WorldWideScience

Sample records for neural network predictions

  1. Neural Networks for protein Structure Prediction

    DEFF Research Database (Denmark)

    Bohr, Henrik

    1998-01-01

    This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...

  2. Person Movement Prediction Using Neural Networks

    OpenAIRE

    Vintan, Lucian; Gellert, Arpad; Petzold, Jan; Ungerer, Theo

    2006-01-01

    Ubiquitous systems use context information to adapt appliance behavior to human needs. Even more convenience is reached if the appliance foresees the user's desires and acts proactively. This paper proposes neural prediction techniques to anticipate a person's next movement. We focus on neural predictors (multi-layer perceptron with back-propagation learning) with and without pre-training. The optimal configuration of the neural network is determined by evaluating movement sequences of real p...

  3. Based on BP Neural Network Stock Prediction

    Science.gov (United States)

    Liu, Xiangwei; Ma, Xin

    2012-01-01

    The stock market has a high profit and high risk features, on the stock market analysis and prediction research has been paid attention to by people. Stock price trend is a complex nonlinear function, so the price has certain predictability. This article mainly with improved BP neural network (BPNN) to set up the stock market prediction model, and…

  4. Blood glucose prediction using neural network

    Science.gov (United States)

    Soh, Chit Siang; Zhang, Xiqin; Chen, Jianhong; Raveendran, P.; Soh, Phey Hong; Yeo, Joon Hock

    2008-02-01

    We used neural network for blood glucose level determination in this study. The data set used in this study was collected using a non-invasive blood glucose monitoring system with six laser diodes, each laser diode operating at distinct near infrared wavelength between 1500nm and 1800nm. The neural network is specifically used to determine blood glucose level of one individual who participated in an oral glucose tolerance test (OGTT) session. Partial least squares regression is also used for blood glucose level determination for the purpose of comparison with the neural network model. The neural network model performs better in the prediction of blood glucose level as compared with the partial least squares model.

  5. Artificial neural network intelligent method for prediction

    Science.gov (United States)

    Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi

    2017-09-01

    Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.

  6. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  7. Time series prediction with simple recurrent neural networks ...

    African Journals Online (AJOL)

    Simple recurrent neural networks are widely used in time series prediction. Most researchers and application developers often choose arbitrarily between Elman or Jordan simple recurrent neural networks for their applications. A hybrid of the two called Elman-Jordan (or Multi-recurrent) neural network is also being used.

  8. Stock Price Prediction Based on Procedural Neural Networks

    OpenAIRE

    Jiuzhen Liang; Wei Song; Mei Wang

    2011-01-01

    We present a spatiotemporal model, namely, procedural neural networks for stock price prediction. Compared with some successful traditional models on simulating stock market, such as BNN (backpropagation neural networks, HMM (hidden Markov model) and SVM (support vector machine)), the procedural neural network model processes both spacial and temporal information synchronously without slide time window, which is typically used in the well-known recurrent neural networks. Two differen...

  9. Feedforward Backpropagation Neural Networks in Prediction of Farmer Risk Preferences

    OpenAIRE

    Kastens, Terry L.; Featherstone, Allen M.

    1996-01-01

    An out-of-sample prediction of Kansas farmers' responses to five surveyed questions involving risk is used to compare ordered multinomial logistic regression models with feedforward backpropagation neural network models. Although the logistic models often predict more accurately than the neural network models in a mean-squared error sense, the neural network models are shown to be more accommodating of loss functions associated with a desire to predict certain combinations of categorical resp...

  10. Prediction of surface distress using neural networks

    Science.gov (United States)

    Hamdi, Hadiwardoyo, Sigit P.; Correia, A. Gomes; Pereira, Paulo; Cortez, Paulo

    2017-06-01

    Road infrastructures contribute to a healthy economy throughout a sustainable distribution of goods and services. A road network requires appropriately programmed maintenance treatments in order to keep roads assets in good condition, providing maximum safety for road users under a cost-effective approach. Surface Distress is the key element to identify road condition and may be generated by many different factors. In this paper, a new approach is aimed to predict Surface Distress Index (SDI) values following a data-driven approach. Later this model will be accordingly applied by using data obtained from the Integrated Road Management System (IRMS) database. Artificial Neural Networks (ANNs) are used to predict SDI index using input variables related to the surface of distress, i.e., crack area and width, pothole, rutting, patching and depression. The achieved results show that ANN is able to predict SDI with high correlation factor (R2 = 0.996%). Moreover, a sensitivity analysis was applied to the ANN model, revealing the influence of the most relevant input parameters for SDI prediction, namely rutting (59.8%), crack width (29.9%) and crack area (5.0%), patching (3.0%), pothole (1.7%) and depression (0.3%).

  11. Wave transmission prediction of multilayer floating breakwater using neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Patil, S.G.; Hegde, A.V.

    in unison to solve a specific problem. The network learns through examples, so it requires good examples to train properly and further a trained network model can be used for prediction purpose. Proceedings of ICOE 2009 Wave transmission... prediction of multilayer floating breakwater using neural network 577 In order to allow the network to learn both non-linear and linear relationships between input nodes and output nodes, multiple-layer neural networks are often used...

  12. Network traffic anomaly prediction using Artificial Neural Network

    Science.gov (United States)

    Ciptaningtyas, Hening Titi; Fatichah, Chastine; Sabila, Altea

    2017-03-01

    As the excessive increase of internet usage, the malicious software (malware) has also increase significantly. Malware is software developed by hacker for illegal purpose(s), such as stealing data and identity, causing computer damage, or denying service to other user[1]. Malware which attack computer or server often triggers network traffic anomaly phenomena. Based on Sophos's report[2], Indonesia is the riskiest country of malware attack and it also has high network traffic anomaly. This research uses Artificial Neural Network (ANN) to predict network traffic anomaly based on malware attack in Indonesia which is recorded by Id-SIRTII/CC (Indonesia Security Incident Response Team on Internet Infrastructure/Coordination Center). The case study is the highest malware attack (SQL injection) which has happened in three consecutive years: 2012, 2013, and 2014[4]. The data series is preprocessed first, then the network traffic anomaly is predicted using Artificial Neural Network and using two weight update algorithms: Gradient Descent and Momentum. Error of prediction is calculated using Mean Squared Error (MSE) [7]. The experimental result shows that MSE for SQL Injection is 0.03856. So, this approach can be used to predict network traffic anomaly.

  13. Forex Market Prediction Using NARX Neural Network with Bagging

    Directory of Open Access Journals (Sweden)

    Shahbazi Nima

    2016-01-01

    Full Text Available We propose a new methodfor predicting movements in Forex market based on NARX neural network withtime shifting bagging techniqueand financial indicators, such as relative strength index and stochastic indicators. Neural networks have prominent learning ability but they often exhibit bad and unpredictable performance for noisy data. When compared with the static neural networks, our method significantly reducesthe error rate of the responseandimproves the performance of the prediction. We tested three different types ofarchitecture for predicting the response and determined the best network approach. We applied our method to prediction the hourly foreign exchange rates and found remarkable predictability in comprehensive experiments with 2 different foreign exchange rates (GBPUSD and EURUSD.

  14. Permeability prediction in shale gas reservoirs using Neural Network

    Science.gov (United States)

    Aliouane, Leila; Ouadfeul, Sid-Ali

    2017-04-01

    Here, we suggest the use of the artificial neural network for permeability prediction in shale gas reservoirs using artificial neural network. Prediction of Permeability in shale gas reservoirs is a complicated task that requires new models where Darcy's fluid flow model is not suitable. Proposed idea is based on the training of neural network machine using the set of well-logs data as an input and the measured permeability as an output. In this case the Multilayer Perceptron neural network machines is used with Levenberg Marquardt algorithm. Application to two horizontal wells drilled in the Barnett shale formation exhibit the power of neural network model to resolve such as problem. Keywords: Artificial neural network, permeability, prediction , shale gas.

  15. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

    Science.gov (United States)

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423

  16. Prediction of Parametric Roll Resonance by Multilayer Perceptron Neural Network

    DEFF Research Database (Denmark)

    Míguez González, M; López Peña, F.; Díaz Casás, V.

    2011-01-01

    acknowledged in the last few years. This work proposes a prediction system based on a multilayer perceptron (MP) neural network. The training and testing of the MP network is accomplished by feeding it with simulated data of a three degrees-of-freedom nonlinear model of a fishing vessel. The neural network...

  17. Using Neural Networks to Predict MBA Student Success

    Science.gov (United States)

    Naik, Bijayananda; Ragothaman, Srinivasan

    2004-01-01

    Predicting MBA student performance for admission decisions is crucial for educational institutions. This paper evaluates the ability of three different models--neural networks, logit, and probit to predict MBA student performance in graduate programs. The neural network technique was used to classify applicants into successful and marginal student…

  18. Artificial neural networks for prediction of percentage of water ...

    Indian Academy of Sciences (India)

    According to these input parameters, in the neural networks model, the percentage of water absorption of each specimen was predicted. The training and testing results in the neural networks model have shown a strong potential for predicting the percentage of water absorption of the geopolymer specimens.

  19. Predicting Expressive Dynamics in Piano Performances using Neural Networks

    NARCIS (Netherlands)

    van Herwaarden, Sam; Grachten, Maarten; de Haas, W. Bas

    2014-01-01

    This paper presents a model for predicting expressive accentuation in piano performances with neural networks. Using Restricted Boltzmann Machines (RBMs), features are learned from performance data, after which these features are used to predict performed loudness. During feature learning, data

  20. Artificial neural networks in predicting current in electric arc furnaces

    Science.gov (United States)

    Panoiu, M.; Panoiu, C.; Iordan, A.; Ghiormez, L.

    2014-03-01

    The paper presents a study of the possibility of using artificial neural networks for the prediction of the current and the voltage of Electric Arc Furnaces. Multi-layer perceptron and radial based functions Artificial Neural Networks implemented in Matlab were used. The study is based on measured data items from an Electric Arc Furnace in an industrial plant in Romania.

  1. Domestic Heat Demand Prediction using Neural Networks

    NARCIS (Netherlands)

    Bakker, Vincent; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2008-01-01

    By combining a cluster of microCHP appliances, a virtual power plant can be formed. To use such a virtual power plant, a good heat demand prediction of individual households is needed since the heat demand determines the production capacity. In this paper we present the results of using neural

  2. Financial time series prediction using spiking neural networks.

    Directory of Open Access Journals (Sweden)

    David Reid

    Full Text Available In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.

  3. Predicting local field potentials with recurrent neural networks.

    Science.gov (United States)

    Kim, Louis; Harer, Jacob; Rangamani, Akshay; Moran, James; Parks, Philip D; Widge, Alik; Eskandar, Emad; Dougherty, Darin; Chin, Sang Peter

    2016-08-01

    We present a Recurrent Neural Network using LSTM (Long Short Term Memory) that is capable of modeling and predicting Local Field Potentials. We train and test the network on real data recorded from epilepsy patients. We construct networks that predict multi-channel LFPs for 1, 10, and 100 milliseconds forward in time. Our results show that prediction using LSTM outperforms regression when predicting 10 and 100 millisecond forward in time.

  4. Using machine learning, neural networks and statistics to predict bankruptcy

    NARCIS (Netherlands)

    Pompe, P.P.M.; Feelders, A.J.; Feelders, A.J.

    1997-01-01

    Recent literature strongly suggests that machine learning approaches to classification outperform "classical" statistical methods. We make a comparison between the performance of linear discriminant analysis, classification trees, and neural networks in predicting corporate bankruptcy. Linear

  5. Ocean wave prediction using numerical and neural network models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...

  6. Neural Network Algorithm for Prediction of Secondary Protein Structure

    National Research Council Canada - National Science Library

    Zikrija Avdagic; Elvir Purisevic; Emir Buza; Zlatan Coralic

    2009-01-01

    .... In this paper we describe the method and results of using CB513 as a dataset suitable for development of artificial neural network algorithms for prediction of secondary protein structure with MATLAB...

  7. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2016-01-01

    (ERNN, the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.

  8. Combining neural networks for protein secondary structure prediction

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1995-01-01

    In this paper structured neural networks are applied to the problem of predicting the secondary structure of proteins. A hierarchical approach is used where specialized neural networks are designed for each structural class and then combined using another neural network. The submodels are designed...... by using a priori knowledge of the mapping between protein building blocks and the secondary structure and by using weight sharing. Since none of the individual networks have more than 600 adjustable weights over-fitting is avoided. When ensembles of specialized experts are combined the performance...

  9. Classification-based Financial Markets Prediction using Deep Neural Networks

    OpenAIRE

    Dixon, Matthew; Klabjan, Diego; Bang, Jin Hoon

    2016-01-01

    Deep neural networks (DNNs) are powerful types of artificial neural networks (ANNs) that use several hidden layers. They have recently gained considerable attention in the speech transcription and image recognition community (Krizhevsky et al., 2012) for their superior predictive properties including robustness to overfitting. However their application to algorithmic trading has not been previously researched, partly because of their computational complexity. This paper describes the applicat...

  10. Neural network definitions of highly predictable protein secondary structure classes

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A. [Los Alamos National Lab., NM (United States)]|[Santa Fe Inst., NM (United States); Steeg, E. [Toronto Univ., ON (Canada). Dept. of Computer Science; Farber, R. [Los Alamos National Lab., NM (United States)

    1994-02-01

    We use two co-evolving neural networks to determine new classes of protein secondary structure which are significantly more predictable from local amino sequence than the conventional secondary structure classification. Accurate prediction of the conventional secondary structure classes: alpha helix, beta strand, and coil, from primary sequence has long been an important problem in computational molecular biology. Neural networks have been a popular method to attempt to predict these conventional secondary structure classes. Accuracy has been disappointingly low. The algorithm presented here uses neural networks to similtaneously examine both sequence and structure data, and to evolve new classes of secondary structure that can be predicted from sequence with significantly higher accuracy than the conventional classes. These new classes have both similarities to, and differences with the conventional alpha helix, beta strand and coil.

  11. Neural network for prediction of superheater fireside corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Makkonen, P. [Foster Wheeler Energia Oy, Karhula R and D Center, Karhula (Finland)

    1998-12-31

    Superheater corrosion causes vast annual losses to the power companies. If the corrosion could be reliably predicted, new power plants could be designed accordingly, and knowledge of fuel selection and determination of process conditions could be utilized to minimize superheater corrosion. If relations between inputs and the output are poorly known, conventional models depending on corrosion theories will fail. A prediction model based on a neural network is capable of learning from errors and improving its performance as the amount of data increases. The neural network developed during this study predicts superheater corrosion with 80 % accuracy at early stage of the project. (orig.) 10 refs.

  12. System Identification, Prediction, Simulation and Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    a Gauss-Newton search direction is applied. 3) Amongst numerous model types, often met in control applications, only the Non-linear ARMAX (NARMAX) model, representing input/output description, is examined. A simulated example confirms that a neural network has the potential to perform excellent System...... Identification, Prediction, Simulation and Control of a dynamic, non-linear and noisy process. Further, the difficulties to control a practical non-linear laboratory process in a satisfactory way by using a traditional controller are overcomed by using a trained neural network to perform non-linear System......The intention of this paper is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...

  13. Stock market price prediction using artificial neural network: an ...

    African Journals Online (AJOL)

    This paper looks at the application of the artificial neural networks (ANN) in predicting stock market prices in Kenya. In particular the paper looks at the application of ANN in predicting future Equity Bank share prices using historical data. We have assumed that only previous prices affect future prices, then fitted ARIMA ...

  14. Predicting Water Levels at Kainji Dam Using Artificial Neural Networks

    African Journals Online (AJOL)

    Poor electricity generation in Nigeria is a very serious problem. Accurate prediction of water levels in dams is very important in power planning. Effective power planning helps in ensuring steady supply of electric power to consumers. The aim of this study is to develop artificial neural network models for predicting water ...

  15. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    Science.gov (United States)

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  16. High solar activity predictions through an artificial neural network

    Science.gov (United States)

    Orozco-Del-Castillo, M. G.; Ortiz-Alemán, J. C.; Couder-Castañeda, C.; Hernández-Gómez, J. J.; Solís-Santomé, A.

    The effects of high-energy particles coming from the Sun on human health as well as in the integrity of outer space electronics make the prediction of periods of high solar activity (HSA) a task of significant importance. Since periodicities in solar indexes have been identified, long-term predictions can be achieved. In this paper, we present a method based on an artificial neural network to find a pattern in some harmonics which represent such periodicities. We used data from 1973 to 2010 to train the neural network, and different historical data for its validation. We also used the neural network along with a statistical analysis of its performance with known data to predict periods of HSA with different confidence intervals according to the three-sigma rule associated with solar cycles 24-26, which we found to occur before 2040.

  17. Implementation of neural network based non-linear predictive

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non......-linear systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....

  18. Predicting the survival of diabetes using neural network

    Science.gov (United States)

    Mamuda, Mamman; Sathasivam, Saratha

    2017-08-01

    Data mining techniques at the present time are used in predicting diseases of health care industries. Neural Network is one among the prevailing method in data mining techniques of an intelligent field for predicting diseases in health care industries. This paper presents a study on the prediction of the survival of diabetes diseases using different learning algorithms from the supervised learning algorithms of neural network. Three learning algorithms are considered in this study: (i) The levenberg-marquardt learning algorithm (ii) The Bayesian regulation learning algorithm and (iii) The scaled conjugate gradient learning algorithm. The network is trained using the Pima Indian Diabetes Dataset with the help of MATLAB R2014(a) software. The performance of each algorithm is further discussed through regression analysis. The prediction accuracy of the best algorithm is further computed to validate the accurate prediction

  19. Neural Network Predictive Control for Vanadium Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Hai-Feng Shen

    2013-01-01

    Full Text Available The vanadium redox flow battery (VRB is a nonlinear system with unknown dynamics and disturbances. The flowrate of the electrolyte is an important control mechanism in the operation of a VRB system. Too low or too high flowrate is unfavorable for the safety and performance of VRB. This paper presents a neural network predictive control scheme to enhance the overall performance of the battery. A radial basis function (RBF network is employed to approximate the dynamics of the VRB system. The genetic algorithm (GA is used to obtain the optimum initial values of the RBF network parameters. The gradient descent algorithm is used to optimize the objective function of the predictive controller. Compared with the constant flowrate, the simulation results show that the flowrate optimized by neural network predictive controller can increase the power delivered by the battery during the discharge and decrease the power consumed during the charge.

  20. Prediction of coal slurry concentration based on artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; Li, Y.; Cheng, J.; Zhou, Z.; Li, S.; Liu, J.; Cen, K. [Zhejiang University, Hangzhou (China)

    2005-12-15

    Based on experimental data of coal slurry, three BP neural network models with 8, 7 and 5 input factors, were set up for predicting the slurry concentration. Three BP neural networks algorithm was Levenberg Marquardt algorithm, and their learning rate was 0.01. The hidden neurons number was settled by practical training effect of the networks. The hidden neurons number of BP model, with 8, 7 and 5 input factors is 27, 30 and 24, respectively. Two data treated methods were tested by seven input factors network model, which proves that the first method is the better one. The mean absolute error of the neural network models with 5, 7 and 8 factors is 0.53%, 0.50% and 0.74%, respectively, while that of the existed regression model is 1.15%. This indicates that the neural network models, especially the 7 factors model, are effective in predicting the slurry. The HGI input neuron in eight input factors model affects the prediction result because of its interference to other input factors. The effect of H and N in coal on the slurry is slight. 8 refs., 7 figs., 3 tabs.

  1. A Neural Network Model for Prediction of Sound Quality

    DEFF Research Database (Denmark)

    Nielsen,, Lars Bramsløw

    An artificial neural network structure has been specified, implemented and optimized for the purpose of predicting the perceived sound quality for normal-hearing and hearing-impaired subjects. The network was implemented by means of commercially available software and optimized to predict results...... error on the test set. The overall concept proved functional, but further testing with data obtained from a new rating experiment is necessary to better assess the utility of this measure. The weights in the trained neural networks were analyzed to qualitatively interpret the relation between...... obtained in subjective sound quality rating experiments based on input data from an auditory model. Various types of input data and data representations from the auditory model were used as input data for the chosen network structure, which was a three-layer perceptron. This network was trained by means...

  2. Using neural networks for prediction of nuclear parameters

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Filho, Leonidas; Souto, Kelling Cabral, E-mail: leonidasmilenium@hotmail.com, E-mail: kcsouto@bol.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ (Brazil); Machado, Marcelo Dornellas, E-mail: dornemd@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (GCN.T/ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Gerencia de Combustivel Nuclear

    2013-07-01

    Dating from 1943, the earliest work on artificial neural networks (ANN), when Warren Mc Cullock and Walter Pitts developed a study on the behavior of the biological neuron, with the goal of creating a mathematical model. Some other work was done until after the 80 witnessed an explosion of interest in ANNs, mainly due to advances in technology, especially microelectronics. Because ANNs are able to solve many problems such as approximation, classification, categorization, prediction and others, they have numerous applications in various areas, including nuclear. Nodal method is adopted as a tool for analyzing core parameters such as boron concentration and pin power peaks for pressurized water reactors. However, this method is extremely slow when it is necessary to perform various core evaluations, for example core reloading optimization. To overcome this difficulty, in this paper a model of Multi-layer Perceptron (MLP) artificial neural network type backpropagation will be trained to predict these values. The main objective of this work is the development of Multi-layer Perceptron (MLP) artificial neural network capable to predict, in very short time, with good accuracy, two important parameters used in the core reloading problem - Boron Concentration and Power Peaking Factor. For the training of the neural networks are provided loading patterns and nuclear data used in cycle 19 of Angra 1 nuclear power plant. Three models of networks are constructed using the same input data and providing the following outputs: 1- Boron Concentration and Power Peaking Factor, 2 - Boron Concentration and 3 - Power Peaking Factor. (author)

  3. Patterning and predicting aquatic macroinvertebrate diversities using artificial neural network

    NARCIS (Netherlands)

    Park, Y.S.; Verdonschot, P.F.M.; Chon, T.S.; Lek, S.

    2003-01-01

    A counterpropagation neural network (CPN) was applied to predict species richness (SR) and Shannon diversity index (SH) of benthic macroinvertebrate communities using 34 environmental variables. The data were collected at 664 sites at 23 different water types such as springs, streams, rivers,

  4. Prediction of tides using back-propagation neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    of tides. This neural network model predicts the time series data of hourly tides directly while using an efficient learning process called quickprop based on a previous set of data. Hourly tidal data measured at Gopalpur port - east coast of India was used...

  5. Artificial neural networks for prediction of percentage of water ...

    Indian Academy of Sciences (India)

    Mater. Sci., Vol. 35, No. 6, November 2012, pp. 1019–1029. c Indian Academy of Sciences. Artificial neural networks for prediction of percentage of water absorption of geopolymers produced by waste ashes. ALI NAZARI. Department of Materials Science and Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran.

  6. Wind Power Plant Prediction by Using Neural Networks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.

    2012-08-01

    This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.

  7. Predicting Physical Time Series Using Dynamic Ridge Polynomial Neural Networks

    Science.gov (United States)

    Al-Jumeily, Dhiya; Ghazali, Rozaida; Hussain, Abir

    2014-01-01

    Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques. PMID:25157950

  8. PREDICTING CUSTOMER CHURN IN BANKING INDUSTRY USING NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Alisa Bilal Zorić

    2016-03-01

    Full Text Available The aim of this article is to present a case study of usage of one of the data mining methods, neural network, in knowledge discovery from databases in the banking industry. Data mining is automated process of analysing, organization or grouping a large set of data from different perspectives and summarizing it into useful information using special algorithms. Data mining can help to resolve banking problems by finding some regularity, causality and correlation to business information which are not visible at first sight because they are hidden in large amounts of data. In this paper, we used one of the data mining methods, neural network, within the software package Alyuda NeuroInteligence to predict customer churn in bank. The focus on customer churn is to determinate the customers who are at risk of leaving and analysing whether those customers are worth retaining. Neural network is statistical learning model inspired by biological neural and it is used to estimate or approximate functions that can depend on a large number of inputs which are generally unknown. Although the method itself is complicated, there are tools that enable the use of neural networks without much prior knowledge of how they operate. The results show that clients who use more bank services (products are more loyal, so bank should focus on those clients who use less than three products, and offer them products according to their needs. Similar results are obtained for different network topologies.

  9. Neural networks for the prediction organic chemistry reactions

    CERN Document Server

    Wei, Jennifer N; Aspuru-Guzik, Alán

    2016-01-01

    Reaction prediction remains one of the great challenges for organic chemistry. Solving this problem computationally requires the programming of a vast amount of knowledge and intuition of the rules of organic chemistry and the development of algorithms for their application. It is desirable to develop algorithms that, like humans, "learn" from being exposed to examples of the application of the rules of organic chemistry. In this work, we introduce a novel algorithm for predicting the products of organic chemistry reactions using machine learning to first identify the reaction type. In particular, we trained deep convolutional neural networks to predict the outcome of reactions based example reactions, using a new reaction fingerprint model. Due to the flexibility of neural networks, the system can attempt to predict reactions outside the domain where it was trained. We test this capability on problems from a popular organic chemistry textbook.

  10. Prediction of proteasome cleavage motifs by neural networks

    DEFF Research Database (Denmark)

    Kesimir, C.; Nussbaum, A.K.; Schild, H.

    2002-01-01

    physiological conditions. Our algorithm has been trained not only on in vitro data, but also on MHC Class I ligand data, which reflect a combination of immunoproteasome and constitutive proteasome specificity. This feature, together with the use of neural networks, a non-linear classification technique, make...... the prediction of MHC Class I ligand boundaries more accurate: 65% of the cleavage sites and 85% of the non-cleavage sites are correctly determined. Moreover, we show that the neural networks trained on the constitutive proteasome data learns a specificity that differs from that of the networks trained on MHC...... Class I molecules. Here we demonstrate that such an approach produces an accurate prediction of the CTL the epitopes in HIV Nef. The method is available at www.cbs.dtu.dk/services/NetChop/....

  11. Two stage neural network modelling for robust model predictive control.

    Science.gov (United States)

    Patan, Krzysztof

    2017-11-02

    The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. water demand prediction using artificial neural network

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... estimate water quantity and to make decisions that can prevent water scarcity. Timely implementation of such decisions lead to the improvement of network reliability and to the reduced occurrence of pipe burst and plant breakdown. On the other hand long- term forecasting helps to know the water demand ...

  13. Predicting company growth using logistic regression and neural networks

    Directory of Open Access Journals (Sweden)

    Marijana Zekić-Sušac

    2016-12-01

    Full Text Available The paper aims to establish an efficient model for predicting company growth by leveraging the strengths of logistic regression and neural networks. A real dataset of Croatian companies was used which described the relevant industry sector, financial ratios, income, and assets in the input space, with a dependent binomial variable indicating whether a company had high-growth if it had annualized growth in assets by more than 20% a year over a three-year period. Due to a large number of input variables, factor analysis was performed in the pre -processing stage in order to extract the most important input components. Building an efficient model with a high classification rate and explanatory ability required application of two data mining methods: logistic regression as a parametric and neural networks as a non -parametric method. The methods were tested on the models with and without variable reduction. The classification accuracy of the models was compared using statistical tests and ROC curves. The results showed that neural networks produce a significantly higher classification accuracy in the model when incorporating all available variables. The paper further discusses the advantages and disadvantages of both approaches, i.e. logistic regression and neural networks in modelling company growth. The suggested model is potentially of benefit to investors and economic policy makers as it provides support for recognizing companies with growth potential, especially during times of economic downturn.

  14. Hand Posture Prediction Using Neural Networks within a Biomechanical Model

    Directory of Open Access Journals (Sweden)

    Marta C. Mora

    2012-10-01

    Full Text Available This paper proposes the use of artificial neural networks (ANNs in the framework of a biomechanical hand model for grasping. ANNs enhance the model capabilities as they substitute estimated data for the experimental inputs required by the grasping algorithm used. These inputs are the tentative grasping posture and the most open posture during grasping. As a consequence, more realistic grasping postures are predicted by the grasping algorithm, along with the contact information required by the dynamic biomechanical model (contact points and normals. Several neural network architectures are tested and compared in terms of prediction errors, leading to encouraging results. The performance of the overall proposal is also shown through simulation, where a grasping experiment is replicated and compared to the real grasping data collected by a data glove device.

