the speed of the learning step as well as the size of the learned dataset needed in a clinical case. For that, our incremental learning algorithm presents an original data decomposition with overlapping, together with a fault tolerance mechanism. My last research point is about a fast and accurate algorithm computing the radiation dose deposit in any heterogeneous environment. At the present time, the existing solutions used are not optimal. The fast solution are not accurate and do not give an optimal treatment planning. On the other hand, the accurate solutions are far too slow to be used in a clinical context. Our algorithm answers to this problem by bringing rapidity and accuracy. The concept is to use a neural network adequately learned together with a mechanism taking into account the environment changes. The advantages of this algorithm is to avoid the use of a complex physical code while keeping a good accuracy and reasonable computation times. (author)

  18. Artificial Neural Network Analysis System

    Science.gov (United States)

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  19. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets.

    Science.gov (United States)

    McAllister, Patrick; Zheng, Huiru; Bond, Raymond; Moorhead, Anne

    2018-04-01

    Obesity is increasing worldwide and can cause many chronic conditions such as type-2 diabetes, heart disease, sleep apnea, and some cancers. Monitoring dietary intake through food logging is a key method to maintain a healthy lifestyle to prevent and manage obesity. Computer vision methods have been applied to food logging to automate image classification for monitoring dietary intake. In this work we applied pretrained ResNet-152 and GoogleNet convolutional neural networks (CNNs), initially trained using ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset with MatConvNet package, to extract features from food image datasets; Food 5K, Food-11, RawFooT-DB, and Food-101. Deep features were extracted from CNNs and used to train machine learning classifiers including artificial neural network (ANN), support vector machine (SVM), Random Forest, and Naive Bayes. Results show that using ResNet-152 deep features with SVM with RBF kernel can accurately detect food items with 99.4% accuracy using Food-5K validation food image dataset and 98.8% with Food-5K evaluation dataset using ANN, SVM-RBF, and Random Forest classifiers. Trained with ResNet-152 features, ANN can achieve 91.34%, 99.28% when applied to Food-11 and RawFooT-DB food image datasets respectively and SVM with RBF kernel can achieve 64.98% with Food-101 image dataset. From this research it is clear that using deep CNN features can be used efficiently for diverse food item image classification. The work presented in this research shows that pretrained ResNet-152 features provide sufficient generalisation power when applied to a range of food image classification tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Neural networks: a biased overview

    International Nuclear Information System (INIS)

    Domany, E.

    1988-01-01

    An overview of recent activity in the field of neural networks is presented. The long-range aim of this research is to understand how the brain works. First some of the problems are stated and terminology defined; then an attempt is made to explain why physicists are drawn to the field, and their main potential contribution. In particular, in recent years some interesting models have been introduced by physicists. A small subset of these models is described, with particular emphasis on those that are analytically soluble. Finally a brief review of the history and recent developments of single- and multilayer perceptrons is given, bringing the situation up to date regarding the central immediate problem of the field: search for a learning algorithm that has an associated convergence theorem

  1. A Neural Network-Based Interval Pattern Matcher

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2015-07-01

    Full Text Available One of the most important roles in the machine learning area is to classify, and neural networks are very important classifiers. However, traditional neural networks cannot identify intervals, let alone classify them. To improve their identification ability, we propose a neural network-based interval matcher in our paper. After summarizing the theoretical construction of the model, we take a simple and a practical weather forecasting experiment, which show that the recognizer accuracy reaches 100% and that is promising.

  2. Classification of behavior using unsupervised temporal neural networks

    International Nuclear Information System (INIS)

    Adair, K.L.

    1998-03-01

    Adding recurrent connections to unsupervised neural networks used for clustering creates a temporal neural network which clusters a sequence of inputs as they appear over time. The model presented combines the Jordan architecture with the unsupervised learning technique Adaptive Resonance Theory, Fuzzy ART. The combination yields a neural network capable of quickly clustering sequential pattern sequences as the sequences are generated. The applicability of the architecture is illustrated through a facility monitoring problem

  3. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm.

    Science.gov (United States)

    Lee, Jae-Hong; Kim, Do-Hyung; Jeong, Seong-Nyum; Choi, Seong-Ho

    2018-04-01

    The aim of the current study was to develop a computer-assisted detection system based on a deep convolutional neural network (CNN) algorithm and to evaluate the potential usefulness and accuracy of this system for the diagnosis and prediction of periodontally compromised teeth (PCT). Combining pretrained deep CNN architecture and a self-trained network, periapical radiographic images were used to determine the optimal CNN algorithm and weights. The diagnostic and predictive accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curve, area under the ROC curve, confusion matrix, and 95% confidence intervals (CIs) were calculated using our deep CNN algorithm, based on a Keras framework in Python. The periapical radiographic dataset was split into training (n=1,044), validation (n=348), and test (n=348) datasets. With the deep learning algorithm, the diagnostic accuracy for PCT was 81.0% for premolars and 76.7% for molars. Using 64 premolars and 64 molars that were clinically diagnosed as severe PCT, the accuracy of predicting extraction was 82.8% (95% CI, 70.1%-91.2%) for premolars and 73.4% (95% CI, 59.9%-84.0%) for molars. We demonstrated that the deep CNN algorithm was useful for assessing the diagnosis and predictability of PCT. Therefore, with further optimization of the PCT dataset and improvements in the algorithm, a computer-aided detection system can be expected to become an effective and efficient method of diagnosing and predicting PCT.

  4. Target recognition based on convolutional neural network

    Science.gov (United States)

    Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian

    2017-11-01

    One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.

  5. Quantitative phase microscopy using deep neural networks

    Science.gov (United States)

    Li, Shuai; Sinha, Ayan; Lee, Justin; Barbastathis, George

    2018-02-01

    Deep learning has been proven to achieve ground-breaking accuracy in various tasks. In this paper, we implemented a deep neural network (DNN) to achieve phase retrieval in a wide-field microscope. Our DNN utilized the residual neural network (ResNet) architecture and was trained using the data generated by a phase SLM. The results showed that our DNN was able to reconstruct the profile of the phase target qualitatively. In the meantime, large error still existed, which indicated that our approach still need to be improved.

  6. SpikeTemp: An Enhanced Rank-Order-Based Learning Approach for Spiking Neural Networks With Adaptive Structure.

    Science.gov (United States)

    Wang, Jinling; Belatreche, Ammar; Maguire, Liam P; McGinnity, Thomas Martin

    2017-01-01

    This paper presents an enhanced rank-order-based learning algorithm, called SpikeTemp, for spiking neural networks (SNNs) with a dynamically adaptive structure. The trained feed-forward SNN consists of two layers of spiking neurons: 1) an encoding layer which temporally encodes real-valued features into spatio-temporal spike patterns and 2) an output layer of dynamically grown neurons which perform spatio-temporal classification. Both Gaussian receptive fields and square cosine population encoding schemes are employed to encode real-valued features into spatio-temporal spike patterns. Unlike the rank-order-based learning approach, SpikeTemp uses the precise times of the incoming spikes for adjusting the synaptic weights such that early spikes result in a large weight change and late spikes lead to a smaller weight change. This removes the need to rank all the incoming spikes and, thus, reduces the computational cost of SpikeTemp. The proposed SpikeTemp algorithm is demonstrated on several benchmark data sets and on an image recognition task. The results show that SpikeTemp can achieve better classification performance and is much faster than the existing rank-order-based learning approach. In addition, the number of output neurons is much smaller when the square cosine encoding scheme is employed. Furthermore, SpikeTemp is benchmarked against a selection of existing machine learning algorithms, and the results demonstrate the ability of SpikeTemp to classify different data sets after just one presentation of the training samples with comparable classification performance.

  7. Adaptive metric learning with deep neural networks for video-based facial expression recognition

    Science.gov (United States)

    Liu, Xiaofeng; Ge, Yubin; Yang, Chao; Jia, Ping

    2018-01-01

    Video-based facial expression recognition has become increasingly important for plenty of applications in the real world. Despite that numerous efforts have been made for the single sequence, how to balance the complex distribution of intra- and interclass variations well between sequences has remained a great difficulty in this area. We propose the adaptive (N+M)-tuplet clusters loss function and optimize it with the softmax loss simultaneously in the training phrase. The variations introduced by personal attributes are alleviated using the similarity measurements of multiple samples in the feature space with many fewer comparison times as conventional deep metric learning approaches, which enables the metric calculations for large data applications (e.g., videos). Both the spatial and temporal relations are well explored by a unified framework that consists of an Inception-ResNet network with long short term memory and the two fully connected layer branches structure. Our proposed method has been evaluated with three well-known databases, and the experimental results show that our method outperforms many state-of-the-art approaches.

  8. Optical Neural Network Classifier Architectures

    National Research Council Canada - National Science Library

    Getbehead, Mark

    1998-01-01

    We present an adaptive opto-electronic neural network hardware architecture capable of exploiting parallel optics to realize real-time processing and classification of high-dimensional data for Air...

  9. Memristor-based neural networks

    International Nuclear Information System (INIS)

    Thomas, Andy

    2013-01-01

    The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them. (topical review)

  10. Relation Classification via Recurrent Neural Network

    OpenAIRE

    Zhang, Dongxu; Wang, Dong

    2015-01-01

    Deep learning has gained much success in sentence-level relation classification. For example, convolutional neural networks (CNN) have delivered competitive performance without much effort on feature engineering as the conventional pattern-based methods. Thus a lot of works have been produced based on CNN structures. However, a key issue that has not been well addressed by the CNN-based method is the lack of capability to learn temporal features, especially long-distance dependency between no...

  11. Identifying Tracks Duplicates via Neural Network

    CERN Document Server

    Sunjerga, Antonio; CERN. Geneva. EP Department

    2017-01-01

    The goal of the project is to study feasibility of state of the art machine learning techniques in track reconstruction. Machine learning techniques provide promising ways to speed up the pattern recognition of tracks by adding more intelligence in the algorithms. Implementation of neural network to process of track duplicates identifying will be discussed. Different approaches are shown and results are compared to method that is currently in use.

  12. What are artificial neural networks?

    DEFF Research Database (Denmark)

    Krogh, Anders

    2008-01-01

    Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...

  13. Using neural networks to describe tracer correlations

    Directory of Open Access Journals (Sweden)

    D. J. Lary

    2004-01-01

    Full Text Available Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and methane volume mixing ratio (v.m.r.. In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE which has continuously observed CH4  (but not N2O from 1991 till the present. The neural network Fortran code used is available for download.

  14. vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design

    OpenAIRE

    Rhu, Minsoo; Gimelshein, Natalia; Clemons, Jason; Zulfiqar, Arslan; Keckler, Stephen W.

    2016-01-01

    The most widely used machine learning frameworks require users to carefully tune their memory usage so that the deep neural network (DNN) fits into the DRAM capacity of a GPU. This restriction hampers a researcher's flexibility to study different machine learning algorithms, forcing them to either use a less desirable network architecture or parallelize the processing across multiple GPUs. We propose a runtime memory manager that virtualizes the memory usage of DNNs such that both GPU and CPU...

  15. Complex-Valued Neural Networks

    CERN Document Server

    Hirose, Akira

    2012-01-01

    This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...

  16. A Learning Method for Neural Networks Based on a Pseudoinverse Technique

    Directory of Open Access Journals (Sweden)

    Chinmoy Pal

    1996-01-01

    Full Text Available A theoretical formulation of a fast learning method based on a pseudoinverse technique is presented. The efficiency and robustness of the method are verified with the help of an Exclusive OR problem and a dynamic system identification of a linear single degree of freedom mass–spring problem. It is observed that, compared with the conventional backpropagation method, the proposed method has a better convergence rate and a higher degree of learning accuracy with a lower equivalent learning coefficient. It is also found that unlike the steepest descent method, the learning capability of which is dependent on the value of the learning coefficient ν, the proposed pseudoinverse based backpropagation algorithm is comparatively robust with respect to its equivalent variable learning coefficient. A combination of the pseudoinverse method and the steepest descent method is proposed for a faster, more accurate learning capability.

  17. Diagnostic Classifiers: Revealing how Neural Networks Process Hierarchical Structure

    NARCIS (Netherlands)

    Veldhoen, S.; Hupkes, D.; Zuidema, W.

