WorldWideScience

Sample records for neural network-based models

  1. An artificial neural network based fast radiative transfer model for ...

    Indian Academy of Sciences (India)

    the present study, a fast radiative transfer model using neural networks is proposed to simulate radiances corresponding to the wavenumbers of ... in construction, purpose and design and already in use are used. The fast RT model is able to ... porates measurements from various instruments in comparison with other ...

  2. An artificial neural network based fast radiative transfer model for ...

    Indian Academy of Sciences (India)

    In the present study, a fast radiative transfer model using neural networks is proposed to simulate radiances corresponding to the wavenumbers of INSAT-3D. Realistic atmospheric temperature and humidity profiles have been used for training the network. Spectral response functions of GOES-13, a satellite similar in ...

  3. Neural-networks-based feedback linearization versus model predictive control of continuous alcoholic fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Mjalli, F.S.; Al-Asheh, S. [Chemical Engineering Department, Qatar University, Doha (Qatar)

    2005-10-01

    In this work advanced nonlinear neural networks based control system design algorithms are adopted to control a mechanistic model for an ethanol fermentation process. The process model equations for such systems are highly nonlinear. A neural network strategy has been implemented in this work for capturing the dynamics of the mechanistic model for the fermentation process. The neural network achieved has been validated against the mechanistic model. Two neural network based nonlinear control strategies have also been adopted using the model identified. The performance of the feedback linearization technique was compared to neural network model predictive control in terms of stability and set point tracking capabilities. Under servo conditions, the feedback linearization algorithm gave comparable tracking and stability. The feedback linearization controller achieved the control target faster than the model predictive one but with vigorous and sudden controller moves. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  4. Neural Network Based Model of an Industrial Oil-Fired Boiler System ...

    African Journals Online (AJOL)

    In this study, an oil-fired boiler system is modeled as a multivariable plant with two inputs (feed water rate and oil-fired flow rate) and two outputs (steam temperature and pressure). The plant parameters are modeled using artificial neural network, based on experimental data collected directly from the physical plant.

  5. Radial Basis Function Neural Network-based PID model for functional electrical stimulation system control.

    Science.gov (United States)

    Cheng, Longlong; Zhang, Guangju; Wan, Baikun; Hao, Linlin; Qi, Hongzhi; Ming, Dong

    2009-01-01

    Functional electrical stimulation (FES) has been widely used in the area of neural engineering. It utilizes electrical current to activate nerves innervating extremities affected by paralysis. An effective combination of a traditional PID controller and a neural network, being capable of nonlinear expression and adaptive learning property, supply a more reliable approach to construct FES controller that help the paraplegia complete the action they want. A FES system tuned by Radial Basis Function (RBF) Neural Network-based Proportional-Integral-Derivative (PID) model was designed to control the knee joint according to the desired trajectory through stimulation of lower limbs muscles in this paper. Experiment result shows that the FES system with RBF Neural Network-based PID model get a better performance when tracking the preset trajectory of knee angle comparing with the system adjusted by Ziegler- Nichols tuning PID model.

  6. Artificial neural network based modeling and controlling of ...

    African Journals Online (AJOL)

    Further for developing the model has been selected suitable adaptive filter. Two types of ... The simulation results revealed that NN-IMC with appropriate learning rate - momentum is capable to pursue the set-point changes and to reject the disturbance changes without steady state error or oscillations. NN-IMC with inverse ...

  7. An Efficient Neural Network Based Modeling Method for Automotive EMC Simulation

    Science.gov (United States)

    Frank, Florian; Weigel, Robert

    2011-09-01

    This paper presents a newly developed methodology for VHDL-AMS model integration into SPICE-based EMC simulations. To this end the VHDL-AMS model, which is available in a compiled version only, is characterized under typical loading conditions, and afterwards a neural network based technique is applied to convert characteristic voltage and current data into an equivalent circuit in SPICE syntax. After the explanation of the whole method and the presentation of a newly developed switched state space dynamic neural network model, the entire analysis process is demonstrated using a typical application from automotive industry.

  8. Forward and Reverse Process Models for the Squeeze Casting Process Using Neural Network Based Approaches

    Directory of Open Access Journals (Sweden)

    Manjunath Patel Gowdru Chandrashekarappa

    2014-01-01

    Full Text Available The present research work is focussed to develop an intelligent system to establish the input-output relationship utilizing forward and reverse mappings of artificial neural networks. Forward mapping aims at predicting the density and secondary dendrite arm spacing (SDAS from the known set of squeeze cast process parameters such as time delay, pressure duration, squeezes pressure, pouring temperature, and die temperature. An attempt is also made to meet the industrial requirements of developing the reverse model to predict the recommended squeeze cast parameters for the desired density and SDAS. Two different neural network based approaches have been proposed to carry out the said task, namely, back propagation neural network (BPNN and genetic algorithm neural network (GA-NN. The batch mode of training is employed for both supervised learning networks and requires huge training data. The requirement of huge training data is generated artificially at random using regression equation derived through real experiments carried out earlier by the same authors. The performances of BPNN and GA-NN models are compared among themselves with those of regression for ten test cases. The results show that both models are capable of making better predictions and the models can be effectively used in shop floor in selection of most influential parameters for the desired outputs.

  9. Neural networks-based damage detection for bridges considering errors in baseline finite element models

    Science.gov (United States)

    Lee, Jong Jae; Lee, Jong Won; Yi, Jin Hak; Yun, Chung Bang; Jung, Hie Young

    2005-02-01

    Structural health monitoring has become an important research topic in conjunction with damage assessment and safety evaluation of structures. The use of system identification approaches for damage detection has been expanded in recent years owing to the advancements in signal analysis and information processing techniques. Soft computing techniques such as neural networks and genetic algorithm have been utilized increasingly for this end due to their excellent pattern recognition capability. In this study, a neural networks-based damage detection method using the modal properties is presented, which can effectively consider the modelling errors in the baseline finite element model from which the training patterns are to be generated. The differences or the ratios of the mode shape components between before and after damage are used as the input to the neural networks in this method, since they are found to be less sensitive to the modelling errors than the mode shapes themselves. Two numerical example analyses on a simple beam and a multi-girder bridge are presented to demonstrate the effectiveness of the proposed method. Results of laboratory test on a simply supported bridge model and field test on a bridge with multiple girders confirm the applicability of the present method.

  10. Artificial neural Network-Based modeling and monitoring of photovoltaic generator

    Directory of Open Access Journals (Sweden)

    H. MEKKI

    2015-03-01

    Full Text Available In this paper, an artificial neural network based-model (ANNBM is introduced for partial shading detection losses in photovoltaic (PV panel. A Multilayer Perceptron (MLP is used to estimate the electrical outputs (current and voltage of the photovoltaic module using the external meteorological data: solar irradiation G (W/m2 and the module temperature T (°C. Firstly, a database of the BP150SX photovoltaic module operating without any defect has been used to train the considered MLP. Subsequently, in the first case of this study, the developed model is used to estimate the output current and voltage of the PV module considering the partial shading effect. Results confirm the good ability of the ANNBM to detect the partial shading effect in the photovoltaic module with logical accuracy. The proposed strategy could also be used for the online monitoring and supervision of PV modules.

  11. Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models.

    Science.gov (United States)

    Barzegar, Rahim; Fijani, Elham; Asghari Moghaddam, Asghar; Tziritis, Evangelos

    2017-12-01

    Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh-Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985-Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R2), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Neural Network Based Hybrid Mixture Model to Extract Information from Non-linear Mixed Pixels

    Directory of Open Access Journals (Sweden)

    Uttam Kumar

    2012-09-01

    Full Text Available Signals acquired by sensors in the real world are non-linear combinations, requiring non-linear mixture models to describe the resultant mixture spectra for the endmember’s (pure pixel’s distribution. This communication discusses inferring class fraction through a novel hybrid mixture model (HMM. HMM is a three-step process, where the endmembers are first derived from the images themselves using the N-FINDR algorithm. These endmembers are used by the linear mixture model (LMM in the second step that provides an abundance estimation in a linear fashion. Finally, the abundance values along with the training samples representing the actual ground proportions are fed into neural network based multi-layer perceptron (MLP architecture as input to train the neurons. The neural output further refines the abundance estimates to account for the non-linear nature of the mixing classes of interest. HMM is first implemented and validated on simulated hyper spectral data of 200 bands and subsequently on real time MODIS data with a spatial resolution of 250 m. The results on computer simulated data show that the method gives acceptable results for unmixing pixels with an overall RMSE of 0.0089 ± 0.0022 with LMM and 0.0030 ± 0.0001 with the HMM when compared to actual class proportions. The unmixed MODIS images showed overall RMSE with HMM as 0.0191 ± 0.022 as compared to the LMM output considered alone that had an overall RMSE of 0.2005 ± 0.41, indicating that individual class abundances obtained from HMM are very close to the real observations.

  13. neural network based model o work based model of an industrial oil

    African Journals Online (AJOL)

    eobe

    ropagation Algorithm (trainlm). The data; shows that data; shows that the simulated model the simulated model t outputs t outputs, with regression val with regression val with regression value of d to control the neural network model. , PID controller. ing processes. An additional node with ut (usually 1) is often added to the.

  14. Decoherence and Entanglement Simulation in a Model of Quantum Neural Network Based on Quantum Dots

    Directory of Open Access Journals (Sweden)

    Altaisky Mikhail V.

    2016-01-01

    Full Text Available We present the results of the simulation of a quantum neural network based on quantum dots using numerical method of path integral calculation. In the proposed implementation of the quantum neural network using an array of single-electron quantum dots with dipole-dipole interaction, the coherence is shown to survive up to 0.1 nanosecond in time and up to the liquid nitrogen temperature of 77K.We study the quantum correlations between the quantum dots by means of calculation of the entanglement of formation in a pair of quantum dots on the GaAs based substrate with dot size of 100 ÷ 101 nanometer and interdot distance of 101 ÷ 102 nanometers order.

  15. Neural networks-based modeling applied to a process of heavy metals removal from wastewaters.

    Science.gov (United States)

    Suditu, Gabriel D; Curteanu, Silvia; Bulgariu, Laura

    2013-01-01

    This article approaches the problem of environment pollution with heavy metals from disposal of industrial wastewaters, namely removal of these metals by means of biosorbents, particularly with Romanian peat (from Poiana Stampei). The study is carried out by simulation using feed-forward and modular neural networks with one or two hidden layers, pursuing the influence of certain operating parameters (metal nature, sorbent dose, pH, temperature, initial concentration of metal ion, contact time) on the amount of metal ions retained on the unit mass of sorbent. In neural network modeling, a consistent data set was used, including five metals: lead, mercury, cadmium, nickel and cobalt, the quantification of the metal nature being done by its electronegativity. Even if based on successive trials, the method of designing neural models was systematically conducted, recording and comparing the errors obtained with different types of neural networks, having various numbers of hidden layers and neurons, number of training epochs, or using various learning methods. The errors with values under 5% make clear the efficiency of the applied method.

  16. A neural network based model to analyze rice parboiling process with small dataset.

    Science.gov (United States)

    Behroozi-Khazaei, Nasser; Nasirahmadi, Abozar

    2017-07-01

    In this study, milling recovery, head rice yield, degree of milling and whiteness were utilized to characterize the milling quality of Tarom parboiled rice variety. The parboiled rice was prepared with three soaking temperatures and steaming times. Then the samples were dried to three levels of final moisture contents [8, 10 and 12% (w.b)]. Modeling of process and validating of the results with small dataset are always challenging. So, the aim of this study was to develop models based on the milling quality data in parboiling process by means of multivariate regression and artificial neural network. In order to validate the neural network model with a little dataset, K-fold cross validation method was applied. The ANN structure with one hidden layer and Tansig transfer function by 18 neurons in the hidden layer was selected as the best model in this study. The results indicated that the neural network could model the parboiling process with higher degree of accuracy. This method was a promising procedure to create accuracy and can be used as a reliable model to select the best parameters for the parboiling process with little experiment dataset.

  17. FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model.

    Science.gov (United States)

    Yaghini Bonabi, Safa; Asgharian, Hassan; Safari, Saeed; Nili Ahmadabadi, Majid

    2014-01-01

    A set of techniques for efficient implementation of Hodgkin-Huxley-based (H-H) model of a neural network on FPGA (Field Programmable Gate Array) is presented. The central implementation challenge is H-H model complexity that puts limits on the network size and on the execution speed. However, basics of the original model cannot be compromised when effect of synaptic specifications on the network behavior is the subject of study. To solve the problem, we used computational techniques such as CORDIC (Coordinate Rotation Digital Computer) algorithm and step-by-step integration in the implementation of arithmetic circuits. In addition, we employed different techniques such as sharing resources to preserve the details of model as well as increasing the network size in addition to keeping the network execution speed close to real time while having high precision. Implementation of a two mini-columns network with 120/30 excitatory/inhibitory neurons is provided to investigate the characteristic of our method in practice. The implementation techniques provide an opportunity to construct large FPGA-based network models to investigate the effect of different neurophysiological mechanisms, like voltage-gated channels and synaptic activities, on the behavior of a neural network in an appropriate execution time. Additional to inherent properties of FPGA, like parallelism and re-configurability, our approach makes the FPGA-based system a proper candidate for study on neural control of cognitive robots and systems as well.

  18. Artificial Neural Network Based Model for Forecasting of Inflation in India

    Directory of Open Access Journals (Sweden)

    Gour Sundar Mitra Thakur

    2016-03-01

    Full Text Available Inflation can be attributed to both microeconomic and macroeconomic factors which influence the stability of the economy of any nation. With the raising of recession at the end of the year 2008, world communities started paying much contemplation on inflation and put enormous hard work to predict it accurately. Prediction of inflation is not a simple task. Moreover, the behavior of inflation is so complex and uncertain that both economists and statisticians have been striving to model and forecast inflation in an accurate way. As a result, many researchers have proposed inflation forecasting models based on different methods; however the accuracy is always being a major constraint. In this paper, we have analyzed the historical monthly economic data of India between January 2000 and December 2012 and constructed an inflation forecasting model based on feed forward back propagation neural network. Initially some critical factors that can considerably influence the inflation of India have been identified, then an efficient artificial neural network (ANN model has been proposed to forecast the inflation. Accuracy of the model is proved to be satisfactory when compared with the forecasting of some well-known agencies.

  19. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor.

    Science.gov (United States)

    Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold

    2016-12-01

    In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHVp) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Development of Artificial Neural-Network-Based Models for the Simulation of Spring Discharge

    Directory of Open Access Journals (Sweden)

    M. Mohan Raju

    2011-01-01

    Full Text Available The present study demonstrates the application of artificial neural networks (ANNs in predicting the weekly spring discharge. The study was based on the weekly spring discharge from a spring located near Ranichauri in Tehri Garhwal district of Uttarakhand, India. Five models were developed for predicting the spring discharge based on a weekly interval using rainfall, evaporation, temperature with a specified lag time. All models were developed both with one and two hidden layers. Each model was developed with many trials by selecting different network architectures and different number of hidden neurons; finally a best predicting model presented against each developed model. The models were trained with three different algorithms, that is, quick-propagation algorithm, batch backpropagation algorithm, and Levenberg-Marquardt algorithm using weekly data from 1999 to 2005. A best model for the simulation was selected from the three presented algorithms using the statistical criteria such as correlation coefficient (, determination coefficient, or Nash Sutcliff's efficiency (DC. Finally, optimized number of neurons were considered for the best model. Training and testing results revealed that the models were predicting the weekly spring discharge satisfactorily. Based on these criteria, ANN-based model results in better agreement for the computation of spring discharge. LMR models were also developed in the study, and they also gave good results, but, when compared with the ANN methodology, ANN resulted in better optimized values.

  1. Response surface and neural network based predictive models of cutting temperature in hard turning

    Directory of Open Access Journals (Sweden)

    Mozammel Mia

    2016-11-01

    Full Text Available The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM and Artificial Neural Network (ANN were employed to predict the temperature in respect of cutting speed, feed rate and material hardness. The number and orientation of the experimental trials, conducted in both dry and high pressure coolant (HPC environments, were planned using full factorial design. The temperature was measured by using the tool-work thermocouple. In RSM model, two quadratic equations of temperature were derived from experimental data. The analysis of variance (ANOVA and mean absolute percentage error (MAPE were performed to suffice the adequacy of the models. In ANN model, 80% data were used to train and 20% data were employed for testing. Like RSM, herein, the error analysis was also conducted. The accuracy of the RSM and ANN model was found to be ⩾99%. The ANN models exhibit an error of ∼5% MAE for testing data. The regression coefficient was found to be greater than 99.9% for both dry and HPC. Both these models are acceptable, although the ANN model demonstrated a higher accuracy. These models, if employed, are expected to provide a better control of cutting temperature in turning of hardened steel.

  2. Response surface and neural network based predictive models of cutting temperature in hard turning.

    Science.gov (United States)

    Mia, Mozammel; Dhar, Nikhil R

    2016-11-01

    The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM) and Artificial Neural Network (ANN) were employed to predict the temperature in respect of cutting speed, feed rate and material hardness. The number and orientation of the experimental trials, conducted in both dry and high pressure coolant (HPC) environments, were planned using full factorial design. The temperature was measured by using the tool-work thermocouple. In RSM model, two quadratic equations of temperature were derived from experimental data. The analysis of variance (ANOVA) and mean absolute percentage error (MAPE) were performed to suffice the adequacy of the models. In ANN model, 80% data were used to train and 20% data were employed for testing. Like RSM, herein, the error analysis was also conducted. The accuracy of the RSM and ANN model was found to be ⩾99%. The ANN models exhibit an error of ∼5% MAE for testing data. The regression coefficient was found to be greater than 99.9% for both dry and HPC. Both these models are acceptable, although the ANN model demonstrated a higher accuracy. These models, if employed, are expected to provide a better control of cutting temperature in turning of hardened steel.

  3. Neural network-based motion control of an underactuated wheeled inverted pendulum model.

    Science.gov (United States)

    Yang, Chenguang; Li, Zhijun; Cui, Rongxin; Xu, Bugong

    2014-11-01

    In this paper, automatic motion control is investigated for one of wheeled inverted pendulum (WIP) models, which have been widely applied for modeling of a large range of two wheeled modern vehicles. First, the underactuated WIP model is decomposed into a fully actuated second order subsystem Σa consisting of planar movement of vehicle forward and yaw angular motions, and a nonactuated first order subsystem Σb of pendulum motion. Due to the unknown dynamics of subsystem Σa and the universal approximation ability of neural network (NN), an adaptive NN scheme has been employed for motion control of subsystem Σa . The model reference approach has been used whereas the reference model is optimized by the finite time linear quadratic regulation technique. The pendulum motion in the passive subsystem Σb is indirectly controlled using the dynamic coupling with planar forward motion of subsystem Σa , such that satisfactory tracking of a set pendulum tilt angle can be guaranteed. Rigours theoretic analysis has been established, and simulation studies have been performed to demonstrate the developed method.

  4. Stratified construction of neural network based interatomic models for multicomponent materials

    Science.gov (United States)

    Hajinazar, Samad; Shao, Junping; Kolmogorov, Aleksey N.

    2017-01-01

    Recent application of neural networks (NNs) to modeling interatomic interactions has shown the learning machines' encouragingly accurate performance for select elemental and multicomponent systems. In this study we explore the possibility of building a library of NN-based models by introducing a hierarchical NN training. In such a stratified procedure NNs for multicomponent systems are obtained by sequential training from the bottom up: first unaries, then binaries, and so on. Advantages of constructing NN sets with shared parameters include acceleration of the training process and intact description of the constituent systems. We use an automated generation of diverse structure sets for NN training on density functional theory-level reference energies. In the test case of Cu, Pd, Ag, Cu-Pd, Cu-Ag, Pd-Ag, and Cu-Pd-Ag systems, NNs trained in the traditional and stratified fashions are found to have essentially identical accuracy for defect energies, phonon dispersions, formation energies, etc. The models' robustness is further illustrated via unconstrained evolutionary structure searches in which the NN is used for the local optimization of crystal unit cells.

  5. A Neural Network-Based Interval Pattern Matcher

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2015-07-01

    Full Text Available One of the most important roles in the machine learning area is to classify, and neural networks are very important classifiers. However, traditional neural networks cannot identify intervals, let alone classify them. To improve their identification ability, we propose a neural network-based interval matcher in our paper. After summarizing the theoretical construction of the model, we take a simple and a practical weather forecasting experiment, which show that the recognizer accuracy reaches 100% and that is promising.

  6. A Fuzzy Neural Network Based on Non-Euclidean Distance Clustering for Quality Index Model in Slashing Process

    Directory of Open Access Journals (Sweden)

    Yuxian Zhang

    2015-01-01

    Full Text Available The quality index model in slashing process is difficult to build by reason of the outliers and noise data from original data. To the above problem, a fuzzy neural network based on non-Euclidean distance clustering is proposed in which the input space is partitioned into many local regions by the fuzzy clustering based on non-Euclidean distance so that the computation complexity is decreased, and fuzzy rule number is determined by validity function based on both the separation and the compactness among clusterings. Then, the premise parameters and consequent parameters are trained by hybrid learning algorithm. The parameters identification is realized; meanwhile the convergence condition of consequent parameters is obtained by Lyapunov function. Finally, the proposed method is applied to build the quality index model in slashing process in which the experimental data come from the actual slashing process. The experiment results show that the proposed fuzzy neural network for quality index model has lower computation complexity and faster convergence time, comparing with GP-FNN, BPNN, and RBFNN.

  7. Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm.

    Science.gov (United States)

    Mandal, Sudip; Saha, Goutam; Pal, Rajat Kumar

    2017-08-01

    Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.

  8. A biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression data.

    Science.gov (United States)

    Kang, Tianyu; Ding, Wei; Zhang, Luoyan; Ziemek, Daniel; Zarringhalam, Kourosh

    2017-12-19

    Stratification of patient subpopulations that respond favorably to treatment or experience and adverse reaction is an essential step toward development of new personalized therapies and diagnostics. It is currently feasible to generate omic-scale biological measurements for all patients in a study, providing an opportunity for machine learning models to identify molecular markers for disease diagnosis and progression. However, the high variability of genetic background in human populations hampers the reproducibility of omic-scale markers. In this paper, we develop a biological network-based regularized artificial neural network model for prediction of phenotype from transcriptomic measurements in clinical trials. To improve model sparsity and the overall reproducibility of the model, we incorporate regularization for simultaneous shrinkage of gene sets based on active upstream regulatory mechanisms into the model. We benchmark our method against various regression, support vector machines and artificial neural network models and demonstrate the ability of our method in predicting the clinical outcomes using clinical trial data on acute rejection in kidney transplantation and response to Infliximab in ulcerative colitis. We show that integration of prior biological knowledge into the classification as developed in this paper, significantly improves the robustness and generalizability of predictions to independent datasets. We provide a Java code of our algorithm along with a parsed version of the STRING DB database. In summary, we present a method for prediction of clinical phenotypes using baseline genome-wide expression data that makes use of prior biological knowledge on gene-regulatory interactions in order to increase robustness and reproducibility of omic-scale markers. The integrated group-wise regularization methods increases the interpretability of biological signatures and gives stable performance estimates across independent test sets.

  9. [Study on a back propogation neural network-based predictive model for prevalence of birth defect].

    Science.gov (United States)

    Wang, Wei; Xu, Wei; Zheng, Ya-jun; Zhou, Bao-sen

    2007-05-01

    To evaluate the value of a back propogation (BP) network on prediction of birth defect and to give clues on its prevention. Data of birth defect in Shenyang from 1995 to 2005 were used as a training set to predict the prevalence rate of birth defect. Neural network tools box of Software MATLAB 6.5 was used to train and simulate BP Artificial Neural Network. When using data of the year 1995-2003 to predict the prevalence rate of birth defect in 2004-2005, the results showed that: the fitting average error of prevalence rate was 1.34%, RNL was 0.9874, and the prediction of average error was 1.78%. Using data of the year 1995-2005 to predict the prevalence rate of birth defect in 2006-2007, the results showed that: the fitting average error was 0.33%, RNL was 0.9954, the prevalence rates of birth defect in 2006-2007 were 11.00% and 11.29%. Compared to the conventional statistics method, BP not only showed better prediction precision, but had no limit to the type or distribution of relevant data, thus providing a powerful method in epidemiological prediction.

  10. Optical-Correlator Neural Network Based On Neocognitron

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1994-01-01

    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  11. Time-dependent prediction degredation assessment of neural-networks-based TEC forecasting models

    Directory of Open Access Journals (Sweden)

    Th. D. Xenos

    2003-01-01

    Full Text Available An estimation of the difference in TEC prediction accuracy achieved when the prediction varies from 1 h to 7 days in advance is described using classical neural networks. Hourly-daily Faraday-rotation derived TEC measurements from Florence are used. It is shown that the prediction accuracy for the examined dataset, though degrading when time span increases, is always high. In fact, when a relative prediction error margin of ± 10% is considered, the population percentage included therein is almost always well above the 55%. It is found that the results are highly dependent on season and the dataset wealth, whereas they highly depend on the foF2 - TEC variability difference and on hysteresis-like effect between these two ionospheric characteristics.

  12. Neural Network-Based Model for Landslide Susceptibility and Soil Longitudinal Profile Analyses

    DEFF Research Database (Denmark)

    Farrokhzad, F.; Barari, Amin; Choobbasti, A. J.

    2011-01-01

    The purpose of this study was to create an empirical model for assessing the landslide risk potential at Savadkouh Azad University, which is located in the rural surroundings of Savadkouh, about 5 km from the city of Pol-Sefid in northern Iran. The soil longitudinal profile of the city of Babol...... trained with geotechnical data obtained from an investigation of the study area. The quality of the modeling was improved further by the application of some controlling techniques involved in ANN. The observed >90% overall accuracy produced by the ANN technique in both cases is promising for future...

  13. Representations in neural network based empirical potentials

    Science.gov (United States)

    Cubuk, Ekin D.; Malone, Brad D.; Onat, Berk; Waterland, Amos; Kaxiras, Efthimios

    2017-07-01

    Many structural and mechanical properties of crystals, glasses, and biological macromolecules can be modeled from the local interactions between atoms. These interactions ultimately derive from the quantum nature of electrons, which can be prohibitively expensive to simulate. Machine learning has the potential to revolutionize materials modeling due to its ability to efficiently approximate complex functions. For example, neural networks can be trained to reproduce results of density functional theory calculations at a much lower cost. However, how neural networks reach their predictions is not well understood, which has led to them being used as a "black box" tool. This lack of understanding is not desirable especially for applications of neural networks in scientific inquiry. We argue that machine learning models trained on physical systems can be used as more than just approximations since they had to "learn" physical concepts in order to reproduce the labels they were trained on. We use dimensionality reduction techniques to study in detail the representation of silicon atoms at different stages in a neural network, which provides insight into how a neural network learns to model atomic interactions.

  14. A neural-network-based model for the dynamic simulation of the tire/suspension system while traversing road irregularities.

    Science.gov (United States)

    Guarneri, Paolo; Rocca, Gianpiero; Gobbi, Massimiliano

    2008-09-01

    This paper deals with the simulation of the tire/suspension dynamics by using recurrent neural networks (RNNs). RNNs are derived from the multilayer feedforward neural networks, by adding feedback connections between output and input layers. The optimal network architecture derives from a parametric analysis based on the optimal tradeoff between network accuracy and size. The neural network can be trained with experimental data obtained in the laboratory from simulated road profiles (cleats). The results obtained from the neural network demonstrate good agreement with the experimental results over a wide range of operation conditions. The NN model can be effectively applied as a part of vehicle system model to accurately predict elastic bushings and tire dynamics behavior. Although the neural network model, as a black-box model, does not provide a good insight of the physical behavior of the tire/suspension system, it is a useful tool for assessing vehicle ride and noise, vibration, harshness (NVH) performance due to its good computational efficiency and accuracy.

  15. Neural-network-based prediction techniques for single station modeling and regional mapping of the foF2 and M(3000F2 ionospheric characteristics

    Directory of Open Access Journals (Sweden)

    T. D. Xenos

    2002-01-01

    Full Text Available In this work, Neural-Network-based single-station hourly daily foF2 and M(3000F2 modelling of 15 European ionospheric stations is investigated. The data used are neural networks and hourly daily values from the period 1964- 1988 for training the neural networks and from the period 1989-1994 for checking the prediction accuracy. Two types of models are presented for the F2-layer critical frequency prediction and two for the propagation factor M(3000F2. The first foF2 model employs the E-layer local noon calculated daily critical frequency (foE12 and the local noon F2- layer critical frequency of the previous day. The second foF2 model, which introduces a new regional mapping technique, employs the Juliusruh neural network model and uses the E-layer local noon calculated daily critical frequency (foE12, and the previous day F2-layer critical frequency measured at Juliusruh at noon. The first M(3000F2 model employs the E-layer local noon calculated daily critical frequency (foE12, its ± 3 h deviations and the local noon cosine of the solar zenith angle (cos c12. The second model, which introduces a new M(3000F2 mapping technique, employs Juliusruh neural network model and uses the E-layer local noon calculated daily critical frequency (foE12, and the previous day F2-layer critical frequency measured at Juliusruh at noon.

  16. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.

    Science.gov (United States)

    Ventura, Cristina; Latino, Diogo A R S; Martins, Filomena

    2013-01-01

    The performance of two QSAR methodologies, namely Multiple Linear Regressions (MLR) and Neural Networks (NN), towards the modeling and prediction of antitubercular activity was evaluated and compared. A data set of 173 potentially active compounds belonging to the hydrazide family and represented by 96 descriptors was analyzed. Models were built with Multiple Linear Regressions (MLR), single Feed-Forward Neural Networks (FFNNs), ensembles of FFNNs and Associative Neural Networks (AsNNs) using four different data sets and different types of descriptors. The predictive ability of the different techniques used were assessed and discussed on the basis of different validation criteria and results show in general a better performance of AsNNs in terms of learning ability and prediction of antitubercular behaviors when compared with all other methods. MLR have, however, the advantage of pinpointing the most relevant molecular characteristics responsible for the behavior of these compounds against Mycobacterium tuberculosis. The best results for the larger data set (94 compounds in training set and 18 in test set) were obtained with AsNNs using seven descriptors (R(2) of 0.874 and RMSE of 0.437 against R(2) of 0.845 and RMSE of 0.472 in MLRs, for test set). Counter-Propagation Neural Networks (CPNNs) were trained with the same data sets and descriptors. From the scrutiny of the weight levels in each CPNN and the information retrieved from MLRs, a rational design of potentially active compounds was attempted. Two new compounds were synthesized and tested against M. tuberculosis showing an activity close to that predicted by the majority of the models. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Large-Scale Recurrent Neural Network Based Modelling of Gene Regulatory Network Using Cuckoo Search-Flower Pollination Algorithm.

    Science.gov (United States)

    Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat K

    2016-01-01

    The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process.

  18. Large-Scale Recurrent Neural Network Based Modelling of Gene Regulatory Network Using Cuckoo Search-Flower Pollination Algorithm

    Directory of Open Access Journals (Sweden)

    Sudip Mandal

    2016-01-01

    Full Text Available The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process.

  19. The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: Effect of temperature

    Science.gov (United States)

    Lobato, Justo; Cañizares, Pablo; Rodrigo, Manuel A.; Linares, José J.; Piuleac, Ciprian-George; Curteanu, Silvia

    Neural network models represent an important tool of Artificial Intelligence for fuel cell researchers in order to help them to elucidate the processes within the cells, by allowing optimization of materials, cells, stacks, and systems and support control systems. In this work three types of neural networks, that have as common characteristic the supervised learning control (Multilayer Perceptron, Generalized Feedforward Network and Jordan and Elman Network), have been designed to model the performance of a polybenzimidazole-polymer electrolyte membrane fuel cells operating upon a temperature range of 100-175 °C. The influence of temperature of two periods was studied: the temperature in the conditioning period and temperature when the fuel cell was operating. Three inputs variables: the conditioning temperature, the operating temperature and current density were taken into account in order to evaluate their influence upon the potential, the cathode resistance and the ohmic resistance. The Multilayer Perceptron model provides good predictions for different values of operating temperatures and potential and, hence, it is the best choice among the study models, recommended to investigate the influence of process variables of PEMFCs.

  20. Neural network based system for equipment surveillance

    Science.gov (United States)

    Vilim, R.B.; Gross, K.C.; Wegerich, S.W.

    1998-04-28

    A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.

  1. Multilayer perceptron neural network-based approach for modeling phycocyanin pigment concentrations: case study from lower Charles River buoy, USA.

    Science.gov (United States)

    Heddam, Salim

    2016-09-01

    This paper proposes multilayer perceptron neural network (MLPNN) to predict phycocyanin (PC) pigment using water quality variables as predictor. In the proposed model, four water quality variables that are water temperature, dissolved oxygen, pH, and specific conductance were selected as the inputs for the MLPNN model, and the PC as the output. To demonstrate the capability and the usefulness of the MLPNN model, a total of 15,849 data measured at 15-min (15 min) intervals of time are used for the development of the model. The data are collected at the lower Charles River buoy, and available from the US Environmental Protection Agency (USEPA). For comparison purposes, a multiple linear regression (MLR) model that was frequently used for predicting water quality variables in previous studies is also built. The performances of the models are evaluated using a set of widely used statistical indices. The performance of the MLPNN and MLR models is compared with the measured data. The obtained results show that (i) the all proposed MLPNN models are more accurate than the MLR models and (ii) the results obtained are very promising and encouraging for the development of phycocyanin-predictive models.

  2. Minerva neural network based surrogate model for real time inference of ion temperature profiles at Wendelstein 7-X

    Science.gov (United States)

    Pavone, Andrea; Svensson, Jakob; Langenberg, Andreas; Pablant, Novimir; Wolf, Robert C.

    2017-10-01

    Artificial neural networks (ANNs) can reduce the computation time required for the application of Bayesian inference on large amounts of data by several orders of magnitude, making real-time analysis possible and, at the same time, providing a reliable alternative to more conventional inversion routines. The large scale fusion experiment Wendelstein 7-X (W7-X) requires tens of diagnostics for plasma parameter measurements and is using the Minerva Bayesian modelling framework as its main inference engine, which can handle joint inference in complex systems made of several physics models. Conventional inversion routines are applied to measured data to infer the posterior distribution of the free parameters of the models implemented in the framework. We have trained ANNs on a training set made of samples from the prior distribution of the free parameters and the corresponding data calculated with the forward model, so that the trained ANNs constitute a surrogate model of the physics model. The ANNs have been then applied to 2D images measured by an X-ray spectrometer, representing the spectral emission from plasma impurities measured along a fan of lines of sight covering a major fraction of the plasma cross-section, for the inference of ion temperature profiles and then compared with the conventional inversion routines, showing that they constitute a robust and reliable alternative for real time plasma parameter inference.

  3. A neural network based computational model to predict the output power of different types of photovoltaic cells.

    Directory of Open Access Journals (Sweden)

    WenBo Xiao

    Full Text Available In this article, we introduced an artificial neural network (ANN based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-, multi-crystalline (multi-, and amorphous (amor- crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.

  4. A neural network based computational model to predict the output power of different types of photovoltaic cells.

    Science.gov (United States)

    Xiao, WenBo; Nazario, Gina; Wu, HuaMing; Zhang, HuaMing; Cheng, Feng

    2017-01-01

    In this article, we introduced an artificial neural network (ANN) based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-), multi-crystalline (multi-), and amorphous (amor-) crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.

  5. A neural network-based foF2 model for a single station in the polar cap

    Science.gov (United States)

    Athieno, R.; Jayachandran, P. T.; Themens, D. R.

    2017-06-01

    A neural network (NN) model has been developed for the critical frequency of the F2 layer (foF2) at Resolute (74.70°N, 265.10°E) using data obtained from the Space Physics Interactive Data Resource (no longer available) for the period between 1975 and 1995. This model is a first step toward addressing the discrepancies of the International Reference Ionosphere (IRI) foF2 or peak electron density (NmF2) at high latitudes recently presented by Themens et al. (2014). The performance of the NN model has been evaluated using foF2 data obtained from the Canadian Advanced Digital Ionosonde at Resolute (74.75°N, 265.00°E) for the period between 2009 and 2013, in comparison with the IRI predictions. The 2012 version and the International Union of Radio Science option of IRI have been used. The NN nighttime monthly median foF2 variation demonstrates good agreement with observations compared to the IRI. The NN model is able to reproduce the enhancements in foF2 during the equinoxes and also shows an improvement during disturbed days. Root mean square errors were computed between hourly and monthly median model predictions and observations, and on the whole, the NN model seems to perform better during low solar activity and the equinoxes. The NN model shows an improvement in performance on average by 26.638% for hourly foF2 and 32.636% for monthly median foF2, compared to 7.877% obtained for the same station by the most recent NN model that attempted to predict foF2 at a polar cap station (Oyeyemi and Poole, 2005).

  6. Neural Network Based Prediction of Conformational Free Energies - A New Route toward Coarse-Grained Simulation Models.

    Science.gov (United States)

    Lemke, Tobias; Peter, Christine

    2017-12-12

    Coarse-grained (CG) simulation models have become very popular tools to study complex molecular systems with great computational efficiency on length and time scales that are inaccessible to simulations at atomistic resolution. In so-called bottom-up coarse-graining strategies, the interactions in the CG model are devised such that an accurate representation of an atomistic sampling of configurational phase space is achieved. This means the coarse-graining methods use the underlying multibody potential of mean force (i.e., free-energy surface) derived from the atomistic simulation as parametrization target. Here, we present a new method where a neural network (NN) is used to extract high-dimensional free energy surfaces (FES) from molecular dynamics (MD) simulation trajectories. These FES are used for simulations on a CG level of resolution. The method is applied to simulating homo-oligo-peptides (oligo-glutamic-acid (oligo-glu) and oligo-aspartic-acid (oligo-asp)) of different lengths. We show that the NN not only is able to correctly describe the free-energy surface for oligomer lengths that it was trained on but also is able to predict the conformational sampling of longer chains.

  7. Fast Prediction of HCCI and PCCI Combustion with an Artificial Neural Network-Based Chemical Kinetic Model

    Energy Technology Data Exchange (ETDEWEB)

    Piggott, W T; Aceves, S M; Flowers, D L; Chen, J Y

    2007-09-26

    We have added the capability to look at in-cylinder fuel distributions using a previously developed ignition model within a fluid mechanics code (KIVA3V) that uses an artificial neural network (ANN) to predict ignition (The combined code: KIVA3V-ANN). KIVA3V-ANN was originally developed and validated for analysis of Homogeneous Charge Compression Ignition (HCCI) combustion, but it is also applicable to the more difficult problem of Premixed Charge Compression Ignition (PCCI) combustion. PCCI combustion refers to cases where combustion occurs as a nonmixing controlled, chemical kinetics dominated, autoignition process, where the fuel, air, and residual gas mixtures are not necessarily as homogeneous as in HCCI combustion. This paper analyzes the effects of introducing charge non-uniformity into a KIVA3V-ANN simulation. The results are compared to experimental results, as well as simulation results using a more physically representative and computationally intensive code (KIVA3V-MPI-MZ), which links a fluid mechanics code to a multi-zone detailed chemical kinetics solver. The results indicate that KIVA3V-ANN produces reasonable approximations to the more accurate KIVA3V-MPI-MZ at a much reduced computational cost.

  8. Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.

    Science.gov (United States)

    Xia, Youshen; Wang, Jun

    2015-07-01

    This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Late rectal bleeding after 3D-CRT for prostate cancer: development of a neural-network-based predictive model

    Science.gov (United States)

    Tomatis, S.; Rancati, T.; Fiorino, C.; Vavassori, V.; Fellin, G.; Cagna, E.; Mauro, F. A.; Girelli, G.; Monti, A.; Baccolini, M.; Naldi, G.; Bianchi, C.; Menegotti, L.; Pasquino, M.; Stasi, M.; Valdagni, R.

    2012-03-01

    The aim of this study was to develop a model exploiting artificial neural networks (ANNs) to correlate dosimetric and clinical variables with late rectal bleeding in prostate cancer patients undergoing radical radiotherapy and to compare the ANN results with those of a standard logistic regression (LR) analysis. 718 men included in the AIROPROS 0102 trial were analyzed. This multicenter protocol was characterized by the prospective evaluation of rectal toxicity, with a minimum follow-up of 36 months. Radiotherapy doses were between 70 and 80 Gy. Information was recorded for comorbidity, previous abdominal surgery, use of drugs and hormonal therapy. For each patient, a rectal dose-volume histogram (DVH) of the whole treatment was recorded and the equivalent uniform dose (EUD) evaluated as an effective descriptor of the whole DVH. Late rectal bleeding of grade ≥ 2 was considered to define positive events in this study (52 of 718 patients). The overall population was split into training and verification sets, both of which were involved in model instruction, and a test set, used to evaluate the predictive power of the model with independent data. Fourfold cross-validation was also used to provide realistic results for the full dataset. The LR was performed on the same data. Five variables were selected to predict late rectal bleeding: EUD, abdominal surgery, presence of hemorrhoids, use of anticoagulants and androgen deprivation. Following a receiver operating characteristic analysis of the independent test set, the areas under the curves (AUCs) were 0.704 and 0.655 for ANN and LR, respectively. When evaluated with cross-validation, the AUC was 0.714 for ANN and 0.636 for LR, which differed at a significance level of p = 0.03. When a practical discrimination threshold was selected, ANN could classify data with sensitivity and specificity both equal to 68.0%, whereas these values were 61.5% for LR. These data provide reasonable evidence that results obtained with

  10. Artificial Neural Network Based State Estimators Integrated into Kalmtool

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Ravn, Ole; Poulsen, Niels Kjølstad

    2012-01-01

    In this paper we present a toolbox enabling easy evaluation and comparison of dierent ltering algorithms. The toolbox is called Kalmtool and is a set of MATLAB tools for state estimation of nonlinear systems. The toolbox now contains functions for Articial Neural Network Based State Estimation...

  11. Analog neural network-based helicopter gearbox health monitoring system.

    Science.gov (United States)

    Monsen, P T; Dzwonczyk, M; Manolakos, E S

    1995-12-01

    The development of a reliable helicopter gearbox health monitoring system (HMS) has been the subject of considerable research over the past 15 years. The deployment of such a system could lead to a significant saving in lives and vehicles as well as dramatically reduce the cost of helicopter maintenance. Recent research results indicate that a neural network-based system could provide a viable solution to the problem. This paper presents two neural network-based realizations of an HMS system. A hybrid (digital/analog) neural system is proposed as an extremely accurate off-line monitoring tool used to reduce helicopter gearbox maintenance costs. In addition, an all analog neural network is proposed as a real-time helicopter gearbox fault monitor that can exploit the ability of an analog neural network to directly compute the discrete Fourier transform (DFT) as a sum of weighted samples. Hardware performance results are obtained using the Integrated Neural Computing Architecture (INCA/1) analog neural network platform that was designed and developed at The Charles Stark Draper Laboratory. The results indicate that it is possible to achieve a 100% fault detection rate with 0% false alarm rate by performing a DFT directly on the first layer of INCA/1 followed by a small-size two-layer feed-forward neural network and a simple post-processing majority voting stage.

  12. Neural Network Based Intelligent Sootblowing System

    Energy Technology Data Exchange (ETDEWEB)

    Mark Rhode

    2005-04-01

    . Due to the composition of coal, particulate matter is also a by-product of coal combustion. Modern day utility boilers are usually fitted with electrostatic precipitators to aid in the collection of particulate matter. Although extremely efficient, these devices are sensitive to rapid changes in inlet mass concentration as well as total mass loading. Traditionally, utility boilers are equipped with devices known as sootblowers, which use, steam, water or air to dislodge and clean the surfaces within the boiler and are operated based upon established rule or operator's judgment. Poor sootblowing regimes can influence particulate mass loading to the electrostatic precipitators. The project applied a neural network intelligent sootblowing system in conjunction with state-of-the-art controls and instruments to optimize the operation of a utility boiler and systematically control boiler slagging/fouling. This optimization process targeted reduction of NOx of 30%, improved efficiency of 2% and a reduction in opacity of 5%. The neural network system proved to be a non-invasive system which can readily be adapted to virtually any utility boiler. Specific conclusions from this neural network application are listed below. These conclusions should be used in conjunction with the specific details provided in the technical discussions of this report to develop a thorough understanding of the process.

  13. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  14. Modulation of grasping force in prosthetic hands using neural network-based predictive control.

    Science.gov (United States)

    Pasluosta, Cristian F; Chiu, Alan W L

    2015-01-01

    This chapter describes the implementation of a neural network-based predictive control system for driving a prosthetic hand. Nonlinearities associated with the electromechanical aspects of prosthetic devices present great challenges for precise control of this type of device. Model-based controllers may overcome this issue. Moreover, given the complexity of these kinds of electromechanical systems, neural network-based modeling arises as a good fit for modeling the fingers' dynamics. The results of simulations mimicking potential situations encountered during activities of daily living demonstrate the feasibility of this technique.

  15. Advanced neural network-based computational schemes for robust fault diagnosis

    CERN Document Server

    Mrugalski, Marcin

    2014-01-01

    The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practica...

  16. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...

  17. Neural network based adaptive output feedback control: Applications and improvements

    Science.gov (United States)

    Kutay, Ali Turker

    Application of recently developed neural network based adaptive output feedback controllers to a diverse range of problems both in simulations and experiments is investigated in this thesis. The purpose is to evaluate the theory behind the development of these controllers numerically and experimentally, identify the needs for further development in practical applications, and to conduct further research in directions that are identified to ultimately enhance applicability of adaptive controllers to real world problems. We mainly focus our attention on adaptive controllers that augment existing fixed gain controllers. A recently developed approach holds great potential for successful implementations on real world applications due to its applicability to systems with minimal information concerning the plant model and the existing controller. In this thesis the formulation is extended to the multi-input multi-output case for distributed control of interconnected systems and successfully tested on a formation flight wind tunnel experiment. The command hedging method is formulated for the approach to further broaden the class of systems it can address by including systems with input nonlinearities. Also a formulation is adopted that allows the approach to be applied to non-minimum phase systems for which non-minimum phase characteristics are modeled with sufficient accuracy and treated properly in the design of the existing controller. It is shown that the approach can also be applied to augment nonlinear controllers under certain conditions and an example is presented where the nonlinear guidance law of a spinning projectile is augmented. Simulation results on a high fidelity 6 degrees-of-freedom nonlinear simulation code are presented. The thesis also presents a preliminary adaptive controller design for closed loop flight control with active flow actuators. Behavior of such actuators in dynamic flight conditions is not known. To test the adaptive controller design in

  18. Neural Network Based Load Frequency Control for Restructuring ...

    African Journals Online (AJOL)

    Electric load variations can happen independently in both units. Both neural controllers are trained with the back propagation-through-time algorithm. Use of a neural network to model the dynamic system is avoided by introducing the Jacobian matrices of the system in the back propagation chain used in controller training.

  19. Neural network based feed-forward high density associative memory

    Science.gov (United States)

    Daud, T.; Moopenn, A.; Lamb, J. L.; Ramesham, R.; Thakoor, A. P.

    1987-01-01

    A novel thin film approach to neural-network-based high-density associative memory is described. The information is stored locally in a memory matrix of passive, nonvolatile, binary connection elements with a potential to achieve a storage density of 10 to the 9th bits/sq cm. Microswitches based on memory switching in thin film hydrogenated amorphous silicon, and alternatively in manganese oxide, have been used as programmable read-only memory elements. Low-energy switching has been ascertained in both these materials. Fabrication and testing of memory matrix is described. High-speed associative recall approaching 10 to the 7th bits/sec and high storage capacity in such a connection matrix memory system is also described.

  20. Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy

    Science.gov (United States)

    Sun, Ran; Wang, Jihe; Zhang, Dexin; Shao, Xiaowei

    2018-02-01

    This paper presents an adaptive neural networks-based control method for spacecraft formation with coupled translational and rotational dynamics using only aerodynamic forces. It is assumed that each spacecraft is equipped with several large flat plates. A coupled orbit-attitude dynamic model is considered based on the specific configuration of atmospheric-based actuators. For this model, a neural network-based adaptive sliding mode controller is implemented, accounting for system uncertainties and external perturbations. To avoid invalidation of the neural networks destroying stability of the system, a switching control strategy is proposed which combines an adaptive neural networks controller dominating in its active region and an adaptive sliding mode controller outside the neural active region. An optimal process is developed to determine the control commands for the plates system. The stability of the closed-loop system is proved by a Lyapunov-based method. Comparative results through numerical simulations illustrate the effectiveness of executing attitude control while maintaining the relative motion, and higher control accuracy can be achieved by using the proposed neural-based switching control scheme than using only adaptive sliding mode controller.

  1. An efficient neural network based method for medical image segmentation.

    Science.gov (United States)

    Torbati, Nima; Ayatollahi, Ahmad; Kermani, Ali

    2014-01-01

    The aim of this research is to propose a new neural network based method for medical image segmentation. Firstly, a modified self-organizing map (SOM) network, named moving average SOM (MA-SOM), is utilized to segment medical images. After the initial segmentation stage, a merging process is designed to connect the objects of a joint cluster together. A two-dimensional (2D) discrete wavelet transform (DWT) is used to build the input feature space of the network. The experimental results show that MA-SOM is robust to noise and it determines the input image pattern properly. The segmentation results of breast ultrasound images (BUS) demonstrate that there is a significant correlation between the tumor region selected by a physician and the tumor region segmented by our proposed method. In addition, the proposed method segments X-ray computerized tomography (CT) and magnetic resonance (MR) head images much better than the incremental supervised neural network (ISNN) and SOM-based methods. © 2013 Published by Elsevier Ltd.

  2. A novel neural network based image reconstruction model with scale and rotation invariance for target identification and classification for Active millimetre wave imaging

    Science.gov (United States)

    Agarwal, Smriti; Bisht, Amit Singh; Singh, Dharmendra; Pathak, Nagendra Prasad

    2014-12-01

    Millimetre wave imaging (MMW) is gaining tremendous interest among researchers, which has potential applications for security check, standoff personal screening, automotive collision-avoidance, and lot more. Current state-of-art imaging techniques viz. microwave and X-ray imaging suffers from lower resolution and harmful ionizing radiation, respectively. In contrast, MMW imaging operates at lower power and is non-ionizing, hence, medically safe. Despite these favourable attributes, MMW imaging encounters various challenges as; still it is very less explored area and lacks suitable imaging methodology for extracting complete target information. Keeping in view of these challenges, a MMW active imaging radar system at 60 GHz was designed for standoff imaging application. A C-scan (horizontal and vertical scanning) methodology was developed that provides cross-range resolution of 8.59 mm. The paper further details a suitable target identification and classification methodology. For identification of regular shape targets: mean-standard deviation based segmentation technique was formulated and further validated using a different target shape. For classification: probability density function based target material discrimination methodology was proposed and further validated on different dataset. Lastly, a novel artificial neural network based scale and rotation invariant, image reconstruction methodology has been proposed to counter the distortions in the image caused due to noise, rotation or scale variations. The designed neural network once trained with sample images, automatically takes care of these deformations and successfully reconstructs the corrected image for the test targets. Techniques developed in this paper are tested and validated using four different regular shapes viz. rectangle, square, triangle and circle.