  15. Predicting fir trees stem diameters using Artificial Neural Network ...

    African Journals Online (AJOL)

    The aim of this paper is to examine the applicability of Artificial Neural Network models (ANNs), in the prediction of fir trees stem over bark diameters at 5.3, 9.3, 13.3, 17.3, 21.3, 25.3, 29.3 and 33.3 meters above ground. The values of these diameters are necessary for an efficient estimation of a single tree volume using the ...

  16. Application of Artificial Neural Networks for Predicting Generated Wind Power

    OpenAIRE

    Vijendra Singh

    2016-01-01

    This paper addresses design and development of an artificial neural network based system for prediction of wind energy produced by wind turbines. Now in the last decade, renewable energy emerged as an additional alternative source for electrical power generation. We need to assess wind power generation capacity by wind turbines because of its non-exhaustible nature. The power generation by electric wind turbines depends on the speed of wind, flow direction, fluctuations, density of air, gener...

  17. Deep Recurrent Neural Networks for Sequential Phenotype Prediction in Genomics

    OpenAIRE

    Pouladi, Farhad; Salehinejad, Hojjat; Gilani, Amir Mohammad

    2015-01-01

    In analyzing of modern biological data, we are often dealing with ill-posed problems and missing data, mostly due to high dimensionality and multicollinearity of the dataset. In this paper, we have proposed a system based on matrix factorization (MF) and deep recurrent neural networks (DRNNs) for genotype imputation and phenotype sequences prediction. In order to model the long-term dependencies of phenotype data, the new Recurrent Linear Units (ReLU) learning strategy is utilized for the fir...

  18. Risk prediction model: Statistical and artificial neural network approach

    Science.gov (United States)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  19. Artificial neural networks application for solid fuel slagging intensity predictions

    Directory of Open Access Journals (Sweden)

    Kakietek Sławomir

    2017-01-01

    Full Text Available Slagging issues present in pulverized steam boilers very often lead to heat transfer problems, corrosion and not planned outages of boilers which increase the cost of energy production and decrease the efficiency of energy production. Slagging especially occurs in regions with reductive atmospheres which nowadays are very common due to very strict limitations in NOx emissions. Moreover alternative fuels like biomass which are also used in combustion systems from two decades in order to decrease CO2 emissions also usually increase the risk of slagging. Thus the prediction of slagging properties of fuels is not the minor issue which can be neglected before purchasing or mixing of fuels. This however is rather difficult to estimate and even commonly known standard laboratory methods like fusion temperature determination or special indexers calculated on the basis of proximate and ultimate analyses, very often have no reasonable correlation to real boiler fuel behaviour. In this paper the method of determination of slagging properties of solid fuels based on laboratory investigation and artificial neural networks were presented. A fuel data base with over 40 fuels was created. Neural networks simulations were carried out in order to predict the beginning temperature and intensity of slagging. Reasonable results were obtained for some of tested neural networks, especially for hybrid feedforward networks with PCA technique. Consequently neural network model will be used in Common Intelligent Boiler Operation Platform (CIBOP being elaborated within CERUBIS research project for two BP-1150 and BB-1150 steam boilers. The model among others enables proper fuel selection in order to minimize slagging risk.

  20. AIR POLLUITON INDEX PREDICTION USING MULTIPLE NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Zainal Ahmad

    2017-05-01

    Full Text Available Air quality monitoring and forecasting tools are necessary for the purpose of taking precautionary measures against air pollution, such as reducing the effect of a predicted air pollution peak on the surrounding population and ecosystem. In this study a single Feed-forward Artificial Neural Network (FANN is shown to be able to predict the Air Pollution Index (API with a Mean Squared Error (MSE and coefficient determination, R2, of 0.1856 and 0.7950 respectively. However, due to the non-robust nature of single FANN, a selective combination of Multiple Neural Networks (MNN is introduced using backward elimination and a forward selection method. The results show that both selective combination methods can improve the robustness and performance of the API prediction with the MSE and R2 of 0.1614 and 0.8210 respectively. This clearly shows that it is possible to reduce the number of networks combined in MNN for API prediction, without losses of any information in terms of the performance of the final API prediction model.

  1. Adaptive model predictive process control using neural networks

    Science.gov (United States)

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  2. Time series prediction by feedforward neural networks - is it difficult?

    CERN Document Server

    Rosen-Zvi, M; Kinzel, W

    2003-01-01

    The difficulties that a neural network faces when trying to learn from a quasi-periodic time series are studied analytically using a teacher-student scenario where the random input is divided into two macroscopic regions with different variances, 1 and 1/gamma sup 2 (gamma >> 1). The generalization error is found to decrease as epsilon sub g propor to exp(-alpha/gamma sup 2), where alpha is the number of examples per input dimension. In contradiction to this very slow vanishing generalization error, the next output prediction is found to be almost free of mistakes. This picture is consistent with learning quasi-periodic time series produced by feedforward neural networks, which is dominated by enhanced components of the Fourier spectrum of the input. Simulation results are in good agreement with the analytical results.

  3. Time series prediction by feedforward neural networks - is it difficult?

    Science.gov (United States)

    Rosen-Zvi, Michal; Kanter, Ido; Kinzel, Wolfgang

    2003-04-01

    The difficulties that a neural network faces when trying to learn from a quasi-periodic time series are studied analytically using a teacher-student scenario where the random input is divided into two macroscopic regions with different variances, 1 and 1/gamma2 (gamma gg 1). The generalization error is found to decrease as epsilong propto exp(-alpha/gamma2), where alpha is the number of examples per input dimension. In contradiction to this very slow vanishing generalization error, the next output prediction is found to be almost free of mistakes. This picture is consistent with learning quasi-periodic time series produced by feedforward neural networks, which is dominated by enhanced components of the Fourier spectrum of the input. Simulation results are in good agreement with the analytical results.

  4. Neural Networks for Muscle Forces Prediction in Cycling

    Directory of Open Access Journals (Sweden)

    Giulio Cecchini

    2014-11-01

    Full Text Available This paper documents the research towards the development of a system based on Artificial Neural Networks to predict muscle force patterns of an athlete during cycling. Two independent inverse problems must be solved for the force estimation: evaluation of the kinematic model and evaluation of the forces distribution along the limb. By solving repeatedly the two inverse problems for different subjects and conditions, a training pattern for an Artificial Neural Network was created. Then, the trained network was validated against an independent validation set, and compared to evaluate agreement between the two alternative approaches using Bland-Altman method. The obtained neural network for the different test patterns yields a normalized error well below 1% and the Bland-Altman plot shows a considerable correlation between the two methods. The new approach proposed herein allows a direct and fast computation for the inverse dynamics of a cyclist, opening the possibility of integrating such algorithm in a real time environment such as an embedded application.

  5. Prediction horizon effects on stochastic modelling hints for neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Drossu, R.; Obradovic, Z. [Washington State Univ., Pullman, WA (United States)

    1995-12-31

    The objective of this paper is to investigate the relationship between stochastic models and neural network (NN) approaches to time series modelling. Experiments on a complex real life prediction problem (entertainment video traffic) indicate that prior knowledge can be obtained through stochastic analysis both with respect to an appropriate NN architecture as well as to an appropriate sampling rate, in the case of a prediction horizon larger than one. An improvement of the obtained NN predictor is also proposed through a bias removal post-processing, resulting in much better performance than the best stochastic model.

  6. The Dissolved Oxygen Prediction Method Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Zhong Xiao

    2017-01-01

    Full Text Available The dissolved oxygen (DO is oxygen dissolved in water, which is an important factor for the aquaculture. Using BP neural network method with the combination of purelin, logsig, and tansig activation functions is proposed for the prediction of aquaculture’s dissolved oxygen. The input layer, hidden layer, and output layer are introduced in detail including the weight adjustment process. The breeding data of three ponds in actual 10 consecutive days were used for experiments; these ponds were located in Beihai, Guangxi, a traditional aquaculture base in southern China. The data of the first 7 days are used for training, and the data of the latter 3 days are used for the test. Compared with the common prediction models, curve fitting (CF, autoregression (AR, grey model (GM, and support vector machines (SVM, the experimental results show that the prediction accuracy of the neural network is the highest, and all the predicted values are less than 5% of the error limit, which can meet the needs of practical applications, followed by AR, GM, SVM, and CF. The prediction model can help to improve the water quality monitoring level of aquaculture which will prevent the deterioration of water quality and the outbreak of disease.

  7. Artificial neural network based particle size prediction of polymeric nanoparticles.

    Science.gov (United States)

    Youshia, John; Ali, Mohamed Ehab; Lamprecht, Alf

    2017-10-01

    Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificial neural network including these properties as input with particle size and polydispersity index as output. The established model successfully predicted particle size of nanoparticles covering a range of 70-400nm prepared from other polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and testing data, respectively. Polymer surface activity was found to have the highest impact on the particle size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted polymer properties affecting particle size and confirmed the usefulness of artificial neural networks in predicting the particle size and polydispersity of polymeric nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Prediction of Bladder Cancer Recurrences Using Artificial Neural Networks

    Science.gov (United States)

    Zulueta Guerrero, Ekaitz; Garay, Naiara Telleria; Lopez-Guede, Jose Manuel; Vilches, Borja Ayerdi; Iragorri, Eider Egilegor; Castaños, David Lecumberri; de La Hoz Rastrollo, Ana Belén; Peña, Carlos Pertusa

    Even if considerable advances have been made in the field of early diagnosis, there is no simple, cheap and non-invasive method that can be applied to the clinical monitorisation of bladder cancer patients. Moreover, bladder cancer recurrences or the reappearance of the tumour after its surgical resection cannot be predicted in the current clinical setting. In this study, Artificial Neural Networks (ANN) were used to assess how different combinations of classical clinical parameters (stage-grade and age) and two urinary markers (growth factor and pro-inflammatory mediator) could predict post surgical recurrences in bladder cancer patients. Different ANN methods, input parameter combinations and recurrence related output variables were used and the resulting positive and negative prediction rates compared. MultiLayer Perceptron (MLP) was selected as the most predictive model and urinary markers showed the highest sensitivity, predicting correctly 50% of the patients that would recur in a 2 year follow-up period.

  9. Using neural networks to predict the functionality of reconfigurable nano-material networks

    NARCIS (Netherlands)

    Greff, Klaus; van Damme, Rudolf M.J.; Koutnik, Jan; Broersma, Haitze J.; Mikhal, Julia Olegivna; Lawrence, Celestine Preetham; van der Wiel, Wilfred Gerard; Schmidhuber, Jürgen

    2017-01-01

    This paper demonstrates how neural networks can be applied to model and predict the functional behaviour of disordered nano-particle and nano-tube networks. In recently published experimental work, nano-particle and nano-tube networks show promising functionality for future reconfigurable devices,

  10. A probabilistic neural network for earthquake magnitude prediction.

    Science.gov (United States)

    Adeli, Hojjat; Panakkat, Ashif

    2009-09-01

    A probabilistic neural network (PNN) is presented for predicting the magnitude of the largest earthquake in a pre-defined future time period in a seismic region using eight mathematically computed parameters known as seismicity indicators. The indicators considered are the time elapsed during a particular number (n) of significant seismic events before the month in question, the slope of the Gutenberg-Richter inverse power law curve for the n events, the mean square deviation about the regression line based on the Gutenberg-Richter inverse power law for the n events, the average magnitude of the last n events, the difference between the observed maximum magnitude among the last n events and that expected through the Gutenberg-Richter relationship known as the magnitude deficit, the rate of square root of seismic energy released during the n events, the mean time or period between characteristic events, and the coefficient of variation of the mean time. Prediction accuracies of the model are evaluated using three different statistical measures: the probability of detection, the false alarm ratio, and the true skill score or R score. The PNN model is trained and tested using data for the Southern California region. The model yields good prediction accuracies for earthquakes of magnitude between 4.5 and 6.0. The PNN model presented in this paper complements the recurrent neural network model developed by the authors previously, where good results were reported for predicting earthquakes with magnitude greater than 6.0.

  11. Predicting the parameters of energy installations with laser ignition: Neural network models

    Directory of Open Access Journals (Sweden)

    Alexey A. Pastukhov

    2015-06-01

    Full Text Available This article considers the possibility of using artificial neural networks for predicting the parameters of the model energy installation with laser ignition. The main stages of creating a prognostic model based on an artificial neural network have been presented. Input data were analyzed by principal component method. The synthesized neural network was designed to predict the parameter value of the model in question. The artificial neural network was trained by a back-propagation algorithm. The efficiency of the artificial neural networks and their applicability to predicting parameter values of various rocket engine elements were demonstrated.

  12. Convolutional neural network architectures for predicting DNA–protein binding

    Science.gov (United States)

    Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.

    2016-01-01

    Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608

  13. Convolutional neural network architectures for predicting DNA-protein binding.

    Science.gov (United States)

    Zeng, Haoyang; Edwards, Matthew D; Liu, Ge; Gifford, David K

    2016-06-15

    Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA-protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. All the models analyzed are available at http://cnn.csail.mit.edu gifford@mit.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  14. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...

  15. Prediction of Austenite Formation Temperatures Using Artificial Neural Networks

    Science.gov (United States)

    Schulze, P.; Schmidl, E.; Grund, T.; Lampke, T.

    2016-03-01

    For the modeling and design of heat treatments, in consideration of the development/ transformation of the microstructure, different material data depending on the chemical composition, the respective microstructure/phases and the temperature are necessary. Material data are, e.g. the thermal conductivity, heat capacity, thermal expansion and transformation data etc. The quality of thermal simulations strongly depends on the accuracy of the material data. For many materials, the required data - in particular for different microstructures and temperatures - are rare in the literature. In addition, a different chemical composition within the permitted limits of the considered steel alloy cannot be predicted. A solution for this problem is provided by the calculation of material data using Artificial Neural Networks (ANN). In the present study, the start and finish temperatures of the transformation from the bcc lattice to the fcc lattice structure of hypoeutectoid steels are calculated using an Artificial Neural Network. An appropriate database containing different transformation temperatures (austenite formation temperatures) to train the ANN is selected from the literature. In order to find a suitable feedforward network, the network topologies as well as the activation functions of the hidden layers are varied and subsequently evaluated in terms of the prediction accuracy. The transformation temperatures calculated by the ANN exhibit a very good compliance compared to the experimental data. The results show that the prediction performance is even higher compared to classical empirical equations such as Andrews or Brandis. Therefore, it can be assumed that the presented ANN is a convenient tool to distinguish between bcc and fcc phases in hypoeutectoid steels.

  16. Artificial Neural Network Approach to Predict Biodiesel Production in Supercritical tert-Butyl Methyl Ether

    OpenAIRE

    Obie Farobie; Nur Hasanah

    2016-01-01

    In this study, for the first time artificial neural network was used to predict biodiesel yield in supercritical tert-butyl methyl ether (MTBE). The experimental data of biodiesel yield conducted by varying four input factors (i.e. temperature, pressure, oil-to-MTBE molar ratio, and reaction time) were used to elucidate artificial neural network model in order to predict biodiesel yield. The main goal of this study was to assess how accurately this artificial neural network model to predict b...

  17. Solar Energy Prediction for Malaysia Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Tamer Khatib

    2012-01-01

    Full Text Available This paper presents a solar energy prediction method using artificial neural networks (ANNs. An ANN predicts a clearness index that is used to calculate global and diffuse solar irradiations. The ANN model is based on the feed forward multilayer perception model with four inputs and one output. The inputs are latitude, longitude, day number, and sunshine ratio; the output is the clearness index. Data from 28 weather stations were used in this research, and 23 stations were used to train the network, while 5 stations were used to test the network. In addition, the measured solar irradiations from the sites were used to derive an equation to calculate the diffused solar irradiation, a function of the global solar irradiation and the clearness index. The proposed equation has reduced the mean absolute percentage error (MAPE in estimating the diffused solar irradiation compared with the conventional equation. Based on the results, the average MAPE, mean bias error and root mean square error for the predicted global solar irradiation are 5.92%, 1.46%, and 7.96%. The MAPE in estimating the diffused solar irradiation is 9.8%. A comparison with previous work was done, and the proposed approach was found to be more efficient and accurate than previous methods.

  18. Research on wind field algorithm of wind lidar based on BP neural network and grey prediction

    Science.gov (United States)

    Chen, Yong; Chen, Chun-Li; Luo, Xiong; Zhang, Yan; Yang, Ze-hou; Zhou, Jie; Shi, Xiao-ding; Wang, Lei

    2018-01-01

    This paper uses the BP neural network and grey algorithm to forecast and study radar wind field. In order to reduce the residual error in the wind field prediction which uses BP neural network and grey algorithm, calculating the minimum value of residual error function, adopting the residuals of the gray algorithm trained by BP neural network, using the trained network model to forecast the residual sequence, using the predicted residual error sequence to modify the forecast sequence of the grey algorithm. The test data show that using the grey algorithm modified by BP neural network can effectively reduce the residual value and improve the prediction precision.

  19. Experimental method to predict avalanches based on neural networks

    Directory of Open Access Journals (Sweden)

    V. V. Zhdanov

    2016-01-01

    Full Text Available The article presents results of experimental use of currently available statistical methods to classify the avalanche‑dangerous precipitations and snowfalls in the Kishi Almaty river basin. The avalanche service of Kazakhstan uses graphical methods for prediction of avalanches developed by I.V. Kondrashov and E.I. Kolesnikov. The main objective of this work was to develop a modern model that could be used directly at the avalanche stations. Classification of winter precipitations into dangerous snowfalls and non‑dangerous ones was performed by two following ways: the linear discriminant function (canonical analysis and artificial neural networks. Observational data on weather and avalanches in the gorge Kishi Almaty in the gorge Kishi Almaty were used as a training sample. Coefficients for the canonical variables were calculated by the software «Statistica» (Russian version 6.0, and then the necessary formula had been constructed. The accuracy of the above classification was 96%. Simulator by the authors L.N. Yasnitsky and F.М. Cherepanov was used to learn the neural networks. The trained neural network demonstrated 98% accuracy of the classification. Prepared statistical models are recommended to be tested at the snow‑avalanche stations. Results of the tests will be used for estimation of the model quality and its readiness for the operational work. In future, we plan to apply these models for classification of the avalanche danger by the five‑point international scale.

  20. Improving prediction of neural networks: a study of tow financial prediction tasks

    Directory of Open Access Journals (Sweden)

    Tarun K. Sen

    2004-01-01

    Full Text Available Neural networks are excellent mapping tools for complex financial data. Their mapping capabilities however do not always result in good generalizability for financial prediction models. Increasing the number of nodes and hidden layers in a neural network model produces better mapping of the data since the number of parameters available to the model increases. This is determinal to generalizabilitiy of the model since the model memorizes idiosyncratic patterns in the data. A neural network model can be expected to be more generalizable if the model architecture is made less complex by using fewer input nodes. In this study we simplify the neural network by eliminating input nodes that have the least contribution to the prediction of a desired outcome. We also provide a theoretical relationship of the sensitivity of output variables to the input variables under certain conditions. This research initiates an effort in identifying methods that would improve the generalizability of neural networks in financial prediction tasks by using mergers and bankruptcy models. The result indicates that incorporating more variables that appear relevant in a model does not necessarily improve prediction performance.

  1. Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Jinxing Lai

    2016-01-01

    Full Text Available In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability.

  2. A network security situation prediction model based on wavelet neural network with optimized parameters

    Directory of Open Access Journals (Sweden)

    Haibo Zhang

    2016-08-01

    Full Text Available The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network security situation, we build a network security situation prediction model based on Wavelet Neural Network (WNN with optimized parameters by the Improved Niche Genetic Algorithm (INGA. The proposed model adopts WNN which has strong nonlinear ability and fault-tolerance performance. Also, the parameters for WNN are optimized through the adaptive genetic algorithm (GA so that WNN searches more effectively. Considering the problem that the adaptive GA converges slowly and easily turns to the premature problem, we introduce a novel niche technology with a dynamic fuzzy clustering and elimination mechanism to solve the premature convergence of the GA. Our final simulation results show that the proposed INGA-WNN prediction model is more reliable and effective, and it achieves faster convergence-speed and higher prediction accuracy than the Genetic Algorithm-Wavelet Neural Network (GA-WNN, Genetic Algorithm-Back Propagation Neural Network (GA-BPNN and WNN.

  3. Predicting concrete corrosion of sewers using artificial neural network.

    Science.gov (United States)

    Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo

    2016-04-01

    Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Neural Network Modeling to Predict Shelf Life of Greenhouse Lettuce

    Directory of Open Access Journals (Sweden)

    Wei-Chin Lin

    2009-04-01

    Full Text Available Greenhouse-grown butter lettuce (Lactuca sativa L. can potentially be stored for 21 days at constant 0°C. When storage temperature was increased to 5°C or 10°C, shelf life was shortened to 14 or 10 days, respectively, in our previous observations. Also, commercial shelf life of 7 to 10 days is common, due to postharvest temperature fluctuations. The objective of this study was to establish neural network (NN models to predict the remaining shelf life (RSL under fluctuating postharvest temperatures. A box of 12 - 24 lettuce heads constituted a sample unit. The end of the shelf life of each head was determined when it showed initial signs of decay or yellowing. Air temperatures inside a shipping box were recorded. Daily average temperatures in storage and averaged shelf life of each box were used as inputs, and the RSL was modeled as an output. An R2 of 0.57 could be observed when a simple NN structure was employed. Since the "future" (or remaining storage temperatures were unavailable at the time of making a prediction, a second NN model was introduced to accommodate a range of future temperatures and associated shelf lives. Using such 2-stage NN models, an R2 of 0.61 could be achieved for predicting RSL. This study indicated that NN modeling has potential for cold chain quality control and shelf life prediction.

  5. Applications of Wavelet Neural Network Model to Building Settlement Prediction: A Case Study

    Directory of Open Access Journals (Sweden)

    Qulin TAN

    2014-04-01

    Full Text Available Deformation monitoring is a significant work for engineering safety, which is performed throughout the entire process of engineering design, construction and operation. Based on the theoretic analysis of wavelet and neural network, we applied the improved BP neural network model, auxiliary wavelet neural network model and embedded wavelet neural network model to the settlement prediction in one practical engineering monitoring project with MATLAB software programming. The cumulative and the interval settlement was predicted and compared with measured data. The overall performances of the three models were analyzed and compared. The results show that the accuracies of two kinds of wavelet neural network models are roughly the same, which prediction errors of monitoring points are less than 1mm, obviously superior to the single BP neural network model.

  6. Prediction of problematic wine fermentations using artificial neural networks.

    Science.gov (United States)

    Román, R César; Hernández, O Gonzalo; Urtubia, U Alejandra

    2011-11-01

    Artificial neural networks (ANNs) have been used for the recognition of non-linear patterns, a characteristic of bioprocesses like wine production. In this work, ANNs were tested to predict problems of wine fermentation. A database of about 20,000 data from industrial fermentations of Cabernet Sauvignon and 33 variables was used. Two different ways of inputting data into the model were studied, by points and by fermentation. Additionally, different sub-cases were studied by varying the predictor variables (total sugar, alcohol, glycerol, density, organic acids and nitrogen compounds) and the time of fermentation (72, 96 and 256 h). The input of data by fermentations gave better results than the input of data by points. In fact, it was possible to predict 100% of normal and problematic fermentations using three predictor variables: sugars, density and alcohol at 72 h (3 days). Overall, ANNs were capable of obtaining 80% of prediction using only one predictor variable at 72 h; however, it is recommended to add more fermentations to confirm this promising result.

  7. HLA class I binding prediction via convolutional neural networks.

    Science.gov (United States)

    Vang, Yeeleng S; Xie, Xiaohui

    2017-09-01

    Many biological processes are governed by protein-ligand interactions. One such example is the recognition of self and non-self cells by the immune system. This immune response process is regulated by the major histocompatibility complex (MHC) protein which is encoded by the human leukocyte antigen (HLA) complex. Understanding the binding potential between MHC and peptides can lead to the design of more potent, peptide-based vaccines and immunotherapies for infectious autoimmune diseases. We apply machine learning techniques from the natural language processing (NLP) domain to address the task of MHC-peptide binding prediction. More specifically, we introduce a new distributed representation of amino acids, name HLA-Vec, that can be used for a variety of downstream proteomic machine learning tasks. We then propose a deep convolutional neural network architecture, name HLA-CNN, for the task of HLA class I-peptide binding prediction. Experimental results show combining the new distributed representation with our HLA-CNN architecture achieves state-of-the-art results in the majority of the latest two Immune Epitope Database (IEDB) weekly automated benchmark datasets. We further apply our model to predict binding on the human genome and identify 15 genes with potential for self binding. Codes to generate the HLA-Vec and HLA-CNN are publicly available at: https://github.com/uci-cbcl/HLA-bind . xhx@ics.uci.edu. Supplementary data are available at Bioinformatics online.

  8. Ground Motion Prediction Model Using Artificial Neural Network

    Science.gov (United States)

    Dhanya, J.; Raghukanth, S. T. G.

    2017-12-01

    This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg-Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude (M w), closest distance to rupture plane (R rup), shear wave velocity in the region (V s30) and focal mechanism (F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.

  9. Upset Prediction in Friction Welding Using Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2013-01-01

    Full Text Available This paper addresses the upset prediction problem of friction welded joints. Based on finite element simulations of inertia friction welding (IFW, a radial basis function (RBF neural network was developed initially to predict the final upset for a number of welding parameters. The predicted joint upset by the RBF neural network was compared to validated finite element simulations, producing an error of less than 8.16% which is reasonable. Furthermore, the effects of initial rotational speed and axial pressure on the upset were investigated in relation to energy conversion with the RBF neural network. The developed RBF neural network was also applied to linear friction welding (LFW and continuous drive friction welding (CDFW. The correlation coefficients of RBF prediction for LFW and CDFW were 0.963 and 0.998, respectively, which further suggest that an RBF neural network is an effective method for upset prediction of friction welded joints.

  10. Predicting the Survival of Gastric Cancer Patients Using Artificial and Bayesian Neural Networks

    Science.gov (United States)

    Korhani Kangi, Azam; Bahrampour, Abbas

    2018-02-26

    Introduction and purpose: In recent years the use of neural networks without any premises for investigation of prognosis in analyzing survival data has increased. Artificial neural networks (ANN) use small processors with a continuous network to solve problems inspired by the human brain. Bayesian neural networks (BNN) constitute a neural-based approach to modeling and non-linearization of complex issues using special algorithms and statistical methods. Gastric cancer incidence is the first and third ranking for men and women in Iran, respectively. The aim of the present study was to assess the value of an artificial neural network and a Bayesian neural network for modeling and predicting of probability of gastric cancer patient death. Materials and Methods: In this study, we used information on 339 patients aged from 20 to 90 years old with positive gastric cancer, referred to Afzalipoor and Shahid Bahonar Hospitals in Kerman City from 2001 to 2015. The three layers perceptron neural network (ANN) and the Bayesian neural network (BNN) were used for predicting the probability of mortality using the available data. To investigate differences between the models, sensitivity, specificity, accuracy and the area under receiver operating characteristic curves (AUROCs) were generated. Results: In this study, the sensitivity and specificity of the artificial neural network and Bayesian neural network models were 0.882, 0.903 and 0.954, 0.909, respectively. Prediction accuracy and the area under curve ROC for the two models were 0.891, 0.944 and 0.935, 0.961. The age at diagnosis of gastric cancer was most important for predicting survival, followed by tumor grade, morphology, gender, smoking history, opium consumption, receiving chemotherapy, presence of metastasis, tumor stage, receiving radiotherapy, and being resident in a village. Conclusion: The findings of the present study indicated that the Bayesian neural network is preferable to an artificial neural network for

  11. Application of Functional Link Artificial Neural Network for Prediction of Machinery Noise in Opencast Mines

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Nanda

    2011-01-01

    Full Text Available Functional link-based neural network models were applied to predict opencast mining machineries noise. The paper analyzes the prediction capabilities of functional link neural network based noise prediction models vis-à-vis existing statistical models. In order to find the actual noise status in opencast mines, some of the popular noise prediction models, for example, ISO-9613-2, CONCAWE, VDI, and ENM, have been applied in mining and allied industries to predict the machineries noise by considering various attenuation factors. Functional link artificial neural network (FLANN, polynomial perceptron network (PPN, and Legendre neural network (LeNN were used to predict the machinery noise in opencast mines. The case study is based on data collected from an opencast coal mine of Orissa, India. From the present investigations, it could be concluded that the FLANN model give better noise prediction than the PPN and LeNN model.