    2016-01-01

    We investigate how neural networks can be used for hierarchical, compositional semantics. To this end, we define the simple but nontrivial artificial task of processing nested arithmetic expressions and study whether different types of neural networks can learn to add and subtract. We find that

  18. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    Science.gov (United States)

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2017-10-01

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  19. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  20. Improve 3D laser scanner measurements accuracy using a FFBP neural network with Widrow-Hoff weight/bias learning function

    Science.gov (United States)

    Rodríguez-Quiñonez, J. C.; Sergiyenko, O.; Hernandez-Balbuena, D.; Rivas-Lopez, M.; Flores-Fuentes, W.; Basaca-Preciado, L. C.

    2014-12-01

    Many laser scanners depend on their mechanical construction to guarantee their measurements accuracy, however, the current computational technologies allow us to improve these measurements by mathematical methods implemented in neural networks. In this article we are going to introduce the current laser scanner technologies, give a description of our 3D laser scanner and adjust their measurement error by a previously trained feed forward back propagation (FFBP) neural network with a Widrow-Hoff weight/bias learning function. A comparative analysis with other learning functions such as the Kohonen algorithm and gradient descendent with momentum algorithm is presented. Finally, computational simulations are conducted to verify the performance and method uncertainty in the proposed system.

  1. Foreign currency rate forecasting using neural networks

    Science.gov (United States)

    Pandya, Abhijit S.; Kondo, Tadashi; Talati, Amit; Jayadevappa, Suryaprasad

    2000-03-01

    Neural networks are increasingly being used as a forecasting tool in many forecasting problems. This paper discusses the application of neural networks in predicting daily foreign exchange rates between the USD, GBP as well as DEM. We approach the problem from a time-series analysis framework - where future exchange rates are forecasted solely using past exchange rates. This relies on the belief that the past prices and future prices are very close related, and interdependent. We present the result of training a neural network with historical USD-GBP data. The methodology used in explained, as well as the training process. We discuss the selection of inputs to the network, and present a comparison of using the actual exchange rates and the exchange rate differences as inputs. Price and rate differences are the preferred way of training neural network in financial applications. Results of both approaches are present together for comparison. We show that the network is able to learn the trends in the exchange rate movements correctly, and present the results of the prediction over several periods of time.

  2. Neural network classifier of attacks in IP telephony

    Science.gov (United States)

    Safarik, Jakub; Voznak, Miroslav; Mehic, Miralem; Partila, Pavol; Mikulec, Martin

    2014-05-01

    Various types of monitoring mechanism allow us to detect and monitor behavior of attackers in VoIP networks. Analysis of detected malicious traffic is crucial for further investigation and hardening the network. This analysis is typically based on statistical methods and the article brings a solution based on neural network. The proposed algorithm is used as a classifier of attacks in a distributed monitoring network of independent honeypot probes. Information about attacks on these honeypots is collected on a centralized server and then classified. This classification is based on different mechanisms. One of them is based on the multilayer perceptron neural network. The article describes inner structure of used neural network and also information about implementation of this network. The learning set for this neural network is based on real attack data collected from IP telephony honeypot called Dionaea. We prepare the learning set from real attack data after collecting, cleaning and aggregation of this information. After proper learning is the neural network capable to classify 6 types of most commonly used VoIP attacks. Using neural network classifier brings more accurate attack classification in a distributed system of honeypots. With this approach is possible to detect malicious behavior in a different part of networks, which are logically or geographically divided and use the information from one network to harden security in other networks. Centralized server for distributed set of nodes serves not only as a collector and classifier of attack data, but also as a mechanism for generating a precaution steps against attacks.

  3. A fuzzy neural network for sensor signal estimation

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2000-01-01

    In this work, a fuzzy neural network is used to estimate the relevant sensor signal using other sensor signals. Noise components in input signals into the fuzzy neural network are removed through the wavelet denoising technique. Principal component analysis (PCA) is used to reduce the dimension of an input space without losing a significant amount of information. A lower dimensional input space will also usually reduce the time necessary to train a fuzzy-neural network. Also, the principal component analysis makes easy the selection of the input signals into the fuzzy neural network. The fuzzy neural network parameters are optimized by two learning methods. A genetic algorithm is used to optimize the antecedent parameters of the fuzzy neural network and a least-squares algorithm is used to solve the consequent parameters. The proposed algorithm was verified through the application to the pressurizer water level and the hot-leg flowrate measurements in pressurized water reactors

  4. Modeling and control of magnetorheological fluid dampers using neural networks

    Science.gov (United States)

    Wang, D. H.; Liao, W. H.

    2005-02-01

    Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.

  5. Wind Turbine Driving a PM Synchronous Generator Using Novel Recurrent Chebyshev Neural Network Control with the Ideal Learning Rate

    Directory of Open Access Journals (Sweden)

    Chih-Hong Lin

    2016-06-01

    Full Text Available A permanent magnet (PM synchronous generator system driven by wind turbine (WT, connected with smart grid via AC-DC converter and DC-AC converter, are controlled by the novel recurrent Chebyshev neural network (NN and amended particle swarm optimization (PSO to regulate output power and output voltage in two power converters in this study. Because a PM synchronous generator system driven by WT is an unknown non-linear and time-varying dynamic system, the on-line training novel recurrent Chebyshev NN control system is developed to regulate DC voltage of the AC-DC converter and AC voltage of the DC-AC converter connected with smart grid. Furthermore, the variable learning rate of the novel recurrent Chebyshev NN is regulated according to discrete-type Lyapunov function for improving the control performance and enhancing convergent speed. Finally, some experimental results are shown to verify the effectiveness of the proposed control method for a WT driving a PM synchronous generator system in smart grid.

  6. Classification of C2C12 cells at differentiation by convolutional neural network of deep learning using phase contrast images.

    Science.gov (United States)

    Niioka, Hirohiko; Asatani, Satoshi; Yoshimura, Aina; Ohigashi, Hironori; Tagawa, Seiichi; Miyake, Jun

    2018-01-01

    In the field of regenerative medicine, tremendous numbers of cells are necessary for tissue/organ regeneration. Today automatic cell-culturing system has been developed. The next step is constructing a non-invasive method to monitor the conditions of cells automatically. As an image analysis method, convolutional neural network (CNN), one of the deep learning method, is approaching human recognition level. We constructed and applied the CNN algorithm for automatic cellular differentiation recognition of myogenic C2C12 cell line. Phase-contrast images of cultured C2C12 are prepared as input dataset. In differentiation process from myoblasts to myotubes, cellular morphology changes from round shape to elongated tubular shape due to fusion of the cells. CNN abstract the features of the shape of the cells and classify the cells depending on the culturing days from when differentiation is induced. Changes in cellular shape depending on the number of days of culture (Day 0, Day 3, Day 6) are classified with 91.3% accuracy. Image analysis with CNN has a potential to realize regenerative medicine industry.

  7. Ischemia Detection Using Supervised Learning for Hierarchical Neural Networks Based on Kohonen-Maps

    National Research Council Canada - National Science Library

    Vladutu, L

    2001-01-01

    .... The motivation for developing the Supervising Network - Self Organizing Map (sNet-SOM) model is to design computationally effective solutions for the particular problem of ischemia detection and other similar applications...

  8. Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study.

    Science.gov (United States)

    Yasaka, Koichiro; Akai, Hiroyuki; Abe, Osamu; Kiryu, Shigeru

    2018-03-01

    Purpose To investigate diagnostic performance by using a deep learning method with a convolutional neural network (CNN) for the differentiation of liver masses at dynamic contrast agent-enhanced computed tomography (CT). Materials and Methods This clinical retrospective study used CT image sets of liver masses over three phases (noncontrast-agent enhanced, arterial, and delayed). Masses were diagnosed according to five categories (category A, classic hepatocellular carcinomas [HCCs]; category B, malignant liver tumors other than classic and early HCCs; category C, indeterminate masses or mass-like lesions [including early HCCs and dysplastic nodules] and rare benign liver masses other than hemangiomas and cysts; category D, hemangiomas; and category E, cysts). Supervised training was performed by using 55 536 image sets obtained in 2013 (from 460 patients, 1068 sets were obtained and they were augmented by a factor of 52 [rotated, parallel-shifted, strongly enlarged, and noise-added images were generated from the original images]). The CNN was composed of six convolutional, three maximum pooling, and three fully connected layers. The CNN was tested with 100 liver mass image sets obtained in 2016 (74 men and 26 women; mean age, 66.4 years ± 10.6 [standard deviation]; mean mass size, 26.9 mm ± 25.9; 21, nine, 35, 20, and 15 liver masses for categories A, B, C, D, and E, respectively). Training and testing were performed five times. Accuracy for categorizing liver masses with CNN model and the area under receiver operating characteristic curve for differentiating categories A-B versus categories C-E were calculated. Results Median accuracy of differential diagnosis of liver masses for test data were 0.84. Median area under the receiver operating characteristic curve for differentiating categories A-B from C-E was 0.92. Conclusion Deep learning with CNN showed high diagnostic performance in differentiation of liver masses at dynamic CT. © RSNA, 2017 Online

  9. Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on Pediatric Hand Radiographs.

    Science.gov (United States)

    Larson, David B; Chen, Matthew C; Lungren, Matthew P; Halabi, Safwan S; Stence, Nicholas V; Langlotz, Curtis P

    2018-04-01

    Purpose To compare the performance of a deep-learning bone age assessment model based on hand radiographs with that of expert radiologists and that of existing automated models. Materials and Methods The institutional review board approved the study. A total of 14 036 clinical hand radiographs and corresponding reports were obtained from two children's hospitals to train and validate the model. For the first test set, composed of 200 examinations, the mean of bone age estimates from the clinical report and three additional human reviewers was used as the reference standard. Overall model performance was assessed by comparing the root mean square (RMS) and mean absolute difference (MAD) between the model estimates and the reference standard bone ages. Ninety-five percent limits of agreement were calculated in a pairwise fashion for all reviewers and the model. The RMS of a second test set composed of 913 examinations from the publicly available Digital Hand Atlas was compared with published reports of an existing automated model. Results The mean difference between bone age estimates of the model and of the reviewers was 0 years, with a mean RMS and MAD of 0.63 and 0.50 years, respectively. The estimates of the model, the clinical report, and the three reviewers were within the 95% limits of agreement. RMS for the Digital Hand Atlas data set was 0.73 years, compared with 0.61 years of a previously reported model. Conclusion A deep-learning convolutional neural network model can estimate skeletal maturity with accuracy similar to that of an expert radiologist and to that of existing automated models. © RSNA, 2017 An earlier incorrect version of this article appeared online. This article was corrected on January 19, 2018.

  10. Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study

    Science.gov (United States)

    Zhen, Xin; Chen, Jiawei; Zhong, Zichun; Hrycushko, Brian; Zhou, Linghong; Jiang, Steve; Albuquerque, Kevin; Gu, Xuejun

    2017-11-01

    Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT  +  BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D 0.1/1/2cc, and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.

  11. Improved Extension Neural Network and Its Applications

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    2014-01-01

    Full Text Available Extension neural network (ENN is a new neural network that is a combination of extension theory and artificial neural network (ANN. The learning algorithm of ENN is based on supervised learning algorithm. One of important issues in the field of classification and recognition of ENN is how to achieve the best possible classifier with a small number of labeled training data. Training data selection is an effective approach to solve this issue. In this work, in order to improve the supervised learning performance and expand the engineering application range of ENN, we use a novel data selection method based on shadowed sets to refine the training data set of ENN. Firstly, we use clustering algorithm to label the data and induce shadowed sets. Then, in the framework of shadowed sets, the samples located around each cluster centers (core data and the borders between clusters (boundary data are selected as training data. Lastly, we use selected data to train ENN. Compared with traditional ENN, the proposed improved ENN (IENN has a better performance. Moreover, IENN is independent of the supervised learning algorithms and initial labeled data. Experimental results verify the effectiveness and applicability of our proposed work.

  12. Generating Seismograms with Deep Neural Networks

    Science.gov (United States)

    Krischer, L.; Fichtner, A.