  3. A Predictive Neural Network-Based Cascade Control for pH Reactors

    Directory of Open Access Journals (Sweden)

    Mujahed AlDhaifallah

    2016-01-01

    Full Text Available This paper is concerned with the development of predictive neural network-based cascade control for pH reactors. The cascade structure consists of a master control loop (fuzzy proportional-integral and a slave one (predictive neural network. The master loop is chosen to be more accurate but slower than the slave one. The strong features found in cascade structure have been added to the inherent features in model predictive neural network. The neural network is used to alleviate modeling difficulties found with pH reactor and to predict its behavior. The parameters of predictive algorithm are determined using an optimization algorithm. The effectiveness and feasibility of the proposed design have been demonstrated using MatLab.

  4. Dynamic neural network-based methods for compensation of nonlinear effects in multimode communication lines

    Science.gov (United States)

    Sidelnikov, O. S.; Redyuk, A. A.; Sygletos, S.

    2017-12-01

    We consider neural network-based schemes of digital signal processing. It is shown that the use of a dynamic neural network-based scheme of signal processing ensures an increase in the optical signal transmission quality in comparison with that provided by other methods for nonlinear distortion compensation.

  5. Implementation of neural network based non-linear predictive

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non......-linear systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....

  6. Models of logistic regression analysis, support vector machine, and back-propagation neural network based on serum tumor markers in colorectal cancer diagnosis.

    Science.gov (United States)

    Zhang, B; Liang, X L; Gao, H Y; Ye, L S; Wang, Y G

    2016-05-13

    We evaluated the application of three machine learning algorithms, including logistic regression, support vector machine and back-propagation neural network, for diagnosing congenital heart disease and colorectal cancer. By inspecting related serum tumor marker levels in colorectal cancer patients and healthy subjects, early diagnosis models for colorectal cancer were built using three machine learning algorithms to assess their corresponding diagnostic values. Except for serum alpha-fetoprotein, the levels of 11 other serum markers of patients in the colorectal cancer group were higher than those in the benign colorectal cancer group (P model and back-propagation, a neural network diagnosis model was built with diagnostic accuracies of 82 and 75%, sensitivities of 85 and 80%, and specificities of 80 and 70%, respectively. Colorectal cancer diagnosis models based on the three machine learning algorithms showed high diagnostic value and can help obtain evidence for the early diagnosis of colorectal cancer.

  7. Neural-network-based fuzzy logic decision systems

    Science.gov (United States)

    Kulkarni, Arun D.; Giridhar, G. B.; Coca, Praveen

    1994-10-01

    During the last few years there has been a large and energetic upswing in research efforts aimed at synthesizing fuzzy logic with neural networks. This combination of neural networks and fuzzy logic seems natural because the two approaches generally attack the design of `intelligent' system from quite different angles. Neural networks provide algorithms for learning, classification, and optimization whereas fuzzy logic often deals with issues such as reasoning in a high (semantic or linguistic) level. Consequently the two technologies complement each other. In this paper, we combine neural networks with fuzzy logic techniques. We propose an artificial neural network (ANN) model for a fuzzy logic decision system. The model consists of six layers. The first three layers map the input variables to fuzzy set membership functions. The last three layers implement the decision rules. The model learns the decision rules using a supervised gradient descent procedure. As an illustration we considered two examples. The first example deals with pixel classification in multispectral satellite images. In our second example we used the fuzzy decision system to analyze data from magnetic resonance imaging (MRI) scans for tissue classification.

  8. A NEURAL NETWORK BASED IRIS RECOGNITION SYSTEM FOR PERSONAL IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    Usham Dias

    2010-10-01

    Full Text Available This paper presents biometric personal identification based on iris recognition using artificial neural networks. Personal identification system consists of localization of the iris region, normalization, enhancement and then iris pattern recognition using neural network. In this paper, through results obtained, we have shown that a person’s left and right eye are unique. In this paper, we also show that the network is sensitive to the initial weights and that over-training gives bad results. We also propose a fast algorithm for the localization of the inner and outer boundaries of the iris region. Results of simulations illustrate the effectiveness of the neural system in personal identification. Finally a hardware iris recognition model is proposed and implementation aspects are discussed.

  9. Neural network-based crop growth model to predict processing tomato yield on a site-specific basis using remotely sensed data

    Science.gov (United States)

    Koller, Michal

    Remote sensing is one of the major data acquisition tools available to rapidly acquire soil and plant related information over a wide area for use in precision agriculture. Green canopy has very specific reflectance characteristics distinguishing it from other materials such as soil and dry vegetative matter. Reflectance values in red (R) and near infra-red (NIR) spectral bands have been widely used for calculating normalized difference vegetation index (NDVI). Many researchers have related NDVI values to plant vigor, water stress, leaf area index (LAI) and/or yield. However, vegetative indices such as NDVI are usually sensitive to background reflectance characteristics. Often soil adjusted vegetation indices (SAVI) are used to minimize the background effect. In this study we have developed a relationship between the processing tomato yield and SAVI based on the R and NIR reflectance. Eight three band (R, NIR and green) aerial images were obtained at approximately two-week intervals during the 2000 processing tomato growing season. These images were analyzed to obtain SAVI values which were in turn related to LAI using regression techniques. A tuned neural network was developed to predict daily LAI values based on the biweekly experimental LAI values derived from aerial images. The coefficients of multiple determination between the actual LAI and neural network predicted LAI values were greater than 0.96 for all 56 grid points. The LAI values were numerically integrated over the whole growing season to obtain cumulative leaf area index days (CLAID). The CLAID values predicted from the neural network correlated very well with experimentally derived CLAID values (coefficient of determination, r2 = 0.83) indicating that the neural network model simulated processing tomato growth well. A crop growth model that was capable of predicting crop yield based on neural network predicted LAI values and CIMIS weather data was developed. Although predicted yield tended to be low

  10. Neural network based PWM AC chopper fed induction motor drive

    Directory of Open Access Journals (Sweden)

    Venkatesan Jamuna

    2009-01-01

    Full Text Available In this paper, a new Simulink model for a neural network controlled PWM AC chopper fed single phase induction motor is proposed. Closed loop speed control is achieved using a neural network controller. To maintain a constant fluid flow with a variation in pressure head, drives like fan and pump are operated with closed loop speed control. The need to improve the quality and reliability of the drive circuit has increased because of the growing demand for improving the performance of motor drives. With the increased availability of MOSFET's and IGBT's, PWM converters can be used efficiently in low and medium power applications. From the simulation studies, it is seen that the PWM AC chopper has a better harmonic spectrum and lesser copper loss than the Phase controlled AC chopper. It is observed that the drive system with the proposed model produces better dynamic performance, reduced overshoot and fast transient response. .

  11. Autonomous Orbit Determination for Lagrangian Navigation Satellite Based on Neural Network Based State Observer

    Directory of Open Access Journals (Sweden)

    Youtao Gao

    2017-01-01

    Full Text Available In order to improve the accuracy of the dynamical model used in the orbit determination of the Lagrangian navigation satellites, the nonlinear perturbations acting on Lagrangian navigation satellites are estimated by a neural network. A neural network based state observer is applied to autonomously determine the orbits of Lagrangian navigation satellites using only satellite-to-satellite range. This autonomous orbit determination method does not require linearizing the dynamical mode. There is no need to calculate the transition matrix. It is proved that three satellite-to-satellite ranges are needed using this method; therefore, the navigation constellation should include four Lagrangian navigation satellites at least. Four satellites orbiting on the collinear libration orbits are chosen to construct a constellation which is used to demonstrate the utility of this method. Simulation results illustrate that the stable error of autonomous orbit determination is about 10 m. The perturbation can be estimated by the neural network.

  12. Neural Network-Based Abstract Generation for Opinions and Arguments

    OpenAIRE

    Wang, Lu; Ling, Wang

    2016-01-01

    We study the problem of generating abstractive summaries for opinionated text. We propose an attention-based neural network model that is able to absorb information from multiple text units to construct informative, concise, and fluent summaries. An importance-based sampling method is designed to allow the encoder to integrate information from an important subset of input. Automatic evaluation indicates that our system outperforms state-of-the-art abstractive and extractive summarization syst...

  13. Designing Network-based Business Model Ontology

    DEFF Research Database (Denmark)

    Hashemi Nekoo, Ali Reza; Ashourizadeh, Shayegheh; Zarei, Behrouz

    2015-01-01

    Survival on dynamic environment is not achieved without a map. Scanning and monitoring of the market show business models as a fruitful tool. But scholars believe that old-fashioned business models are dead; as they are not included the effect of internet and network in themselves. This paper...... is going to propose e-business model ontology from the network point of view and its application in real world. The suggested ontology for network-based businesses is composed of individuals` characteristics and what kind of resources they own. also, their connections and pre-conceptions of connections...... such as shared-mental model and trust. However, it mostly covers previous business model elements. To confirm the applicability of this ontology, it has been implemented in business angel network and showed how it works....

  14. Neural network based semi-active control strategy for structural vibration mitigation with magnetorheological damper

    DEFF Research Database (Denmark)

    Bhowmik, Subrata

    2011-01-01

    This paper presents a neural network based semi-active control method for a rotary type magnetorheological (MR) damper. The characteristics of the MR damper are described by the classic Bouc-Wen model, and the performance of the proposed control method is evaluated in terms of a base exited shear...... frame structure. As demonstrated in the literature effective damping of flexible structures is obtained by a suitable combination of pure friction and negative damper stiffness. This damper model is rate-independent and fully described by the desired shape of the hysteresis loops or force...... mode of the structure. The neural network control is then developed to reproduce the desired force based on damper displacement and velocity as network input, and it is therefore referred to as an amplitude dependent model reference control method. An inverse model of the MR damper is needed...

  15. Artificial neural network-based model for the prediction of optimal growth and culture conditions for maximum biomass accumulation in multiple shoot cultures of Centella asiatica.

    Science.gov (United States)

    Prasad, Archana; Prakash, Om; Mehrotra, Shakti; Khan, Feroz; Mathur, Ajay Kumar; Mathur, Archana

    2017-01-01

    An artificial neural network (ANN)-based modelling approach is used to determine the synergistic effect of five major components of growth medium (Mg, Cu, Zn, nitrate and sucrose) on improved in vitro biomass yield in multiple shoot cultures of Centella asiatica. The back propagation neural network (BPNN) was employed to predict optimal biomass accumulation in terms of growth index over a defined culture duration of 35 days. The four variable concentrations of five media components, i.e. MgSO 4 (0, 0.75, 1.5, 3.0 mM), ZnSO 4 (0, 15, 30, 60 μM), CuSO 4 (0, 0.05, 0.1, 0.2 μM), NO 3 (20, 30, 40, 60 mM) and sucrose (1, 3, 5, 7 %, w/v) were taken as inputs for the ANN model. The designed model was evaluated by performing three different sets of validation experiments that indicated a greater similarity between the target and predicted dataset. The results of the modelling experiment suggested that 1.5 mM Mg, 30 μM Zn, 0.1 μM Cu, 40 mM NO 3 and 6 % (w/v) sucrose were the respective optimal concentrations of the tested medium components for achieving maximum growth index of 1654.46 with high centelloside yield (62.37 mg DW/culture) in the cultured multiple shoots. This study can facilitate the generation of higher biomass of uniform, clean, good quality C. asiatica herb that can efficiently be utilized by pharmaceutical industries.

  16. Forecasting stochastic neural network based on financial empirical mode decomposition.

    Science.gov (United States)

    Wang, Jie; Wang, Jun

    2017-06-01

    In an attempt to improve the forecasting accuracy of stock price fluctuations, a new one-step-ahead model is developed in this paper which combines empirical mode decomposition (EMD) with stochastic time strength neural network (STNN). The EMD is a processing technique introduced to extract all the oscillatory modes embedded in a series, and the STNN model is established for considering the weight of occurrence time of the historical data. The linear regression performs the predictive availability of the proposed model, and the effectiveness of EMD-STNN is revealed clearly through comparing the predicted results with the traditional models. Moreover, a new evaluated method (q-order multiscale complexity invariant distance) is applied to measure the predicted results of real stock index series, and the empirical results show that the proposed model indeed displays a good performance in forecasting stock market fluctuations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Deep Neural Network Based Demand Side Short Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Seunghyoung Ryu

    2016-12-01

    Full Text Available In the smart grid, one of the most important research areas is load forecasting; it spans from traditional time series analyses to recent machine learning approaches and mostly focuses on forecasting aggregated electricity consumption. However, the importance of demand side energy management, including individual load forecasting, is becoming critical. In this paper, we propose deep neural network (DNN-based load forecasting models and apply them to a demand side empirical load database. DNNs are trained in two different ways: a pre-training restricted Boltzmann machine and using the rectified linear unit without pre-training. DNN forecasting models are trained by individual customer’s electricity consumption data and regional meteorological elements. To verify the performance of DNNs, forecasting results are compared with a shallow neural network (SNN, a double seasonal Holt–Winters (DSHW model and the autoregressive integrated moving average (ARIMA. The mean absolute percentage error (MAPE and relative root mean square error (RRMSE are used for verification. Our results show that DNNs exhibit accurate and robust predictions compared to other forecasting models, e.g., MAPE and RRMSE are reduced by up to 17% and 22% compared to SNN and 9% and 29% compared to DSHW.

  18. Structure Learning for Deep Neural Networks Based on Multiobjective Optimization.

    Science.gov (United States)

    Liu, Jia; Gong, Maoguo; Miao, Qiguang; Wang, Xiaogang; Li, Hao

    2017-05-05

    This paper focuses on the connecting structure of deep neural networks and proposes a layerwise structure learning method based on multiobjective optimization. A model with better generalization can be obtained by reducing the connecting parameters in deep networks. The aim is to find the optimal structure with high representation ability and better generalization for each layer. Then, the visible data are modeled with respect to structure based on the products of experts. In order to mitigate the difficulty of estimating the denominator in PoE, the denominator is simplified and taken as another objective, i.e., the connecting sparsity. Moreover, for the consideration of the contradictory nature between the representation ability and the network connecting sparsity, the multiobjective model is established. An improved multiobjective evolutionary algorithm is used to solve this model. Two tricks are designed to decrease the computational cost according to the properties of input data. The experiments on single-layer level, hierarchical level, and application level demonstrate the effectiveness of the proposed algorithm, and the learned structures can improve the performance of deep neural networks.

  19. Extended neural network-based scheme for real-time force tracking with magnetorheological dampers

    DEFF Research Database (Denmark)

    Weber, Felix; Bhowmik, Subrata; Høgsberg, Jan Becker

    2014-01-01

    This paper validates numerically and experimentally a new neural network-based real-time force tracking scheme for magnetorheological (MR) dampers on a five-storey shear frame with MR damper. The inverse model is trained with absolute values of measured velocity and force because the targeted...... current is a positive quantity. The validation shows accurate results except of small current spikes when the desired force is in the vicinity of the residual MR damper force. In the closed-loop, higher frequency components in the current are triggered by the transition of the actual MR damper force from...

  20. Artificial neural network based particle size prediction of polymeric nanoparticles.

    Science.gov (United States)

    Youshia, John; Ali, Mohamed Ehab; Lamprecht, Alf

    2017-10-01

    Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificial neural network including these properties as input with particle size and polydispersity index as output. The established model successfully predicted particle size of nanoparticles covering a range of 70-400nm prepared from other polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and testing data, respectively. Polymer surface activity was found to have the highest impact on the particle size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted polymer properties affecting particle size and confirmed the usefulness of artificial neural networks in predicting the particle size and polydispersity of polymeric nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. neural network based load frequency control for restructuring power

    African Journals Online (AJOL)

    2012-03-01

    Mar 1, 2012 ... Abstract. In this study, an artificial neural network (ANN) application of load frequency control. (LFC) of a Multi-Area power system by using a neural network controller is presented. The comparison between a conventional Proportional Integral (PI) controller and the proposed artificial neural networks ...

  2. Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine

    Science.gov (United States)

    Acharya, Nachiketa; Shrivastava, Nitin Anand; Panigrahi, B. K.; Mohanty, U. C.

    2014-09-01

    The south peninsular part of India gets maximum amount of rainfall during the northeast monsoon (NEM) season [October to November (OND)] which is the primary source of water for the agricultural activities in this region. A nonlinear method viz., Extreme learning machine (ELM) has been employed on general circulation model (GCM) products to make the multi-model ensemble (MME) based estimation of NEM rainfall (NEMR). The ELM is basically is an improved learning algorithm for the single feed-forward neural network (SLFN) architecture. The 27 year (1982-2008) lead-1 (using initial conditions of September for forecasting the mean rainfall of OND) hindcast runs (1982-2008) from seven GCM has been used to make MME. The improvement of the proposed method with respect to other regular MME (simple arithmetic mean of GCMs (EM) and singular value decomposition based multiple linear regressions based MME) has been assessed through several skill metrics like Spread distribution, multiplicative bias, prediction errors, the yield of prediction, Pearson's and Kendal's correlation coefficient and Wilmort's index of agreement. The efficiency of ELM estimated rainfall is established by all the stated skill scores. The performance of ELM in extreme NEMR years, out of which 4 years are characterized by deficit rainfall and 5 years are identified as excess, is also examined. It is found that the ELM could expeditiously capture these extremes reasonably well as compared to the other MME approaches.

  3. Coupling a Neural Network-Based forward Model and a Bayesian Inversion Approach to Retrieve Wind Field from Spaceborne Polarimetric Radiometers.

    Science.gov (United States)

    Pulvirenti, Luca; Pierdicca, Nazzareno; Marzano, Frank S

    2008-12-03

    A simulation study to assess the potentiality of sea surface wind vector estimation based on the approximation of the forward model through Neural Networks and on the Bayesian theory of parameter estimation is presented. A polarimetric microwave radiometer has been considered and its observations have been simulated by means of the two scale model. To perform the simulations, the atmospheric and surface parameters have been derived from ECMWF analysis fields. To retrieve wind speed, Minimum Variance (MV) and Maximum Posterior Probability (MAP) criteria have been used while, for wind direction, a Maximum Likelihood (ML) criterion has been exploited. To minimize the cost function of MAP and ML, conventional Gradient Descent method, as well as Simulated Annealing optimization technique, have been employed. Results have shown that the standard deviation of the wind speed retrieval error is approximately 1.1 m/s for the best estimator. As for the wind direction, the standard deviation of the estimation error is less than 13° for wind speeds larger than 6 m/s. For lower wind velocities, the wind direction signal is too weak to ensure reliable retrievals. A method to deal with the non-uniqueness of the wind direction solution has been also developed. A test on a case study has yielded encouraging results.

  4. A comparison of neural network-based predictions of foF2 with the IRI-2012 model at conjugate points in Southeast Asia

    Science.gov (United States)

    Wichaipanich, Noraset; Hozumi, Kornyanat; Supnithi, Pornchai; Tsugawa, Takuya

    2017-06-01

    This paper presents the development of Neural Network (NN) model for the prediction of the F2 layer critical frequency (foF2) at three ionosonde stations near the magnetic equator of Southeast Asia. Two of these stations including Chiang Mai (18.76°N, 98.93°E, dip angle 12.7°N) and Kototabang (0.2°S, 100.3°E, dip angle 10.1°S) are at the conjugate points while Chumphon (10.72°N, 99.37°E, dip angle 3.0°N) station is near the equator. To produce the model, the feed forward network with backpropagation algorithm is applied. The NN is trained with the daily hourly values of foF2 during 2004-2012, except 2009, and the selected input parameters, which affect the foF2 variability, include day number (DN), hour number (HR), solar zenith angle (C), geographic latitude (θ), magnetic inclination (I), magnetic declination (D) and angle of meridian (M) relative to the sub-solar point, the 7-day mean of F10.7 (F10.7_7), the 81-day mean of SSN (SSN_81) and the 2-day mean of Ap (Ap_2). The foF2 data of 2009 and 2013 are then used for testing the NN model during the foF2 interpolation and extrapolation, respectively. To examine the performance of the proposed NN, the root mean square error (RMSE) of the observed foF2, the proposed NN model and the IRI-2012 (CCIR and URSI options) model are compared. In general, the results show the same trends in foF2 variation between the models (NN and IRI-2012) and the observations in that they are higher during the day and lower at night. Besides, the results demonstrate that the proposed NN model can predict the foF2 values more closely during daytime than during nighttime as supported by the lower RMSE values during daytime (0.5 ≤ RMSE ≤ 1.0 for Chumphon and Kototabang, 0.7 ≤ RMSE ≤ 1.2 at Chiang Mai) and with the highest levels during nighttime (0.8 ≤ RMSE ≤ 1.5 for Chumphon and Kototabang, 1.2 ≤ RMSE ≤ 2.0 at Chiang Mai). Furthermore, the NN model predicts the foF2 values more accurately than the IRI model at the

  5. Stability Analysis of Neural Networks-Based System Identification

    Directory of Open Access Journals (Sweden)

    Talel Korkobi

    2008-01-01

    Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.

  6. A neural network based approach to social touch classification

    NARCIS (Netherlands)

    van Wingerden, Siewart; Uebbing, Tobias J.; Jung, Merel Madeleine; Poel, Mannes

    2014-01-01

    Touch is an important interaction modality in social interaction, for instance touch can communicate emotions and can intensify emotions communicated by other modalities. In this paper we explore the use of Neural Networks for the classification of touch. The exploration and assessment of Neural

  7. Artificial Neural Network-Based System for PET Volume Segmentation

    Directory of Open Access Journals (Sweden)

    Mhd Saeed Sharif

    2010-01-01

    Full Text Available Tumour detection, classification, and quantification in positron emission tomography (PET imaging at early stage of disease are important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy, and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI approaches can provide improved accuracy and save decent amount of time. Artificial neural networks (ANNs, as one of the best AI techniques, have the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application. The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results.

  8. A neural network based reputation bootstrapping approach for service selection

    Science.gov (United States)

    Wu, Quanwang; Zhu, Qingsheng; Li, Peng

    2015-10-01

    With the concept of service-oriented computing becoming widely accepted in enterprise application integration, more and more computing resources are encapsulated as services and published online. Reputation mechanism has been studied to establish trust on prior unknown services. One of the limitations of current reputation mechanisms is that they cannot assess the reputation of newly deployed services as no record of their previous behaviours exists. Most of the current bootstrapping approaches merely assign default reputation values to newcomers. However, by this kind of methods, either newcomers or existing services will be favoured. In this paper, we present a novel reputation bootstrapping approach, where correlations between features and performance of existing services are learned through an artificial neural network (ANN) and they are then generalised to establish a tentative reputation when evaluating new and unknown services. Reputations of services published previously by the same provider are also incorporated for reputation bootstrapping if available. The proposed reputation bootstrapping approach is seamlessly embedded into an existing reputation model and implemented in the extended service-oriented architecture. Empirical studies of the proposed approach are shown at last.

  9. Neural Network-Based Segmentation of Textures Using Gabor Features

    OpenAIRE

    Ramakrishnan, AG; Raja, Kumar S; Ram, Ragu HV

    2002-01-01

    The effectiveness of Gabor filters for texture segmentation is well known. In this paper, we propose a texture identification scheme, based on a neural network (NN) using Gabor features. The features are derived from both the Gabor cosine and sine filters. Through experiments, we demonstrate the effectiveness of a NN based classifier using Gabor features for identifying textures in a controlled environment. The neural network used for texture identification is based on the multilayer perceptr...

  10. Neural network based optimal control of HVAC&R systems

    Science.gov (United States)

    Ning, Min

    Heating, Ventilation, Air-Conditioning and Refrigeration (HVAC&R) systems have wide applications in providing a desired indoor environment for different types of buildings. It is well acknowledged that 30%-40% of the total energy generated is consumed by buildings and HVAC&R systems alone account for more than 50% of the building energy consumption. Low operational efficiency especially under partial load conditions and poor control are part of reasons for such high energy consumption. To improve energy efficiency, HVAC&R systems should be properly operated to maintain a comfortable and healthy indoor environment under dynamic ambient and indoor conditions with the least energy consumption. This research focuses on the optimal operation of HVAC&R systems. The optimization problem is formulated and solved to find the optimal set points for the chilled water supply temperature, discharge air temperature and AHU (air handling unit) fan static pressure such that the indoor environment is maintained with the least chiller and fan energy consumption. To achieve this objective, a dynamic system model is developed first to simulate the system behavior under different control schemes and operating conditions. The system model is modular in structure, which includes a water-cooled vapor compression chiller model and a two-zone VAV system model. A fuzzy-set based extended transformation approach is then applied to investigate the uncertainties of this model caused by uncertain parameters and the sensitivities of the control inputs with respect to the interested model outputs. A multi-layer feed forward neural network is constructed and trained in unsupervised mode to minimize the cost function which is comprised of overall energy cost and penalty cost when one or more constraints are violated. After training, the network is implemented as a supervisory controller to compute the optimal settings for the system. In order to implement the optimal set points predicted by the

  11. Neural network based adaptive control for nonlinear dynamic regimes

    Science.gov (United States)

    Shin, Yoonghyun

    Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.

  12. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    Science.gov (United States)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  13. Feature extraction for deep neural networks based on decision boundaries

    Science.gov (United States)

    Woo, Seongyoun; Lee, Chulhee

    2017-05-01

    Feature extraction is a process used to reduce data dimensions using various transforms while preserving the discriminant characteristics of the original data. Feature extraction has been an important issue in pattern recognition since it can reduce the computational complexity and provide a simplified classifier. In particular, linear feature extraction has been widely used. This method applies a linear transform to the original data to reduce the data dimensions. The decision boundary feature extraction method (DBFE) retains only informative directions for discriminating among the classes. DBFE has been applied to various parametric and non-parametric classifiers, which include the Gaussian maximum likelihood classifier (GML), the k-nearest neighbor classifier, support vector machines (SVM) and neural networks. In this paper, we apply DBFE to deep neural networks. This algorithm is based on the nonparametric version of DBFE, which was developed for neural networks. Experimental results with the UCI database show improved classification accuracy with reduced dimensionality.

  14. Neural network based load and price forecasting and confidence interval estimation in deregulated power markets

    Science.gov (United States)

    Zhang, Li

    With the deregulation of the electric power market in New England, an independent system operator (ISO) has been separated from the New England Power Pool (NEPOOL). The ISO provides a regional spot market, with bids on various electricity-related products and services submitted by utilities and independent power producers. A utility can bid on the spot market and buy or sell electricity via bilateral transactions. Good estimation of market clearing prices (MCP) will help utilities and independent power producers determine bidding and transaction strategies with low risks, and this is crucial for utilities to compete in the deregulated environment. MCP prediction, however, is difficult since bidding strategies used by participants are complicated and MCP is a non-stationary process. The main objective of this research is to provide efficient short-term load and MCP forecasting and corresponding confidence interval estimation methodologies. In this research, the complexity of load and MCP with other factors is investigated, and neural networks are used to model the complex relationship between input and output. With improved learning algorithm and on-line update features for load forecasting, a neural network based load forecaster was developed, and has been in daily industry use since summer 1998 with good performance. MCP is volatile because of the complexity of market behaviors. In practice, neural network based MCP predictors usually have a cascaded structure, as several key input factors need to be estimated first. In this research, the uncertainties involved in a cascaded neural network structure for MCP prediction are analyzed, and prediction distribution under the Bayesian framework is developed. A fast algorithm to evaluate the confidence intervals by using the memoryless Quasi-Newton method is also developed. The traditional back-propagation algorithm for neural network learning needs to be improved since MCP is a non-stationary process. The extended Kalman

  15. Visual evoked potential estimation by adaptive noise cancellation with neural-network-based fuzzy inference system.

    Science.gov (United States)

    Zeng, Y; Zhang, J; Yin, H; Pan, Y

    2007-01-01

    Visual evoked potentials (VEPs) are time-varying signals typically buried in relatively large background noise known as the electroencephalogram (EEG). In this paper, an adaptive noise cancellation with neural network-based fuzzy inference system (NNFIS) was used and the NNFIS was carefully designed to model the VEP signal. It is assumed that VEP responses can be modelled by NNFIS with the centres of its membership functions evenly distributed over time. The weights of NNFIS are adaptively determined by minimizing the variance of the error signal using the least mean squares (LMS) algorithm. As the NNFIS is dynamic to any change of VEP, the non-stationary characteristics of VEP can be tracked. Thus, this method should be able to track the VEP. Four sets of simulated data indicate that the proposed method is appropriate to estimate VEP. A total of 150 trials are processed to demonstrate the superior performance of the proposed method.

  16. Spiking neural network-based control chart pattern recognition

    Directory of Open Access Journals (Sweden)

    Medhat H.A. Awadalla

    2012-03-01

    Full Text Available Due to an increasing competition in products, consumers have become more critical in choosing products. The quality of products has become more important. Statistical Process Control (SPC is usually used to improve the quality of products. Control charting plays the most important role in SPC. Control charts help to monitor the behavior of the process to determine whether it is stable or not. Unnatural patterns in control charts mean that there are some unnatural causes for variations in SPC. Spiking neural networks (SNNs are the third generation of artificial neural networks that consider time as an important feature for information representation and processing. In this paper, a spiking neural network architecture is proposed to be used for control charts pattern recognition (CCPR. Furthermore, enhancements to the SpikeProp learning algorithm are proposed. These enhancements provide additional learning rules for the synaptic delays, time constants and for the neurons thresholds. Simulated experiments have been conducted and the achieved results show a remarkable improvement in the overall performance compared with artificial neural networks.

  17. RBF neural network based H∞ H∞ H∞ synchronization for ...

    Indian Academy of Sciences (India)

    Based on this neural network and linear matrix inequality (LMI) formulation, the RBFNNHS controller and the learning laws are presented to reduce the effect of disturbance to an H ∞ norm constraint. It is shown that finding the RBFNNHS controller and the learning laws can be transformed into the LMI problem and solved ...

  18. RBF neural network based H∞ synchronization for unknown chaotic ...

    Indian Academy of Sciences (India)

    MS received 9 February 2010; accepted 24 May 2010. Abstract. In this paper, we propose a new H∞ synchronization strategy, called a. Radial Basis Function Neural Network H∞ synchronization (RBFNNHS) strategy, for unknown chaotic systems in the presence of external disturbance. In the pro- posed framework, a ...

  19. Neural-network-based voice-tracking algorithm

    Science.gov (United States)

    Baker, Mary; Stevens, Charise; Chaparro, Brennen; Paschall, Dwayne

    2002-11-01

    A voice-tracking algorithm was developed and tested for the purposes of electronically separating the voice signals of simultaneous talkers. Many individuals suffer from hearing disorders that often inhibit their ability to focus on a single speaker in a multiple speaker environment (the cocktail party effect). Digital hearing aid technology makes it possible to implement complex algorithms for speech processing in both the time and frequency domains. In this work, an average magnitude difference function (AMDF) was performed on mixed voice signals in order to determine the fundamental frequencies present in the signals. A time prediction neural network was trained to recognize normal human voice inflection patterns, including rising, falling, rising-falling, and falling-rising patterns. The neural network was designed to track the fundamental frequency of a single talker based on the training procedure. The output of the neural network can be used to design an active filter for speaker segregation. Tests were done using audio mixing of two to three speakers uttering short phrases. The AMDF function accurately identified the fundamental frequencies present in the signal. The neural network was tested using a single speaker uttering a short sentence. The network accurately tracked the fundamental frequency of the speaker.

  20. Neural network based system for script identification in Indian ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    environments. The system developed includes a feature extractor and a modular neural network. The feature extractor consists of two stages. In the first stage ... environments is script/language identification (Muthusamy et al 1994; Hochberg et al 1997). ... In order to take advantage of the learning and generalization abilities ...

  1. Community structure of complex networks based on continuous neural network

    Science.gov (United States)

    Dai, Ting-ting; Shan, Chang-ji; Dong, Yan-shou

    2017-09-01

    As a new subject, the research of complex networks has attracted the attention of researchers from different disciplines. Community structure is one of the key structures of complex networks, so it is a very important task to analyze the community structure of complex networks accurately. In this paper, we study the problem of extracting the community structure of complex networks, and propose a continuous neural network (CNN) algorithm. It is proved that for any given initial value, the continuous neural network algorithm converges to the eigenvector of the maximum eigenvalue of the network modularity matrix. Therefore, according to the stability of the evolution of the network symbol will be able to get two community structure.

  2. Estimation of tool wear during CNC milling using neural network-based sensor fusion

    Science.gov (United States)

    Ghosh, N.; Ravi, Y. B.; Patra, A.; Mukhopadhyay, S.; Paul, S.; Mohanty, A. R.; Chattopadhyay, A. B.

    2007-01-01

    Cutting tool wear degrades the product quality in manufacturing processes. Monitoring tool wear value online is therefore needed to prevent degradation in machining quality. Unfortunately there is no direct way of measuring the tool wear online. Therefore one has to adopt an indirect method wherein the tool wear is estimated from several sensors measuring related process variables. In this work, a neural network-based sensor fusion model has been developed for tool condition monitoring (TCM). Features extracted from a number of machining zone signals, namely cutting forces, spindle vibration, spindle current, and sound pressure level have been fused to estimate the average flank wear of the main cutting edge. Novel strategies such as, signal level segmentation for temporal registration, feature space filtering, outlier removal, and estimation space filtering have been proposed. The proposed approach has been validated by both laboratory and industrial implementations.

  3. Boosting feature selection for Neural Network based regression.

    Science.gov (United States)

    Bailly, Kevin; Milgram, Maurice

    2009-01-01

    The head pose estimation problem is well known to be a challenging task in computer vision and is a useful tool for several applications involving human-computer interaction. This problem can be stated as a regression one where the input is an image and the output is pan and tilt angles. Finding the optimal regression is a hard problem because of the high dimensionality of the input (number of image pixels) and the large variety of morphologies and illumination. We propose a new method combining a boosting strategy for feature selection and a neural network for the regression. Potential features are a very large set of Haar-like wavelets which are well known to be adapted to face image processing. To achieve the feature selection, a new Fuzzy Functional Criterion (FFC) is introduced which is able to evaluate the link between a feature and the output without any estimation of the joint probability density function as in the Mutual Information. The boosting strategy uses this criterion at each step: features are evaluated by the FFC using weights on examples computed from the error produced by the neural network trained at the previous step. Tests are carried out on the commonly used Pointing 04 database and compared with three state-of-the-art methods. We also evaluate the accuracy of the estimation on FacePix, a database with a high angular resolution. Our method is compared positively to a Convolutional Neural Network, which is well known to incorporate feature extraction in its first layers.

  4. Artificial neural network based approach to EEG signal simulation.

    Science.gov (United States)

    Tomasevic, Nikola M; Neskovic, Aleksandar M; Neskovic, Natasa J

    2012-06-01

    In this paper a new approach to the electroencephalogram (EEG) signal simulation based on the artificial neural networks (ANN) is proposed. The aim was to simulate the spontaneous human EEG background activity based solely on the experimentally acquired EEG data. Therefore, an EEG measurement campaign was conducted on a healthy awake adult in order to obtain an adequate ANN training data set. As demonstration of the performance of the ANN based approach, comparisons were made against autoregressive moving average (ARMA) filtering based method. Comprehensive quantitative and qualitative statistical analysis showed clearly that the EEG process obtained by the proposed method was in satisfactory agreement with the one obtained by measurements.

  5. Neural network based data-driven predictor: Case study on clinker ...

    African Journals Online (AJOL)

    Soft sensors are key solutions in process industries. Important parameters which are difficult or cost a lot to measure can be predicted using soft sensors. In this paper neural network based clinker quality predictor is developed. The predictor genuinely estimates LSF, SM, AM and C3S values. There is a time delay while ...

  6. Deep Recurrent Neural Network-Based Autoencoders for Acoustic Novelty Detection

    Directory of Open Access Journals (Sweden)

    Erik Marchi

    2017-01-01

    Full Text Available In the emerging field of acoustic novelty detection, most research efforts are devoted to probabilistic approaches such as mixture models or state-space models. Only recent studies introduced (pseudo-generative models for acoustic novelty detection with recurrent neural networks in the form of an autoencoder. In these approaches, auditory spectral features of the next short term frame are predicted from the previous frames by means of Long-Short Term Memory recurrent denoising autoencoders. The reconstruction error between the input and the output of the autoencoder is used as activation signal to detect novel events. There is no evidence of studies focused on comparing previous efforts to automatically recognize novel events from audio signals and giving a broad and in depth evaluation of recurrent neural network-based autoencoders. The present contribution aims to consistently evaluate our recent novel approaches to fill this white spot in the literature and provide insight by extensive evaluations carried out on three databases: A3Novelty, PASCAL CHiME, and PROMETHEUS. Besides providing an extensive analysis of novel and state-of-the-art methods, the article shows how RNN-based autoencoders outperform statistical approaches up to an absolute improvement of 16.4% average F-measure over the three databases.

  7. Quantum neural network based machine translator for Hindi to English.

    Science.gov (United States)

    Narayan, Ravi; Singh, V P; Chakraverty, S

    2014-01-01

    This paper presents the machine learning based machine translation system for Hindi to English, which learns the semantically correct corpus. The quantum neural based pattern recognizer is used to recognize and learn the pattern of corpus, using the information of part of speech of individual word in the corpus, like a human. The system performs the machine translation using its knowledge gained during the learning by inputting the pair of sentences of Devnagri-Hindi and English. To analyze the effectiveness of the proposed approach, 2600 sentences have been evaluated during simulation and evaluation. The accuracy achieved on BLEU score is 0.7502, on NIST score is 6.5773, on ROUGE-L score is 0.9233, and on METEOR score is 0.5456, which is significantly higher in comparison with Google Translation and Bing Translation for Hindi to English Machine Translation.

  8. A comparative performance evaluation of neural network based approach for sentiment classification of online reviews

    Directory of Open Access Journals (Sweden)

    G. Vinodhini

    2016-01-01

    Full Text Available The aim of sentiment classification is to efficiently identify the emotions expressed in the form of text messages. Machine learning methods for sentiment classification have been extensively studied, due to their predominant classification performance. Recent studies suggest that ensemble based machine learning methods provide better performance in classification. Artificial neural networks (ANNs are rarely being investigated in the literature of sentiment classification. This paper compares neural network based sentiment classification methods (back propagation neural network (BPN, probabilistic neural network (PNN & homogeneous ensemble of PNN (HEN using varying levels of word granularity as features for feature level sentiment classification. They are validated using a dataset of product reviews collected from the Amazon reviews website. An empirical analysis is done to compare results of ANN based methods with two statistical individual methods. The methods are evaluated using five different quality measures and results show that the homogeneous ensemble of the neural network method provides better performance. Among the two neural network approaches used, probabilistic neural networks (PNNs outperform in classifying the sentiment of the product reviews. The integration of neural network based sentiment classification methods with principal component analysis (PCA as a feature reduction technique provides superior performance in terms of training time also.

  9. A novel neural network-based technique for smart gas sensors operating in a dynamic environment.

    Science.gov (United States)

    Baha, Hakim; Dibi, Zohir

    2009-01-01

    Thanks to their high sensitivity and low-cost, metal oxide gas sensors (MOX) are widely used in gas detection, although they present well-known problems (lack of selectivity and environmental effects…). We present in this paper a novel neural network- based technique to remedy these problems. The idea is to create intelligent models; the first one, called corrector, can automatically linearize a sensor's response characteristics and eliminate its dependency on the environmental parameters. The corrector's responses are processed with the second intelligent model which has the role of discriminating exactly the detected gas (nature and concentration). The gas sensors used are industrial resistive kind (TGS8xx, by Figaro Engineering). The MATLAB environment is used during the design phase and optimization. The sensor models, the corrector, and the selective model were implemented and tested in the PSPICE simulator. The sensor model accurately expresses the nonlinear character of the response and the dependence on temperature and relative humidity in addition to their gas nature dependency. The corrector linearizes and compensates the sensor's responses. The method discriminates qualitatively and quantitatively between seven gases. The advantage of the method is that it uses a small representative database so we can easily implement the model in an electrical simulator. This method can be extended to other sensors.

  10. Acceleration of spiking neural network based pattern recognition on NVIDIA graphics processors.

    Science.gov (United States)

    Han, Bing; Taha, Tarek M

    2010-04-01

    There is currently a strong push in the research community to develop biological scale implementations of neuron based vision models. Systems at this scale are computationally demanding and generally utilize more accurate neuron models, such as the Izhikevich and the Hodgkin-Huxley models, in favor of the more popular integrate and fire model. We examine the feasibility of using graphics processing units (GPUs) to accelerate a spiking neural network based character recognition network to enable such large scale systems. Two versions of the network utilizing the Izhikevich and Hodgkin-Huxley models are implemented. Three NVIDIA general-purpose (GP) GPU platforms are examined, including the GeForce 9800 GX2, the Tesla C1060, and the Tesla S1070. Our results show that the GPGPUs can provide significant speedup over conventional processors. In particular, the fastest GPGPU utilized, the Tesla S1070, provided a speedup of 5.6 and 84.4 over highly optimized implementations on the fastest central processing unit (CPU) tested, a quadcore 2.67 GHz Xeon processor, for the Izhikevich and the Hodgkin-Huxley models, respectively. The CPU implementation utilized all four cores and the vector data parallelism offered by the processor. The results indicate that GPUs are well suited for this application domain.

  11. A Novel Neural Network-Based Technique for Smart Gas Sensors Operating in a Dynamic Environment

    Directory of Open Access Journals (Sweden)

    Zohir Dibi

    2009-11-01

    Full Text Available Thanks to their high sensitivity and low-cost, metal oxide gas sensors (MOX are widely used in gas detection, although they present well-known problems (lack of selectivity and environmental effects…. We present in this paper a novel neural network- based technique to remedy these problems. The idea is to create intelligent models; the first one, called corrector, can automatically linearize a sensor’s response characteristics and eliminate its dependency on the environmental parameters. The corrector’s responses are processed with the second intelligent model which has the role of discriminating exactly the detected gas (nature and concentration. The gas sensors used are industrial resistive kind (TGS8xx, by Figaro Engineering. The MATLAB environment is used during the design phase and optimization. The sensor models, the corrector, and the selective model were implemented and tested in the PSPICE simulator. The sensor model accurately expresses the nonlinear character of the response and the dependence on temperature and relative humidity in addition to their gas nature dependency. The corrector linearizes and compensates the sensor’s responses. The method discriminates qualitatively and quantitatively between seven gases. The advantage of the method is that it uses a small representative database so we can easily implement the model in an electrical simulator. This method can be extended to other sensors.

  12. Design of Artificial Neural Network-Based pH Estimator

    Directory of Open Access Journals (Sweden)

    Shebel A. Alsabbah

    2010-10-01

    Full Text Available Taking into consideration the cost, size and drawbacks might be found with real hardware instrument for measuring pH values such that the complications of the wiring, installing, calibrating and troubleshooting the system, would make a person look for a cheaper, accurate, and alternative choice to perform the measuring operation, Where’s hereby, a feedforward artificial neural network-based pH estimator has to be proposed. The proposed estimator has been designed with multi- layer perceptrons. One input which is a measured base stream and two outputs represent pH values at strong base and strong/weak acids for a titration process. The created data base has been obtained with consideration of temperature variation. The final numerical results ensure the effectiveness and robustness of the design neural network-based pH estimator.

  13. A novel wavelet neural network based pathological stage detection technique for an oral precancerous condition

    Science.gov (United States)

    Paul, R R; Mukherjee, A; Dutta, P K; Banerjee, S; Pal, M; Chatterjee, J; Chaudhuri, K; Mukkerjee, K

    2005-01-01

    Aim: To describe a novel neural network based oral precancer (oral submucous fibrosis; OSF) stage detection method. Method: The wavelet coefficients of transmission electron microscopy images of collagen fibres from normal oral submucosa and OSF tissues were used to choose the feature vector which, in turn, was used to train the artificial neural network. Results: The trained network was able to classify normal and oral precancer stages (less advanced and advanced) after obtaining the image as an input. Conclusions: The results obtained from this proposed technique were promising and suggest that with further optimisation this method could be used to detect and stage OSF, and could be adapted for other conditions. PMID:16126873

  14. Adaptive Critic Neural Network-Based Terminal Area Energy Management and Approach and Landing Guidance

    Science.gov (United States)

    Grantham, Katie

    2003-01-01

    Reusable Launch Vehicles (RLVs) have different mission requirements than the Space Shuttle, which is used for benchmark guidance design. Therefore, alternative Terminal Area Energy Management (TAEM) and Approach and Landing (A/L) Guidance schemes can be examined in the interest of cost reduction. A neural network based solution for a finite horizon trajectory optimization problem is presented in this paper. In this approach the optimal trajectory of the vehicle is produced by adaptive critic based neural networks, which were trained off-line to maintain a gradual glideslope.

  15. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals.

    Science.gov (United States)

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2015-09-01

    Penetration of renewable energy resources, such as wind and solar power, into power systems significantly increases the uncertainties on system operation, stability, and reliability in smart grids. In this paper, the nonparametric neural network-based prediction intervals (PIs) are implemented for forecast uncertainty quantification. Instead of a single level PI, wind power forecast uncertainties are represented in a list of PIs. These PIs are then decomposed into quantiles of wind power. A new scenario generation method is proposed to handle wind power forecast uncertainties. For each hour, an empirical cumulative distribution function (ECDF) is fitted to these quantile points. The Monte Carlo simulation method is used to generate scenarios from the ECDF. Then the wind power scenarios are incorporated into a stochastic security-constrained unit commitment (SCUC) model. The heuristic genetic algorithm is utilized to solve the stochastic SCUC problem. Five deterministic and four stochastic case studies incorporated with interval forecasts of wind power are implemented. The results of these cases are presented and discussed together. Generation costs, and the scheduled and real-time economic dispatch reserves of different unit commitment strategies are compared. The experimental results show that the stochastic model is more robust than deterministic ones and, thus, decreases the risk in system operations of smart grids.

  16. Modeling acquaintance networks based on balance theory

    Directory of Open Access Journals (Sweden)

    Vukašinović Vida

    2014-09-01

    Full Text Available An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network model called the Interaction-Based (IB model that involves well-known sociological principles. The connections between the actors and the strength of the connections are influenced by the continuous positive and negative interactions between the actors and, vice versa, the future interactions are more likely to happen between the actors that are connected with stronger ties. The model is also inspired by the social behavior of animal species, particularly that of ants in their colony. A model evaluation showed that the IB model turned out to be sparse. The model has a small diameter and an average path length that grows in proportion to the logarithm of the number of vertices. The clustering coefficient is relatively high, and its value stabilizes in larger networks. The degree distributions are slightly right-skewed. In the mature phase of the IB model, i.e., when the number of edges does not change significantly, most of the network properties do not change significantly either. The IB model was found to be the best of all the compared models in simulating the e-mail URV (University Rovira i Virgili of Tarragona network because the properties of the IB model more closely matched those of the e-mail URV network than the other models

  17. A neural network-based exploratory learning and motor planning system for co-robots

    Directory of Open Access Journals (Sweden)

    Byron V Galbraith

    2015-07-01

    Full Text Available Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or learning by doing, an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  18. A neural network-based exploratory learning and motor planning system for co-robots.

    Science.gov (United States)

    Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano

    2015-01-01

    Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  19. Fast inline inspection by Neural Network Based Filtered Backprojection: Application to apple inspection

    Directory of Open Access Journals (Sweden)

    Eline Janssens

    2016-11-01

    Full Text Available Speed is an important parameter of an inspection system. Inline computed tomography systems exist but are generally expensive. Moreover, their throughput is limited by the speed of the reconstruction algorithm. In this work, we propose a Neural Network-based Hilbert transform Filtered Backprojection (NN-hFBP method to reconstruct objects in an inline scanning environment in a fast and accurate way. Experiments based on apple X-ray scans show that the NN-hFBP method allows to reconstruct images with a substantially better tradeoff between image quality and reconstruction time.

  20. An Artificial Neural Network Based Robot Controller that Uses Rat’s Brain Signals

    Directory of Open Access Journals (Sweden)

    Marsel Mano

    2013-04-01

    Full Text Available Brain machine interface (BMI has been proposed as a novel technique to control prosthetic devices aimed at restoring motor functions in paralyzed patients. In this paper, we propose a neural network based controller that maps rat’s brain signals and transforms them into robot movement. First, the rat is trained to move the robot by pressing the right and left lever in order to get food. Next, we collect brain signals with four implanted electrodes, two in the motor cortex and two in the somatosensory cortex area. The collected data are used to train and evaluate different artificial neural controllers. Trained neural controllers are employed online to map brain signals and transform them into robot motion. Offline and online classification results of rat’s brain signals show that the Radial Basis Function Neural Networks (RBFNN outperforms other neural networks. In addition, online robot control results show that even with a limited number of electrodes, the robot motion generated by RBFNN matched the motion generated by the left and right lever position.

  1. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  2. Validity-Guided Fuzzy Clustering Evaluation for Neural Network-Based Time-Frequency Reassignment

    Directory of Open Access Journals (Sweden)

    Ahmad Khan Adnan

    2010-01-01

    Full Text Available Abstract This paper describes the validity-guided fuzzy clustering evaluation for optimal training of localized neural networks (LNNs used for reassigning time-frequency representations (TFRs. Our experiments show that the validity-guided fuzzy approach ameliorates the difficulty of choosing correct number of clusters and in conjunction with neural network-based processing technique utilizing a hybrid approach can effectively reduce the blur in the spectrograms. In the course of every partitioning problem the number of subsets must be given before the calculation, but it is rarely known apriori, in this case it must be searched also with using validity measures. Experimental results demonstrate the effectiveness of the approach.

  3. Simulation and stability analysis of neural network based control scheme for switched linear systems.

    Science.gov (United States)

    Singh, H P; Sukavanam, N

    2012-01-01

    This paper proposes a new adaptive neural network based control scheme for switched linear systems with parametric uncertainty and external disturbance. A key feature of this scheme is that the prior information of the possible upper bound of the uncertainty is not required. A feedforward neural network is employed to learn this upper bound. The adaptive learning algorithm is derived from Lyapunov stability analysis so that the system response under arbitrary switching laws is guaranteed uniformly ultimately bounded. A comparative simulation study with robust controller given in [Zhang L, Lu Y, Chen Y, Mastorakis NE. Robust uniformly ultimate boundedness control for uncertain switched linear systems. Computers and Mathematics with Applications 2008; 56: 1709-14] is presented. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Real-time neural network-based self-tuning control of a nonlinear electro-hydraulic servomotor

    Energy Technology Data Exchange (ETDEWEB)

    Canelon, J.I.; Ortega, A.G. [Univ. del Zulia, Maracaibo, Zulia (Venezuela, Bolivarian Republic of). School of Electrical Engineering; Shieh, L.S. [Houston Univ., Houston, TX (United States). Dept. of Electrical and Computer Engineering; Bastidas, J.I. [Univ. del Zulia, Maracaibo, Zulia (Venezuela, Bolivarian Republic of). School of Mechanical Engineering; Zhang, Y.; Akujuobi, C.M. [Prairie View A and M Univ., Prairie View, TX (United States). Center of Excellence for Communication Systems Technology Research and Dept. of Engineering Technology

    2010-08-13

    For high power applications, hydraulic actuators offer many advantages over electromagnetic actuators, including higher torque/mass ratios; smaller control gains; excellent torque capability; filtered high frequency noise; better heat transfer characteristics; smaller size; higher speed of response of the servomechanism; cheaper hardware; and higher reliability. Therefore, any application that requires a large force applied smoothly by an actuator is a candidate for hydraulic power. Examples of such applications include vehicle steering and braking systems; roll mills; drilling rigs; heavy duty crane and presses; and industrial robots and actuators for aircraft control surfaces such as ailerons and flaps. It is extremely important to create effective control strategies for hydraulic systems. This paper outlined the real-time implementation of a neural network-based approach, for self-tuning control of the angular position of a nonlinear electro-hydraulic servomotor. Using an online training algorithm, a neural network autoregressive moving-average model with exogenous input (ARMAX) model of the system was identified and continuously updated and an optimal linear ARMAX model was determined. The paper briefly depicted the neural network-based self-tuning control approach and a description of the experimental equipment (hardware and software) was presented including the implementation details. The experimental results were discussed and conclusions were summarized. It was found that the approach proved to be very effective in the control of this fast dynamics system, outperforming a fine tuned PI controller. Therefore, although the self-tuning approach was computationally demanding, it was feasible for real-time implementation. 22 refs., 6 figs.