  12. Prediction of Industrial Electric Energy Consumption in Anhui Province Based on GA-BP Neural Network

    Science.gov (United States)

    Zhang, Jiajing; Yin, Guodong; Ni, Youcong; Chen, Jinlan

    2018-01-01

    In order to improve the prediction accuracy of industrial electrical energy consumption, a prediction model of industrial electrical energy consumption was proposed based on genetic algorithm and neural network. The model use genetic algorithm to optimize the weights and thresholds of BP neural network, and the model is used to predict the energy consumption of industrial power in Anhui Province, to improve the prediction accuracy of industrial electric energy consumption in Anhui province. By comparing experiment of GA-BP prediction model and BP neural network model, the GA-BP model is more accurate with smaller number of neurons in the hidden layer.

  13. Artificial neural network simulator for SOFC performance prediction

    Science.gov (United States)

    Arriagada, Jaime; Olausson, Pernilla; Selimovic, Azra

    This paper describes the development of a novel modelling tool for evaluation of solid oxide fuel cell (SOFC) performance. An artificial neural network (ANN) is trained with a reduced amount of data generated by a validated cell model, and it is then capable of learning the generic functional relationship between inputs and outputs of the system. Once the network is trained, the ANN-driven simulator can predict different operational parameters of the SOFC (i.e. gas flows, operational voltages, current density, etc.) avoiding the detailed description of the fuel cell processes. The highly parallel connectivity within the ANN further reduces the computational time. In a real case, the necessary data for training the ANN simulator would be extracted from experiments. This simulator could be suitable for different applications in the fuel cell field, such as, the construction of performance maps and operating point optimisation and analysis. All this is performed with minimum time demand and good accuracy. This intelligent model together with the operational conditions may provide useful insight into SOFC operating characteristics and improved means of selecting operating conditions, reducing costs and the need for extensive experiments.

  14. Convolutional neural networks for prostate cancer recurrence prediction

    Science.gov (United States)

    Kumar, Neeraj; Verma, Ruchika; Arora, Ashish; Kumar, Abhay; Gupta, Sanchit; Sethi, Amit; Gann, Peter H.

    2017-03-01

    Accurate prediction of the treatment outcome is important for cancer treatment planning. We present an approach to predict prostate cancer (PCa) recurrence after radical prostatectomy using tissue images. We used a cohort whose case vs. control (recurrent vs. non-recurrent) status had been determined using post-treatment follow up. Further, to aid the development of novel biomarkers of PCa recurrence, cases and controls were paired based on matching of other predictive clinical variables such as Gleason grade, stage, age, and race. For this cohort, tissue resection microarray with up to four cores per patient was available. The proposed approach is based on deep learning, and its novelty lies in the use of two separate convolutional neural networks (CNNs) - one to detect individual nuclei even in the crowded areas, and the other to classify them. To detect nuclear centers in an image, the first CNN predicts distance transform of the underlying (but unknown) multi-nuclear map from the input HE image. The second CNN classifies the patches centered at nuclear centers into those belonging to cases or controls. Voting across patches extracted from image(s) of a patient yields the probability of recurrence for the patient. The proposed approach gave 0.81 AUC for a sample of 30 recurrent cases and 30 non-recurrent controls, after being trained on an independent set of 80 case-controls pairs. If validated further, such an approach might help in choosing between a combination of treatment options such as active surveillance, radical prostatectomy, radiation, and hormone therapy. It can also generalize to the prediction of treatment outcomes in other cancers.

  15. Prediction of breast cancer using artificial neural networks.

    Science.gov (United States)

    Saritas, Ismail

    2012-10-01

    In this study, an artificial neural network (ANN) was developed to determine whether patients have breast cancer or not. Whether patients have cancer or not and if they have its type can be determined by using ANN and BI-RADS evaluation and based on the age of the patient, mass shape, mass border and mass density. Though this system cannot diagnose cancer conclusively, it helps physicians in deciding whether a biopsy is required by providing information about whether the patient has breast cancer or not. Data obtained from 800 patients who were diagnosed with cancer definitively through biopsy. The definitive diagnosis corresponding to each patient and the data from ANN model results were investigated using Confusion matrix and ROC analyses. In the test data of the ANN model that was implemented as a result of these analyses, disease prediction rate was 90.5% and the health ratio was 80.9%. It is seen from these high predictive values that the ANN model is fast, reliable and without any risks and therefore can be of great help to physicians.

  16. Competitive Learning Neural Network Ensemble Weighted by Predicted Performance

    Science.gov (United States)

    Ye, Qiang

    2010-01-01

    Ensemble approaches have been shown to enhance classification by combining the outputs from a set of voting classifiers. Diversity in error patterns among base classifiers promotes ensemble performance. Multi-task learning is an important characteristic for Neural Network classifiers. Introducing a secondary output unit that receives different…

  17. Neural network predicts sequence of TP53 gene based on DNA chip

    DEFF Research Database (Denmark)

    Spicker, J.S.; Wikman, F.; Lu, M.L.

    2002-01-01

    We have trained an artificial neural network to predict the sequence of the human TP53 tumor suppressor gene based on a p53 GeneChip. The trained neural network uses as input the fluorescence intensities of DNA hybridized to oligonucleotides on the surface of the chip and makes between zero...

  18. Predicting Semantic Descriptions from Medical Images with Convolutional Neural Networks.

    Science.gov (United States)

    Schlegl, Thomas; Waldstein, Sebastian M; Vogl, Wolf-Dieter; Schmidt-Erfurth, Ursula; Langs, Georg

    2015-01-01

    Learning representative computational models from medical imaging data requires large training data sets. Often, voxel-level annotation is unfeasible for sufficient amounts of data. An alternative to manual annotation, is to use the enormous amount of knowledge encoded in imaging data and corresponding reports generated during clinical routine. Weakly supervised learning approaches can link volume-level labels to image content but suffer from the typical label distributions in medical imaging data where only a small part consists of clinically relevant abnormal structures. In this paper we propose to use a semantic representation of clinical reports as a learning target that is predicted from imaging data by a convolutional neural network. We demonstrate how we can learn accurate voxel-level classifiers based on weak volume-level semantic descriptions on a set of 157 optical coherence tomography (OCT) volumes. We specifically show how semantic information increases classification accuracy for intraretinal cystoid fluid (IRC), subretinal fluid (SRF) and normal retinal tissue, and how the learning algorithm links semantic concepts to image content and geometry.

  19. Artificial neural network model for earthquake prediction with radon monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kuelahci, Fatih [Science and Art Faculty, Physics Department, Firat University, Elazig 23169 (Turkey)], E-mail: fatihkulahci@firat.edu.tr; Inceoez, Murat [Engineering Faculty, Geology Department, Firat University, Elazig 23169 (Turkey); Dogru, Mahmut [Science and Art Faculty, Physics Department, Firat University, Elazig 23169 (Turkey)], E-mail: mdogru@firat.edu.tr; Aksoy, Ercan [Engineering Faculty, Geology Department, Firat University, Elazig 23169 (Turkey); Baykara, Oktay [Education Faculty, Science Education Division, Firat University, Elazig 23169 (Turkey)

    2009-01-15

    Apart from the linear monitoring studies concerning the relationship between radon and earthquake, an artificial neural networks (ANNs) model approach is presented starting out from non-linear changes of the eight different parameters during the earthquake occurrence. A three-layer Levenberg-Marquardt feedforward learning algorithm is used to model the earthquake prediction process in the East Anatolian Fault System (EAFS). The proposed ANN system employs individual training strategy with fixed-weight and supervised models leading to estimations. The average relative error between the magnitudes of the earthquakes acquired by ANN and measured data is about 2.3%. The relative error between the test and earthquake data varies between 0% and 12%. In addition, the factor analysis was applied on all data and the model output values to see the statistical variation. The total variance of 80.18% was explained with four factors by this analysis. Consequently, it can be concluded that ANN approach is a potential alternative to other models with complex mathematical operations.

  20. Optogenetics in Silicon: A Neural Processor for Predicting Optically Active Neural Networks.

    Science.gov (United States)

    Junwen Luo; Nikolic, Konstantin; Evans, Benjamin D; Na Dong; Xiaohan Sun; Andras, Peter; Yakovlev, Alex; Degenaar, Patrick

    2017-02-01

    We present a reconfigurable neural processor for real-time simulation and prediction of opto-neural behaviour. We combined a detailed Hodgkin-Huxley CA3 neuron integrated with a four-state Channelrhodopsin-2 (ChR2) model into reconfigurable silicon hardware. Our architecture consists of a Field Programmable Gated Array (FPGA) with a custom-built computing data-path, a separate data management system and a memory approach based router. Advancements over previous work include the incorporation of short and long-term calcium and light-dependent ion channels in reconfigurable hardware. Also, the developed processor is computationally efficient, requiring only 0.03 ms processing time per sub-frame for a single neuron and 9.7 ms for a fully connected network of 500 neurons with a given FPGA frequency of 56.7 MHz. It can therefore be utilized for exploration of closed loop processing and tuning of biologically realistic optogenetic circuitry.

  1. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    Science.gov (United States)

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  2. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    Science.gov (United States)

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.

  3. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  4. Artificial neural network accurately predicts hepatitis B surface antigen seroclearance.

    Directory of Open Access Journals (Sweden)

    Ming-Hua Zheng

    Full Text Available BACKGROUND & AIMS: Hepatitis B surface antigen (HBsAg seroclearance and seroconversion are regarded as favorable outcomes of chronic hepatitis B (CHB. This study aimed to develop artificial neural networks (ANNs that could accurately predict HBsAg seroclearance or seroconversion on the basis of available serum variables. METHODS: Data from 203 untreated, HBeAg-negative CHB patients with spontaneous HBsAg seroclearance (63 with HBsAg seroconversion, and 203 age- and sex-matched HBeAg-negative controls were analyzed. ANNs and logistic regression models (LRMs were built and tested according to HBsAg seroclearance and seroconversion. Predictive accuracy was assessed with area under the receiver operating characteristic curve (AUROC. RESULTS: Serum quantitative HBsAg (qHBsAg and HBV DNA levels, qHBsAg and HBV DNA reduction were related to HBsAg seroclearance (P<0.001 and were used for ANN/LRM-HBsAg seroclearance building, whereas, qHBsAg reduction was not associated with ANN-HBsAg seroconversion (P = 0.197 and LRM-HBsAg seroconversion was solely based on qHBsAg (P = 0.01. For HBsAg seroclearance, AUROCs of ANN were 0.96, 0.93 and 0.95 for the training, testing and genotype B subgroups respectively. They were significantly higher than those of LRM, qHBsAg and HBV DNA (all P<0.05. Although the performance of ANN-HBsAg seroconversion (AUROC 0.757 was inferior to that for HBsAg seroclearance, it tended to be better than those of LRM, qHBsAg and HBV DNA. CONCLUSIONS: ANN identifies spontaneous HBsAg seroclearance in HBeAg-negative CHB patients with better accuracy, on the basis of easily available serum data. More useful predictors for HBsAg seroconversion are still needed to be explored in the future.

  5. Neural networks for predictive control of the mechanism of ...

    African Journals Online (AJOL)

    In this paper, we are interested in the study of the control of orientation of a wind turbine like means of optimization of his output/input ratio (efficiency). The approach suggested is based on the neural predictive control which is justified by the randomness of the wind on the one hand, and on the other hand by the capacity of ...

  6. A Predictive Neural Network-Based Cascade Control for pH Reactors

    Directory of Open Access Journals (Sweden)

    Mujahed AlDhaifallah

    2016-01-01

    Full Text Available This paper is concerned with the development of predictive neural network-based cascade control for pH reactors. The cascade structure consists of a master control loop (fuzzy proportional-integral and a slave one (predictive neural network. The master loop is chosen to be more accurate but slower than the slave one. The strong features found in cascade structure have been added to the inherent features in model predictive neural network. The neural network is used to alleviate modeling difficulties found with pH reactor and to predict its behavior. The parameters of predictive algorithm are determined using an optimization algorithm. The effectiveness and feasibility of the proposed design have been demonstrated using MatLab.

  7. Neural-networks-based feedback linearization versus model predictive control of continuous alcoholic fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Mjalli, F.S.; Al-Asheh, S. [Chemical Engineering Department, Qatar University, Doha (Qatar)

    2005-10-01

    In this work advanced nonlinear neural networks based control system design algorithms are adopted to control a mechanistic model for an ethanol fermentation process. The process model equations for such systems are highly nonlinear. A neural network strategy has been implemented in this work for capturing the dynamics of the mechanistic model for the fermentation process. The neural network achieved has been validated against the mechanistic model. Two neural network based nonlinear control strategies have also been adopted using the model identified. The performance of the feedback linearization technique was compared to neural network model predictive control in terms of stability and set point tracking capabilities. Under servo conditions, the feedback linearization algorithm gave comparable tracking and stability. The feedback linearization controller achieved the control target faster than the model predictive one but with vigorous and sudden controller moves. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  8. Predictive Control of Hydronic Floor Heating Systems using Neural Networks and Genetic Algorithms

    DEFF Research Database (Denmark)

    Vinther, Kasper; Green, Torben; Østergaard, Søren

    2017-01-01

    This paper presents the use a neural network and a micro genetic algorithm to optimize future set-points in existing hydronic floor heating systems for improved energy efficiency. The neural network can be trained to predict the impact of changes in set-points on future room temperatures. Additio...... space is not guaranteed. Evaluation of the performance of multiple neural networks is performed, using different levels of information, and optimization results are presented on a detailed house simulation model.......This paper presents the use a neural network and a micro genetic algorithm to optimize future set-points in existing hydronic floor heating systems for improved energy efficiency. The neural network can be trained to predict the impact of changes in set-points on future room temperatures...

  9. Prediction of a model enzymatic acidolysis system using neural networks

    Directory of Open Access Journals (Sweden)

    Güven, Aytaç

    2008-12-01

    Full Text Available A model for the acidolysis of trinolein and palmitic acid under the catalysis of immobilized sn-1,3 specific lipase was presented in this study. A neural networks (NN based model was developed for the prediction of the concentrations of the major reaction products of this reaction (1-palmitoyl-2,3-oleoyl-glycerol (POO 1,3-dipalmitoyl-2-oleoyl-glycerol (POP and triolein (OOO. Substrate ratio (SR, reaction temperature (T and reaction time (t were used as input parameters. The optimal architecture of the proposed NN model, which consists of one input layer with three inputs, one hidden layer with seven neurons and one output layer with three outputs, wass able to predict the reaction products concentration with a mean square error (MSE of less than 1.5 and R2 of 0.999. and explicit formulation of the proposed NN is presented. Considerable good performance is achieved in modeling the acidolysis reaction using neuronal networks.En este estudio se presenta un modelo para la acidólisis de la trilinoleina y el ácido palmítico mediante la catálisis con una lipasa específica sn-1,3 inmovilizada. Un modelo basado en redes neuronales (NN ha sido desarrollado para la predicción de la concentración de los principales productos de esta reacción (1-palmitoil-2,3-oleoil-glicerol (POO, 1,3-dipalmitoil-2-oleoil-glicerol (POP y trioleina (OOO. Se han usado como parámetros de entrada: la proporción del sustrato (SR, la temperatura de reacción (T y el tiempo de reacción (t. La arquitectura óptima del modelo de NN propuesto, que consiste en una capa de entrada con tres entradas, una capa oculta con siete neuronas y una capa de salida con tres salidas, fue capaz de predecir la concentración de los productos de reacción con un error cuadrático medio (MSE de menos de 1.5 y una R2 de 0.999 . Se presenta una formulación explícita del modelo NN propuesto. Se obtienen muy buenos resultados en la predicción de la reacciones de acidólisis mediante el uso de

  10. Using Artificial Neural Networks to Predict Stock Prices

    OpenAIRE

    Kozdraj, Tomasz

    2009-01-01

    Artificial neural networks constitute one of the most developed conception of artificial intelligence. They are based on pragmatic mathematical theories adopted to tasks resolution. A wide range of their applications also includes financial investments issues. The reason for NN's popularity is mainly connected with their ability to solve complex or not well recognized computational tasks, efficiency in finding solutions as well as the possibility of learning based on patterns or without them....

  11. Prediction of Modal Shift Using Artificial Neural Networks

    OpenAIRE

    Kadir Akgöl; Metin Mutlu Aydin; Özcan Asilkan; Banihan Günay

    2014-01-01

    Various public transport concepts have been developed to provide solutions to the ever growing problem of traffic in modern times. For instance, intelligent subscription bus service is one of them. This concept aims to provide a means of transport at near private car comfort as well as at near public transport cost. By this means, a shift from other modes of transport, especially private car, to public transport is aimed to encourage use of public transport. An artificial neural network model...

  12. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.

    Science.gov (United States)

    Kawahara, Jeremy; Brown, Colin J; Miller, Steven P; Booth, Brian G; Chau, Vann; Grunau, Ruth E; Zwicker, Jill G; Hamarneh, Ghassan

    2017-02-01

    We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Using neural networks for prediction of air pollution index in industrial city

    Science.gov (United States)

    Rahman, P. A.; Panchenko, A. A.; Safarov, A. M.

    2017-10-01

    This scientific paper is dedicated to the use of artificial neural networks for the ecological prediction of state of the atmospheric air of an industrial city for capability of the operative environmental decisions. In the paper, there is also the described development of two types of prediction models for determining of the air pollution index on the basis of neural networks: a temporal (short-term forecast of the pollutants content in the air for the nearest days) and a spatial (forecast of atmospheric pollution index in any point of city). The stages of development of the neural network models are briefly overviewed and description of their parameters is also given. The assessment of the adequacy of the prediction models, based on the calculation of the correlation coefficient between the output and reference data, is also provided. Moreover, due to the complexity of perception of the «neural network code» of the offered models by the ordinary users, the software implementations allowing practical usage of neural network models are also offered. It is established that the obtained neural network models provide sufficient reliable forecast, which means that they are an effective tool for analyzing and predicting the behavior of dynamics of the air pollution in an industrial city. Thus, this scientific work successfully develops the urgent matter of forecasting of the atmospheric air pollution index in industrial cities based on the use of neural network models.

  14. An overview of the numerical and neural network accosts of ocean wave prediction

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...

  15. Viscosity Prediction of Different Ethylene Glycol/Water Based Nanofluids Using a RBF Neural Network

    National Research Council Canada - National Science Library

    Ningbo Zhao; Zhiming Li

    2017-01-01

    In this study, a radial basis function (RBF) neural network with three-layer feed forward architecture was developed to effectively predict the viscosity ratio of different ethylene glycol/water based nanofluids...

  16. Prediction of adsorption efficiencies of Ni (II in aqueous solutions with perlite via artificial neural networks

    Directory of Open Access Journals (Sweden)

    Turp Sinan Mehmet

    2017-12-01

    Full Text Available This study investigates the estimated adsorption efficiency of artificial Nickel (II ions with perlite in an aqueous solution using artificial neural networks, based on 140 experimental data sets. Prediction using artificial neural networks is performed by enhancing the adsorption efficiency with the use of Nickel (II ions, with the initial concentrations ranging from 0.1 mg/L to 10 mg/L, the adsorbent dosage ranging from 0.1 mg to 2 mg, and the varying time of effect ranging from 5 to 30 mins. This study presents an artificial neural network that predicts the adsorption efficiency of Nickel (II ions with perlite. The best algorithm is determined as a quasi-Newton back-propagation algorithm. The performance of the artificial neural network is determined by coefficient determination (R2, and its architecture is 3-12-1. The prediction shows that there is an outstanding relationship between the experimental data and the predicted values.

  17. PREDICTION OF FINANCIAL FAILURE OF BANKS BY ARTIFICAL NEURAL NETWORK MODEL

    National Research Council Canada - National Science Library

    Utku ALTUNÖZ

    2013-01-01

    In this article financial failure prediction models based on artificial neural network model, which is among the multivariable statistical techniques has been tested in a parallel with literature surveys...

  18. Experimental Parameter Tuning of Artificial Neural Network in Customer Churn Prediction

    National Research Council Canada - National Science Library

    Martin Fridrich

    2017-01-01

    Abstract Purpose of the article: The paper aim is to examine classification models, based on artificial neural networks through experimental parameter tuning, in domain of customer churn prediction in e-commerce retail...

  19. The performance of immune-based neural network with financial time series prediction

    Directory of Open Access Journals (Sweden)

    Dhiya Al-Jumeily

    2015-12-01

    Full Text Available This paper presents the use of immune-based neural networks that include multilayer perceptron (MLP and functional neural network for the prediction of financial time series signals. Extensive simulations for the prediction of one- and five-steps-ahead of stationary and non-stationary time series were performed which indicate that immune-based neural networks in most cases demonstrated advantages in capturing chaotic movement in the financial signals with an improvement in the profit return and rapid convergence over MLPs.

  20. A Network Traffic Prediction Model Based on Quantum-Behaved Particle Swarm Optimization Algorithm and Fuzzy Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2016-01-01

    Full Text Available Due to the fact that the fluctuation of network traffic is affected by various factors, accurate prediction of network traffic is regarded as a challenging task of the time series prediction process. For this purpose, a novel prediction method of network traffic based on QPSO algorithm and fuzzy wavelet neural network is proposed in this paper. Firstly, quantum-behaved particle swarm optimization (QPSO was introduced. Then, the structure and operation algorithms of WFNN are presented. The parameters of fuzzy wavelet neural network were optimized by QPSO algorithm. Finally, the QPSO-FWNN could be used in prediction of network traffic simulation successfully and evaluate the performance of different prediction models such as BP neural network, RBF neural network, fuzzy neural network, and FWNN-GA neural network. Simulation results show that QPSO-FWNN has a better precision and stability in calculation. At the same time, the QPSO-FWNN also has better generalization ability, and it has a broad prospect on application.

  1. Maximum solid concentrations of coal water slurries predicted by neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jun; Li, Yanchang; Zhou, Junhu; Liu, Jianzhong; Cen, Kefa

    2010-12-15

    The nonlinear back-propagation (BP) neural network models were developed to predict the maximum solid concentration of coal water slurry (CWS) which is a substitute for oil fuel, based on physicochemical properties of 37 typical Chinese coals. The Levenberg-Marquardt algorithm was used to train five BP neural network models with different input factors. The data pretreatment method, learning rate and hidden neuron number were optimized by training models. It is found that the Hardgrove grindability index (HGI), moisture and coalification degree of parent coal are 3 indispensable factors for the prediction of CWS maximum solid concentration. Each BP neural network model gives a more accurate prediction result than the traditional polynomial regression equation. The BP neural network model with 3 input factors of HGI, moisture and oxygen/carbon ratio gives the smallest mean absolute error of 0.40%, which is much lower than that of 1.15% given by the traditional polynomial regression equation. (author)

  2. A Network Traffic Prediction Model Based on Quantum-Behaved Particle Swarm Optimization Algorithm and Fuzzy Wavelet Neural Network

    OpenAIRE

    Kun Zhang; Zhao Hu; Xiao-Ting Gan; Jian-Bo Fang

    2016-01-01

    Due to the fact that the fluctuation of network traffic is affected by various factors, accurate prediction of network traffic is regarded as a challenging task of the time series prediction process. For this purpose, a novel prediction method of network traffic based on QPSO algorithm and fuzzy wavelet neural network is proposed in this paper. Firstly, quantum-behaved particle swarm optimization (QPSO) was introduced. Then, the structure and operation algorithms of WFNN are presented. The pa...

  3. Artificial Neural Network for Monthly Rainfall Rate Prediction

    Science.gov (United States)

    Purnomo, H. D.; Hartomo, K. D.; Prasetyo, S. Y. J.

    2017-03-01

    Rainfall rate forecasting plays an important role in various human activities. Rainfall forecasting is a challenging task due to the uncertainty of natural phenomena. In this paper, two neural network models are proposed for monthly rainfall rate forecasting. The performance of the proposed model is assesses based on monthly rainfall rate in Ampel, Boyolali, from 2001-2013. The experiment results show that the accuracy of the first model is much better than the accuracy of the second model. Its average accuracy is just above 98%, while the accuracy of the second model is approximately 75%. In additional, both models tend to perform better when the fluctuation of rainfall is low.

  4. Investigation of the Prediction of Lightning Strikes Using Neural Networks

    Science.gov (United States)

    1990-10-11

    mesonet data and tower data. These data developed by James Bay, Inc. and licensed are readily available and are used to KTAADN, Inc. operates on a...winter confident that they would be "found" by time and watching for convective the neural network during training. development in unstable air masses...K’ Shuritle Sunway 31 - K Weather Tow 12 14-K Comera SitelS 17 - K Weather Twor 40S 18 - K CorencCoo Sit e 19 - K Weir, Twrg Aea 2K Cae,l 22K CameraS

  5. Artificial Neural Networks in the prediction of insolvency. A paradigm shift to traditional business practices recipes

    Directory of Open Access Journals (Sweden)

    Marcia M. Lastre Valdes

    2014-06-01

    Full Text Available In this paper a review and analysis of the major theories and models that address the prediction of corporate bankruptcy and insolvency is made. Neural networks are a tool of most recent appearance, although in recent years have received considerable attention from the academic and professional world, and have started to be implemented in different models testing organizations insolvency based on neural computation. The purpose of this paper is to yield evidence of the usefulness of Artificial Neural Networks in the problem of bankruptcy prediction insolence or so compare its predictive ability with the methods commonly used in that context. The findings suggest that high predictive capabilities can be achieved  using artificial neural networks, with qualitative and quantitative variables.

  6. Protein distance constraints predicted by neural networks and probability density functions

    DEFF Research Database (Denmark)

    Lund, Ole; Frimand, Kenneth; Gorodkin, Jan

    1997-01-01

    We predict interatomic C-α distances by two independent data driven methods. The first method uses statistically derived probability distributions of the pairwise distance between two amino acids, whilst the latter method consists of a neural network prediction approach equipped with windows taking....... The predictions are based on a data set derived using a new threshold similarity. We show that distances in proteins are predicted more accurately by neural networks than by probability density functions. We show that the accuracy of the predictions can be further increased by using sequence profiles. A threading...

  7. Prediction of protein hydration sites from sequence by modular neural networks

    DEFF Research Database (Denmark)

    Ehrlich, L.; Reczko, M.; Bohr, Henrik

    1998-01-01

    The hydration properties of a protein are important determinants of its structure and function. Here, modular neural networks are employed to predict ordered hydration sites using protein sequence information. First, secondary structure and solvent accessibility are predicted from sequence with two...... separate neural networks. These predictions are used as input together with protein sequences for networks predicting hydration of residues, backbone atoms and sidechains. These networks are teined with protein crystal structures. The prediction of hydration is improved by adding information on secondary...... structure and solvent accessibility and, using actual values of these properties, redidue hydration can be predicted to 77% accuracy with a Metthews coefficient of 0.43. However, predicted property data with an accuracy of 60-70% result in less than half the improvement in predictive performance observed...