    2017-12-01

    The recent surge of successful uses of deep neural networks in computer vision, speech recognition, and natural language processing, mainly enabled by the availability of fast GPUs and extremely large data sets, is starting to see many applications across all natural sciences. In seismology these are largely confined to classification and discrimination tasks. In this contribution we explore the use of deep neural networks for another class of problems: so called generative models.Generative modelling is a branch of statistics concerned with generating new observed data samples, usually by drawing from some underlying probability distribution. Samples with specific attributes can be generated by conditioning on input variables. In this work we condition on seismic source (mechanism and location) and receiver (location) parameters to generate multi-component seismograms.The deep neural networks are trained on synthetic data calculated with Instaseis (http://instaseis.net, van Driel et al. (2015)) and waveforms from the global ShakeMovie project (http://global.shakemovie.princeton.edu, Tromp et al. (2010)). The underlying radially symmetric or smoothly three dimensional Earth structures result in comparatively small waveform differences from similar events or at close receivers and the networks learn to interpolate between training data samples.Of particular importance is the chosen misfit functional. Generative adversarial networks (Goodfellow et al. (2014)) implement a system in which two networks compete: the generator network creates samples and the discriminator network distinguishes these from the true training examples. Both are trained in an adversarial fashion until the discriminator can no longer distinguish between generated and real samples. We show how this can be applied to seismograms and in particular how it compares to networks trained with more conventional misfit metrics. Last but not least we attempt to shed some light on the black-box nature of

  13. Issues in the use of neural networks in information retrieval

    CERN Document Server

    Iatan, Iuliana F

    2017-01-01

    This book highlights the ability of neural networks (NNs) to be excellent pattern matchers and their importance in information retrieval (IR), which is based on index term matching. The book defines a new NN-based method for learning image similarity and describes how to use fuzzy Gaussian neural networks to predict personality. It introduces the fuzzy Clifford Gaussian network, and two concurrent neural models: (1) concurrent fuzzy nonlinear perceptron modules, and (2) concurrent fuzzy Gaussian neural network modules. Furthermore, it explains the design of a new model of fuzzy nonlinear perceptron based on alpha level sets and describes a recurrent fuzzy neural network model with a learning algorithm based on the improved particle swarm optimization method.

  14. Artificial neural network based approach to transmission lines protection

    International Nuclear Information System (INIS)

    Joorabian, M.

    1999-05-01

    The aim of this paper is to present and accurate fault detection technique for high speed distance protection using artificial neural networks. The feed-forward multi-layer neural network with the use of supervised learning and the common training rule of error back-propagation is chosen for this study. Information available locally at the relay point is passed to a neural network in order for an assessment of the fault location to be made. However in practice there is a large amount of information available, and a feature extraction process is required to reduce the dimensionality of the pattern vectors, whilst retaining important information that distinguishes the fault point. The choice of features is critical to the performance of the neural networks learning and operation. A significant feature in this paper is that an artificial neural network has been designed and tested to enhance the precision of the adaptive capabilities for distance protection

  15. Diagnosis method utilizing neural networks

    International Nuclear Information System (INIS)

    Watanabe, K.; Tamayama, K.

    1990-01-01

    Studies have been made on the technique of neural networks, which will be used to identify a cause of a small anomalous state in the reactor coolant system of the ATR (Advance Thermal Reactor). Three phases of analyses were carried out in this study. First, simulation for 100 seconds was made to determine how the plant parameters respond after the occurence of a transient decrease in reactivity, flow rate and temperature of feed water and increase in the steam flow rate and steam pressure, which would produce a decrease of water level in a steam drum of the ATR. Next, the simulation data was analysed utilizing an autoregressive model. From this analysis, a total of 36 coherency functions up to 0.5 Hz in each transient were computed among nine important and detectable plant parameters: neutron flux, flow rate of coolant, steam or feed water, water level in the steam drum, pressure and opening area of control valve in a steam pipe, feed water temperature and electrical power. Last, learning of neural networks composed of 96 input, 4-9 hidden and 5 output layer units was done by use of the generalized delta rule, namely a back-propagation algorithm. These convergent computations were continued as far as the difference between the desired outputs, 1 for direct cause or 0 for four other ones and actual outputs reached less than 10%. (1) Coherency functions were not governed by decreasing rate of reactivity in the range of 0.41x10 -2 dollar/s to 1.62x10 -2 dollar /s or by decreasing depth of the feed water temperature in the range of 3 deg C to 10 deg C or by a change of 10% or less in the three other causes. Change in coherency functions only depended on the type of cause. (2) The direct cause from the other four ones could be discriminated with 0.94+-0.01 of output level. A maximum of 0.06 output height was found among the other four causes. (3) Calculation load which is represented as products of learning times and numbers of the hidden units did not depend on the

  16. Geochemical characterization of oceanic basalts using artificial neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Das, P.; Iyer, S.D.

    method is specifically needed to identify the OFB as normal (N-MORB), enriched (E-MORB) and ocean island basalts (OIB). Artificial Neural Network (ANN) technique as a supervised Learning Vector Quantisation (LVQ) is applied to identify the inherent...

  17. A neural network model for credit risk evaluation.

    Science.gov (United States)

    Khashman, Adnan

    2009-08-01

    Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.

  18. Supervised Sequence Labelling with Recurrent Neural Networks

    CERN Document Server

    Graves, Alex

    2012-01-01

    Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary.    The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional...

  19. Learning an Optimized Deep Neural Network for Link Prediction on Knowledge Graphs

    NARCIS (Netherlands)

    Wilcke, W.X.

    2015-01-01

    Recent years have seen the emergence of graph-based Knowledge Bases build upon Semantic Web technologies, known as Knowledge Graphs. Effectively learning from these complex relational structures remains a challenge yet to be overcome. Knowledge Graphs For this purpose, we are investigating the

  20. An Overview on Evaluation of E-Learning/Training Response Time Considering Artificial Neural Networks Modeling

    Science.gov (United States)

    Mustafa, Hassan M. H.; Tourkia, Fadhel Ben; Ramadan, Ramadan Mohamed

    2017-01-01

    The objective of this piece of research is to interpret and investigate systematically an observed brain functional phenomenon which is associated with proceeding of e-learning processes. More specifically, this work addresses an interesting and challenging educational issue concerned with dynamical evaluation of elearning performance considering…

  1. Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS

    Directory of Open Access Journals (Sweden)

    Christopher Bergmeir

    2012-01-01

    Full Text Available Neural networks are important standard machine learning procedures for classification and regression. We describe the R package RSNNS that provides a convenient interface to the popular Stuttgart Neural Network Simulator SNNS. The main features are (a encapsulation of the relevant SNNS parts in a C++ class, for sequential and parallel usage of different networks, (b accessibility of all of the SNNSalgorithmic functionality from R using a low-level interface, and (c a high-level interface for convenient, R-style usage of many standard neural network procedures. The package also includes functions for visualization and analysis of the models and the training procedures, as well as functions for data input/output from/to the original SNNSfile formats.

  2. Neutron spectrometry and dosimetry by means of evolutive neural networks

    International Nuclear Information System (INIS)

    Ortiz R, J.M.; Martinez B, M.R.; Vega C, H.R.

    2008-01-01

    The artificial neural networks and the genetic algorithms are two relatively new areas of research, which have been subject to a growing interest during the last years. Both models are inspired by the nature, however, the neural networks are interested in the learning of a single individual, which is defined as fenotypic learning, while the evolutionary algorithms are interested in the adaptation of a population to a changing environment, that which is defined as genotypic learning. Recently, the use of the technology of neural networks has been applied with success in the area of the nuclear sciences, mainly in the areas of neutron spectrometry and dosimetry. The structure (network topology), as well as the learning parameters of a neural network, are factors that contribute in a significant way with the acting of the same one, however, it has been observed that the investigators in this area, carry out the selection of the network parameters through the essay and error technique, that which produces neural networks of poor performance and low generalization capacity. From the revised sources, it has been observed that the use of the evolutionary algorithms, seen as search techniques, it has allowed him to be possible to evolve and to optimize different properties of the neural networks, just as the initialization of the synaptic weights, the network architecture or the training algorithms without the human intervention. The objective of the present work is focused in analyzing the intersection of the neural networks and the evolutionary algorithms, analyzing like it is that the same ones can be used to help in the design processes and training of a neural network, this is, in the good selection of the structural parameters and of network learning, improving its generalization capacity, in such way that the same one is able to reconstruct in an efficient way neutron spectra and to calculate equivalent doses starting from the counting rates of a Bonner sphere

  3. A Quantum Implementation Model for Artificial Neural Networks

    OpenAIRE

    Daskin, Ammar

    2016-01-01

    The learning process for multi layered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow-Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, this iterative formulas result in terms formed by the principal components of the weight matrix: i.e., the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the phase...

  4. A Quantum Implementation Model for Artificial Neural Networks

    OpenAIRE

    Ammar Daskin

    2018-01-01

    The learning process for multilayered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow–Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, these iterative formulas result in terms formed by the principal components of the weight matrix, namely, the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the pha...

  5. Learning in fully recurrent neural networks by approaching tangent planes to constraint surfaces.

    Science.gov (United States)

    May, P; Zhou, E; Lee, C W

    2012-10-01

    In this paper we present a new variant of the online real time recurrent learning algorithm proposed by Williams and Zipser (1989). Whilst the original algorithm utilises gradient information to guide the search towards the minimum training error, it is very slow in most applications and often gets stuck in local minima of the search space. It is also sensitive to the choice of learning rate and requires careful tuning. The new variant adjusts weights by moving to the tangent planes to constraint surfaces. It is simple to implement and requires no parameters to be set manually. Experimental results show that this new algorithm gives significantly faster convergence whilst avoiding problems like local minima. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Learning to read aloud: A neural network approach using sparse distributed memory

    Science.gov (United States)

    Joglekar, Umesh Dwarkanath

    1989-01-01

    An attempt to solve a problem of text-to-phoneme mapping is described which does not appear amenable to solution by use of standard algorithmic procedures. Experiments based on a model of distributed processing are also described. This model (sparse distributed memory (SDM)) can be used in an iterative supervised learning mode to solve the problem. Additional improvements aimed at obtaining better performance are suggested.

  7. How synapses can enhance sensibility of a neural network

    Science.gov (United States)

    Protachevicz, P. R.; Borges, F. S.; Iarosz, K. C.; Caldas, I. L.; Baptista, M. S.; Viana, R. L.; Lameu, E. L.; Macau, E. E. N.; Batista, A. M.

    2018-02-01

    In this work, we study the dynamic range in a neural network modelled by cellular automaton. We consider deterministic and non-deterministic rules to simulate electrical and chemical synapses. Chemical synapses have an intrinsic time-delay and are susceptible to parameter variations guided by learning Hebbian rules of behaviour. The learning rules are related to neuroplasticity that describes change to the neural connections in the brain. Our results show that chemical synapses can abruptly enhance sensibility of the neural network, a manifestation that can become even more predominant if learning rules of evolution are applied to the chemical synapses.

  8. Neural network application to diesel generator diagnostics

    International Nuclear Information System (INIS)

    Logan, K.P.

    1990-01-01

    Diagnostic problems typically begin with the observation of some system behavior which is recognized as a deviation from the expected. The fundamental underlying process is one involving pattern matching cf observed symptoms to a set of compiled symptoms belonging to a fault-symptom mapping. Pattern recognition is often relied upon for initial fault detection and diagnosis. Parallel distributed processing (PDP) models employing neural network paradigms are known to be good pattern recognition devices. This paper describes the application of neural network processing techniques to the malfunction diagnosis of subsystems within a typical diesel generator configuration. Neural network models employing backpropagation learning were developed to correctly recognize fault conditions from the input diagnostic symptom patterns pertaining to various engine subsystems. The resulting network models proved to be excellent pattern recognizers for malfunction examples within the training set. The motivation for employing network models in lieu of a rule-based expert system, however, is related to the network's potential for generalizing malfunctions outside of the training set, as in the case of noisy or partial symptom patterns

  9. Stable architectures for deep neural networks

    Science.gov (United States)

    Haber, Eldad; Ruthotto, Lars

    2018-01-01

    Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.