  5. Artificial neural networks-based approach to design ARIs using QSAR for diabetes mellitus.

    Science.gov (United States)

    Patra, Jagdish C; Singh, Onkar

    2009-11-30

    In this article, in the first part, we propose an artificial neural network-based intelligent technique to determine the quantitative structure-activity relationship (QSAR) among known aldose reductase inhibitors (ARIs) for diabetes mellitus using two molecular descriptors, i.e., the electronegativity and molar volume of functional groups present in the main ARI lead structure. We have shown that the multilayer perceptron-based model is capable of determining the QSAR quite satisfactorily, with high R-value. Usually, the design of potent ARIs requires the use of complex computer docking and quantum mechanical (QM) steps involving excessive time and human judgement. In the second part of this article, to reduce the design cycle of potent ARIs, we propose a novel ANN technique to eliminate the computer docking and QM steps, to predict the total score. The MLP-based QSAR models obtained in the first part are used to predict the potent ARIs, using the experimental data reported by Hu et al. (J Mol Graph Mod 2006, 24, 244). The proposed ANN-based model can predict the total score with an R-value of 0.88, which indicates that there exists a close match between the predicted and experimental total scores. Using the ANN model, we obtained 71 potent ARIs out of 6.25 million new ARI compounds created by substituting different functional groups at substituting sites of main lead structure of known ARI. Finally, using high bioactivity relationship and total score values, we determined four potential ARIs out of these 71 compounds. Interestingly, these four ARIs include the two potent ARIs reported by Hu et al. (J Mol Graph Mod 2006, 24, 244) who obtained these through the complex computer docking and QM steps. This fact indicates the effectiveness of our proposed ANN-based technique. We suggest these four compounds to be the most promising candidates for ARIs to prevent the diabetic complications and further recommend for wet bench experiments to find their potential against

  6. Neural-Network-Based Fuzzy Logic Navigation Control for Intelligent Vehicles

    Directory of Open Access Journals (Sweden)

    Ahcene Farah

    2002-06-01

    Full Text Available This paper proposes a Neural-Network-Based Fuzzy logic system for navigation control of intelligent vehicles. First, the use of Neural Networks and Fuzzy Logic to provide intelligent vehicles  with more autonomy and intelligence is discussed. Second, the system  for the obstacle avoidance behavior is developed. Fuzzy Logic improves Neural Networks (NN obstacle avoidance approach by handling imprecision and rule-based approximate reasoning. This system must make the vehicle able, after supervised learning, to achieve two tasks: 1- to make one’s way towards its target by a NN, and 2- to avoid static or dynamic obstacles by a Fuzzy NN capturing the behavior of a human expert. Afterwards, two association phases between each task and the appropriate actions are carried out by Trial and Error learning and their coordination allows to decide the appropriate action. Finally, the simulation results display the generalization and adaptation abilities of the system by testing it in new unexplored environments.

  7. A robust neural network-based approach for microseismic event detection

    KAUST Repository

    Akram, Jubran

    2017-08-17

    We present an artificial neural network based approach for robust event detection from low S/N waveforms. We use a feed-forward network with a single hidden layer that is tuned on a training dataset and later applied on the entire example dataset for event detection. The input features used include the average of absolute amplitudes, variance, energy-ratio and polarization rectilinearity. These features are calculated in a moving-window of same length for the entire waveform. The output is set as a user-specified relative probability curve, which provides a robust way of distinguishing between weak and strong events. An optimal network is selected by studying the weight-based saliency and effect of number of neurons on the predicted results. Using synthetic data examples, we demonstrate that this approach is effective in detecting weaker events and reduces the number of false positives.

  8. PID Neural Network Based Speed Control of Asynchronous Motor Using Programmable Logic Controller

    Directory of Open Access Journals (Sweden)

    MARABA, V. A.

    2011-11-01

    Full Text Available This paper deals with the structure and characteristics of PID Neural Network controller for single input and single output systems. PID Neural Network is a new kind of controller that includes the advantages of artificial neural networks and classic PID controller. Functioning of this controller is based on the update of controller parameters according to the value extracted from system output pursuant to the rules of back propagation algorithm used in artificial neural networks. Parameters obtained from the application of PID Neural Network training algorithm on the speed model of the asynchronous motor exhibiting second order linear behavior were used in the real time speed control of the motor. Programmable logic controller (PLC was used as real time controller. The real time control results show that reference speed successfully maintained under various load conditions.

  9. Neural Network based Control of SG based Standalone Generating System with Energy Storage for Power Quality Enhancement

    Science.gov (United States)

    Nayar, Priya; Singh, Bhim; Mishra, Sukumar

    2017-08-01

    An artificial intelligence based control algorithm is used in solving power quality problems of a diesel engine driven synchronous generator with automatic voltage regulator and governor based standalone system. A voltage source converter integrated with a battery energy storage system is employed to mitigate the power quality problems. An adaptive neural network based signed regressor control algorithm is used for the estimation of the fundamental component of load currents for control of a standalone system with load leveling as an integral feature. The developed model of the system performs accurately under varying load conditions and provides good dynamic response to the step changes in loads. The real time performance is achieved using MATLAB along with simulink/simpower system toolboxes and results adhere to an IEEE-519 standard for power quality enhancement.

  10. Authorship attribution of source code by using back propagation neural network based on particle swarm optimization.

    Science.gov (United States)

    Yang, Xinyu; Xu, Guoai; Li, Qi; Guo, Yanhui; Zhang, Miao

    2017-01-01

    Authorship attribution is to identify the most likely author of a given sample among a set of candidate known authors. It can be not only applied to discover the original author of plain text, such as novels, blogs, emails, posts etc., but also used to identify source code programmers. Authorship attribution of source code is required in diverse applications, ranging from malicious code tracking to solving authorship dispute or software plagiarism detection. This paper aims to propose a new method to identify the programmer of Java source code samples with a higher accuracy. To this end, it first introduces back propagation (BP) neural network based on particle swarm optimization (PSO) into authorship attribution of source code. It begins by computing a set of defined feature metrics, including lexical and layout metrics, structure and syntax metrics, totally 19 dimensions. Then these metrics are input to neural network for supervised learning, the weights of which are output by PSO and BP hybrid algorithm. The effectiveness of the proposed method is evaluated on a collected dataset with 3,022 Java files belong to 40 authors. Experiment results show that the proposed method achieves 91.060% accuracy. And a comparison with previous work on authorship attribution of source code for Java language illustrates that this proposed method outperforms others overall, also with an acceptable overhead.

  11. An Artificial Neural Network-Based Ionospheric Model to Predict NmF2 and hmF2 Using Long-Term Data Set of FORMOSAT-3/COSMIC Radio Occultation Observations: Preliminary Results

    Science.gov (United States)

    Sai Gowtam, V.; Tulasi Ram, S.

    2017-11-01

    Artificial Neural Networks (ANNs) are known to be capable of solving linear as well as highly nonlinear problems. Using the long-term and high-quality data set of Formosa Satellite-3/Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC, in short F3/C) from 2006 to 2015, an ANN-based two-dimensional (2-D) Ionospheric Model (ANNIM) is developed to predict the ionospheric peak parameters, such as NmF2 and hmF2. In this pilot study, the ANNIM results are compared with the original F3/C data, GRACE (Gravity Recovery and Climate Experiment) observations as well as International Reference Ionosphere (IRI)-2016 model to assess the learning efficiency of the neural networks used in the model. The ANNIM could well predict the NmF2 (hmF2) values with RMS errors of 1.87 × 105 el/cm3 (27.9 km) with respect to actual F3/C; and 2.98 × 105 el/cm3 (40.18 km) with respect to independent GRACE data. Further, the ANNIM predictions found to be as good as IRI-2016 model with a slightly smaller RMS error when compared to independent GRACE data. The ANNIM has successfully reproduced the local time, latitude, longitude, and seasonal variations with errors ranging 15-25% for NmF2 and 10-15% for hmF2 compared to actual F3/C data, except the postsunset enhancement in hmF2. Further, the ANNIM has also captured the global-scale ionospheric phenomena such as ionospheric annual anomaly, Weddell Sea Anomaly, and the midlatitude summer nighttime anomaly. Compared to IRI-2016 model, the ANNIM is found to have better represented the fine longitudinal structures and the midlatitude summer nighttime enhancements in both the hemispheres.

  12. Prediction of CO2 Emission in China’s Power Generation Industry with Gauss Optimized Cuckoo Search Algorithm and Wavelet Neural Network Based on STIRPAT model with Ridge Regression

    Directory of Open Access Journals (Sweden)

    Weibo Zhao

    2017-12-01

    Full Text Available Power generation industry is the key industry of carbon dioxide (CO2 emission in China. Assessing its future CO2 emissions is of great significance to the formulation and implementation of energy saving and emission reduction policies. Based on the Stochastic Impacts by Regression on Population, Affluence and Technology model (STIRPAT, the influencing factors analysis model of CO2 emission of power generation industry is established. The ridge regression (RR method is used to estimate the historical data. In addition, a wavelet neural network (WNN prediction model based on Cuckoo Search algorithm optimized by Gauss (GCS is put forward to predict the factors in the STIRPAT model. Then, the predicted values are substituted into the regression model, and the CO2 emission estimation values of the power generation industry in China are obtained. It’s concluded that population, per capita Gross Domestic Product (GDP, standard coal consumption and thermal power specific gravity are the key factors affecting the CO2 emission from the power generation industry. Besides, the GCS-WNN prediction model has higher prediction accuracy, comparing with other models. Moreover, with the development of science and technology in the future, the CO2 emission growth in the power generation industry will gradually slow down according to the prediction results.

  13. An Artificial Neural Network Based Short-term Dynamic Prediction of Algae Bloom

    Directory of Open Access Journals (Sweden)

    Yao Junyang

    2014-06-01

    Full Text Available This paper proposes a method of short-term prediction of algae bloom based on artificial neural network. Firstly, principal component analysis is applied to water environmental factors in algae bloom raceway ponds to get main factors that influence the formation of algae blooms. Then, a model of short-term dynamic prediction based on neural network is built with the current chlorophyll_a values as input and the chlorophyll_a values in the next moment as output to realize short-term dynamic prediction of algae bloom. Simulation results show that the model can realize short-term prediction of algae bloom effectively.

  14. Artificial neural network based model to calculate the environmental variables of the tobacco drying process; Modelo basado en redes neuronales artificiales para el cálculo de parámetros ambientales en el proceso de curado del tabaco

    Directory of Open Access Journals (Sweden)

    Víctor Martínez-Martínez

    2013-06-01

    Full Text Available This paper presents an Artificial Neural Network (ANN based model for environmental variables related to the tobacco drying process. A fitting ANN was used to estimate and predict temperature and relative humidity inside the tobacco dryer: the estimation consists of calculating the value of these variables in different locations of the dryer and the prediction consists of forecasting the value of these variables with different time horizons. The proposed model has been validated with temperature and relative humidity data obtained from a real tobacco dryer using a Wireless Sensor Network (WSN. On the one hand, an error under 2% was achieved, obtaining temperature as a function of temperature and relative humidity in other locations in the estimation task. Besides, an error around 1.5 times lower than the one obtained with an interpolation method was achieved in the prediction task when the temperature inside the tobacco mass was predicted with time horizons over 2.5 hours as a function of its present and past values. These results show that ANN-based models can be used to improve the tobacco drying process because with these types of models the value of environmental variables can be predicted in the near future and can be estimated in other locations with low errors.

  15. Single-hidden-layer feed-forward quantum neural network based on Grover learning.

    Science.gov (United States)

    Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min

    2013-09-01

    In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Optimization of a neural network based direct inverse control for controlling a quadrotor unmanned aerial vehicle

    Directory of Open Access Journals (Sweden)

    Heryanto M Ary

    2015-01-01

    Full Text Available UAVs are mostly used for surveillance, inspection and data acquisition. We have developed a Quadrotor UAV that is constructed based on a four motors with a lift-generating propeller at each motors. In this paper, we discuss the development of a quadrotor and its neural networks direct inverse control model using the actual flight data. To obtain a better performance of the control system of the UAV, we proposed an Optimized Direct Inverse controller based on re-training the neural networks with the new data generated from optimal maneuvers of the quadrotor. Through simulation of the quadrotor using the developed DIC and Optimized DIC model, results show that both models have the ability to stabilize the quadrotor with a good tracking performance. The optimized DIC model, however, has shown a better performance, especially in the settling time parameter.

  17. A Parallel Strategy for Convolutional Neural Network Based on Heterogeneous Cluster for Mobile Information System

    Directory of Open Access Journals (Sweden)

    Jilin Zhang

    2017-01-01

    Full Text Available With the development of the mobile systems, we gain a lot of benefits and convenience by leveraging mobile devices; at the same time, the information gathered by smartphones, such as location and environment, is also valuable for business to provide more intelligent services for customers. More and more machine learning methods have been used in the field of mobile information systems to study user behavior and classify usage patterns, especially convolutional neural network. With the increasing of model training parameters and data scale, the traditional single machine training method cannot meet the requirements of time complexity in practical application scenarios. The current training framework often uses simple data parallel or model parallel method to speed up the training process, which is why heterogeneous computing resources have not been fully utilized. To solve these problems, our paper proposes a delay synchronization convolutional neural network parallel strategy, which leverages the heterogeneous system. The strategy is based on both synchronous parallel and asynchronous parallel approaches; the model training process can reduce the dependence on the heterogeneous architecture in the premise of ensuring the model convergence, so the convolution neural network framework is more adaptive to different heterogeneous system environments. The experimental results show that the proposed delay synchronization strategy can achieve at least three times the speedup compared to the traditional data parallelism.

  18. The performance evaluation of a new neural network based traffic management scheme for a satellite communication network

    Science.gov (United States)

    Ansari, Nirwan; Liu, Dequan

    1991-01-01

    A neural-network-based traffic management scheme for a satellite communication network is described. The scheme consists of two levels of management. The front end of the scheme is a derivation of Kohonen's self-organization model to configure maps for the satellite communication network dynamically. The model consists of three stages. The first stage is the pattern recognition task, in which an exemplar map that best meets the current network requirements is selected. The second stage is the analysis of the discrepancy between the chosen exemplar map and the state of the network, and the adaptive modification of the chosen exemplar map to conform closely to the network requirement (input data pattern) by means of Kohonen's self-organization. On the basis of certain performance criteria, whether a new map is generated to replace the original chosen map is decided in the third stage. A state-dependent routing algorithm, which arranges the incoming call to some proper path, is used to make the network more efficient and to lower the call block rate. Simulation results demonstrate that the scheme, which combines self-organization and the state-dependent routing mechanism, provides better performance in terms of call block rate than schemes that only have either the self-organization mechanism or the routing mechanism.

  19. Supervised artificial neural network-based method for conversion of solar radiation data (case study: Algeria)

    Science.gov (United States)

    Laidi, Maamar; Hanini, Salah; Rezrazi, Ahmed; Yaiche, Mohamed Redha; El Hadj, Abdallah Abdallah; Chellali, Farouk

    2017-04-01

    In this study, a backpropagation artificial neural network (BP-ANN) model is used as an alternative approach to predict solar radiation on tilted surfaces (SRT) using a number of variables involved in physical process. These variables are namely the latitude of the site, mean temperature and relative humidity, Linke turbidity factor and Angstrom coefficient, extraterrestrial solar radiation, solar radiation data measured on horizontal surfaces (SRH), and solar zenith angle. Experimental solar radiation data from 13 stations spread all over Algeria around the year (2004) were used for training/validation and testing the artificial neural networks (ANNs), and one station was used to make the interpolation of the designed ANN. The ANN model was trained, validated, and tested using 60, 20, and 20 % of all data, respectively. The configuration 8-35-1 (8 inputs, 35 hidden, and 1 output neurons) presented an excellent agreement between the prediction and the experimental data during the test stage with determination coefficient of 0.99 and root meat squared error of 5.75 Wh/m2, considering a three-layer feedforward backpropagation neural network with Levenberg-Marquardt training algorithm, a hyperbolic tangent sigmoid and linear transfer function at the hidden and the output layer, respectively. This novel model could be used by researchers or scientists to design high-efficiency solar devices that are usually tilted at an optimum angle to increase the solar incident on the surface.

  20. A Rotational Motion Perception Neural Network Based on Asymmetric Spatiotemporal Visual Information Processing.

    Science.gov (United States)

    Hu, Bin; Yue, Shigang; Zhang, Zhuhong

    All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion

  1. Neural Network Based on Quantum Chemistry for Predicting Melting Point of Organic Compounds

    Science.gov (United States)

    Lazzús, Juan A.

    2009-02-01

    The melting points of organic compounds were estimated using a combined method that includes a backpropagation neural network and quantitative structure property relationship (QSPR) parameters in quantum chemistry. Eleven descriptors that reflect the intermolecular forces and molecular symmetry were used as input variables. QSPR parameters were calculated using molecular modeling and PM3 semi-empirical molecular orbital theories. A total of 260 compounds were used to train the network, which was developed using MatLab. Then, the melting points of 73 other compounds were predicted and results were compared to experimental data from the literature. The study shows that the chosen artificial neural network and the quantitative structure property relationships method present an excellent alternative for the estimation of the melting point of an organic compound, with average absolute deviation of 5%.

  2. Synchronization of Hierarchical Time-Varying Neural Networks Based on Asynchronous and Intermittent Sampled-Data Control.

    Science.gov (United States)

    Xiong, Wenjun; Patel, Ragini; Cao, Jinde; Zheng, Wei Xing

    In this brief, our purpose is to apply asynchronous and intermittent sampled-data control methods to achieve the synchronization of hierarchical time-varying neural networks. The asynchronous and intermittent sampled-data controllers are proposed for two reasons: 1) the controllers may not transmit the control information simultaneously and 2) the controllers cannot always exist at any time . The synchronization is then discussed for a kind of hierarchical time-varying neural networks based on the asynchronous and intermittent sampled-data controllers. Finally, the simulation results are given to illustrate the usefulness of the developed criteria.In this brief, our purpose is to apply asynchronous and intermittent sampled-data control methods to achieve the synchronization of hierarchical time-varying neural networks. The asynchronous and intermittent sampled-data controllers are proposed for two reasons: 1) the controllers may not transmit the control information simultaneously and 2) the controllers cannot always exist at any time . The synchronization is then discussed for a kind of hierarchical time-varying neural networks based on the asynchronous and intermittent sampled-data controllers. Finally, the simulation results are given to illustrate the usefulness of the developed criteria.

  3. A Spiking Neural Network Based Cortex-Like Mechanism and Application to Facial Expression Recognition

    Directory of Open Access Journals (Sweden)

    Si-Yao Fu

    2012-01-01

    Full Text Available In this paper, we present a quantitative, highly structured cortex-simulated model, which can be simply described as feedforward, hierarchical simulation of ventral stream of visual cortex using biologically plausible, computationally convenient spiking neural network system. The motivation comes directly from recent pioneering works on detailed functional decomposition analysis of the feedforward pathway of the ventral stream of visual cortex and developments on artificial spiking neural networks (SNNs. By combining the logical structure of the cortical hierarchy and computing power of the spiking neuron model, a practical framework has been presented. As a proof of principle, we demonstrate our system on several facial expression recognition tasks. The proposed cortical-like feedforward hierarchy framework has the merit of capability of dealing with complicated pattern recognition problems, suggesting that, by combining the cognitive models with modern neurocomputational approaches, the neurosystematic approach to the study of cortex-like mechanism has the potential to extend our knowledge of brain mechanisms underlying the cognitive analysis and to advance theoretical models of how we recognize face or, more specifically, perceive other people’s facial expression in a rich, dynamic, and complex environment, providing a new starting point for improved models of visual cortex-like mechanism.

  4. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm.

    Science.gov (United States)

    Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour

    2012-09-01

    In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Neural network based real-time reconstruction of KSTAR magnetic equilibria with Bayesian-based preprocessing

    Science.gov (United States)

    Joung, Semin; Kwak, Sehyun; Ghim, Y.-C.

    2017-10-01

    Obtaining plasma shapes during tokamak discharges requires real-time estimation of magnetic configuration using Grad-Shafranov solver such as EFIT. Since off-line EFIT is computationally intensive and the real-time reconstructions do not agree with the results of off-line EFIT within our desired accuracy, we use a neural network to generate an off-line-quality equilibrium in real time. To train the neural network (two hidden layers with 30 and 20 nodes for each layer), we create database consisting of the magnetic signals and off-line EFIT results from KSTAR as inputs and targets, respectively. To compensate drifts in the magnetic signals originated from electronic circuits, we develop a Bayesian-based two-step real-time correction method. Additionally, we infer missing inputs, i.e. when some of inputs to the network are not usable, using Gaussian process coupled with Bayesian model. The likelihood of this model is determined based on the Maxwell's equations. We find that our network can withstand at least up to 20% of input errors. Note that this real-time reconstruction scheme is not yet implemented for KSTAR operation.

  6. Data systems and computer science: Neural networks base R/T program overview

    Science.gov (United States)

    Gulati, Sandeep

    1991-01-01

    The research base, in the U.S. and abroad, for the development of neural network technology is discussed. The technical objectives are to develop and demonstrate adaptive, neural information processing concepts. The leveraging of external funding is also discussed.

  7. Quantum neural network-based EEG filtering for a brain-computer interface.

    Science.gov (United States)

    Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin

    2014-02-01

    A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.

  8. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lund, Ole

    2009-01-01

    this binding event. RESULTS: Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the training data...... class II alleles, and is demonstrated to outperform other state-of-the-art MHC class II prediction methods. CONCLUSION: The NN-align method is competitive with the state-of-the-art MHC class II peptide binding prediction algorithms. The method is publicly available at http://www.cbs.dtu.dk/services/Net...

  9. ChloroP, a neural network-based method for predicting chloroplast transitpeptides and their cleavage sites

    DEFF Research Database (Denmark)

    Emanuelsson, O.; Nielsen, Henrik; von Heijne, Gunnar

    1999-01-01

    We present a neural network based method (ChloroP) for identifying chloroplast transit peptides and their cleavage sites. Using cross-validation, 88% of the sequences in our homology reduced training set were correctly classified as transit peptides or nontransit peptides. This performance level...... is well above that of the publicly available chloroplast localization predictor PSORT. Cleavage sites are predicted using a scoring matrix derived by an automatic motif-finding algorithm. Approximately 60% of the known cleavage sites in our sequence collection were predicted to within +/-2 residues from...

  10. Neural networks-based operational prototype for flash flood forecasting: application to Liane flash floods (France

    Directory of Open Access Journals (Sweden)

    Bertin Dominique

    2016-01-01

    Full Text Available The Liane River is a small costal river, famous for its floods, which can affect the city of Boulogne-sur-Mer. Due to the complexity of land cover and hydrologic processes, a black-box non-linear modelling was chosen using neural networks. The multilayer perceptron model, known for its property of universal approximation is thus chosen. Four models were designed, each one for one forecasting horizon using rainfall forecasts: 24h, 12h, 6h, 3h. The desired output of the model is original: it represents the maximal value of the water level respectively 24h, 12h, 6h, 3h ahead. Working with best forecasts of rain (the observed ones during the event in the past, on the major flood of the database in test set, the model provides excellent forecasts. Nash criteria calculated for the four lead times are 0.98 (3h, 0.97 (6h, 0.91 (12h, 0.89 (24h. Designed models were thus estimated as efficient enough to be implemented in a specific tool devoted to real time operational use. The software tool is described hereafter: designed in Java, it presents a friendly interface allowing applying various scenarios of future rainfalls, and a graphical visualization of the predicted maximum water levels and their associated real time observed values.

  11. Convolutional neural network-based encoding and decoding of visual object recognition in space and time.

    Science.gov (United States)

    Seeliger, K; Fritsche, M; Güçlü, U; Schoenmakers, S; Schoffelen, J-M; Bosch, S E; van Gerven, M A J

    2017-07-16

    Representations learned by deep convolutional neural networks (CNNs) for object recognition are a widely investigated model of the processing hierarchy in the human visual system. Using functional magnetic resonance imaging, CNN representations of visual stimuli have previously been shown to correspond to processing stages in the ventral and dorsal streams of the visual system. Whether this correspondence between models and brain signals also holds for activity acquired at high temporal resolution has been explored less exhaustively. Here, we addressed this question by combining CNN-based encoding models with magnetoencephalography (MEG). Human participants passively viewed 1,000 images of objects while MEG signals were acquired. We modelled their high temporal resolution source-reconstructed cortical activity with CNNs, and observed a feed-forward sweep across the visual hierarchy between 75 and 200 ms after stimulus onset. This spatiotemporal cascade was captured by the network layer representations, where the increasingly abstract stimulus representation in the hierarchical network model was reflected in different parts of the visual cortex, following the visual ventral stream. We further validated the accuracy of our encoding model by decoding stimulus identity in a left-out validation set of viewed objects, achieving state-of-the-art decoding accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Convolutional Neural Network-based SAR Image Classification with Noisy Labels

    Directory of Open Access Journals (Sweden)

    Zhao Juanping

    2017-10-01

    Full Text Available SAR image classification is an important task in SAR image interpretation. Supervised learning methods, such as the Convolutional Neural Network (CNN, demand samples that are accurately labeled. However, this presents a major challenge in SAR image labeling. Due to their unique imaging mechanism, SAR images are seriously affected by speckle, geometric distortion, and incomplete structural information. Thus, SAR images have a strong non-intuitive property, which causes difficulties in SAR image labeling, and which results in the weakened learning and generalization performance of many classifiers (including CNN. In this paper, we propose a Probability Transition CNN (PTCNN for patch-level SAR image classification with noisy labels. Based on the classical CNN, PTCNN builds a bridge between noise-free labels and their noisy versions via a noisy-label transition layer. As such, we derive a new CNN model trained with a noisily labeled training dataset that can potentially revise noisy labels and improve learning capacity with noisily labeled data. We use a 16-class land cover dataset and the MSTAR dataset to demonstrate the effectiveness of our model. Our experimental results show the PTCNN model to be robust with respect to label noise and demonstrate its promising classification performance compared with the classical CNN model. Therefore, the proposed PTCNN model could lower the standards required regarding the quality of image labels and have a variety of practical applications.

  13. Cellular Neural Network-Based Methods for Distributed Network Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Kang Xie

    2015-01-01

    Full Text Available According to the problems of current distributed architecture intrusion detection systems (DIDS, a new online distributed intrusion detection model based on cellular neural network (CNN was proposed, in which discrete-time CNN (DTCNN was used as weak classifier in each local node and state-controlled CNN (SCCNN was used as global detection method, respectively. We further proposed a new method for design template parameters of SCCNN via solving Linear Matrix Inequality. Experimental results based on KDD CUP 99 dataset show its feasibility and effectiveness. Emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI implementation which allows the distributed intrusion detection to be performed better.

  14. Neural-Network-Based Smart Sensor Framework Operating in a Harsh Environment

    Directory of Open Access Journals (Sweden)

    Chaudhari Narendra S

    2005-01-01

    Full Text Available We present an artificial neural-network- (NN- based smart interface framework for sensors operating in harsh environments. The NN-based sensor can automatically compensate for the nonlinear response characteristics and its nonlinear dependency on the environmental parameters, with high accuracy. To show the potential of the proposed NN-based framework, we provide results of a smart capacitive pressure sensor (CPS operating in a wide temperature range of 0 to . Through simulated experiments, we have shown that the NN-based CPS model is capable of providing pressure readout with a maximum full-scale (FS error of only over this temperature range. A novel scheme for estimating the ambient temperature from the sensor characteristics itself is proposed. For this purpose, a second NN is utilized to estimate the ambient temperature accurately from the knowledge of the offset capacitance of the CPS. A microcontroller-unit- (MCU- based implementation scheme is also provided.

  15. Deep architecture neural network-based real-time image processing for image-guided radiotherapy.

    Science.gov (United States)

    Mori, Shinichiro

    2017-08-01

    To develop real-time image processing for image-guided radiotherapy, we evaluated several neural network models for use with different imaging modalities, including X-ray fluoroscopic image denoising. Setup images of prostate cancer patients were acquired with two oblique X-ray fluoroscopic units. Two types of residual network were designed: a convolutional autoencoder (rCAE) and a convolutional neural network (rCNN). We changed the convolutional kernel size and number of convolutional layers for both networks, and the number of pooling and upsampling layers for rCAE. The ground-truth image was applied to the contrast-limited adaptive histogram equalization (CLAHE) method of image processing. Network models were trained to keep the quality of the output image close to that of the ground-truth image from the input image without image processing. For image denoising evaluation, noisy input images were used for the training. More than 6 convolutional layers with convolutional kernels >5×5 improved image quality. However, this did not allow real-time imaging. After applying a pair of pooling and upsampling layers to both networks, rCAEs with >3 convolutions each and rCNNs with >12 convolutions with a pair of pooling and upsampling layers achieved real-time processing at 30 frames per second (fps) with acceptable image quality. Use of our suggested network achieved real-time image processing for contrast enhancement and image denoising by the use of a conventional modern personal computer. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. A neural network based intelligent predictive sensor for cloudiness, solar radiation and air temperature.

    Science.gov (United States)

    Ferreira, Pedro M; Gomes, João M; Martins, Igor A C; Ruano, António E

    2012-11-12

    Accurate measurements of global solar radiation and atmospheric temperature,as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature.

  17. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    Science.gov (United States)

    Ferreira, Pedro M.; Gomes, João M.; Martins, Igor A. C.; Ruano, António E.

    2012-01-01

    Accurate measurements of global solar radiation and atmospheric temperature, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature. PMID:23202230

  18. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification

    Directory of Open Access Journals (Sweden)

    Srdjan Sladojevic

    2016-01-01

    Full Text Available The latest generation of convolutional neural networks (CNNs has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%.

  19. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification

    Science.gov (United States)

    Sladojevic, Srdjan; Arsenovic, Marko; Culibrk, Dubravko; Stefanovic, Darko

    2016-01-01

    The latest generation of convolutional neural networks (CNNs) has achieved impressive results in the field of image classification. This paper is concerned with a new approach to the development of plant disease recognition model, based on leaf image classification, by the use of deep convolutional networks. Novel way of training and the methodology used facilitate a quick and easy system implementation in practice. The developed model is able to recognize 13 different types of plant diseases out of healthy leaves, with the ability to distinguish plant leaves from their surroundings. According to our knowledge, this method for plant disease recognition has been proposed for the first time. All essential steps required for implementing this disease recognition model are fully described throughout the paper, starting from gathering images in order to create a database, assessed by agricultural experts. Caffe, a deep learning framework developed by Berkley Vision and Learning Centre, was used to perform the deep CNN training. The experimental results on the developed model achieved precision between 91% and 98%, for separate class tests, on average 96.3%. PMID:27418923

  20. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    Directory of Open Access Journals (Sweden)

    Pedro M. Ferreira

    2012-11-01

    Full Text Available Accurate measurements of global solar radiation and atmospheric temperature,as well as the availability of the predictions of their evolution over time, are importantfor different areas of applications, such as agriculture, renewable energy and energymanagement, or thermal comfort in buildings. For this reason, an intelligent, light-weightand portable sensor was developed, using artificial neural network models as the time-seriespredictor mechanisms. These have been identified with the aid of a procedure based on themulti-objective genetic algorithm. As cloudiness is the most significant factor affecting thesolar radiation reaching a particular location on the Earth surface, it has great impact on theperformance of predictive solar radiation models for that location. This work also representsone step towards the improvement of such models by using ground-to-sky hemisphericalcolour digital images as a means to estimate cloudiness by the fraction of visible skycorresponding to clouds and to clear sky. The implementation of predictive models inthe prototype has been validated and the system is able to function reliably, providingmeasurements and four-hour forecasts of cloudiness, solar radiation and air temperature.

  1. Influence of Acoustic Feedback on the Learning Strategies of Neural Network-Based Sound Classifiers in Digital Hearing Aids

    Directory of Open Access Journals (Sweden)

    Lorena Álvarez

    2009-01-01

    Full Text Available Sound classifiers embedded in digital hearing aids are usually designed by using sound databases that do not include the distortions associated to the feedback that often occurs when these devices have to work at high gain and low gain margin to oscillation. The consequence is that the classifier learns inappropriate sound patterns. In this paper we explore the feasibility of using different sound databases (generated according to 18 configurations of real patients, and a variety of learning strategies for neural networks in the effort of reducing the probability of erroneous classification. The experimental work basically points out that the proposed methods assist the neural network-based classifier in reducing its error probability in more than 18%. This helps enhance the elderly user's comfort: the hearing aid automatically selects, with higher success probability, the program that is best adapted to the changing acoustic environment the user is facing.

  2. A Neural-Network-Based Semi-Automated Geospatial Classification Tool

    Science.gov (United States)

    Hale, R. G.; Herzfeld, U. C.

    2014-12-01

    North America's largest glacier system, the Bering Bagley Glacier System (BBGS) in Alaska, surged in 2011-2013, as shown by rapid mass transfer, elevation change, and heavy crevassing. Little is known about the physics controlling surge glaciers' semi-cyclic patterns; therefore, it is crucial to collect and analyze as much data as possible so that predictive models can be made. In addition, physical signs frozen in ice in the form of crevasses may help serve as a warning for future surges. The BBGS surge provided an opportunity to develop an automated classification tool for crevasse classification based on imagery collected from small aircraft. The classification allows one to link image classification to geophysical processes associated with ice deformation. The tool uses an approach that employs geostatistical functions and a feed-forward perceptron with error back-propagation. The connectionist-geostatistical approach uses directional experimental (discrete) variograms to parameterize images into a form that the Neural Network (NN) can recognize. In an application to preform analysis on airborne video graphic data from the surge of the BBGS, an NN was able to distinguish 18 different crevasse classes with 95 percent or higher accuracy, for over 3,000 images. Recognizing that each surge wave results in different crevasse types and that environmental conditions affect the appearance in imagery, we designed the tool's semi-automated pre-training algorithm to be adaptable. The tool can be optimized to specific settings and variables of image analysis: (airborne and satellite imagery, different camera types, observation altitude, number and types of classes, and resolution). The generalization of the classification tool brings three important advantages: (1) multiple types of problems in geophysics can be studied, (2) the training process is sufficiently formalized to allow non-experts in neural nets to perform the training process, and (3) the time required to

  3. Artificial neural networks based controller for glucose monitoring during clamp test.

    Directory of Open Access Journals (Sweden)

    Merav Catalogna

    Full Text Available Insulin resistance (IR is one of the most widespread health problems in modern times. The gold standard for quantification of IR is the hyperinsulinemic-euglycemic glucose clamp technique. During the test, a regulated glucose infusion is delivered intravenously to maintain a constant blood glucose concentration. Current control algorithms for regulating this glucose infusion are based on feedback control. These models require frequent sampling of blood, and can only partly capture the complexity associated with regulation of glucose. Here we present an improved clamp control algorithm which is motivated by the stochastic nature of glucose kinetics, while using the minimal need in blood samples required for evaluation of IR. A glucose pump control algorithm, based on artificial neural networks model was developed. The system was trained with a data base collected from 62 rat model experiments, using a back-propagation Levenberg-Marquardt optimization. Genetic algorithm was used to optimize network topology and learning features. The predictive value of the proposed algorithm during the temporal period of interest was significantly improved relative to a feedback control applied at an equivalent low sampling interval. Robustness to noise analysis demonstrates the applicability of the algorithm in realistic situations.

  4. A Real Valued Neural Network Based Autoregressive Energy Detector for Cognitive Radio Application.

    Science.gov (United States)

    Onumanyi, A J; Onwuka, E N; Aibinu, A M; Ugweje, O C; Salami, M J E

    2014-01-01

    A real valued neural network (RVNN) based energy detector (ED) is proposed and analyzed for cognitive radio (CR) application. This was developed using a known two-layered RVNN model to estimate the model coefficients of an autoregressive (AR) system. By using appropriate modules and a well-designed detector, the power spectral density (PSD) of the AR system transfer function was estimated and subsequent receiver operating characteristic (ROC) curves of the detector generated and analyzed. A high detection performance with low false alarm rate was observed for varying signal to noise ratio (SNR), sample number, and model order conditions. The proposed RVNN based ED was then compared to the simple periodogram (SP), Welch periodogram (WP), multitaper (MT), Yule-Walker (YW), Burg (BG), and covariance (CV) based ED techniques. The proposed detector showed better performance than the SP, WP, and MT while providing better false alarm performance than the YW, BG, and CV. Data provided here support the effectiveness of the proposed RVNN based ED for CR application.

  5. Neural network based adaptive control of nonlinear plants using random search optimization algorithms

    Science.gov (United States)

    Boussalis, Dhemetrios; Wang, Shyh J.

    1992-01-01

    This paper presents a method for utilizing artificial neural networks for direct adaptive control of dynamic systems with poorly known dynamics. The neural network weights (controller gains) are adapted in real time using state measurements and a random search optimization algorithm. The results are demonstrated via simulation using two highly nonlinear systems.

  6. EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm.

    Science.gov (United States)

    Kim, Seong Gon; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali

    2016-12-08

    We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation.

  7. Two-stage neural-network-based technique for Urdu character two-dimensional shape representation, classification, and recognition

    Science.gov (United States)

    Megherbi, Dalila B.; Lodhi, S. M.; Boulenouar, A. J.

    2001-03-01

    This work is in the field of automated document processing. This work addresses the problem of representation and recognition of Urdu characters using Fourier representation and a Neural Network architecture. In particular, we show that a two-stage Neural Network scheme is used here to make classification of 36 Urdu characters into seven sub-classes namely subclasses characterized by seven proposed and defined fuzzy features specifically related to Urdu characters. We show that here Fourier Descriptors and Neural Network provide a remarkably simple way to draw definite conclusions from vague, ambiguous, noisy or imprecise information. In particular, we illustrate the concept of interest regions and describe a framing method that provides a way to make the proposed technique for Urdu characters recognition robust and invariant to scaling and translation. We also show that a given character rotation is dealt with by using the Hotelling transform. This transform is based upon the eigenvalue decomposition of the covariance matrix of an image, providing a method of determining the orientation of the major axis of an object within an image. Finally experimental results are presented to show the power and robustness of the proposed two-stage Neural Network based technique for Urdu character recognition, its fault tolerance, and high recognition accuracy.

  8. A radial basis function neural network based on artificial immune systems for remote sensing image classification

    Science.gov (United States)

    Yan, Qin; Zhong, Yanfei

    2008-12-01

    The radial basis function (RBF) neural network is a powerful method for remote sensing image classification. It has a simple architecture and the learning algorithm corresponds to the solution of a linear regression problem, resulting in a fast training process. The main drawback of this strategy is the requirement of an efficient algorithm to determine the number, position, and dispersion of the RBF. Traditional methods to determine the centers are: randomly choose input vectors from the training data set; vectors obtained from unsupervised clustering algorithms, such as k-means, applied to the input data. These conduce that traditional RBF neural network is sensitive to the center initialization. In this paper, the artificial immune network (aiNet) model, a new computational intelligence based on artificial immune networks (AIN), is applied to obtain appropriate centers for remote sensing image classification. In the aiNet-RBF algorihtm, each input pattern corresonds to an antigenic stimulus, while each RBF candidate center is considered to be an element, or cell, of the immune network model. The steps are as follows: A set of candidate centers is initialized at random, where the initial number of candidates and their positions is not crucial to the performance. Then, the clonal selection principle will control which candidates will be selected and how they will be upadated. Note that the clonal selection principle will be responsible for how the centers will represent the training data set. Finally, the immune network will identify and eliminate or suppress self-recognizing individuals to control the number of candidate centers. After the above learning phase, the aiNet network centers represent internal images of the inuput patterns presented to it. The algorithm output is taken to be the matrix of memory cells' coordinates that represent the final centers to be adopted by the RBF network. The stopping criterion of the proposed algorithm is given by a pre

  9. Convolutional neural network-based data page classification for holographic memory.

    Science.gov (United States)

    Shimobaba, Tomoyoshi; Kuwata, Naoki; Homma, Mizuha; Takahashi, Takayuki; Nagahama, Yuki; Sano, Marie; Hasegawa, Satoki; Hirayama, Ryuji; Kakue, Takashi; Shiraki, Atsushi; Takada, Naoki; Ito, Tomoyoshi

    2017-09-10

    We propose a deep-learning-based classification of data pages used in holographic memory. We numerically investigated the classification performance of a conventional multilayer perceptron (MLP) and a deep neural network, under the condition that reconstructed page data are contaminated by some noise and are randomly laterally shifted. When data pages are randomly laterally shifted, the MLP was found to have a classification accuracy of 93.02%, whereas the deep neural network was able to classify data pages at an accuracy of 99.98%. The accuracy of the deep neural network is 2 orders of magnitude better than the MLP.

  10. Short-term load and wind power forecasting using neural network-based prediction intervals.

    Science.gov (United States)

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2014-02-01

    Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time.

  11. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller.

    Science.gov (United States)

    Lopez-Franco, Carlos; Gomez-Avila, Javier; Alanis, Alma Y; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-08-12

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results.

  12. CAPES: Unsupervised Storage Performance Tuning Using Neural Network-Based Deep Reinforcement Learning

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Parameter tuning is an important task of storage performance optimization. Current practice usually involves numerous tweak-benchmark cycles that are slow and costly. To address this issue, we developed CAPES, a model-less deep reinforcement learning-based unsupervised parameter tuning system driven by a deep neural network (DNN). It is designed to nd the optimal values of tunable parameters in computer systems, from a simple client-server system to a large data center, where human tuning can be costly and often cannot achieve optimal performance. CAPES takes periodic measurements of a target computer system’s state, and trains a DNN which uses Q-learning to suggest changes to the system’s current parameter values. CAPES is minimally intrusive, and can be deployed into a production system to collect training data and suggest tuning actions during the system’s daily operation. Evaluation of a prototype on a Lustre system demonstrates an increase in I/O throughput up to 45% at saturation point. About the...

  13. Color matching of fabric blends: hybrid Kubelka-Munk + artificial neural network based method

    Science.gov (United States)

    Furferi, Rocco; Governi, Lapo; Volpe, Yary

    2016-11-01

    Color matching of fabric blends is a key issue for the textile industry, mainly due to the rising need to create high-quality products for the fashion market. The process of mixing together differently colored fibers to match a desired color is usually performed by using some historical recipes, skillfully managed by company colorists. More often than desired, the first attempt in creating a blend is not satisfactory, thus requiring the experts to spend efforts in changing the recipe with a trial-and-error process. To confront this issue, a number of computer-based methods have been proposed in the last decades, roughly classified into theoretical and artificial neural network (ANN)-based approaches. Inspired by the above literature, the present paper provides a method for accurate estimation of spectrophotometric response of a textile blend composed of differently colored fibers made of different materials. In particular, the performance of the Kubelka-Munk (K-M) theory is enhanced by introducing an artificial intelligence approach to determine a more consistent value of the nonlinear function relationship between the blend and its components. Therefore, a hybrid K-M+ANN-based method capable of modeling the color mixing mechanism is devised to predict the reflectance values of a blend.

  14. Artificial neural networks based estimation of optical parameters by diffuse reflectance imaging under in vitro conditions

    Directory of Open Access Journals (Sweden)

    Mahmut Ozan Gökkan

    2017-01-01

    Full Text Available Optical parameters (properties of tissue-mimicking phantoms are determined through noninvasive optical imaging. Objective of this study is to decompose obtained diffuse reflectance into these optical properties such as absorption and scattering coefficients. To do so, transmission spectroscopy is firstly used to measure the coefficients via an experimental setup. Next, the optical properties of each characterized phantom are input for Monte Carlo (MC simulations to get diffuse reflectance. Also, a surface image for each single phantom with its known optical properties is obliquely captured due to reflectance-based geometrical setup using CMOS camera that is positioned at 5∘ angle to the phantoms. For the illumination of light, a laser light source at 633nm wavelength is preferred, because optical properties of different components in a biological tissue on that wavelength are nonoverlapped. During in vitro measurements, we prepared 30 different mixture samples adding clinoleic intravenous lipid emulsion (CILE and evans blue (EB dye into a distilled water. Finally, all obtained diffuse reflectance values are used to estimate the optical coefficients by artificial neural networks (ANNs in inverse modeling. For a biological tissue it is found that the simulated and measured values in our results are in good agreement.

  15. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller

    Science.gov (United States)

    Lopez-Franco, Carlos; Alanis, Alma Y.; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-01-01

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results. PMID:28805689

  16. Artificial neural network based torque calculation of switched reluctance motor without locking the rotor

    Science.gov (United States)

    Kucuk, Fuat; Goto, Hiroki; Guo, Hai-Jiao; Ichinokura, Osamu

    2009-04-01

    Feedback of motor torque is required in most of switched reluctance (SR) motor applications in order to control torque and its ripple. An SR motor shows highly nonlinear property which does not allow calculating torque analytically. Torque can be directly measured by torque sensor, but it inevitably increases the cost and has to be properly mounted on the motor shaft. Instead of torque sensor, finite element analysis (FEA) may be employed for torque calculation. However, motor modeling and calculation takes relatively long time. The results of FEA may also differ from the actual results. The most convenient way seems to calculate torque from the measured values of rotor position, current, and flux linkage while locking the rotor at definite positions. However, this method needs an extra assembly to lock the rotor. In this study, a novel torque calculation based on artificial neural networks (ANNs) is presented. Magnetizing data are collected while a 6/4 SR motor is running. They need to be interpolated for torque calculation. ANN is very strong tool for data interpolation. ANN based torque estimation is verified on the 6/4 SR motor and is compared by FEA based torque estimation to show its validity.

  17. A pre-trained convolutional neural network based method for thyroid nodule diagnosis.

    Science.gov (United States)

    Ma, Jinlian; Wu, Fa; Zhu, Jiang; Xu, Dong; Kong, Dexing

    2017-01-01

    In ultrasound images, most thyroid nodules are in heterogeneous appearances with various internal components and also have vague boundaries, so it is difficult for physicians to discriminate malignant thyroid nodules from benign ones. In this study, we propose a hybrid method for thyroid nodule diagnosis, which is a fusion of two pre-trained convolutional neural networks (CNNs) with different convolutional layers and fully-connected layers. Firstly, the two networks pre-trained with ImageNet database are separately trained. Secondly, we fuse feature maps learned by trained convolutional filters, pooling and normalization operations of the two CNNs. Finally, with the fused feature maps, a softmax classifier is used to diagnose thyroid nodules. The proposed method is validated on 15,000 ultrasound images collected from two local hospitals. Experiment results show that the proposed CNN based methods can accurately and effectively diagnose thyroid nodules. In addition, the fusion of the two CNN based models lead to significant performance improvement, with an accuracy of 83.02%±0.72%. These demonstrate the potential clinical applications of this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Artificial neural network-based pharmacogenomic algorithm for warfarin dose optimization.

    Science.gov (United States)

    Pavani, Addepalli; Naushad, Shaik Mohammad; Kumar, Rajasekar Manoj; Srinath, Murali; Malempati, Amaresh Rao; Kutala, Vijay Kumar

    2016-01-01

    To develop more precise pharmacogenomic algorithm for prediction of safe and effective dose of warfarin. An artificial neural network (ANN) algorithm was developed by using age, gender, BMI, plasma vitamin K levels, thyroid status and ten genetic variables as the inputs and therapeutic warfarin dose as the output. Hyperbolic tangent function was used to build an ANN architecture. This model explained 93.5% variability in warfarin dosing and predicted warfarin dose accurately in 74.5% patients whose international normalized ratio (INR) was less than 2.0 and in 83.3% patients whose INR was more than 3.5. This algorithm reduced the out-of-range INRs (odds ratio [OR]: 0.49; 95% CI: 0.30-0.79; p = 0.003), the rate of adverse drug reactions (OR: 0.00; 95% CI: 0.00-1.21; p = 0.06) and time to reach first therapeutic INR (OR: 6.73; 95% CI: 2.17-22.31; p algorithm was found to be applicable in both euthyroid and hypothyroid status. S-warfarin/7-hydroxywarfarin ratio was found to increase in subjects with CYP2C9*2 and CYP2C9*3 justifying the warfarin sensitivity attributed to these variants. An application of ANN for warfarin dosing improves predictability and provides safe and effective dosing.

  19. Neural substrates of motor and cognitive dysfunctions in SCA2 patients: A network based statistics analysis

    Directory of Open Access Journals (Sweden)

    G. Olivito

    2017-01-01

    In the present study, the network-based statistics (NBS approach was used to assess differences in functional connectivity between specific cerebellar and cerebral “nodes” in SCA2 patients. Altered inter-nodal connectivity was found between more posterior regions in the cerebellum and regions in the cerebral cortex clearly related to cognition and emotion. Furthermore, more anterior cerebellar lobules showed altered inter-nodal connectivity with motor and somatosensory cerebral regions. The present data suggest that in SCA2 a cerebellar dysfunction affects long-distance cerebral regions and that the clinical symptoms may be specifically related with connectivity changes between motor and non-motor cerebello-cortical nodes.

  20. Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors.

    Science.gov (United States)

    Yu, Jinpeng; Shi, Peng; Dong, Wenjie; Chen, Bing; Lin, Chong

    2015-03-01

    This brief considers the problem of neural networks (NNs)-based adaptive dynamic surface control (DSC) for permanent magnet synchronous motors (PMSMs) with parameter uncertainties and load torque disturbance. First, NNs are used to approximate the unknown and nonlinear functions of PMSM drive system and a novel adaptive DSC is constructed to avoid the explosion of complexity in the backstepping design. Next, under the proposed adaptive neural DSC, the number of adaptive parameters required is reduced to only one, and the designed neural controllers structure is much simpler than some existing results in literature, which can guarantee that the tracking error converges to a small neighborhood of the origin. Then, simulations are given to illustrate the effectiveness and potential of the new design technique.

  1. Neural-network-based depth-resolved multiscale structural optimization using density functional theory and electron diffraction data

    Science.gov (United States)

    Pennington, Robert S.; Coll, Catalina; Estradé, Sònia; Peiró, Francesca; Koch, Christoph T.