  8. Prediction of caspase cleavage sites using Bayesian bio-basis function neural networks.

    Science.gov (United States)

    Yang, Zheng Rong

    2005-05-01

    Apoptosis has drawn the attention of researchers because of its importance in treating some diseases through finding a proper way to block or slow down the apoptosis process. Having understood that caspase cleavage is the key to apoptosis, we find novel methods or algorithms are essential for studying the specificity of caspase cleavage activity and this helps the effective drug design. As bio-basis function neural networks have proven to outperform some conventional neural learning algorithms, there is a motivation, in this study, to investigate the application of bio-basis function neural networks for the prediction of caspase cleavage sites. Thirteen protein sequences with experimentally determined caspase cleavage sites were downloaded from NCBI. Bayesian bio-basis function neural networks are investigated and the comparisons with single-layer perceptrons, multilayer perceptrons, the original bio-basis function neural networks and support vector machines are given. The impact of the sliding window size used to generate sub-sequences for modelling on prediction accuracy is studied. The results show that the Bayesian bio-basis function neural network with two Gaussian distributions for model parameters (weights) performed the best and the highest prediction accuracy is 97.15 +/- 1.13%. The package of Bayesian bio-basis function neural network can be obtained by request to the author.

  9. SELECTING NEURAL NETWORK ARCHITECTURE FOR INVESTMENT PROFITABILITY PREDICTIONS

    Directory of Open Access Journals (Sweden)

    Marijana Zekić-Sušac

    2012-07-01

    Full Text Available After production and operations, finance and investments are one of the mostfrequent areas of neural network applications in business. The lack of standardizedparadigms that can determine the efficiency of certain NN architectures in a particularproblem domain is still present. The selection of NN architecture needs to take intoconsideration the type of the problem, the nature of the data in the model, as well as somestrategies based on result comparison. The paper describes previous research in that areaand suggests a forward strategy for selecting best NN algorithm and structure. Since thestrategy includes both parameter-based and variable-based testings, it can be used forselecting NN architectures as well as for extracting models. The backpropagation, radialbasis,modular, LVQ and probabilistic neural network algorithms were used on twoindependent sets: stock market and credit scoring data. The results show that neuralnetworks give better accuracy comparing to multiple regression and logistic regressionmodels. Since it is model-independant, the strategy can be used by researchers andprofessionals in other areas of application.

  10. Research on the life prediction of light-emitting diode based on neural network

    Science.gov (United States)

    Song, Yang; Qian, Keyuan

    2017-08-01

    This paper establishes a neural network model that can predict LED lifetime. The ideal factor, luminous flux, light quantum number and fluorescence efficiency are taken as input variables of neural network, whose output variable is the life of the LED. Through the repeated training of the experimental sample, the hidden layer number, the hidden layer unit number and the transfer function of the neural network are determined, and the life prediction model function is established. Predicting the LED life only need once measurement of the LED through the model function, which can predict different types of LED life on the same time. Respectively, the model can precisely predict LED life under the using current of 60mA and 40mA. The accuracy of the life prediction model under aging current can reach more than 85%.

  11. Prediction of ferric iron precipitation in bioleaching process using partial least squares and artificial neural network

    Directory of Open Access Journals (Sweden)

    Golmohammadi Hassan

    2013-01-01

    Full Text Available A quantitative structure-property relationship (QSPR study based on partial least squares (PLS and artificial neural network (ANN was developed for the prediction of ferric iron precipitation in bioleaching process. The leaching temperature, initial pH, oxidation/reduction potential (ORP, ferrous concentration and particle size of ore were used as inputs to the network. The output of the model was ferric iron precipitation. The optimal condition of the neural network was obtained by adjusting various parameters by trial-and-error. After optimization and training of the network according to back-propagation algorithm, a 5-5-1 neural network was generated for prediction of ferric iron precipitation. The root mean square error for the neural network calculated ferric iron precipitation for training, prediction and validation set are 32.860, 40.739 and 35.890, respectively, which are smaller than those obtained by PLS model (180.972, 165.047 and 149.950, respectively. Results obtained reveal the reliability and good predictivity of neural network model for the prediction of ferric iron precipitation in bioleaching process.

  12. Usefulness of Artificial Neural Networks for Predicting Financial and Economic Crisis

    Directory of Open Access Journals (Sweden)

    Mioara CHIRITA

    2012-08-01

    Full Text Available The objective of the present study is to explore the issue of the forecasting of economic crisis using the neural network. The subject is of great importance in the economy, more so as that most countries affected by crisis, declared at the end of 2010, the economic growth but the crisis paralyzed the financial world over the past three years. Neural network techniques have been frequently applied in order to predict problems like economic forecasting. The results show that creating a model using the neural networks might be a powerful tool and could be applied to prevent economic crises.

  13. Development of a neural network for prediction of glucose concentration in type 1 diabetes patients.

    Science.gov (United States)

    Pappada, Scott M; Cameron, Brent D; Rosman, Paul M

    2008-09-01

    A major difficulty in the management of diabetes is the optimization of insulin therapies to avoid occurrences of hypoglycemia and hyperglycemia. Many factors impact glucose fluctuations in diabetes patients, such as insulin dosage, nutritional intake, daily activities and lifestyle (e.g., sleep-wake cycles and exercise), and emotional states (e.g., stress). The overall effect of these factors has not been fully quantified to determine the impact on subsequent glycemic trends. Recent advances in diabetes technology such as continuous glucose monitoring (CGM) provides significant sources of data, such that quantification may be possible. Depending on the CGM technology utilized, the sampling frequency ranges from 1-5 min. In this study, an intensive electronic diary documenting the factors previously described was created. This diary was utilized by 18 patients with insulin-dependent diabetes mellitus in conjunction with CGM. Utilizing this dataset, various neural network models were constructed to predict glucose in these diabetes patients while varying the predictive window from 50-180 min. The predictive capability of each neural network within the fully trained dataset was analyzed as well as the predictive capabilities of the neural networks on unseen data. Neural network models were created using NeuroSolutions software with variable predictive windows of 50, 75, 100, 120, 150, and 180 min. Neural network models were trained using patient datasets ranging from 11-17 patients and evaluated on patient data not included in the neural network formulation. Performance analysis was completed for the neural network models using MATLAB. Performance measures include the calculation of the mean absolute difference percent overall and at hypoglycemic and hyperglycemic extremes, and the percentage of hypoglycemic and hyperglycemic occurrences were predicted. Overall, the neural network models perform adequately at predicting at normal (>70 and or =180 mg/dl); however

  14. Feed forward neural network for prediction of end blow oxygen in LD converter steel making

    Directory of Open Access Journals (Sweden)

    Narra Rajesh

    2010-03-01

    Full Text Available A multi layered feed forward neural network model is being developed for the prediction of end blow oxygen in the LD converter using a two step process. In the first step intermediate stopping temperature is being predicted and using this as an input the end blow oxygen is predicted. In both the cases two hidden layers had given the best results compared to the single layer neural network. Intermediate and end blow temperatures played a vital role in end blow oxygen and intermediate stopping temperature predictions. The model acts a guide for the operator and thereby enhances the yield of the converter steel making process.

  15. An Artificial Neural Network Based Short-term Dynamic Prediction of Algae Bloom

    Directory of Open Access Journals (Sweden)

    Yao Junyang

    2014-06-01

    Full Text Available This paper proposes a method of short-term prediction of algae bloom based on artificial neural network. Firstly, principal component analysis is applied to water environmental factors in algae bloom raceway ponds to get main factors that influence the formation of algae blooms. Then, a model of short-term dynamic prediction based on neural network is built with the current chlorophyll_a values as input and the chlorophyll_a values in the next moment as output to realize short-term dynamic prediction of algae bloom. Simulation results show that the model can realize short-term prediction of algae bloom effectively.

  16. An Adaptive Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-ion Batteries

    Science.gov (United States)

    2010-10-01

    application for RUL prediction. We compare its performance with the classical recurrent neural network (RNN) and the recurrent neural fuzzy system ...Jang (1993). ANFIS: adaptive-network-based fuzzy inference system , IEEE Transactions on Systems , Man, and Cybernetics-Part B: Cybernetics, vol. 23...pp. 665-685, 1993. J. Jang, C. T. Sun, and E. Mizutani (1997). Neuro - Fuzzy and Soft Computing: A computational approach to learning and machine

  17. Experimental Parameter Tuning of Artificial Neural Network in Customer Churn Prediction

    OpenAIRE

    Martin Fridrich

    2017-01-01

    Abstract Purpose of the article: The paper aim is to examine classification models, based on artificial neural networks through experimental parameter tuning, in domain of customer churn prediction in e-commerce retail. Methodology/methods: Key methods used are artificial neural network and conditional inference tree for further meta-analysis of the results. Fundamental logical methods such as deduction are also used. Scientific aim: To present and execute experimental design for per...

  18. Spectrum Hole Prediction And White Space Ranking For Cognitive Radio Network Using An Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Sunday Iliya

    2015-08-01

    Full Text Available Abstract With spectrum becoming an ever scarcer resource it is critical that new communication systems utilize all the available frequency bands as efficiently as possible in time frequency and spatial domain. rHowever spectrum allocation policies most of the licensed spectrums grossly underutilized while the unlicensed spectrums are overcrowded. Hence all future wireless communication devices beequipped with cognitive capability to maximize quality of service QoS require a lot of time and energartificial intelligence and machine learning in cognitive radio deliver optimum performance. In this paper we proposed a novel way of spectrum holes prediction using artificial neural network ANN. The ANN was trained to adapt to the radio spectrum traffic of 20 channels and the trained network was used for prediction of future spectrum holes. The input of the neural network consist of a time domain vector of length six i.e. minute hour date day week and month. The output is a vector of length 20 each representing the probability of the channel being idle. The channels are ranked in order of decreasing probability of being idleminimizing We assumed that all the channels have the same noise and quality of service and only one vacant channel is needed for communication. The result of the spectrum holes search using ANN was compared with that of blind linear and blind stochastic search and was found to be superior. The performance of the ANN that was trained to predict the probability of the channels being idle outperformed the ANN that will predict the exact channel states busy or idle. In the ANN that was trained to predict the exact channels states all channels predicted to be idle are randomly searched until the first spectrum hole was found no information about search direction regarding which channel should be sensed first.

  19. Predicting recurrent aphthous ulceration using genetic algorithms-optimized neural networks.

    Science.gov (United States)

    Dar-Odeh, Najla S; Alsmadi, Othman M; Bakri, Faris; Abu-Hammour, Zaer; Shehabi, Asem A; Al-Omiri, Mahmoud K; Abu-Hammad, Shatha M K; Al-Mashni, Hamzeh; Saeed, Mohammad B; Muqbil, Wael; Abu-Hammad, Osama A

    2010-01-01

    To construct and optimize a neural network that is capable of predicting the occurrence of recurrent aphthous ulceration (RAU) based on a set of appropriate input data. Artificial neural networks (ANN) software employing genetic algorithms to optimize the architecture neural networks was used. Input and output data of 86 participants (predisposing factors and status of the participants with regards to recurrent aphthous ulceration) were used to construct and train the neural networks. The optimized neural networks were then tested using untrained data of a further 10 participants. THE OPTIMIZED NEURAL NETWORK, WHICH PRODUCED THE MOST ACCURATE PREDICTIONS FOR THE PRESENCE OR ABSENCE OF RECURRENT APHTHOUS ULCERATION WAS FOUND TO EMPLOY: gender, hematological (with or without ferritin) and mycological data of the participants, frequency of tooth brushing, and consumption of vegetables and fruits. FACTORS APPEARING TO BE RELATED TO RECURRENT APHTHOUS ULCERATION AND APPROPRIATE FOR USE AS INPUT DATA TO CONSTRUCT ANNS THAT PREDICT RECURRENT APHTHOUS ULCERATION WERE FOUND TO INCLUDE THE FOLLOWING: gender, hemoglobin, serum vitamin B12, serum ferritin, red cell folate, salivary candidal colony count, frequency of tooth brushing, and the number of fruits or vegetables consumed daily.

  20. The Prediction of Bandwidth On Need Computer Network Through Artificial Neural Network Method of Backpropagation

    Directory of Open Access Journals (Sweden)

    Ikhthison Mekongga

    2014-02-01

    Full Text Available The need for bandwidth has been increasing recently. This is because the development of internet infrastructure is also increasing so that we need an economic and efficient provider system. This can be achieved through good planning and a proper system. The prediction of the bandwidth consumption is one of the factors that support the planning for an efficient internet service provider system. Bandwidth consumption is predicted using ANN. ANN is an information processing system which has similar characteristics as the biologic al neural network.  ANN  is  chosen  to  predict  the  consumption  of  the  bandwidth  because  ANN  has  good  approachability  to  non-linearity.  The variable used in ANN is the historical load data. A bandwidth consumption information system was built using neural networks  with a backpropagation algorithm to make the use of bandwidth more efficient in the future both in the rental rate of the bandwidth and in the usage of the bandwidth.Keywords: Forecasting, Bandwidth, Backpropagation

  1. Egg hatchability prediction by multiple linear regression and artificial neural networks

    Directory of Open Access Journals (Sweden)

    AC Bolzan

    2008-06-01

    Full Text Available An artificial neural network (ANN was compared with a multiple linear regression statistical method to predict hatchability in an artificial incubation process. A feedforward neural network architecture was applied. Network trainings were made by the backpropagation algorithm based on data obtained from industrial incubations. The ANN model was chosen as it produced data that fit better the experimental data as compared to the multiple linear regression model, which used coefficients determined by minimum square method. The proposed simulation results of these approaches indicate that this ANN can be used for incubation performance prediction.

  2. Predicting product life cycle using fuzzy neural network

    Directory of Open Access Journals (Sweden)

    Ali Mohammadi

    2014-09-01

    Full Text Available One of the most important tasks of science in different fields is to find the relationships among various phenomena in order to predict future. Production and service organizations are not exceptions and they should predict future to survive. Predicting the life cycle of the organization's products is one of the most important prediction cases in an organization. Predicting the product life cycle provides an opportunity to identify the product position and help to get a better insight about competitors. This paper deals with the predictability of the product life cycle with Adaptive Network-Based Fuzzy Inference System (ANFIS. The Population of this study was Pegah Fars products and the sample was this company's cheese products. In this regard, this paper attempts to model and predict the product life cycle of cheese products in Pegah Fars Company. In this due, a designed questionnaire was distributed among some experts, distributors and retailers and seven independent variables were selected. In this survey, ANFIS sales forecasting technique was employed and MATLAB software was used for data analysis. The results confirmed ANFIS as a good method to predict the product life cycle.

  3. PREDICTION OF FINANCIAL FAILURE OF BANKS BY ARTIFICAL NEURAL NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    Utku ALTUNÖZ

    2013-12-01

    Full Text Available In this article financial failure prediction models based on artificial neural networkmodel, which is among the multivariable statistical techniques has been tested in a parallelwith literature surveys. As a result of the study, it has been observed that the power ofartificial neural network model in terms of predicting financial failure give a highprobability for both 1 and 2 years before the financial failure.

  4. Neural networks for prediction and control of chaotic fluidized bed hydrodynamics : A first step

    NARCIS (Netherlands)

    Bakker, R; De Korte, RJ; Schouten, JC; Van den Bleek, CM; Takens, F

    A neural-network-based model that has learnt the chaotic hydrodynamics of a fluidized bed reactor is presented. The network is trained on measured electrical capacitance tomography data. A training algorithm is used that does not only minimize the short-term prediction error but also the information

  5. High variation subarctic topsoil pollutant concentration prediction using neural network residual kriging

    Science.gov (United States)

    Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Subbotina, I. E.; Shichkin, A. V.; Sergeeva, M. V.; Lvova, O. A.

    2017-06-01

    The work deals with the application of neural networks residual kriging (NNRK) to the spatial prediction of the abnormally distributed soil pollutant (Cr). It is known that combination of geostatistical interpolation approaches (kriging) and neural networks leads to significantly better prediction accuracy and productivity. Generalized regression neural networks and multilayer perceptrons are classes of neural networks widely used for the continuous function mapping. Each network has its own pros and cons; however both demonstrated fast training and good mapping possibilities. In the work, we examined and compared two combined techniques: generalized regression neural network residual kriging (GRNNRK) and multilayer perceptron residual kriging (MLPRK). The case study is based on the real data sets on surface contamination by chromium at a particular location of the subarctic Novy Urengoy, Russia, obtained during the previously conducted screening. The proposed models have been built, implemented and validated using ArcGIS and MATLAB environments. The networks structures have been chosen during a computer simulation based on the minimization of the RMSE. MLRPK showed the best predictive accuracy comparing to the geostatistical approach (kriging) and even to GRNNRK.

  6. STOCHASTIC MODELLING BASED MONTHLY RAINFALL PREDICTION USING SEASONAL ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    S.M. Karthik

    2017-01-01

    Full Text Available India is an agrarian society where 13.7% of GDP and 50% of workforce are involved with agriculture. Rainfall plays a vital role in irrigating the land and replenishing the rivers and underground water sources. Therefore the study of rainfall is vital to the economic development and wellbeing of the nation. Accurate prediction of rainfall leads to better agricultural planning, flood prevention and control. The seasonal artificial neural networks can predict monthly rainfall by exploiting the cyclical nature of the weather system. It is dependent on historical time series data and therefore independent of changes in the fundamental models of climate known collectively as manmade climate change. This paper presents the seasonal artificial neural networks applied on the prediction of monthly rainfall. The amounts of rainfall in the twelve months of a year are fed to the neural networks to predict the next twelve months. The gradient descent method is used for training the neural networks. Four performance measures viz. MSE, RMSE, MAD and MAPE are used to assess the system. Experimental results indicate that monthly rainfall patterns can be predicted accurately by seasonal neural networks.

  7. Prediction of soft soil foundation settlement in Guangxi granite area based on fuzzy neural network model

    Science.gov (United States)

    Luo, Junhui; Wu, Chao; Liu, Xianlin; Mi, Decai; Zeng, Fuquan; Zeng, Yongjun

    2018-01-01

    At present, the prediction of soft foundation settlement mostly use the exponential curve and hyperbola deferred approximation method, and the correlation between the results is poor. However, the application of neural network in this area has some limitations, and none of the models used in the existing cases adopted the TS fuzzy neural network of which calculation combines the characteristics of fuzzy system and neural network to realize the mutual compatibility methods. At the same time, the developed and optimized calculation program is convenient for engineering designers. Taking the prediction and analysis of soft foundation settlement of gully soft soil in granite area of Guangxi Guihe road as an example, the fuzzy neural network model is established and verified to explore the applicability. The TS fuzzy neural network is used to construct the prediction model of settlement and deformation, and the corresponding time response function is established to calculate and analyze the settlement of soft foundation. The results show that the prediction of short-term settlement of the model is accurate and the final settlement prediction result has certain engineering reference value.

  8. Prediction of annual water consumption in Guangdong Province based on Bayesian neural network

    Science.gov (United States)

    Tian, Tao; Xue, Huifeng

    2017-06-01

    In the context of the implementation of the most stringent water resources management system, the role of water demand forecasting for regional water resources management is becoming increasingly significant. Based on the analysis of the influencing factors of water consumption in Guangdong Province, we made the forecast index system of annual water consumption, and constructed the forecast model of annual water consumption of BP neural network, then optimized the regularization BP neural network in utilization rate of water. The results showed that the average absolute percentage error of Bayesian neural network prediction model and BP neural network prediction model is 0.70% and 0.46% respectively. BP neural network model by Bayesian regularization is more ability to improve the accuracy of about 0.24%, more in line with the regional annual water demand forecast high precision requirements. Take the planning index value of Guangdong Province’s thirteen five plan into Bayesian neural network forecasting model, and its forecast value is 45.432 billion cubic meters, which will reach 456.04 billion cubic meters of red water in Guangdong Province in 2020.

  9. Ship Attitude Prediction Based on Input Delay Neural Network and Measurements of Gyroscopes

    DEFF Research Database (Denmark)

    Wang, Yunlong; N. Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2017-01-01

    Due to the uncertainty and random nature of ocean waves, the accurate prediction of ship attitude is hard to be achieved, especially in high sea states. A ship attitude prediction method using Input Delay Neural Network (IDNN) is proposed in this paper. One of the advantages of this method is tha...

  10. Artificial Neural Networks: A New Approach for Predicting Application Behavior. AIR 2001 Annual Forum Paper.

    Science.gov (United States)

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    This paper examines how predictive modeling can be used to study application behavior. A relatively new technique, artificial neural networks (ANNs), was applied to help predict which students were likely to get into a large Research I university. Data were obtained from a university in Iowa. Two cohorts were used, each containing approximately…

  11. Prediction of geomagnetic indexes with the help of artificial neural networks

    Science.gov (United States)

    Myagkova, Irina; Shiroky, Vladimir; Dolenko, Sergey

    2017-10-01

    The results of prediction of geomagnetic indexes characterizing the state of the Earth's magnetosphere obtained with the help of artificial neural networks (ANN) for various prediction horizons are presented. The forecasts are based on multivariate time series including the values of the geomagnetic indices themselves, as well as data about the parameters of solar wind and interplanetary magnetic field, during several latest hours.

  12. Artificial neural network: predicted vs observed survival in patients with colonic cancer.

    Science.gov (United States)

    Dolgobrodov, S G; Moore, P; Marshall, R; Bittern, R; Steele, R J C; Cuschieri, A

    2007-02-01

    An Internet-web-based artificial neural network has been developed for practicing clinical oncologists and medical researchers as part of an ongoing program designed for the implementation of advanced neural networks for prognostic estimates and eventually for management/treatment decisions in individual patients with colonic cancer. An interdisciplinary team of academic oncologists and physicists has configured and implemented a Partial Logistic Artificial Neural Network and trained it to predict cancer-related survival in patients with confirmed colorectal cancer by using a database (1,558 patients) made available for the study by the Information & Statistics Division of National Health Service Scotland. The reliability of the trained network was evaluated against Kaplan-Meier observed survival plots of a random sample of 300 patients not used in the training but forming part of the same data set. The predicted survival curves obtained as the output from the artificial neural network showed close agreement with observed actual survival rates of a cohort of 300 patients with four grades of risk of dying from the cancer within five years of diagnosis. The web-based Partial Logistic Artificial Neural Network system accurately predicts survival after staging and treatment of colonic cancer. It can be made web-accessible where it is powerful enough to serve hundreds of users simultaneously.

  13. A prediction method for the wax deposition rate based on a radial basis function neural network

    Directory of Open Access Journals (Sweden)

    Ying Xie

    2017-06-01

    Full Text Available The radial basis function neural network is a popular supervised learning tool based on machinery learning technology. Its high precision having been proven, the radial basis function neural network has been applied in many areas. The accumulation of deposited materials in the pipeline may lead to the need for increased pumping power, a decreased flow rate or even to the total blockage of the line, with losses of production and capital investment, so research on predicting the wax deposition rate is significant for the safe and economical operation of an oil pipeline. This paper adopts the radial basis function neural network to predict the wax deposition rate by considering four main influencing factors, the pipe wall temperature gradient, pipe wall wax crystal solubility coefficient, pipe wall shear stress and crude oil viscosity, by the gray correlational analysis method. MATLAB software is employed to establish the RBF neural network. Compared with the previous literature, favorable consistency exists between the predicted outcomes and the experimental results, with a relative error of 1.5%. It can be concluded that the prediction method of wax deposition rate based on the RBF neural network is feasible.

  14. Prediction of Clinical Deterioration in Hospitalized Adult Patients with Hematologic Malignancies Using a Neural Network Model.

    Science.gov (United States)

    Hu, Scott B; Wong, Deborah J L; Correa, Aditi; Li, Ning; Deng, Jane C

    2016-01-01

    Clinical deterioration (ICU transfer and cardiac arrest) occurs during approximately 5-10% of hospital admissions. Existing prediction models have a high false positive rate, leading to multiple false alarms and alarm fatigue. We used routine vital signs and laboratory values obtained from the electronic medical record (EMR) along with a machine learning algorithm called a neural network to develop a prediction model that would increase the predictive accuracy and decrease false alarm rates. Retrospective cohort study. The hematologic malignancy unit in an academic medical center in the United States. Adult patients admitted to the hematologic malignancy unit from 2009 to 2010. None. Vital signs and laboratory values were obtained from the electronic medical record system and then used as predictors (features). A neural network was used to build a model to predict clinical deterioration events (ICU transfer and cardiac arrest). The performance of the neural network model was compared to the VitalPac Early Warning Score (ViEWS). Five hundred sixty five consecutive total admissions were available with 43 admissions resulting in clinical deterioration. Using simulation, the neural network outperformed the ViEWS model with a positive predictive value of 82% compared to 24%, respectively. We developed and tested a neural network-based prediction model for clinical deterioration in patients hospitalized in the hematologic malignancy unit. Our neural network model outperformed an existing model, substantially increasing the positive predictive value, allowing the clinician to be confident in the alarm raised. This system can be readily implemented in a real-time fashion in existing EMR systems.

  15. Application of Artificial Neural Network to Predict the use of Runway at Juanda International Airport

    Science.gov (United States)

    Putra, J. C. P.; Safrilah

    2017-06-01

    Artificial neural network approaches are useful to solve many complicated problems. It solves a number of problems in various areas such as engineering, medicine, business, manufacturing, etc. This paper presents an application of artificial neural network to predict a runway capacity at Juanda International Airport. An artificial neural network model of backpropagation and multi-layer perceptron is adopted to this research to learning process of runway capacity at Juanda International Airport. The results indicate that the training data is successfully recognizing the certain pattern of runway use at Juanda International Airport. Whereas, testing data indicate vice versa. Finally, it can be concluded that the approach of uniformity data and network architecture is the critical part to determine the accuracy of prediction results.

  16. PREDICTION OF BULLS’ SLAUGHTER VALUE FROM GROWTH DATA USING ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Krzysztof ADAMCZYK

    2006-02-01

    Full Text Available The objective of this research was to investigate the usefulness of artifi cial neural network (ANN in the prediction of slaughter value of young crossbred bulls based on growth data. The studies were carried out on 104 bulls fattened from 120 days of life until the weight of 500 kg. The bulls were group fed using mainly farm feeds. After slaughter the carcasses were dissected and meat was subjected to physico-chemical and organoleptic analyses. The obtained data were used for the development of an artifi cial neural network model of slaughter value prediction. It was found that some slaughter value traits (hot carcass, cold half-carcass, neck and round weights, bone content in dissected elements in half-carcass, meat pH, dry-matter and protein contents in meat and meat tenderness and juiciness can be predicted with a considerably high accuracy using the artifi cial neural network.

  17. Nonlinear predictive modeling of MHC class II-peptide binding using Bayesian neural networks.

    Science.gov (United States)

    Winkler, David A; Burden, Frank R

    2007-01-01

    Methods for predicting the binding affinity of peptides to the MHC have become more sophisticated in the past 5-10 years. It is possible to use computational quantitative structure-activity methods to build models of peptide affinity that are truly predictive. Two of the most useful methods for building models are Bayesian regularized neural networks for continuous or discrete (categorical) data and support vector machines (SVMs) for discrete data. We illustrate the application of Bayesian regularized neural networks to modeling MHC class II-binding affinity of peptides. Training data comprised sequences and binding data for nonamer (nine amino acid) peptides. Peptides were characterized by mathematical representations of several types. Independent test data comprised sequences and binding data for peptides of length Bayesian neural networks are robust, efficient "universal approximators" that are well able to tackle the difficult problem of correctly predicting the MHC class II-binding activities of a majority of the test set peptides.

  18. Application of clustering analysis in the prediction of photovoltaic power generation based on neural network

    Science.gov (United States)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    In order to select effective samples in the large number of data of PV power generation years and improve the accuracy of PV power generation forecasting model, this paper studies the application of clustering analysis in this field and establishes forecasting model based on neural network. Based on three different types of weather on sunny, cloudy and rainy days, this research screens samples of historical data by the clustering analysis method. After screening, it establishes BP neural network prediction models using screened data as training data. Then, compare the six types of photovoltaic power generation prediction models before and after the data screening. Results show that the prediction model combining with clustering analysis and BP neural networks is an effective method to improve the precision of photovoltaic power generation.