  10. Applying Gradient Descent in Convolutional Neural Networks

    Science.gov (United States)

    Cui, Nan

    2018-04-01

    With the development of the integrated circuit and computer science, people become caring more about solving practical issues via information technologies. Along with that, a new subject called Artificial Intelligent (AI) comes up. One popular research interest of AI is about recognition algorithm. In this paper, one of the most common algorithms, Convolutional Neural Networks (CNNs) will be introduced, for image recognition. Understanding its theory and structure is of great significance for every scholar who is interested in this field. Convolution Neural Network is an artificial neural network which combines the mathematical method of convolution and neural network. The hieratical structure of CNN provides it reliable computer speed and reasonable error rate. The most significant characteristics of CNNs are feature extraction, weight sharing and dimension reduction. Meanwhile, combining with the Back Propagation (BP) mechanism and the Gradient Descent (GD) method, CNNs has the ability to self-study and in-depth learning. Basically, BP provides an opportunity for backwardfeedback for enhancing reliability and GD is used for self-training process. This paper mainly discusses the CNN and the related BP and GD algorithms, including the basic structure and function of CNN, details of each layer, the principles and features of BP and GD, and some examples in practice with a summary in the end.

  11. Image Encryption and Chaotic Cellular Neural Network

    Science.gov (United States)

    Peng, Jun; Zhang, Du

    Machine learning has been playing an increasingly important role in information security and assurance. One of the areas of new applications is to design cryptographic systems by using chaotic neural network due to the fact that chaotic systems have several appealing features for information security applications. In this chapter, we describe a novel image encryption algorithm that is based on a chaotic cellular neural network. We start by giving an introduction to the concept of image encryption and its main technologies, and an overview of the chaotic cellular neural network. We then discuss the proposed image encryption algorithm in details, which is followed by a number of security analyses (key space analysis, sensitivity analysis, information entropy analysis and statistical analysis). The comparison with the most recently reported chaos-based image encryption algorithms indicates that the algorithm proposed in this chapter has a better security performance. Finally, we conclude the chapter with possible future work and application prospects of the chaotic cellular neural network in other information assurance and security areas.

  12. Neural Network for Sparse Reconstruction

    Directory of Open Access Journals (Sweden)

    Qingfa Li

    2014-01-01

    Full Text Available We construct a neural network based on smoothing approximation techniques and projected gradient method to solve a kind of sparse reconstruction problems. Neural network can be implemented by circuits and can be seen as an important method for solving optimization problems, especially large scale problems. Smoothing approximation is an efficient technique for solving nonsmooth optimization problems. We combine these two techniques to overcome the difficulties of the choices of the step size in discrete algorithms and the item in the set-valued map of differential inclusion. In theory, the proposed network can converge to the optimal solution set of the given problem. Furthermore, some numerical experiments show the effectiveness of the proposed network in this paper.

  13. Arabic Handwriting Recognition Using Neural Network Classifier

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... an OCR using Neural Network classifier preceded by a set of preprocessing .... Artificial Neural Networks (ANNs), which we adopt in this research, consist of ... advantage and disadvantages of each technique. In [9],. Khemiri ...

  14. Application of neural networks in coastal engineering

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    the neural network attractive. A neural network is an information processing system modeled on the structure of the dynamic process. It can solve the complex/nonlinear problems quickly once trained by operating on problems using an interconnected number...

  15. Ocean wave forecasting using recurrent neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    , merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper describes an artificial neural network, namely recurrent neural network with rprop update algorithm and is applied for wave forecasting. Measured ocean waves off...

  16. ACCPndn : adaptive congestion control protocol in named data networking by learning capacities using optimized time-lagged feedforward neural network

    OpenAIRE

    Karami, Amin

    2015-01-01

    Named Data Networking (NDN) is a promising network architecture being considered as a possible replacement for the current IP-based Internet infrastructure. However, NDN is subject to congestion when the number of data packets that reach one or various routers in a certain period of time is so high than its queue gets overflowed. To address this problem many congestion control protocols have been proposed in the literature which, however, they are highly sensitive to their control parameters ...

  17. A 3D Active Learning Application for NeMO-Net, the NASA Neural Multi-Modal Observation and Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    van den Bergh, J.; Schutz, J.; Chirayath, V.; Li, A.

    2017-12-01

    NeMO-Net, the NASA neural multi-modal observation and training network for global coral reef assessment, is an open-source deep convolutional neural network and interactive active learning training software aiming to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology as well as mapping of spatial distribution. We present an interactive video game prototype for tablet and mobile devices where users interactively label morphology classifications over mm-scale 3D coral reef imagery captured using fluid lensing to create a dataset that will be used to train NeMO-Net's convolutional neural network. The application currently allows for users to classify preselected regions of coral in the Pacific and will be expanded to include additional regions captured using our NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as lower-resolution airborne remote sensing data from the ongoing NASA CORAL campaign.Active learning applications present a novel methodology for efficiently training large-scale Neural Networks wherein variances in identification can be rapidly mitigated against control data. NeMO-Net periodically checks users' input against pre-classified coral imagery to gauge their accuracy and utilizes in-game mechanics to provide classification training. Users actively communicate with a server and are requested to classify areas of coral for which other users had conflicting classifications and contribute their input to a larger database for ranking. In partnering with Mission Blue and IUCN, NeMO-Net leverages an international consortium of subject matter experts to classify areas of confusion identified by NeMO-Net and generate additional labels crucial for identifying decision boundary locations in coral reef assessment.

  18. A 3D Active Learning Application for NeMO-Net, the NASA Neural Multi-Modal Observation and Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    van den Bergh, Jarrett; Schutz, Joey; Li, Alan; Chirayath, Ved

    2017-01-01

    NeMO-Net, the NASA neural multi-modal observation and training network for global coral reef assessment, is an open-source deep convolutional neural network and interactive active learning training software aiming to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology as well as mapping of spatial distribution. We present an interactive video game prototype for tablet and mobile devices where users interactively label morphology classifications over mm-scale 3D coral reef imagery captured using fluid lensing to create a dataset that will be used to train NeMO-Nets convolutional neural network. The application currently allows for users to classify preselected regions of coral in the Pacific and will be expanded to include additional regions captured using our NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as lower-resolution airborne remote sensing data from the ongoing NASA CORAL campaign. Active learning applications present a novel methodology for efficiently training large-scale Neural Networks wherein variances in identification can be rapidly mitigated against control data. NeMO-Net periodically checks users input against pre-classified coral imagery to gauge their accuracy and utilize in-game mechanics to provide classification training. Users actively communicate with a server and are requested to classify areas of coral for which other users had conflicting classifications and contribute their input to a larger database for ranking. In partnering with Mission Blue and IUCN, NeMO-Net leverages an international consortium of subject matter experts to classify areas of confusion identified by NeMO-Net and generate additional labels crucial for identifying decision boundary locations in coral reef assessment.

  19. Parameter extraction with neural networks

    Science.gov (United States)

    Cazzanti, Luca; Khan, Mumit; Cerrina, Franco

    1998-06-01

    In semiconductor processing, the modeling of the process is becoming more and more important. While the ultimate goal is that of developing a set of tools for designing a complete process (Technology CAD), it is also necessary to have modules to simulate the various technologies and, in particular, to optimize specific steps. This need is particularly acute in lithography, where the continuous decrease in CD forces the technologies to operate near their limits. In the development of a 'model' for a physical process, we face several levels of challenges. First, it is necessary to develop a 'physical model,' i.e. a rational description of the process itself on the basis of know physical laws. Second, we need an 'algorithmic model' to represent in a virtual environment the behavior of the 'physical model.' After a 'complete' model has been developed and verified, it becomes possible to do performance analysis. In many cases the input parameters are poorly known or not accessible directly to experiment. It would be extremely useful to obtain the values of these 'hidden' parameters from experimental results by comparing model to data. This is particularly severe, because the complexity and costs associated with semiconductor processing make a simple 'trial-and-error' approach infeasible and cost- inefficient. Even when computer models of the process already exists, obtaining data through simulations may be time consuming. Neural networks (NN) are powerful computational tools to predict the behavior of a system from an existing data set. They are able to adaptively 'learn' input/output mappings and to act as universal function approximators. In this paper we use artificial neural networks to build a mapping from the input parameters of the process to output parameters which are indicative of the performance of the process. Once the NN has been 'trained,' it is also possible to observe the process 'in reverse,' and to extract the values of the inputs which yield outputs

  20. Medical Imaging with Neural Networks

    International Nuclear Information System (INIS)

    Pattichis, C.; Cnstantinides, A.

    1994-01-01

    The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors)

  1. Aphasia Classification Using Neural Networks

    DEFF Research Database (Denmark)

    Axer, H.; Jantzen, Jan; Berks, G.

    2000-01-01

    A web-based software model (http://fuzzy.iau.dtu.dk/aphasia.nsf) was developed as an example for classification of aphasia using neural networks. Two multilayer perceptrons were used to classify the type of aphasia (Broca, Wernicke, anomic, global) according to the results in some subtests...

  2. Medical Imaging with Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Pattichis, C [Department of Computer Science, University of Cyprus, Kallipoleos 75, P.O.Box 537, Nicosia (Cyprus); Cnstantinides, A [Department of Electrical Engineering, Imperial College of Science, Technology and Medicine, London SW7 2BT (United Kingdom)

    1994-12-31

    The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors). 61 refs, 4 tabs.

  3. Numerical experiments with neural networks

    International Nuclear Information System (INIS)

    Miranda, Enrique.

    1990-01-01

    Neural networks are highly idealized models which, in spite of their simplicity, reproduce some key features of the real brain. In this paper, they are introduced at a level adequate for an undergraduate computational physics course. Some relevant magnitudes are defined and evaluated numerically for the Hopfield model and a short term memory model. (Author)

  4. Spin glasses and neural networks

    International Nuclear Information System (INIS)

    Parga, N.; Universidad Nacional de Cuyo, San Carlos de Bariloche

    1989-01-01

    The mean-field theory of spin glass models has been used as a prototype of systems with frustration and disorder. One of the most interesting related systems are models of associative memories. In these lectures we review the main concepts developed to solve the Sherrington-Kirkpatrick model and its application to neural networks. (orig.)

  5. Deep Gate Recurrent Neural Network

    Science.gov (United States)

    2016-11-22

    and Fred Cummins. Learning to forget: Continual prediction with lstm . Neural computation, 12(10):2451–2471, 2000. Alex Graves. Generating sequences...DSGU) and Simple Gated Unit (SGU), which are structures for learning long-term dependencies. Compared to traditional Long Short-Term Memory ( LSTM ) and...Gated Recurrent Unit (GRU), both structures require fewer parameters and less computation time in sequence classification tasks. Unlike GRU and LSTM

  6. Shaping the learning curve: epigenetic dynamics in neural plasticity

    Directory of Open Access Journals (Sweden)

    Zohar Ziv Bronfman

    2014-07-01

    Full Text Available A key characteristic of learning and neural plasticity is state-dependent acquisition dynamics reflected by the non-linear learning curve that links increase in learning with practice. Here we propose that the manner by which epigenetic states of individual cells change during learning contributes to the shape of the neural and behavioral learning curve. We base our suggestion on recent studies showing that epigenetic mechanisms such as DNA methylation, histone acetylation and RNA-mediated gene regulation are intimately involved in the establishment and maintenance of long-term neural plasticity, reflecting specific learning-histories and influencing future learning. Our model, which is the first to suggest a dynamic molecular account of the shape of the learning curve, leads to several testable predictions regarding the link between epigenetic dynamics at the promoter, gene-network and neural-network levels. This perspective opens up new avenues for therapeutic interventions in neurological pathologies.

  7. Simplified LQG Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...

  8. Analysis of neural networks through base functions

    NARCIS (Netherlands)

    van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  9. Genetic Algorithm Optimized Neural Networks Ensemble as ...

    African Journals Online (AJOL)

    NJD

    Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) for the simultaneous ... process by training a number of neural networks. .... Matlab® version 6.1 was employed for building principal component ... provide a fair simulation of calibration data set with some degree.