    2018-01-01

    Iterative neural-network-based three-dimensional structural optimization of atomic positions over tens of nanometers is performed using transmission electron microscope (TEM) diffraction data simulated from density functional theory (DFT) all-electron densities, thus retrieving parameter variations along the beam direction. We first use experimental data to show that the GPAW DFT code's all-electron densities are considerably more accurate for electron diffraction calculations compared to conventional isolated-atom scattering factors, and they also compare well to Wien2K DFT simulations. This DFT-TEM combination is then integrated into an iterative neural-network-optimization-based algorithm (PRIMES, parameter retrieval and inversion from multiple electron scattering) to retrieve nanometer-scale ferroelectric polarization domains and strain in theoretical bulklike specimens from TEM data. DFT and isolated-atom methods produce substantially different diffraction patterns and retrieved polarization domain parameters, and DFT is sufficient to retrieve strain properties from a silicon specimen simulated using experimentally derived structure factors. Thus, we show that the improved accuracy, fast computation, and intuitive integration make the GPAW DFT code well suited for three-dimensional materials characterization and demonstrate this using an iterative neural-network algorithm that is verifiable on the mesoscale and, with DFT integration, self-consistent on the nanoscale.

  2. Neural network based control of an absorption column in the process of bioethanol production

    Directory of Open Access Journals (Sweden)

    Eduardo Eyng

    2009-08-01

    Full Text Available Gaseous ethanol may be recovered from the effluent gas mixture of the sugar cane fermentation process using a staged absorption column. In the present work, the development of a nonlinear controller, based on a neural network inverse model (ANN controller, was proposed and tested to manipulate the absorbent flow rate in order to control the residual ethanol concentration in the effluent gas phase. Simulation studies were carried out, in which a noise was applied to the ethanol concentration signals from the rigorous model. The ANN controller outperformed the dynamic matrix control (DMC when step disturbances were imposed to the gas mixture composition. A security device, based on a conventional feedback algorithm, and a digital filter were added to the proposed strategy to improve the system robustness when unforeseen operating and environmental conditions occured. The results demonstrated that ANN controller was a robust and reliable tool to control the absorption column.Deseja-se recuperar o etanol perdido por evaporação durante o processo de fermentação da cana-de-açúcar. Para tanto, faz-se uso de uma coluna de absorção. O controle da concentração de etanol no efluente gasoso da coluna é realizado pela manipulação da vazão de solvente, sendo esta determinada pelo controlador não linear proposto, baseado em um modelo inverso de redes neurais (controlador ANN. Foram feitas simulações adicionando-se um sinal de ruído a medida de concentração de etanol na fase gasosa. Quando perturbações degrau foram inseridas na mistura gasosa afluente, o controlador ANN demonstrou desempenho superior ao controle por matriz dinâmica (DMC. Um dispositivo de segurança, baseado em um controlador feedback convencional, e um filtro digital foram implementados à estratégia de controle proposta para agregar robustez no tratamento de distúrbios ocorridos no ambiente operacional. Os resultados demonstraram que o controlador ANN é uma

  3. Artificial neural networks based predictive model for worker ...

    African Journals Online (AJOL)

    Virtual cellular manufacturing systems (VCMS) have come into existence, replacing traditional cellular manufacturing systems (CMS), to meet highly dynamic production conditions in terms of demand, processing times, product mix and processing sequence. While cell formation phase of VCMS has been dealt quite ...

  4. Neural Network Based Reactive Navigation for Mobile Robot in Dynamic Environment

    Czech Academy of Sciences Publication Activity Database

    Krejsa, Jiří; Věchet, S.; Ripel, T.

    2013-01-01

    Roč. 198, č. 2013 (2013), s. 108-113 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : mobile robot * reactive navigation * artificial neural networks Subject RIV: JD - Computer Applications, Robot ics

  5. Overview of the neural network based technique for monitoring of road condition via reconstructed road profiles

    CSIR Research Space (South Africa)

    Ngwangwa, HM

    2008-07-01

    Full Text Available on the road and driver to assess the integrity of road and vehicle infrastructure. In this paper, vehicle vibration data are applied to an artificial neural network to reconstruct the corresponding road surface profiles. The results show that the technique...

  6. Dynamic Neural Network-Based Pulsed Plasma Thruster (PPT) Fault Detection and Isolation for Formation Flying of Satellites

    Science.gov (United States)

    Valdes, A.; Khorasani, K.

    The main objective of this paper is to develop a dynamic neural network-based fault detection and isolation (FDI) scheme for the Pulsed Plasma Thrusters (PPTs) that are used in the Attitude Control Subsystem (ACS) of satellites that are tasked to perform a formation flying mission. By using data collected from the relative attitudes of the formation flying satellites our proposed "High Level" FDI scheme can detect the pair of thrusters which is faulty, however fault isolation cannot be accomplished. Based on the "High Level" FDI scheme and the DNN-based "Low Level" FDI scheme developed earlier by the authors, an "Integrated" DNN-based FDI scheme is then proposed. To demonstrate the FDI capabilities of the proposed schemes various fault scenarios are simulated.

  7. Human Detection System by Fusing Depth Map-Based Method and Convolutional Neural Network-Based Method

    Directory of Open Access Journals (Sweden)

    Anh Vu Le

    2017-01-01

    Full Text Available In this paper, the depth images and the colour images provided by Kinect sensors are used to enhance the accuracy of human detection. The depth-based human detection method is fast but less accurate. On the other hand, the faster region convolutional neural network-based human detection method is accurate but requires a rather complex hardware configuration. To simultaneously leverage the advantages and relieve the drawbacks of each method, one master and one client system is proposed. The final goal is to make a novel Robot Operation System (ROS-based Perception Sensor Network (PSN system, which is more accurate and ready for the real time application. The experimental results demonstrate the outperforming of the proposed method compared with other conventional methods in the challenging scenarios.

  8. An artificial neural network based $b$ jet identification algorithm at the CDF Experiment

    CERN Document Server

    Freeman, J; Ketchum, W; Poprocki, S; Pronko, A; Rusu, V; Wittich, P

    2011-01-01

    We present the development and validation of a new multivariate $b$ jet identification algorithm ("$b$ tagger") used at the CDF experiment at the Fermilab Tevatron. At collider experiments, $b$ taggers allow one to distinguish particle jets containing $B$ hadrons from other jets. Employing feed-forward neural network architectures, this tagger is unique in its emphasis on using information from individual tracks. This tagger not only contains the usual advantages of a multivariate technique such as maximal use of information in a jet and tunable purity/efficiency operating points, but is also capable of evaluating jets with only a single track. To demonstrate the effectiveness of the tagger, we employ a novel method wherein we calculate the false tag rate and tag efficiency as a function of the placement of a lower threshold on a jet's neural network output value in $Z+1$ jet and $t\\bar{t}$ candidate samples, rich in light flavor and $b$ jets, respectively.

  9. Neural network-based survey analysis of risk management practices in new product development

    DEFF Research Database (Denmark)

    Kampianakis, Andreas N.; Oehmen, Josef

    2017-01-01

    The current study investigates the applicability of Artificial Neural Networks (ANNs) to analyse survey data on the effectiveness of risk management practices in product development (PD) projects, and its ability to forecast project outcomes. Moreover, this study presents the relations between risk...... Neural Networks. Dataset used is a filtered survey of 291 product development programs. Answers of this survey are used as training input and target output, in pattern recognition two-layer feed forward networks, using various transfer functions. Using this method, relations among 6 project practices...... and 13 outcome metrics were revealed. Results of this analysis are compared with existent results made through statistical analysis in prior work of one of the authors. Future investigation is needed in order to tackle the lack of data and create an easy to use platform for industrial use....

  10. Classification of Weed Species Using Artificial Neural Networks Based on Color Leaf Texture Feature

    Science.gov (United States)

    Li, Zhichen; An, Qiu; Ji, Changying

    The potential impact of herbicide utilization compel people to use new method of weed control. Selective herbicide application is optimal method to reduce herbicide usage while maintain weed control. The key of selective herbicide is how to discriminate weed exactly. The HIS color co-occurrence method (CCM) texture analysis techniques was used to extract four texture parameters: Angular second moment (ASM), Entropy(E), Inertia quadrature (IQ), and Inverse difference moment or local homogeneity (IDM).The weed species selected for studying were Arthraxon hispidus, Digitaria sanguinalis, Petunia, Cyperus, Alternanthera Philoxeroides and Corchoropsis psilocarpa. The software of neuroshell2 was used for designing the structure of the neural network, training and test the data. It was found that the 8-40-1 artificial neural network provided the best classification performance and was capable of classification accuracies of 78%.

  11. A neural network-based electromyography motion classifier for upper limb activities

    Directory of Open Access Journals (Sweden)

    Karan Veer

    2016-11-01

    Full Text Available The objective of the work is to investigate the classification of different movements based on the surface electromyogram (SEMG pattern recognition method. The testing was conducted for four arm movements using several experiments with artificial neural network classification scheme. Six time domain features were extracted and consequently classification was implemented using back propagation neural classifier (BPNC. Further, the realization of projected network was verified using cross validation (CV process; hence ANOVA algorithm was carried out. Performance of the network is analyzed by considering mean square error (MSE value. A comparison was performed between the extracted features and back propagation network results reported in the literature. The concurrent result indicates the significance of proposed network with classification accuracy (CA of 100% recorded from two channels, while analysis of variance technique helps in investigating the effectiveness of classified signal for recognition tasks.

  12. Artificial neural network based fault identification scheme implementation for a three-phase induction motor.

    Science.gov (United States)

    Kolla, Sri R; Altman, Shawn D

    2007-04-01

    This paper presents results from the implementation and testing of a PC based monitoring and fault identification scheme for a three-phase induction motor using artificial neural networks (ANNs). To accomplish the task, a hardware system is designed and built to acquire three-phase voltages and currents from a 1/3 HP squirrel-cage, three-phase induction motor. A software program is written to read the voltages and currents, which are first used to train a feed-forward neural network structure using the JavaNNS program. The trained network is placed in a LabVIEW based program formula node that monitors the voltages and currents online and displays the fault conditions and turns the motor off. The complete system is successfully tested in real time by creating different faults on the motor.

  13. Neural network based forward prediction of bladder pressure using pudendal nerve electrical activity.

    Science.gov (United States)

    Geramipour, A; Makki, S; Erfanian, A

    2015-01-01

    Individuals with spinal cord injury or neurological disorders have problems in urinary bladder storage and in voiding function. In these people, the detrusor of bladder contracts at low volume and this causes incontinence. The goal of bladder control is to increase the bladder capacity by electrical stimulation of relative nerves such as pelvic nerves, sacral nerve roots or pudendal nerves. For this purpose, the bladder pressure has to be monitored continuously. In this paper, we propose a method for real-time estimating the bladder pressure using artificial neural network. The method is based upon measurements of electroneurogram (ENG) signal of pudendal nerve. This approach yields synthetic bladder pressure estimates during bladder contraction. The experiments were conducted on three rats. The results show that neural predictor can provide accurate estimation and prediction of bladder pressure with good generalization ability. The average error of 1-second and 5-second ahead prediction of bladder pressure are 9.62% and 10.54%, respectively.

  14. Chaotic Extension Neural Network-Based Fault Diagnosis Method for Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Kuo-Nan Yu

    2014-01-01

    Full Text Available At present, the solar photovoltaic system is extensively used. However, once a fault occurs, it is inspected manually, which is not economical. In order to remedy the defect of unavailable fault diagnosis at any irradiance and temperature in the literature with chaos synchronization based intelligent fault diagnosis for photovoltaic systems proposed by Hsieh et al., this study proposed a chaotic extension fault diagnosis method combined with error back propagation neural network to overcome this problem. It used the nn toolbox of matlab 2010 for simulation and comparison, measured current irradiance and temperature, and used the maximum power point tracking (MPPT for chaotic extraction of eigenvalue. The range of extension field was determined by neural network. Finally, the voltage eigenvalue obtained from current temperature and irradiance was used for the fault diagnosis. Comparing the diagnostic rates with the results by Hsieh et al., this scheme can obtain better diagnostic rates when the irradiances or the temperatures are changed.

  15. A Review of Neural Network Based Machine Learning Approaches for Rotor Angle Stability Control

    OpenAIRE

    Yousefian, Reza; Kamalasadan, Sukumar

    2017-01-01

    This paper reviews the current status and challenges of Neural Networks (NNs) based machine learning approaches for modern power grid stability control including their design and implementation methodologies. NNs are widely accepted as Artificial Intelligence (AI) approaches offering an alternative way to control complex and ill-defined problems. In this paper various application of NNs for power system rotor angle stabilization and control problem is discussed. The main focus of this paper i...

  16. A comparative performance evaluation of neural network based approach for sentiment classification of online reviews

    OpenAIRE

    Vinodhini, G.; Chandrasekaran, R.M.

    2016-01-01

    The aim of sentiment classification is to efficiently identify the emotions expressed in the form of text messages. Machine learning methods for sentiment classification have been extensively studied, due to their predominant classification performance. Recent studies suggest that ensemble based machine learning methods provide better performance in classification. Artificial neural networks (ANNs) are rarely being investigated in the literature of sentiment classification. This paper compare...

  17. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    Science.gov (United States)

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Spiking Neural Networks based on OxRAM Synapses for Real-time Unsupervised Spike Sorting

    Directory of Open Access Journals (Sweden)

    Thilo Werner

    2016-11-01

    Full Text Available In this paper, we present an alternative approach to perform spike sorting of complex brain signals based on spiking neural networks (SNN. The proposed architecture is suitable for hardware implementation by using RRAM technology for the implementation of synapses whose low latency (< 1μs enable real-time spike sorting. This offers promising advantagesto conventional spike sorting techniques for brain-computer interface and neural prosthesis applications. Moreover, the ultralow power consumption of the RRAM synapses of the spiking neural network (nW range may enable the design of autonomous implantable devices for rehabilitation purposes. We demonstrate an original methodology to use Oxide based RRAM (OxRAM as easy to program and low power (< 75 pJ synapses. Synaptic weights are modulated through the application of an online learning strategy inspired by biological Spike Timing Dependent Plasticity. Real spiking data have been recorded both intraand extracellularly from an in-vitro preparation of the Crayfish sensory-motor system and used for validation of the proposed OxRAM based SNN. This artificial SNN is able to identify, learn, recognize and distinguish between different spike shapes in the input signal with a recognition rate about 90% without any supervision.

  19. Detection of lung injury with conventional and neural network-based analysis of continuous data.

    Science.gov (United States)

    Räsänen, J; León, M A

    1998-08-01

    To test if analysis of pressure and flow waveform patterns with an artificial intelligence neural network could distinguish between normal and injured lungs. Acute lung injury was induced in ten healthy anesthetized, mechanically ventilated dogs with repeated injections of oleic acid, until arterial blood oxyhemoglobin saturation reached 85% breathing room air. Airway pressure, esophageal pressure, airway flow, and arterial and mixed venous saturation signals were stored at 2 min intervals. Hemodynamic and blood gas data were collected every 10 min. Back-propagation neural networks were trained with normalized airway pressure and flow waveforms from normal and fully injured lungs. The networks scored lung injury on a continuous scale from +1 (normal) to -1 (injured). Network scores unequivocally distinguished between normal and fully injured lungs and suggested a gradual transition from normal to injury pattern. However, the response of the network was slow compared to compliance, resistance and venous admixture. Normal and fully injured lungs display distinct flow and pressure waveform patterns which are independent of changes in calculated pulmonary mechanics variables. These patterns can be recognized by a neural network. Further research is needed to determine the full potential of automated pattern recognition for lung monitoring.

  20. A neural network-based approach to noise identification of interferometric GW antennas: the case of the 40 m Caltech laser interferometer

    CERN Document Server

    Acernese, F; Rosa, M D; Rosa, R D; Eleuteri, A; Milano, L; Tagliaferri, R

    2002-01-01

    In this paper, a neural network-based approach is presented for the real time noise identification of a GW laser interferometric antenna. The 40 m Caltech laser interferometer output data provide a realistic test bed for noise identification algorithms because of the presence of many relevant effects: violin resonances in the suspensions, main power harmonics, ring-down noise from servo control systems, electronic noises, glitches and so on. These effects can be assumed to be present in all the first interferometric long baseline GW antennas such as VIRGO, LIGO, GEO and TAMA. For noise identification, we used the Caltech-40 m laser interferometer data. The results we obtained are pretty good notwithstanding the high initial computational cost. The algorithm we propose is general and robust, taking into account that it does not require a priori information on the data, nor a precise model, and it constitutes a powerful tool for time series data analysis.

  1. A neural network-based approach to noise identification of interferometric GW antennas: the case of the 40 m Caltech laser interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Acernese, F [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Barone, F [Istituto Nazionale di Fisica Nucleare, sez. Napoli, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Rosa, M de [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Rosa, R De [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Eleuteri, A [Istituto Nazionale di Fisica Nucleare, sez. Napoli, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Milano, L [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Tagliaferri, R [Dipartimento di Matematica ed Informatica, Universita di Salerno, via S Allende, I-84081 Baronissi (Salerno) (Italy)

    2002-06-21

    In this paper, a neural network-based approach is presented for the real time noise identification of a GW laser interferometric antenna. The 40 m Caltech laser interferometer output data provide a realistic test bed for noise identification algorithms because of the presence of many relevant effects: violin resonances in the suspensions, main power harmonics, ring-down noise from servo control systems, electronic noises, glitches and so on. These effects can be assumed to be present in all the first interferometric long baseline GW antennas such as VIRGO, LIGO, GEO and TAMA. For noise identification, we used the Caltech-40 m laser interferometer data. The results we obtained are pretty good notwithstanding the high initial computational cost. The algorithm we propose is general and robust, taking into account that it does not require a priori information on the data, nor a precise model, and it constitutes a powerful tool for time series data analysis.

  2. Detection and classification of power quality disturbances using parallel neural networks based on discrete wavelet transform

    Directory of Open Access Journals (Sweden)

    Maryam Rahmati Garousi

    2016-03-01

    Full Text Available In this paper, a new method for the detection and classification of all types of power quality disturbances is presented. In addition to separating the disturbance signals, the proposed method is able to determine the type of disturbances. Disturbance waveforms are generated based on IEEE 1159 standard and they are de-noised using discrete wavelet transform. To detect the sinusoidal signals from disturbance signals, new criteria have been proposed. By introducing these new criteria, the classification algorithm is not active for non-disturbance signals. Therefore, the computation time is reduced. If a signal has disturbance, to extract the required information, it is analyzed using discrete wavelet transform. Using this information, the appropriate feature vectors are introduced. Parallel neural networks structures are proposed for the classification of disturbances. The inputs of these networks are the introduced feature vectors. The proposed method is done for all power quality disturbances including DC offset, flicker, interrupt, sag, swell, harmonic, notching, impulsive transient, oscillatory transient and eight combinations of these including the harmonics with transient, harmonic with flicker, harmonic with sag, harmonic with swell, sag with flicker, swell with flicker, transient with sag and transient with swell. The performance of this algorithm is compared with a single neural network structure. The results indicate using the parallel neural networks structure, computational time is much reduced and the accuracy of classification of power quality disturbances is significantly increased. Comparison the obtained results by the method with other methods, represents very high performance of the proposed method with precision %99.53.

  3. Neural-network-based single-sided non-enwrapping power loss tester

    CERN Document Server

    Passadis, K; Beckley, P

    2003-01-01

    It is preferable to be able to assess the power loss of electrical steels during production. When a single-sided tester is used, flux sensing is undertaken from one side only and hence some leakage flux above the strip may not captured by the sensing coils. Therefore, the disadvantage of a single-sided non-enwrapping tester lies in the measurement of the flux density in the material. A neural network was successfully used to 'predict' the correct level of flux density for accurate assessment of power loss.

  4. Neural Network Based Recognition of Signal Patterns in Application to Automatic Testing of Rails

    Directory of Open Access Journals (Sweden)

    Tomasz Ciszewski

    2006-01-01

    Full Text Available The paper describes the application of neural network for recognition of signal patterns in measuring data gathered by the railroad ultrasound testing car. Digital conversion of the measuring signal allows to store and process large quantities of data. The elaboration of smart, effective and automatic procedures recognizing the obtained patterns on the basisof measured signal amplitude has been presented. The test shows only two classes of pattern recognition. In authors’ opinion if we deliver big enough quantity of training data, presented method is applicable to a system that recognizes many classes.

  5. A Neural Networks-Based Hybrid Routing Protocol for Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Nenad Kojić

    2012-06-01

    Full Text Available The networking infrastructure of wireless mesh networks (WMNs is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic—i.e., neural networks (NNs. This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission. The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance.

  6. Monitoring the Freshness of Moroccan Sardines with a Neural-Network Based Electronic Nose

    Directory of Open Access Journals (Sweden)

    Benachir Bouchikhi

    2006-10-01

    Full Text Available An electronic nose was developed and used as a rapid technique to classify thefreshness of sardine samples according to the number of days spent under cold storage (4 ±1°C, in air. The volatile compounds present in the headspace of weighted sardine sampleswere introduced into a sensor chamber and the response signals of the sensors wererecorded as a function of time. Commercially available gas sensors based on metal oxidesemiconductors were used and both static and dynamic features from the sensorconductance response were input to the pattern recognition engine. Data analysis wasperformed by three different pattern recognition methods such as probabilistic neuralnetworks (PNN, fuzzy ARTMAP neural networks (FANN and support vector machines(SVM. The objective of this study was to find, among these three pattern recognitionmethods, the most suitable one for accurately identifying the days of cold storage undergoneby sardine samples. The results show that the electronic nose can monitor the freshness ofsardine samples stored at 4°C, and that the best classification and prediction are obtainedwith SVM neural network. The SVM approach shows improved classificationperformances, reducing the amount of misclassified samples down to 3.75 %.

  7. Neural Network Based Response Prediction of rTMS in Major Depressive Disorder Using QEEG Cordance.

    Science.gov (United States)

    Erguzel, Turker Tekin; Ozekes, Serhat; Gultekin, Selahattin; Tarhan, Nevzat; Hizli Sayar, Gokben; Bayram, Ali

    2015-01-01

    The combination of repetitive transcranial magnetic stimulation (rTMS), a non-pharmacological form of therapy for treating major depressive disorder (MDD), and electroencephalogram (EEG) is a valuable tool for investigating the functional connectivity in the brain. This study aims to explore whether pre-treating frontal quantitative EEG (QEEG) cordance is associated with response to rTMS treatment among MDD patients by using an artificial intelligence approach, artificial neural network (ANN). The artificial neural network using pre-treatment cordance of frontal QEEG classification was carried out to identify responder or non-responder to rTMS treatment among 55 MDD subjects. The classification performance was evaluated using k-fold cross-validation. The ANN classification identified responders to rTMS treatment with a sensitivity of 93.33%, and its overall accuracy reached to 89.09%. Area under Receiver Operating Characteristic (ROC) curve (AUC) value for responder detection using 6, 8 and 10 fold cross validation were 0.917, 0.823 and 0.894 respectively. Potential utility of ANN approach method can be used as a clinical tool in administering rTMS therapy to a targeted group of subjects suffering from MDD. This methodology is more potentially useful to the clinician as prediction is possible using EEG data collected before this treatment process is initiated. It is worth using feature selection algorithms to raise the sensitivity and accuracy values.

  8. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals.

    Science.gov (United States)

    Kim, Junkyeong; Lee, Chaggil; Park, Seunghee

    2017-06-07

    Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.

  9. Hour-Glass Neural Network Based Daily Money Flow Estimation for Automatic Teller Machines

    Science.gov (United States)

    Karungaru, Stephen; Akashi, Takuya; Nakano, Miyoko; Fukumi, Minoru

    Monetary transactions using Automated Teller Machines (ATMs) have become a normal part of our daily lives. At ATMs, one can withdraw, send or debit money and even update passbooks among many other possible functions. ATMs are turning the banking sector into a ubiquitous service. However, while the advantages for the ATM users (financial institution customers) are many, the financial institution side faces an uphill task in management and maintaining the cash flow in the ATMs. On one hand, too much money in a rarely used ATM is wasteful, while on the other, insufficient amounts would adversely affect the customers and may result in a lost business opportunity for the financial institution. Therefore, in this paper, we propose a daily cash flow estimation system using neural networks that enables better daily forecasting of the money required at the ATMs. The neural network used in this work is a five layered hour glass shaped structure that achieves fast learning, even for the time series data for which seasonality and trend feature extraction is difficult. Feature extraction is carried out using the Akamatsu Integral and Differential transforms. This work achieves an average estimation accuracy of 92.6%.

  10. A neural networks-based hybrid routing protocol for wireless mesh networks.

    Science.gov (United States)

    Kojić, Nenad; Reljin, Irini; Reljin, Branimir

    2012-01-01

    The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic-i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance.

  11. A Dynamic Bioinspired Neural Network Based Real-Time Path Planning Method for Autonomous Underwater Vehicles.

    Science.gov (United States)

    Ni, Jianjun; Wu, Liuying; Shi, Pengfei; Yang, Simon X

    2017-01-01

    Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently.

  12. Comparison of Back propagation neural network and Back propagation neural network Based Particle Swarm intelligence in Diagnostic Breast Cancer

    Directory of Open Access Journals (Sweden)

    Farahnaz SADOUGHI

    2014-03-01

    Full Text Available Breast cancer is the most commonly diagnosed cancer and the most common cause of death in women all over the world. Use of computer technology supporting breast cancer diagnosing is now widespread and pervasive across a broad range of medical areas. Early diagnosis of this disease can greatly enhance the chances of long-term survival of breast cancer victims. Artificial Neural Networks (ANN as mainly method play important role in early diagnoses breast cancer. This paper studies Levenberg Marquardet Backpropagation (LMBP neural network and Levenberg Marquardet Backpropagation based Particle Swarm Optimization(LMBP-PSO for the diagnosis of breast cancer. The obtained results show that LMBP and LMBP based PSO system provides higher classification efficiency. But LMBP based PSO needs minimum training and testing time. It helps in developing Medical Decision System (MDS for breast cancer diagnosing. It can also be used as secondary observer in clinical decision making.

  13. Neural network-based detection of pulmonary nodules on chest radiography; Identificazione mediante reti neurali dei noduli polmonari nel radiogramma del torace

    Energy Technology Data Exchange (ETDEWEB)

    Coppini, G. [Consiglio Nazionale delle Ricerche, Pisa (Italy). Ist. di Fisiologia Patologica; Valli, G. [Florence Univ., Florence (Italy). Dipt. di Ingegneria Elettronica; Falchini, M.; Stecco, A.; Bindi, A.; Carmignani, L. [Florence Univ., Florence (Italy). Dipt. di Fisiopatologia Clinica, Sezione di Radiodiagnostica

    1999-10-01

    In this report are investigated the capabilities of an artificial neural network-based Computer-Aided Diagnosis (CAD) system in improving early detection of pulmonary nodules on chest radiographs. [Italian] Valutazione di un sistema di riconoscimento automatico basato sulla tecnologia delle reti neruali artificiali per migliorare le possibilita' di rivelazione precoce dei noduli polmonari sul radiogramma toracico.

  14. Robust speech dereverberation with a neural network-based post-filter that exploits multi-conditional training of binaural cues

    DEFF Research Database (Denmark)

    May, Tobias

    2018-01-01

    This study presents an algorithm for binaural speech dereverberation based on the supervised learning of short-term binaural cues. The proposed system combined a delay-and-sum beamformer (DSB) with a neural network-based post-filter that attenuated reverberant components in individual time...

  15. Neural network-based optimal adaptive output feedback control of a helicopter UAV.

    Science.gov (United States)

    Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani

    2013-07-01

    Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.

  16. Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller.

    Science.gov (United States)

    Ding, Zhixia; Shen, Yi

    2016-04-01

    This paper investigates global projective synchronization of nonidentical fractional-order neural networks (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral sliding surface. Then, according to the sliding mode control theory, we design a sliding mode controller to guarantee the occurrence of the sliding motion. Based on fractional Lyapunov direct methods, system trajectories are driven to the proposed sliding surface and remain on it evermore, and some novel criteria are obtained to realize global projective synchronization of nonidentical FNNs. As the special cases, some sufficient conditions are given to ensure projective synchronization of identical FNNs, complete synchronization of nonidentical FNNs and anti-synchronization of nonidentical FNNs. Finally, one numerical example is given to demonstrate the effectiveness of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Neural Network-Based Passive Filtering for Delayed Neutral-Type Semi-Markovian Jump Systems.

    Science.gov (United States)

    Shi, Peng; Li, Fanbiao; Wu, Ligang; Lim, Cheng-Chew

    2017-09-01

    This paper investigates the problem of exponential passive filtering for a class of stochastic neutral-type neural networks with both semi-Markovian jump parameters and mixed time delays. Our aim is to estimate the states by designing a Luenberger-type observer, such that the filter error dynamics are mean-square exponentially stable with an expected decay rate and an attenuation level. Sufficient conditions for the existence of passive filters are obtained, and a convex optimization algorithm for the filter design is given. In addition, a cone complementarity linearization procedure is employed to cast the nonconvex feasibility problem into a sequential minimization problem, which can be readily solved by the existing optimization techniques. Numerical examples are given to demonstrate the effectiveness of the proposed techniques.

  18. Neural Network-Based Receiver in Band-Limited Communication System with MPPSK Modulation

    Directory of Open Access Journals (Sweden)

    Wang Zixin

    2018-01-01

    Full Text Available As a type of the spectrally efficient modulation, the m-ary phase position shift keying (MPPSK has been considered to meet the increasing spectrum requirement in the future wireless system. To limit the signal bandwidth and cancel the out-band interference the band-pass filters are used, which introduce the waveform distortion and inter-symbol interference (ISI. Therefore, a single hidden-layer neural network (NN-based receiver is proposed to jointly equalize and demodulate the received signal. The impulse response of the system is static and the network parameters can be obtained after off-line training. The number of the hidden nodes is also determined through simulations. Simulation results show that the NN-based receiver works well in the communication system with different allocated bandwidths. By observing the modified confusion matrix, the false symbol decision is relevant to modulation index, waveform distortions and the ISI.

  19. Performance Evaluation of Neural Network Based Pulse-Echo Weld Defect Classifiers

    Science.gov (United States)

    Seyedtabaii, S.

    2012-10-01

    Pulse-echo ultrasonic signal is used to detect weld defects with high probability. However, utilizing echo signal for defects classification is another issue that has attracted attention of many researchers who have devised algorithms and tested them against their own databases. In this paper, a study is conducted to score the performance of various algorithms against a single echo signal database. Algorithms tested the use of Wavelet Transform (WT), Fast Fourier Transform (FFT) and time domain echo signal features and employed several NN’s architectures such as Multi-Layer Perceptron Neural Network (MLP), Self Organizing Map (SOM) and others known to be good classifiers. The average performance of all can be viewed fair (90%) while some algorithms render success rate of about 94%. It seems that acquiring higher success rates out of a single fixed angle probe pulseecho set up needs new arrangements of data collection, which is under investigation.

  20. ARTIFICIAL NEURAL NETWORK BASED ULTRASONIC SENSOR SYSTEM FOR DETECTION OF ADULTERATION IN EDIBLE OIL

    Directory of Open Access Journals (Sweden)

    TONY GEORGE

    2017-06-01

    Full Text Available This paper presents the design, development and experimental validation of an ultrasonic sensor system for the detection of adulteration in edible oil. Variation of ultrasonic wave propagation characteristics like attenuation coefficient, reflection coefficient and velocity of propagation in pure and adulterated oil were used for developing the algorithm to detect the adulteration. Measurement cell was designed for operating ultrasonic transducer at 1 MHz using COMSOL 4.4. Artificial Neural Network (ANN based algorithm was also developed for improving the efficiency of the sensor system. It is found that this system can detect adulteration with an accuracy of 99.53% for sunflower oil added in pure coconut oil, whereas 98.82% for palm oil added in pure coconut oil.

  1. Managing Emergencies Optimally Using a Random Neural Network-Based Algorithm

    Directory of Open Access Journals (Sweden)

    Qing Han

    2013-10-01

    Full Text Available Emergency rescues require that first responders provide support to evacuate injured and other civilians who are obstructed by the hazards. In this case, the emergency personnel can take actions strategically in order to rescue people maximally, efficiently and quickly. The paper studies the effectiveness of a random neural network (RNN-based task assignment algorithm involving optimally matching emergency personnel and injured civilians, so that the emergency personnel can aid trapped people to move towards evacuation exits in real-time. The evaluations are run on a decision support evacuation system using the Distributed Building Evacuation Simulator (DBES multi-agent platform in various emergency scenarios. The simulation results indicate that the RNN-based task assignment algorithm provides a near-optimal solution to resource allocation problems, which avoids resource wastage and improves the efficiency of the emergency rescue process.

  2. Convolutional Neural Network-Based Finger-Vein Recognition Using NIR Image Sensors.

    Science.gov (United States)

    Hong, Hyung Gil; Lee, Min Beom; Park, Kang Ryoung

    2017-06-06

    Conventional finger-vein recognition systems perform recognition based on the finger-vein lines extracted from the input images or image enhancement, and texture feature extraction from the finger-vein images. In these cases, however, the inaccurate detection of finger-vein lines lowers the recognition accuracy. In the case of texture feature extraction, the developer must experimentally decide on a form of the optimal filter for extraction considering the characteristics of the image database. To address this problem, this research proposes a finger-vein recognition method that is robust to various database types and environmental changes based on the convolutional neural network (CNN). In the experiments using the two finger-vein databases constructed in this research and the SDUMLA-HMT finger-vein database, which is an open database, the method proposed in this research showed a better performance compared to the conventional methods.

  3. Decentralized cooperative unmanned aerial vehicles conflict resolution by neural network-based tree search method

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2016-09-01

    Full Text Available In this article, a tree search algorithm is proposed to find the near optimal conflict avoidance solutions for unmanned aerial vehicles. In the dynamic environment, the unmodeled elements, such as wind, would make UAVs deviate from nominal traces. It brings about difficulties for conflict detection and resolution. The back propagation neural networks are utilized to approximate the unmodeled dynamics of the environment. To satisfy the online planning requirement, the search length of the tree search algorithm would be limited. Therefore, the algorithm may not be able to reach the goal states in search process. The midterm reward function for assessing each node is devised, with consideration given to two factors, namely, the safe separation requirement and the mission of each unmanned aerial vehicle. The simulation examples and the comparisons with previous approaches are provided to illustrate the smooth and convincing behaviours of the proposed algorithm.

  4. A Physics-driven Neural Networks-based Simulation System (PhyNNeSS) for multimodal interactive virtual environments involving nonlinear deformable objects.

    Science.gov (United States)

    De, Suvranu; Deo, Dhannanjay; Sankaranarayanan, Ganesh; Arikatla, Venkata S

    2011-08-01

    BACKGROUND: While an update rate of 30 Hz is considered adequate for real time graphics, a much higher update rate of about 1 kHz is necessary for haptics. Physics-based modeling of deformable objects, especially when large nonlinear deformations and complex nonlinear material properties are involved, at these very high rates is one of the most challenging tasks in the development of real time simulation systems. While some specialized solutions exist, there is no general solution for arbitrary nonlinearities. METHODS: In this work we present PhyNNeSS - a Physics-driven Neural Networks-based Simulation System - to address this long-standing technical challenge. The first step is an off-line pre-computation step in which a database is generated by applying carefully prescribed displacements to each node of the finite element models of the deformable objects. In the next step, the data is condensed into a set of coefficients describing neurons of a Radial Basis Function network (RBFN). During real-time computation, these neural networks are used to reconstruct the deformation fields as well as the interaction forces. RESULTS: We present realistic simulation examples from interactive surgical simulation with real time force feedback. As an example, we have developed a deformable human stomach model and a Penrose-drain model used in the Fundamentals of Laparoscopic Surgery (FLS) training tool box. CONCLUSIONS: A unique computational modeling system has been developed that is capable of simulating the response of nonlinear deformable objects in real time. The method distinguishes itself from previous efforts in that a systematic physics-based pre-computational step allows training of neural networks which may be used in real time simulations. We show, through careful error analysis, that the scheme is scalable, with the accuracy being controlled by the number of neurons used in the simulation. PhyNNeSS has been integrated into SoFMIS (Software Framework for Multimodal

  5. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  6. Gesture Recognition Using Neural Networks Based on HW/SW Cosimulation Platform

    Directory of Open Access Journals (Sweden)

    Priyanka Mekala

    2013-01-01

    Full Text Available Hardware/software (HW/SW cosimulation integrates software simulation and hardware simulation simultaneously. Usually, HW/SW co-simulation platform is used to ease debugging and verification for very large-scale integration (VLSI design. To accelerate the computation of the gesture recognition technique, an HW/SW implementation using field programmable gate array (FPGA technology is presented in this paper. The major contributions of this work are: (1 a novel design of memory controller in the Verilog Hardware Description Language (Verilog HDL to reduce memory consumption and load on the processor. (2 The testing part of the neural network algorithm is being hardwired to improve the speed and performance. The American Sign Language gesture recognition is chosen to verify the performance of the approach. Several experiments were carried out on four databases of the gestures (alphabet signs A to Z. (3 The major benefit of this design is that it takes only few milliseconds to recognize the hand gesture which makes it computationally more efficient.

  7. Neural-network-based navigation and control of unmanned aerial vehicles for detecting unintended emissions

    Science.gov (United States)

    Zargarzadeh, H.; Nodland, David; Thotla, V.; Jagannathan, S.; Agarwal, S.

    2012-06-01

    Unmanned Aerial Vehicles (UAVs) are versatile aircraft with many applications, including the potential for use to detect unintended electromagnetic emissions from electronic devices. A particular area of recent interest has been helicopter unmanned aerial vehicles. Because of the nature of these helicopters' dynamics, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via output feedback control for trajectory tracking of a helicopter UAV using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic, virtual, and dynamic controllers and an observer. Optimal tracking is accomplished with a single NN utilized for cost function approximation. The controller positions the helicopter, which is equipped with an antenna, such that the antenna can detect unintended emissions. The overall closed-loop system stability with the proposed controller is demonstrated by using Lyapunov analysis. Finally, results are provided to demonstrate the effectiveness of the proposed control design for positioning the helicopter for unintended emissions detection.

  8. Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images †

    Science.gov (United States)

    Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao

    2017-01-01

    Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications. PMID:28604624

  9. Neural network based tomographic approach to detect earthquake-related ionospheric anomalies

    Directory of Open Access Journals (Sweden)

    S. Hirooka

    2011-08-01

    Full Text Available A tomographic approach is used to investigate the fine structure of electron density in the ionosphere. In the present paper, the Residual Minimization Training Neural Network (RMTNN method is selected as the ionospheric tomography with which to investigate the detailed structure that may be associated with earthquakes. The 2007 Southern Sumatra earthquake (M = 8.5 was selected because significant decreases in the Total Electron Content (TEC have been confirmed by GPS and global ionosphere map (GIM analyses. The results of the RMTNN approach are consistent with those of TEC approaches. With respect to the analyzed earthquake, we observed significant decreases at heights of 250–400 km, especially at 330 km. However, the height that yields the maximum electron density does not change. In the obtained structures, the regions of decrease are located on the southwest and southeast sides of the Integrated Electron Content (IEC (altitudes in the range of 400–550 km and on the southern side of the IEC (altitudes in the range of 250–400 km. The global tendency is that the decreased region expands to the east with increasing altitude and concentrates in the Southern hemisphere over the epicenter. These results indicate that the RMTNN method is applicable to the estimation of ionospheric electron density.

  10. A NEURAL NETWORK BASED TRAFFIC-AWARE FORWARDING STRATEGY IN NAMED DATA NETWORKING

    Directory of Open Access Journals (Sweden)

    Parisa Bazmi

    2016-11-01

    Full Text Available Named Data Networking (NDN is a new Internet architecture which has been proposed to eliminate TCP/IP Internet architecture restrictions. This architecture is abstracting away the notion of host and working based on naming datagrams. However, one of the major challenges of NDN is supporting QoS-aware forwarding strategy so as to forward Interest packets intelligently over multiple paths based on the current network condition. In this paper, Neural Network (NN Based Traffic-aware Forwarding strategy (NNTF is introduced in order to determine an optimal path for Interest forwarding. NN is embedded in NDN routers to select next hop dynamically based on the path overload probability achieved from the NN. This solution is characterized by load balancing and QoS-awareness via monitoring the available path and forwarding data on the traffic-aware shortest path. The performance of NNTF is evaluated using ndnSIM which shows the efficiency of this scheme in terms of network QoS improvementof17.5% and 72% reduction in network delay and packet drop respectively.

  11. Artificial-neural-network-based classification of mammographic microcalcifications using image structure features

    Science.gov (United States)

    Dhawan, Atam P.; Chitre, Yateen S.; Moskowitz, Myron

    1993-07-01

    Mammography associated with clinical breast examination and self-breast examination is the only effective and viable method for mass breast screening. It is however, difficult to distinguish between benign and malignant microcalcifications associated with breast cancer. Most of the techniques used in the computerized analysis of mammographic microcalcifications segment the digitized gray-level image into regions representing microcalcifications. We present a second-order gray-level histogram based feature extraction approach to extract microcalcification features. These features, called image structure features, are computed from the second-order gray-level histogram statistics, and do not require segmentation of the original image into binary regions. Several image structure features were computed for 100 cases of `difficult to diagnose' microcalcification cases with known biopsy results. These features were analyzed in a correlation study which provided a set of five best image structure features. A feedforward backpropagation neural network was used to classify mammographic microcalcifications using the image structure features. The network was trained on 10 cases of mammographic microcalcifications and tested on additional 85 `difficult-to-diagnose' microcalcifications cases using the selected image structure features. The trained network yielded good results for classification of `difficult-to- diagnose' microcalcifications into benign and malignant categories.

  12. Abstract Computation in Schizophrenia Detection through Artificial Neural Network Based Systems

    Directory of Open Access Journals (Sweden)

    L. Cardoso

    2015-01-01

    Full Text Available Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason of defective information.

  13. Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images.

    Science.gov (United States)

    Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao

    2017-06-12

    Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the "navigation via classification" task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.

  14. A Deep Convolutional Neural Network Based Framework for Automatic Fetal Facial Standard Plane Recognition.

    Science.gov (United States)

    Yu, Zhen; Tan, Ee-Leng; Ni, Dong; Qin, Jing; Chen, Siping; Li, Shenli; Lei, Baiying; Wang, Tianfu

    2017-05-17

    Ultrasound imaging has become a prevalent examination method in prenatal diagnosis. Accurate acquisition of fetal facial standard plane (FFSP) is the most important precondition for subsequent diagnosis and measurement. In the past few years, considerable effort has been devoted to FFSP recognition using various hand-crafted features, but the recognition performance is still unsatisfactory due to the high intra-class variation of FFSPs and the high degree of visual similarity between FFSPs and other non-FFSPs. To improve the recognition performance, we propose a method to automatically recognize FFSP via a deep convolutional neural network (DCNN) architecture. The proposed DCNN consists of 16 convolutional layers with small 3×3 size kernels and three fully connected layers. A global average pooling (GAP) is adopted in the last pooling layer to significantly reduce network parameters, which alleviates the overfitting problems and improves the performance under limited training data. Both the transfer learning strategy and a data augmentation technique tailored for FFSP are implemented to further boost the recognition performance. Extensive experiments demonstrate the advantage of our proposed method over traditional approaches and the effectiveness of DCNN to recognize FFSP for clinical diagnosis.

  15. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery.

    Science.gov (United States)

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lau, Steven; Lu, Weiguo; Yan, Yulong; Jiang, Steve B; Zhen, Xin; Timmerman, Robert; Nedzi, Lucien; Gu, Xuejun

    2017-01-01

    Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.

  16. Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images

    Directory of Open Access Journals (Sweden)

    Lingyan Ran

    2017-06-01

    Full Text Available Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN, trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.

  17. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    Full Text Available Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS treatment planning. In this work, we developed a deep learning convolutional neural network (CNN algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.

  18. Artificial neural network-based all-sky power estimation and fault detection in photovoltaic modules

    Science.gov (United States)

    Jazayeri, Kian; Jazayeri, Moein; Uysal, Sener

    2017-04-01

    The development of a system for output power estimation and fault detection in photovoltaic (PV) modules using an artificial neural network (ANN) is presented. Over 30,000 healthy and faulty data sets containing per-minute measurements of PV module output power (W) and irradiance (W/m2) along with real-time calculations of the Sun's position in the sky and the PV module surface temperature, collected during a three-month period, are fed to different ANNs as training paths. The first ANN being trained on healthy data is used for PV module output power estimation and the second ANN, which is trained on both healthy and faulty data, is utilized for PV module fault detection. The proposed PV module-level fault detection algorithm can expectedly be deployed in broader PV fleets by taking developmental considerations. The machine-learning-based automated system provides the possibility of all-sky real-time monitoring and fault detection of PV modules under any meteorological condition. Utilizing the proposed system, any power loss caused by damaged cells, shading conditions, accumulated dirt and dust on module surface, etc., is detected and reported immediately, potentially yielding increased reliability and efficiency of the PV systems and decreased support and maintenance costs.

  19. A Novel Pruning Algorithm for Smoothing Feedforward Neural Networks Based on Group Lasso Method.

    Science.gov (United States)

    Wang, Jian; Xu, Chen; Yang, Xifeng; Zurada, Jacek M

    2017-09-26

    In this paper, we propose four new variants of the backpropagation algorithm to improve the generalization ability for feedforward neural networks. The basic idea of these methods stems from the Group Lasso concept which deals with the variable selection problem at the group level. There are two main drawbacks when the Group Lasso penalty has been directly employed during network training. They are numerical oscillations and theoretical challenges in computing the gradients at the origin. To overcome these obstacles, smoothing functions have then been introduced by approximating the Group Lasso penalty. Numerical experiments for classification and regression problems demonstrate that the proposed algorithms perform better than the other three classical penalization methods, Weight Decay, Weight Elimination, and Approximate Smoother, on both generalization and pruning efficiency. In addition, detailed simulations based on a specific data set have been performed to compare with some other common pruning strategies, which verify the advantages of the proposed algorithm. The pruning abilities of the proposed strategy have been investigated in detail for a relatively large data set, MNIST, in terms of various smoothing approximation cases.

  20. A Pattern Construction Scheme for Neural Network-Based Cognitive Communication

    Directory of Open Access Journals (Sweden)

    Ozgur Orcay

    2011-01-01

    Full Text Available Inefficient utilization of the frequency spectrum due to conventional regulatory limitations and physical performance limiting factors, mainly the Signal to Noise Ratio (SNR, are prominent restrictions in digital wireless communication. Pattern Based Communication System (PBCS is an adaptive and perceptual communication method based on a Cognitive Radio (CR approach. It intends an SNR oriented cognition mechanism in the physical layer for improvement of Link Spectral Efficiency (LSE. The key to this system is construction of optimal communication signals, which consist of encoded data in different pattern forms (waveforms depending on spectral availabilities. The signals distorted in the communication medium are recovered according to the pre-trained pattern glossary by the perceptual receiver. In this study, we have shown that it is possible to improve the bandwidth efficiency when largely uncorrelated signal patterns are chosen in order to form a glossary that represents symbols for different length data groups and the information can be recovered by the Artificial Neural Network (ANN in the receiver site.

  1. Pressure-induced phase transitions in silicon studied by neural network-based metadynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Behler, Joerg [Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Lugano (Switzerland); Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Martonak, Roman [Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Lugano (Switzerland); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F2, 84248 Bratislava (Slovakia); Donadio, Davide [Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Lugano (Switzerland); Department of Chemistry, UC Davis, One Shields Ave., Davis, CA 95616 (United States); Parrinello, Michele [Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Lugano (Switzerland)

    2008-12-15

    We present a combination of the metadynamics method for the investigation of pressure-induced phase transitions in solids with a neural network representation of high-dimensional density-functional theory (DFT) potential-energy surfaces. In a recent illustration of the method for the complex high-pressure phase diagram of silicon[Behler et al., Phys. Rev. Lett. 100, 185501 (2008)] we have shown that the full sequence of phases can be reconstructed by a series of subsequent simulations. In the present paper we give a detailed account of the underlying methodology and discuss the scope and limitations of the approach, which promises to be a valuable tool for the investigation of a variety of inorganic materials. The method is several orders of magnitude faster than a direct coupling of metadynamics with electronic structure calculations, while the accuracy is essentially maintained, thus providing access to extended simulations of large systems. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Modeling pedestrian's conformity violation behavior: a complex network based approach.

    Science.gov (United States)

    Zhou, Zhuping; Hu, Qizhou; Wang, Wei

    2014-01-01

    Pedestrian injuries and fatalities present a problem all over the world. Pedestrian conformity violation behaviors, which lead to many pedestrian crashes, are common phenomena at the signalized intersections in China. The concepts and metrics of complex networks are applied to analyze the structural characteristics and evolution rules of pedestrian network about the conformity violation crossings. First, a network of pedestrians crossing the street is established, and the network's degree distributions are analyzed. Then, by using the basic idea of SI model, a spreading model of pedestrian illegal crossing behavior is proposed. Finally, through simulation analysis, pedestrian's illegal crossing behavior trends are obtained in different network structures and different spreading rates. Some conclusions are drawn: as the waiting time increases, more pedestrians will join in the violation crossing once a pedestrian crosses on red firstly. And pedestrian's conformity violation behavior will increase as the spreading rate increases.

  3. Modeling the interdependent network based on two-mode networks

    Science.gov (United States)

    An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian

    2017-10-01

    Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.

  4. Neural Network-Based Self-Tuning PID Control for Underwater Vehicles.

    Science.gov (United States)

    Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando

    2016-09-05

    For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme.

  5. Neural Network-Based Self-Tuning PID Control for Underwater Vehicles

    Science.gov (United States)

    Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando

    2016-01-01

    For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme. PMID:27608018

  6. A Neural-Network-Based Nonlinear Adaptive State-Observer for Pressurized Water Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2013-10-01

    Full Text Available Although there have been some severe nuclear accidents such as Three Mile Island (USA, Chernobyl (Ukraine and Fukushima (Japan, nuclear fission energy is still a source of clean energy that can substitute for fossil fuels in a centralized way and in a great amount with commercial availability and economic competitiveness. Since the pressurized water reactor (PWR is the most widely used nuclear fission reactor, its safe, stable and efficient operation is meaningful to the current rebirth of the nuclear fission energy industry. Power-level regulation is an important technique which can deeply affect the operation stability and efficiency of PWRs. Compared with the classical power-level controllers, the advanced power-level regulators could strengthen both the closed-loop stability and control performance by feeding back the internal state-variables. However, not all of the internal state variables of a PWR can be obtained directly by measurements. To implement advanced PWR power-level control law, it is necessary to develop a state-observer to reconstruct the unmeasurable state-variables. Since a PWR is naturally a complex nonlinear system with parameters varying with power-level, fuel burnup, xenon isotope production, control rod worth and etc., it is meaningful to design a nonlinear observer for the PWR with adaptability to system uncertainties. Due to this and the strong learning capability of the multi-layer perceptron (MLP neural network, an MLP-based nonlinear adaptive observer is given for PWRs. Based upon Lyapunov stability theory, it is proved theoretically that this newly-built observer can provide bounded and convergent state-observation. This observer is then applied to the state-observation of a special PWR, i.e., the nuclear heating reactor (NHR, and numerical simulation results not only verify its feasibility but also give the relationship between the observation performance and observer parameters.