  19. Prediction of Modal Shift Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Kadir Akgöl

    2014-08-01

    Full Text Available Various public transport concepts have been developed to provide solutions to the ever growing problem of traffic in modern times. For instance, intelligent subscription bus service is one of them. This concept aims to provide a means of transport at near private car comfort as well as at near public transport cost. By this means, a shift from other modes of transport, especially private car, to public transport is aimed to encourage use of public transport. An artificial neural network model has been developed in this study to be able to calculate modal shift using three sources of data obtained from two questionnaire surveys conducted at Akdeniz University campus and a computer model's output (based on shortest route algorithms. The relationship between the results of the second questionnaire survey and the other data have been entered into Weka and Rapid Miner programs, the accuracy of this machine learning has been calculated and finally the modal shift originated by the intelligent subscription bus services has been estimated. The findings have yielded very reliable results which revealed the potential of applying the technique easily to similar problems.

  20. Prediction of coal grindability based on petrography, proximate and ultimate analysis using neural networks and particle swarm optimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Modarres, Hamid Reza; Kor, Mohammad; Abkhoshk, Emad; Alfi, Alireza; Lower, James C.

    2009-06-15

    In recent years, use of artificial neural networks have increased for estimation of Hardgrove grindability index (HGI) of coals. For training of the neural networks, gradient descent methods such as Backpropagaition (BP) method are used frequently. However they originally showed good performance in some non-linearly separable problems, but have a very slow convergence and can get stuck in local minima. In this paper, to overcome the lack of gradient descent methods, a novel particle swarm optimization and artificial neural network was employed for predicting the HGI of Kentucky coals by featuring eight coal parameters. The proposed approach also compared with two kinds of artificial neural network (generalized regression neural network and back propagation neural network). Results indicate that the neural networks - particle swarm optimization method gave the most accurate HGI prediction.

  1. Predicting recurrent aphthous ulceration using genetic algorithms-optimized neural networks

    Directory of Open Access Journals (Sweden)

    Najla S Dar-Odeh

    2010-05-01

    Full Text Available Najla S Dar-Odeh1, Othman M Alsmadi2, Faris Bakri3, Zaer Abu-Hammour2, Asem A Shehabi3, Mahmoud K Al-Omiri1, Shatha M K Abu-Hammad4, Hamzeh Al-Mashni4, Mohammad B Saeed4, Wael Muqbil4, Osama A Abu-Hammad1 1Faculty of Dentistry, 2Faculty of Engineering and Technology, 3Faculty of Medicine, University of Jordan, Amman, Jordan; 4Dental Department, University of Jordan Hospital, Amman, JordanObjective: To construct and optimize a neural network that is capable of predicting the occurrence of recurrent aphthous ulceration (RAU based on a set of appropriate input data.Participants and methods: Artificial neural networks (ANN software employing genetic algorithms to optimize the architecture neural networks was used. Input and output data of 86 participants (predisposing factors and status of the participants with regards to recurrent aphthous ulceration were used to construct and train the neural networks. The optimized neural networks were then tested using untrained data of a further 10 participants.Results: The optimized neural network, which produced the most accurate predictions for the presence or absence of recurrent aphthous ulceration was found to employ: gender, hematological (with or without ferritin and mycological data of the participants, frequency of tooth brushing, and consumption of vegetables and fruits.Conclusions: Factors appearing to be related to recurrent aphthous ulceration and appropriate for use as input data to construct ANNs that predict recurrent aphthous ulceration were found to include the following: gender, hemoglobin, serum vitamin B12, serum ferritin, red cell folate, salivary candidal colony count, frequency of tooth brushing, and the number of fruits or vegetables consumed daily.Keywords: artifical neural networks, recurrent, aphthous ulceration, ulcer

  2. Technical Topic 3.2.2.d Bayesian and Non-Parametric Statistics: Integration of Neural Networks with Bayesian Networks for Data Fusion and Predictive Modeling

    Science.gov (United States)

    2016-05-31

    foundations for, integration of predictive neural networks into Bayesian networks as a means of generating probability distribution functions and...using a neural network and secondly, fusing this and other types of sensor output into a single probabilistic evaluation of multiple sensor outputs...Integration of Neural Networks with Bayesian Networks for Data Fusion and Predictive Modeling The views, opinions and/or findings contained in this

  3. Failure load prediction of single lap adhesive joints using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Erdi Tosun

    2016-06-01

    Full Text Available The objective of this paper was to predict the failure load in single lap adhesive joints subjected to tensile loading by using artificial neural networks. Experimental data obtained from the literature cover the single lap adhesive joints with various geometric models under the tensile loading. The data are arranged in a format such that two input parameters cover the length and width of bond area in single lap adhesive joints and the corresponding output is the ultimate failure load. An artificial neural network model was developed to estimate relationship between failure loads by using geometric dimensions of bond area as input data. A three-layer feedforward artificial neural network that utilized Levenberg–Marquardt learning algorithm model was used in order to train network. It was observed that artificial neural network model can estimate failure load of single lap adhesive joints with acceptable error. Mean absolute percentage error and Nash–Sutcliffe coefficient of efficiency values of both training and testing data were 3.523 and 3.524 and 0.997 and 0.992, respectively. The results showed that the artificial neural network is an efficient alternative method to predict the failure load of single lap adhesive joints. Also estimated results are in very good agreement with the experimental data.

  4. Use of Artificial Neural Networks for Prediction of Convective Heat Transfer in Evaporative Units

    Directory of Open Access Journals (Sweden)

    Romero-Méndez Ricardo

    2014-01-01

    Full Text Available Convective heat transfer prediction of evaporative processes is more complicated than the heat transfer prediction of single-phase convective processes. This is due to the fact that physical phenomena involved in evaporative processes are very complex and vary with the vapor quality that increases gradually as more fluid is evaporated. Power-law correlations used for prediction of evaporative convection have proved little accuracy when used in practical cases. In this investigation, neural-network-based models have been used as a tool for prediction of the thermal performance of evaporative units. For this purpose, experimental data were obtained in a facility that includes a counter-flow concentric pipes heat exchanger with R134a refrigerant flowing inside the circular section and temperature controlled warm water moving through the annular section. This work also included the construction of an inverse Rankine refrigeration cycle that was equipped with measurement devices, sensors and a data acquisition system to collect the experimental measurements under different operating conditions. Part of the data were used to train several neural-network configurations. The best neural-network model was then used for prediction purposes and the results obtained were compared with experimental data not used for training purposes. The results obtained in this investigation reveal the convenience of using artificial neural networks as accurate predictive tools for determining convective heat transfer rates of evaporative processes.

  5. Neural Network Model for Prediction of Discharged from the Catchments of Langat River, Malaysia

    Directory of Open Access Journals (Sweden)

    Z. Ahmad

    2010-09-01

    Full Text Available Artificial neural networks have been shown to be able to approximate any continuous non-linear functions and have been used to build data base empirical models for non-linear processes. In this study, neural networks models were used to model the daily river flows or discharged in Langat River, Malaysia. Two possible ways of modelling were implemented which is by time series prediction and by the dynamics function of the system which include the past value of the discharged and also the rainfall in the input. The sum square error (SSE, residue analysis and correlation coefficient based on the observed and prediction output is chosen as the criteria of selection of which models is appropriate. It was found that the developed neural networks models using dynamics function provided satisfactory model discharges.

  6. Predicting wettability behavior of fluorosilica coated metal surface using optimum neural network

    Science.gov (United States)

    Taghipour-Gorjikolaie, Mehran; Valipour Motlagh, Naser

    2018-02-01

    The interaction between variables, which are effective on the surface wettability, is very complex to predict the contact angles and sliding angles of liquid drops. In this paper, in order to solve this complexity, artificial neural network was used to develop reliable models for predicting the angles of liquid drops. Experimental data are divided into training data and testing data. By using training data and feed forward structure for the neural network and using particle swarm optimization for training the neural network based models, the optimum models were developed. The obtained results showed that regression index for the proposed models for the contact angles and sliding angles are 0.9874 and 0.9920, respectively. As it can be seen, these values are close to unit and it means the reliable performance of the models. Also, it can be inferred from the results that the proposed model have more reliable performance than multi-layer perceptron and radial basis function based models.

  7. Elman neural network for modeling and predictive control of delayed dynamic systems

    Directory of Open Access Journals (Sweden)

    Wysocki Antoni

    2016-03-01

    Full Text Available The objective of this paper is to present a modified structure and a training algorithm of the recurrent Elman neural network which makes it possible to explicitly take into account the time-delay of the process and a Model Predictive Control (MPC algorithm for such a network. In MPC the predicted output trajectory is repeatedly linearized on-line along the future input trajectory, which leads to a quadratic optimization problem, nonlinear optimization is not necessary. A strongly nonlinear benchmark process (a simulated neutralization reactor is considered to show advantages of the modified Elman neural network and the discussed MPC algorithm. The modified neural model is more precise and has a lower number of parameters in comparison with the classical Elman structure. The discussed MPC algorithm with on-line linearization gives similar trajectories as MPC with nonlinear optimization repeated at each sampling instant.

  8. Prediction of Phase Behavior in Microemulsion Systems Using Artificial Neural Networks

    Science.gov (United States)

    Richardson; Mbanefo; Aboofazeli; Lawrence; Barlow

    1997-03-15

    Preliminary investigations have been conducted to assess the potential for using (back-propagation, feed-forward) artificial neural networks to predict the phase behavior of quaternary microemulsion-forming systems, with a view to employing this type of methodology in the evaluation of novel cosurfactants for the formulation of pharmaceutically acceptable drug-delivery systems. The data employed in training the neural networks related to microemulsion systems containing lecithin, isopropyl myristate, and water, together with different types of cosurfactants, including short- and medium-chain alcohols, amines, acids, and ethylene glycol monoalkyl ethers. Previously unpublished phase diagrams are presented for four systems involving the cosurfactants 2-methyl-2-butanol, 2-methyl-1-propanol, 2-methyl-1-butanol, and isopropanol, which, along with eight other published sets of data, are used to test the predictive ability of the trained networks. The pseudo-ternary phase diagrams for these systems are predicted using only four computed physicochemical properties for the cosurfactants involved. The artificial neural networks are shown to be highly successful in predicting phase behavior for these systems, achieving mean success rates of 96.7 and 91.6% for training and test data, respectively. The conclusion is reached that artificial neural networks can provide useful tools for the development of microemulsion-based drug-delivery systems.

  9. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  10. APPLICATION OF ARTIFICIAL NEURAL NETWORKS FOR PREDICTION OF AIR POLLUTION LEVELS IN ENVIRONMENTAL MONITORING

    Directory of Open Access Journals (Sweden)

    Małgorzata Pawul

    2016-09-01

    Full Text Available Recently, a lot of attention was paid to the improvement of methods which are used to air quality forecasting. Artificial neural networks can be applied to model these problems. Their advantage is that they can solve the problem in the conditions of incomplete information, without the knowledge of the analytical relationship between the input and output data. In this paper we applied artificial neural networks to predict the PM 10 concentrations as factors determining the occurrence of smog phenomena. To create these networks we used meteorological data and concentrations of PM 10. The data were recorded in 2014 and 2015 at three measuring stations operating in Krakow under the State Environmental Monitoring. The best results were obtained by three-layer perceptron with back-propagation algorithm. The neural networks received a good fit in all cases.

  11. Prediction of Aerodynamic Coefficients for Wind Tunnel Data using a Genetic Algorithm Optimized Neural Network

    Science.gov (United States)

    Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy

    2002-01-01

    A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.

  12. Validation of artificial neural network models for predicting biochemical markers associated with male infertility.

    Science.gov (United States)

    Vickram, A S; Kamini, A Rao; Das, Raja; Pathy, M Ramesh; Parameswari, R; Archana, K; Sridharan, T B

    2016-08-01

    Seminal fluid is the secretion from many glands comprised of several organic and inorganic compounds including free amino acids, proteins, fructose, glucosidase, zinc, and other scavenging elements like Mg(2+), Ca(2+), K(+), and Na(+). Therefore, in the view of development of novel approaches and proper diagnosis to male infertility, overall understanding of the biochemical and molecular composition and its role in regulation of sperm quality is highly desirable. Perhaps this can be achieved through artificial intelligence. This study was aimed to elucidate and predict various biochemical markers present in human seminal plasma with three different neural network models. A total of 177 semen samples were collected for this research (both fertile and infertile samples) and immediately processed to prepare a semen analysis report, based on the protocol of the World Health Organization (WHO [2010]). The semen samples were then categorized into oligoasthenospermia (n=35), asthenospermia (n=35), azoospermia (n=22), normospermia (n=34), oligospermia (n=34), and control (n=17). The major biochemical parameters like total protein content, fructose, glucosidase, and zinc content were elucidated by standard protocols. All the biochemical markers were predicted by using three different artificial neural network (ANN) models with semen parameters as inputs. Of the three models, the back propagation neural network model (BPNN) yielded the best results with mean absolute error 0.025, -0.080, 0.166, and -0.057 for protein, fructose, glucosidase, and zinc, respectively. This suggests that BPNN can be used to predict biochemical parameters for the proper diagnosis of male infertility in assisted reproductive technology (ART) centres. AAS: absorption spectroscopy; AI: artificial intelligence; ANN: artificial neural networks; ART: assisted reproductive technology; BPNN: back propagation neural network model; DT: decision tress; MLP: multilayer perceptron; PESA: percutaneous

  13. PREDICTION OF DEMAND FOR PRIMARY BOND OFFERINGS USING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Michal Tkac

    2014-12-01

    Full Text Available Purpose: Primary bond markets represent an interesting investment opportunity not only for banks, insurance companies, and other institutional investors, but also for individuals looking for capital gains. Since offered securities vary in terms of their rating, industrial classification, coupon, or maturity, demand of buyers for particular offerings often overcomes issued volume and price of given bond on secondary market consequently rises. Investors might be regarded as consumers purchasing required service according to their specific preferences at desired price. This paper aims at analysis of demand for bonds on primary market using artificial neural networks.Design/methodology: We design a multilayered feedforward neural network trained by Levenberg-Marquardt algorithm in order to estimate demand for individual bonds based on parameters of particular offerings. Outcomes obtained by artificial neural network are compared with conventional econometric methods.Findings: Our results indicate that artificial neural network significantly outperformed standard econometric techniques and on examined sample of primary bond offerings achieved considerably better performance in terms of prediction accuracy and mean squared error.Originality: We show that proposed neural network is able to successfully predict demand for primary obligation offerings based on their specifications. Moreover, we identify relevant parameters of issues which are able to considerably affect total demand for given security.  Our findings might not only help investors to detect marketable securities, but also enable issuing entities to increase demand for their bonds in order to decrease their offering price. 

  14. Predicting ventriculoperitoneal shunt infection in children with hydrocephalus using artificial neural network.

    Science.gov (United States)

    Habibi, Zohreh; Ertiaei, Abolhasan; Nikdad, Mohammad Sadegh; Mirmohseni, Atefeh Sadat; Afarideh, Mohsen; Heidari, Vahid; Saberi, Hooshang; Rezaei, Abdolreza Sheikh; Nejat, Farideh

    2016-11-01

    The relationships between shunt infection and predictive factors have not been previously investigated using Artificial Neural Network (ANN) model. The aim of this study was to develop an ANN model to predict shunt infection in a group of children with shunted hydrocephalus. Among more than 800 ventriculoperitoneal shunt procedures which had been performed between April 2000 and April 2011, 68 patients with shunt infection and 80 controls that fulfilled a set of meticulous inclusion/exclusion criteria were consecutively enrolled. Univariate analysis was performed for a long list of risk factors, and those with p value artificial neural networks can predict shunt infection with a high level of accuracy in children with shunted hydrocephalus. Also, the contribution of different risk factors in the prediction of shunt infection can be determined using the trained network.

  15. Feed-forward neural network model for hunger and satiety related VAS score prediction.

    Science.gov (United States)

    Krishnan, Shaji; Hendriks, Henk F J; Hartvigsen, Merete L; de Graaf, Albert A

    2016-07-07

    An artificial neural network approach was chosen to model the outcome of the complex signaling pathways in the gastro-intestinal tract and other peripheral organs that eventually produce the satiety feeling in the brain upon feeding. A multilayer feed-forward neural network was trained with sets of experimental data relating concentration-time courses of plasma satiety hormones to Visual Analog Scales (VAS) scores. The network successfully predicted VAS responses from sets of satiety hormone data obtained in experiments using different food compositions. The correlation coefficients for the predicted VAS responses for test sets having i) a full set of three satiety hormones, ii) a set of only two satiety hormones, and iii) a set of only one satiety hormone were 0.96, 0.96, and 0.89, respectively. The predicted VAS responses discriminated the satiety effects of high satiating food types from less satiating food types both in orally fed and ileal infused forms. From this application of artificial neural networks, one may conclude that neural network models are very suitable to describe situations where behavior is complex and incompletely understood. However, training data sets that fit the experimental conditions need to be available.

  16. Prediction of Prospective Mathematics Teachers' Academic Success in Entering Graduate Education by Using Back-Propagation Neural Network

    Science.gov (United States)

    Bahadir, Elif

    2016-01-01

    The purpose of this study is to examine a neural network based approach to predict achievement in graduate education for Elementary Mathematics prospective teachers. With the help of this study, it can be possible to make an effective prediction regarding the students' achievement in graduate education with Artificial Neural Networks (ANN). Two…

  17. Application of artificial neural networks to predict the deflections of reinforced concrete beams

    Science.gov (United States)

    Kaczmarek, Mateusz; Szymańska, Agnieszka

    2016-06-01

    Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.

  18. Predicting dihedral angle probability distributions for protein coil residues from primary sequence using neural networks

    DEFF Research Database (Denmark)

    Helles, Glennie; Fonseca, Rasmus

    2009-01-01

    residue in the input-window. The trained neural network shows a significant improvement (4-68%) in predicting the most probable bin (covering a 30°×30° area of the dihedral angle space) for all amino acids in the data set compared to first order statistics. An accuracy comparable to that of secondary...

  19. Predicting post-treatment survivability of patients with breast cancer using Artificial Neural Network methods.

    Science.gov (United States)

    Wang, Tan-Nai; Cheng, Chung-Hao; Chiu, Hung-Wen

    2013-01-01

    In the last decade, the use of data mining techniques has become widely accepted in medical applications, especially in predicting cancer patients' survival. In this study, we attempted to train an Artificial Neural Network (ANN) to predict the patients' five-year survivability. Breast cancer patients who were diagnosed and received standard treatment in one hospital during 2000 to 2003 in Taiwan were collected for train and test the ANN. There were 604 patients in this dataset excluding died not in breast cancer. Among them 140 patients died within five years after their first radiotherapy treatment. The artificial neural networks were created by STATISTICA(®) software. Five variables (age, surgery and radiotherapy type, tumor size, regional lymph nodes, distant metastasis) were selected as the input features for ANN to predict the five-year survivability of breast cancer patients. We trained 100 artificial neural networks and chose the best one to analyze. The accuracy rate is 85% and area under the receiver operating characteristic (ROC) curve is 0.79. It shows that artificial neural network is a good tool to predict the five-year survivability of breast cancer patients.

  20. Modelling for Understanding AND for Prediction/Classification--The Power of Neural Networks in Research

    Science.gov (United States)

    Cascallar, Eduardo; Musso, Mariel; Kyndt, Eva; Dochy, Filip

    2014-01-01

    Two articles, Edelsbrunner and, Schneider (2013), and Nokelainen and Silander (2014) comment on Musso, Kyndt, Cascallar, and Dochy (2013). Several relevant issues are raised and some important clarifications are made in response to both commentaries. Predictive systems based on artificial neural networks continue to be the focus of current…

  1. Application of radial basis function neural network to predict soil sorption partition coefficient using topological descriptors.

    Science.gov (United States)

    Sabour, Mohammad Reza; Moftakhari Anasori Movahed, Saman

    2017-02-01

    The soil sorption partition coefficient logKoc is an indispensable parameter that can be used in assessing the environmental risk of organic chemicals. In order to predict soil sorption partition coefficient for different and even unknown compounds in a fast and accurate manner, a radial basis function neural network (RBFNN) model was developed. Eight topological descriptors of 800 organic compounds were used as inputs of the model. These 800 organic compounds were chosen from a large and very diverse data set. Generalized Regression Neural Network (GRNN) was utilized as the function in this neural network model due to its capability to adapt very quickly. Hence, it can be used to predict logKoc for new chemicals, as well. Out of total data set, 560 organic compounds were used for training and 240 to test efficiency of the model. The obtained results indicate that the model performance is very well. The correlation coefficients (R2) for training and test sets were 0.995 and 0.933, respectively. The root-mean square errors (RMSE) were 0.2321 for training set and 0.413 for test set. As the results for both training and test set are extremely satisfactory, the proposed neural network model can be employed not only to predict logKoc of known compounds, but also to be adaptive for prediction of this value precisely for new products that enter the market each year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Prediction of flow characteristics using multiple regression and neural networks: A case study in Zimbabwe

    NARCIS (Netherlands)

    Mazvimavi, D.; Meijerink, A.M.J.; Savenije, H.H.G.; Stein, A.

    2005-01-01

    The feasibility of predicting flow characteristics from basin descriptors using multiple regression and neural networks has been investigated on 52 basins in Zimbabwe. Flow characteristics considered were average annual runoff, base flow index, flow duration curve, and average monthly runoff . Mean

  3. Artificial Neural Network Approach to Predict Biodiesel Production in Supercritical tert-Butyl Methyl Ether

    Directory of Open Access Journals (Sweden)

    Obie Farobie

    2016-05-01

    Full Text Available In this study, for the first time artificial neural network was used to predict biodiesel yield in supercritical tert-butyl methyl ether (MTBE. The experimental data of biodiesel yield conducted by varying four input factors (i.e. temperature, pressure, oil-to-MTBE molar ratio, and reaction time were used to elucidate artificial neural network model in order to predict biodiesel yield. The main goal of this study was to assess how accurately this artificial neural network model to predict biodiesel yield conducted under supercritical MTBE condition. The result shows that artificial neural network is a powerful tool for modeling and predicting biodiesel yield conducted under supercritical MTBE condition that was proven by a high value of coefficient of determination (R of 0.9969, 0.9899, and 0.9658 for training, validation, and testing, respectively. Using this approach, the highest biodiesel yield was determined of 0.93 mol/mol (corresponding to the actual biodiesel yield of 0.94 mol/mol that was achieved at 400 °C, under the reactor pressure of 10 MPa, oil-to-MTBE molar ratio of 1:40 within 15 min of reaction time.

  4. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lundegaard, Claus; Worning, Peder

    2003-01-01

    In this paper we describe an improved neural network method to predict T-cell class I epitopes. A novel input representation has been developed consisting of a combination of sparse encoding, Blosum encoding, and input derived from hidden Markov models. We demonstrate that the combination...

  5. KNT-artificial neural network model for flux prediction of ultrafiltration membrane producing drinking water.

    Science.gov (United States)

    Oh, H K; Yu, M J; Gwon, E M; Koo, J Y; Kim, S G; Koizumi, A

    2004-01-01

    This paper describes the prediction of flux behavior in an ultrafiltration (UF) membrane system using a Kalman neuro training (KNT) network model. The experimental data was obtained from operating a pilot plant of hollow fiber UF membrane with groundwater for 7 months. The network was trained using operating conditions such as inlet pressure, filtration duration, and feed water quality parameters including turbidity, temperature and UV254. Pre-processing of raw data allowed the normalized input data to be used in sigmoid activation functions. A neural network architecture was structured by modifying the number of hidden layers, neurons and learning iterations. The structure of KNT-neural network with 3 layers and 5 neurons allowed a good prediction of permeate flux by 0.997 of correlation coefficient during the learning phase. Also the validity of the designed model was evaluated with other experimental data not used during the training phase and nonlinear flux behavior was accurately estimated with 0.999 of correlation coefficient and a lower error of prediction in the testing phase. This good flux prediction can provide preliminary criteria in membrane design and set up the proper cleaning cycle in membrane operation. The KNT-artificial neural network is also expected to predict the variation of transmembrane pressure during filtration cycles and can be applied to automation and control of full scale treatment plants.

  6. Comparing various artificial neural network types for water temperature prediction in rivers

    Science.gov (United States)

    Piotrowski, Adam P.; Napiorkowski, Maciej J.; Napiorkowski, Jaroslaw J.; Osuch, Marzena

    2015-10-01

    A number of methods have been proposed for the prediction of streamwater temperature based on various meteorological and hydrological variables. The present study shows a comparison of few types of data-driven neural networks (multi-layer perceptron, product-units, adaptive-network-based fuzzy inference systems and wavelet neural networks) and nearest neighbour approach for short time streamwater temperature predictions in two natural catchments (mountainous and lowland) located in temperate climate zone, with snowy winters and hot summers. To allow wide applicability of such models, autoregressive inputs are not used and only easily available measurements are considered. Each neural network type is calibrated independently 100 times and the mean, median and standard deviation of the results are used for the comparison. Finally, the ensemble aggregation approach is tested. The results show that simple and popular multi-layer perceptron neural networks are in most cases not outperformed by more complex and advanced models. The choice of neural network is dependent on the way the models are compared. This may be a warning for anyone who wish to promote own models, that their superiority should be verified in different ways. The best results are obtained when mean, maximum and minimum daily air temperatures from the previous days are used as inputs, together with the current runoff and declination of the Sun from two recent days. The ensemble aggregation approach allows reducing the mean square error up to several percent, depending on the case, and noticeably diminishes differences in modelling performance obtained by various neural network types.

  7. Predictive Control of Hydronic Floor Heating Systems using Neural Networks and Genetic Algorithms

    DEFF Research Database (Denmark)

    Vinther, Kasper; Green, Torben; Østergaard, Søren

    2017-01-01

    . Additionally, weather disturbances such as solar heat gain can be anticipated and compensated for, while taking into account the slow dynamics of the floor. Together with a genetic algorithm, they provide a way to search for optimal future set-point sequences, when convexity and continuity in the solution......This paper presents the use a neural network and a micro genetic algorithm to optimize future set-points in existing hydronic floor heating systems for improved energy efficiency. The neural network can be trained to predict the impact of changes in set-points on future room temperatures...

  8. Modulation of grasping force in prosthetic hands using neural network-based predictive control.

    Science.gov (United States)

    Pasluosta, Cristian F; Chiu, Alan W L

    2015-01-01

    This chapter describes the implementation of a neural network-based predictive control system for driving a prosthetic hand. Nonlinearities associated with the electromechanical aspects of prosthetic devices present great challenges for precise control of this type of device. Model-based controllers may overcome this issue. Moreover, given the complexity of these kinds of electromechanical systems, neural network-based modeling arises as a good fit for modeling the fingers' dynamics. The results of simulations mimicking potential situations encountered during activities of daily living demonstrate the feasibility of this technique.

  9. Prediction of Force Measurements of a Microbend Sensor Based on an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Kemal Fidanboylu

    2009-09-01

    Full Text Available Artificial neural network (ANN based prediction of the response of a microbend fiber optic sensor is presented. To the best of our knowledge no similar work has been previously reported in the literature. Parallel corrugated plates with three deformation cycles, 6 mm thickness of the spacer material and 16 mm mechanical periodicity between deformations were used in the microbend sensor. Multilayer Perceptron (MLP with different training algorithms, Radial Basis Function (RBF network and General Regression Neural Network (GRNN are used as ANN models in this work. All of these models can predict the sensor responses with considerable errors. RBF has the best performance with the smallest mean square error (MSE values of training and test results. Among the MLP algorithms and GRNN the Levenberg-Marquardt algorithm has good results. These models successfully predict the sensor responses, hence ANNs can be used as useful tool in the design of more robust fiber optic sensors.