  10. Forex Market Prediction Using NARX Neural Network with Bagging

    Directory of Open Access Journals (Sweden)

    Shahbazi Nima

    2016-01-01

    Full Text Available We propose a new methodfor predicting movements in Forex market based on NARX neural network withtime shifting bagging techniqueand financial indicators, such as relative strength index and stochastic indicators. Neural networks have prominent learning ability but they often exhibit bad and unpredictable performance for noisy data. When compared with the static neural networks, our method significantly reducesthe error rate of the responseandimproves the performance of the prediction. We tested three different types ofarchitecture for predicting the response and determined the best network approach. We applied our method to prediction the hourly foreign exchange rates and found remarkable predictability in comprehensive experiments with 2 different foreign exchange rates (GBPUSD and EURUSD.

  11. Genetic optimization of neural network architecture

    International Nuclear Information System (INIS)

    Harp, S.A.; Samad, T.

    1994-03-01

    Neural networks are now a popular technology for a broad variety of application domains, including the electric utility industry. Yet, as the technology continues to gain increasing acceptance, it is also increasingly apparent that the power that neural networks provide is not an unconditional blessing. Considerable care must be exercised during application development if the full benefit of the technology is to be realized. At present, no fully general theory or methodology for neural network design is available, and application development is a trial-and-error process that is time-consuming and expertise-intensive. Each application demands appropriate selections of the network input space, the network structure, and values of learning algorithm parameters-design choices that are closely coupled in ways that largely remain a mystery. This EPRI-funded exploratory research project was initiated to take the key next step in this research program: the validation of the approach on a realistic problem. We focused on the problem of modeling the thermal performance of the TVA Sequoyah nuclear power plant (units 1 and 2)

  12. Comment on ‘Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study’

    Science.gov (United States)

    Valdes, Gilmer; Interian, Yannet

    2018-03-01

    The application of machine learning (ML) presents tremendous opportunities for the field of oncology, thus we read ‘Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study’ with great interest. In this article, the authors used state of the art techniques: a pre-trained convolutional neural network (VGG-16 CNN), transfer learning, data augmentation, drop out and early stopping, all of which are directly responsible for the success and the excitement that these algorithms have created in other fields. We believe that the use of these techniques can offer tremendous opportunities in the field of Medical Physics and as such we would like to praise the authors for their pioneering application to the field of Radiation Oncology. That being said, given that the field of Medical Physics has unique characteristics that differentiate us from those fields where these techniques have been applied successfully, we would like to raise some points for future discussion and follow up studies that could help the community understand the limitations and nuances of deep learning techniques.

  13. Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network.

    Science.gov (United States)

    Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann

    2009-06-01

    Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly's halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support.

  14. Neural network models of categorical perception.

    Science.gov (United States)

    Damper, R I; Harnad, S R

    2000-05-01

    Studies of the categorical perception (CP) of sensory continua have a long and rich history in psychophysics. In 1977, Macmillan, Kaplan, and Creelman introduced the use of signal detection theory to CP studies. Anderson and colleagues simultaneously proposed the first neural model for CP, yet this line of research has been less well explored. In this paper, we assess the ability of neural-network models of CP to predict the psychophysical performance of real observers with speech sounds and artificial/novel stimuli. We show that a variety of neural mechanisms are capable of generating the characteristics of CP. Hence, CP may not be a special model of perception but an emergent property of any sufficiently powerful general learning system.

  15. Optical resonators and neural networks

    Science.gov (United States)

    Anderson, Dana Z.

    1986-08-01

    It may be possible to implement neural network models using continuous field optical architectures. These devices offer the inherent parallelism of propagating waves and an information density in principle dictated by the wavelength of light and the quality of the bulk optical elements. Few components are needed to construct a relatively large equivalent network. Various associative memories based on optical resonators have been demonstrated in the literature, a ring resonator design is discussed in detail here. Information is stored in a holographic medium and recalled through a competitive processes in the gain medium supplying energy to the ring rsonator. The resonator memory is the first realized example of a neural network function implemented with this kind of architecture.

  16. Investigation of efficient features for image recognition by neural networks.

    Science.gov (United States)

    Goltsev, Alexander; Gritsenko, Vladimir

    2012-04-01

    In the paper, effective and simple features for image recognition (named LiRA-features) are investigated in the task of handwritten digit recognition. Two neural network classifiers are considered-a modified 3-layer perceptron LiRA and a modular assembly neural network. A method of feature selection is proposed that analyses connection weights formed in the preliminary learning process of a neural network classifier. In the experiments using the MNIST database of handwritten digits, the feature selection procedure allows reduction of feature number (from 60 000 to 7000) preserving comparable recognition capability while accelerating computations. Experimental comparison between the LiRA perceptron and the modular assembly neural network is accomplished, which shows that recognition capability of the modular assembly neural network is somewhat better. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Introduction to neural networks with electric power applications

    International Nuclear Information System (INIS)

    Wildberger, A.M.; Hickok, K.A.

    1990-01-01

    This is an introduction to the general field of neural networks with emphasis on prospects for their application in the power industry. It is intended to provide enough background information for its audience to begin to follow technical developments in neural networks and to recognize those which might impact on electric power engineering. Beginning with a brief discussion of natural and artificial neurons, the characteristics of neural networks in general and how they learn, neural networks are compared with other modeling tools such as simulation and expert systems in order to provide guidance in selecting appropriate applications. In the power industry, possible applications include plant control, dispatching, and maintenance scheduling. In particular, neural networks are currently being investigated for enhancements to the Thermal Performance Advisor (TPA) which General Physics Corporation (GP) has developed to improve the efficiency of electric power generation

  18. Functional model of biological neural networks.

    Science.gov (United States)

    Lo, James Ting-Ho

    2010-12-01

    A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.

  19. Phylogenetic convolutional neural networks in metagenomics.

    Science.gov (United States)

    Fioravanti, Diego; Giarratano, Ylenia; Maggio, Valerio; Agostinelli, Claudio; Chierici, Marco; Jurman, Giuseppe; Furlanello, Cesare

    2018-03-08

    Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space. Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron. Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user.

  20. Why neural network?

    International Nuclear Information System (INIS)

    Parisi, G.

    1988-01-01

    The class of problems the machine (or the program) is able to cope efficiently does depend on the architecture of the machine; however, inside a given class of problems, the machine should be able to learn from examples and from previous experience without modifying the software when a different problem of the same class is studied. 2 refs

  1. A study of reactor monitoring method with neural network

    Energy Technology Data Exchange (ETDEWEB)

    Nabeshima, Kunihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The purpose of this study is to investigate the methodology of Nuclear Power Plant (NPP) monitoring with neural networks, which create the plant models by the learning of the past normal operation patterns. The concept of this method is to detect the symptom of small anomalies by monitoring the deviations between the process signals measured from an actual plant and corresponding output signals from the neural network model, which might not be equal if the abnormal operational patterns are presented to the input of the neural network. Auto-associative network, which has same output as inputs, can detect an kind of anomaly condition by using normal operation data only. The monitoring tests of the feedforward neural network with adaptive learning were performed using the PWR plant simulator by which many kinds of anomaly conditions can be easily simulated. The adaptively trained feedforward network could follow the actual plant dynamics and the changes of plant condition, and then find most of the anomalies much earlier than the conventional alarm system during steady state and transient operations. Then the off-line and on-line test results during one year operation at the actual NPP (PWR) showed that the neural network could detect several small anomalies which the operators or the conventional alarm system didn't noticed. Furthermore, the sensitivity analysis suggests that the plant models by neural networks are appropriate. Finally, the simulation results show that the recurrent neural network with feedback connections could successfully model the slow behavior of the reactor dynamics without adaptive learning. Therefore, the recurrent neural network with adaptive learning will be the best choice for the actual reactor monitoring system. (author)

  2. Artificial Neural Networks and the Mass Appraisal of Real Estate

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2018-03-01

    Full Text Available With the rapid development of computer, artificial intelligence and big data technology, artificial neural networks have become one of the most powerful machine learning algorithms. In the practice, most of the applications of artificial neural networks use back propagation neural network and its variation. Besides the back propagation neural network, various neural networks have been developing in order to improve the performance of standard models. Though neural networks are well known method in the research of real estate, there is enormous space for future research in order to enhance their function. Some scholars combine genetic algorithm, geospatial information, support vector machine model, particle swarm optimization with artificial neural networks to appraise the real estate, which is helpful for the existing appraisal technology. The mass appraisal of real estate in this paper includes the real estate valuation in the transaction and the tax base valuation in the real estate holding. In this study we focus on the theoretical development of artificial neural networks and mass appraisal of real estate, artificial neural networks model evolution and algorithm improvement, artificial neural networks practice and application, and review the existing literature about artificial neural networks and mass appraisal of real estate. Finally, we provide some suggestions for the mass appraisal of China's real estate.

  3. Wavelet neural network load frequency controller

    International Nuclear Information System (INIS)

    Hemeida, Ashraf Mohamed

    2005-01-01

    This paper presents the feasibility of applying a wavelet neural network (WNN) approach for the load frequency controller (LFC) to damp the frequency oscillations of two area power systems due to load disturbances. The present intelligent control system trained the wavelet neural network (WNN) controller on line with adaptive learning rates, which are derived in the sense of a discrete type Lyapunov stability theorem. The present WNN controller is designed individually for each area. The proposed technique is applied successfully for a wide range of operating conditions. The time simulation results indicate its superiority and effectiveness over the conventional approach. The effects of consideration of the governor dead zone on the system performance are studied using the proposed controller and the conventional one

  4. Photon spectrometry utilizing neural networks

    International Nuclear Information System (INIS)

    Silveira, R.; Benevides, C.; Lima, F.; Vilela, E.

    2015-01-01

    Having in mind the time spent on the uneventful work of characterization of the radiation beams used in a ionizing radiation metrology laboratory, the Metrology Service of the Centro Regional de Ciencias Nucleares do Nordeste - CRCN-NE verified the applicability of artificial intelligence (artificial neural networks) to perform the spectrometry in photon fields. For this, was developed a multilayer neural network, as an application for the classification of patterns in energy, associated with a thermoluminescent dosimetric system (TLD-700 and TLD-600). A set of dosimeters was initially exposed to various well known medium energies, between 40 keV and 1.2 MeV, coinciding with the beams determined by ISO 4037 standard, for the dose of 10 mSv in the quantity Hp(10), on a chest phantom (ISO slab phantom) with the purpose of generating a set of training data for the neural network. Subsequently, a new set of dosimeters irradiated in unknown energies was presented to the network with the purpose to test the method. The methodology used in this work was suitable for application in the classification of energy beams, having obtained 100% of the classification performed. (authors)

  5. Cross-domain and multi-task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Richter, Caleb; Cha, Kenny

    2018-02-01

    We propose a cross-domain, multi-task transfer learning framework to transfer knowledge learned from non-medical images by a deep convolutional neural network (DCNN) to medical image recognition task while improving the generalization by multi-task learning of auxiliary tasks. A first stage cross-domain transfer learning was initiated from ImageNet trained DCNN to mammography trained DCNN. 19,632 regions-of-interest (ROI) from 2,454 mass lesions were collected from two imaging modalities: digitized-screen film mammography (SFM) and full-field digital mammography (DM), and split into training and test sets. In the multi-task transfer learning, the DCNN learned the mass classification task simultaneously from the training set of SFM and DM. The best transfer network for mammography was selected from three transfer networks with different number of convolutional layers frozen. The performance of single-task and multitask transfer learning on an independent SFM test set in terms of the area under the receiver operating characteristic curve (AUC) was 0.78+/-0.02 and 0.82+/-0.02, respectively. In the second stage cross-domain transfer learning, a set of 12,680 ROIs from 317 mass lesions on DBT were split into validation and independent test sets. We first studied the data requirements for the first stage mammography trained DCNN by varying the mammography training data from 1% to 100% and evaluated its learning on the DBT validation set in inference mode. We found that the entire available mammography set provided the best generalization. The DBT validation set was then used to train only the last four fully connected layers, resulting in an AUC of 0.90+/-0.04 on the independent DBT test set.