  7. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography.

    Science.gov (United States)

    Nakao, Takahiro; Hanaoka, Shouhei; Nomura, Yukihiro; Sato, Issei; Nemoto, Mitsutaka; Miki, Soichiro; Maeda, Eriko; Yoshikawa, Takeharu; Hayashi, Naoto; Abe, Osamu

    2017-08-24

    The usefulness of computer-assisted detection (CAD) for detecting cerebral aneurysms has been reported; therefore, the improved performance of CAD will help to detect cerebral aneurysms. To develop a CAD system for intracranial aneurysms on unenhanced magnetic resonance angiography (MRA) images based on a deep convolutional neural network (CNN) and a maximum intensity projection (MIP) algorithm, and to demonstrate the usefulness of the system by training and evaluating it using a large dataset. Retrospective study. There were 450 cases with intracranial aneurysms. The diagnoses of brain aneurysms were made on the basis of MRA, which was performed as part of a brain screening program. Noncontrast-enhanced 3D time-of-flight (TOF) MRA on 3T MR scanners. In our CAD, we used a CNN classifier that predicts whether each voxel is inside or outside aneurysms by inputting MIP images generated from a volume of interest (VOI) around the voxel. The CNN was trained in advance using manually inputted labels. We evaluated our method using 450 cases with intracranial aneurysms, 300 of which were used for training, 50 for parameter tuning, and 100 for the final evaluation. Free-response receiver operating characteristic (FROC) analysis. Our CAD system detected 94.2% (98/104) of aneurysms with 2.9 false positives per case (FPs/case). At a sensitivity of 70%, the number of FPs/case was 0.26. We showed that the combination of a CNN and an MIP algorithm is useful for the detection of intracranial aneurysms. 4 Technical Efficacy Stage 1 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Neural Network-Based Self-Tuning PID Control for Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Rodrigo Hernández-Alvarado

    2016-09-01

    Full Text Available For decades, PID (Proportional + Integral + Derivative-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles where parameters (weight, buoyancy, added mass, among others change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme.

  9. Artificial Neural Network Based Fault Diagnostics of Rolling Element Bearings Using Time-Domain Features

    Science.gov (United States)

    Samanta, B.; Al-Balushi, K. R.

    2003-03-01

    A procedure is presented for fault diagnosis of rolling element bearings through artificial neural network (ANN). The characteristic features of time-domain vibration signals of the rotating machinery with normal and defective bearings have been used as inputs to the ANN consisting of input, hidden and output layers. The features are obtained from direct processing of the signal segments using very simple preprocessing. The input layer consists of five nodes, one each for root mean square, variance, skewness, kurtosis and normalised sixth central moment of the time-domain vibration signals. The inputs are normalised in the range of 0.0 and 1.0 except for the skewness which is normalised between -1.0 and 1.0. The output layer consists of two binary nodes indicating the status of the machine—normal or defective bearings. Two hidden layers with different number of neurons have been used. The ANN is trained using backpropagation algorithm with a subset of the experimental data for known machine conditions. The ANN is tested using the remaining set of data. The effects of some preprocessing techniques like high-pass, band-pass filtration, envelope detection (demodulation) and wavelet transform of the vibration signals, prior to feature extraction, are also studied. The results show the effectiveness of the ANN in diagnosis of the machine condition. The proposed procedure requires only a few features extracted from the measured vibration data either directly or with simple preprocessing. The reduced number of inputs leads to faster training requiring far less iterations making the procedure suitable for on-line condition monitoring and diagnostics of machines.

  10. Artificial neural network-based predictive emission monitoring system for NOx emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ciccone, A.; Cinnamon, C.; Niejadlik, P.R. [TransCanada Energy Ltd., Toronto, ON (Canada)]|[Golder Associates, Toronto, ON (Canada)

    2005-07-01

    Considering the nature of long term power supply contracts that do not include mechanisms for cost recovery, developing cost-effective ways to handle changes in legislation impacting on facilities already in operation is extremely important. Also of importance is the age of the facilities, since continuous emissions monitoring (CEM) systems were not required when they were originally put into operation, but they are not yet old enough for capital stock turnover to allow for equipment changes or transition to new operations. An alternative monitoring method that is less expensive and as accurate as traditional (CEM) systems is discussed. TransCanada Energy Ltd., developed a predictive emission monitoring (PEM) system that achieved the required accuracy of the regulatory authorities using four of its gas turbine power plant facilities. Using the power plant operation variables to predict the nitric oxide (NO) portion of the exhaust emissions, the systems are founded on an artificial neural network (ANN). This paper provides a summary of the PEM system architecture and provides background information on the facilities used in the development of this approach. It was concluded that the PEM system provides a cost effective method to monitor emissions accurately and reliably at low emitting natural gas fired facilities. As well, there is a great potential for the system to be used by other industries to monitor and report emissions. The PEM system is an ideal system for the low emitting natural gas fired generating plants however the system could be adapted for other types of industries. 5 refs., 5 tabs., 2 figs.

  11. Convolutional Neural Network-Based Human Detection in Nighttime Images Using Visible Light Camera Sensors

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    2017-05-01

    Full Text Available Because intelligent surveillance systems have recently undergone rapid growth, research on accurately detecting humans in videos captured at a long distance is growing in importance. The existing research using visible light cameras has mainly focused on methods of human detection for daytime hours when there is outside light, but human detection during nighttime hours when there is no outside light is difficult. Thus, methods that employ additional near-infrared (NIR illuminators and NIR cameras or thermal cameras have been used. However, in the case of NIR illuminators, there are limitations in terms of the illumination angle and distance. There are also difficulties because the illuminator power must be adaptively adjusted depending on whether the object is close or far away. In the case of thermal cameras, their cost is still high, which makes it difficult to install and use them in a variety of places. Because of this, research has been conducted on nighttime human detection using visible light cameras, but this has focused on objects at a short distance in an indoor environment or the use of video-based methods to capture multiple images and process them, which causes problems related to the increase in the processing time. To resolve these problems, this paper presents a method that uses a single image captured at night on a visible light camera to detect humans in a variety of environments based on a convolutional neural network. Experimental results using a self-constructed Dongguk night-time human detection database (DNHD-DB1 and two open databases (Korea advanced institute of science and technology (KAIST and computer vision center (CVC databases, as well as high-accuracy human detection in a variety of environments, show that the method has excellent performance compared to existing methods.

  12. Convolutional Neural Network-Based Human Detection in Nighttime Images Using Visible Light Camera Sensors.

    Science.gov (United States)

    Kim, Jong Hyun; Hong, Hyung Gil; Park, Kang Ryoung

    2017-05-08

    Because intelligent surveillance systems have recently undergone rapid growth, research on accurately detecting humans in videos captured at a long distance is growing in importance. The existing research using visible light cameras has mainly focused on methods of human detection for daytime hours when there is outside light, but human detection during nighttime hours when there is no outside light is difficult. Thus, methods that employ additional near-infrared (NIR) illuminators and NIR cameras or thermal cameras have been used. However, in the case of NIR illuminators, there are limitations in terms of the illumination angle and distance. There are also difficulties because the illuminator power must be adaptively adjusted depending on whether the object is close or far away. In the case of thermal cameras, their cost is still high, which makes it difficult to install and use them in a variety of places. Because of this, research has been conducted on nighttime human detection using visible light cameras, but this has focused on objects at a short distance in an indoor environment or the use of video-based methods to capture multiple images and process them, which causes problems related to the increase in the processing time. To resolve these problems, this paper presents a method that uses a single image captured at night on a visible light camera to detect humans in a variety of environments based on a convolutional neural network. Experimental results using a self-constructed Dongguk night-time human detection database (DNHD-DB1) and two open databases (Korea advanced institute of science and technology (KAIST) and computer vision center (CVC) databases), as well as high-accuracy human detection in a variety of environments, show that the method has excellent performance compared to existing methods.

  13. NETWORK BASED BUSINESS MODEL INNOVATION TARGETING THE BOP MARKET

    DEFF Research Database (Denmark)

    Ravn, Jacob; Kroghstrup Nielsen, Martin; Lindgren, Peter

    2009-01-01

    & Halme 2008). The market and customer line - exemplified by soap producers trying to penetrate the BoPline - exemplified by soap producers trying to penetrate the BoP market through product adaptation selling soap in smaller packages (Hart & Christensen 2002, Prahalad 2006). Based on the case study......Through innovation of products, process and business models targeting the needs of 4 billion poor people living at "the base of pyramid" (BoP) (Prahalad & Hart 2002) in developing countries the private sector can actively support poverty alleviation and at the same time reach new untouched market....... - A market is estimated a value of 5.3 trillion US$ (Hammond, Kramer, Tran, Kratz 2007). A number of researchers has dealt with the BoP - market potential and not least tried to understand how to penetrate this apparent blue ocean. Two distinct lines of thought when targeting BoP markets in developing...

  14. Sensitive and specific peak detection for SELDI-TOF mass spectrometry using a wavelet/neural-network based approach.

    Directory of Open Access Journals (Sweden)

    Vincent A Emanuele

    Full Text Available SELDI-TOF mass spectrometer's compact size and automated, high throughput design have been attractive to clinical researchers, and the platform has seen steady-use in biomarker studies. Despite new algorithms and preprocessing pipelines that have been developed to address reproducibility issues, visual inspection of the results of SELDI spectra preprocessing by the best algorithms still shows miscalled peaks and systematic sources of error. This suggests that there continues to be problems with SELDI preprocessing. In this work, we study the preprocessing of SELDI in detail and introduce improvements. While many algorithms, including the vendor supplied software, can identify peak clusters of specific mass (or m/z in groups of spectra with high specificity and low false discover rate (FDR, the algorithms tend to underperform estimating the exact prevalence and intensity of peaks in those clusters. Thus group differences that at first appear very strong are shown, after careful and laborious hand inspection of the spectra, to be less than significant. Here we introduce a wavelet/neural network based algorithm which mimics what a team of expert, human users would call for peaks in each of several hundred spectra in a typical SELDI clinical study. The wavelet denoising part of the algorithm optimally smoothes the signal in each spectrum according to an improved suite of signal processing algorithms previously reported (the LibSELDI toolbox under development. The neural network part of the algorithm combines those results with the raw signal and a training dataset of expertly called peaks, to call peaks in a test set of spectra with approximately 95% accuracy. The new method was applied to data collected from a study of cervical mucus for the early detection of cervical cancer in HPV infected women. The method shows promise in addressing the ongoing SELDI reproducibility issues.

  15. An Empirical Study of Neural Network-Based Audience Response Technology in a Human Anatomy Course for Pharmacy Students.

    Science.gov (United States)

    Fernández-Alemán, José Luis; López-González, Laura; González-Sequeros, Ofelia; Jayne, Chrisina; López-Jiménez, Juan José; Carrillo-de-Gea, Juan Manuel; Toval, Ambrosio

    2016-04-01

    This paper presents an empirical study of a formative neural network-based assessment approach by using mobile technology to provide pharmacy students with intelligent diagnostic feedback. An unsupervised learning algorithm was integrated with an audience response system called SIDRA in order to generate states that collect some commonality in responses to questions and add diagnostic feedback for guided learning. A total of 89 pharmacy students enrolled on a Human Anatomy course were taught using two different teaching methods. Forty-four students employed intelligent SIDRA (i-SIDRA), whereas 45 students received the same training but without using i-SIDRA. A statistically significant difference was found between the experimental group (i-SIDRA) and the control group (traditional learning methodology), with T (87) = 6.598, p SIDRA and the methodology used during the process of learning anatomy (M = 4.59). The new empirical contribution presented in this paper allows instructors to perform post hoc analyses of each particular student's progress to ensure appropriate training.

  16. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction

    Directory of Open Access Journals (Sweden)

    Lund Ole

    2009-09-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC molecule plays a central role in controlling the adaptive immune response to infections. MHC class I molecules present peptides derived from intracellular proteins to cytotoxic T cells, whereas MHC class II molecules stimulate cellular and humoral immunity through presentation of extracellularly derived peptides to helper T cells. Identification of which peptides will bind a given MHC molecule is thus of great importance for the understanding of host-pathogen interactions, and large efforts have been placed in developing algorithms capable of predicting this binding event. Results Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the training data due to redundant binding core representation. Incorporation of information about the residues flanking the peptide-binding core is shown to significantly improve the prediction accuracy. The method is evaluated on a large-scale benchmark consisting of six independent data sets covering 14 human MHC class II alleles, and is demonstrated to outperform other state-of-the-art MHC class II prediction methods. Conclusion The NN-align method is competitive with the state-of-the-art MHC class II peptide binding prediction algorithms. The method is publicly available at http://www.cbs.dtu.dk/services/NetMHCII-2.0.

  17. Ischemia Detection Using Supervised Learning for Hierarchical Neural Networks Based on Kohonen-Maps

    National Research Council Canada - National Science Library

    Vladutu, L

    2001-01-01

    .... The motivation for developing the Supervising Network - Self Organizing Map (sNet-SOM) model is to design computationally effective solutions for the particular problem of ischemia detection and other similar applications...

  18. Deep Neural Network Based Supervised Speech Segregation Generalizes to Novel Noises through Large-scale Training

    Science.gov (United States)

    2015-01-01

    NOISEX-92 corpus [13], and a living room, a cafe and a park noise from the DEMAND corpus [12]. To put the performance of the noise- independent model in...Table 2: Segregation results in terms of STOI on a variety of novel noises (SNR=-2 dB) Babble-20 Cafeteria Factory Babble-100 Living Room Cafe Park...Unprocessed 0.63 0.61 0.62 0.62 0.84 0.71 0.73 Noise-dependent model 0.85 0.76 0.78 0.75 0.91 0.81 0.85 Noise- independent model 0.79 0.79 0.80 0.76

  19. Neural Network-based Load Forecasting and Error Implication for Short-term Horizon

    NARCIS (Netherlands)

    Khuntia, S.R.; Rueda Torres, José L.; van der Meijden, M.A.M.M.

    2016-01-01

    Load forecasting is considered vital along with many other important entities required for assessing the reliability of power system. Thus, the primary concern is not to forecast load with a novel model, rather to forecast load with the highest accuracy. Short-term load forecast accuracy is often

  20. Convolutional neural network based deep-learning architecture for prostate cancer detection on multiparametric magnetic resonance images

    Science.gov (United States)

    Tsehay, Yohannes K.; Lay, Nathan S.; Roth, Holger R.; Wang, Xiaosong; Kwak, Jin Tae; Turkbey, Baris I.; Pinto, Peter A.; Wood, Brad J.; Summers, Ronald M.

    2017-03-01

    Prostate cancer (PCa) is the second most common cause of cancer related deaths in men. Multiparametric MRI (mpMRI) is the most accurate imaging method for PCa detection; however, it requires the expertise of experienced radiologists leading to inconsistency across readers of varying experience. To increase inter-reader agreement and sensitivity, we developed a computer-aided detection (CAD) system that can automatically detect lesions on mpMRI that readers can use as a reference. We investigated a convolutional neural network based deep-learing (DCNN) architecture to find an improved solution for PCa detection on mpMRI. We adopted a network architecture from a state-of-the-art edge detector that takes an image as an input and produces an image probability map. Two-fold cross validation along with a receiver operating characteristic (ROC) analysis and free-response ROC (FROC) were used to determine our deep-learning based prostate-CAD's (CADDL) performance. The efficacy was compared to an existing prostate CAD system that is based on hand-crafted features, which was evaluated on the same test-set. CADDL had an 86% detection rate at 20% false-positive rate while the top-down learning CAD had 80% detection rate at the same false-positive rate, which translated to 94% and 85% detection rate at 10 false-positives per patient on the FROC. A CNN based CAD is able to detect cancerous lesions on mpMRI of the prostate with results comparable to an existing prostate-CAD showing potential for further development.

  1. Self-Organizing Map Neural Network-Based Nearest Neighbor Position Estimation Scheme for Continuous Crystal PET Detectors

    Science.gov (United States)

    Wang, Yonggang; Li, Deng; Lu, Xiaoming; Cheng, Xinyi; Wang, Liwei

    2014-10-01

    Continuous crystal-based positron emission tomography (PET) detectors could be an ideal alternative for current high-resolution pixelated PET detectors if the issues of high performance γ interaction position estimation and its real-time implementation are solved. Unfortunately, existing position estimators are not very feasible for implementation on field-programmable gate array (FPGA). In this paper, we propose a new self-organizing map neural network-based nearest neighbor (SOM-NN) positioning scheme aiming not only at providing high performance, but also at being realistic for FPGA implementation. Benefitting from the SOM feature mapping mechanism, the large set of input reference events at each calibration position is approximated by a small set of prototypes, and the computation of the nearest neighbor searching for unknown events is largely reduced. Using our experimental data, the scheme was evaluated, optimized and compared with the smoothed k-NN method. The spatial resolutions of full-width-at-half-maximum (FWHM) of both methods averaged over the center axis of the detector were obtained as 1.87 ±0.17 mm and 1.92 ±0.09 mm, respectively. The test results show that the SOM-NN scheme has an equivalent positioning performance with the smoothed k-NN method, but the amount of computation is only about one-tenth of the smoothed k-NN method. In addition, the algorithm structure of the SOM-NN scheme is more feasible for implementation on FPGA. It has the potential to realize real-time position estimation on an FPGA with a high-event processing throughput.

  2. A social network-based organizational model for improving knowledge management in supply chains

    OpenAIRE

    Capó-Vicedo, Josep; Mula, Josefa; Capó i Vicedo, Jordi

    2011-01-01

    Purpose: This paper aims to provide a social network-based model for improving knowledge management in multi-level supply chains formed by small and medium-sized enterprises (SMEs). Design/methodology/approach: This approach uses social network analysis techniques to propose and represent a knowledge network for supply chains. Also, an empirical experience from an exploratory case study in the construction sector is presented. Findings: This proposal improves the establishment of inter-organi...

  3. Minimum Constructive Back Propagation Neural Network Based on Fuzzy Logic for Pattern Recognition of Electronic Nose System

    Directory of Open Access Journals (Sweden)

    Radi Radi

    2011-08-01

    Full Text Available Constructive Back Propagation Neural Network (CBPNN is a kind of back propagation neural network trained with constructive algorithm. Training of CBPNN is mainly conducted by developing the network’s architecture which commonly done by adding a number of new neuron units on learning process. Training of the network usually implements fixed method to develop its structure gradually by adding new units constantly. Although this method is simple and able to create an adaptive network for data pattern complexity, but it is wasteful and inefficient for computing. New unit addition affects directly to the computational load of training, speed of convergence, and structure of the final neural network. While increases training load significantly, excessive addition of units also tends to generate a large size of final network. Moreover, addition pattern with small unit number tends to drop off the adaptability of the network and extends time of training. Therefore, there is important to design an adaptive structure development pattern for CBPNN in order to minimize computing load of training. This study proposes Fuzzy Logic (FL algorithm to manage and develop structure of CBPNN. FL method was implemented on two models of CBPNN, i.e. designed with one and two hidden layers, used to recognize aroma patterns on an electronic nose system. The results showed that this method is effective to be applied due to its capability to minimize time of training, to reduce load of computational learning, and generate small size of network.

  4. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  5. ARTIFICIAL NEURAL NETWORK BASED METHOD OF ASSESSMENT OF STUDENTS` FOREIGN LANGUAGE COMPETENCE BY THE GROUP OF EXPERTS

    Directory of Open Access Journals (Sweden)

    Olha V. Zastelo

    2015-09-01

    Full Text Available In this article the method of the integral assessment of the level of students` foreign language communicative competence by the group of experts through the complex test in a foreign language is considered. The use of mathematical methods and modern specialized software during complex testing of students significantly improves the expert methods, particularly in the direction of increasing the reliability of the assessment. Capitalizing analytical software environment realizes the simulation of non-linear generalizations based on artificial neural networks, which increases the accuracy of the estimate and allows further efficient use of the competent experts` experience gained in the model.

  6. Hardware Neural Networks Modeling for Computing Different Performance Parameters of Rectangular, Circular, and Triangular Microstrip Antennas

    Directory of Open Access Journals (Sweden)

    Taimoor Khan

    2014-01-01

    Full Text Available In the last one decade, neural networks-based modeling has been used for computing different performance parameters of microstrip antennas because of learning and generalization features. Most of the created neural models are based on software simulation. As the neural networks show massive parallelism inherently, a parallel hardware needs to be created for creating faster computing machine by taking the advantages of the parallelism of the neural networks. This paper demonstrates a generalized neural networks model created on field programmable gate array- (FPGA- based reconfigurable hardware platform for computing different performance parameters of microstrip antennas. Thus, the proposed approach provides a platform for developing low-cost neural network-based FPGA simulators for microwave applications. Also, the results obtained by this approach are in very good agreement with the measured results available in the literature.

  7. A QSAR study of some cyclobutenediones as CCR1 antagonists by artificial neural networks based on principal component analysis.

    Science.gov (United States)

    Shahlaei, M; Fassihi, A; Saghaie, L; Arkan, E; Pourhossein, A

    2011-01-01

    A quantitative structure activity relationship (QSAR) model based on artificial neural networks (ANN) was developed to study the activities of 29 derivatives of 3-amino-4-(2-(2-(4-benzylpiperazin-1-yl)-2-oxoethoxy) phenylamino) cyclobutenedione as C-C chemokine receptor type 1(CCR1) inhibitors. A feed-forward ANN with error back-propagation learning algorithm was used for model building which was achieved by optimizing initial learning rate, learning momentum, epoch and the number of hidden neurons. Good results were obtained with a Root Mean Square Error (RMSE) and correlation coefficients (R(2)) of 0.189 and 0.906 for the training and 0.103 and 0.932 prediction sets, respectively. The results reflect a nonlinear relationship between the Principal components obtained from calculated molecular descriptors and the inhibitory activities of the investigated molecules.

  8. A QSAR Study of Some Cyclobutenediones as CCR1 Antagonists by Artificial Neural Networks Based on Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    E Arkan

    2011-12-01

    Full Text Available Background and the purpose of the study: A quantitative structure activity relationship (QSAR model based on artificial neural networks (ANN was developed to study the activities of 29 derivatives of 3-amino-4-(2-(2-(4-benzylpiperazin-1-yl-2-oxoethoxy phenylamino cyclobutenedione as C-C chemokine receptor type 1(CCR1 inhibitors. Methods: A feed-forward ANN with error back-propagation learning algorithm was used for model building which was achieved by optimizing initial learning rate, learning momentum, epoch and the number of hidden neurons. Results: Good results were obtained with a Root Mean Square Error (RMSE and correlation coefficients (R2 of 0.189 and 0.906 for the training and 0.103 and 0.932 prediction sets, respectively. Conclusion: The results reflect a nonlinear relationship between the Principal components obtained from calculated molecular descriptors and the inhibitory activities of the investigated molecules.

  9. Distributed Recurrent Neural Forward Models with Neural Control for Complex Locomotion in Walking Robots

    DEFF Research Database (Denmark)

    Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin

    2015-01-01

    movements, (2) distributed (at each leg) recurrent neural network based adaptive forward models with efference copies as internal models for sensory predictions and instantaneous state estimations, and (3) searching and elevation control for adapting the movement of an individual leg to deal with different...... conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain...... a variety of movements, the neural mechanisms generate movements while making appropriate predictions crucial for achieving adaptation. Such predictions or planning ahead can be achieved by way of internal models that are grounded in the overall behavior of the animal. Inspired by these findings, we present...

  10. Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system.

    Science.gov (United States)

    Mrugalski, Marcin; Luzar, Marcel; Pazera, Marcin; Witczak, Marcin; Aubrun, Christophe

    2016-03-01

    The paper is devoted to the problem of the robust actuator fault diagnosis of the dynamic non-linear systems. In the proposed method, it is assumed that the diagnosed system can be modelled by the recurrent neural network, which can be transformed into the linear parameter varying form. Such a system description allows developing the designing scheme of the robust unknown input observer within H∞ framework for a class of non-linear systems. The proposed approach is designed in such a way that a prescribed disturbance attenuation level is achieved with respect to the actuator fault estimation error, while guaranteeing the convergence of the observer. The application of the robust unknown input observer enables actuator fault estimation, which allows applying the developed approach to the fault tolerant control tasks. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Neural and Neural Gray-Box Modeling for Entry Temperature Prediction in a Hot Strip Mill

    Science.gov (United States)

    Barrios, José Angel; Torres-Alvarado, Miguel; Cavazos, Alberto; Leduc, Luis

    2011-10-01

    In hot strip mills, initial controller set points have to be calculated before the steel bar enters the mill. Calculations rely on the good knowledge of rolling variables. Measurements are available only after the bar has entered the mill, and therefore they have to be estimated. Estimation of process variables, particularly that of temperature, is of crucial importance for the bar front section to fulfill quality requirements, and the same must be performed in the shortest possible time to preserve heat. Currently, temperature estimation is performed by physical modeling; however, it is highly affected by measurement uncertainties, variations in the incoming bar conditions, and final product changes. In order to overcome these problems, artificial intelligence techniques such as artificial neural networks and fuzzy logic have been proposed. In this article, neural network-based systems, including neural-based Gray-Box models, are applied to estimate scale breaker entry temperature, given its importance, and their performance is compared to that of the physical model used in plant. Several neural systems and several neural-based Gray-Box models are designed and tested with real data. Taking advantage of the flexibility of neural networks for input incorporation, several factors which are believed to have influence on the process are also tested. The systems proposed in this study were proven to have better performance indexes and hence better prediction capabilities than the physical models currently used in plant.

  12. Cascade Convolutional Neural Network Based on Transfer-Learning for Aircraft Detection on High-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Bin Pan

    2017-01-01

    Full Text Available Aircraft detection from high-resolution remote sensing images is important for civil and military applications. Recently, detection methods based on deep learning have rapidly advanced. However, they require numerous samples to train the detection model and cannot be directly used to efficiently handle large-area remote sensing images. A weakly supervised learning method (WSLM can detect a target with few samples. However, it cannot extract an adequate number of features, and the detection accuracy requires improvement. We propose a cascade convolutional neural network (CCNN framework based on transfer-learning and geometric feature constraints (GFC for aircraft detection. It achieves high accuracy and efficient detection with relatively few samples. A high-accuracy detection model is first obtained using transfer-learning to fine-tune pretrained models with few samples. Then, a GFC region proposal filtering method improves detection efficiency. The CCNN framework completes the aircraft detection for large-area remote sensing images. The framework first-level network is an image classifier, which filters the entire image, excluding most areas with no aircraft. The second-level network is an object detector, which rapidly detects aircraft from the first-level network output. Compared with WSLM, detection accuracy increased by 3.66%, false detection decreased by 64%, and missed detection decreased by 23.1%.

  13. Network-based modeling and intelligent data mining of social media for improving care.

    Science.gov (United States)

    Akay, Altug; Dragomir, Andrei; Erlandsson, Bjorn-Erik

    2015-01-01

    Intelligently extracting knowledge from social media has recently attracted great interest from the Biomedical and Health Informatics community to simultaneously improve healthcare outcomes and reduce costs using consumer-generated opinion. We propose a two-step analysis framework that focuses on positive and negative sentiment, as well as the side effects of treatment, in users' forum posts, and identifies user communities (modules) and influential users for the purpose of ascertaining user opinion of cancer treatment. We used a self-organizing map to analyze word frequency data derived from users' forum posts. We then introduced a novel network-based approach for modeling users' forum interactions and employed a network partitioning method based on optimizing a stability quality measure. This allowed us to determine consumer opinion and identify influential users within the retrieved modules using information derived from both word-frequency data and network-based properties. Our approach can expand research into intelligently mining social media data for consumer opinion of various treatments to provide rapid, up-to-date information for the pharmaceutical industry, hospitals, and medical staff, on the effectiveness (or ineffectiveness) of future treatments.

  14. PREDIKSI MASA KEDALUWARSA WAFER DENGAN ARTIFICIAL NEURAL NETWORK (ANN BERDASARKAN PARAMETER NILAI KAPASITANSI (Prediction of Wafer Shelf Life Using Artificial Neural Network Based on Capacitance Parameter

    Directory of Open Access Journals (Sweden)

    Erna Rusliana Muhamad Saleh

    2014-02-01

    Full Text Available Wafer is type of biscuit frequently found on expired condition in market, therefore prediction method should be implemented to avoid this condition. apart from the prediction of shelf-life of wafer done by laboratory test, which were time-consuming, expensive, required trained panelists, complex equipment and suitable ambience, artificial neural network (ANN based dielectric parameters was proposed in nthis study. The aim of study was to develop model to predict shelf-life employing aNN based capacitance parameter. Back propagation algorithm with trial and error was applied in variations of nodes per hidden layer, number of hidden layers, activation functions, the function of learnings and epochs. The result of study was the model was able to predict wafer shelf-life. The accuracy level was shown by low MSE value (0.01 and high coefficient correlation value (89.25%. Keywords: artificial Neural Network, shelf-life, waffer, dielectric, capacitance   ABSTRAK Wafer adalah jenis makanan kering yang sering ditemukan kedaluwarsa. Penentuan masa kedaluwarsa dengan observasi laboratorium memiliki beberapa kelemahan, diantaranya memakan waktu, panelis terlatih, suasana yang tepat, biaya dan alat uji yang kompleks. alternatif solusinya adalah penggunaan artificial Neural Network (ANN berbasiskan parameter kapasitansi. Tujuan kerja ilmiah ini adalah untuk memprediksi masa kedaluwarsa wafer menggunakan aNN berbasiskan parameter kapasitansi. algoritma pembelajaran yang digunakan adalah Backpropagation dengan trial and error variasi jumlah node per hidden layer, jumlah hidden layer, fungsi aktivasi, fungsi pembelajaran dan epoch. Hasil prediksi menunjukkan bahwa aNN hasil pelatihan yang dikombinasikan dengan parameter kapasitansi mampu memprediksi masa kedaluwarsa wafer dengan MSE terendah 0,01 dan R tertinggi 89,25%. Kata kunci: Jaringan Syaraf Tiruan, masa kedaluwarsa, wafer, dielektrik, kapasitansi

  15. Neural Networks for Modeling and Control of Particle Accelerators

    Science.gov (United States)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  16. Artificial neural network-based equation for estimating VO2max from the 20 m shuttle run test in adolescents.

    Science.gov (United States)

    Ruiz, Jonatan R; Ramirez-Lechuga, Jorge; Ortega, Francisco B; Castro-Piñero, José; Benitez, Jose M; Arauzo-Azofra, Antonio; Sanchez, Cristobal; Sjöström, Michael; Castillo, Manuel J; Gutierrez, Angel; Zabala, Mikel

    2008-11-01

    To develop an artificial neural network (ANN)-equation to estimate maximal oxygen uptake (VO(2max)) from 20m shuttle run test (20 mSRT) performance (stage), sex, age, weight, and height in young persons. The 20 mSRT was performed by 193 (122 boys and 71 girls) adolescents aged 13-19 years. All the adolescents wore a portable gas analyzer to measure VO(2) and heart rate during the test. The equation was developed and cross-validated following the ANN mathematical model. The neural net performance was assessed through several error measures. Agreement between the measured VO(2max) and estimated VO(2max) from Léger's and ANN equations were analysed following the Bland and Altman method. The percentage error was 17.13 and 7.38 for Léger and ANN-equation (P<0.001), respectively, and the standard error of the estimate obtained with Léger's equation was 4.27 ml/(kg min), while for the ANN-equation was 2.84 ml/(kg min). A Bland-Altman plot for the measured VO(2max) and Léger-VO(2max) showed a mean difference of 4.9 ml/(kg min) (P<0.001), while the Bland-Altman plot for the measured VO(2max) and ANN-VO(2max) showed a mean difference of 0.5 ml/(kg min) (P=0.654). In the validation sample, the percentage error was 21.08 and 8.68 for Léger and ANN-equation (P<0.001), respectively. In this study, an ANN-based equation to estimate VO(2max) from 20 mSRT performance (stage), sex, age, weight, and height in adolescents was developed and cross-validated. The newly developed equation was shown to be more accurate than Léger's. The proposed model has been coded in a user-friendly spreadsheet.

  17. The evolution of network-based business models illustrated through the case study of an entrepreneurship project

    DEFF Research Database (Denmark)

    Lund, Morten; Nielsen, Christian

    2014-01-01

    -based business model that generates additional value for the core business model and for both the partners and the customers. Research limitations/implications: The results should be taken with caution as they are based on the case study of a single network-based business model. Practical implications: Managers......Purpose: Existing frameworks for understanding and analyzing the value configuration and structuring of partnerships in relation such network-based business models are found to be inferior. The purpose of this paper is therefore to broaden our understanding of how business models may change over......: This paper illustrates how a network-based business model arises and evolves and how the forces of a network structure impact the development of its partner relationships. The contribution of this article is to understanding how partners positioned around a business model can be organized into a network...

  18. RBF neural network-based online intelligent management of a battery energy storage system for stand-alone microgrids

    National Research Council Canada - National Science Library

    Kerdphol, Thongchart; Qudaih, Yaser; Watanabe, Masayuki; Mitani, Yasunori

    2016-01-01

    ...) in a short period of time.This paper presents a new method for the intelligent online management of both active and reactive power of a BESS based on a radial basis function neural network (RBFNN...

  19. Spike Neural Models Part II: Abstract Neural Models

    OpenAIRE

    Johnson, Melissa G.; Chartier, Sylvain

    2018-01-01

    Neurons are complex cells that require a lot of time and resources to model completely. In spiking neural networks (SNN) though, not all that complexity is required. Therefore simple, abstract models are often used. These models save time, use less computer resources, and are easier to understand. This tutorial presents two such models: Izhikevich's model, which is biologically realistic in the resulting spike trains but not in the parameters, and the Leaky Integrate and Fire (LIF) model whic...

  20. Novel Spiking Neuron-Astrocyte Networks based on nonlinear transistor-like models of tripartite synapses.

    Science.gov (United States)

    Valenza, Gaetano; Tedesco, Luciano; Lanata, Antonio; De Rossi, Danilo; Scilingo, Enzo Pasquale

    2013-01-01

    In this paper a novel and efficient computational implementation of a Spiking Neuron-Astrocyte Network (SNAN) is reported. Neurons are modeled according to the Izhikevich formulation and the neuron-astrocyte interactions are intended as tripartite synapsis and modeled with the previously proposed nonlinear transistor-like model. Concerning the learning rules, the original spike-timing dependent plasticity is used for the neural part of the SNAN whereas an ad-hoc rule is proposed for the astrocyte part. SNAN performances are compared with a standard spiking neural network (SNN) and evaluated using the polychronization concept, i.e., number of co-existing groups that spontaneously generate patterns of polychronous activity. The astrocyte-neuron ratio is the biologically inspired value of 1.5. The proposed SNAN shows higher number of polychronous groups than SNN, remarkably achieved for the whole duration of simulation (24 hours).

  1. Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Khastavaneh H.

    2017-06-01

    Full Text Available Background: Multiple Sclerosis (MS is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation is a need. Materials and Methods: In order to segment MS lesions, a method based on learning kernels has been proposed. The proposed method has three main steps namely; pre-processing, sub-region extraction and segmentation. The segmentation is performed by a kernel. This kernel is trained using a modified version of a special type of Artificial Neural Networks (ANN called Massive Training ANN (MTANN. The kernel incorporates surrounding pixel information as features for classification of middle pixel of kernel. The materials of this study include a part of MICCAI 2008 MS lesion segmentation grand challenge data-set. Results: Both qualitative and quantitative results show promising results. Similarity index of 70 percent in some cases is considered convincing. These results are obtained from information of only one MRI channel rather than multi-channel MRIs. Conclusion: This study shows the potential of surrounding pixel information to be incorporated in segmentation by learning kernels. The performance of proposed method will be improved using a special pre-processing pipeline and also a post-processing step for reducing false positives/negatives. An important advantage of proposed model is that it uses just FLAIR MRI that reduces computational time and brings comfort to patients.

  2. Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images.

    Science.gov (United States)

    Khastavaneh, H; Ebrahimpour-Komleh, H

    2017-06-01

    Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation is a need. In order to segment MS lesions, a method based on learning kernels has been proposed. The proposed method has three main steps namely; pre-processing, sub-region extraction and segmentation. The segmentation is performed by a kernel. This kernel is trained using a modified version of a special type of Artificial Neural Networks (ANN) called Massive Training ANN (MTANN). The kernel incorporates surrounding pixel information as features for classification of middle pixel of kernel. The materials of this study include a part of MICCAI 2008 MS lesion segmentation grand challenge data-set. Both qualitative and quantitative results show promising results. Similarity index of 70 percent in some cases is considered convincing. These results are obtained from information of only one MRI channel rather than multi-channel MRIs. This study shows the potential of surrounding pixel information to be incorporated in segmentation by learning kernels. The performance of proposed method will be improved using a special pre-processing pipeline and also a post-processing step for reducing false positives/negatives. An important advantage of proposed model is that it uses just FLAIR MRI that reduces computational time and brings comfort to patients.

  3. Adaptive eye-gaze tracking using neural-network-based user profiles to assist people with motor disability.

    Science.gov (United States)

    Sesin, Anaelis; Adjouadi, Malek; Cabrerizo, Mercedes; Ayala, Melvin; Barreto, Armando

    2008-01-01

    This study developed an adaptive real-time human-computer interface (HCI) that serves as an assistive technology tool for people with severe motor disability. The proposed HCI design uses eye gaze as the primary computer input device. Controlling the mouse cursor with raw eye coordinates results in sporadic motion of the pointer because of the saccadic nature of the eye. Even though eye movements are subtle and completely imperceptible under normal circumstances, they considerably affect the accuracy of an eye-gaze-based HCI. The proposed HCI system is novel because it adapts to each specific user's different and potentially changing jitter characteristics through the configuration and training of an artificial neural network (ANN) that is structured to minimize the mouse jitter. This task is based on feeding the ANN a user's initially recorded eye-gaze behavior through a short training session. The ANN finds the relationship between the gaze coordinates and the mouse cursor position based on the multilayer perceptron model. An embedded graphical interface is used during the training session to generate user profiles that make up these unique ANN configurations. The results with 12 subjects in test 1, which involved following a moving target, showed an average jitter reduction of 35%; the results with 9 subjects in test 2, which involved following the contour of a square object, showed an average jitter reduction of 53%. For both results, the outcomes led to trajectories that were significantly smoother and apt at reaching fixed or moving targets with relative ease and within a 5% error margin or deviation from desired trajectories. The positive effects of such jitter reduction are presented graphically for visual appreciation.

  4. A non-planar data model for road networks based on GIS-T

    Science.gov (United States)

    Xiao, Kehui; Chen, Jianhong; Xiao, Deqin; Ye, Shengtao

    2008-10-01

    Previous data models of road networks include planar and non-planar models. In planar models, intersections of road networks are transformed into arcs, sections into nodes, and sequential pairs are used to represent arcs between nodes, which can simulate traffic direction of sections and turning limitation at intersections well, but fail to define the granularity of lane and the node height difference. Non-planar data models provide the data of node height difference, which avoid impossible turning in three-dimensional road networks, but shortages as lack of detailed information of road intersections and node height difference and the curtly defined granularity of lanes lead to the low efficiency of analysis of road networks. This paper proposes an NA+ model of road networks based on non-planar structure and combined node height difference with direction lane to describe non-planar structure of road networks. Node height difference is denoted as Arabic numerals, the granularity of lane is specified as direction lane. In GIS-T database, the intersection table and the direction lane table are used to describe node height difference and direction respectively. The model consists with the circumstance of road networks; it is proved to be applicable and feasible to the applications of GIS-T.

  5. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  6. A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite's attitude control subsystem.

    Science.gov (United States)

    Talebi, H A; Khorasani, K; Tafazoli, S

    2009-01-01

    This paper presents a robust fault detection and isolation (FDI) scheme for a general class of nonlinear systems using a neural-network-based observer strategy. Both actuator and sensor faults are considered. The nonlinear system considered is subject to both state and sensor uncertainties and disturbances. Two recurrent neural networks are employed to identify general unknown actuator and sensor faults, respectively. The neural network weights are updated according to a modified backpropagation scheme. Unlike many previous methods developed in the literature, our proposed FDI scheme does not rely on availability of full state measurements. The stability of the overall FDI scheme in presence of unknown sensor and actuator faults as well as plant and sensor noise and uncertainties is shown by using the Lyapunov's direct method. The stability analysis developed requires no restrictive assumptions on the system and/or the FDI algorithm. Magnetorquer-type actuators and magnetometer-type sensors that are commonly employed in the attitude control subsystem (ACS) of low-Earth orbit (LEO) satellites for attitude determination and control are considered in our case studies. The effectiveness and capabilities of our proposed fault diagnosis strategy are demonstrated and validated through extensive simulation studies.

  7. Neural Network Based Finite-Time Stabilization for Discrete-Time Markov Jump Nonlinear Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2013-01-01

    Full Text Available This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedness and stochastic finite-time stabilization of the closed-loop system. A numerical example is illustrated to verify the efficiency of the proposed technique.

  8. Some new results on stability and synchronization for delayed inertial neural networks based on non-reduced order method.

    Science.gov (United States)

    Li, Xuanying; Li, Xiaotong; Hu, Cheng

    2017-12-01

    In this paper, without transforming the second order inertial neural networks into the first order differential systems by some variable substitutions, asymptotic stability and synchronization for a class of delayed inertial neural networks are investigated. Firstly, a new Lyapunov functional is constructed to directly propose the asymptotic stability of the inertial neural networks, and some new stability criteria are derived by means of Barbalat Lemma. Additionally, by designing a new feedback control strategy, the asymptotic synchronization of the addressed inertial networks is studied and some effective conditions are obtained. To reduce the control cost, an adaptive control scheme is designed to realize the asymptotic synchronization. It is noted that the dynamical behaviors of inertial neural networks are directly analyzed in this paper by constructing some new Lyapunov functionals, this is totally different from the traditional reduced-order variable substitution method. Finally, some numerical simulations are given to demonstrate the effectiveness of the derived theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses

    DEFF Research Database (Denmark)

    Săftoiu, Adrian; Vilmann, Peter; Gorunescu, Florin

    2012-01-01

    By using strain assessment, real-time endoscopic ultrasound (EUS) elastography provides additional information about a lesion's characteristics in the pancreas. We assessed the accuracy of real-time EUS elastography in focal pancreatic lesions using computer-aided diagnosis by artificial neural...

  10. Network-based auto-probit modeling for protein function prediction.

    Science.gov (United States)

    Jiang, Xiaoyu; Gold, David; Kolaczyk, Eric D

    2011-09-01

    Predicting the functional roles of proteins based on various genome-wide data, such as protein-protein association networks, has become a canonical problem in computational biology. Approaching this task as a binary classification problem, we develop a network-based extension of the spatial auto-probit model. In particular, we develop a hierarchical Bayesian probit-based framework for modeling binary network-indexed processes, with a latent multivariate conditional autoregressive Gaussian process. The latter allows for the easy incorporation of protein-protein association network topologies-either binary or weighted-in modeling protein functional similarity. We use this framework to predict protein functions, for functions defined as terms in the Gene Ontology (GO) database, a popular rigorous vocabulary for biological functionality. Furthermore, we show how a natural extension of this framework can be used to model and correct for the high percentage of false negative labels in training data derived from GO, a serious shortcoming endemic to biological databases of this type. Our method performance is evaluated and compared with standard algorithms on weighted yeast protein-protein association networks, extracted from a recently developed integrative database called Search Tool for the Retrieval of INteracting Genes/proteins (STRING). Results show that our basic method is competitive with these other methods, and that the extended method-incorporating the uncertainty in negative labels among the training data-can yield nontrivial improvements in predictive accuracy. © 2010, The International Biometric Society.

  11. Neural Network Based Simulation of Micro Creeping Fibrous Composites SiC/Al6061 for Plastic Behaviour

    Science.gov (United States)

    Monfared, Vahid

    2017-03-01

    The present work presents a new approach based on neural network prediction for simple and fast estimation of the creep plastic behaviour of the short fiber composites. Also, this approach is proposed to reduce the solution procedure. Moreover, as a significant application of the method, shuttles and spaceships, turbine blades and discs are generally subjected to the creep effects. Consequently, analysis of the creep phenomenon is required and vital in different industries. Analysis of the creep behaviour is required for failure, fracture, fatigue, and creep resistance of the optoelectronic/photonic composites, and sensors. One of the main applications of the present work is in designing the composites with optical fibers and devices. At last, a good agreement is seen among the present prediction by neural network approach, finite element method (FEM), and the experimental results.

  12. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots

    Science.gov (United States)

    Jung, Jun-Young; Heo, Wonho; Yang, Hyundae; Park, Hyunsub

    2015-01-01

    An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX)) are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases. PMID:26528986

  13. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots

    Directory of Open Access Journals (Sweden)

    Jun-Young Jung

    2015-10-01

    Full Text Available An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases.

  14. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink

    DEFF Research Database (Denmark)

    Landschützer, P.; Gruber, N.; Bakker, D.C.E.

    2013-01-01

    pressure of CO2 (pCO2) at a resolution of 1° × 1°. From those, we compute the air–sea CO2 flux maps using a standard gas exchange parameterization and high-resolution wind speeds. The neural networks fit the observed pCO2 data with a root mean square error (RMSE) of about 10 μatm and with almost no bias......) a continuous improvement of the observations, i.e., the Surface Ocean CO2 Atlas (SOCAT) v1.5 database and (ii) a newly developed technique to interpolate the observations in space and time. In particular, we use a 2 step neural network approach to reconstruct basin-wide monthly maps of the sea surface partial...

  15. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots.

    Science.gov (United States)

    Jung, Jun-Young; Heo, Wonho; Yang, Hyundae; Park, Hyunsub

    2015-10-30

    An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX)) are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases.

  16. Implementation of a kinematic fit of single top-quark production in association with a W boson and its application in a neural-network-based analysis in ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Loddenkoetter, Thomas

    2012-08-15

    In order to provide discrimination between the Wt-channel signal and its backgrounds for analyses that try to measure single top-quark production in the Wt-channel, a kinematic fit to the lepton+jets decay mode of the Wt-channel has been implemented using the KLFitter package. The fit has been validated by studying its performance in terms of the efficiency of the fit to correctly assign the final-state quarks of the fit model to the measured jets as a function of various parameters, as well as the improvement of the energy resolutions of the fitted particles due to the fit. By combining the output variables of the kinematic fitter using neural networks, it has been shown that the fit results are suitable to identify the decay mode of the top quark in Wt events and to identify whether the kinematic fit succeeded in correctly assigning the final-state quarks to the measured jets. In order to demonstrate the value of the kinematic fit for analysis, another neural network - again using strictly results of the kinematic fit as input - has been trained to separate to the Wt-channel signal from its backgrounds. A separation power comparable to a conventional neural-network-based Wt-channel analysis has been achieved.

  17. A neural network-based method for spectral distortion correction in photon counting x-ray CT

    Science.gov (United States)

    Touch, Mengheng; Clark, Darin P.; Barber, William; Badea, Cristian T.

    2016-08-01

    Spectral CT using a photon counting x-ray detector (PCXD) shows great potential for measuring material composition based on energy dependent x-ray attenuation. Spectral CT is especially suited for imaging with K-edge contrast agents to address the otherwise limited contrast in soft tissues. We have developed a micro-CT system based on a PCXD. This system enables both 4 energy bins acquisition, as well as full-spectrum mode in which the energy thresholds of the PCXD are swept to sample the full energy spectrum for each detector element and projection angle. Measurements provided by the PCXD, however, are distorted due to undesirable physical effects in the detector and can be very noisy due to photon starvation in narrow energy bins. To address spectral distortions, we propose and demonstrate a novel artificial neural network (ANN)-based spectral distortion correction mechanism, which learns to undo the distortion in spectral CT, resulting in improved material decomposition accuracy. To address noise, post-reconstruction denoising based on bilateral filtration, which jointly enforces intensity gradient sparsity between spectral samples, is used to further improve the robustness of ANN training and material decomposition accuracy. Our ANN-based distortion correction method is calibrated using 3D-printed phantoms and a model of our spectral CT system. To enable realistic simulations and validation of our method, we first modeled the spectral distortions using experimental data acquired from 109Cd and 133Ba radioactive sources measured with our PCXD. Next, we trained an ANN to learn the relationship between the distorted spectral CT projections and the ideal, distortion-free projections in a calibration step. This required knowledge of the ground truth, distortion-free spectral CT projections, which were obtained by simulating a spectral CT scan of the digital version of a 3D-printed phantom. Once the training was completed, the trained ANN was used to perform

  18. Artificial Neural Network based DC-link Capacitance Estimation in a Diode-bridge Front-end Inverter System

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Abdelsalam, Ibrahim; Wang, Huai

    2017-01-01

    , a proposed software condition monitoring methodology based on Artificial Neural Network (ANN) algorithm is presented. Matlab software is used to train and generate the proposed ANN. The proposed methodology estimates the capacitance of the DC-link capacitor in a three phase front-end diode bridge AC......In modern design of power electronic converters, reliability of DC-link capacitors is an essential aspect to be considered. The industrial field have been attracted to the monitoring of their health condition and the estimation of their ageing process status. The existing condition monitoring...

  19. Neural Network Based Active Disturbance Rejection Control of a Novel Electrohydraulic Servo System for Simultaneously Balancing and Positioning by Isoactuation Configuration

    Directory of Open Access Journals (Sweden)

    Qiang Gao

    2016-01-01

    Full Text Available To satisfy the lightweight requirements of large pipe weapons, a novel electrohydraulic servo (EHS system where the hydraulic cylinder possesses three cavities is developed and investigated in the present study. In the EHS system, the balancing cavity of the EHS is especially designed for active compensation for the unbalancing force of the system, whereas the two driving cavities are employed for positioning and disturbance rejection of the large pipe. Aiming at simultaneously balancing and positioning of the EHS system, a novel neural network based active disturbance rejection control (NNADRC strategy is developed. In the NNADRC, the radial basis function (RBF neural network is employed for online updating of parameters of the extended state observer (ESO. Thereby, the nonlinear behavior and external disturbance of the system can be accurately estimated and compensated in real time. The efficiency and superiority of the system are critically investigated by conducting numerical simulations, showing that much higher steady accuracy as well as system robustness is achieved when comparing with conventional ADRC control system. It indicates that the NNADRC is a very promising technique for achieving fast, stable, smooth, and accurate control of the novel EHS system.

  20. Improved RBF Neural Network Based Soft Sensor: Application to the Optimal Robust Calibration of a Six Degrees of Freedom Parallel Kinematics Manipulator

    Directory of Open Access Journals (Sweden)

    Dan ZHANG

    2010-10-01

    Full Text Available Accuracy is paramount for the further development of parallel mechanism in real world, especially in industry. Previous research was focused on the improvement of rigidity and load capacity which is related with the stiffness matrix of closed loop kinematic structure. However, if the mechanical structure has been predefined or fabricated, stiffness matrix only can search for the optimal configuration in the workspace, but fails to enhance the accuracy at a given pose. In this research, the concept of optimal robust calibration is developed as an effective approach to largely reduce various errors of the predefined parallel mechanism. A novel coevolutionary radial basis function (RBF neural network based soft sensor is proposed to implement the optimal robust calibration procedure. A six- degrees-of-freedom parallel kinematics manipulator is selected as the case study to verify the proposed methodology. The results demonstrate that the coevolutionary neural network possesses the excellent performance as a smart soft sensor for the calibration of closed loop kinematic structure.