  10. Artificial neural network modeling of jatropha oil fueled diesel engine for emission predictions

    Directory of Open Access Journals (Sweden)

    Ganapathy Thirunavukkarasu

    2009-01-01

    Full Text Available This paper deals with artificial neural network modeling of diesel engine fueled with jatropha oil to predict the unburned hydrocarbons, smoke, and NOx emissions. The experimental data from the literature have been used as the data base for the proposed neural network model development. For training the networks, the injection timing, injector opening pressure, plunger diameter, and engine load are used as the input layer. The outputs are hydrocarbons, smoke, and NOx emissions. The feed forward back propagation learning algorithms with two hidden layers are used in the networks. For each output a different network is developed with required topology. The artificial neural network models for hydrocarbons, smoke, and NOx emissions gave R2 values of 0.9976, 0.9976, and 0.9984 and mean percent errors of smaller than 2.7603, 4.9524, and 3.1136, respectively, for training data sets, while the R2 values of 0.9904, 0.9904, and 0.9942, and mean percent errors of smaller than 6.5557, 6.1072, and 4.4682, respectively, for testing data sets. The best linear fit of regression to the artificial neural network models of hydrocarbons, smoke, and NOx emissions gave the correlation coefficient values of 0.98, 0.995, and 0.997, respectively.

  11. Predicting Subsurface Soil Layering and Landslide Risk with Artificial Neural Networks

    DEFF Research Database (Denmark)

    Farrokhzad, Farzad; Barari, Amin; Ibsen, Lars Bo

    2011-01-01

    the investigation of study area. The quality of the modeling is further improved by the application of some controlling techniques involved in ANN. Based on the obtained results and considering that the test data were not presented to the network in the training process, it can be stated that the trained neural...... networks are capable of predicting variations in the soil profile and assessing the landslide hazard with an acceptable level of confidence....

  12. Artificial neural networks (ANN): prediction of sensory measurements from instrumental data

    OpenAIRE

    Carvalho,Naiara Barbosa; Minim,Valéria Paula Rodrigues; Silva,Rita de Cássia dos Santos Navarro; Della Lucia,Suzana Maria; Minim,Luis Aantonio

    2013-01-01

    The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combination...

  13. Exploring the Combination of Dempster-Shafer Theory and Neural Network for Predicting Trust and Distrust.

    Science.gov (United States)

    Wang, Xin; Wang, Ying; Sun, Hongbin

    2016-01-01

    In social media, trust and distrust among users are important factors in helping users make decisions, dissect information, and receive recommendations. However, the sparsity and imbalance of social relations bring great difficulties and challenges in predicting trust and distrust. Meanwhile, there are numerous inducing factors to determine trust and distrust relations. The relationship among inducing factors may be dependency, independence, and conflicting. Dempster-Shafer theory and neural network are effective and efficient strategies to deal with these difficulties and challenges. In this paper, we study trust and distrust prediction based on the combination of Dempster-Shafer theory and neural network. We firstly analyze the inducing factors about trust and distrust, namely, homophily, status theory, and emotion tendency. Then, we quantify inducing factors of trust and distrust, take these features as evidences, and construct evidence prototype as input nodes of multilayer neural network. Finally, we propose a framework of predicting trust and distrust which uses multilayer neural network to model the implementing process of Dempster-Shafer theory in different hidden layers, aiming to overcome the disadvantage of Dempster-Shafer theory without optimization method. Experimental results on a real-world dataset demonstrate the effectiveness of the proposed framework.

  14. Exploring the Combination of Dempster-Shafer Theory and Neural Network for Predicting Trust and Distrust

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-01-01

    Full Text Available In social media, trust and distrust among users are important factors in helping users make decisions, dissect information, and receive recommendations. However, the sparsity and imbalance of social relations bring great difficulties and challenges in predicting trust and distrust. Meanwhile, there are numerous inducing factors to determine trust and distrust relations. The relationship among inducing factors may be dependency, independence, and conflicting. Dempster-Shafer theory and neural network are effective and efficient strategies to deal with these difficulties and challenges. In this paper, we study trust and distrust prediction based on the combination of Dempster-Shafer theory and neural network. We firstly analyze the inducing factors about trust and distrust, namely, homophily, status theory, and emotion tendency. Then, we quantify inducing factors of trust and distrust, take these features as evidences, and construct evidence prototype as input nodes of multilayer neural network. Finally, we propose a framework of predicting trust and distrust which uses multilayer neural network to model the implementing process of Dempster-Shafer theory in different hidden layers, aiming to overcome the disadvantage of Dempster-Shafer theory without optimization method. Experimental results on a real-world dataset demonstrate the effectiveness of the proposed framework.

  15. Sunspots Time-Series Prediction Based on Complementary Ensemble Empirical Mode Decomposition and Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Guohui Li

    2017-01-01

    Full Text Available The sunspot numbers are the major target which describes the solar activity level. Long-term prediction of sunspot activity is of great importance for aerospace, communication, disaster prevention, and so on. To improve the prediction accuracy of sunspot time series, the prediction model based on complementary ensemble empirical mode decomposition (CEEMD and wavelet neural network (WNN is proposed. First, the sunspot time series are decomposed by CEEMD to obtain a set of intrinsic modal functions (IMFs. Then, the IMFs and residuals are reconstructed to obtain the training samples and the prediction samples, and these samples are trained and predicted by WNN. Finally, the reconstructed IMFs and residuals are the final prediction results. Five kinds of prediction models are compared, which are BP neural network prediction model, WNN prediction model, empirical mode decomposition and WNN hybrid prediction model, ensemble empirical mode decomposition and WNN hybrid prediction model, and the proposed method in this paper. The same sunspot time series are predicted with five kinds of prediction models. The experimental results show that the proposed model has better prediction accuracy and smaller error.

  16. Lung cancer risk prediction method based on feature selection and artificial neural network.

    Science.gov (United States)

    Xie, Nan-Nan; Hu, Liang; Li, Tai-Hui

    2014-01-01

    A method to predict the risk of lung cancer is proposed, based on two feature selection algorithms: Fisher and ReliefF, and BP Neural Networks. An appropriate quantity of risk factors was chosen for lung cancer risk prediction. The process featured two steps, firstly choosing the risk factors by combining two feature selection algorithms, then providing the predictive value by neural network. Based on the method framework, an algorithm LCRP (lung cancer risk prediction) is presented, to reduce the amount of risk factors collected in practical applications. The proposed method is suitable for health monitoring and self-testing. Experiments showed it can actually provide satisfactory accuracy under low dimensions of risk factors.

  17. ECG Prediction Based on Classification via Neural Networks and Linguistic Fuzzy Logic Forecaster.

    Science.gov (United States)

    Volna, Eva; Kotyrba, Martin; Habiballa, Hashim

    2015-01-01

    The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series.

  18. ECG Prediction Based on Classification via Neural Networks and Linguistic Fuzzy Logic Forecaster

    Directory of Open Access Journals (Sweden)

    Eva Volna

    2015-01-01

    Full Text Available The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series.

  19. Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ruchi D. Chande

    2017-01-01

    Full Text Available Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.

  20. Small-time Scale Network Traffic Prediction Based on Complex-valued Neural Network

    Science.gov (United States)

    Yang, Bin

    2017-07-01

    Accurate models play an important role in capturing the significant characteristics of the network traffic, analyzing the network dynamic, and improving the forecasting accuracy for system dynamics. In this study, complex-valued neural network (CVNN) model is proposed to further improve the accuracy of small-time scale network traffic forecasting. Artificial bee colony (ABC) algorithm is proposed to optimize the complex-valued and real-valued parameters of CVNN model. Small-scale traffic measurements data namely the TCP traffic data is used to test the performance of CVNN model. Experimental results reveal that CVNN model forecasts the small-time scale network traffic measurement data very accurately

  1. Artificial neural networks (ANN: prediction of sensory measurements from instrumental data

    Directory of Open Access Journals (Sweden)

    Naiara Barbosa Carvalho

    2013-12-01

    Full Text Available The objective of this study was to predict by means of Artificial Neural Network (ANN, multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters. Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combinations of fat and water were evaluated. The measurements obtained by the instrumental and sensory analyses of these formulations constituted the data set used for training and validation of the network. Network training was performed using a back-propagation algorithm. The network architecture selected was composed of 8-3-9-2 neurons in its layers, which quickly and accurately predicted the sensory texture attributes studied, showing a high correlation between the predicted and experimental values for the validation data set and excellent generalization ability, with a validation RMSE of 0.0506.

  2. Prediction of mass transfer coefficient in rotating bed contactor (Higee) using artificial neural network

    Science.gov (United States)

    Saha, Dipendu

    2009-02-01

    The feasibility of drastically reducing the contactor size in mass transfer processes utilizing centrifugal field has generated a lot of interest in rotating packed bed (Higee). Various investigators have proposed correlations to predict mass transfer coefficients in Higee, but, none of the correlations was more than 20-30% accurate. In this work, artificial neural network (ANN) is employed for predicting mass transfer coefficient data. Results show that ANN provides better estimation of mass transfer coefficient with accuracy 5-15%.

  3. Sodium Adsorption Ratio (SAR) Prediction of the Chalghazi River Using Artificial Neural Network (ANN) Iran

    OpenAIRE

    Gholamreza Asadollahfardi; Azadeh Hemati; Saber Moradinejad; Rashin Asadollahfardi

    2013-01-01

    Considering the significance of the Sodium Adsorption Ratio (SAR) for growing plants, its prediction is essential for water quality management for irrigation. The SAR prediction in Chelghazy River in Kurdistan, northwest of Iran, using an Artificial Neural Network (ANN) was studied. The study applied the Multilayer Perceptron (MLP) of the ANN to average monthly data, which was collected by the water authority of the Kurdistan province for the period of 1998-2009. The input parameters of the M...

  4. Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction.

    Science.gov (United States)

    Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng

    2017-04-10

    This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks.

  5. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks.

    Science.gov (United States)

    Hanson, Jack; Yang, Yuedong; Paliwal, Kuldip; Zhou, Yaoqi

    2017-03-01

    Capturing long-range interactions between structural but not sequence neighbors of proteins is a long-standing challenging problem in bioinformatics. Recently, long short-term memory (LSTM) networks have significantly improved the accuracy of speech and image classification problems by remembering useful past information in long sequential events. Here, we have implemented deep bidirectional LSTM recurrent neural networks in the problem of protein intrinsic disorder prediction. The new method, named SPOT-Disorder, has steadily improved over a similar method using a traditional, window-based neural network (SPINE-D) in all datasets tested without separate training on short and long disordered regions. Independent tests on four other datasets including the datasets from critical assessment of structure prediction (CASP) techniques and >10 000 annotated proteins from MobiDB, confirmed SPOT-Disorder as one of the best methods in disorder prediction. Moreover, initial studies indicate that the method is more accurate in predicting functional sites in disordered regions. These results highlight the usefulness combining LSTM with deep bidirectional recurrent neural networks in capturing non-local, long-range interactions for bioinformatics applications. SPOT-disorder is available as a web server and as a standalone program at: http://sparks-lab.org/server/SPOT-disorder/index.php . j.hanson@griffith.edu.au or yuedong.yang@griffith.edu.au or yaoqi.zhou@griffith.edu.au. Supplementary data is available at Bioinformatics online.

  6. Prediction of strain values in reinforcements and concrete of a RC frame using neural networks

    Science.gov (United States)

    Vafaei, Mohammadreza; Alih, Sophia C.; Shad, Hossein; Falah, Ali; Halim, Nur Hajarul Falahi Abdul

    2018-01-01

    The level of strain in structural elements is an important indicator for the presence of damage and its intensity. Considering this fact, often structural health monitoring systems employ strain gauges to measure strains in critical elements. However, because of their sensitivity to the magnetic fields, inadequate long-term durability especially in harsh environments, difficulties in installation on existing structures, and maintenance cost, installation of strain gauges is not always possible for all structural components. Therefore, a reliable method that can accurately estimate strain values in critical structural elements is necessary for damage identification. In this study, a full-scale test was conducted on a planar RC frame to investigate the capability of neural networks for predicting the strain values. Two neural networks each of which having a single hidden layer was trained to relate the measured rotations and vertical displacements of the frame to the strain values measured at different locations of the frame. Results of trained neural networks indicated that they accurately estimated the strain values both in reinforcements and concrete. In addition, the trained neural networks were capable of predicting strains for the unseen input data set.

  7. Exchange rate prediction with multilayer perceptron neural network using gold price as external factor

    Directory of Open Access Journals (Sweden)

    Mohammad Fathian

    2012-04-01

    Full Text Available In this paper, the problem of predicting the exchange rate time series in the foreign exchange rate market is going to be solved using a time-delayed multilayer perceptron neural network with gold price as external factor. The input for the learning phase of the artificial neural network are the exchange rate data of the last five days plus the gold price in two different currencies of the exchange rate as the external factor for helping the artificial neural network improving its forecast accuracy. The five-day delay has been chosen because of the weekly cyclic behavior of the exchange rate time series with the consideration of two holidays in a week. The result of forecasts are then compared with using the multilayer peceptron neural network without gold price external factor by two most important evaluation techniques in the literature of exchange rate prediction. For the experimental analysis phase, the data of three important exchange rates of EUR/USD, GBP/USD, and USD/JPY are used.

  8. Application of a neural network as a potential aid in predicting NTF pump failure

    Science.gov (United States)

    Rogers, James L.; Hill, Jeffrey S.; Lamarsh, William J., II; Bradley, David E.

    1993-01-01

    The National Transonic Facility has three centrifugal multi-stage pumps to supply liquid nitrogen to the wind tunnel. Pump reliability is critical to facility operation and test capability. A highly desirable goal is to be able to detect a pump rotating component problem as early as possible during normal operation and avoid serious damage to other pump components. If a problem is detected before serious damage occurs, the repair cost and downtime could be reduced significantly. A neural network-based tool was developed for monitoring pump performance and aiding in predicting pump failure. Once trained, neural networks can rapidly process many combinations of input values other than those used for training to approximate previously unknown output values. This neural network was applied to establish relationships among the critical frequencies and aid in predicting failures. Training pairs were developed from frequency scans from typical tunnel operations. After training, various combinations of critical pump frequencies were propagated through the neural network. The approximated output was used to create a contour plot depicting the relationships of the input frequencies to the output pump frequency.

  9. ChemNet: A Transferable and Generalizable Deep Neural Network for Small-Molecule Property Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Garrett B.; Siegel, Charles M.; Vishnu, Abhinav; Hodas, Nathan O.

    2017-12-08

    With access to large datasets, deep neural networks through representation learning have been able to identify patterns from raw data, achieving human-level accuracy in image and speech recognition tasks. However, in chemistry, availability of large standardized and labelled datasets is scarce, and with a multitude of chemical properties of interest, chemical data is inherently small and fragmented. In this work, we explore transfer learning techniques in conjunction with the existing Chemception CNN model, to create a transferable and generalizable deep neural network for small-molecule property prediction. Our latest model, ChemNet learns in a semi-supervised manner from inexpensive labels computed from the ChEMBL database. When fine-tuned to the Tox21, HIV and FreeSolv dataset, which are 3 separate chemical tasks that ChemNet was not originally trained on, we demonstrate that ChemNet exceeds the performance of existing Chemception models, contemporary MLP models that trains on molecular fingerprints, and it matches the performance of the ConvGraph algorithm, the current state-of-the-art. Furthermore, as ChemNet has been pre-trained on a large diverse chemical database, it can be used as a universal “plug-and-play” deep neural network, which accelerates the deployment of deep neural networks for the prediction of novel small-molecule chemical properties.

  10. Power prediction in mobile communication systems using an optimal neural-network structure.

    Science.gov (United States)

    Gao, X M; Gao, X Z; Tanskanen, J A; Ovaska, S J

    1997-01-01

    Presents a novel neural-network-based predictor for received power level prediction in direct sequence code division multiple access (DS/CDMA) systems. The predictor consists of an adaptive linear element (Adaline) followed by a multilayer perceptron (MLP). An important but difficult problem in designing such a cascade predictor is to determine the complexity of the networks. We solve this problem by using the predictive minimum description length (PMDL) principle to select the optimal numbers of input and hidden nodes. This approach results in a predictor with both good noise attenuation and excellent generalization capability. The optimized neural networks are used for predictive filtering of very noisy Rayleigh fading signals with 1.8 GHz carrier frequency. Our results show that the optimal neural predictor can provide smoothed in-phase and quadrature signals with signal-to-noise ratio (SNR) gains of about 12 and 7 dB at the urban mobile speeds of 5 and 50 km/h, respectively. The corresponding power signal SNR gains are about 11 and 5 dB. Therefore, the neural predictor is well suitable for power control applications where ldquodelaylessrdquo noise attenuation and efficient reduction of fast fading are required.

  11. Predictive Modeling of Mechanical Properties of Welded Joints Based on Dynamic Fuzzy RBF Neural Network

    Directory of Open Access Journals (Sweden)

    ZHANG Yongzhi

    2016-10-01

    Full Text Available A dynamic fuzzy RBF neural network model was built to predict the mechanical properties of welded joints, and the purpose of the model was to overcome the shortcomings of static neural networks including structural identification, dynamic sample training and learning algorithm. The structure and parameters of the model are no longer head of default, dynamic adaptive adjustment in the training, suitable for dynamic sample data for learning, learning algorithm introduces hierarchical learning and fuzzy rule pruning strategy, to accelerate the training speed of model and make the model more compact. Simulation of the model was carried out by using three kinds of thickness and different process TC4 titanium alloy TIG welding test data. The results show that the model has higher prediction accuracy, which is suitable for predicting the mechanical properties of welded joints, and has opened up a new way for the on-line control of the welding process.

  12. Data Mining on Romanian Stock Market Using Neural Networks for Price Prediction

    Directory of Open Access Journals (Sweden)

    Magdalena Daniela NEMES

    2013-01-01

    Full Text Available Predicting future prices by using time series forecasting models has become a relevant trading strategy for most stock market players. Intuition and speculation are no longer reliable as many new trading strategies based on artificial intelligence emerge. Data mining represents a good source of information, as it ensures data processing in a convenient manner. Neural networks are considered useful prediction models when designing forecasting strategies. In this paper we present a series of neural networks designed for stock exchange rates forecasting applied on three Romanian stocks traded on the Bucharest Stock Exchange (BSE. A multistep ahead strategy was used in order to predict short-time price fluctuations. Later, the findings of our study can be integrated with an intelligent multi-agent system model which uses data mining and data stream processing techniques for helping users in the decision making process of buying or selling stocks.

  13. Prediction of body mass index in mice using dense molecular markers and a regularized neural network.

    Science.gov (United States)

    Okut, Hayrettin; Gianola, Daniel; Rosa, Guilherme J M; Weigel, Kent A

    2011-06-01

    Bayesian regularization of artificial neural networks (BRANNs) were used to predict body mass index (BMI) in mice using single nucleotide polymorphism (SNP) markers. Data from 1896 animals with both phenotypic and genotypic (12 320 loci) information were used for the analysis. Missing genotypes were imputed based on estimated allelic frequencies, with no attempt to reconstruct haplotypes based on family information or linkage disequilibrium between markers. A feed-forward multilayer perceptron network consisting of a single output layer and one hidden layer was used. Training of the neural network was done using the Bayesian regularized backpropagation algorithm. When the number of neurons in the hidden layer was increased, the number of effective parameters, γ, increased up to a point and stabilized thereafter. A model with five neurons in the hidden layer produced a value of γ that saturated the data. In terms of predictive ability, a network with five neurons in the hidden layer attained the smallest error and highest correlation in the test data although differences among networks were negligible. Using inherent weight information of BRANN with different number of neurons in the hidden layer, it was observed that 17 SNPs had a larger impact on the network, indicating their possible relevance in prediction of BMI. It is concluded that BRANN may be at least as useful as other methods for high-dimensional genome-enabled prediction, with the advantage of its potential ability of capturing non-linear relationships, which may be useful in the study of quantitative traits under complex gene action.

  14. Prediction of epitopes using neural network based methods

    DEFF Research Database (Denmark)

    Lundegaard, Claus; Lund, Ole; Nielsen, Morten

    2011-01-01

    In this paper, we describe the methodologies behind three different aspects of the NetMHC family for prediction of MHC class I binding, mainly to HLAs. We have updated the prediction servers, NetMHC-3.2, NetMHCpan-2.2, and a new consensus method, NetMHCcons, which, in their previous versions, hav...

  15. Wind speed prediction using statistical regression and neural network

    Indian Academy of Sciences (India)

    Prediction of wind speed in the atmospheric boundary layer is important for wind energy assess- ment,satellite launching and aviation,etc.There are a few techniques available for wind speed prediction,which require a minimum number of input parameters.Four different statistical techniques,viz.,curve fitting,Auto Regressive ...

  16. Fast Prediction of HCCI Combustion with an Artificial Neural Network Linked to a Fluid Mechanics Code

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S M; Flowers, D L; Chen, J; Babaimopoulos, A

    2006-08-29

    We have developed an artificial neural network (ANN) based combustion model and have integrated it into a fluid mechanics code (KIVA3V) to produce a new analysis tool (titled KIVA3V-ANN) that can yield accurate HCCI predictions at very low computational cost. The neural network predicts ignition delay as a function of operating parameters (temperature, pressure, equivalence ratio and residual gas fraction). KIVA3V-ANN keeps track of the time history of the ignition delay during the engine cycle to evaluate the ignition integral and predict ignition for each computational cell. After a cell ignites, chemistry becomes active, and a two-step chemical kinetic mechanism predicts composition and heat generation in the ignited cells. KIVA3V-ANN has been validated by comparison with isooctane HCCI experiments in two different engines. The neural network provides reasonable predictions for HCCI combustion and emissions that, although typically not as good as obtained with the more physically representative multi-zone model, are obtained at a much reduced computational cost. KIVA3V-ANN can perform reasonably accurate HCCI calculations while requiring only 10% more computational effort than a motored KIVA3V run. It is therefore considered a valuable tool for evaluation of engine maps or other performance analysis tasks requiring multiple individual runs.

  17. Artificial neural network for prediction of distant metastasis in colorectal cancer.

    Science.gov (United States)

    Biglarian, Akbar; Bakhshi, Enayatollah; Gohari, Mahmood Reza; Khodabakhshi, Reza

    2012-01-01

    Artificial neural networks (ANNs) are flexible and nonlinear models which can be used by clinical oncologists in medical research as decision making tools. This study aimed to predict distant metastasis (DM) of colorectal cancer (CRC) patients using an ANN model. The data of this study were gathered from 1219 registered CRC patients at the Research Center for Gastroenterology and Liver Disease of Shahid Beheshti University of Medical Sciences, Tehran, Iran (January 2002 and October 2007). For prediction of DM in CRC patients, neural network (NN) and logistic regression (LR) models were used. Then, the concordance index (C index) and the area under receiver operating characteristic curve (AUROC) were used for comparison of neural network and logistic regression models. Data analysis was performed with R 2.14.1 software. The C indices of ANN and LR models for colon cancer data were calculated to be 0.812 and 0.779, respectively. Based on testing dataset, the AUROC for ANN and LR models were 0.82 and 0.77, respectively. This means that the accuracy of ANN prediction was better than for LR prediction. The ANN model is a suitable method for predicting DM and in that case is suggested as a good classifier that usefulness to treatment goals.

  18. An Assessment of a Proposed Hybrid Neural Network for Daily Flow Prediction in Arid Climate

    Directory of Open Access Journals (Sweden)

    Milad Jajarmizadeh

    2014-01-01

    Full Text Available Rainfall-runoff simulation in hydrology using artificial intelligence presents the nonlinear relationships using neural networks. In this study, a hybrid network presented as a feedforward modular neural network (FF-MNN has been developed to predict the daily rainfall-runoff of the Roodan watershed at the southern part of Iran. This FF-MNN has three layers—input, hidden, and output. The hidden layer has two types of neural expert or module. Hydrometeorological data of the catchment were collected for 21 years. Heuristic method was used to develop the MNN for exploring daily flow generalization. Two training algorithms, namely, backpropagation with momentum and Levenberg-Marquardt, were used. Sigmoid and linear transfer functions were employed to explore the network’s optimum behavior. Cross-validation and predictive uncertainty assessments were carried out to protect overtiring and overparameterization, respectively. Results showed that the FF-MNN could satisfactorily predict stream flow during testing period. The Nash-Sutcliff coefficient, coefficient of determination, and root mean square error obtained using MNN during training and test periods were 0.85, 0.85, and 39.4 and 0.57, 0.58, and 32.2, respectively. The predictive uncertainties for both periods were 0.39 and 0.44, respectively. Generally, the study showed that the FF-MNN can give promising prediction for rainfall-runoff relations.

  19. Neural networks for learning and prediction with applications to remote sensing and speech perception

    Science.gov (United States)

    Gjaja, Marin N.

    1997-11-01

    Neural networks for supervised and unsupervised learning are developed and applied to problems in remote sensing, continuous map learning, and speech perception. Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART networks synthesize fuzzy logic and neural networks, and supervised ARTMAP networks incorporate ART modules for prediction and classification. New ART and ARTMAP methods resulting from analyses of data structure, parameter specification, and category selection are developed. Architectural modifications providing flexibility for a variety of applications are also introduced and explored. A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on fuzzy ARTMAP, is developed. System capabilities are tested on a challenging remote sensing problem, prediction of vegetation classes in the Cleveland National Forest from spectral and terrain features. After training at the pixel level, performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, back propagation neural networks, and K-nearest neighbor algorithms. Best performance is obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. This work forms the foundation for additional studies exploring fuzzy ARTMAP's capability to estimate class mixture composition for non-homogeneous sites. Exploratory simulations apply ARTMAP to the problem of learning continuous multidimensional mappings. A novel system architecture retains basic ARTMAP properties of incremental and fast learning in an on-line setting while adding components to solve this class of problems. The perceptual magnet effect is a language-specific phenomenon arising early in infant speech development that is characterized by a warping of speech sound perception. An

  20. Predicting Locations of Pollution Sources using Convolutional Neural Networks

    OpenAIRE

    Chi, Yiheng; Winovich, Nickolas D.; Lin, Guang

    2017-01-01

    Pollution is a severe problem today, and the main challenge in water and air pollution controls and eliminations is detecting and locating pollution sources. This research project aims to predict the locations of pollution sources given diffusion information of pollution in the form of array or image data. These predictions are done using machine learning. The relations between time, location, and pollution concentration are first formulated as pollution diffusion equations, which are partial...

  1. Prediction of Full-Scale Propulsion Power using Artificial Neural Networks

    DEFF Research Database (Denmark)

    Pedersen, Benjamin Pjedsted; Larsen, Jan

    2009-01-01

    Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature from four different loading conditions, together with hind cast data of wind and sea properties; and noon report data has been used to train an Artificial Neural Network for prediction...... of propulsion power. The model was optimized using a double cross validation procedure. The network was able to predict the propulsion power with accuracy between 0.8-1.7% using onboard measurement system data and 7% from manually acquired noon reports....

  2. Prediction of littoral drift with artificial neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, A.K.; Deo, M.C.; SanilKumar, V.

    , arbitrary accuracy, and difficult choices related to train- ing schemes, architectures, learning algorithms, and control parameters. Any new application of the ANN that addresses these issues therefore deserves attention of the potential user community...). The current study was also based on the same. Both multi-layered perceptron network (MLP) as well as its variant radial basis function (RBF) was used. Training of the MLP was achieved with the help of alternative learn- ing schemes like Conjugate Gradient...

  3. One day prediction of nighttime VLF amplitudes using nonlinear autoregression and neural network modeling

    Science.gov (United States)

    Santosa, H.; Hobara, Y.