  6. Hybrid computing using a neural network with dynamic external memory.

    Science.gov (United States)

    Graves, Alex; Wayne, Greg; Reynolds, Malcolm; Harley, Tim; Danihelka, Ivo; Grabska-Barwińska, Agnieszka; Colmenarejo, Sergio Gómez; Grefenstette, Edward; Ramalho, Tiago; Agapiou, John; Badia, Adrià Puigdomènech; Hermann, Karl Moritz; Zwols, Yori; Ostrovski, Georg; Cain, Adam; King, Helen; Summerfield, Christopher; Blunsom, Phil; Kavukcuoglu, Koray; Hassabis, Demis

    2016-10-27

    Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest path between specified points and inferring the missing links in randomly generated graphs, and then generalize these tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together, our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external read-write memory.

  7. Ideomotor feedback control in a recurrent neural network.

    Science.gov (United States)

    Galtier, Mathieu

    2015-06-01

    The architecture of a neural network controlling an unknown environment is presented. It is based on a randomly connected recurrent neural network from which both perception and action are simultaneously read and fed back. There are two concurrent learning rules implementing a sort of ideomotor control: (i) perception is learned along the principle that the network should predict reliably its incoming stimuli; (ii) action is learned along the principle that the prediction of the network should match a target time series. The coherent behavior of the neural network in its environment is a consequence of the interaction between the two principles. Numerical simulations show a promising performance of the approach, which can be turned into a local and better "biologically plausible" algorithm.

  8. Application of a neural network for reflectance spectrum classification

    Science.gov (United States)

    Yang, Gefei; Gartley, Michael

    2017-05-01

    Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.

  9. Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks.

    Science.gov (United States)

    Panda, Priyadarshini; Roy, Kaushik

    2017-01-01

    Synaptic Plasticity, the foundation for learning and memory formation in the human brain, manifests in various forms. Here, we combine the standard spike timing correlation based Hebbian plasticity with a non-Hebbian synaptic decay mechanism for training a recurrent spiking neural model to generate sequences. We show that inclusion of the adaptive decay of synaptic weights with standard STDP helps learn stable contextual dependencies between temporal sequences, while reducing the strong attractor states that emerge in recurrent models due to feedback loops. Furthermore, we show that the combined learning scheme suppresses the chaotic activity in the recurrent model substantially, thereby enhancing its' ability to generate sequences consistently even in the presence of perturbations.

  10. Learning Networks for Lifelong Learning

    OpenAIRE

    Sloep, Peter

    2009-01-01

    Presentation in a seminar organized by Christopher Hoadley at Penn State University, October 2004.Contains general introduction into the Learning Network Programme and a demonstration of the Netlogo Simulation of a Learning Network.

  11. Deformable image registration using convolutional neural networks

    Science.gov (United States)

    Eppenhof, Koen A. J.; Lafarge, Maxime W.; Moeskops, Pim; Veta, Mitko; Pluim, Josien P. W.

    2018-03-01

    Deformable image registration can be time-consuming and often needs extensive parameterization to perform well on a specific application. We present a step towards a registration framework based on a three-dimensional convolutional neural network. The network directly learns transformations between pairs of three-dimensional images. The outputs of the network are three maps for the x, y, and z components of a thin plate spline transformation grid. The network is trained on synthetic random transformations, which are applied to a small set of representative images for the desired application. Training therefore does not require manually annotated ground truth deformation information. The methodology is demonstrated on public data sets of inspiration-expiration lung CT image pairs, which come with annotated corresponding landmarks for evaluation of the registration accuracy. Advantages of this methodology are its fast registration times and its minimal parameterization.

  12. Deep learning in breast cancer risk assessment: evaluation of convolutional neural networks on a clinical dataset of full-field digital mammograms.

    Science.gov (United States)

    Li, Hui; Giger, Maryellen L; Huynh, Benjamin Q; Antropova, Natalia O

    2017-10-01

    To evaluate deep learning in the assessment of breast cancer risk in which convolutional neural networks (CNNs) with transfer learning are used to extract parenchymal characteristics directly from full-field digital mammographic (FFDM) images instead of using computerized radiographic texture analysis (RTA), 456 clinical FFDM cases were included: a "high-risk" BRCA1/2 gene-mutation carriers dataset (53 cases), a "high-risk" unilateral cancer patients dataset (75 cases), and a "low-risk dataset" (328 cases). Deep learning was compared to the use of features from RTA, as well as to a combination of both in the task of distinguishing between high- and low-risk subjects. Similar classification performances were obtained using CNN [area under the curve [Formula: see text]; standard error [Formula: see text

  13. IMNN: Information Maximizing Neural Networks

    Science.gov (United States)

    Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.

    2018-04-01

    This software trains artificial neural networks to find non-linear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). As compressing large data sets vastly simplifies both frequentist and Bayesian inference, important information may be inadvertently missed. Likelihood-free inference based on automatically derived IMNN summaries produces summaries that are good approximations to sufficient statistics. IMNNs are robustly capable of automatically finding optimal, non-linear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima.

  14. Neural Networks Methodology and Applications

    CERN Document Server

    Dreyfus, Gérard

    2005-01-01

    Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented...

  15. Scheduling with artificial neural networks

    OpenAIRE

    Gürgün, Burçkaan

    1993-01-01

    Ankara : Department of Industrial Engineering and The Institute of Engineering and Sciences of Bilkent Univ., 1993. Thesis (Master's) -- Bilkent University, 1993. Includes bibliographical references leaves 59-65. Artificial Neural Networks (ANNs) attempt to emulate the massively parallel and distributed processing of the human brain. They are being examined for a variety of problems that have been very difficult to solve. The objective of this thesis is to review the curren...

  16. Temporal-pattern learning in neural models

    CERN Document Server

    Genís, Carme Torras

    1985-01-01

    While the ability of animals to learn rhythms is an unquestionable fact, the underlying neurophysiological mechanisms are still no more than conjectures. This monograph explores the requirements of such mechanisms, reviews those previously proposed and postulates a new one based on a direct electric coding of stimulation frequencies. Experi­ mental support for the option taken is provided both at the single neuron and neural network levels. More specifically, the material presented divides naturally into four parts: a description of the experimental and theoretical framework where this work becomes meaningful (Chapter 2), a detailed specifica­ tion of the pacemaker neuron model proposed together with its valida­ tion through simulation (Chapter 3), an analytic study of the behavior of this model when submitted to rhythmic stimulation (Chapter 4) and a description of the neural network model proposed for learning, together with an analysis of the simulation results obtained when varying seve­ ral factors r...

  17. Chaotic Hopfield Neural Network Swarm Optimization and Its Application

    Directory of Open Access Journals (Sweden)

    Yanxia Sun

    2013-01-01

    Full Text Available A new neural network based optimization algorithm is proposed. The presented model is a discrete-time, continuous-state Hopfield neural network and the states of the model are updated synchronously. The proposed algorithm combines the advantages of traditional PSO, chaos and Hopfield neural networks: particles learn from their own experience and the experiences of surrounding particles, their search behavior is ergodic, and convergence of the swarm is guaranteed. The effectiveness of the proposed approach is demonstrated using simulations and typical optimization problems.

  18. Patterns recognition of electric brain activity using artificial neural networks

    Science.gov (United States)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  19. Complex-valued neural networks advances and applications

    CERN Document Server

    Hirose, Akira

    2013-01-01

    Presents the latest advances in complex-valued neural networks by demonstrating the theory in a wide range of applications Complex-valued neural networks is a rapidly developing neural network framework that utilizes complex arithmetic, exhibiting specific characteristics in its learning, self-organizing, and processing dynamics. They are highly suitable for processing complex amplitude, composed of amplitude and phase, which is one of the core concepts in physical systems to deal with electromagnetic, light, sonic/ultrasonic waves as well as quantum waves, namely, electron and

  20. Beneficial role of noise in artificial neural networks

    International Nuclear Information System (INIS)

    Monterola, Christopher; Saloma, Caesar; Zapotocky, Martin

    2008-01-01

    We demonstrate enhancement of neural networks efficacy to recognize frequency encoded signals and/or to categorize spatial patterns of neural activity as a result of noise addition. For temporal information recovery, noise directly added to the receiving neurons allow instantaneous improvement of signal-to-noise ratio [Monterola and Saloma, Phys. Rev. Lett. 2002]. For spatial patterns however, recurrence is necessary to extend and homogenize the operating range of a feed-forward neural network [Monterola and Zapotocky, Phys. Rev. E 2005]. Finally, using the size of the basin of attraction of the networks learned patterns (dynamical fixed points), a procedure for estimating the optimal noise is demonstrated

  1. Theoretical Properties for Neural Networks with Weight Matrices of Low Displacement Rank

    OpenAIRE

    Zhao, Liang; Liao, Siyu; Wang, Yanzhi; Li, Zhe; Tang, Jian; Pan, Victor; Yuan, Bo

    2017-01-01

    Recently low displacement rank (LDR) matrices, or so-called structured matrices, have been proposed to compress large-scale neural networks. Empirical results have shown that neural networks with weight matrices of LDR matrices, referred as LDR neural networks, can achieve significant reduction in space and computational complexity while retaining high accuracy. We formally study LDR matrices in deep learning. First, we prove the universal approximation property of LDR neural networks with a ...

  2. Recurrent Neural Network Based Boolean Factor Analysis and its Application to Word Clustering

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.

    2009-01-01

    Roč. 20, č. 7 (2009), s. 1073-1086 ISSN 1045-9227 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.889, year: 2009

  3. Quantum neural networks: Current status and prospects for development

    Science.gov (United States)

    Altaisky, M. V.; Kaputkina, N. E.; Krylov, V. A.

    2014-11-01

    The idea of quantum artificial neural networks, first formulated in [34], unites the artificial neural network concept with the quantum computation paradigm. Quantum artificial neural networks were first systematically considered in the PhD thesis by T. Menneer (1998). Based on the works of Menneer and Narayanan [42, 43], Kouda, Matsui, and Nishimura [35, 36], Altaisky [2, 68], Zhou [67], and others, quantum-inspired learning algorithms for neural networks were developed, and are now used in various training programs and computer games [29, 30]. The first practically realizable scaled hardware-implemented model of the quantum artificial neural network is obtained by D-Wave Systems, Inc. [33]. It is a quantum Hopfield network implemented on the basis of superconducting quantum interference devices (SQUIDs). In this work we analyze possibilities and underlying principles of an alternative way to implement quantum neural networks on the basis of quantum dots. A possibility of using quantum neural network algorithms in automated control systems, associative memory devices, and in modeling biological and social networks is examined.

  4. The LILARTI neural network system

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.

    1992-10-01

    The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.

  5. Character Recognition Using Genetically Trained Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-10-01

    Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the

  6. A genetic algorithm for optimization of neural network capable of learning to search for food in a maze

    Science.gov (United States)

    Budilova, E. V.; Terekhin, A. T.; Chepurnov, S. A.

    1994-09-01

    A hypothetical neural scheme is proposed that ensures efficient decision making by an animal searching for food in a maze. Only the general structure of the network is fixed; its quantitative characteristics are found by numerical optimization that simulates the process of natural selection. Selection is aimed at maximization of the expected number of descendants, which is directly related to the energy stored during the reproductive cycle. The main parameters to be optimized are the increments of the interneuronal links and the working-memory constants.

  7. Parameterization Of Solar Radiation Using Neural Network

    International Nuclear Information System (INIS)

    Jiya, J. D.; Alfa, B.

    2002-01-01

    This paper presents a neural network technique for parameterization of global solar radiation. The available data from twenty-one stations is used for training the neural network and the data from other ten stations is used to validate the neural model. The neural network utilizes latitude, longitude, altitude, sunshine duration and period number to parameterize solar radiation values. The testing data was not used in the training to demonstrate the performance of the neural network in unknown stations to parameterize solar radiation. The results indicate a good agreement between the parameterized solar radiation values and actual measured values

  8. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    are examined. The models are separated into three groups representing input/output descriptions as well as state space descriptions: - Models, where all in- and outputs are measurable (static networks). - Models, where some inputs are non-measurable (recurrent networks). - Models, where some in- and some...... outputs are non-measurable (recurrent networks with incomplete state information). The three groups are ordered in increasing complexity, and for each group it is shown how to solve the problems concerning training and application of the specific model type. Of particular interest are the model types...... Kalmann filter) representing state space description. The potentials of neural networks for control of non-linear processes are also examined, focusing on three different groups of control concepts, all considered as generalizations of known linear control concepts to handle also non-linear processes...