  1. Classifying Membrane Proteins in the Proteome by Using Artificial Neural Networks Based on the Preferential Parameters of Amino Acids

    Science.gov (United States)

    Bose, Subrata K.; Browne, Antony; Kazemian, Hassan; White, Kenneth

    Membrane proteins (MPs) are large set of biological macromolecules that play a fundamental role in physiology and pathophysiology for survival. From a pharma-economical perspective, though it is the fact that MPs constitute ˜75% of possible targets for novel drugs but MPs are one of the most understudied groups of proteins in biochemical research. This is mainly because of the technical difficulties of obtaining structural information about trans-membrane regions (these are small sequences that crossways the bilayer lipid membrane). It is quite useful to predict the location of transmembrane segments down the sequence, since these are the elementary structural building blocks defining their topology. There have been several attempts over the last 20 years to develop tools for predicting membrane-spanning regions but current tools are far away from achieving a considerable reliability in prediction. This study aims to exploit the knowledge and current understanding in the field of artificial neural networks (ANNs) in particular data representation through the development of a system to identify and predict membrane-spanning regions by analysing primary amino acids sequence. In this paper we present a novel neural network (NNs) architecture and algorithms for predicting membrane spanning regions from primary amino acids sequences by using their preference parameters.

  2. An Efficient Feature Extraction Method with Pseudo-Zernike Moment in RBF Neural Network-Based Human Face Recognition System

    Directory of Open Access Journals (Sweden)

    Ahmadi Majid

    2003-01-01

    Full Text Available This paper introduces a novel method for the recognition of human faces in digital images using a new feature extraction method that combines the global and local information in frontal view of facial images. Radial basis function (RBF neural network with a hybrid learning algorithm (HLA has been used as a classifier. The proposed feature extraction method includes human face localization derived from the shape information. An efficient distance measure as facial candidate threshold (FCT is defined to distinguish between face and nonface images. Pseudo-Zernike moment invariant (PZMI with an efficient method for selecting moment order has been used. A newly defined parameter named axis correction ratio (ACR of images for disregarding irrelevant information of face images is introduced. In this paper, the effect of these parameters in disregarding irrelevant information in recognition rate improvement is studied. Also we evaluate the effect of orders of PZMI in recognition rate of the proposed technique as well as RBF neural network learning speed. Simulation results on the face database of Olivetti Research Laboratory (ORL indicate that the proposed method for human face recognition yielded a recognition rate of 99.3%.

  3. Empirical Modeling of the Plasmasphere Dynamics Using Neural Networks

    Science.gov (United States)

    Zhelavskaya, Irina S.; Shprits, Yuri Y.; Spasojević, Maria

    2017-11-01

    We present the PINE (Plasma density in the Inner magnetosphere Neural network-based Empirical) model - a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm for the period of 1 October 2012 to 1 July 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distribution for 2≤L≤6 and all local times. We validate and test the model by measuring its performance on independent data sets withheld from the training set and by comparing the model-predicted global evolution with global images of He+ distribution in the Earth's plasmasphere from the IMAGE Extreme UltraViolet (EUV) instrument. We identify the parameters that best quantify the plasmasphere dynamics by training and comparing multiple neural networks with different combinations of input parameters (geomagnetic indices, solar wind data, and different durations of their time history). The optimal model is based on the 96 h time history of Kp, AE, SYM-H, and F10.7 indices. The model successfully reproduces erosion of the plasmasphere on the nightside and plume formation and evolution. We demonstrate results of both local and global plasma density reconstruction. This study illustrates how global dynamics can be reconstructed from local in situ observations by using machine learning techniques.

  4. Generalization performance of regularized neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1994-01-01

    Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...

  5. Plant Growth Models Using Artificial Neural Networks

    Science.gov (United States)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  6. Neural network-based brain tissue segmentation in MR images using extracted features from intraframe coding in H.264

    Science.gov (United States)

    Jafari, Mehdi; Kasaei, Shohreh

    2012-01-01

    Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more accurate classifier with low computational complexity. The performance of the BPN classifier is evaluated using the classification accuracy and computational complexity terms. The results show that the proposed technique is more robust and effective with low computational complexity compared to other recent works.

  7. A cellular neural network based method for classification of magnetic resonance images: towards an automated detection of hippocampal sclerosis.

    Science.gov (United States)

    Döhler, Florian; Mormann, Florian; Weber, Bernd; Elger, Christian E; Lehnertz, Klaus

    2008-05-30

    We present a cellular neuronal network (CNN) based approach to classify magnetic resonance images with and without hippocampal or Ammon's horn sclerosis (AHS) in the medial temporal lobe. A CNN combines the architecture of cellular automata and artificial neural networks and is an array of locally coupled nonlinear electrical circuits or cells, which is capable of processing a large amount of information in parallel and in real time. Using an exemplary database that consists of a large number of volumes of interest extracted from T1-weighted magnetic resonance images from 144 subjects we here demonstrate that the network allows to classify brain tissue with respect to the presence or absence of mesial temporal sclerosis. Results indicate the general feasibility of CNN-based computer-aided systems for diagnosis and classification of images generated by medical imaging systems.

  8. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  9. INDIA’S ELECTRICITY DEMAND FORECAST USING REGRESSION ANALYSIS AND ARTIFICIAL NEURAL NETWORKS BASED ON PRINCIPAL COMPONENTS

    Directory of Open Access Journals (Sweden)

    S. Saravanan

    2012-07-01

    Full Text Available Power System planning starts with Electric load (demand forecasting. Accurate electricity load forecasting is one of the most important challenges in managing supply and demand of the electricity, since the electricity demand is volatile in nature; it cannot be stored and has to be consumed instantly. The aim of this study deals with electricity consumption in India, to forecast future projection of demand for a period of 19 years from 2012 to 2030. The eleven input variables used are Amount of CO2 emission, Population, Per capita GDP, Per capita gross national income, Gross Domestic savings, Industry, Consumer price index, Wholesale price index, Imports, Exports and Per capita power consumption. A new methodology based on Artificial Neural Networks (ANNs using principal components is also used. Data of 29 years used for training and data of 10 years used for testing the ANNs. Comparison made with multiple linear regression (based on original data and the principal components and ANNs with original data as input variables. The results show that the use of ANNs with principal components (PC is more effective.

  10. A neural network-based design of an on-off adaptive control for Deep Brain Stimulation in movement disorders.

    Science.gov (United States)

    Shukla, Pitamber; Basu, Ishita; Graupe, Daniel; Tuninetti, Daniela; Slavin, Konstantin V

    2012-01-01

    The current Food and Drug Administration approved system for the treatment of tremor disorders through Deep Brain Stimulation (DBS) of the area of the brain that controls movement, operates open-loop. It does not automatically adapt to the instantaneous patient's needs or to the progression of the disease. This paper demonstrates an adaptive closed-loop controlled DBS that, after switching off stimulation, tracks few physiological signals to predict the reappearance of tremor before the patient experiences discomfort, at which point it instructs the DBS controller to switch on stimulation again. The core of the proposed approach is a Neural Network (NN) which effectively extracts tremor predictive information from non-invasively recorded surface-electromyogram(sEMG) and accelerometer signals measured at the symptomatic extremities. A simple feed-forward back-propagation NN architecture is shown to successfully predict tremor in 31 out of 33 trials in two Parkinson's Disease patients with an overall accuracy of 75.8% and sensitivity of 92.3%. This work therefore shows that closed-loop DBS control is feasible in the near future and that it can be achieved without modifications of the electrodes implanted in the brain, i.e., is backward compatible with approved DBS systems.

  11. A Review of Fuzzy Logic and Neural Network Based Intelligent Control Design for Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    Yiming Jiang

    2016-01-01

    Full Text Available Over the last few decades, the intelligent control methods such as fuzzy logic control (FLC and neural network (NN control have been successfully used in various applications. The rapid development of digital computer based control systems requires control signals to be calculated in a digital or discrete-time form. In this background, the intelligent control methods developed for discrete-time systems have drawn great attentions. This survey aims to present a summary of the state of the art of the design of FLC and NN-based intelligent control for discrete-time systems. For discrete-time FLC systems, numerous remarkable design approaches are introduced and a series of efficient methods to deal with the robustness, stability, and time delay of FLC discrete-time systems are recommended. Techniques for NN-based intelligent control for discrete-time systems, such as adaptive methods and adaptive dynamic programming approaches, are also reviewed. Overall, this paper is devoted to make a brief summary for recent progresses in FLC and NN-based intelligent control design for discrete-time systems as well as to present our thoughts and considerations of recent trends and potential research directions in this area.

  12. An approach for tissue density classification in mammographic images using artificial neural network based on wavelet and curvelet transforms

    Science.gov (United States)

    Yaşar, Hüseyin; Ceylan, Murat

    2015-03-01

    Breast cancer is one of the types of cancer which is most commonly seen in women. Density of breast is an important indicator for the risk of cancer. In addition, densities of tissue may harden the diagnosis by hiding the abnormalities occurring on the breast. For this reason, during the process of diagnosis, the process of automatic classification of breast density has a significant importance. In this study, a new system with the base of Artificial Neural Network (ANN) and multiple resolution analysis is suggested. Wavelet and curvelet analyses having the most common use have been used as multi resolution analysis. 4 pieces of statistics which are minimum value, maximum value, mean value and standard deviation have been extracted from the images which have been eluted to their sub-bands via multi resolution analysis. For the purpose of testing the success of the system, 322 pieces of images which are in MIAS database have been used. The obtained results for different backgrounds are so satisfying; and the highest classification values have been obtained as 97.16 % with Wavelet transform and ANN for fatty background and 79.80 % with Wavelet transform and ANN for fatty-glanduar background. The same results have been obtained using Wavelet transform and ANN and Curvelet transform and ANN for dense background and accuracy rate of 84.82 % have been reached. The results of mean classification have been obtained, for three pieces of tissue types (fatty, fatty-glanduar, dense), in sequence as 84.47 % with the use of ANN, 85.71 % with the use of curvelet analysis and ANN; and 87.26 % with the use of wavelet analysis and ANN.

  13. A neural network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth: Retrieval of the particulate backscattering coefficient

    Science.gov (United States)

    Sauzède, R.; Claustre, H.; Uitz, J.; Jamet, C.; Dall'Olmo, G.; D'Ortenzio, F.; Gentili, B.; Poteau, A.; Schmechtig, C.

    2016-04-01

    The present study proposes a novel method that merges satellite ocean color bio-optical products with Argo temperature-salinity profiles to infer the vertical distribution of the particulate backscattering coefficient (bbp). This neural network-based method (SOCA-BBP for Satellite Ocean-Color merged with Argo data to infer the vertical distribution of the Particulate Backscattering coefficient) uses three main input components: (1) satellite-based surface estimates of bbp and chlorophyll a concentration matched up in space and time with (2) depth-resolved physical properties derived from temperature-salinity profiles measured by Argo profiling floats and (3) the day of the year of the considered satellite-Argo matchup. The neural network is trained and validated using a database including 4725 simultaneous profiles of temperature-salinity and bio-optical properties collected by Bio-Argo floats, with concomitant satellite-derived products. The Bio-Argo profiles are representative of the global open-ocean in terms of oceanographic conditions, making the proposed method applicable to most open-ocean environments. SOCA-BBP is validated using 20% of the entire database (global error of 21%). We present additional validation results based on two other independent data sets acquired (1) by four Bio-Argo floats deployed in major oceanic basins, not represented in the database used to train the method; and (2) during an AMT (Atlantic Meridional Transect) field cruise in 2009. These validation tests based on two fully independent data sets indicate the robustness of the predicted vertical distribution of bbp. To illustrate the potential of the method, we merged monthly climatological Argo profiles with ocean color products to produce a depth-resolved climatology of bbp for the global ocean.

  14. Reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau

    Science.gov (United States)

    Cui, Y.; Long, D.; Hong, Y.; Zeng, C.; Han, Z.

    2016-12-01

    Reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau Yaokui Cui, Di Long, Yang Hong, Chao Zeng, and Zhongying Han State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China Abstract: Soil moisture is a key variable in the exchange of water and energy between the land surface and the atmosphere, especially over the Tibetan Plateau (TP) which is climatically and hydrologically sensitive as the world's third pole. Large-scale consistent and continuous soil moisture datasets are of importance to meteorological and hydrological applications, such as weather forecasting and drought monitoring. The Fengyun-3B Microwave Radiation Imager (FY-3B/MWRI) soil moisture product is one of relatively new passive microwave products. The FY-3B/MWRI soil moisture product is reconstructed using the back-propagation neural network (BP-NN) based on reconstructed MODIS products, i.e., LST, NDVI, and albedo using different gap-filling methods. The reconstruction method of generating the soil moisture product not only considers the relationship between the soil moisture and the NDVI, LST, and albedo, but also the relationship between the soil moisture and the four-dimensional variation using the longitude, latitude, DEM and day of year (DOY). Results show that the soil moisture could be well reconstructed with R2 larger than 0.63, and RMSE less than 0.1 cm3 cm-3 and bias less than 0.07 cm3 cm-3 for both frozen and unfrozen periods, compared with in-situ measurements in the central TP. The reconstruction method is subsequently applied to generate spatially consistent and temporally continuous surface soil moisture over the TP. The reconstructed FY-3B/MWRI soil moisture product could be valuable in studying meteorology, hydrology, and agriculture over the TP. Keywords: FY-3B/MWRI; Soil moisture; Reconstruction; Tibetan

  15. Artificial neural network modeling of p-cresol photodegradation.

    Science.gov (United States)

    Abdollahi, Yadollah; Zakaria, Azmi; Abbasiyannejad, Mina; Masoumi, Hamid Reza Fard; Moghaddam, Mansour Ghaffari; Matori, Khamirul Amin; Jahangirian, Hossein; Keshavarzi, Ashkan

    2013-06-03

    The complexity of reactions and kinetic is the current problem of photodegradation processes. Recently, artificial neural networks have been widely used to solve the problems because of their reliable, robust, and salient characteristics in capturing the non-linear relationships between variables in complex systems. In this study, an artificial neural network was applied for modeling p-cresol photodegradation. To optimize the network, the independent variables including irradiation time, pH, photocatalyst amount and concentration of p-cresol were used as the input parameters, while the photodegradation% was selected as output. The photodegradation% was obtained from the performance of the experimental design of the variables under UV irradiation. The network was trained by Quick propagation (QP) and the other three algorithms as a model. To determine the number of hidden layer nodes in the model, the root mean squared error of testing set was minimized. After minimizing the error, the topologies of the algorithms were compared by coefficient of determination and absolute average deviation. The comparison indicated that the Quick propagation algorithm had minimum root mean squared error, 1.3995, absolute average deviation, 3.0478, and maximum coefficient of determination, 0.9752, for the testing data set. The validation test results of the artificial neural network based on QP indicated that the root mean squared error was 4.11, absolute average deviation was 8.071 and the maximum coefficient of determination was 0.97. Artificial neural network based on Quick propagation algorithm with topology 4-10-1 gave the best performance in this study.

  16. Infrared variation reduction by simultaneous background suppression and target contrast enhancement for deep convolutional neural network-based automatic target recognition

    Science.gov (United States)

    Kim, Sungho

    2017-06-01

    Automatic target recognition (ATR) is a traditionally challenging problem in military applications because of the wide range of infrared (IR) image variations and the limited number of training images. IR variations are caused by various three-dimensional target poses, noncooperative weather conditions (fog and rain), and difficult target acquisition environments. Recently, deep convolutional neural network-based approaches for RGB images (RGB-CNN) showed breakthrough performance in computer vision problems, such as object detection and classification. The direct use of RGB-CNN to the IR ATR problem fails to work because of the IR database problems (limited database size and IR image variations). An IR variation-reduced deep CNN (IVR-CNN) to cope with the problems is presented. The problem of limited IR database size is solved by a commercial thermal simulator (OKTAL-SE). The second problem of IR variations is mitigated by the proposed shifted ramp function-based intensity transformation. This can suppress the background and enhance the target contrast simultaneously. The experimental results on the synthesized IR images generated by the thermal simulator (OKTAL-SE) validated the feasibility of IVR-CNN for military ATR applications.

  17. Prediction of Student's Mood during an Online Test Using Formula-based and Neural Network-based Method

    Science.gov (United States)

    Moridis, Christos N.; Economides, Anastasios A.

    2009-01-01

    Building computerized mechanisms that will accurately, immediately and continually recognize a learner's affective state and activate an appropriate response based on integrated pedagogical models is becoming one of the main aims of artificial intelligence in education. The goal of this paper is to demonstrate how the various kinds of evidence…

  18. neural network based model o work based model of an industrial oil

    African Journals Online (AJOL)

    eobe

    Reference Suite Chicago: Encyclopædia Britannica. [28]. Gumpy J. M. and Jiya J. D. “Identification of an. Industrial Oil-Fired Power Plant Boiler System”,. Journal of Engineering Technology-JET, Vol. 4, No. 1, 2009, pp 56. [29]. Savannah Sugar Company Numan Boiler Plant. Logbooks and Documentation. Accessed Nov.,.

  19. Neural Networks for Modeling and Control of Particle Accelerators

    CERN Document Server

    Edelen, A.L.; Chase, B.E.; Edstrom, D.; Milton, S.V.; Stabile, P.

    2016-01-01

    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  20. A neural network based 3D/3D image registration quality evaluator for the head-and-neck patient setup in the absence of a ground truth.

    Science.gov (United States)

    Wu, Jian; Murphy, Martin J

    2010-11-01

    To develop a neural network based registration quality evaluator (RQE) that can identify unsuccessful 3D/3D image registrations for the head-and-neck patient setup in radiotherapy. A two-layer feed-forward neural network was used as a RQE to classify 3D/3D rigid registration solutions as successful or unsuccessful based on the features of the similarity surface near the point-of-solution. The supervised training and test data sets were generated by rigidly registering daily cone-beam CTs to the treatment planning fan-beam CTs of six patients with head-and-neck tumors. Two different similarity metrics (mutual information and mean-squared intensity difference) and two different types of image content (entire image versus bony landmarks) were used. The best solution for each registration pair was selected from 50 optimizing attempts that differed only by the initial transformation parameters. The distance from each individual solution to the best solution in the normalized parametrical space was compared to a user-defined error threshold to determine whether that solution was successful or not. The supervised training was then used to train the RQE. The performance of the RQE was evaluated using the test data set that consisted of registration results that were not used in training. The RQE constructed using the mutual information had very good performance when tested using the test data sets, yielding the sensitivity, the specificity, the positive predictive value, and the negative predictive value in the ranges of 0.960-1.000, 0.993-1.000, 0.983-1.000, and 0.909-1.000, respectively. Adding a RQE into a conventional 3D/3D image registration system incurs only about 10%-20% increase of the overall processing time. The authors' patient study has demonstrated very good performance of the proposed RQE when used with the mutual information in identifying unsuccessful 3D/3D registrations for daily patient setup. The classifier had very good generality and required only to

  1. Sequential neural models with stochastic layers

    DEFF Research Database (Denmark)

    Fraccaro, Marco; Sønderby, Søren Kaae; Paquet, Ulrich

    2016-01-01

    How can we efficiently propagate uncertainty in a latent state representation with recurrent neural networks? This paper introduces stochastic recurrent neural networks which glue a deterministic recurrent neural network and a state space model together to form a stochastic and sequential neural ...... the uncertainty in a latent path, like a state space model, we improve the state of the art results on the Blizzard and TIMIT speech modeling data sets by a large margin, while achieving comparable performances to competing methods on polyphonic music modeling....

  2. Efficient Monte Carlo sampling of inverse problems using a neural network-based forward—applied to GPR crosshole traveltime inversion

    Science.gov (United States)

    Hansen, T. M.; Cordua, K. S.

    2017-12-01

    Probabilistically formulated inverse problems can be solved using Monte Carlo-based sampling methods. In principle, both advanced prior information, based on for example, complex geostatistical models and non-linear forward models can be considered using such methods. However, Monte Carlo methods may be associated with huge computational costs that, in practice, limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical forward response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival traveltime inversion of crosshole ground penetrating radar data. An accurate forward model, based on 2-D full-waveform modeling followed by automatic traveltime picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the accurate and computationally expensive forward model, and also considerably faster and more accurate (i.e. with better resolution), than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of non-linear and non-Gaussian inverse problems that have to be solved using Monte Carlo sampling techniques.

  3. Analysis of Pull-In Instability of Geometrically Nonlinear Microbeam Using Radial Basis Artificial Neural Network Based on Couple Stress Theory

    Directory of Open Access Journals (Sweden)

    Mohammad Heidari

    2014-01-01

    Full Text Available The static pull-in instability of beam-type microelectromechanical systems (MEMS is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS.

  4. Analysis of pull-in instability of geometrically nonlinear microbeam using radial basis artificial neural network based on couple stress theory.

    Science.gov (United States)

    Heidari, Mohammad; Heidari, Ali; Homaei, Hadi

    2014-01-01

    The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS.

  5. Stability of a neural predictive controller scheme on a neural model

    DEFF Research Database (Denmark)

    Luther, Jim Benjamin; Sørensen, Paul Haase

    2009-01-01

    In previous works presenting various forms of neural-network-based predictive controllers, the main emphasis has been on the implementation aspects, i.e. the development of a robust optimization algorithm for the controller, which will be able to perform in real time. However, the stability issue....... The resulting controller is tested on a nonlinear pneumatic servo system....

  6. Back-propagation neural network-based approximate analysis of true stress-strain behaviors of high-strength metallic material

    Energy Technology Data Exchange (ETDEWEB)

    Doh, Jaeh Yeok; Lee, Jong Soo [Yonsei University, Seoul (Korea, Republic of); Lee, Seung Uk [Gyeongbuk Hybrid Technology Institute, Yeongcheon (Korea, Republic of)

    2016-03-15

    In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material's behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity's effect on the material property through a first-order sensitivity analysis.

  7. An Artificial Neural Network Based Analysis of Factors Controlling Particle Size in a Virgin Coconut Oil-Based Nanoemulsion System Containing Copper Peptide.

    Directory of Open Access Journals (Sweden)

    Shazwani Samson

    Full Text Available A predictive model of a virgin coconut oil (VCO nanoemulsion system for the topical delivery of copper peptide (an anti-aging compound was developed using an artificial neural network (ANN to investigate the factors that influence particle size. Four independent variables including the amount of VCO, Tween 80: Pluronic F68 (T80:PF68, xanthan gum and water were the inputs whereas particle size was taken as the response for the trained network. Genetic algorithms (GA were used to model the data which were divided into training sets, testing sets and validation sets. The model obtained indicated the high quality performance of the neural network and its capability to identify the critical composition factors for the VCO nanoemulsion. The main factor controlling the particle size was found out to be xanthan gum (28.56% followed by T80:PF68 (26.9%, VCO (22.8% and water (21.74%. The formulation containing copper peptide was then successfully prepared using optimum conditions and particle sizes of 120.7 nm were obtained. The final formulation exhibited a zeta potential lower than -25 mV and showed good physical stability towards centrifugation test, freeze-thaw cycle test and storage at temperature 25°C and 45°C.

  8. The General Regression Neural Network Based on the Fruit Fly Optimization Algorithm and the Data Inconsistency Rate for Transmission Line Icing Prediction

    Directory of Open Access Journals (Sweden)

    Dongxiao Niu

    2017-12-01

    Full Text Available Accurate and stable prediction of icing thickness on transmission lines is of great significance for ensuring the safe operation of the power grid. In order to improve the accuracy and stability of icing prediction, an innovative prediction model based on the generalized regression neural network (GRNN and the fruit fly optimization algorithm (FOA is proposed. Firstly, a feature selection method based on the data inconsistency rate (IR is adopted to select the optimal feature, which aims to reduce redundant input vectors. Then, the fruit FOA is utilized for optimization of smoothing factor for the GRNN. Lastly, the icing forecasting method FOA-IR-GRNN is established. Two cases in different locations and different months are selected to validate the proposed model. The results indicate that the new hybrid FOA-IR-GRNN model presents better accuracy, robustness, and generality in icing forecasting.

  9. Spiking modular neural networks: A neural network modeling approach for hydrological processes

    National Research Council Canada - National Science Library

    Kamban Parasuraman; Amin Elshorbagy; Sean K. Carey

    2006-01-01

    .... In this study, a novel neural network model called the spiking modular neural networks (SMNNs) is proposed. An SMNN consists of an input layer, a spiking layer, and an associator neural network layer...

  10. Regional Computation of TEC Using a Neural Network Model

    Science.gov (United States)

    Leandro, R. F.; Santos, M. C.

    2004-05-01

    One of the main sources of errors of GPS measurements is the ionosphere refraction. As a dispersive medium, the ionosphere allow its influence to be computed by using dual frequency receivers. In the case of single frequency receivers it is necessary to use models that tell us how big the ionospheric refraction is. The GPS broadcast message carries parameters of this model, namely Klobuchar model. Dual frequency receivers allow to estimate the influence of ionosphere in the GPS signal by the computation of TEC (Total Electron Content) values, that have a direct relationship with the magnitude of the delay caused by the ionosphere. One alternative is to create a regional model based on a network of dual frequency receivers. In this case, the regional behaviour of ionosphere is modelled in a way that it is possible to estimate the TEC values into or near this region. This regional model can be based on polynomials, for example. In this work we will present a Neural Network-based model to the regional computation of TEC. The advantage of using a Neural Network is that it is not necessary to have a great knowledge on the behaviour of the modelled surface due to the adaptation capability of neural networks training process, that is an iterative adjust of the synaptic weights in function of residuals, using the training parameters. Therefore, the previous knowledge of the modelled phenomena is important to define what kind of and how many parameters are needed to train the neural network so that reasonable results are obtained from the estimations. We have used data from the GPS tracking network in Brazil, and we have tested the accuracy of the new model to all locations where there is a station, accessing the efficiency of the model everywhere. TEC values were computed for each station of the network. After that the training parameters data set for the test station was formed, with the TEC values of all others (all stations, except the test one). The Neural Network was

  11. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    Science.gov (United States)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  12. Neural model of gene regulatory network: a survey on supportive meta-heuristics.

    Science.gov (United States)

    Biswas, Surama; Acharyya, Sriyankar

    2016-06-01

    Gene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics. Predominant use of meta-heuristic algorithms in training neural models has proved its excellence. Considering these facts, this paper is organized to survey neural modelling schemes of GRN and the efficacy of meta-heuristic algorithms towards parameter learning (i.e. weighting connections) within the model. This survey paper renders two different structure-related approaches to infer GRN which are global structure approach and substructure approach. It also describes two neural modelling schemes, such as artificial neural network/recurrent neural network based modelling and neuro-fuzzy modelling. The meta-heuristic algorithms applied so far to learn the structure and parameters of neutrally modelled GRN have been reviewed here.

  13. [Robustness analysis of adaptive neural network model based on spike timing-dependent plasticity].

    Science.gov (United States)

    Chen, Yunzhi; Xu, Guizhi; Zhou, Qian; Guo, Miaomiao; Guo, Lei; Wan, Xiaowei

    2015-02-01

    To explore the self-organization robustness of the biological neural network, and thus to provide new ideas and methods for the electromagnetic bionic protection, we studied both the information transmission mechanism of neural network and spike timing-dependent plasticity (STDP) mechanism, and then investigated the relationship between synaptic plastic and adaptive characteristic of biology. Then a feedforward neural network with the Izhikevich model and the STDP mechanism was constructed, and the adaptive robust capacity of the network was analyzed. Simulation results showed that the neural network based on STDP mechanism had good rubustness capacity, and this characteristics is closely related to the STDP mechanisms. Based on this simulation work, the cell circuit with neurons and synaptic circuit which can simulate the information processing mechanisms of biological nervous system will be further built, then the electronic circuits with adaptive robustness will be designed based on the cell circuit.

  14. Modeling Markov switching ARMA-GARCH neural networks models and an application to forecasting stock returns.

    Science.gov (United States)

    Bildirici, Melike; Ersin, Özgür

    2014-01-01

    The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray's MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray's MS-GARCH model. Therefore, the models are promising for various economic applications.

  15. Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns

    Directory of Open Access Journals (Sweden)

    Melike Bildirici

    2014-01-01

    Full Text Available The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100. Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray’s MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray’s MS-GARCH model. Therefore, the models are promising for various economic applications.

  16. Model-Following Controller Based on Neural Network for Variable Displacement Pump

    Science.gov (United States)

    Chu, Ming-Hui; Kang, Yuan; Chang, Yih-Fong; Liu, Yuan-Liang; Chang, Chuan-Wei

    The variable displacement axial piston pump (VDAPP) is inherently nonlinear, time variant and subjected to load disturbance. The controls of flow and pressure of VDAPP are achieved by changing the swashplate angle. The swashplate actuators are controlled by an electro-hydraulic proportional valve (EHPV). It is reasonable for swashplate angle of a VDAPP to employ neural network based on adaptive control. In this study, the nonlinear model of the VDAPP with a three-way electro-hydraulic proportional valve is proposed, and a neural network model-following controller is designed to control the swashplate swivel angle. The time response for the swashplate angle is analyzed by simulation and experiment, and a favorable model-following characteristic is achieved. The proposed neural controller can conduct nonlinear control in VDAPP, enhance adaptability and robustness, and improve the performance of the control system.

  17. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation

    Directory of Open Access Journals (Sweden)

    Ramin Jaberi

    2017-12-01

    Full Text Available Purpose : Intra-fractional organs at risk (OARs deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT. The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Material and methods : Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. Results : A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in ‘organs-applicators’, while maintaining target dose at the original level. Conclusions : There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients’ plans to be able to serve as a clinical tool.

  18. Experimental and artificial neural network based prediction of performance and emission characteristics of DI diesel engine using Calophyllum inophyllum methyl ester at different nozzle opening pressure

    Science.gov (United States)

    Vairamuthu, G.; Thangagiri, B.; Sundarapandian, S.

    2017-07-01

    The present work investigates the effect of varying Nozzle Opening Pressures (NOP) from 220 bar to 250 bar on performance, emissions and combustion characteristics of Calophyllum inophyllum Methyl Ester (CIME) in a constant speed, Direct Injection (DI) diesel engine using Artificial Neural Network (ANN) approach. An ANN model has been developed to predict a correlation between specific fuel consumption (SFC), brake thermal efficiency (BTE), exhaust gas temperature (EGT), Unburnt hydrocarbon (UBHC), CO, CO2, NOx and smoke density using load, blend (B0 and B100) and NOP as input data. A standard Back-Propagation Algorithm (BPA) for the engine is used in this model. A Multi Layer Perceptron network (MLP) is used for nonlinear mapping between the input and the output parameters. An ANN model can predict the performance of diesel engine and the exhaust emissions with correlation coefficient (R2) in the range of 0.98-1. Mean Relative Errors (MRE) values are in the range of 0.46-5.8%, while the Mean Square Errors (MSE) are found to be very low. It is evident that the ANN models are reliable tools for the prediction of DI diesel engine performance and emissions. The test results show that the optimum NOP is 250 bar with B100.

  19. Artificial Neural Network-Based Constitutive Relationship of Inconel 718 Superalloy Construction and Its Application in Accuracy Improvement of Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Junya Lv

    2017-01-01

    Full Text Available The application of accurate constitutive relationship in finite element simulation would significantly contribute to accurate simulation results, which play critical roles in process design and optimization. In this investigation, the true stress-strain data of an Inconel 718 superalloy were obtained from a series of isothermal compression tests conducted in a wide temperature range of 1153–1353 K and strain rate range of 0.01–10 s−1 on a Gleeble 3500 testing machine (DSI, St. Paul, DE, USA. Then the constitutive relationship was modeled by an optimally-constructed and well-trained back-propagation artificial neural network (ANN. The evaluation of the ANN model revealed that it has admirable performance in characterizing and predicting the flow behaviors of Inconel 718 superalloy. Consequently, the developed ANN model was used to predict abundant stress-strain data beyond the limited experimental conditions and construct the continuous mapping relationship for temperature, strain rate, strain and stress. Finally, the constructed ANN was implanted in a finite element solver though the interface of “URPFLO” subroutine to simulate the isothermal compression tests. The results show that the integration of finite element method with ANN model can significantly promote the accuracy improvement of numerical simulations for hot forming processes.

  20. Experimental and artificial neural network based prediction of performance and emission characteristics of DI diesel engine using Calophyllum inophyllum methyl ester at different nozzle opening pressure

    Science.gov (United States)

    Vairamuthu, G.; Thangagiri, B.; Sundarapandian, S.

    2018-01-01

    The present work investigates the effect of varying Nozzle Opening Pressures (NOP) from 220 bar to 250 bar on performance, emissions and combustion characteristics of Calophyllum inophyllum Methyl Ester (CIME) in a constant speed, Direct Injection (DI) diesel engine using Artificial Neural Network (ANN) approach. An ANN model has been developed to predict a correlation between specific fuel consumption (SFC), brake thermal efficiency (BTE), exhaust gas temperature (EGT), Unburnt hydrocarbon (UBHC), CO, CO2, NOx and smoke density using load, blend (B0 and B100) and NOP as input data. A standard Back-Propagation Algorithm (BPA) for the engine is used in this model. A Multi Layer Perceptron network (MLP) is used for nonlinear mapping between the input and the output parameters. An ANN model can predict the performance of diesel engine and the exhaust emissions with correlation coefficient (R2) in the range of 0.98-1. Mean Relative Errors (MRE) values are in the range of 0.46-5.8%, while the Mean Square Errors (MSE) are found to be very low. It is evident that the ANN models are reliable tools for the prediction of DI diesel engine performance and emissions. The test results show that the optimum NOP is 250 bar with B100.

  1. Traffic Flow Prediction Model for Large-Scale Road Network Based on Cloud Computing

    Directory of Open Access Journals (Sweden)

    Zhaosheng Yang

    2014-01-01

    Full Text Available To increase the efficiency and precision of large-scale road network traffic flow prediction, a genetic algorithm-support vector machine (GA-SVM model based on cloud computing is proposed in this paper, which is based on the analysis of the characteristics and defects of genetic algorithm and support vector machine. In cloud computing environment, firstly, SVM parameters are optimized by the parallel genetic algorithm, and then this optimized parallel SVM model is used to predict traffic flow. On the basis of the traffic flow data of Haizhu District in Guangzhou City, the proposed model was verified and compared with the serial GA-SVM model and parallel GA-SVM model based on MPI (message passing interface. The results demonstrate that the parallel GA-SVM model based on cloud computing has higher prediction accuracy, shorter running time, and higher speedup.

  2. A dynamic programming approach for quickly estimating large network-based MEV models

    DEFF Research Database (Denmark)

    Mai, Tien; Frejinger, Emma; Fosgerau, Mogens

    2017-01-01

    We propose a way to estimate a family of static Multivariate Extreme Value (MEV) models with large choice sets in short computational time. The resulting model is also straightforward and fast to use for prediction. Following Daly and Bierlaire (2006), the correlation structure is defined by a ro...... to converge (4.3 h on an Intel(R) 3.2 GHz machine using a non-parallelized code). We also show that our approach allows to estimate a cross-nested logit model of 111 nests with a real data set of more than 100,000 observations in 14 h.......We propose a way to estimate a family of static Multivariate Extreme Value (MEV) models with large choice sets in short computational time. The resulting model is also straightforward and fast to use for prediction. Following Daly and Bierlaire (2006), the correlation structure is defined...... by a rooted, directed graph where each node without successor is an alternative. We formulate a family of MEV models as dynamic discrete choice models on graphs of correlation structures and show that the dynamic models are consistent with MEV theory and generalize the network MEV model (Daly and Bierlaire...

  3. Optimal Decision Making in Neural Inhibition Models

    Science.gov (United States)

    van Ravenzwaaij, Don; van der Maas, Han L. J.; Wagenmakers, Eric-Jan

    2012-01-01

    In their influential "Psychological Review" article, Bogacz, Brown, Moehlis, Holmes, and Cohen (2006) discussed optimal decision making as accomplished by the drift diffusion model (DDM). The authors showed that neural inhibition models, such as the leaky competing accumulator model (LCA) and the feedforward inhibition model (FFI), can mimic the…

  4. Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.

    Science.gov (United States)

    Chen, Yangzhou; Guo, Yuqi; Wang, Ying

    2017-03-29

    In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.

  5. Artificial neural network-based exploration of gene-nutrient interactions in folate and xenobiotic metabolic pathways that modulate susceptibility to breast cancer.

    Science.gov (United States)

    Naushad, Shaik Mohammad; Ramaiah, M Janaki; Pavithrakumari, Manickam; Jayapriya, Jaganathan; Hussain, Tajamul; Alrokayan, Salman A; Gottumukkala, Suryanarayana Raju; Digumarti, Raghunadharao; Kutala, Vijay Kumar

    2016-04-15

    In the current study, an artificial neural network (ANN)-based breast cancer prediction model was developed from the data of folate and xenobiotic pathway genetic polymorphisms along with the nutritional and demographic variables to investigate how micronutrients modulate susceptibility to breast cancer. The developed ANN model explained 94.2% variability in breast cancer prediction. Fixed effect models of folate (400 μg/day) and B12 (6 μg/day) showed 33.3% and 11.3% risk reduction, respectively. Multifactor dimensionality reduction analysis showed the following interactions in responders to folate: RFC1 G80A × MTHFR C677T (primary), COMT H108L × CYP1A1 m2 (secondary), MTR A2756G (tertiary). The interactions among responders to B12 were RFC1G80A × cSHMT C1420T and CYP1A1 m2 × CYP1A1 m4. ANN simulations revealed that increased folate might restore ER and PR expression and reduce the promoter CpG island methylation of extra cellular superoxide dismutase and BRCA1. Dietary intake of folate appears to confer protection against breast cancer through its modulating effects on ER and PR expression and methylation of EC-SOD and BRCA1. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Fault Identification in Distributed Sensor Networks Based on Universal Probabilistic Modeling.

    Science.gov (United States)

    Ntalampiras, Stavros

    2015-09-01

    This paper proposes a holistic modeling scheme for fault identification in distributed sensor networks. The proposed scheme is based on modeling the relationship between two datastreams by means of a hidden Markov model (HMM) trained on the parameters of linear time-invariant dynamic systems, which estimate the specific relationship over consecutive time windows. Every system state, including the nominal one, is represented by an HMM and the novel data are categorized according to the model producing the highest likelihood. The system is able to understand whether the novel data belong to the fault dictionary, are fault-free, or represent a new fault type. We extensively evaluated the discrimination capabilities of the proposed approach and contrasted it with a multilayer perceptron using data coming from the Barcelona water distribution network. Nine system states are present in the dataset and the recognition rates are provided in the confusion matrix form.

  7. A Network-Based Data Envelope Analysis Model in a Dynamic Balanced Score Card

    Directory of Open Access Journals (Sweden)

    Mojtaba Akbarian

    2015-01-01

    Full Text Available Performance assessment during the time and along with strategies is the most important requirements of top managers. To assess the performance, a balanced score card (BSC along with strategic goals and a data envelopment analysis (DEA are used as powerful qualitative and quantitative tools, respectively. By integrating these two models, their strengths are used and their weaknesses are removed. In this paper, an integrated framework of the BSC and DEA models is proposed for measuring the efficiency during the time and along with strategies based on the time delay of the lag key performance indicators (KPIs of the BSC model. The causal relationships during the time among perspectives of the BSC model are drawn as dynamic BSC at first. Then, after identifying the network-DEA structure, a new objective function for measuring the efficiency of nine subsidiary refineries of the National Iranian Oil Refining and Distribution Company (NIORDC during the time and along with strategies is developed.

  8. A network-based meta-population approach to model Rift Valley fever epidemics.

    Science.gov (United States)

    Xue, Ling; Scott, H Morgan; Cohnstaedt, Lee W; Scoglio, Caterina

    2012-08-07

    Rift Valley fever virus (RVFV) has been expanding its geographical distribution with important implications for both human and animal health. The emergence of Rift Valley fever (RVF) in the Middle East, and its continuing presence in many areas of Africa, has negatively impacted both medical and veterinary infrastructures and human morbidity, mortality, and economic endpoints. Furthermore, worldwide attention should be directed towards the broader infection dynamics of RVFV, because suitable host, vector and environmental conditions for additional epidemics likely exist on other continents; including Asia, Europe and the Americas. We propose a new compartmentalized model of RVF and the related ordinary differential equations to assess disease spread in both time and space; with the latter driven as a function of contact networks. Humans and livestock hosts and two species of vector mosquitoes are included in the model. The model is based on weighted contact networks, where nodes of the networks represent geographical regions and the weights represent the level of contact between regional pairings for each set of species. The inclusion of human, animal, and vector movements among regions is new to RVF modeling. The movement of the infected individuals is not only treated as a possibility, but also an actuality that can be incorporated into the model. We have tested, calibrated, and evaluated the model using data from the recent 2010 RVF outbreak in South Africa as a case study; mapping the epidemic spread within and among three South African provinces. An extensive set of simulation results shows the potential of the proposed approach for accurately modeling the RVF spreading process in additional regions of the world. The benefits of the proposed model are twofold: not only can the model differentiate the maximum number of infected individuals among different provinces, but also it can reproduce the different starting times of the outbreak in multiple locations

  9. Stochastic dynamical model of a growing citation network based on a self-exciting point process.

    Science.gov (United States)

    Golosovsky, Michael; Solomon, Sorin

    2012-08-31

    We put under experimental scrutiny the preferential attachment model that is commonly accepted as a generating mechanism of the scale-free complex networks. To this end we chose a citation network of physics papers and traced the citation history of 40,195 papers published in one year. Contrary to common belief, we find that the citation dynamics of the individual papers follows the superlinear preferential attachment, with the exponent α=1.25-1.3. Moreover, we show that the citation process cannot be described as a memoryless Markov chain since there is a substantial correlation between the present and recent citation rates of a paper. Based on our findings we construct a stochastic growth model of the citation network, perform numerical simulations based on this model and achieve an excellent agreement with the measured citation distributions.

  10. Neural networks as models of psychopathology.

    Science.gov (United States)

    Aakerlund, L; Hemmingsen, R

    1998-04-01

    Neural network modeling is situated between neurobiology, cognitive science, and neuropsychology. The structural and functional resemblance with biological computation has made artificial neural networks (ANN) useful for exploring the relationship between neurobiology and computational performance, i.e., cognition and behavior. This review provides an introduction to the theory of ANN and how they have linked theories from neurobiology and psychopathology in schizophrenia, affective disorders, and dementia.

  11. Trust recovery model of Ad Hoc network based on identity authentication scheme

    Science.gov (United States)

    Liu, Jie; Huan, Shuiyuan

    2017-05-01

    Mobile Ad Hoc network trust model is widely used to solve mobile Ad Hoc network security issues. Aiming at the problem of reducing the network availability caused by the processing of malicious nodes and selfish nodes in mobile Ad Hoc network routing based on trust model, an authentication mechanism based on identity authentication mobile Ad Hoc network is proposed, which uses identity authentication to identify malicious nodes, And trust the recovery of selfish nodes in order to achieve the purpose of reducing network congestion and improving network quality. The simulation results show that the implementation of the mechanism can effectively improve the network availability and security.

  12. Modeling the self-similarity in complex networks based on Coulomb's law

    Science.gov (United States)

    Zhang, Haixin; Wei, Daijun; Hu, Yong; Lan, Xin; Deng, Yong

    2016-06-01

    Recently, self-similarity of complex networks have attracted much attention. Fractal dimension of complex network is an open issue. Hub repulsion plays an important role in fractal topologies. This paper models the repulsion among the nodes in the complex networks in calculation of the fractal dimension of the networks. Coulomb's law is adopted to represent the repulse between two nodes of the network quantitatively. A new method to calculate the fractal dimension of complex networks is proposed. The Sierpinski triangle network and some real complex networks are investigated. The results are illustrated to show that the new model of self-similarity of complex networks is reasonable and efficient.

  13. Neural network approaches for noisy language modeling.

    Science.gov (United States)

    Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid

    2013-11-01

    Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.

  14. Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Xiaofei Yan

    2016-08-01

    Full Text Available Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN-based multi-sensor system and artificial neural network (ANN. Sensors (CO, CO2, smoke, air temperature and relative humidity were integrated into one node of WSN. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated and flaming-dominated combustion conditions. The results showed that the five sensors have reasonable responses to artificial forest fire. To reduce cost of the nodes, smoke, CO2 and temperature sensors were chiefly selected through correlation analysis. For achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO2; smoke and temperature; smoke, CO2 and temperature. The model test results showed that multi-sensor input yielded higher predicting accuracy (≥82.5% than single-sensor input (50.9%–92.5%. Based on these, it is possible to reduce the cost with a relatively high fire identification rate and potential application of the system can be tested in future under real forest condition.

  15. Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network.

    Science.gov (United States)

    Yan, Xiaofei; Cheng, Hong; Zhao, Yandong; Yu, Wenhua; Huang, Huan; Zheng, Xiaoliang

    2016-08-04

    Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN)-based multi-sensor system and artificial neural network (ANN). Sensors (CO, CO₂, smoke, air temperature and relative humidity) were integrated into one node of WSN. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated and flaming-dominated combustion conditions. The results showed that the five sensors have reasonable responses to artificial forest fire. To reduce cost of the nodes, smoke, CO₂ and temperature sensors were chiefly selected through correlation analysis. For achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO₂; smoke and temperature; smoke, CO₂ and temperature. The model test results showed that multi-sensor input yielded higher predicting accuracy (≥82.5%) than single-sensor input (50.9%-92.5%). Based on these, it is possible to reduce the cost with a relatively high fire identification rate and potential application of the system can be tested in future under real forest condition.

  16. Network based early warning indicators of vegetation changes in a land-atmosphere model

    NARCIS (Netherlands)

    Yin, Z.; Dekker, S.C.; van den Hurk, B.J.J.M.; Dijkstra, H.A.

    2016-01-01

    Numerous model studies demonstrate that ecosystems might not shift smoothly with a gradual change in resource concentration. At specific points, vegetation can suddenly shift from one stable state to another. To predict such undesirable shifts, statistical indicators are proposed for early warning

  17. Risk analysis of urban gas pipeline network based on improved bow-tie model

    Science.gov (United States)

    Hao, M. J.; You, Q. J.; Yue, Z.

    2017-11-01

    Gas pipeline network is a major hazard source in urban areas. In the event of an accident, there could be grave consequences. In order to understand more clearly the causes and consequences of gas pipeline network accidents, and to develop prevention and mitigation measures, the author puts forward the application of improved bow-tie model to analyze risks of urban gas pipeline network. The improved bow-tie model analyzes accident causes from four aspects: human, materials, environment and management; it also analyzes the consequences from four aspects: casualty, property loss, environment and society. Then it quantifies the causes and consequences. Risk identification, risk analysis, risk assessment, risk control, and risk management will be clearly shown in the model figures. Then it can suggest prevention and mitigation measures accordingly to help reduce accident rate of gas pipeline network. The results show that the whole process of an accident can be visually investigated using the bow-tie model. It can also provide reasons for and predict consequences of an unfortunate event. It is of great significance in order to analyze leakage failure of gas pipeline network.

  18. How the ownership structures cause epidemics in financial markets: A network-based simulation model

    Science.gov (United States)

    Dastkhan, Hossein; Gharneh, Naser Shams

    2018-02-01

    Analysis of systemic risks and contagions is one of the main challenges of policy makers and researchers in the recent years. Network theory is introduced as a main approach in the modeling and simulation of financial and economic systems. In this paper, a simulation model is introduced based on the ownership network to analyze the contagion and systemic risk events. For this purpose, different network structures with different values for parameters are considered to investigate the stability of the financial system in the presence of different kinds of idiosyncratic and aggregate shocks. The considered network structures include Erdos-Renyi, core-periphery, segregated and power-law networks. Moreover, the results of the proposed model are also calculated for a real ownership network. The results show that the network structure has a significant effect on the probability and the extent of contagion in the financial systems. For each network structure, various values for the parameters results in remarkable differences in the systemic risk measures. The results of real case show that the proposed model is appropriate in the analysis of systemic risk and contagion in financial markets, identification of systemically important firms and estimation of market loss when the initial failures occur. This paper suggests a new direction in the modeling of contagion in the financial markets, in particular that the effects of new kinds of financial exposure are clarified. This paper's idea and analytical results may also be useful for the financial policy makers, portfolio managers and the firms to conduct their investment in the right direction.

  19. Global dynamics of a network-based SIQRS epidemic model with demographics and vaccination

    Science.gov (United States)

    Huang, Shouying; Chen, Fengde; Chen, Lijuan

    2017-02-01

    This paper investigates a new SIQRS epidemic model with demographics and vaccination on complex heterogeneous networks. We analytically derive the basic reproduction number R0, which determines not only the existence of endemic equilibrium but also the global dynamics of the model. The permanence of the disease and the globally asymptotical stability of disease-free equilibrium are proved in detail. By using a monotone iterative technique, we show that the unique endemic equilibrium is globally attractive under certain conditions. Our results really improve and enrich the results in Li et al (2014) [14]. Interestingly, the basic reproduction number R0 bears no relation to the degree-dependent birth, but our simulations indicate that the degree-dependent birth does affect the epidemic dynamics. Furthermore, we find that quarantine plays a more active role than vaccination in controlling the disease.

  20. Bayesian Network Based Fault Prognosis via Bond Graph Modeling of High-Speed Railway Traction Device

    Directory of Open Access Journals (Sweden)

    Yunkai Wu

    2015-01-01

    component-level faults accurately for a high-speed railway traction system, a fault prognosis approach via Bayesian network and bond graph modeling techniques is proposed. The inherent structure of a railway traction system is represented by bond graph model, based on which a multilayer Bayesian network is developed for fault propagation analysis and fault prediction. For complete and incomplete data sets, two different parameter learning algorithms such as Bayesian estimation and expectation maximization (EM algorithm are adopted to determine the conditional probability table of the Bayesian network. The proposed prognosis approach using Pearl’s polytree propagation algorithm for joint probability reasoning can predict the failure probabilities of leaf nodes based on the current status of root nodes. Verification results in a high-speed railway traction simulation system can demonstrate the effectiveness of the proposed approach.

  1. Modeling Pedestrian’s Conformity Violation Behavior: A Complex Network Based Approach

    Directory of Open Access Journals (Sweden)

    Zhuping Zhou

    2014-01-01

    Full Text Available Pedestrian injuries and fatalities present a problem all over the world. Pedestrian conformity violation behaviors, which lead to many pedestrian crashes, are common phenomena at the signalized intersections in China. The concepts and metrics of complex networks are applied to analyze the structural characteristics and evolution rules of pedestrian network about the conformity violation crossings. First, a network of pedestrians crossing the street is established, and the network’s degree distributions are analyzed. Then, by using the basic idea of SI model, a spreading model of pedestrian illegal crossing behavior is proposed. Finally, through simulation analysis, pedestrian’s illegal crossing behavior trends are obtained in different network structures and different spreading rates. Some conclusions are drawn: as the waiting time increases, more pedestrians will join in the violation crossing once a pedestrian crosses on red firstly. And pedestrian’s conformity violation behavior will increase as the spreading rate increases.