    2017-01-01

    The electric field amplitude of very low frequency (VLF) transmitter from Hawaii (NPM) has been continuously recorded at Chofu (CHF), Tokyo, Japan. The VLF amplitude variability indicates lower ionospheric perturbation in the D region (60-90 km altitude range) around the NPM-CHF propagation path. We carried out the prediction of daily nighttime mean VLF amplitude by using Nonlinear Autoregressive with Exogenous Input Neural Network (NARX NN). The NARX NN model, which was built based on the daily input variables of various physical parameters such as stratospheric temperature, total column ozone, cosmic rays, Dst, and Kp indices possess good accuracy during the model building. The fitted model was constructed within the training period from 1 January 2011 to 4 February 2013 by using three algorithms, namely, Bayesian Neural Network (BRANN), Levenberg Marquardt Neural Network (LMANN), and Scaled Conjugate Gradient (SCG). The LMANN has the largest Pearson correlation coefficient (r) of 0.94 and smallest root-mean-square error (RMSE) of 1.19 dB. The constructed models by using LMANN were applied to predict the VLF amplitude from 5 February 2013 to 31 December 2013. As a result the one step (1 day) ahead predicted nighttime VLF amplitude has the r of 0.93 and RMSE of 2.25 dB. We conclude that the model built according to the proposed methodology provides good predictions of the electric field amplitude of VLF waves for NPM-CHF (midlatitude) propagation path.

  4. Prediction of Ship Traffic Flow Based on BP Neural Network and Markov Model

    Directory of Open Access Journals (Sweden)

    Lv Pengfei

    2016-01-01

    Full Text Available This paper discusses the distribution regularity of ship arrival and departure and the method of prediction of ship traffic flow. Depict the frequency histograms of ships arriving to port every day and fit the curve of the frequency histograms with a variety of distribution density function by using the mathematical statistic methods based on the samples of ship-to-port statistics of Fangcheng port nearly a year. By the chi-square testing: the fitting with Negative Binomial distribution and t-Location Scale distribution are superior to normal distribution and Logistic distribution in the branch channel; the fitting with Logistic distribution is superior to normal distribution, Negative Binomial distribution and t-Location Scale distribution in main channel. Build the BP neural network and Markov model based on BP neural network model to forecast ship traffic flow of Fangcheng port. The new prediction model is superior to BP neural network model by comparing the relative residuals of predictive value, which means the new model can improve the prediction accuracy.

  5. Artificial neural networks and neuro-fuzzy inference systems as virtual sensors for hydrogen safety prediction

    Energy Technology Data Exchange (ETDEWEB)

    Karri, Vishy; Ho, Tien [School of Engineering, University of Tasmania, GPO Box 252-65, Hobart, Tasmania 7001 (Australia); Madsen, Ole [Department of Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg (Denmark)

    2008-06-15

    Hydrogen is increasingly investigated as an alternative fuel to petroleum products in running internal combustion engines and as powering remote area power systems using generators. The safety issues related to hydrogen gas are further exasperated by expensive instrumentation required to measure the percentage of explosive limits, flow rates and production pressure. This paper investigates the use of model based virtual sensors (rather than expensive physical sensors) in connection with hydrogen production with a Hogen 20 electrolyzer system. The virtual sensors are used to predict relevant hydrogen safety parameters, such as the percentage of lower explosive limit, hydrogen pressure and hydrogen flow rate as a function of different input conditions of power supplied (voltage and current), the feed of de-ionized water and Hogen 20 electrolyzer system parameters. The virtual sensors are developed by means of the application of various Artificial Intelligent techniques. To train and appraise the neural network models as virtual sensors, the Hogen 20 electrolyzer is instrumented with necessary sensors to gather experimental data which together with MATLAB neural networks toolbox and tailor made adaptive neuro-fuzzy inference systems (ANFIS) were used as predictive tools to estimate hydrogen safety parameters. It was shown that using the neural networks hydrogen safety parameters were predicted to less than 3% of percentage average root mean square error. The most accurate prediction was achieved by using ANFIS. (author)

  6. Rolling Force Prediction in Heavy Plate Rolling Based on Uniform Differential Neural Network

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2016-01-01

    Full Text Available Accurate prediction of the rolling force is critical to assuring the quality of the final product in steel manufacturing. Exit thickness of plate for each pass is calculated from roll gap, mill spring, and predicted roll force. Ideal pass scheduling is dependent on a precise prediction of the roll force in each pass. This paper will introduce a concept that allows obtaining the material model parameters directly from the rolling process on an industrial scale by the uniform differential neural network. On the basis of the characteristics that the uniform distribution can fully characterize the solution space and enhance the diversity of the population, uniformity research on differential evolution operator is made to get improved crossover with uniform distribution. When its original function is transferred with a transfer function, the uniform differential evolution algorithms can quickly solve complex optimization problems. Neural network structure and weights threshold are optimized by uniform differential evolution algorithm, and a uniform differential neural network is formed to improve rolling force prediction accuracy in process control system.

  7. Experiment and Artificial Neural Network Prediction of Thermal Conductivity and Viscosity for Alumina-Water Nanofluids.

    Science.gov (United States)

    Zhao, Ningbo; Li, Zhiming

    2017-05-19

    To effectively predict the thermal conductivity and viscosity of alumina (Al₂O₃)-water nanofluids, an artificial neural network (ANN) approach was investigated in the present study. Firstly, using a two-step method, four Al₂O₃-water nanofluids were prepared respectively by dispersing different volume fractions (1.31%, 2.72%, 4.25%, and 5.92%) of nanoparticles with the average diameter of 30 nm. On this basis, the thermal conductivity and viscosity of the above nanofluids were analyzed experimentally under various temperatures ranging from 296 to 313 K. Then a radial basis function (RBF) neural network was constructed to predict the thermal conductivity and viscosity of Al₂O₃-water nanofluids as a function of nanoparticle volume fraction and temperature. The experimental results showed that both nanoparticle volume fraction and temperature could enhance the thermal conductivity of Al₂O₃-water nanofluids. However, the viscosity only depended strongly on Al₂O₃ nanoparticle volume fraction and was increased slightly by changing temperature. In addition, the comparative analysis revealed that the RBF neural network had an excellent ability to predict the thermal conductivity and viscosity of Al₂O₃-water nanofluids with the mean absolute percent errors of 0.5177% and 0.5618%, respectively. This demonstrated that the ANN provided an effective way to predict the thermophysical properties of nanofluids with limited experimental data.

  8. Predicting and visualizing psychological attributions with a deep neural network

    NARCIS (Netherlands)

    Grant, E.; Sahm, S.; Zabihi, M.; Gerven, M.A.J. van

    2017-01-01

    Judgments about personality based on facial appearance are strong effectors in social decision making, and are known to have impact on areas from presidential elections to jury decisions. Recent work has shown that it is possible to predict perception of memorability, trustworthiness, intelligence

  9. Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction

    Directory of Open Access Journals (Sweden)

    Ayodele Ariyo Adebiyi

    2014-01-01

    Full Text Available This paper examines the forecasting performance of ARIMA and artificial neural networks model with published stock data obtained from New York Stock Exchange. The empirical results obtained reveal the superiority of neural networks model over ARIMA model. The findings further resolve and clarify contradictory opinions reported in literature over the superiority of neural networks and ARIMA model and vice versa.

  10. [Study on a back propogation neural network-based predictive model for prevalence of birth defect].

    Science.gov (United States)

    Wang, Wei; Xu, Wei; Zheng, Ya-jun; Zhou, Bao-sen

    2007-05-01

    To evaluate the value of a back propogation (BP) network on prediction of birth defect and to give clues on its prevention. Data of birth defect in Shenyang from 1995 to 2005 were used as a training set to predict the prevalence rate of birth defect. Neural network tools box of Software MATLAB 6.5 was used to train and simulate BP Artificial Neural Network. When using data of the year 1995-2003 to predict the prevalence rate of birth defect in 2004-2005, the results showed that: the fitting average error of prevalence rate was 1.34%, RNL was 0.9874, and the prediction of average error was 1.78%. Using data of the year 1995-2005 to predict the prevalence rate of birth defect in 2006-2007, the results showed that: the fitting average error was 0.33%, RNL was 0.9954, the prevalence rates of birth defect in 2006-2007 were 11.00% and 11.29%. Compared to the conventional statistics method, BP not only showed better prediction precision, but had no limit to the type or distribution of relevant data, thus providing a powerful method in epidemiological prediction.

  11. Prediction of Protein Thermostability by an Efficient Neural Network Approach

    Directory of Open Access Journals (Sweden)

    Jalal Rezaeenour

    2016-10-01

    Full Text Available Introduction: Manipulation of protein stability is important for understanding the principles that govern protein thermostability, both in basic research and industrial applications. Various data mining techniques exist for prediction of thermostable proteins. Furthermore, ANN methods have attracted significant attention for prediction of thermostability, because they constitute an appropriate approach to mapping the non-linear input-output relationships and massive parallel computing. Method: An Extreme Learning Machine (ELM was applied to estimate thermal behavior of 1289 proteins. In the proposed algorithm, the parameters of ELM were optimized using a Genetic Algorithm (GA, which tuned a set of input variables, hidden layer biases, and input weights, to and enhance the prediction performance. The method was executed on a set of amino acids, yielding a total of 613 protein features. A number of feature selection algorithms were used to build subsets of the features. A total of 1289 protein samples and 613 protein features were calculated from UniProt database to understand features contributing to the enzymes’ thermostability and find out the main features that influence this valuable characteristic. Results:At the primary structure level, Gln, Glu and polar were the features that mostly contributed to protein thermostability. At the secondary structure level, Helix_S, Coil, and charged_Coil were the most important features affecting protein thermostability. These results suggest that the thermostability of proteins is mainly associated with primary structural features of the protein. According to the results, the influence of primary structure on the thermostabilty of a protein was more important than that of the secondary structure. It is shown that prediction accuracy of ELM (mean square error can improve dramatically using GA with error rates RMSE=0.004 and MAPE=0.1003. Conclusion: The proposed approach for forecasting problem

  12. Prediction of Henry's law constants by a quantitative structure property relationship and neural networks.

    Science.gov (United States)

    English, N J; Carroll, D G

    2001-01-01

    Multiple linear regression analysis and neural networks were employed to develop predictive models for Henry's law constants (HLCs) for organic compounds of environmental concern in pure water at 25 degrees C, using a set of quantitative structure property relationship (QSPR)-based descriptors to encode various molecular structural features. Two estimation models were developed from a set of 303 compounds using 10 and 12 descriptors, one of these models using two descriptors to account for hydrogen-bonding characteristics explicitly; these were validated subsequently on an external set of 54 compounds. For each model, a linear regression and neural network version was prepared. The standard errors of the linear regression models for the training data set were 0.262 and 0.488 log(H(cc)) units, while those of the neural network analogues were lower at 0.202 and 0.224, respectively; the linear regression models explained 98.3% and 94.3% of the variance in the development data, respectively, the neural network models giving similar quality results of 99% and 98.3%, respectively. The various descriptors used describe connectivity, charge distribution, charged surface area, hydrogen-bonding characteristics, and group influences on HLC values.

  13. Hybrid Clustering-GWO-NARX neural network technique in predicting stock price

    Science.gov (United States)

    Das, Debashish; Safa Sadiq, Ali; Mirjalili, Seyedali; Noraziah, A.

    2017-09-01

    Prediction of stock price is one of the most challenging tasks due to nonlinear nature of the stock data. Though numerous attempts have been made to predict the stock price by applying various techniques, yet the predicted price is not always accurate and even the error rate is high to some extent. Consequently, this paper endeavours to determine an efficient stock prediction strategy by implementing a combinatorial method of Grey Wolf Optimizer (GWO), Clustering and Non Linear Autoregressive Exogenous (NARX) Technique. The study uses stock data from prominent stock market i.e. New York Stock Exchange (NYSE), NASDAQ and emerging stock market i.e. Malaysian Stock Market (Bursa Malaysia), Dhaka Stock Exchange (DSE). It applies K-means clustering algorithm to determine the most promising cluster, then MGWO is used to determine the classification rate and finally the stock price is predicted by applying NARX neural network algorithm. The prediction performance gained through experimentation is compared and assessed to guide the investors in making investment decision. The result through this technique is indeed promising as it has shown almost precise prediction and improved error rate. We have applied the hybrid Clustering-GWO-NARX neural network technique in predicting stock price. We intend to work with the effect of various factors in stock price movement and selection of parameters. We will further investigate the influence of company news either positive or negative in stock price movement. We would be also interested to predict the Stock indices.

  14. Neural Network Based on Quantum Chemistry for Predicting Melting Point of Organic Compounds

    Science.gov (United States)

    Lazzús, Juan A.

    2009-02-01

    The melting points of organic compounds were estimated using a combined method that includes a backpropagation neural network and quantitative structure property relationship (QSPR) parameters in quantum chemistry. Eleven descriptors that reflect the intermolecular forces and molecular symmetry were used as input variables. QSPR parameters were calculated using molecular modeling and PM3 semi-empirical molecular orbital theories. A total of 260 compounds were used to train the network, which was developed using MatLab. Then, the melting points of 73 other compounds were predicted and results were compared to experimental data from the literature. The study shows that the chosen artificial neural network and the quantitative structure property relationships method present an excellent alternative for the estimation of the melting point of an organic compound, with average absolute deviation of 5%.

  15. Prediction of paddy drying kinetics: A comparative study between mathematical and artificial neural network modelling

    Directory of Open Access Journals (Sweden)

    Beigi Mohsen

    2017-01-01

    Full Text Available The present study aimed at investigation of deep bed drying of rough rice kernels at various thin layers at different drying air temperatures and flow rates. A comparative study was performed between mathematical thin layer models and artificial neural networks to estimate the drying curves of rough rice. The suitability of nine mathematical models in simulating the drying kinetics was examined and the Midilli model was determined as the best approach for describing drying curves. Different feed forward-back propagation artificial neural networks were examined to predict the moisture content variations of the grains. The ANN with 4-18-18-1 topology, transfer function of hyperbolic tangent sigmoid and a Levenberg-Marquardt back propagation training algorithm provided the best results with the maximum correlation coefficient and the minimum mean square error values. Furthermore, it was revealed that ANN modeling had better performance in prediction of drying curves with lower root mean square error values.

  16. Prediction of the Styrene Butadiene Rubber Performance by Emulsion Polymerization Using Backpropagation Neural Network

    Directory of Open Access Journals (Sweden)

    Yan-jiang Jin

    2013-01-01

    Full Text Available The effect of the amounts of initiator, emulsifier, and molecular weight regulator on the styrene butadiene rubber performance was investigated, based on the industrial original formula. It was found that the polymerization rate was increased with the increased dosage of initiator and emulsifier, and together with replenishing molecular weight regulator will make the Mooney viscosity of rubber meet the national standard when the conversion rate reaches 70%. The backpropagation neural network was trained by the original formula and ameliorated formula on the basis of Levenberg-Marquardt algorithm, and the relative error between the simulation results and experimental data is less than 1%. The good consistency shows that the BP neural network could predict the product performances in different formula conditions. It would pave the way for adjustment of the SBR formulation and prediction of the product performances.

  17. Comparison of artificial neural network and regression models in the prediction of urban stormwater quality.

    Science.gov (United States)

    May, D; Sivakumar, M

    2008-01-01

    Urban stormwater quality is influenced by many interrelated processes. However, the site-specific nature of these complex processes makes stormwater quality difficult to predict using physically based process models. This has resulted in the need for more empirical techniques. In this study, artificial neural networks (ANN) were used to model urban stormwater quality. A total of 5 different constituents were analyzed-chemical oxygen demand, lead, suspended solids, total Kjeldahl nitrogen, and total phosphorus. Input variables were selected using stepwise linear regression models, calibrated on logarithmically transformed data. Artificial neural networks models were then developed and compared with the regression models. The results from the analyses indicate that multiple linear regression models were more applicable for predicting urban stormwater quality than ANN models.

  18. Fluvial facies reservoir productivity prediction method based on principal component analysis and artificial neural network

    Directory of Open Access Journals (Sweden)

    Pengyu Gao

    2016-03-01

    Full Text Available It is difficult to forecast the well productivity because of the complexity of vertical and horizontal developments in fluvial facies reservoir. This paper proposes a method based on Principal Component Analysis and Artificial Neural Network to predict well productivity of fluvial facies reservoir. The method summarizes the statistical reservoir factors and engineering factors that affect the well productivity, extracts information by applying the principal component analysis method and approximates arbitrary functions of the neural network to realize an accurate and efficient prediction on the fluvial facies reservoir well productivity. This method provides an effective way for forecasting the productivity of fluvial facies reservoir which is affected by multi-factors and complex mechanism. The study result shows that this method is a practical, effective, accurate and indirect productivity forecast method and is suitable for field application.

  19. Respiratory signal prediction based on adaptive boosting and multi-layer perceptron neural network

    Science.gov (United States)

    Sun, W. Z.; Jiang, M. Y.; Ren, L.; Dang, J.; You, T.; Yin, F.-F.

    2017-09-01

    To improve the prediction accuracy of respiratory signals using adaptive boosting and multi-layer perceptron neural network (ADMLP-NN) for gated treatment of moving target in radiation therapy. The respiratory signals acquired using a real-time position management (RPM) device from 138 previous 4DCT scans were retrospectively used in this study. The ADMLP-NN was composed of several artificial neural networks (ANNs) which were used as weaker predictors to compose a stronger predictor. The respiratory signal was initially smoothed using a Savitzky-Golay finite impulse response smoothing filter (S-G filter). Then, several similar multi-layer perceptron neural networks (MLP-NNs) were configured to estimate future respiratory signal position from its previous positions. Finally, an adaptive boosting (Adaboost) decision algorithm was used to set weights for each MLP-NN based on the sample prediction error of each MLP-NN. Two prediction methods, MLP-NN and ADMLP-NN (MLP-NN plus adaptive boosting), were evaluated by calculating correlation coefficient and root-mean-square-error between true and predicted signals. For predicting 500 ms ahead of prediction, average correlation coefficients were improved from 0.83 (MLP-NN method) to 0.89 (ADMLP-NN method). The average of root-mean-square-error (relative unit) for 500 ms ahead of prediction using ADMLP-NN were reduced by 27.9%, compared to those using MLP-NN. The preliminary results demonstrate that the ADMLP-NN respiratory prediction method is more accurate than the MLP-NN method and can improve the respiration prediction accuracy.

  20. Predicting musically induced emotions from physiological inputs: linear and neural network models.

    Science.gov (United States)

    Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M

    2013-01-01

    Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  1. Predicting musically induced emotions from physiological inputs: Linear and neural network models

    Directory of Open Access Journals (Sweden)

    Frank A. Russo

    2013-08-01

    Full Text Available Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of 'felt' emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants – heart rate, respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a nonlinear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The nonlinear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the nonlinear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  2. The Use of Artificial Neural Network for Prediction of Dissolution Kinetics

    Directory of Open Access Journals (Sweden)

    H. Elçiçek

    2014-01-01

    Full Text Available Colemanite is a preferred boron mineral in industry, such as boric acid production, fabrication of heat resistant glass, and cleaning agents. Dissolution of the mineral is one of the most important processes for these industries. In this study, dissolution of colemanite was examined in water saturated with carbon dioxide solutions. Also, prediction of dissolution rate was determined using artificial neural networks (ANNs which are based on the multilayered perceptron. Reaction temperature, total pressure, stirring speed, solid/liquid ratio, particle size, and reaction time were selected as input parameters to predict the dissolution rate. Experimental dataset was used to train multilayer perceptron (MLP networks to allow for prediction of dissolution kinetics. Developing ANNs has provided highly accurate predictions in comparison with an obtained mathematical model used through regression method. We conclude that ANNs may be a preferred alternative approach instead of conventional statistical methods for prediction of boron minerals.

  3. Artificial neural networks for diagnosis and survival prediction in colon cancer

    OpenAIRE

    Ahmed, Farid E

    2005-01-01

    Abstract ANNs are nonlinear regression computational devices that have been used for over 45 years in classification and survival prediction in several biomedical systems, including colon cancer. Described in this article is the theory behind the three-layer free forward artificial neural networks with backpropagation error, which is widely used in biomedical fields, and a methodological approach to its application for cancer research, as exemplified by colon cancer. Review of the literature ...

  4. An artificial walk down Wall Street : can intraday stock returns be predicted using artificial neural networks?

    OpenAIRE

    Bøvre, Jens Olve; Viervoll, Peder Kristian

    2009-01-01

    Financial markets are complex evolved dynamic systems. Due to its irregularity, financial time series forecasting is regarded as a rather challenging task. In recent years, artificial neural network applications in finance, for such tasks as pattern recognition, classification, and time series forecasting have dramatically increased. The objective of this paper is to present this powerful framework and attempt to use it to predict the stock return series of four publicly listed...

  5. ProLanGO: Protein Function Prediction Using Neural Machine Translation Based on a Recurrent Neural Network.

    Science.gov (United States)

    Cao, Renzhi; Freitas, Colton; Chan, Leong; Sun, Miao; Jiang, Haiqing; Chen, Zhangxin

    2017-10-17

    With the development of next generation sequencing techniques, it is fast and cheap to determine protein sequences but relatively slow and expensive to extract useful information from protein sequences because of limitations of traditional biological experimental techniques. Protein function prediction has been a long standing challenge to fill the gap between the huge amount of protein sequences and the known function. In this paper, we propose a novel method to convert the protein function problem into a language translation problem by the new proposed protein sequence language "ProLan" to the protein function language "GOLan", and build a neural machine translation model based on recurrent neural networks to translate "ProLan" language to "GOLan" language. We blindly tested our method by attending the latest third Critical Assessment of Function Annotation (CAFA 3) in 2016, and also evaluate the performance of our methods on selected proteins whose function was released after CAFA competition. The good performance on the training and testing datasets demonstrates that our new proposed method is a promising direction for protein function prediction. In summary, we first time propose a method which converts the protein function prediction problem to a language translation problem and applies a neural machine translation model for protein function prediction.

  6. Automated system for load flow prediction in power substations using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Arlys Michel Lastre Aleaga

    2015-09-01

    Full Text Available The load flow is of great importance in assisting the process of decision making and planning of generation, distribution and transmission of electricity. Ignorance of the values in this indicator, as well as their inappropriate prediction, difficult decision making and efficiency of the electricity service, and can cause undesirable situations such as; the on demand, overheating of the components that make up a substation, and incorrect planning processes electricity generation and distribution. Given the need for prediction of flow of electric charge of the substations in Ecuador this research proposes the concept for the development of an automated prediction system employing the use of Artificial Neural Networks.

  7. Performance improvement of artificial neural networks designed for safety key parameters prediction in nuclear research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mazrou, Hakim [Division de Physique Radiologique, Centre de Recherche Nucleaire d' Alger (CRNA), 02 Boulevard Frantz, Fanon, B.P. 399, 16000 Alger (Algeria)], E-mail: mazrou_h@crna.dz

    2009-10-15

    The present work explores, through a comprehensive sensitivity study, a new methodology to find a suitable artificial neural network architecture which improves its performances capabilities in predicting two significant parameters in safety assessment i.e. the multiplication factor k{sub eff} and the fuel powers peaks P{sub max} of the benchmark 10 MW IAEA LEU core research reactor. The performances under consideration were the improvement of network predictions during the validation process and the speed up of computational time during the training phase. To reach this objective, we took benefit from Neural Network MATLAB Toolbox to carry out a widespread sensitivity study. Consequently, the speed up of several popular algorithms has been assessed during the training process. The comprehensive neural system was subsequently trained on different transfer functions, number of hidden neurons, levels of error and size of generalization corpus. Thus, using a personal computer with data created from preceding work, the final results obtained for the treated benchmark were improved in both network generalization phase and much more in computational time during the training process in comparison to the results obtained previously.

  8. Prediction of Clinical Outcome Using Gene Expression Profiling and Artificial Neural Networks for Patients with Neuroblastoma

    Science.gov (United States)

    Wei, Jun S.; Greer, Braden T.; Westermann, Frank; Steinberg, Seth M.; Son, Chang-Gue; Chen, Qing-Rong; Whiteford, Craig C.; Bilke, Sven; Krasnoselsky, Alexei L.; Cenacchi, Nicola; Catchpoole, Daniel; Berthold, Frank; Schwab, Manfred; Khan, Javed

    2005-01-01

    Currently, patients with neuroblastoma are classified into risk groups (e.g., according to the Children’s Oncology Group risk-stratification) to guide physicians in the choice of the most appropriate therapy. Despite this careful stratification, the survival rate for patients with high-risk neuroblastoma remains artificial neural networks to develop an accurate predictor of survival for each individual patient with neuroblastoma. Using principal component analysis we found that neuroblastoma tumors exhibited inherent prognostic specific gene expression profiles. Subsequent artificial neural network-based prognosis prediction using expression levels of all 37,920 good-quality clones achieved 88% accuracy. Moreover, using an artificial neural network-based gene minimization strategy in a separate analysis we identified 19 genes, including 2 prognostic markers reported previously, MYCN and CD44, which correctly predicted outcome for 98% of these patients. In addition, these 19 predictor genes were able to additionally partition Children’s Oncology Group-stratified high-risk patients into two subgroups according to their survival status (P = 0.0005). Our findings provide evidence of a gene expression signature that can predict prognosis independent of currently known risk factors and could assist physicians in the individual management of patients with high-risk neuroblastoma. PMID:15466177

  9. Prediction of blast-induced flyrock in Indian limestone mines using neural networks

    Directory of Open Access Journals (Sweden)

    R. Trivedi

    2014-10-01

    Full Text Available Frequency and scale of the blasting events are increasing to boost limestone production. Mines are approaching close to inhabited areas due to growing population and limited availability of land resources which has challenged the management to go for safe blasts with special reference to opencast mining. The study aims to predict the distance covered by the flyrock induced by blasting using artificial neural network (ANN and multi-variate regression analysis (MVRA for better assessment. Blast design and geotechnical parameters, such as linear charge concentration, burden, stemming length, specific charge, unconfined compressive strength (UCS, and rock quality designation (RQD, have been selected as input parameters and flyrock distance used as output parameter. ANN has been trained using 95 datasets of experimental blasts conducted in 4 opencast limestone mines in India. Thirty datasets have been used for testing and validation of trained neural network. Flyrock distances have been predicted by ANN, MVRA, as well as further calculated using motion analysis of flyrock projectiles and compared with the observed data. Back propagation neural network (BPNN has been proven to be a superior predictive tool when compared with MVRA.

  10. Prediction of Groundwater Arsenic Contamination using Geographic Information System and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Md. Moqbul Hossain

    2013-01-01

    Full Text Available Ground water arsenic contamination is a well known health and environmental problem in Bangladesh. Sources of this heavy metal are known to be geogenic, however, the processes of its release into groundwater are poorly understood phenomena. In quest of mitigation of the problem it is necessary to predict probable contamination before it causes any damage to human health. Hence our research has been carried out to find the factor relations of arsenic contamination and develop an arsenic contamination prediction model. Researchers have generally agreed that the elevated concentration of arsenic is affected by several factors such as soil reaction (pH, organic matter content, geology, iron content, etc. However, the variability of concentration within short lateral and vertical intervals, and the inter-relationships of variables among themselves, make the statistical analyses highly non-linear and difficult to converge with a meaningful relationship. Artificial Neural Networks (ANN comes in handy for such a black box type problem. This research uses Back propagation Neural Networks (BPNN to train and validate the data derived from Geographic Information System (GIS spatial distribution grids. The neural network architecture with (6-20-1 pattern was able to predict the arsenic concentration with reasonable accuracy.

  11. Predicting Carbonation Depth of Prestressed Concrete under Different Stress States Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Chunhua Lu

    2009-01-01

    Full Text Available Two artificial neural networks (ANN, back-propagation neural network (BPNN and the radial basis function neural network (RBFNN, are proposed to predict the carbonation depth of prestressed concrete. In order to generate the training and testing data for the ANNs, an accelerated carbonation experiment was carried out, and the influence of stress level of concrete on carbonation process was taken into account especially. Then, based on the experimental results, the BPNN and RBFNN models which all take the stress level of concrete, water-cement ratio, cement-fine aggregate, cement-coarse aggregate ratio and testing age as input parameters were built and all the training and testing work was performed in MATLAB. It can be found that the two ANN models seem to have a high prediction and generalization capability in evaluation of carbonation depth, and the largest absolute percentage errors of BPNN and RBFNN are 10.88% and 8.46%, respectively. The RBFNN model shows a better prediction precision in comparison to BPNN model.