  9. Teaching methodology for modeling reference evapotranspiration with artificial neural networks

    OpenAIRE

    Martí, Pau; Pulido Calvo, Inmaculada; Gutiérrez Estrada, Juan Carlos

    2015-01-01

    [EN] Artificial neural networks are a robust alternative to conventional models for estimating different targets in irrigation engineering, among others, reference evapotranspiration, a key variable for estimating crop water requirements. This paper presents a didactic methodology for introducing students in the application of artificial neural networks for reference evapotranspiration estimation using MatLab c . Apart from learning a specific application of this software wi...

  10. An interpretable LSTM neural network for autoregressive exogenous model

    OpenAIRE

    Guo, Tian; Lin, Tao; Lu, Yao

    2018-01-01

    In this paper, we propose an interpretable LSTM recurrent neural network, i.e., multi-variable LSTM for time series with exogenous variables. Currently, widely used attention mechanism in recurrent neural networks mostly focuses on the temporal aspect of data and falls short of characterizing variable importance. To this end, our multi-variable LSTM equipped with tensorized hidden states is developed to learn variable specific representations, which give rise to both temporal and variable lev...

  11. Identifying Broadband Rotational Spectra with Neural Networks

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.

  12. Practical neural network recipies in C++

    CERN Document Server

    Masters

    2014-01-01

    This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assum

  13. The application of artificial neural networks to TLD dose algorithm

    International Nuclear Information System (INIS)

    Moscovitch, M.

    1997-01-01

    We review the application of feed forward neural networks to multi element thermoluminescence dosimetry (TLD) dose algorithm development. A Neural Network is an information processing method inspired by the biological nervous system. A dose algorithm based on a neural network is a fundamentally different approach from conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with a given response of a multi-element dosimeter (input) many times.The algorithm, being trained that way, eventually is able to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personnel dosimetry, the output consists of the desired dose components: deep dose, shallow dose, and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. For this application, a neural network architecture was developed based on the concept of functional links network (FLN). The FLN concept allowed an increase in the dimensionality of the input space and construction of a neural network without any hidden layers. This simplifies the problem and results in a relatively simple and reliable dose calculation algorithm. Overall, the neural network dose algorithm approach has been shown to significantly improve the precision and accuracy of dose calculations. (authors)

  14. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  15. SORN: a self-organizing recurrent neural network

    Directory of Open Access Journals (Sweden)

    Andreea Lazar

    2009-10-01

    Full Text Available Understanding the dynamics of recurrent neural networks is crucial for explaining how the brain processes information. In the neocortex, a range of different plasticity mechanisms are shaping recurrent networks into effective information processing circuits that learn appropriate representations for time-varying sensory stimuli. However, it has been difficult to mimic these abilities in artificial neural network models. Here we introduce SORN, a self-organizing recurrent network. It combines three distinct forms of local plasticity to learn spatio-temporal patterns in its input while maintaining its dynamics in a healthy regime suitable for learning. The SORN learns to encode information in the form of trajectories through its high-dimensional state space reminiscent of recent biological findings on cortical coding. All three forms of plasticity are shown to be essential for the network's success.

  16. Representation of neutron noise data using neural networks

    International Nuclear Information System (INIS)

    Korsah, K.; Damiano, B.; Wood, R.T.

    1992-01-01

    This paper describes a neural network-based method of representing neutron noise spectra using a model developed at the Oak Ridge National Laboratory (ORNL). The backpropagation neural network learned to represent neutron noise data in terms of four descriptors, and the network response matched calculated values to within 3.5 percent. These preliminary results are encouraging, and further research is directed towards the application of neural networks in a diagnostics system for the identification of the causes of changes in structural spectral resonances. This work is part of our current investigation of advanced technologies such as expert systems and neural networks for neutron noise data reduction, analysis, and interpretation. The objective is to improve the state-of-the-art of noise analysis as a diagnostic tool for nuclear power plants and other mechanical systems

  17. Neural network training by Kalman filtering in process system monitoring

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1996-03-01

    Kalman filtering approach for neural network training is described. Its extended form is used as an adaptive filter in a nonlinear environment of the form a feedforward neural network. Kalman filtering approach generally provides fast training as well as avoiding excessive learning which results in enhanced generalization capability. The network is used in a process monitoring application where the inputs are measurement signals. Since the measurement errors are also modelled in Kalman filter the approach yields accurate training with the implication of accurate neural network model representing the input and output relationships in the application. As the process of concern is a dynamic system, the input source of information to neural network is time dependent so that the training algorithm presents an adaptive form for real-time operation for the monitoring task. (orig.)

  18. MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION

    Directory of Open Access Journals (Sweden)

    Artur Popko

    2013-06-01

    Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.

  19. DCS-Neural-Network Program for Aircraft Control and Testing

    Science.gov (United States)

    Jorgensen, Charles C.

    2006-01-01

    A computer program implements a dynamic-cell-structure (DCS) artificial neural network that can perform such tasks as learning selected aerodynamic characteristics of an airplane from wind-tunnel test data and computing real-time stability and control derivatives of the airplane for use in feedback linearized control. A DCS neural network is one of several types of neural networks that can incorporate additional nodes in order to rapidly learn increasingly complex relationships between inputs and outputs. In the DCS neural network implemented by the present program, the insertion of nodes is based on accumulated error. A competitive Hebbian learning rule (a supervised-learning rule in which connection weights are adjusted to minimize differences between actual and desired outputs for training examples) is used. A Kohonen-style learning rule (derived from a relatively simple training algorithm, implements a Delaunay triangulation layout of neurons) is used to adjust node positions during training. Neighborhood topology determines which nodes are used to estimate new values. The network learns, starting with two nodes, and adds new nodes sequentially in locations chosen to maximize reductions in global error. At any given time during learning, the error becomes homogeneously distributed over all nodes.

  20. Granular neural networks, pattern recognition and bioinformatics

    CERN Document Server

    Pal, Sankar K; Ganivada, Avatharam

    2017-01-01

    This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinf...

  1. Bach in 2014: Music Composition with Recurrent Neural Network

    OpenAIRE

    Liu, I-Ting; Ramakrishnan, Bhiksha

    2014-01-01

    We propose a framework for computer music composition that uses resilient propagation (RProp) and long short term memory (LSTM) recurrent neural network. In this paper, we show that LSTM network learns the structure and characteristics of music pieces properly by demonstrating its ability to recreate music. We also show that predicting existing music using RProp outperforms Back propagation through time (BPTT).

  2. Representation of linguistic form and function in recurrent neural networks

    NARCIS (Netherlands)

    Kadar, Akos; Chrupala, Grzegorz; Alishahi, Afra

    2017-01-01

    We present novel methods for analyzing the activation patterns of recurrent neural networks from a linguistic point of view and explore the types of linguistic structure they learn. As a case study, we use a standard standalone language model, and a multi-task gated recurrent network architecture

  3. Recognition of decays of charged tracks with neural network techniques

    International Nuclear Information System (INIS)

    Stimpfl-Abele, G.

    1991-01-01

    We developed neural-network learning techniques for the recognition of decays of charged tracks using a feed-forward network with error back-propagation. Two completely different methods are described in detail and their efficiencies for several NN architectures are compared with conventional methods. Excellent results are obtained. (orig.)

  4. Defect detection on videos using neural network

    Directory of Open Access Journals (Sweden)

    Sizyakin Roman

    2017-01-01

    Full Text Available In this paper, we consider a method for defects detection in a video sequence, which consists of three main steps; frame compensation, preprocessing by a detector, which is base on the ranking of pixel values, and the classification of all pixels having anomalous values using convolutional neural networks. The effectiveness of the proposed method shown in comparison with the known techniques on several frames of the video sequence with damaged in natural conditions. The analysis of the obtained results indicates the high efficiency of the proposed method. The additional use of machine learning as postprocessing significantly reduce the likelihood of false alarm.

  5. Neural network-based model reference adaptive control system.

    Science.gov (United States)

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  6. RBF neural network based H∞ H∞ H∞ synchronization for ...

    Indian Academy of Sciences (India)

    Based on this neural network and linear matrix inequality (LMI) formulation, the RBFNNHS controller and the learning laws are presented to reduce the effect of disturbance to an H ∞ norm constraint. It is shown that finding the RBFNNHS controller and the learning laws can be transformed into the LMI problem and solved ...

  7. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop a ...... chip to solve simple classical conditioning tasks, thus verifying the design methodologies put forward in the paper....

  8. A fuzzy art neural network based color image processing and ...

    African Journals Online (AJOL)

    To improve the learning process from the input data, a new learning rule was suggested. In this paper, a new method is proposed to deal with the RGB color image pixels, which enables a Fuzzy ART neural network to process the RGB color images. The application of the algorithm was implemented and tested on a set of ...

  9. Pragmatic Bootstrapping: A Neural Network Model of Vocabulary Acquisition

    Science.gov (United States)

    Caza, Gregory A.; Knott, Alistair

    2012-01-01

    The social-pragmatic theory of language acquisition proposes that children only become efficient at learning the meanings of words once they acquire the ability to understand the intentions of other agents, in particular the intention to communicate (Akhtar & Tomasello, 2000). In this paper we present a neural network model of word learning which…

  10. Performance of artificial neural networks and genetical evolved artificial neural networks unfolding techniques

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Martinez B, M. R.; Vega C, H. R.; Gallego D, E.; Lorente F, A.; Mendez V, R.; Los Arcos M, J. M.; Guerrero A, J. E.

    2011-01-01

    With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks (Ann) have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Ann still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning Ann parameters. In recent years the use of hybrid technologies, combining Ann and genetic algorithms, has been utilized to. In this work, several Ann topologies were trained and tested using Ann and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out. (Author)

  11. Forecasting PM10 in metropolitan areas: Efficacy of neural networks

    International Nuclear Information System (INIS)

    Fernando, H.J.S.; Mammarella, M.C.; Grandoni, G.; Fedele, P.; Di Marco, R.; Dimitrova, R.; Hyde, P.

    2012-01-01

    Deterministic photochemical air quality models are commonly used for regulatory management and planning of urban airsheds. These models are complex, computer intensive, and hence are prohibitively expensive for routine air quality predictions. Stochastic methods are becoming increasingly popular as an alternative, which relegate decision making to artificial intelligence based on Neural Networks that are made of artificial neurons or ‘nodes’ capable of ‘learning through training’ via historic data. A Neural Network was used to predict particulate matter concentration at a regulatory monitoring site in Phoenix, Arizona; its development, efficacy as a predictive tool and performance vis-à-vis a commonly used regulatory photochemical model are described in this paper. It is concluded that Neural Networks are much easier, quicker and economical to implement without compromising the accuracy of predictions. Neural Networks can be used to develop rapid air quality warning systems based on a network of automated monitoring stations.Highlights: ► Neural Network is an alternative technique to photochemical modelling. ► Neutral Networks can be as effective as traditional air photochemical modelling. ► Neural Networks are much easier and quicker to implement in health warning system. - Neutral networks are as effective as photochemical modelling for air quality predictions, but are much easier, quicker and economical to implement in air pollution (or health) warning systems.