  2. On Modeling Information Spreading in Bacterial Nano-Networks Based on Plasmid Conjugation.

    Science.gov (United States)

    Castorina, Gaetano; Galluccio, Laura; Palazzo, Sergio

    2016-09-01

    In the last years, nano-communications have attracted much attention as a newly promising research field. In particular, molecular communications, which exploit molecular nodes, are a powerful tool to implement communication functionalities in environments where the use of electromagnetic waves becomes critical, e.g., in the human body. In molecular communications, molecules such as proteins, DNA and RNA sequences are used to carry information. To this aim a novel approach relies on the use of genetically modified bacteria to transport enhanced DNA strands, called plasmids, where information can be encoded. Information transfer is thus based on bacteria motility, i.e., self-propelled motion, which under appropriate circumstances is exhibited by certain bacteria. It has been observed that bacteria motility presents many similarities with opportunistic forwarding. Currently the few studies on opportunistic communications among bacteria are based on simulations only. In this paper we propose an analytical model to characterize information spreading in bacterial nano-networks. To this purpose, an epidemic approach, similar to those used to model Delay Tolerant Networks (DTNs), is employed. We also derive two mathematical models which slightly differ. The first describes bacterial nano-networks where a single plasmid is disseminated according to an epidemic approach; the second, takes into account more complex mechanisms where multiple plasmids are disseminated as in realistic bacterial nano-networks. Numerical results being obtained are finally shown and discussed.

  3. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Jisheng Zhang

    2015-06-01

    Full Text Available It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs’ route planning for small and medium-scale networks.

  4. Resource Allocation Optimization Model of Collaborative Logistics Network Based on Bilevel Programming

    Directory of Open Access Journals (Sweden)

    Xiao-feng Xu

    2017-01-01

    Full Text Available Collaborative logistics network resource allocation can effectively meet the needs of customers. It can realize the overall benefit maximization of the logistics network and ensure that collaborative logistics network runs orderly at the time of creating value. Therefore, this article is based on the relationship of collaborative logistics network supplier, the transit warehouse, and sellers, and we consider the uncertainty of time to establish a bilevel programming model with random constraints and propose a genetic simulated annealing hybrid intelligent algorithm to solve it. Numerical example shows that the method has stronger robustness and convergence; it can achieve collaborative logistics network resource allocation rationalization and optimization.

  5. Risk Evaluation of Railway Coal Transportation Network Based on Multi Level Grey Evaluation Model

    Science.gov (United States)

    Niu, Wei; Wang, Xifu

    2018-01-01

    The railway transport mode is currently the most important way of coal transportation, and now China’s railway coal transportation network has become increasingly perfect, but there is still insufficient capacity, some lines close to saturation and other issues. In this paper, the theory and method of risk assessment, analytic hierarchy process and multi-level gray evaluation model are applied to the risk evaluation of coal railway transportation network in China. Based on the example analysis of Shanxi railway coal transportation network, to improve the internal structure and the competitiveness of the market.

  6. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.

  7. PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    R. Hadapiningradja Kusumodestoni

    2015-11-01

    Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.

  8. Automatic Estimation of Volumetric Breast Density Using Artificial Neural Network-Based Calibration of Full-Field Digital Mammography: Feasibility on Japanese Women With and Without Breast Cancer.

    Science.gov (United States)

    Wang, Jeff; Kato, Fumi; Yamashita, Hiroko; Baba, Motoi; Cui, Yi; Li, Ruijiang; Oyama-Manabe, Noriko; Shirato, Hiroki

    2017-04-01

    Breast cancer is the most common invasive cancer among women and its incidence is increasing. Risk assessment is valuable and recent methods are incorporating novel biomarkers such as mammographic density. Artificial neural networks (ANN) are adaptive algorithms capable of performing pattern-to-pattern learning and are well suited for medical applications. They are potentially useful for calibrating full-field digital mammography (FFDM) for quantitative analysis. This study uses ANN modeling to estimate volumetric breast density (VBD) from FFDM on Japanese women with and without breast cancer. ANN calibration of VBD was performed using phantom data for one FFDM system. Mammograms of 46 Japanese women diagnosed with invasive carcinoma and 53 with negative findings were analyzed using ANN models learned. ANN-estimated VBD was validated against phantom data, compared intra-patient, with qualitative composition scoring, with MRI VBD, and inter-patient with classical risk factors of breast cancer as well as cancer status. Phantom validations reached an R 2 of 0.993. Intra-patient validations ranged from R 2 of 0.789 with VBD to 0.908 with breast volume. ANN VBD agreed well with BI-RADS scoring and MRI VBD with R 2 ranging from 0.665 with VBD to 0.852 with breast volume. VBD was significantly higher in women with cancer. Associations with age, BMI, menopause, and cancer status previously reported were also confirmed. ANN modeling appears to produce reasonable measures of mammographic density validated with phantoms, with existing measures of breast density, and with classical biomarkers of breast cancer. FFDM VBD is significantly higher in Japanese women with cancer.

  9. Associative network based on cyclodextrin polymer: a model system for drug delivery.

    Science.gov (United States)

    Layre, Anne-Magali; Volet, Gisèle; Wintgens, Véronique; Amiel, Catherine

    2009-12-14

    Associative networks have been elaborated by mixing in aqueous media a cyclodextrin polymer to a dextran bearing adamantyl groups. The two polymers interact mainly via inclusion complexes between adamantyl groups and cyclodextrin cavities, as evidenced by the high complexation constants determined by isothermal titration microcalorimetry (approximately 10(4) L mol(-1)). Additional interaction mechanisms participating in the strength of the network, mainly hydrogen bonding and electrostatic interactions, are sensitive to the pH and ionic strength of the medium, as shown by pH-dependent rheological properties. The loading and release of an apolar model drug, benzophenone, has been studied at two pH values and different cyclodextrin polymer content. Slow releases have been obtained (10-12 days) with slower kinetics at pH 2 than at pH 7. Analysis of the experiments at pH 7 shows that drug release is controlled both by diffusion in the network and by inclusion complex interactions with cyclodextrin cavities.

  10. Empirical generalization assessment of neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1995-01-01

    This paper addresses the assessment of generalization performance of neural network models by use of empirical techniques. We suggest to use the cross-validation scheme combined with a resampling technique to obtain an estimate of the generalization performance distribution of a specific model...

  11. A quantum-implementable neural network model

    Science.gov (United States)

    Chen, Jialin; Wang, Lingli; Charbon, Edoardo

    2017-10-01

    A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.

  12. Comparisons of forecasting for hepatitis in Guangxi Province, China by using three neural networks models

    Directory of Open Access Journals (Sweden)

    Ruijing Gan

    2016-11-01

    Full Text Available This study compares and evaluates the prediction of hepatitis in Guangxi Province, China by using back propagation neural networks based genetic algorithm (BPNN-GA, generalized regression neural networks (GRNN, and wavelet neural networks (WNN. In order to compare the results of forecasting, the data obtained from 2004 to 2013 and 2014 were used as modeling and forecasting samples, respectively. The results show that when the small data set of hepatitis has seasonal fluctuation, the prediction result by BPNN-GA will be better than the two other methods. The WNN method is suitable for predicting the large data set of hepatitis that has seasonal fluctuation and the same for the GRNN method when the data increases steadily.

  13. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-02-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  14. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  15. Neural network-based estimates of Southern Ocean net community production from in situ O2 / Ar and satellite observation: a methodological study

    Science.gov (United States)

    Chang, C.-H.; Johnson, N. C.; Cassar, N.

    2014-06-01

    Southern Ocean organic carbon export plays an important role in the global carbon cycle, yet its basin-scale climatology and variability are uncertain due to limited coverage of in situ observations. In this study, a neural network approach based on the self-organizing map (SOM) is adopted to construct weekly gridded (1° × 1°) maps of organic carbon export for the Southern Ocean from 1998 to 2009. The SOM is trained with in situ measurements of O2 / Ar-derived net community production (NCP) that are tightly linked to the carbon export in the mixed layer on timescales of one to two weeks and with six potential NCP predictors: photosynthetically available radiation (PAR), particulate organic carbon (POC), chlorophyll (Chl), sea surface temperature (SST), sea surface height (SSH), and mixed layer depth (MLD). This nonparametric approach is based entirely on the observed statistical relationships between NCP and the predictors and, therefore, is strongly constrained by observations. A thorough cross-validation yields three retained NCP predictors, Chl, PAR, and MLD. Our constructed NCP is further validated by good agreement with previously published, independent in situ derived NCP of weekly or longer temporal resolution through real-time and climatological comparisons at various sampling sites. The resulting November-March NCP climatology reveals a pronounced zonal band of high NCP roughly following the Subtropical Front in the Atlantic, Indian, and western Pacific sectors, and turns southeastward shortly after the dateline. Other regions of elevated NCP include the upwelling zones off Chile and Namibia, the Patagonian Shelf, the Antarctic coast, and areas surrounding the Islands of Kerguelen, South Georgia, and Crozet. This basin-scale NCP climatology closely resembles that of the satellite POC field and observed air-sea CO2 flux. The long-term mean area-integrated NCP south of 50° S from our dataset, 17.9 mmol C m-2 d-1, falls within the range of 8.3 to 24 mmol

  16. Neural network-based estimates of Southern Ocean net community production from in-situ O2 / Ar and satellite observation: a methodological study

    Science.gov (United States)

    Chang, C.-H.; Johnson, N. C.; Cassar, N.

    2013-10-01

    Southern Ocean organic carbon export plays an important role in the global carbon cycle, yet its basin-scale climatology and variability are uncertain due to limited coverage of in situ observations. In this study, a neural network approach based on the self-organizing map (SOM) is adopted to construct weekly gridded (1° × 1°) maps of organic carbon export for the Southern Ocean from 1998 to 2009. The SOM is trained with in situ measurements of O2 / Ar-derived net community production (NCP) that are tightly linked to the carbon export in the mixed layer on timescales of 1-2 weeks, and six potential NCP predictors: photosynthetically available radiation (PAR), particulate organic carbon (POC), chlorophyll (Chl), sea surface temperature (SST), sea surface height (SSH), and mixed layer depth (MLD). This non-parametric approach is based entirely on the observed statistical relationships between NCP and the predictors, and therefore is strongly constrained by observations. A thorough cross-validation yields three retained NCP predictors, Chl, PAR, and MLD. Our constructed NCP is further validated by good agreement with previously published independent in situ derived NCP of weekly or longer temporal resolution through real-time and climatological comparisons at various sampling sites. The resulting November-March NCP climatology reveals a pronounced zonal band of high NCP roughly following the subtropical front in the Atlantic, Indian and western Pacific sectors, and turns southeastward shortly after the dateline. Other regions of elevated NCP include the upwelling zones off Chile and Namibia, Patagonian Shelf, Antarctic coast, and areas surrounding the Islands of Kerguelen, South Georgia, and Crozet. This basin-scale NCP climatology closely resembles that of the satellite POC field and observed air-sea CO2 flux. The long-term mean area-integrated NCP south of 50° S from our dataset, 14 mmol C m-2 d-1, falls within the range of 8.3-24 mmol C m-2 d-1 from other model

  17. Artificial neural network cardiopulmonary modeling and diagnosis

    Science.gov (United States)

    Kangas, Lars J.; Keller, Paul E.

    1997-01-01

    The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.

  18. Neural modeling of prefrontal executive function

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.S. [Univ. of Texas, Arlington, TX (United States)

    1996-12-31

    Brain executive function is based in a distributed system whereby prefrontal cortex is interconnected with other cortical. and subcortical loci. Executive function is divided roughly into three interacting parts: affective guidance of responses; linkage among working memory representations; and forming complex behavioral schemata. Neural network models of each of these parts are reviewed and fit into a preliminary theoretical framework.

  19. Neural network emulation of the integral equation model with multiple scattering.

    Science.gov (United States)

    Pulvirenti, Luca; Ticconi, Francesca; Pierdicca, Nazzareno

    2009-01-01

    The Integral Equation Model with multiple scattering (IEMM) represents a well-established method that provides a theoretical framework for the scattering of electromagnetic waves from rough surfaces. A critical aspect is the long computational time required to run such a complex model. To deal with this problem, a neural network technique is proposed in this work. In particular, we have adopted neural networks to reproduce the backscattering coefficients predicted by IEMM at L- and C-bands, thus making reference to presently operative satellite radar sensors, i.e., that aboard ERS-2, ASAR on board ENVISAT (C-band), and PALSAR aboard ALOS (L-band). The neural network-based model has been designed for radar observations of both flat and tilted surfaces, in order to make it applicable for hilly terrains too. The assessment of the proposed approach has been carried out by comparing neural network-derived backscattering coefficients with IEMM-derived ones. Different databases with respect to those employed to train the networks have been used for this purpose. The outcomes seem to prove the feasibility of relying on a neural network approach to efficiently and reliably approximate an electromagnetic model of surface scattering.

  20. Radiolarian artificial neural network based paleo sea surface water temperature and salinity changes during the last glacial cycle in the Timor Sea, Indian Ocean

    Science.gov (United States)

    Gupta, S. M.; Malmgren, B. A.

    2015-12-01

    The western Pacific water enters into the Timor Sea (tropical Indian Ocean) by the thermohaline conveyor belt, and this region is under the influence of the SW monsoon. The higher precipitation during the monsoon rains lower the surface salinity in the north-eastern Indian Ocean towards the Bay of Bengal; whereas, the Arabian Sea remains highly saline due to higher evaporation in the region surrounding Arabian deserts. The salinity contrast in the northern Indian Ocean is very unique, and the radiolarian micro-zooplanktons living in the surface water serve a very good proxy for the monsoonal changes in the surface sea-water temperature (SST) and salinity in the geological past. We studied radiolarian faunal variation in the core MD01-2378, located at ~13oS and ~121oE (1783 m water depth), at the inlet of the thermohaline circulation into the Timor Sea. We applied the modern radiolarian based artificial neural networks (ANNs) (Gupta and Malmgren, 2009) to derive the SST and salinity during August-October for the last 140 ka (the full last glacial cycle). Based on the mean estimates of the 10 ANNs, the root mean square error in prediction (RMSEP) for SST is ~1.4oC with correlation between observed and estimated values r=0.98 (Gupta and Malmgren, 2009). Similarly, the RMSEP is 0.3 psu (r=0.94) for the salinity estimates. We derived paleo-SSTs and salinity values using modern radiolarian ANNs and the fossil radiolarian data generated from the core for the last 140-ka (Fig.1). The age model of the core is based on δ18O benthic oxygen isotope stratigraphy and 21 AMS 14C ages up to ~30-ka (Holbourn et al., 2005). Paleo SST-summer varied between 22-28.5oC, and it is in very good agreement with the δ18O benthic record of Holbourn et al. (2005) defining the Last Glacial Maximum (~24 ka) and the Eemian (~125 ka) stages. The salinity fluctuated between 34-35 psu, and compared well with oxygen isotope record representing the LGM and Eemian periods. We gratefully acknowledge

  1. A neural model of hierarchical reinforcement learning.

    Science.gov (United States)

    Rasmussen, Daniel; Voelker, Aaron; Eliasmith, Chris

    2017-01-01

    We develop a novel, biologically detailed neural model of reinforcement learning (RL) processes in the brain. This model incorporates a broad range of biological features that pose challenges to neural RL, such as temporally extended action sequences, continuous environments involving unknown time delays, and noisy/imprecise computations. Most significantly, we expand the model into the realm of hierarchical reinforcement learning (HRL), which divides the RL process into a hierarchy of actions at different levels of abstraction. Here we implement all the major components of HRL in a neural model that captures a variety of known anatomical and physiological properties of the brain. We demonstrate the performance of the model in a range of different environments, in order to emphasize the aim of understanding the brain's general reinforcement learning ability. These results show that the model compares well to previous modelling work and demonstrates improved performance as a result of its hierarchical ability. We also show that the model's behaviour is consistent with available data on human hierarchical RL, and generate several novel predictions.

  2. A NEURAL OSCILLATOR-NETWORK MODEL OF TEMPORAL PATTERN GENERATION

    NARCIS (Netherlands)

    Schomaker, Lambert

    Most contemporary neural network models deal with essentially static, perceptual problems of classification and transformation. Models such as multi-layer feedforward perceptrons generally do not incorporate time as an essential dimension, whereas biological neural networks are inherently temporal

  3. Modelling the growth of Leuconostoc mesenteroides by Artificial Neural Networks.

    Science.gov (United States)

    García-Gimeno, R M; Hervás-Martínez, C; Rodríguez-Pérez, R; Zurera-Cosano, G

    2005-12-15

    The combined effect of temperature (10.5 to 24.5 degrees C), pH level (5.5 to 7.5), sodium chloride level (0.25% to 6.25%) and sodium nitrite level (0 to 200 ppm) on the predicted specific growth rate (Gr), lag-time (Lag) and maximum population density (yEnd) of Leuconostoc mesenteroides under aerobic and anaerobic conditions, was studied using an Artificial Neural Network-based model (ANN) in comparison with Response Surface Methodology (RS). For both aerobic and anaerobic conditions, two types of ANN model were elaborated, unidimensional for each of the growth parameters, and multidimensional in which the three parameters Gr, Lag, and yEnd are combined. Although in general no significant statistical differences were observed between both types of model, we opted for the unidimensional model, because it obtained the lowest mean value for the standard error of prediction for generalisation. The ANN models developed provided reliable estimates for the three kinetic parameters studied; the SEP values in aerobic conditions ranged from between 2.82% for Gr, 6.05% for Lag and 10% for yEnd, a higher degree accuracy than those of the RS model (Gr: 9.54%; Lag: 8.89%; yEnd: 10.27%). Similar results were observed for anaerobic conditions. During external validation, a higher degree of accuracy (Af) and bias (Bf) were observed for the ANN model compared with the RS model. ANN predictive growth models are a valuable tool, enabling swift determination of L. mesenteroides growth parameters.

  4. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Massive small unmanned aerial vehicles are envisioned to operate in the near future. While there are lots of research problems need to be addressed before dense operations can happen, trajectory modeling remains as one of the keys to understand and develop policies, regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The fidelity requirement of a small unmanned vehicle trajectory model is high because these vehicles are sensitive to winds due to their small size and low operational altitude. Both vehicle control systems and dynamic models are needed for trajectory modeling, which makes the modeling a great challenge, especially considering the fact that manufactures are not willing to share their control systems. This work proposed to use a neural network approach for modelling small unmanned vehicle's trajectory without knowing its control system and bypassing exhaustive efforts for aerodynamic parameter identification. As a proof of concept, instead of collecting data from flight tests, this work used the trajectory data generated by a mathematical vehicle model for training and testing the neural network. The results showed great promise because the trained neural network can predict 4D trajectories accurately, and prediction errors were less than 2:0 meters in both temporal and spatial dimensions.

  5. Model for Building a Distribution Network Based on the Multivariate Analysis of the Industrial and Logistical Potential of Regions

    Directory of Open Access Journals (Sweden)

    Alexander Vladimirovich Kirillov

    2015-12-01

    Full Text Available The international integration of the Russian economy is connected to the need of the realization of the competitive advantages of the geopolitical position of Russia, the industrial potential of regions, the logistic infrastructure of transport corridors. This article discusses the design model of the supply chain (distribution network based on the multivariate analysis and the methodology of the substantiation of its configuration based on the cost factors and the level of the logistics infrastructure development. For solving the problem of placing one or more logistics centers in the service area, a two-stage algorithm is used. At the first stage, the decisions on the reasonability of the choice of one or another version of the development are made with А. В. Кириллов, В. Е. Целин 345 ЭКОНОМИКА РЕГИОНА №4 (2015 the use of the “Make or Buy” standard model. The criterion of decision making is the guaranteed overcoming of the threshold of “indifference” taking into account the statistical characteristics of costs for options of “buy” and “make” depending on the volume of consumption of goods or services. At the second stage, the Ardalan’s heuristic method is used for the evaluation of the choice of placing one or more logistics centers in the service area. The model parameters are based on the assessment of the development prospects of the region and its investment potential (existence and composition of employment, production, natural resources, financial and consumer opportunities, institutional, innovation, infrastructure capacity. Furthermore, such criteria as a regional financial appeal, professionally trained specialists, the competitive advantages of the promoted company and others are analyzed. An additional criterion is the development of the priority matrix, which considers such factors as difficulties of customs registration and certification, a level of regional transport

  6. Ising model for neural data

    DEFF Research Database (Denmark)

    Roudi, Yasser; Tyrcha, Joanna; Hertz, John

    2009-01-01

    (dansk abstrakt findes ikke) We study pairwise Ising models for describing the statistics of multi-neuron spike trains, using data from a simulated cortical network. We explore efficient ways of finding the optimal couplings in these models and examine their statistical properties. To do this, we...

  7. Artificial Neural Network Modeling of an Inverse Fluidized Bed ...

    African Journals Online (AJOL)

    The application of neural networks to model a laboratory scale inverse fluidized bed reactor has been studied. A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological ...

  8. Network-Based Effectiveness

    National Research Council Canada - National Science Library

    Friman, Henrik

    2006-01-01

    ... (extended from Leavitt, 1965). This text identifies aspects of network-based effectiveness that can benefit from a better understanding of leadership and management development of people, procedures, technology, and organizations...

  9. Temporal-pattern learning in neural models

    CERN Document Server

    Genís, Carme Torras

    1985-01-01

    While the ability of animals to learn rhythms is an unquestionable fact, the underlying neurophysiological mechanisms are still no more than conjectures. This monograph explores the requirements of such mechanisms, reviews those previously proposed and postulates a new one based on a direct electric coding of stimulation frequencies. Experi­ mental support for the option taken is provided both at the single neuron and neural network levels. More specifically, the material presented divides naturally into four parts: a description of the experimental and theoretical framework where this work becomes meaningful (Chapter 2), a detailed specifica­ tion of the pacemaker neuron model proposed together with its valida­ tion through simulation (Chapter 3), an analytic study of the behavior of this model when submitted to rhythmic stimulation (Chapter 4) and a description of the neural network model proposed for learning, together with an analysis of the simulation results obtained when varying seve­ ral factors r...

  10. Optimizing neural network models: motivation and case studies

    OpenAIRE

    Harp, S A; T. Samad

    2012-01-01

    Practical successes have been achieved  with neural network models in a variety of domains, including energy-related industry. The large, complex design space presented by neural networks is only minimally explored in current practice. The satisfactory results that nevertheless have been obtained testify that neural networks are a robust modeling technology; at the same time, however, the lack of a systematic design approach implies that the best neural network models generally  rem...

  11. Prediction of Clinical Deterioration in Hospitalized Adult Patients with Hematologic Malignancies Using a Neural Network Model.

    Science.gov (United States)

    Hu, Scott B; Wong, Deborah J L; Correa, Aditi; Li, Ning; Deng, Jane C

    2016-01-01

    Clinical deterioration (ICU transfer and cardiac arrest) occurs during approximately 5-10% of hospital admissions. Existing prediction models have a high false positive rate, leading to multiple false alarms and alarm fatigue. We used routine vital signs and laboratory values obtained from the electronic medical record (EMR) along with a machine learning algorithm called a neural network to develop a prediction model that would increase the predictive accuracy and decrease false alarm rates. Retrospective cohort study. The hematologic malignancy unit in an academic medical center in the United States. Adult patients admitted to the hematologic malignancy unit from 2009 to 2010. None. Vital signs and laboratory values were obtained from the electronic medical record system and then used as predictors (features). A neural network was used to build a model to predict clinical deterioration events (ICU transfer and cardiac arrest). The performance of the neural network model was compared to the VitalPac Early Warning Score (ViEWS). Five hundred sixty five consecutive total admissions were available with 43 admissions resulting in clinical deterioration. Using simulation, the neural network outperformed the ViEWS model with a positive predictive value of 82% compared to 24%, respectively. We developed and tested a neural network-based prediction model for clinical deterioration in patients hospitalized in the hematologic malignancy unit. Our neural network model outperformed an existing model, substantially increasing the positive predictive value, allowing the clinician to be confident in the alarm raised. This system can be readily implemented in a real-time fashion in existing EMR systems.

  12. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural

  13. Comparison of Regression and Artificial Neural Network Models for Surface Roughness Prediction with the Cutting Parameters in CNC Turning

    Directory of Open Access Journals (Sweden)

    Muammer Nalbant

    2007-06-01

    Full Text Available Surface roughness, an indicator of surface quality, is one of the most specified customer requirements in machining of parts. In this study, the experimental results corresponding to the effects of different insert nose radii of cutting tools (0.4, 0.8, 1.2 mm, various depth of cuts (0.75, 1.25, 1.75, 2.25, 2.75 mm, and different feedrates (100, 130, 160, 190, 220 mm/min on the surface quality of the AISI 1030 steel workpieces have been investigated using multiple regression analysis and artificial neural networks (ANN. Regression analysis and neural network-based models used for the prediction of surface roughness were compared for various cutting conditions in turning. The data set obtained from the measurements of surface roughness was employed to and tests the neural network model. The trained neural network models were used in predicting surface roughness for cutting conditions. A comparison of neural network models with regression model was carried out. Coefficient of determination was 0.98 in multiple regression model. The scaled conjugate gradient (SCG model with 9 neurons in hidden layer has produced absolute fraction of variance (R2 values of 0.999 for the training data, and 0.998 for the test data. Predictive neural network model showed better predictions than various regression models for surface roughness. However, both methods can be used for the prediction of surface roughness in turning.

  14. Settlement in modern network-based payment infrastructures – description and prototype of the E-Settlement model

    OpenAIRE

    Leinonen, Harry; Lumiala, Veli-Matti; Sarlin, Riku

    2002-01-01

    Payment systems are undergoing rapid and fundamental changes stimulated largely by technological progress especially distributed network technology and real-time processing. Internet and e-commerce will have a major impact on payment systems in the future. User demands and competition will speed up developments. Payment systems will move from conventions that were originally paper-based to truly network-based solutions. This paper presents a solution – E-Settlement – for improving interbank s...

  15. Artificial neural network modeling and optimization of ultrahigh pressure extraction of green tea polyphenols.

    Science.gov (United States)

    Xi, Jun; Xue, Yujing; Xu, Yinxiang; Shen, Yuhong

    2013-11-01

    In this study, the ultrahigh pressure extraction of green tea polyphenols was modeled and optimized by a three-layer artificial neural network. A feed-forward neural network trained with an error back-propagation algorithm was used to evaluate the effects of pressure, liquid/solid ratio and ethanol concentration on the total phenolic content of green tea extracts. The neural network coupled with genetic algorithms was also used to optimize the conditions needed to obtain the highest yield of tea polyphenols. The obtained optimal architecture of artificial neural network model involved a feed-forward neural network with three input neurons, one hidden layer with eight neurons and one output layer including single neuron. The trained network gave the minimum value in the MSE of 0.03 and the maximum value in the R(2) of 0.9571, which implied a good agreement between the predicted value and the actual value, and confirmed a good generalization of the network. Based on the combination of neural network and genetic algorithms, the optimum extraction conditions for the highest yield of green tea polyphenols were determined as follows: 498.8 MPa for pressure, 20.8 mL/g for liquid/solid ratio and 53.6% for ethanol concentration. The total phenolic content of the actual measurement under the optimum predicated extraction conditions was 582.4 ± 0.63 mg/g DW, which was well matched with the predicted value (597.2mg/g DW). This suggests that the artificial neural network model described in this work is an efficient quantitative tool to predict the extraction efficiency of green tea polyphenols. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  16. Neural Network Program Package for Prosody Modeling

    Directory of Open Access Journals (Sweden)

    J. Santarius

    2004-04-01

    Full Text Available This contribution describes the programme for one part of theautomatic Text-to-Speech (TTS synthesis. Some experiments (for example[14] documented the considerable improvement of the naturalness ofsynthetic speech, but this approach requires completing the inputfeature values by hand. This completing takes a lot of time for bigfiles. We need to improve the prosody by other approaches which useonly automatically classified features (input parameters. Theartificial neural network (ANN approach is used for the modeling ofprosody parameters. The program package contains all modules necessaryfor the text and speech signal pre-processing, neural network training,sensitivity analysis, result processing and a module for the creationof the input data protocol for Czech speech synthesizer ARTIC [1].

  17. Remote sensing of harmful algal events in optically complex waters using regionally specific neural network-based algorithms for MERIS data

    Science.gov (United States)

    Gonzalez Vilas, L.; Castro Fernandez, M.; Spyrakos, E.; Torres Palenzuela, J.

    2013-08-01

    In typical case 2 waters an accurate remote sensing retrieval of chlorophyll a (chla) is still challenging. There is a widespread understanding that universally applicable water constituent retrieval algorithms are currently not feasible, shifting the research focus to regionally specific implementations of powerful inversion methods. This study takes advantage of regionally specific chlorophyll a (chla) algorithms, which were developed by the authors of this abstract in previous works, and the characteristics of Medium Resolution Imaging Spectrometer (MERIS) in order to study harmful algal events in the optically complex waters of the Galician Rias (NW). Harmful algal events are a frequent phenomenon in this area with direct and indirect impacts to the mussel production that constitute a very important economic activity for the local community. More than 240 106 kg of mussel per year are produced in these highly primary productive upwelling systems. A MERIS archive from nine years (2003-2012) was analysed using regionally specific chla algorithms. The latter were developed based on Multilayer perceptron (MLP) artificial neural networks and fuzzy c-mean clustering techniques (FCM). FCM specifies zones (based on water leaving reflectances) where the retrieval algorithms normally provide more reliable results. Monthly chla anomalies and other statistics were calculated for the nine years MERIS archive. These results were then related to upwelling indices and other associated measurements to determine the driver forces for specific phytoplankton blooms. The distribution and changes of chla are also discussed.

  18. Development and evaluation of on/off control for electrolaryngeal speech via artificial neural network based on visual information of lips.

    Science.gov (United States)

    Wu, Liang; Wan, Congying; Wang, Supin; Wan, Mingxi

    2013-03-01

    To realize an accurate and automatic on/off control of electrolarynx (EL), an artificial neural network (ANN) was introduced for switch identification based on visual information of lips and implemented by an experimental system (ANN-EL). The objective was to confirm the feasibility of the ANN method and evaluate the performance of ANN-EL in Mandarin speech. Totally five volunteers (one laryngectomee and four normal speakers) participated in the whole process of experiments. First, trained ANN was tested to assess switch identification performance of ANN method. Then, voice initiation/termination time, speech fluency, and word intelligibility were measured and compared with button-EL and video-EL to evaluate on/off control performance of ANN-EL. The test showed that ANN method performed accurate switch identification (>99%). ANN-EL was as fast as normal voice and button-EL in onset control, but a little slower in offset control. ANN-EL could provide a fluent voice source with rare breaks (speech. The results also indicated that on/off control performance of ANN-EL had a significant impact on perception, lowering the word intelligibility compared with button-EL. However, the words produced by ANN-EL were more intelligible than video-EL by approximately 20%. The ANN method was proved feasible and effective for switch identification based on visual information of lips. The ANN-EL could provide an accurate on/off control for fluent Mandarin speech. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  19. Pedestrian Detection Based on Adaptive Selection of Visible Light or Far-Infrared Light Camera Image by Fuzzy Inference System and Convolutional Neural Network-Based Verification.

    Science.gov (United States)

    Kang, Jin Kyu; Hong, Hyung Gil; Park, Kang Ryoung

    2017-07-08

    A number of studies have been conducted to enhance the pedestrian detection accuracy of intelligent surveillance systems. However, detecting pedestrians under outdoor conditions is a challenging problem due to the varying lighting, shadows, and occlusions. In recent times, a growing number of studies have been performed on visible light camera-based pedestrian detection systems using a convolutional neural network (CNN) in order to make the pedestrian detection process more resilient to such conditions. However, visible light cameras still cannot detect pedestrians during nighttime, and are easily affected by shadows and lighting. There are many studies on CNN-based pedestrian detection through the use of far-infrared (FIR) light cameras (i.e., thermal cameras) to address such difficulties. However, when the solar radiation increases and the background temperature reaches the same level as the body temperature, it remains difficult for the FIR light camera to detect pedestrians due to the insignificant difference between the pedestrian and non-pedestrian features within the images. Researchers have been trying to solve this issue by inputting both the visible light and the FIR camera images into the CNN as the input. This, however, takes a longer time to process, and makes the system structure more complex as the CNN needs to process both camera images. This research adaptively selects a more appropriate candidate between two pedestrian images from visible light and FIR cameras based on a fuzzy inference system (FIS), and the selected candidate is verified with a CNN. Three types of databases were tested, taking into account various environmental factors using visible light and FIR cameras. The results showed that the proposed method performs better than the previously reported methods.

  20. A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images.

    Science.gov (United States)

    Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; Moore, Kathleen; Liu, Hong; Zheng, Bin

    2017-06-01

    Accurately assessment of adipose tissue volume inside a human body plays an important role in predicting disease or cancer risk, diagnosis and prognosis. In order to overcome limitation of using only one subjectively selected CT image slice to estimate size of fat areas, this study aims to develop and test a computer-aided detection (CAD) scheme based on deep learning technique to automatically segment subcutaneous fat areas (SFA) and visceral fat areas (VFA) depicting on volumetric CT images. A retrospectively collected CT image dataset was divided into two independent training and testing groups. The proposed CAD framework consisted of two steps with two convolution neural networks (CNNs) namely, Selection-CNN and Segmentation-CNN. The first CNN was trained using 2,240 CT slices to select abdominal CT slices depicting SFA and VFA. The second CNN was trained with 84,000pixel patches and applied to the selected CT slices to identify fat-related pixels and assign them into SFA and VFA classes. Comparing to the manual CT slice selection and fat pixel segmentation results, the accuracy of CT slice selection using the Selection-CNN yielded 95.8%, while the accuracy of fat pixel segmentation using the Segmentation-CNN was 96.8%. This study demonstrated the feasibility of applying a new deep learning based CAD scheme to automatically recognize abdominal section of human body from CT scans and segment SFA and VFA from volumetric CT data with high accuracy or agreement with the manual segmentation results. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Determination of daily solar ultraviolet radiation using statistical models and artificial neural networks

    Directory of Open Access Journals (Sweden)

    F. J. Barbero

    2006-09-01

    Full Text Available In this study, two different methodologies are used to develop two models for estimating daily solar UV radiation. The first is based on traditional statistical techniques whereas the second is based on artificial neural network methods. Both models use daily solar global broadband radiation as the only measured input. The statistical model is derived from a relationship between the daily UV and the global clearness indices but modulated by the relative optical air mass. The inputs to the neural network model were determined from a large number of radiometric and atmospheric parameters using the automatic relevance determination method, although only the daily solar global irradiation, daily global clearness index and relative optical air mass were shown to be the optimal input variables. Both statistical and neural network models were developed using data measured at Almería (Spain, a semiarid and coastal climate, and tested against data from Table Mountain (Golden, CO, USA, a mountainous and dry environment. Results show that the statistical model performs adequately in both sites for all weather conditions, especially when only snow-free days at Golden were considered (RMSE=4.6%, MBE= –0.1%. The neural network based model provides the best overall estimates in the site where it has been trained, but presents an inadequate performance for the Golden site when snow-covered days are included (RMSE=6.5%, MBE= –3.0%. This result confirms that the neural network model does not adequately respond on those ranges of the input parameters which were not used for its development.

  2. Flood routing modelling with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    R. Peters

    2006-01-01

    Full Text Available For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks. To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting. In order to solve this problem we tested the application of Artificial Neural Networks (ANN. First studies show the ability of adequately trained multilayer feedforward networks (MLFN to reproduce the model performance.

  3. Modeling Broadband Microwave Structures by Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    V. Otevrel

    2004-06-01

    Full Text Available The paper describes the exploitation of feed-forward neural networksand recurrent neural networks for replacing full-wave numerical modelsof microwave structures in complex microwave design tools. Building aneural model, attention is turned to the modeling accuracy and to theefficiency of building a model. Dealing with the accuracy, we describea method of increasing it by successive completing a training set.Neural models are mutually compared in order to highlight theiradvantages and disadvantages. As a reference model for comparisons,approximations based on standard cubic splines are used. Neural modelsare used to replace both the time-domain numeric models and thefrequency-domain ones.

  4. Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau

    Science.gov (United States)

    Cui, Yaokui; Long, Di; Hong, Yang; Zeng, Chao; Zhou, Jie; Han, Zhongying; Liu, Ronghua; Wan, Wei

    2016-12-01

    Soil moisture is a key variable in the exchange of water and energy between the land surface and the atmosphere, especially over the Tibetan Plateau (TP) which is climatically and hydrologically sensitive as the Earth's 'third pole'. Large-scale spatially consistent and temporally continuous soil moisture datasets are of great importance to meteorological and hydrological applications, such as weather forecasting and drought monitoring. The Fengyun-3B Microwave Radiation Imager (FY-3B/MWRI) soil moisture product is a relatively new passive microwave product, with the satellite being launched on November 5, 2010. This study validates and reconstructs FY-3B/MWRI soil moisture across the TP. First, the validation is performed using in situ measurements within two in situ soil moisture measurement networks (1° × 1° and 0.25° × 0.25°), and also compared with the Essential Climate Variable (ECV) soil moisture product from multiple active and passive satellite soil moisture products using new merging procedures. Results show that the ascending FY-3B/MWRI product outperforms the descending product. The ascending FY-3B/MWRI product has almost the same correlation as the ECV product with the in situ measurements. The ascending FY-3B/MWRI product has better performance than the ECV product in the frozen season and under the lower NDVI condition. When the NDVI is higher in the unfrozen season, uncertainty in the ascending FY-3B/MWRI product increases with increasing NDVI, but it could still capture the variability in soil moisture. Second, the FY-3B/MWRI soil moisture product is subsequently reconstructed using the back-propagation neural network (BP-NN) based on reconstructed MODIS products, i.e., LST, NDVI, and albedo. The reconstruction method of generating the soil moisture product not only considers the relationship between the soil moisture and NDVI, LST, and albedo, but also the relationship between the soil moisture and four-dimensional variations using the

  5. Neural Network Model of memory retrieval

    Directory of Open Access Journals (Sweden)

    Stefano eRecanatesi

    2015-12-01

    Full Text Available Human memory can store large amount of information. Nevertheless, recalling is often achallenging task. In a classical free recall paradigm, where participants are asked to repeat abriefly presented list of words, people make mistakes for lists as short as 5 words. We present amodel for memory retrieval based on a Hopfield neural network where transition between itemsare determined by similarities in their long-term memory representations. Meanfield analysis ofthe model reveals stable states of the network corresponding (1 to single memory representationsand (2 intersection between memory representations. We show that oscillating feedback inhibitionin the presence of noise induces transitions between these states triggering the retrieval ofdifferent memories. The network dynamics qualitatively predicts the distribution of time intervalsrequired to recall new memory items observed in experiments. It shows that items having largernumber of neurons in their representation are statistically easier to recall and reveals possiblebottlenecks in our ability of retrieving memories. Overall, we propose a neural network model ofinformation retrieval broadly compatible with experimental observations and is consistent with ourrecent graphical model (Romani et al., 2013.

  6. Automated Modeling of Microwave Structures by Enhanced Neural Networks

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2006-12-01

    Full Text Available The paper describes the methodology of the automated creation of neural models of microwave structures. During the creation process, artificial neural networks are trained using the combination of the particle swarm optimization and the quasi-Newton method to avoid critical training problems of the conventional neural nets. In the paper, neural networks are used to approximate the behavior of a planar microwave filter (moment method, Zeland IE3D. In order to evaluate the efficiency of neural modeling, global optimizations are performed using numerical models and neural ones. Both approaches are compared from the viewpoint of CPU-time demands and the accuracy. Considering conclusions, methodological recommendations for including neural networks to the microwave design are formulated.

  7. A Neural Parametric Singing Synthesizer Modeling Timbre and Expression from Natural Songs

    Directory of Open Access Journals (Sweden)

    Merlijn Blaauw

    2017-12-01

    Full Text Available We recently presented a new model for singing synthesis based on a modified version of the WaveNet architecture. Instead of modeling raw waveform, we model features produced by a parametric vocoder that separates the influence of pitch and timbre. This allows conveniently modifying pitch to match any target melody, facilitates training on more modest dataset sizes, and significantly reduces training and generation times. Nonetheless, compared to modeling waveform directly, ways of effectively handling higher-dimensional outputs, multiple feature streams and regularization become more important with our approach. In this work, we extend our proposed system to include additional components for predicting F0 and phonetic timings from a musical score with lyrics. These expression-related features are learned together with timbrical features from a single set of natural songs. We compare our method to existing statistical parametric, concatenative, and neural network-based approaches using quantitative metrics as well as listening tests.

  8. Distributed recurrent neural forward models with synaptic adaptation and CPG-based control for complex behaviors of walking robots.

    Science.gov (United States)

    Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain a variety of movements, the neural mechanisms generate movements while making appropriate predictions crucial for achieving adaptation. Such predictions or planning ahead can be achieved by way of internal models that are grounded in the overall behavior of the animal. Inspired by these findings, we present here, an artificial bio-inspired walking system which effectively combines biomechanics (in terms of the body and leg structures) with the underlying neural mechanisms. The neural mechanisms consist of (1) central pattern generator based control for generating basic rhythmic patterns and coordinated movements, (2) distributed (at each leg) recurrent neural network based adaptive forward models with efference copies as internal models for sensory predictions and instantaneous state estimations, and (3) searching and elevation control for adapting the movement of an individual leg to deal with different environmental conditions. Using simulations we show that this bio-inspired approach with adaptive internal models allows the walking robot to perform complex locomotive behaviors as observed in insects, including walking on undulated terrains, crossing large gaps, leg damage adaptations, as well as climbing over high obstacles. Furthermore, we demonstrate that the newly developed recurrent network based approach to online forward models outperforms the adaptive neuron forward models

  9. A neural network model for texture discrimination.

    Science.gov (United States)

    Xing, J; Gerstein, G L

    1993-01-01

    A model of texture discrimination in visual cortex was built using a feedforward network with lateral interactions among relatively realistic spiking neural elements. The elements have various membrane currents, equilibrium potentials and time constants, with action potentials and synapses. The model is derived from the modified programs of MacGregor (1987). Gabor-like filters are applied to overlapping regions in the original image; the neural network with lateral excitatory and inhibitory interactions then compares and adjusts the Gabor amplitudes in order to produce the actual texture discrimination. Finally, a combination layer selects and groups various representations in the output of the network to form the final transformed image material. We show that both texture segmentation and detection of texture boundaries can be represented in the firing activity of such a network for a wide variety of synthetic to natural images. Performance details depend most strongly on the global balance of strengths of the excitatory and inhibitory lateral interconnections. The spatial distribution of lateral connective strengths has relatively little effect. Detailed temporal firing activities of single elements in the lateral connected network were examined under various stimulus conditions. Results show (as in area 17 of cortex) that a single element's response to image features local to its receptive field can be altered by changes in the global context.

  10. Investigation of Back-off Based Interpolation Between Recurrent Neural Network and N-gram Language Models (Author’s Manuscript)

    Science.gov (United States)

    2016-02-11

    2011. [3] Martin Sundermeyer, Ilya Oparin , Jean-Luc Gauvain, Ben Freiberg, Ralf Schluter, and Hermann Ney, “Comparison of feedforward and recurrent...model interpolation and adaptation,” Com- puter Speech & Language, pp. 301–321, 2013. [14] Ilya Oparin , Martin Sundermeyer, Hermann Ney, and Jean-Luc...Improved neural network based language modelling and adaptation,” in Proc. ISCA Interspeech, 2010. [20] Hai-Son Le, Ilya Oparin , Alexandre Allauzen, J

  11. Novel mathematical neural models for visual attention

    DEFF Research Database (Denmark)

    Li, Kang

    Visual attention has been extensively studied in psychology, but some fundamental questions remain controversial. We focus on two questions in this study. First, we investigate how a neuron in visual cortex responds to multiple stimuli inside the receptive eld, described by either a response...... for the visual attention theories and spiking neuron models for single spike trains. Statistical inference and model selection are performed and various numerical methods are explored. The designed methods also give a framework for neural coding under visual attention theories. We conduct both analysis on real...... system, supported by simulation study. Finally, we present the decoding of multiple temporal stimuli under these visual attention theories, also in a realistic biophysical situation with simulations....

  12. Distributed Recurrent Neural Forward Models with Synaptic Adaptation and CPG-based control for Complex Behaviors of Walking Robots

    Directory of Open Access Journals (Sweden)

    Sakyasingha eDasgupta

    2015-09-01

    Full Text Available Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain a variety of movements, the neural mechanisms generate movements while making appropriate predictions crucial for achieving adaptation. Such predictions or planning ahead can be achieved by way of internal models that are grounded in the overall behavior of the animal. Inspired by these findings, we present here, an artificial bio-inspired walking system which effectively combines biomechanics (in terms of the body and leg structures with the underlying neural mechanisms. The neural mechanisms consist of 1 central pattern generator based control for generating basic rhythmic patterns and coordinated movements, 2 distributed (at each leg recurrent neural network based adaptive forward models with efference copies as internal models for sensory predictions and instantaneous state estimations, and 3 searching and elevation control for adapting the movement of an individual leg to deal with different environmental conditions. Using simulations we show that this bio-inspired approach with adaptive internal models allows the walking robot to perform complex locomotive behaviors as observed in insects, including walking on undulated terrains, crossing large gaps as well as climbing over high obstacles. Furthermore we demonstrate that the newly developed recurrent network based approach to sensorimotor prediction outperforms the previous state of the art adaptive neuron

  13. Two stage neural network modelling for robust model predictive control.

    Science.gov (United States)

    Patan, Krzysztof

    2017-11-02

    The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Bio-Inspired Neural Model for Learning Dynamic Models

    Science.gov (United States)

    Duong, Tuan; Duong, Vu; Suri, Ronald

    2009-01-01

    A neural-network mathematical model that, relative to prior such models, places greater emphasis on some of the temporal aspects of real neural physical processes, has been proposed as a basis for massively parallel, distributed algorithms that learn dynamic models of possibly complex external processes by means of learning rules that are local in space and time. The algorithms could be made to perform such functions as recognition and prediction of words in speech and of objects depicted in video images. The approach embodied in this model is said to be "hardware-friendly" in the following sense: The algorithms would be amenable to execution by special-purpose computers implemented as very-large-scale integrated (VLSI) circuits that would operate at relatively high speeds and low power demands.

  15. Assessment of neural networks performance in modeling rainfall ...

    African Journals Online (AJOL)

    This paper presents the evaluation of performance of Neural Network (NN) model in predicting the behavioral pattern of rainfall depths of some locations in the North Central zones of Nigeria. The input to the model is the consecutive rainfall depths data obtained from the Nigerian Meteorological (NiMET) Agency. The neural ...

  16. Artificial Neural Network Modeling of an Inverse Fluidized Bed ...

    African Journals Online (AJOL)

    MICHAEL

    modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological decomposition of pollutants in the reactor. The neural network has been trained with experimental data obtained from an inverse fluidized bed reactor treating the starch industry wastewater.

  17. A Bayesian framework for simultaneously modeling neural and behavioral data.

    Science.gov (United States)

    Turner, Brandon M; Forstmann, Birte U; Wagenmakers, Eric-Jan; Brown, Scott D; Sederberg, Per B; Steyvers, Mark

    2013-05-15

    Scientists who study cognition infer underlying processes either by observing behavior (e.g., response times, percentage correct) or by observing neural activity (e.g., the BOLD response). These two types of observations have traditionally supported two separate lines of study. The first is led by cognitive modelers, who rely on behavior alone to support their computational theories. The second is led by cognitive neuroimagers, who rely on statistical models to link patterns of neural activity to experimental manipulations, often without any attempt to make a direct connection to an explicit computational theory. Here we present a flexible Bayesian framework for combining neural and cognitive models. Joining neuroimaging and computational modeling in a single hierarchical framework allows the neural data to influence the parameters of the cognitive model and allows behavioral data, even in the absence of neural data, to constrain the neural model. Critically, our Bayesian approach can reveal interactions between behavioral and neural parameters, and hence between neural activity and cognitive mechanisms. We demonstrate the utility of our approach with applications to simulated fMRI data with a recognition model and to diffusion-weighted imaging data with a response time model of perceptual choice. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. A Bayesian framework for simultaneously modeling neural and behavioral data✩

    Science.gov (United States)

    Turner, Brandon M.; Forstmann, Birte U.; Wagenmakers, Eric-Jan; Brown, Scott D.; Sederberg, Per B.; Steyvers, Mark

    2013-01-01

    Scientists who study cognition infer underlying processes either by observing behavior (e.g., response times, percentage correct) or by observing neural activity (e.g., the BOLD response). These two types of observations have traditionally supported two separate lines of study. The first is led by cognitive modelers, who rely on behavior alone to support their computational theories. The second is led by cognitive neuroimagers, who rely on statistical models to link patterns of neural activity to experimental manipulations, often without any attempt to make a direct connection to an explicit computational theory. Here we present a flexible Bayesian framework for combining neural and cognitive models. Joining neuroimaging and computational modeling in a single hierarchical framework allows the neural data to influence the parameters of the cognitive model and allows behavioral data, even in the absence of neural data, to constrain the neural model. Critically, our Bayesian approach can reveal interactions between behavioral and neural parameters, and hence between neural activity and cognitive mechanisms. We demonstrate the utility of our approach with applications to simulated fMRI data with a recognition model and to diffusion-weighted imaging data with a response time model of perceptual choice. PMID:23370060

  19. Concept hierarchy memory model: a neural architecture for conceptual knowledge representation, learning, and commonsense reasoning.

    Science.gov (United States)

    Tan, A H; Soon, H S

    1996-07-01

    This article introduces a neural network based cognitive architecture termed Concept Hierarchy Memory Model (CHMM) for conceptual knowledge representation and commonsense reasoning. CHMM is composed of two subnetworks: a Concept Formation Network (CFN), that acquires concepts based on their sensory representations; and a Concept Hierarchy Network (CHN), that encodes hierarchical relationships between concepts. Based on Adaptive Resonance Associative Map (ARAM), a supervised Adaptive Resonance Theory (ART) model, CHMM provides a systematic treatment for concept formation and organization of a concept hierarchy. Specifically, a concept can be learned by sampling activities across multiple sensory fields. By chunking relations between concepts as cognitive codes, a concept hierarchy can be learned/modified through experience. Also, fuzzy relations between concepts can now be represented in terms of the weights on the links connecting them. Using a unified inferencing mechanism based on code firing, CHMM performs an important class of commonsense reasoning, including concept recognition and property inheritance.

  20. Hybrid neural network bushing model for vehicle dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jeong Hyun [Pukyong National University, Busan (Korea, Republic of); Lee, Seung Kyu [Hyosung Corporation, Changwon (Korea, Republic of); Yoo, Wan Suk [Pusan National University, Busan (Korea, Republic of)

    2008-12-15

    Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers

  1. Bayesian Recurrent Neural Network for Language Modeling.

    Science.gov (United States)

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  2. Runoff Modelling in Urban Storm Drainage by Neural Networks

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Brorsen, Michael; Schaarup-Jensen, Kjeld

    1995-01-01

    A neural network is used to simulate folw and water levels in a sewer system. The calibration of th neural network is based on a few measured events and the network is validated against measureed events as well as flow simulated with the MOUSE model (Lindberg and Joergensen, 1986). The neural...... network is used to compute flow or water level at selected points in the sewer system, and to forecast the flow from a small residential area. The main advantages of the neural network are the build-in self calibration procedure and high speed performance, but the neural network cannot be used to extract...... knowledge of the runoff process. The neural network was found to simulate 150 times faster than e.g. the MOUSE model....