  12. Adaptive optimization and control using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  13. Finite connectivity attractor neural networks

    International Nuclear Information System (INIS)

    Wemmenhove, B; Coolen, A C C

    2003-01-01

    We study a family of diluted attractor neural networks with a finite average number of (symmetric) connections per neuron. As in finite connectivity spin glasses, their equilibrium properties are described by order parameter functions, for which we derive an integral equation in replica symmetric approximation. A bifurcation analysis of this equation reveals the locations of the paramagnetic to recall and paramagnetic to spin-glass transition lines in the phase diagram. The line separating the retrieval phase from the spin-glass phase is calculated at zero temperature. All phase transitions are found to be continuous

  14. Determining the confidence levels of sensor outputs using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Broten, G S; Wood, H C [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Electrical Engineering

    1996-12-31

    This paper describes an approach for determining the confidence level of a sensor output using multi-sensor arrays, sensor fusion and artificial neural networks. The authors have shown in previous work that sensor fusion and artificial neural networks can be used to learn the relationships between the outputs of an array of simulated partially selective sensors and the individual analyte concentrations in a mixture of analyses. Other researchers have shown that an array of partially selective sensors can be used to determine the individual gas concentrations in a gaseous mixture. The research reported in this paper shows that it is possible to extract confidence level information from an array of partially selective sensors using artificial neural networks. The confidence level of a sensor output is defined as a numeric value, ranging from 0% to 100%, that indicates the confidence associated with a output of a given sensor. A three layer back-propagation neural network was trained on a subset of the sensor confidence level space, and was tested for its ability to generalize, where the confidence level space is defined as all possible deviations from the correct sensor output. A learning rate of 0.1 was used and no momentum terms were used in the neural network. This research has shown that an artificial neural network can accurately estimate the confidence level of individual sensors in an array of partially selective sensors. This research has also shown that the neural network`s ability to determine the confidence level is influenced by the complexity of the sensor`s response and that the neural network is able to estimate the confidence levels even if more than one sensor is in error. The fundamentals behind this research could be applied to other configurations besides arrays of partially selective sensors, such as an array of sensors separated spatially. An example of such a configuration could be an array of temperature sensors in a tank that is not in

  15. Bio-inspired spiking neural network for nonlinear systems control.

    Science.gov (United States)

    Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M

    2018-08-01

    Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Neural Behavior Chain Learning of Mobile Robot Actions

    Directory of Open Access Journals (Sweden)

    Lejla Banjanovic-Mehmedovic

    2012-01-01

    Full Text Available This paper presents a visual/motor behavior learning approach, based on neural networks. We propose Behavior Chain Model (BCM in order to create a way of behavior learning. Our behavior-based system evolution task is a mobile robot detecting a target and driving/acting towards it. First, the mapping relations between the image feature domain of the object and the robot action domain are derived. Second, a multilayer neural network for offline learning of the mapping relations is used. This learning structure through neural network training process represents a connection between the visual perceptions and motor sequence of actions in order to grip a target. Last, using behavior learning through a noticed action chain, we can predict mobile robot behavior for a variety of similar tasks in similar environment. Prediction results suggest that the methodology is adequate and could be recognized as an idea for designing different mobile robot behaviour assistance.

  17. Precipitation Nowcast using Deep Recurrent Neural Network

    Science.gov (United States)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2016-12-01

    An accurate precipitation nowcast (0-6 hours) with a fine temporal and spatial resolution has always been an important prerequisite for flood warning, streamflow prediction and risk management. Most of the popular approaches used for forecasting precipitation can be categorized into two groups. One type of precipitation forecast relies on numerical modeling of the physical dynamics of atmosphere and another is based on empirical and statistical regression models derived by local hydrologists or meteorologists. Given the recent advances in artificial intelligence, in this study a powerful Deep Recurrent Neural Network, termed as Long Short-Term Memory (LSTM) model, is creatively used to extract the patterns and forecast the spatial and temporal variability of Cloud Top Brightness Temperature (CTBT) observed from GOES satellite. Then, a 0-6 hours precipitation nowcast is produced using a Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) algorithm, in which the CTBT nowcast is used as the PERSIANN algorithm's raw inputs. Two case studies over the continental U.S. have been conducted that demonstrate the improvement of proposed approach as compared to a classical Feed Forward Neural Network and a couple simple regression models. The advantages and disadvantages of the proposed method are summarized with regard to its capability of pattern recognition through time, handling of vanishing gradient during model learning, and working with sparse data. The studies show that the LSTM model performs better than other methods, and it is able to learn the temporal evolution of the precipitation events through over 1000 time lags. The uniqueness of PERSIANN's algorithm enables an alternative precipitation nowcast approach as demonstrated in this study, in which the CTBT prediction is produced and used as the inputs for generating precipitation nowcast.

  18. A Quantum Implementation Model for Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ammar Daskin

    2018-02-01

    Full Text Available The learning process for multilayered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow–Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, these iterative formulas result in terms formed by the principal components of the weight matrix, namely, the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the phase estimation algorithm is known to provide speedups over the conventional algorithms for the eigenvalue-related problems. Combining the quantum amplitude amplification with the phase estimation algorithm, a quantum implementation model for artificial neural networks using the Widrow–Hoff learning rule is presented. The complexity of the model is found to be linear in the size of the weight matrix. This provides a quadratic improvement over the classical algorithms. Quanta 2018; 7: 7–18.

  19. Liquefaction Microzonation of Babol City Using Artificial Neural Network

    DEFF Research Database (Denmark)

    Farrokhzad, F.; Choobbasti, A.J.; Barari, Amin

    2012-01-01

    that will be less susceptible to damage during earthquakes. The scope of present study is to prepare the liquefaction microzonation map for the Babol city based on Seed and Idriss (1983) method using artificial neural network. Artificial neural network (ANN) is one of the artificial intelligence (AI) approaches...... microzonation map is produced for research area. Based on the obtained results, it can be stated that the trained neural network is capable in prediction of liquefaction potential with an acceptable level of confidence. At the end, zoning of the city is carried out based on the prediction of liquefaction...... that can be classified as machine learning. Simplified methods have been practiced by researchers to assess nonlinear liquefaction potential of soil. In order to address the collective knowledge built-up in conventional liquefaction engineering, an alternative general regression neural network model...

  20. Deep Recurrent Neural Networks for Supernovae Classification

    Science.gov (United States)

    Charnock, Tom; Moss, Adam

    2017-03-01

    We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set (around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F 1 = 0.64. When using only the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of 0.977, and F 1 = 0.58, results almost as good as with the whole light curve. By employing bidirectional neural networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of 90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time and show that it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.

  1. The Laplacian spectrum of neural networks

    Science.gov (United States)

    de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.

    2014-01-01

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286

  2. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural

  3. Networked professional learning

    NARCIS (Netherlands)

    Sloep, Peter

    2013-01-01

    Sloep, P. B. (2013). Networked professional learning. In A. Littlejohn, & A. Margaryan (Eds.), Technology-enhanced Professional Learning: Processes, Practices and Tools (pp. 97–108). London: Routledge.

  4. Neural Networks for Modeling and Control of Particle Accelerators

    Science.gov (United States)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  5. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  6. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Bornholdt, S. [Heidelberg Univ., (Germany). Inst., fuer Theoretische Physik; Graudenz, D. [Lawrence Berkeley Lab., CA (United States)

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  7. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    International Nuclear Information System (INIS)

    Bornholdt, S.

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback

  8. Quantum Entanglement in Neural Network States

    Directory of Open Access Journals (Sweden)

    Dong-Ling Deng

    2017-05-01

    Full Text Available Machine learning, one of today’s most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our

  9. Multistability in bidirectional associative memory neural networks

    International Nuclear Information System (INIS)

    Huang Gan; Cao Jinde

    2008-01-01

    In this Letter, the multistability issue is studied for Bidirectional Associative Memory (BAM) neural networks. Based on the existence and stability analysis of the neural networks with or without delay, it is found that the 2n-dimensional networks can have 3 n equilibria and 2 n equilibria of them are locally exponentially stable, where each layer of the BAM network has n neurons. Furthermore, the results has been extended to (n+m)-dimensional BAM neural networks, where there are n and m neurons on the two layers respectively. Finally, two numerical examples are presented to illustrate the validity of our results

  10. Multistability in bidirectional associative memory neural networks

    Science.gov (United States)

    Huang, Gan; Cao, Jinde

    2008-04-01

    In this Letter, the multistability issue is studied for Bidirectional Associative Memory (BAM) neural networks. Based on the existence and stability analysis of the neural networks with or without delay, it is found that the 2 n-dimensional networks can have 3 equilibria and 2 equilibria of them are locally exponentially stable, where each layer of the BAM network has n neurons. Furthermore, the results has been extended to (n+m)-dimensional BAM neural networks, where there are n and m neurons on the two layers respectively. Finally, two numerical examples are presented to illustrate the validity of our results.

  11. Drift chamber tracking with neural networks

    International Nuclear Information System (INIS)

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed

  12. Computational modeling of neural plasticity for self-organization of neural networks.

    Science.gov (United States)

    Chrol-Cannon, Joseph; Jin, Yaochu

    2014-11-01

    Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Neural Network Emulation of Reionization Simulations

    Science.gov (United States)

    Schmit, Claude J.; Pritchard, Jonathan R.

    2018-05-01

    Next generation radio experiments such as LOFAR, HERA and SKA are expected to probe the Epoch of Reionization and claim a first direct detection of the cosmic 21cm signal within the next decade. One of the major challenges for these experiments will be dealing with enormous incoming data volumes. Machine learning is key to increasing our data analysis efficiency. We consider the use of an artificial neural network to emulate 21cmFAST simulations and use it in a Bayesian parameter inference study. We then compare the network predictions to a direct evaluation of the EoR simulations and analyse the dependence of the results on the training set size. We find that the use of a training set of size 100 samples can recover the error contours of a full scale MCMC analysis which evaluates the model at each step.

  14. A convolutional neural network neutrino event classifier

    International Nuclear Information System (INIS)

    Aurisano, A.; Sousa, A.; Radovic, A.; Vahle, P.; Rocco, D.; Pawloski, G.; Himmel, A.; Niner, E.; Messier, M.D.; Psihas, F.

    2016-01-01

    Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.

  15. Hopfield neural network in HEP track reconstruction

    International Nuclear Information System (INIS)

    Muresan, Raluca; Pentia, Mircea

    1996-01-01

    This work uses neural network technique (Hopfield method) to reconstruct particle tracks starting from a data set obtained with a coordinate detector system placed around a high energy accelerated particle interaction region. A learning algorithm for finding the optimal connection of the signal points have been elaborated and tested. We used a single layer neutral network with constraints in order to obtain the particle tracks drawn through the detected signal points. The dynamics of the systems is given by the MFT equations which determine the system evolution to a minimum energy function. We carried out a computing program that has been tested on a lot of Monte Carlo simulated data. With this program we obtained good results even for noise/signal ratio 200. (authors)

  16. A TLD dose algorithm using artificial neural networks

    International Nuclear Information System (INIS)

    Moscovitch, M.; Rotunda, J.E.; Tawil, R.A.; Rathbone, B.A.

    1995-01-01

    An artificial neural network was designed and used to develop a dose algorithm for a multi-element thermoluminescence dosimeter (TLD). The neural network architecture is based on the concept of functional links network (FLN). Neural network is an information processing method inspired by the biological nervous system. A dose algorithm based on neural networks is fundamentally different as compared to conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with given responses of a multi-element dosimeter (input) many times. The algorithm, being trained that way, eventually is capable to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personal dosimetry, the output consists of the desired dose components: deep dose, shallow dose and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. The neural network approach was applied to the Harshaw Type 8825 TLD, and was shown to significantly improve the performance of this dosimeter, well within the U.S. accreditation requirements for personnel dosimeters

  17. Neural Network Based Load Frequency Control for Restructuring ...

    African Journals Online (AJOL)

    Neural Network Based Load Frequency Control for Restructuring Power Industry. ... an artificial neural network (ANN) application of load frequency control (LFC) of a Multi-Area power system by using a neural network controller is presented.

  18. Hidden neural networks: application to speech recognition

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1998-01-01

    We evaluate the hidden neural network HMM/NN hybrid on two speech recognition benchmark tasks; (1) task independent isolated word recognition on the Phonebook database, and (2) recognition of broad phoneme classes in continuous speech from the TIMIT database. It is shown how hidden neural networks...

  19. Neural Network Classifier Based on Growing Hyperspheres

    Czech Academy of Sciences Publication Activity Database

    Jiřina Jr., Marcel; Jiřina, Marcel

    2000-01-01

    Roč. 10, č. 3 (2000), s. 417-428 ISSN 1210-0552. [Neural Network World 2000. Prague, 09.07.2000-12.07.2000] Grant - others:MŠMT ČR(CZ) VS96047; MPO(CZ) RP-4210 Institutional research plan: AV0Z1030915 Keywords : neural network * classifier * hyperspheres * big -dimensional data Subject RIV: BA - General Mathematics

  20. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....