  3. Ocean wave prediction using numerical and neural network models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...

  4. Neural network models: Insights and prescriptions from practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Samad, T. [Honeywell Technology Center, Minneapolis, MN (United States)

    1995-12-31

    Neural networks are no longer just a research topic; numerous applications are now testament to their practical utility. In the course of developing these applications, researchers and practitioners have been faced with a variety of issues. This paper briefly discusses several of these, noting in particular the rich connections between neural networks and other, more conventional technologies. A more comprehensive version of this paper is under preparation that will include illustrations on real examples. Neural networks are being applied in several different ways. Our focus here is on neural networks as modeling technology. However, much of the discussion is also relevant to other types of applications such as classification, control, and optimization.

  5. A neural network model of causative actions.

    Science.gov (United States)

    Lee-Hand, Jeremy; Knott, Alistair

    2015-01-01

    A common idea in models of action representation is that actions are represented in terms of their perceptual effects (see e.g., Prinz, 1997; Hommel et al., 2001; Sahin et al., 2007; Umiltà et al., 2008; Hommel, 2013). In this paper we extend existing models of effect-based action representations to account for a novel distinction. Some actions bring about effects that are independent events in their own right: for instance, if John smashes a cup, he brings about the event of the cup smashing. Other actions do not bring about such effects. For instance, if John grabs a cup, this action does not cause the cup to "do" anything: a grab action has well-defined perceptual effects, but these are not registered by the perceptual system that detects independent events involving external objects in the world. In our model, effect-based actions are implemented in several distinct neural circuits, which are organized into a hierarchy based on the complexity of their associated perceptual effects. The circuit at the top of this hierarchy is responsible for actions that bring about independently perceivable events. This circuit receives input from the perceptual module that recognizes arbitrary events taking place in the world, and learns movements that reliably cause such events. We assess our model against existing experimental observations about effect-based motor representations, and make some novel experimental predictions. We also consider the possibility that the "causative actions" circuit in our model can be identified with a motor pathway reported in other work, specializing in "functional" actions on manipulable tools (Bub et al., 2008; Binkofski and Buxbaum, 2013).

  6. Computational modeling of neural plasticity for self-organization of neural networks.

    Science.gov (United States)

    Chrol-Cannon, Joseph; Jin, Yaochu

    2014-11-01

    Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Using Artificial Intelligence to Retrieve the Optimal Parameters and Structures of Adaptive Network-Based Fuzzy Inference System for Typhoon Precipitation Forecast Modeling

    Directory of Open Access Journals (Sweden)

    Chien-Lin Huang

    2015-01-01

    Full Text Available This study aims to construct a typhoon precipitation forecast model providing forecasts one to six hours in advance using optimal model parameters and structures retrieved from a combination of the adaptive network-based fuzzy inference system (ANFIS and artificial intelligence. To enhance the accuracy of the precipitation forecast, two structures were then used to establish the precipitation forecast model for a specific lead-time: a single-model structure and a dual-model hybrid structure where the forecast models of higher and lower precipitation were integrated. In order to rapidly, automatically, and accurately retrieve the optimal parameters and structures of the ANFIS-based precipitation forecast model, a tabu search was applied to identify the adjacent radius in subtractive clustering when constructing the ANFIS structure. The coupled structure was also employed to establish a precipitation forecast model across short and long lead-times in order to improve the accuracy of long-term precipitation forecasts. The study area is the Shimen Reservoir, and the analyzed period is from 2001 to 2009. Results showed that the optimal initial ANFIS parameters selected by the tabu search, combined with the dual-model hybrid method and the coupled structure, provided the favors in computation efficiency and high-reliability predictions in typhoon precipitation forecasts regarding short to long lead-time forecasting horizons.

  8. Graph-Theoretic Properties of Networks Based on Word Association Norms: Implications for Models of Lexical Semantic Memory

    Science.gov (United States)

    Gruenenfelder, Thomas M.; Recchia, Gabriel; Rubin, Tim; Jones, Michael N.

    2016-01-01

    We compared the ability of three different contextual models of lexical semantic memory (BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model (POC) to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network…

  9. Forecasting volatility with neural regression: a contribution to model adequacy.

    Science.gov (United States)

    Refenes, A N; Holt, W T

    2001-01-01

    Neural nets' usefulness for forecasting is limited by problems of overfitting and the lack of rigorous procedures for model identification, selection and adequacy testing. This paper describes a methodology for neural model misspecification testing. We introduce a generalization of the Durbin-Watson statistic for neural regression and discuss the general issues of misspecification testing using residual analysis. We derive a generalized influence matrix for neural estimators which enables us to evaluate the distribution of the statistic. We deploy Monte Carlo simulation to compare the power of the test for neural and linear regressors. While residual testing is not a sufficient condition for model adequacy, it is nevertheless a necessary condition to demonstrate that the model is a good approximation to the data generating process, particularly as neural-network estimation procedures are susceptible to partial convergence. The work is also an important step toward developing rigorous procedures for neural model identification, selection and adequacy testing which have started to appear in the literature. We demonstrate its applicability in the nontrivial problem of forecasting implied volatility innovations using high-frequency stock index options. Each step of the model building process is validated using statistical tests to verify variable significance and model adequacy with the results confirming the presence of nonlinear relationships in implied volatility innovations.

  10. Spike neural models (part I: The Hodgkin-Huxley model

    Directory of Open Access Journals (Sweden)

    Johnson, Melissa G.

    2017-05-01

    Full Text Available Artificial neural networks, or ANNs, have grown a lot since their inception back in the 1940s. But no matter the changes, one of the most important components of neural networks is still the node, which represents the neuron. Within spiking neural networks, the node is especially important because it contains the functions and properties of neurons that are necessary for their network. One important aspect of neurons is the ionic flow which produces action potentials, or spikes. Forces of diffusion and electrostatic pressure work together with the physical properties of the cell to move ions around changing the cell membrane potential which ultimately produces the action potential. This tutorial reviews the Hodkgin-Huxley model and shows how it simulates the ionic flow of the giant squid axon via four differential equations. The model is implemented in Matlab using Euler's Method to approximate the differential equations. By using Euler's method, an extra parameter is created, the time step. This new parameter needs to be carefully considered or the results of the node may be impaired.

  11. Neural decision model of business capitalization

    Directory of Open Access Journals (Sweden)

    Martin Pokorný

    2007-01-01

    Full Text Available The topic of this article is focused on problems related to enterprise financial supervising. In the concrete, the situation of enterprise investment policy evaluation is described here. In this case, as a convenient tool for decision support, the approach of artificial intelligence was selected, particularly the model of neuron network. For the purpose of enterprise economic state evaluation, we use four input variables which describe the economic state. Three main variables are selected and the fourth one is the additional. The coding of main variables is chosen with the respect to the possible states of the enterprise. The multilayer neuron network was used for evaluation.The neural network can solve problems, which are hardly solvable for a manager because there can exist a lot of factors affecting the final decision. We have to take into account the fact that sometimes the situation is too complex. In this case, when the system gives incorrect result, it is possible to extend the current learning set and add adequate patterns which will help the system to recognize states of the enterprise.

  12. Testing Neural Models of the Development of Infant Visual Attention

    OpenAIRE

    Richards, John E.; Hunter, Sharon K.

    2002-01-01

    Several models of the development of infant visual attention have used information about neural development. Most of these models have been based on nonhuman animal studies and have relied on indirect measures of neural development in human infants. This article discusses methods for studying a “neurodevelopmental” model of infant visual attention using indirect and direct measures of cortical activity. We concentrate on the effect of attention on eye movement control and show how animal-base...

  13. Artificial neural network modeling of dissolved oxygen in reservoir.

    Science.gov (United States)

    Chen, Wei-Bo; Liu, Wen-Cheng

    2014-02-01

    The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.

  14. THE OPTIMIZATION APPROACH OF POSTAL TRANSPORTATION NETWORK BASED ON UNCAPACITATED FIXED CHARGE LOCATION MODEL IN CONDITIONS OF SLOVAK REPUBLIC

    Directory of Open Access Journals (Sweden)

    Radovan MADLEŇÁK

    2015-12-01

    Full Text Available The article deals with the possibilities of optimizing the postal transportation network with respect to planned road infrastructure. The research adopted in this article uses allocation models within graph theory to obtain results for addressed optimization problem. The article presents and compares two types of these models – p-median and uncapacitated fixed charge facility location model. The latter is subsequently applied on the postal network to determine the optimal location of postal facilities while minimizing costs. Moreover, the article describes the possibilities of identifying and calculating input variables of the used model, creating the underlying network, as well as possible further improvements of obtained solution. The results can serve as a basis for modification of the used model for the simulation of networks in the postal sector.

  15. A Hybrid Neural Network and H-P Filter Model for Short-Term Vegetable Price Forecasting

    Directory of Open Access Journals (Sweden)

    Youzhu Li

    2014-01-01

    Full Text Available This paper is concerned with time series data for vegetable prices, which have a great impact on human’s life. An accurate forecasting method for prices and an early-warning system in the vegetable market are an urgent need in people’s daily lives. The time series price data contain both linear and nonlinear patterns. Therefore, neither a current linear forecasting nor a neural network can be adequate for modeling and predicting the time series data. The linear forecasting model cannot deal with nonlinear relationships, while the neural network model alone is not able to handle both linear and nonlinear patterns at the same time. The linear Hodrick-Prescott (H-P filter can extract the trend and cyclical components from time series data. We predict the linear and nonlinear patterns and then combine the two parts linearly to produce a forecast from the original data. This study proposes a structure of a hybrid neural network based on an H-P filter that learns the trend and seasonal patterns separately. The experiment uses vegetable prices data to evaluate the model. Comparisons with the autoregressive integrated moving average method and back propagation artificial neural network methods show that our method has higher accuracy than the others.

  16. Small-signal neural models and their applications.

    Science.gov (United States)

    Basu, Arindam

    2012-02-01

    This paper introduces the use of the concept of small-signal analysis, commonly used in circuit design, for understanding neural models. We show that neural models, varying in complexity from Hodgkin-Huxley to integrate and fire have similar small-signal models when their corresponding differential equations are close to the same bifurcation with respect to input current. Three applications of small-signal neural models are shown. First, some of the properties of cortical neurons described by Izhikevich are explained intuitively through small-signal analysis. Second, we use small-signal models for deriving parameters for a simple neural model (such as resonate and fire) from a more complicated but biophysically relevant one like Morris-Lecar. We show similarity in the subthreshold behavior of the simple and complicated model when they are close to a Hopf bifurcation and a saddle-node bifurcation. Hence, this is useful to correctly tune simple neural models for large-scale cortical simulations. Finaly, the biasing regime of a silicon ion channel is derived by comparing its small-signal model with a Hodgkin-Huxley-type model.

  17. Epigenomic Landscapes of hESC-Derived Neural Rosettes: Modeling Neural Tube Formation and Diseases.

    Science.gov (United States)

    Valensisi, Cristina; Andrus, Colin; Buckberry, Sam; Doni Jayavelu, Naresh; Lund, Riikka J; Lister, Ryan; Hawkins, R David

    2017-08-08

    We currently lack a comprehensive understanding of the mechanisms underlying neural tube formation and their contributions to neural tube defects (NTDs). Developing a model to study such a complex morphogenetic process, especially one that models human-specific aspects, is critical. Three-dimensional, human embryonic stem cell (hESC)-derived neural rosettes (NRs) provide a powerful resource for in vitro modeling of human neural tube formation. Epigenomic maps reveal enhancer elements unique to NRs relative to 2D systems. A master regulatory network illustrates that key NR properties are related to their epigenomic landscapes. We found that folate-associated DNA methylation changes were enriched within NR regulatory elements near genes involved in neural tube formation and metabolism. Our comprehensive regulatory maps offer insights into the mechanisms by which folate may prevent NTDs. Lastly, our distal regulatory maps provide a better understanding of the potential role of neurological-disorder-associated SNPs. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Predictive Abuse Detection for a PLC Smart Lighting Network Based on Automatically Created Models of Exponential Smoothing

    Directory of Open Access Journals (Sweden)

    Tomasz Andrysiak

    2017-01-01

    Full Text Available One of the basic elements of a Smart City is the urban infrastructure management system, in particular, systems of intelligent street lighting control. However, for their reliable operation, they require special care for the safety of their critical communication infrastructure. This article presents solutions for the detection of different kinds of abuses in network traffic of Smart Lighting infrastructure, realized by Power Line Communication technology. Both the structure of the examined Smart Lighting network and its elements are described. The article discusses the key security problems which have a direct impact on the correct performance of the Smart Lighting critical infrastructure. In order to detect an anomaly/attack, we proposed the usage of a statistical model to obtain forecasting intervals. Then, we calculated the value of the differences between the forecast in the estimated traffic model and its real variability so as to detect abnormal behavior (which may be symptomatic of an abuse attempt. Due to the possibility of appearance of significant fluctuations in the real network traffic, we proposed a procedure of statistical models update which is based on the criterion of interquartile spacing. The results obtained during the experiments confirmed the effectiveness of the presented misuse detection method.

  19. Numerical analysis of modeling based on improved Elman neural network.

    Science.gov (United States)

    Jie, Shao; Li, Wang; WeiSong, Zhao; YaQin, Zhong; Malekian, Reza

    2014-01-01

    A modeling based on the improved Elman neural network (IENN) is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE) varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA) with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL) model, Chebyshev neural network (CNN) model, and basic Elman neural network (BENN) model, the proposed model has better performance.

  20. Numerical Analysis of Modeling Based on Improved Elman Neural Network

    Directory of Open Access Journals (Sweden)

    Shao Jie

    2014-01-01

    Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.

  1. Neural network models of learning and categorization in multigame experiments

    Directory of Open Access Journals (Sweden)

    Davide eMarchiori

    2011-12-01

    Full Text Available Previous research has shown that regret-driven neural networks predict behavior in repeated completely mixed games remarkably well, substantially equating the performance of the most accurate established models of learning. This result prompts the question of what is the added value of modeling learning through neural networks. We submit that this modeling approach allows for models that are able to distinguish among and respond differently to different payoff structures. Moreover, the process of categorization of a game is implicitly carried out by these models, thus without the need of any external explicit theory of similarity between games. To validate our claims, we designed and ran two multigame experiments in which subjects faced, in random sequence, different instances of two completely mixed 2x2 games. Then, we tested on our experimental data two regret-driven neural network models, and compared their performance with that of other established models of learning and Nash equilibrium.

  2. Climate impact on spreading of airborne infectious diseases. Complex network based modeling of climate influences on influenza like illnesses

    Science.gov (United States)

    Brenner, Frank; Marwan, Norbert; Hoffmann, Peter

    2017-06-01

    In this study we combined a wide range of data sets to simulate the outbreak of an airborne infectious disease that is directly transmitted from human to human. The basis is a complex network whose structures are inspired by global air traffic data (from openflights.org) containing information about airports, airport locations, direct flight connections and airplane types. Disease spreading inside every node is realized with a Susceptible-Exposed-Infected-Recovered (SEIR) compartmental model. Disease transmission rates in our model are depending on the climate environment and therefore vary in time and from node to node. To implement the correlation between water vapor pressure and influenza transmission rate [J. Shaman, M. Kohn, Proc. Natl. Acad. Sci. 106, 3243 (2009)], we use global available climate reanalysis data (WATCH-Forcing-Data-ERA-Interim, WFDEI). During our sensitivity analysis we found that disease spreading dynamics are strongly depending on network properties, the climatic environment of the epidemic outbreak location, and the season during the year in which the outbreak is happening.

  3. ARTIFICIAL NEURAL NETWORK FOR MODELS OF HUMAN OPERATOR

    Directory of Open Access Journals (Sweden)

    Martin Ruzek

    2017-12-01

    Full Text Available This paper presents a new approach to mental functions modeling with the use of artificial neural networks. The artificial neural networks seems to be a promising method for the modeling of a human operator because the architecture of the ANN is directly inspired by the biological neuron. On the other hand, the classical paradigms of artificial neural networks are not suitable because they simplify too much the real processes in biological neural network. The search for a compromise between the complexity of biological neural network and the practical feasibility of the artificial network led to a new learning algorithm. This algorithm is based on the classical multilayered neural network; however, the learning rule is different. The neurons are updating their parameters in a way that is similar to real biological processes. The basic idea is that the neurons are competing for resources and the criterion to decide which neuron will survive is the usefulness of the neuron to the whole neural network. The neuron is not using "teacher" or any kind of superior system, the neuron receives only the information that is present in the biological system. The learning process can be seen as searching of some equilibrium point that is equal to a state with maximal importance of the neuron for the neural network. This position can change if the environment changes. The name of this type of learning, the homeostatic artificial neural network, originates from this idea, as it is similar to the process of homeostasis known in any living cell. The simulation results suggest that this type of learning can be useful also in other tasks of artificial learning and recognition.

  4. Neural Networks and Their Application to Air Force Personnel Modeling

    Science.gov (United States)

    1991-11-01

    breadth of techniques provides fertile ground against which to compare the results obtained with neural networks. ", Most of the models in reenlistment or...Specialties (MOSs) receiving SRBs were taken from the 1980 and 1981 Enlisted Master Files ( EMFs ). These 98 MOSs were then aggregated into 15 Career Management... mechanisms , and architectures. Neural Networks, 1(1), 17-62. Hagiwara, M. (1990). Accelerated backpropagation using unlearning based on a Hebb rule

  5. Stimulus-dependent maximum entropy models of neural population codes.

    Directory of Open Access Journals (Sweden)

    Einat Granot-Atedgi

    Full Text Available Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME model-a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population.

  6. Constitutive Modelling of INCONEL 718 using Artificial Neural Network

    Science.gov (United States)

    Abiriand Bhekisipho Twala, Olufunminiyi

    2017-08-01

    Artificial neural network is used to model INCONEL 718 in this paper. The model accounts for precipitate hardening in the alloy. The input variables for the neural network model are strain, strain rate, temperature and microstructure state. The output variable is the flow stress. The early stopping technique is combined with Bayesian regularization process in training the network. Sample and non-sample measurement data were taken from the literature. The model predictions of flow stress of the alloy are in good agreement with experimental measurements.

  7. An ART neural network model of discrimination shift learning

    NARCIS (Netherlands)

    Raijmakers, M.E.J.; Coffey, E.; Stevenson, C.; Winkel, J.; Berkeljon, A.; Taatgen, N.; van Rijn, H.

    2009-01-01

    We present an ART-based neural network model (adapted from [2]) of the development of discrimination-shift learning that models the trial-by-trial learning process in great detail. In agreement with the results of human participants (4-20 years of age) in [1] the model revealed two distinct learning

  8. Modelling Framework of a Neural Object Recognition

    Directory of Open Access Journals (Sweden)

    Aswathy K S

    2016-02-01

    Full Text Available In many industrial, medical and scientific image processing applications, various feature and pattern recognition techniques are used to match specific features in an image with a known template. Despite the capabilities of these techniques, some applications require simultaneous analysis of multiple, complex, and irregular features within an image as in semiconductor wafer inspection. In wafer inspection discovered defects are often complex and irregular and demand more human-like inspection techniques to recognize irregularities. By incorporating neural network techniques such image processing systems with much number of images can be trained until the system eventually learns to recognize irregularities. The aim of this project is to develop a framework of a machine-learning system that can classify objects of different category. The framework utilizes the toolboxes in the Matlab such as Computer Vision Toolbox, Neural Network Toolbox etc.

  9. Water Quality Modeling in Reservoirs Using Multivariate Linear Regression and Two Neural Network Models

    OpenAIRE

    Wei-Bo Chen; Wen-Cheng Liu

    2015-01-01

    In this study, two artificial neural network models (i.e., a radial basis function neural network, RBFN, and an adaptive neurofuzzy inference system approach, ANFIS) and a multilinear regression (MLR) model were developed to simulate the DO, TP, Chl a, and SD in the Mingder Reservoir of central Taiwan. The input variables of the neural network and the MLR models were determined using linear regression. The performances were evaluated using the RBFN, ANFIS, and MLR models based on statistical ...

  10. Forecast of consumer behaviour based on neural networks models comparison

    Directory of Open Access Journals (Sweden)

    Michael Štencl

    2012-01-01

    Full Text Available The aim of this article is comparison of accuracy level of forecasted values of several artificial neural network models. The comparison is performed on datasets of Czech household consumption values. Several statistical models often resolve this task with more or fewer restrictions. In previous work where models’ input conditions were not so strict and model with missing data was used (the time series didn’t contain many values we have obtained comparably good results with artificial neural networks. Two views – practical and theoretical, motivate the purpose of this study. Forecasting models for medium term prognosis of the main trends of Czech household consumption is part of the faculty research design grant MSM 6215648904/03/02 (Sub-task 5.3 which defines the practical purpose. Testing of nonlinear autoregressive artificial neural network model compared with feed-forward neural network and radial basis function neural network defines the theoretical purpose. The performance metrics of the models were evaluated using a combination of common error metrics, namely Correlation Coefficient and Mean Square Error, together with the number of epochs and/or main prediction error.

  11. Artificial neural networks modeling gene-environment interaction

    Directory of Open Access Journals (Sweden)

    Günther Frauke

    2012-05-01

    Full Text Available Abstract Background Gene-environment interactions play an important role in the etiological pathway of complex diseases. An appropriate statistical method for handling a wide variety of complex situations involving interactions between variables is still lacking, especially when continuous variables are involved. The aim of this paper is to explore the ability of neural networks to model different structures of gene-environment interactions. A simulation study is set up to compare neural networks with standard logistic regression models. Eight different structures of gene-environment interactions are investigated. These structures are characterized by penetrance functions that are based on sigmoid functions or on combinations of linear and non-linear effects of a continuous environmental factor and a genetic factor with main effect or with a masking effect only. Results In our simulation study, neural networks are more successful in modeling gene-environment interactions than logistic regression models. This outperfomance is especially pronounced when modeling sigmoid penetrance functions, when distinguishing between linear and nonlinear components, and when modeling masking effects of the genetic factor. Conclusion Our study shows that neural networks are a promising approach for analyzing gene-environment interactions. Especially, if no prior knowledge of the correct nature of the relationship between co-variables and response variable is present, neural networks provide a valuable alternative to regression methods that are limited to the analysis of linearly separable data.

  12. SCYNet. Testing supersymmetric models at the LHC with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip; Belkner, Sebastian; Hamer, Matthias [Universitaet Bonn, Bonn (Germany); Dercks, Daniel [Universitaet Hamburg, Hamburg (Germany); Keller, Tim; Kraemer, Michael; Sarrazin, Bjoern; Schuette-Engel, Jan; Tattersall, Jamie [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany)

    2017-10-15

    SCYNet (SUSY Calculating Yield Net) is a tool for testing supersymmetric models against LHC data. It uses neural network regression for a fast evaluation of the profile likelihood ratio. Two neural network approaches have been developed: one network has been trained using the parameters of the 11-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-11) as an input and evaluates the corresponding profile likelihood ratio within milliseconds. It can thus be used in global pMSSM-11 fits without time penalty. In the second approach, the neural network has been trained using model-independent signature-related objects, such as energies and particle multiplicities, which were estimated from the parameters of a given new physics model. (orig.)

  13. SCYNet: testing supersymmetric models at the LHC with neural networks

    Science.gov (United States)

    Bechtle, Philip; Belkner, Sebastian; Dercks, Daniel; Hamer, Matthias; Keller, Tim; Krämer, Michael; Sarrazin, Björn; Schütte-Engel, Jan; Tattersall, Jamie

    2017-10-01

    SCYNet (SUSY Calculating Yield Net) is a tool for testing supersymmetric models against LHC data. It uses neural network regression for a fast evaluation of the profile likelihood ratio. Two neural network approaches have been developed: one network has been trained using the parameters of the 11-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-11) as an input and evaluates the corresponding profile likelihood ratio within milliseconds. It can thus be used in global pMSSM-11 fits without time penalty. In the second approach, the neural network has been trained using model-independent signature-related objects, such as energies and particle multiplicities, which were estimated from the parameters of a given new physics model.

  14. Modelling of word usage frequency dynamics using artificial neural network

    Science.gov (United States)

    Maslennikova, Yu S.; Bochkarev, V. V.; Voloskov, D. S.

    2014-03-01

    In this paper the method for modelling of word usage frequency time series is proposed. An artificial feedforward neural network was used to predict word usage frequencies. The neural network was trained using the maximum likelihood criterion. The Google Books Ngram corpus was used for the analysis. This database provides a large amount of data on frequency of specific word forms for 7 languages. Statistical modelling of word usage frequency time series allows finding optimal fitting and filtering algorithm for subsequent lexicographic analysis and verification of frequency trend models.

  15. Data Driven Broiler Weight Forecasting using Dynamic Neural Network Models

    DEFF Research Database (Denmark)

    Johansen, Simon Vestergaard; Bendtsen, Jan Dimon; Riisgaard-Jensen, Martin

    2017-01-01

    In this article, the dynamic influence of environmental broiler house conditions and broiler growth is investigated. Dynamic neural network forecasting models have been trained on farm-scale broiler batch production data from 12 batches from the same house. The model forecasts future broiler weight...

  16. Discriminative training of self-structuring hidden control neural models

    DEFF Research Database (Denmark)

    Sørensen, Helge Bjarup Dissing; Hartmann, Uwe; Hunnerup, Preben

    1995-01-01

    This paper presents a new training algorithm for self-structuring hidden control neural (SHC) models. The SHC models were trained non-discriminatively for speech recognition applications. Better recognition performance can generally be achieved, if discriminative training is applied instead. Thus...

  17. Artificial Neural Networks for Modeling Knowing and Learning in Science.

    Science.gov (United States)

    Roth, Wolff-Michael

    2000-01-01

    Advocates artificial neural networks as models for cognition and development. Provides an example of how such models work in the context of a well-known Piagetian developmental task and school science activity: balance beam problems. (Contains 59 references.) (Author/WRM)

  18. Role of neural network models for developing speech systems

    Indian Academy of Sciences (India)

    These prosody models are further examined for applications such as text to speech synthesis, speech recognition, speaker recognition and language identification. Neural network models in voice conversion system are explored for capturing the mapping functions between source and target speakers at source, system and ...

  19. A Multi Time Scale Wind Power Forecasting Model of a Chaotic Echo State Network Based on a Hybrid Algorithm of Particle Swarm Optimization and Tabu Search

    Directory of Open Access Journals (Sweden)

    Xiaomin Xu

    2015-11-01

    Full Text Available The uncertainty and regularity of wind power generation are caused by wind resources’ intermittent and randomness. Such volatility brings severe challenges to the wind power grid. The requirements for ultrashort-term and short-term wind power forecasting with high prediction accuracy of the model used, have great significance for reducing the phenomenon of abandoned wind power , optimizing the conventional power generation plan, adjusting the maintenance schedule and developing real-time monitoring systems. Therefore, accurate forecasting of wind power generation is important in electric load forecasting. The echo state network (ESN is a new recurrent neural network composed of input, hidden layer and output layers. It can approximate well the nonlinear system and achieves great results in nonlinear chaotic time series forecasting. Besides, the ESN is simpler and less computationally demanding than the traditional neural network training, which provides more accurate training results. Aiming at addressing the disadvantages of standard ESN, this paper has made some improvements. Combined with the complementary advantages of particle swarm optimization and tabu search, the generalization of ESN is improved. To verify the validity and applicability of this method, case studies of multitime scale forecasting of wind power output are carried out to reconstruct the chaotic time series of the actual wind power generation data in a certain region to predict wind power generation. Meanwhile, the influence of seasonal factors on wind power is taken into consideration. Compared with the classical ESN and the conventional Back Propagation (BP neural network, the results verify the superiority of the proposed method.

  20. Estimation of Effectivty Connectivity via Data-Driven Neural Modeling

    Directory of Open Access Journals (Sweden)

    Dean Robert Freestone

    2014-11-01

    Full Text Available This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are able to track effective connectivity and mean membrane potential dynamics that cannot be directly measured using electrophysiological measurements alone. The ability to track the hidden aspects of neurophysiology will have a profound impact on the way we understand and treat epilepsy. For example, under the assumption the model captures the key features of the cortical circuits of interest, the framework will provide insights into seizure initiation and termination on a patient-specific basis. It will enable investigation into the effect a particular drug has on specific neural populations and connectivity structures using minimally invasive measurements. The method is based on approximating brain networks using an interconnected neural population model. The neural population model is based on a neural mass model that describes the functional activity of the brain, capturing the mesoscopic biophysics and anatomical structure. The model is made subject-specific by estimating the strength of intra-cortical connections within a region and inter-cortical connections between regions using a novel Kalman filtering method. We demonstrate through simulation how the framework can be used the track the mechanisms involved in seizure initiation and termination.

  1. On the nature, modeling, and neural bases of social ties.

    Science.gov (United States)

    van Winden, Frans; Stallen, Mirre; Ridderinkhof, K Richard

    2008-01-01

    This chapter addresses the nature, formalization, and neural bases of (affective) social ties and discusses the relevance of ties for health economics. A social tie is defined as an affective weight attached by an individual to the well-being of another individual ('utility interdependence'). Ties can be positive or negative, and symmetric or asymmetric between individuals. Characteristic of a social tie, as conceived of here, is that it develops over time under the influence of interaction, in contrast with a trait like altruism. Moreover, a tie is not related to strategic behavior such as reputation formation but seen as generated by affective responses. A formalization is presented together with some supportive evidence from behavioral experiments. This is followed by a discussion of related psychological constructs and the presentation of suggestive existing neural findings. To help prepare the grounds for a model-based neural analysis some speculations on the neural networks involved are provided, together with suggestions for future research. Social ties are not only found to be important from an economic viewpoint, it is also shown that they can be modeled and related to neural substrates. By providing an overview of the economic research on social ties and connecting it with the broader behavioral and neuroeconomics literature, the chapter may contribute to the development of a neuroeconomics of social ties.

  2. Modeling brain resonance phenomena using a neural mass model.

    Directory of Open Access Journals (Sweden)

    Andreas Spiegler

    2011-12-01

    Full Text Available Stimulation with rhythmic light flicker (photic driving plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect.

  3. Modeling of methane emissions using artificial neural network approach

    Directory of Open Access Journals (Sweden)

    Stamenković Lidija J.

    2015-01-01

    Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007

  4. Advanced models of neural networks nonlinear dynamics and stochasticity in biological neurons

    CERN Document Server

    Rigatos, Gerasimos G

    2015-01-01

    This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

  5. Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations

    Science.gov (United States)

    Holca-Lamarre, Raphaël; Lücke, Jörg; Obermayer, Klaus

    2017-01-01

    Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates. PMID:28690509

  6. Aplication of artificial neural network model in aviation specialist training

    Directory of Open Access Journals (Sweden)

    Висиль Миколайович Казак

    2016-02-01

    Full Text Available This paper reviews the application of artificial neural network (ANN model in aviation specialist training. The ANN model is based on the dependence of residual knowledge of subjects of study on their individual abilities. The residual knowledge is the skills acquired by the subject before he is going for an occupation.  The presented ANN model gives the possibility to predict the level of professional training of the specialists with high accuracy

  7. THE USE OF NEURAL NETWORK TECHNOLOGY TO MODEL SWIMMING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    António José Silva

    2007-03-01

    Full Text Available The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility, swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports

  8. A hyperstable neural network for the modelling and control of ...

    Indian Academy of Sciences (India)

    A multivariable hyperstable robust adaptive decoupling control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure. The Popov theorem is used in the design of the controller. The modelling errors, coupling action and other ...

  9. A Constructive Neural-Network Approach to Modeling Psychological Development

    Science.gov (United States)

    Shultz, Thomas R.

    2012-01-01

    This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…

  10. Introducing Artificial Neural Networks through a Spreadsheet Model

    Science.gov (United States)

    Rienzo, Thomas F.; Athappilly, Kuriakose K.

    2012-01-01

    Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…

  11. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    Science.gov (United States)

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  12. Pragmatic Bootstrapping: A Neural Network Model of Vocabulary Acquisition

    Science.gov (United States)

    Caza, Gregory A.; Knott, Alistair

    2012-01-01

    The social-pragmatic theory of language acquisition proposes that children only become efficient at learning the meanings of words once they acquire the ability to understand the intentions of other agents, in particular the intention to communicate (Akhtar & Tomasello, 2000). In this paper we present a neural network model of word learning which…

  13. Particle swarm optimization of a neural network model in a ...

    Indian Academy of Sciences (India)

    sets of cutting conditions and noting the root mean square (RMS) value of spindle motor current as well as ... A multi- objective optimization of hard turning using neural network modelling and swarm intelligence ... being used in this study), and these activated values in turn become the starting signals for the next adjacent ...

  14. A Neural Network Model for Dynamics Simulation | Bholoa ...

    African Journals Online (AJOL)

    University of Mauritius Research Journal. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 15, No 1 (2009) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. A Neural Network Model for Dynamics Simulation. Ajeevsing ...

  15. Improved neural network modeling of inverse lens distortion

    CSIR Research Space (South Africa)

    De Villiers, JP

    2011-04-01

    Full Text Available Inverse lens distortion modelling allows one to find the pixel in a distorted image which corresponds to a known point in object space, such as may be produced by a RADAR. This paper extends recent work using neural networks as a compromise between...

  16. Dynamic causal models of neural system dynamics: current state ...

    Indian Academy of Sciences (India)

    2006-09-28

    Sep 28, 2006 ... Keywords. Dynamic causal modelling; EEG; effective connectivity; event-related potentials; fMRI; neural system ... In this article, we review the conceptual and mathematical basis of DCM and its implementation for functional magnetic resonance imaging data and event-related potentials. After introducing ...

  17. A model of interval timing by neural integration

    Science.gov (United States)

    Simen, Patrick; Balci, Fuat; deSouza, Laura; Cohen, Jonathan D.; Holmes, Philip

    2011-01-01

    We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our assumptions include: that neural spike trains are approximately independent Poisson processes; that correlations among them can be largely cancelled by balancing excitation and inhibition; that neural populations can act as integrators; and that the objective of timed behavior is maximal accuracy and minimal variance. The model accounts for a variety of physiological and behavioral findings in rodents, monkeys and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards, and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid (potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule’s predictions regarding learning speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both types of behavior. PMID:21697374

  18. Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction

    Directory of Open Access Journals (Sweden)

    Ayodele Ariyo Adebiyi

    2014-01-01

    Full Text Available This paper examines the forecasting performance of ARIMA and artificial neural networks model with published stock data obtained from New York Stock Exchange. The empirical results obtained reveal the superiority of neural networks model over ARIMA model. The findings further resolve and clarify contradictory opinions reported in literature over the superiority of neural networks and ARIMA model and vice versa.

  19. HIV lipodystrophy case definition using artificial neural network modelling

    DEFF Research Database (Denmark)

    Ioannidis, John P A; Trikalinos, Thomas A; Law, Matthew

    2003-01-01

    OBJECTIVE: A case definition of HIV lipodystrophy has recently been developed from a combination of clinical, metabolic and imaging/body composition variables using logistic regression methods. We aimed to evaluate whether artificial neural networks could improve the diagnostic accuracy. METHODS......: The database of the case-control Lipodystrophy Case Definition Study was split into 504 subjects (265 with and 239 without lipodystrophy) used for training and 284 independent subjects (152 with and 132 without lipodystrophy) used for validation. Back-propagation neural networks with one or two middle layers...... were trained and validated. Results were compared against logistic regression models using the same information. RESULTS: Neural networks using clinical variables only (41 items) achieved consistently superior performance than logistic regression in terms of specificity, overall accuracy and area under...

  20. Product Cost Management Structures: a review and neural network modelling

    Directory of Open Access Journals (Sweden)

    P. Jha

    2003-11-01

    Full Text Available This paper reviews the growth of approaches in product costing and draws synergies with information management and resource planning systems, to investigate potential application of state of the art modelling techniques of neural networks. Increasing demands on costing systems to serve multiple decision-making objectives, have made it essential to use better techniques for analysis of available data. This need is highlighted in the paper. The approach of neural networks, which have several analogous facets to complement and aid the information demands of modern product costing, Enterprise Resource Planning (ERP structures and the dominant-computing environment (for information management in the object oriented paradigm form the domain for investigation. Simulated data is used in neural network applications across activities that consume resources and deliver products, to generate information for monitoring and control decisions. The results in application for feature extraction and variation detection and their implications are presented in the paper.

  1. Neural network versus classical time series forecasting models

    Science.gov (United States)

    Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam

    2017-05-01

    Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.

  2. Statistical modelling of neural networks in {gamma}-spectrometry applications

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, V.; Martinez, J.M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Morel, J.; Lepy, M.C. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Applications et de la Metrologie des Rayonnements Ionisants

    1995-12-31

    Layered Neural Networks, which are a class of models based on neural computation, are applied to the measurement of uranium enrichment, i.e. the isotope ratio {sup 235} U/({sup 235} U + {sup 236} U + {sup 238} U). The usual method consider a limited number of {Gamma}-ray and X-ray peaks, and require previously calibrated instrumentation for each sample. But, in practice, the source-detector ensemble geometry conditions are critically different, thus a means of improving the above convention methods is to reduce the region of interest: this is possible by focusing on the K{sub {alpha}} X region where the three elementary components are present. Real data are used to study the performance of neural networks. Training is done with a Maximum Likelihood method to measure uranium {sup 235} U and {sup 238} U quantities in infinitely thick samples. (authors). 18 refs., 6 figs., 3 tabs.

  3. Evolution of Neural Dynamics in an Ecological Model

    Directory of Open Access Journals (Sweden)

    Steven Williams

    2017-07-01

    Full Text Available What is the optimal level of chaos in a computational system? If a system is too chaotic, it cannot reliably store information. If it is too ordered, it cannot transmit information. A variety of computational systems exhibit dynamics at the “edge of chaos”, the transition between the ordered and chaotic regimes. In this work, we examine the evolved neural networks of Polyworld, an artificial life model consisting of a simulated ecology populated with biologically inspired agents. As these agents adapt to their environment, their initially simple neural networks become increasingly capable of exhibiting rich dynamics. Dynamical systems analysis reveals that natural selection drives these networks toward the edge of chaos until the agent population is able to sustain itself. After this point, the evolutionary trend stabilizes, with neural dynamics remaining on average significantly far from the transition to chaos.

  4. A continuous-time neural model for sequential action.

    Science.gov (United States)

    Kachergis, George; Wyatte, Dean; O'Reilly, Randall C; de Kleijn, Roy; Hommel, Bernhard

    2014-11-05

    Action selection, planning and execution are continuous processes that evolve over time, responding to perceptual feedback as well as evolving top-down constraints. Existing models of routine sequential action (e.g. coffee- or pancake-making) generally fall into one of two classes: hierarchical models that include hand-built task representations, or heterarchical models that must learn to represent hierarchy via temporal context, but thus far lack goal-orientedness. We present a biologically motivated model of the latter class that, because it is situated in the Leabra neural architecture, affords an opportunity to include both unsupervised and goal-directed learning mechanisms. Moreover, we embed this neurocomputational model in the theoretical framework of the theory of event coding (TEC), which posits that actions and perceptions share a common representation with bidirectional associations between the two. Thus, in this view, not only does perception select actions (along with task context), but actions are also used to generate perceptions (i.e. intended effects). We propose a neural model that implements TEC to carry out sequential action control in hierarchically structured tasks such as coffee-making. Unlike traditional feedforward discrete-time neural network models, which use static percepts to generate static outputs, our biological model accepts continuous-time inputs and likewise generates non-stationary outputs, making short-timescale dynamic predictions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. A neural model of decision making

    OpenAIRE

    Larsen, Torben

    2008-01-01

    Background: A descriptive neuroeconomic model is aimed for relativity of the concept of economic man to empirical science.Method: A 4-level client-server-integrator model integrating the brain models of McLean and Luria is the general framework for the model of empirical findings.Results: Decision making relies on integration across brain levels of emotional intelligence (LU) and logico-matematico intelligence (RIA), respectively. The integrated decision making formula approaching zero by bot...

  6. Distributed Recurrent Neural Forward Models with Neural Control for Complex Locomotion in Walking Robots

    DEFF Research Database (Denmark)

    Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin

    2015-01-01

    Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental...... conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain...... a variety of movements, the neural mechanisms generate movements while making appropriate predictions crucial for achieving adaptation. Such predictions or planning ahead can be achieved by way of internal models that are grounded in the overall behavior of the animal. Inspired by these findings, we present...

  7. NNSYSID and NNCTRL Tools for system identification and control with neural networks

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad

    2001-01-01

    a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview...

  8. NNSYSID and NNCTRL Tools for system identification and control with neural networks

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad

    2001-01-01

    choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can...

  9. Building footprint extraction from digital surface models using neural networks

    Science.gov (United States)

    Davydova, Ksenia; Cui, Shiyong; Reinartz, Peter

    2016-10-01

    Two-dimensional building footprints are a basis for many applications: from cartography to three-dimensional building models generation. Although, many methodologies have been proposed for building footprint extraction, this topic remains an open research area. Neural networks are able to model the complex relationships between the multivariate input vector and the target vector. Based on these abilities we propose a methodology using neural networks and Markov Random Fields (MRF) for automatic building footprint extraction from normalized Digital Surface Model (nDSM) and satellite images within urban areas. The proposed approach has mainly two steps. In the first step, the unary terms are learned for the MRF energy function by a four-layer neural network. The neural network is learned on a large set of patches consisting of both nDSM and Normalized Difference Vegetation Index (NDVI). Then prediction is performed to calculate the unary terms that are used in the MRF. In the second step, the energy function is minimized using a maxflow algorithm, which leads to a binary building mask. The building extraction results are compared with available ground truth. The comparison illustrates the efficiency of the proposed algorithm which can extract approximately 80% of buildings from nDSM with high accuracy.

  10. An integrated modelling framework for neural circuits with multiple neuromodulators.

    Science.gov (United States)

    Joshi, Alok; Youssofzadeh, Vahab; Vemana, Vinith; McGinnity, T M; Prasad, Girijesh; Wong-Lin, KongFatt

    2017-01-01

    Neuromodulators are endogenous neurochemicals that regulate biophysical and biochemical processes, which control brain function and behaviour, and are often the targets of neuropharmacological drugs. Neuromodulator effects are generally complex partly owing to the involvement of broad innervation, co-release of neuromodulators, complex intra- and extrasynaptic mechanism, existence of multiple receptor subtypes and high interconnectivity within the brain. In this work, we propose an efficient yet sufficiently realistic computational neural modelling framework to study some of these complex behaviours. Specifically, we propose a novel dynamical neural circuit model that integrates the effective neuromodulator-induced currents based on various experimental data (e.g. electrophysiology, neuropharmacology and voltammetry). The model can incorporate multiple interacting brain regions, including neuromodulator sources, simulate efficiently and easily extendable to large-scale brain models, e.g. for neuroimaging purposes. As an example, we model a network of mutually interacting neural populations in the lateral hypothalamus, dorsal raphe nucleus and locus coeruleus, which are major sources of neuromodulator orexin/hypocretin, serotonin and norepinephrine/noradrenaline, respectively, and which play significant roles in regulating many physiological functions. We demonstrate that such a model can provide predictions of systemic drug effects of the popular antidepressants (e.g. reuptake inhibitors), neuromodulator antagonists or their combinations. Finally, we developed user-friendly graphical user interface software for model simulation and visualization for both fundamental sciences and pharmacological studies. © 2017 The Authors.

  11. Modeling of surface dust concentrations using neural networks and kriging

    Science.gov (United States)

    Buevich, Alexander G.; Medvedev, Alexander N.; Sergeev, Alexander P.; Tarasov, Dmitry A.; Shichkin, Andrey V.; Sergeeva, Marina V.; Atanasova, T. B.

    2016-12-01

    Creating models which are able to accurately predict the distribution of pollutants based on a limited set of input data is an important task in environmental studies. In the paper two neural approaches: (multilayer perceptron (MLP)) and generalized regression neural network (GRNN)), and two geostatistical approaches: (kriging and cokriging), are using for modeling and forecasting of dust concentrations in snow cover. The area of study is under the influence of dust emissions from a copper quarry and a several industrial companies. The comparison of two mentioned approaches is conducted. Three indices are used as the indicators of the models accuracy: the mean absolute error (MAE), root mean square error (RMSE) and relative root mean square error (RRMSE). Models based on artificial neural networks (ANN) have shown better accuracy. When considering all indices, the most precision model was the GRNN, which uses as input parameters for modeling the coordinates of sampling points and the distance to the probable emissions source. The results of work confirm that trained ANN may be more suitable tool for modeling of dust concentrations in snow cover.

  12. Recursive Bayesian recurrent neural networks for time-series modeling.

    Science.gov (United States)

    Mirikitani, Derrick T; Nikolaev, Nikolay

    2010-02-01

    This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.

  13. Current approaches to model extracellular electrical neural microstimulation

    Directory of Open Access Journals (Sweden)

    Sébastien eJoucla

    2014-02-01

    Full Text Available Nowadays, high-density microelectrode arrays provide unprecedented possibilities to precisely activate spatially well-controlled central nervous system (CNS areas. However, this requires optimizing stimulating devices, which in turn requires a good understanding of the effects of microstimulation on cells and tissues. In this context, modeling approaches provide flexible ways to predict the outcome of electrical stimulation in terms of CNS activation. In this paper, we present state-of-the-art modeling methods with sufficient details to allow the reader to rapidly build numerical models of neuronal extracellular microstimulation. These include 1 the computation of the electrical potential field created by the stimulation in the tissue, and 2 the response of a target neuron to this field. Two main approaches are described: First we describe the classical hybrid approach that combines the finite element modeling of the potential field with the calculation of the neuron’s response in a cable equation framework (compartmentalized neuron models. Then, we present a whole finite element approach allows the simultaneous calculation of the extracellular and intracellular potentials, by representing the neuronal membrane with a thin-film approximation. This approach was previously introduced in the frame of neural recording, but has never been implemented to determine the effect of extracellular stimulation on the neural response at a sub-compartment level. Here, we show on an example that the latter modeling scheme can reveal important sub-compartment behavior of the neural membrane that cannot be resolved using the hybrid approach. The goal of this paper is also to describe in detail the practical implementation of these methods to allow the reader to easily build new models using standard software packages. These modeling paradigms, depending on the situation, should help build more efficient high-density neural prostheses for CNS rehabilitation.

  14. A scale-free neural network for modelling neurogenesis

    Science.gov (United States)

    Perotti, Juan I.; Tamarit, Francisco A.; Cannas, Sergio A.

    2006-11-01

    In this work we introduce a neural network model for associative memory based on a diluted Hopfield model, which grows through a neurogenesis algorithm that guarantees that the final network is a small-world and scale-free one. We also analyze the storage capacity of the network and prove that its performance is larger than that measured in a randomly dilute network with the same connectivity.

  15. PEM Fuel Cell Modelling Using Artificial Neural Networks

    OpenAIRE

    Doumbia, Mamadou Lamine

    2016-01-01

    Fuel cells are electrochemical devices that convert the chemical energy of a reaction directly into dc electrical energy. Proton Exchange Membrane (PEM) fuel cell is a suitable alternative for both electrical transportation and stationary applications. In this article, an Artificial Neural Network (ANN) modelling approach of a PEM fuel cell is developed. This model describes the behaviour of PEM fuel cell voltage under both steady-state and transient conditions. Moreover, the prediction of th...

  16. modeling of modeling of reservoir in reservoir in artificial neu

    African Journals Online (AJOL)

    eobe

    the three hydropower reser parameters parameters and Artificial rtificial rtificial Neural Network (ANN) eural Network (ANN) and the modeled reservoir inflow .... MODELING OF RESERVOIR INFLOW FOR HYDROPOWER DAMS USING ARTIFICIAL NEURAL NETWORK ..... Based Model of an Industrial Oil-Fired Boiler”.

  17. A neural click model for web search

    NARCIS (Netherlands)

    Borisov, A.; Markov, I.; de Rijke, M.; Serdyukov, P.

    2016-01-01

    Understanding user browsing behavior in web search is key to improving web search effectiveness. Many click models have been proposed to explain or predict user clicks on search engine results. They are based on the probabilistic graphical model (PGM) framework, in which user behavior is represented

  18. Internal models and neural computation in the vestibular system.

    Science.gov (United States)

    Green, Andrea M; Angelaki, Dora E

    2010-01-01

    The vestibular system is vital for motor control and spatial self-motion perception. Afferents from the otolith organs and the semicircular canals converge with optokinetic, somatosensory and motor-related signals in the vestibular nuclei, which are reciprocally interconnected with the vestibulocerebellar cortex and deep cerebellar nuclei. Here, we review the properties of the many cell types in the vestibular nuclei, as well as some fundamental computations implemented within this brainstem-cerebellar circuitry. These include the sensorimotor transformations for reflex generation, the neural computations for inertial motion estimation, the distinction between active and passive head movements, as well as the integration of vestibular and proprioceptive information for body motion estimation. A common theme in the solution to such computational problems is the concept of internal models and their neural implementation. Recent studies have shed new insights into important organizational principles that closely resemble those proposed for other sensorimotor systems, where their neural basis has often been more difficult to identify. As such, the vestibular system provides an excellent model to explore common neural processing strategies relevant both for reflexive and for goal-directed, voluntary movement as well as perception.

  19. A neural model of decision making

    DEFF Research Database (Denmark)

    Larsen, Torben

    2008-01-01

    a range of 4-7 Hz) [Sauseng et al, 2006]. See, elaborated description at L4. Thalamo-cortico integration The characteristic resting pattern of the brain is α-waves in the 8-12 Hz/s band which indicates an autogenic cortical reset originated in Thalamus (α%) [Hanslmayr et al, 2007]. The dynamics......Background: A descriptive neuroeconomic model is aimed for relativity of the concept of economic man to empirical science. Method: A 4-level client-server-integrator model integrating the brain models of McLean and Luria is the general framework for the model of empirical findings. Results......: Decision making relies on integration across brain levels of emotional intelligence (LU) and logico-matematico intelligence (RIA), respectively. The integrated decision making formula approaching zero by bottom-up emotional and  frontoparietal-downward logico-matematico learning is: CONC := LU...

  20. A neural network model of attention-modulated neurodynamics.

    Science.gov (United States)

    Gu, Yuqiao; Liljenström, Hans

    2007-12-01

    Visual attention appears to modulate cortical neurodynamics and synchronization through various cholinergic mechanisms. In order to study these mechanisms, we have developed a neural network model of visual cortex area V4, based on psychophysical, anatomical and physiological data. With this model, we want to link selective visual information processing to neural circuits within V4, bottom-up sensory input pathways, top-down attention input pathways, and to cholinergic modulation from the prefrontal lobe. We investigate cellular and network mechanisms underlying some recent analytical results from visual attention experimental data. Our model can reproduce the experimental findings that attention to a stimulus causes increased gamma-frequency synchronization in the superficial layers. Computer simulations and STA power analysis also demonstrate different effects of the different cholinergic attention modulation action mechanisms.