  12. Introduction to neural networks

    CERN Document Server

    James, Frederick E

    1994-02-02

    1. Introduction and overview of Artificial Neural Networks. 2,3. The Feed-forward Network as an inverse Problem, and results on the computational complexity of network training. 4.Physics applications of neural networks.

  13. Evaluation and prediction of solar radiation for energy management based on neural networks

    Science.gov (United States)

    Aldoshina, O. V.; Van Tai, Dinh

    2017-08-01

    Currently, there is a high rate of distribution of renewable energy sources and distributed power generation based on intelligent networks; therefore, meteorological forecasts are particularly useful for planning and managing the energy system in order to increase its overall efficiency and productivity. The application of artificial neural networks (ANN) in the field of photovoltaic energy is presented in this article. Implemented in this study, two periodically repeating dynamic ANS, that are the concentration of the time delay of a neural network (CTDNN) and the non-linear autoregression of a network with exogenous inputs of the NAEI, are used in the development of a model for estimating and daily forecasting of solar radiation. ANN show good productivity, as reliable and accurate models of daily solar radiation are obtained. This allows to successfully predict the photovoltaic output power for this installation. The potential of the proposed method for controlling the energy of the electrical network is shown using the example of the application of the NAEI network for predicting the electric load.

  14. Knowledge base and neural network approach for protein secondary structure prediction.

    Science.gov (United States)

    Patel, Maulika S; Mazumdar, Himanshu S

    2014-11-21

    Protein structure prediction is of great relevance given the abundant genomic and proteomic data generated by the genome sequencing projects. Protein secondary structure prediction is addressed as a sub task in determining the protein tertiary structure and function. In this paper, a novel algorithm, KB-PROSSP-NN, which is a combination of knowledge base and modeling of the exceptions in the knowledge base using neural networks for protein secondary structure prediction (PSSP), is proposed. The knowledge base is derived from a proteomic sequence-structure database and consists of the statistics of association between the 5-residue words and corresponding secondary structure. The predicted results obtained using knowledge base are refined with a Backpropogation neural network algorithm. Neural net models the exceptions of the knowledge base. The Q3 accuracy of 90% and 82% is achieved on the RS126 and CB396 test sets respectively which suggest improvement over existing state of art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A Comparison of Energy Consumption Prediction Models Based on Neural Networks of a Bioclimatic Building

    Directory of Open Access Journals (Sweden)

    Hamid R. Khosravani

    2016-01-01

    Full Text Available Energy consumption has been increasing steadily due to globalization and industrialization. Studies have shown that buildings are responsible for the biggest proportion of energy consumption; for example in European Union countries, energy consumption in buildings represents around 40% of the total energy consumption. In order to control energy consumption in buildings, different policies have been proposed, from utilizing bioclimatic architectures to the use of predictive models within control approaches. There are mainly three groups of predictive models including engineering, statistical and artificial intelligence models. Nowadays, artificial intelligence models such as neural networks and support vector machines have also been proposed because of their high potential capabilities of performing accurate nonlinear mappings between inputs and outputs in real environments which are not free of noise. The main objective of this paper is to compare a neural network model which was designed utilizing statistical and analytical methods, with a group of neural network models designed benefiting from a multi objective genetic algorithm. Moreover, the neural network models were compared to a naïve autoregressive baseline model. The models are intended to predict electric power demand at the Solar Energy Research Center (Centro de Investigación en Energía SOLar or CIESOL in Spanish bioclimatic building located at the University of Almeria, Spain. Experimental results show that the models obtained from the multi objective genetic algorithm (MOGA perform comparably to the model obtained through a statistical and analytical approach, but they use only 0.8% of data samples and have lower model complexity.

  16. Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat

    Directory of Open Access Journals (Sweden)

    Okut Hayrettin

    2011-10-01

    Full Text Available Abstract Background In the study of associations between genomic data and complex phenotypes there may be relationships that are not amenable to parametric statistical modeling. Such associations have been investigated mainly using single-marker and Bayesian linear regression models that differ in their distributions, but that assume additive inheritance while ignoring interactions and non-linearity. When interactions have been included in the model, their effects have entered linearly. There is a growing interest in non-parametric methods for predicting quantitative traits based on reproducing kernel Hilbert spaces regressions on markers and radial basis functions. Artificial neural networks (ANN provide an alternative, because these act as universal approximators of complex functions and can capture non-linear relationships between predictors and responses, with the interplay among variables learned adaptively. ANNs are interesting candidates for analysis of traits affected by cryptic forms of gene action. Results We investigated various Bayesian ANN architectures using for predicting phenotypes in two data sets consisting of milk production in Jersey cows and yield of inbred lines of wheat. For the Jerseys, predictor variables were derived from pedigree and molecular marker (35,798 single nucleotide polymorphisms, SNPS information on 297 individually cows. The wheat data represented 599 lines, each genotyped with 1,279 markers. The ability of predicting fat, milk and protein yield was low when using pedigrees, but it was better when SNPs were employed, irrespective of the ANN trained. Predictive ability was even better in wheat because the trait was a mean, as opposed to an individual phenotype in cows. Non-linear neural networks outperformed a linear model in predictive ability in both data sets, but more clearly in wheat. Conclusion Results suggest that neural networks may be useful for predicting complex traits using high

  17. Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat.

    Science.gov (United States)

    Gianola, Daniel; Okut, Hayrettin; Weigel, Kent A; Rosa, Guilherme Jm

    2011-10-07

    In the study of associations between genomic data and complex phenotypes there may be relationships that are not amenable to parametric statistical modeling. Such associations have been investigated mainly using single-marker and Bayesian linear regression models that differ in their distributions, but that assume additive inheritance while ignoring interactions and non-linearity. When interactions have been included in the model, their effects have entered linearly. There is a growing interest in non-parametric methods for predicting quantitative traits based on reproducing kernel Hilbert spaces regressions on markers and radial basis functions. Artificial neural networks (ANN) provide an alternative, because these act as universal approximators of complex functions and can capture non-linear relationships between predictors and responses, with the interplay among variables learned adaptively. ANNs are interesting candidates for analysis of traits affected by cryptic forms of gene action. We investigated various Bayesian ANN architectures using for predicting phenotypes in two data sets consisting of milk production in Jersey cows and yield of inbred lines of wheat. For the Jerseys, predictor variables were derived from pedigree and molecular marker (35,798 single nucleotide polymorphisms, SNPS) information on 297 individually cows. The wheat data represented 599 lines, each genotyped with 1,279 markers. The ability of predicting fat, milk and protein yield was low when using pedigrees, but it was better when SNPs were employed, irrespective of the ANN trained. Predictive ability was even better in wheat because the trait was a mean, as opposed to an individual phenotype in cows. Non-linear neural networks outperformed a linear model in predictive ability in both data sets, but more clearly in wheat. Results suggest that neural networks may be useful for predicting complex traits using high-dimensional genomic information, a situation where the number of unknowns

  18. Prediction of compressibility parameters of the soils using artificial neural network.

    Science.gov (United States)

    Kurnaz, T Fikret; Dagdeviren, Ugur; Yildiz, Murat; Ozkan, Ozhan

    2016-01-01

    The compression index and recompression index are one of the important compressibility parameters to determine the settlement calculation for fine-grained soil layers. These parameters can be determined by carrying out laboratory oedometer test on undisturbed samples; however, the test is quite time-consuming and expensive. Therefore, many empirical formulas based on regression analysis have been presented to estimate the compressibility parameters using soil index properties. In this paper, an artificial neural network (ANN) model is suggested for prediction of compressibility parameters from basic soil properties. For this purpose, the input parameters are selected as the natural water content, initial void ratio, liquid limit and plasticity index. In this model, two output parameters, including compression index and recompression index, are predicted in a combined network structure. As the result of the study, proposed ANN model is successful for the prediction of the compression index, however the predicted recompression index values are not satisfying compared to the compression index.

  19. Artificial neural network as the tool in prediction rheological features of raw minced meat.

    Science.gov (United States)

    Balejko, Jerzy A; Nowak, Zbigniew; Balejko, Edyta

    2012-01-01

    The aim of the study was to elaborate a method of modelling and forecasting rheological features which could be applied to raw minced meat at the stage of mixture preparation with a given ingredient composition. The investigated material contained pork and beef meat, pork fat, fat substitutes, ice and curing mixture in various proportions. Seven texture parameters were measured for each sample of raw minced meat. The data obtained were processed using the artificial neural network module in Statistica 9.0 software. The model that reached the lowest training error was a multi-layer perceptron MLP with three neural layers and architecture 7:7-11-7:7. Correlation coefficients between the experimental and calculated values in training, verification and testing subsets were similar and rather high (around 0.65) which indicated good network performance. High percentage of the total variance explained in PCA analysis (73.5%) indicated that the percentage composition of raw minced meat can be successfully used in the prediction of its rheological features. Statistical analysis of the results revealed, that artificial neural network model is able to predict rheological parameters and thus a complete texture profile of raw minced meat.

  20. The Prediction of Concrete Temperature during Curing Using Regression and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Zahra Najafi

    2013-01-01

    Full Text Available Cement hydration plays a vital role in the temperature development of early-age concrete due to the heat generation. Concrete temperature affects the workability, and its measurement is an important element in any quality control program. In this regard, a method, which estimates the concrete temperature during curing, is very valuable. In this paper, multivariable regression and neural network methods were used for estimating concrete temperature. In order to achieve this purpose, ten laboratory cylindrical specimens were prepared under controlled situation, and concrete temperature was measured by thermistors existent in vibrating wire strain gauges. Input data variables consist of time (hour, environment temperature, water to cement ratio, aggregate content, height, and specimen diameter. Concrete temperature has been measured in ten different concrete specimens. Nonlinear regression achieved the determined coefficient ( of 0.873. By using the same input set, the artificial neural network predicted concrete temperature with higher of 0.999. The results show that artificial neural network method significantly can be used to predict concrete temperature when regression results do not have appropriate accuracy.

  1. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks.

    Science.gov (United States)

    Avsec, Žiga; Barekatain, Mohammadamin; Cheng, Jun; Gagneur, Julien

    2017-11-16

    Regulatory sequences are not solely defined by their nucleic acid sequence but also by their relative distances to genomic landmarks such as transcription start site, exon boundaries, or polyadenylation site. Deep learning has become the approach of choice for modeling regulatory sequences because of its strength to learn complex sequence features. However, modeling relative distances to genomic landmarks in deep neural networks has not been addressed. Here we developed spline transformation, a neural network module based on splines to flexibly and robustly model distances. Modeling distances to various genomic landmarks with spline transformations significantly increased state-of-the-art prediction accuracy of in vivo RNA-binding protein binding sites for 120 out of 123 proteins. We also developed a deep neural network for human splice branchpoint based on spline transformations that outperformed the current best, already distance-based, machine learning model. Compared to piecewise linear transformation, as obtained by composition of rectified linear units, spline transformation yields higher prediction accuracy as well as faster and more robust training. As spline transformation can be applied to further quantities beyond distances, such as methylation or conservation, we foresee it as a versatile component in the genomics deep learning toolbox. Spline transformation is implemented as a Keras layer in the CONCISE python package: https://github.com/gagneurlab/concise. Analysis code is available at goo.gl/3yMY5w. avsec@in.tum.de; gagneur@in.tum.de. Supplementary data are available at Bioinformatics online.

  2. Analysis of Artificial Neural Network Backpropagation Using Conjugate Gradient Fletcher Reeves In The Predicting Process

    Science.gov (United States)

    Wanto, Anjar; Zarlis, Muhammad; Sawaluddin; Hartama, Dedy

    2017-12-01

    Backpropagation is a good artificial neural network algorithm used to predict, one of which is to predict the rate of Consumer Price Index (CPI) based on the foodstuff sector. While conjugate gradient fletcher reeves is a suitable optimization method when juxtaposed with backpropagation method, because this method can shorten iteration without reducing the quality of training and testing result. Consumer Price Index (CPI) data that will be predicted to come from the Central Statistics Agency (BPS) Pematangsiantar. The results of this study will be expected to contribute to the government in making policies to improve economic growth. In this study, the data obtained will be processed by conducting training and testing with artificial neural network backpropagation by using parameter learning rate 0,01 and target error minimum that is 0.001-0,09. The training network is built with binary and bipolar sigmoid activation functions. After the results with backpropagation are obtained, it will then be optimized using the conjugate gradient fletcher reeves method by conducting the same training and testing based on 5 predefined network architectures. The result, the method used can increase the speed and accuracy result.

  3. Artificial neural network models for prediction of intestinal permeability of oligopeptides

    Directory of Open Access Journals (Sweden)

    Kim Min-Kook

    2007-07-01

    Full Text Available Abstract Background Oral delivery is a highly desirable property for candidate drugs under development. Computational modeling could provide a quick and inexpensive way to assess the intestinal permeability of a molecule. Although there have been several studies aimed at predicting the intestinal absorption of chemical compounds, there have been no attempts to predict intestinal permeability on the basis of peptide sequence information. To develop models for predicting the intestinal permeability of peptides, we adopted an artificial neural network as a machine-learning algorithm. The positive control data consisted of intestinal barrier-permeable peptides obtained by the peroral phage display technique, and the negative control data were prepared from random sequences. Results The capacity of our models to make appropriate predictions was validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC curve (the ROC score. The training and test set statistics indicated that our models were of strikingly good quality and could discriminate between permeable and random sequences with a high level of confidence. Conclusion We developed artificial neural network models to predict the intestinal permeabilities of oligopeptides on the basis of peptide sequence information. Both binary and VHSE (principal components score Vectors of Hydrophobic, Steric and Electronic properties descriptors produced statistically significant training models; the models with simple neural network architectures showed slightly greater predictive power than those with complex ones. We anticipate that our models will be applicable to the selection of intestinal barrier-permeable peptides for generating peptide drugs or peptidomimetics.

  4. Artificial neural networks to predict presence of significant pathology in patients presenting to routine colorectal clinics.

    Science.gov (United States)

    Maslekar, S; Gardiner, A B; Monson, J R T; Duthie, G S

    2010-12-01

    Artificial neural networks (ANNs) are computer programs used to identify complex relations within data. Routine predictions of presence of colorectal pathology based on population statistics have little meaning for individual patient. This results in large number of unnecessary lower gastrointestinal endoscopies (LGEs - colonoscopies and flexible sigmoidoscopies). We aimed to develop a neural network algorithm that can accurately predict presence of significant pathology in patients attending routine outpatient clinics for gastrointestinal symptoms. Ethics approval was obtained and the study was monitored according to International Committee on Harmonisation - Good Clinical Practice (ICH-GCP) standards. Three-hundred patients undergoing LGE prospectively completed a specifically developed questionnaire, which included 40 variables based on clinical symptoms, signs, past- and family history. Complete data sets of 100 patients were used to train the ANN; the remaining data was used for internal validation. The primary output used was positive finding on LGE, including polyps, cancer, diverticular disease or colitis. For external validation, the ANN was applied to data from 50 patients in primary care and also compared with the predictions of four clinicians. Clear correlation between actual data value and ANN predictions were found (r = 0.931; P = 0.0001). The predictive accuracy of ANN was 95% in training group and 90% (95% CI 84-96) in the internal validation set and this was significantly higher than the clinical accuracy (75%). ANN also showed high accuracy in the external validation group (89%). Artificial neural networks offer the possibility of personal prediction of outcome for individual patients presenting in clinics with colorectal symptoms, making it possible to make more appropriate requests for lower gastrointestinal endoscopy. © 2010 The Authors. Colorectal Disease © 2010 The Association of Coloproctology of Great Britain and Ireland.

  5. Artificial neural networks as an engine of Internet based hypertension prediction tool.

    Science.gov (United States)

    Polak, Sebastian; Mendyk, Aleksander

    2004-01-01

    Hypertension is the most common cause of death. Therefore it is recognized as a major civilization disease next to diabetes, hyperuricemia, asthma etc. The objective was to use artificial neural networks (ANNs) to handle demographic data and to produce system of hypertension risk prediction. Database used in the development of hypertension risk model was obtained from CDC (BRFSS--Behavioral Risk Factor Surveillance System). Screening for optimal ANN architecture was performed among various backpropagation and fuzzy neural networks with use of 10-fold cross-validation scheme. Single ANNs as well as experts committees were tested. Best results were found to be around 75%--expressed as total classification rate. Java applet was designed to be the interface between ANN system and end user. Spreadsheet form was chosen to facilitate navigation and used by healthcare non-specialists. Free of charge Internet publication is expected soon at the address [url: see text].

  6. Prediction of Optimal Design and Deflection of Space Structures Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza Kamyab Moghadas

    2012-01-01

    Full Text Available The main aim of the present work is to determine the optimal design and maximum deflection of double layer grids spending low computational cost using neural networks. The design variables of the optimization problem are cross-sectional area of the elements as well as the length of the span and height of the structures. In this paper, a number of double layer grids with various random values of length and height are selected and optimized by simultaneous perturbation stochastic approximation algorithm. Then, radial basis function (RBF and generalized regression (GR neural networks are trained to predict the optimal design and maximum deflection of the structures. The numerical results demonstrate the efficiency of the proposed methodology.

  7. Design of artificial neural networks using a genetic algorithm to predict collection efficiency in venturi scrubbers.

    Science.gov (United States)

    Taheri, Mahboobeh; Mohebbi, Ali

    2008-08-30

    In this study, a new approach for the auto-design of neural networks, based on a genetic algorithm (GA), has been used to predict collection efficiency in venturi scrubbers. The experimental input data, including particle diameter, throat gas velocity, liquid to gas flow rate ratio, throat hydraulic diameter, pressure drop across the venturi scrubber and collection efficiency as an output, have been used to create a GA-artificial neural network (ANN) model. The testing results from the model are in good agreement with the experimental data. Comparison of the results of the GA optimized ANN model with the results from the trial-and-error calibrated ANN model indicates that the GA-ANN model is more efficient. Finally, the effects of operating parameters such as liquid to gas flow rate ratio, throat gas velocity, and particle diameter on collection efficiency were determined.

  8. One Prediction Model Based on BP Neural Network for Newcastle Disease

    Science.gov (United States)

    Wang, Hongbin; Gong, Duqiang; Xiao, Jianhua; Zhang, Ru; Li, Lin

    The purpose of this paper is to investigate the correlation between meteorological factors and Newcastle disease incidence, and to determine the key factors that affect Newcastle disease. Having built BP neural network forecasting model by Matlab 7.0 software, we tested the performance of the model according to the coefficient of determination (R2) and absolute values of the difference between predictive value and practical incidence. The result showed that 6 kinds of meteorological factors determined, and the model's coefficient of determination is 0.760, and the performance of the model is very good. Finally, we build Newcastle disease forecasting model, and apply BP neural network theory in animal disease forecasting research firstly.

  9. Neural networks and principle component analysis approaches to predict pile capacity in sand

    Directory of Open Access Journals (Sweden)

    Benali A

    2018-01-01

    Full Text Available Determination of pile bearing capacity from the in-situ tests has developed considerably due to the significant development of their technology. The project presented in this paper is a combination of two approaches, artificial neural networks and main component analyses that allow the development of a neural network model that provides a more accurate prediction of axial load bearing capacity based on the SPT test data. The retropropagation multi-layer perceptron with Bayesian regularization (RB was used in this model. This was established by the incorporation of about 260 data, obtained from the published literature, of experimental programs for large displacement driven piles. The PCA method is proposed for compression and suppression of the correlation between these data. This will improve the performance of generalization of the model.

  10. Research on the Prediction Model of CPU Utilization Based on ARIMA-BP Neural Network

    Directory of Open Access Journals (Sweden)

    Wang Jina

    2016-01-01

    Full Text Available The dynamic deployment technology of the virtual machine is one of the current cloud computing research focuses. The traditional methods mainly work after the degradation of the service performance that usually lag. To solve the problem a new prediction model based on the CPU utilization is constructed in this paper. A reference offered by the new prediction model of the CPU utilization is provided to the VM dynamic deployment process which will speed to finish the deployment process before the degradation of the service performance. By this method it not only ensure the quality of services but also improve the server performance and resource utilization. The new prediction method of the CPU utilization based on the ARIMA-BP neural network mainly include four parts: preprocess the collected data, build the predictive model of ARIMA-BP neural network, modify the nonlinear residuals of the time series by the BP prediction algorithm and obtain the prediction results by analyzing the above data comprehensively.

  11. Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.

    Science.gov (United States)

    Ko, Chien-Ho

    2013-01-01

    Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.

  12. Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Chien-Ho Ko

    2013-01-01

    Full Text Available Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs, Fuzzy Logic (FL, and Neural Networks (NNs. FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.

  13. Water Absorption Rate Prediction of PMMA and Its Composites Using BP Neural Network

    Directory of Open Access Journals (Sweden)

    Chen Kui

    2016-01-01

    Full Text Available Referring to water absorption rate of poly (methyl methacrylate (PMMA and its composites is hard to obtain under some working conditions, BP neural network prediction model was constructed. Regarding water absorption rate predictions of exfoliated PMMA/MMT nanocomposites in 0.1 mol/L H2SO4 solution, 0.1 mol/L NaOH solution and deionized water respectively as examples, the applicability of model established in water absorption rate prediction of PMMA and its composites was researched. The results show that the relative errors between prediction value obtained from model established and actual value of water absorption rate of composites soaking 63min in three kinds of mediums are 1.50%, 0.47% and 1.04% respectively, prediction accuracy is higher than that (relative errors are 3.89%, 3.40% and 4.43% respectively obtained from GM (1, 1 model obviously. BP neural network can be used to predict water absorption rate of PMMA and its composites.

  14. Using Long-Short-Term-Memory Recurrent Neural Networks to Predict Aviation Engine Vibrations

    Science.gov (United States)

    ElSaid, AbdElRahman Ahmed

    This thesis examines building viable Recurrent Neural Networks (RNN) using Long Short Term Memory (LSTM) neurons to predict aircraft engine vibrations. The different networks are trained on a large database of flight data records obtained from an airline containing flights that suffered from excessive vibration. RNNs can provide a more generalizable and robust method for prediction over analytical calculations of engine vibration, as analytical calculations must be solved iteratively based on specific empirical engine parameters, and this database contains multiple types of engines. Further, LSTM RNNs provide a "memory" of the contribution of previous time series data which can further improve predictions of future vibration values. LSTM RNNs were used over traditional RNNs, as those suffer from vanishing/exploding gradients when trained with back propagation. The study managed to predict vibration values for 1, 5, 10, and 20 seconds in the future, with 2.84% 3.3%, 5.51% and 10.19% mean absolute error, respectively. These neural networks provide a promising means for the future development of warning systems so that suitable actions can be taken before the occurrence of excess vibration to avoid unfavorable situations during flight.

  15. Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials.

    Science.gov (United States)

    Asteris, Panagiotis G; Roussis, Panayiotis C; Douvika, Maria G

    2017-06-09

    This work presents a soft-sensor approach for estimating critical mechanical properties of sandcrete materials. Feed-forward (FF) artificial neural network (ANN) models are employed for building soft-sensors able to predict the 28-day compressive strength and the modulus of elasticity of sandcrete materials. To this end, a new normalization technique for the pre-processing of data is proposed. The comparison of the derived results with the available experimental data demonstrates the capability of FF ANNs to predict with pinpoint accuracy the mechanical properties of sandcrete materials. Furthermore, the proposed normalization technique has been proven effective and robust compared to other normalization techniques available in the literature.

  16. PREDICTION THE EVOLUTION OF TEMPERATURE AND VIBRATIONS ON SPINDLE USING ARTIFICIAL NEURAL NETWORKS AND FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Daniel Petru GHENCEA

    2016-05-01

    Full Text Available Simulation spindle behavior in terms of temperature and vibration at higher speeds is more economical and more secure (avoid undesirable mechanical events than testing practice. Testing practice has an important role in finalizing the product but throughout the course of prototype testing is more advantageous economic development simulation parameters based on data sets collected to dangerous speeds. In this paper we present an analysis mode hybrid (artificial neural networks - fuzzy logic on prediction the evolution of temperatures and vibrations at higher speeds for which no measurements were made. The main advantage of the method is the simultaneous prediction of the dynamics of temperature and vibration levels.

  17. Prediction of the competitive adsorption isotherms of 2-phenylethanol and 3-phenylpropanol by artificial neural networks.

    Science.gov (United States)

    Wu, Xiuhong; Wang, Shaoyan; Zhang, Renzhuang; Gao, Zhiming

    2014-03-07

    Artificial neural networks (ANNs) were regarded as data-mapping networks with strong nonlinear fitting abilities. A 2-6-2 network was used to determine the competitive adsorption isotherm of 2-phenylethanol (PE) and 3-phenylpropanol (PP). The ANN results were forms of data mapping rather than theoretical mathematical model. The ANN architecture was established after training with a set of experimental data. The established ANN was applied to predict the adsorption isotherms of PE and PP. The selection of parameters for the ANN was discussed. The results indicate that ANN has excellent potential for use in non-linear chromatography for the prediction of adsorption isotherms. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Multivariate adaptive regression splines and neural network models for prediction of pile drivability

    Directory of Open Access Journals (Sweden)

    Wengang Zhang

    2016-01-01

    Full Text Available Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved. In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system's predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines (MARS, as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network (BPNN and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses (MCS, Maximum tensile stresses (MTS, and Blow per foot (BPF. A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions.

  19. Automated prediction of apnea and hypopnea, using a LAMSTAR artificial neural network.

    Science.gov (United States)

    Waxman, Jonathan A; Graupe, Daniel; Carley, David W

    2010-04-01

    The prediction of individual episodes of apnea and hypopnea in people with obstructive sleep apnea syndrome has not been thoroughly investigated. Accurate prediction of these events could improve clinical management of this prevalent disease. To evaluate the performance of a system developed to predict episodes of obstructive apnea and hypopnea in individuals with obstructive sleep apnea; to determine the most important signals for making accurate and reliable predictions. We employed LArge Memory STorage And Retrieval (LAMSTAR) artificial neural networks to predict apnea and hypopnea. Wavelet transform-based preprocessing was applied to six physiological signals obtained from a set of polysomnography studies and used to train and test the networks. We tested prediction performance during non-REM and REM sleep as a function of data segment duration and prediction lead time. Measurements included average sensitivities, specificities, positive predictive values, and negative predictive values. Prediction performed best during non-REM sleep, using 30-second segments to predict events up to 30 seconds into the future. Most events were correctly predicted up to 60 seconds in the future. Apnea prediction achieved a sensitivity and specificity up to 80.6 +/- 5.6 and 72.8 +/- 6.6%, respectively. Hypopnea prediction achieved a sensitivity and specificity up to 74.4 +/- 5.9 and 68.8 +/- 7.0%., respectively. We report, to our knowledge, the first system to predict individual episodes of apnea and hypopnea. The most important signal for apnea prediction was submental electromyography. The most important signals for hypopnea prediction were submental electromyography and heart rate variability. This prediction system may facilitate improved therapies for obstructive sleep apnea.

  20. Neural network based forward prediction of bladder pressure using pudendal nerve electrical activity.

    Science.gov (United States)

    Geramipour, A; Makki, S; Erfanian, A

    2015-01-01

    Individuals with spinal cord injury or neurological disorders have problems in urinary bladder storage and in voiding function. In these people, the detrusor of bladder contracts at low volume and this causes incontinence. The goal of bladder control is to increase the bladder capacity by electrical stimulation of relative nerves such as pelvic nerves, sacral nerve roots or pudendal nerves. For this purpose, the bladder pressure has to be monitored continuously. In this paper, we propose a method for real-time estimating the bladder pressure using artificial neural network. The method is based upon measurements of electroneurogram (ENG) signal of pudendal nerve. This approach yields synthetic bladder pressure estimates during bladder contraction. The experiments were conducted on three rats. The results show that neural predictor can provide accurate estimation and prediction of bladder pressure with good generalization ability. The average error of 1-second and 5-second ahead prediction of bladder pressure are 9.62% and 10.54%, respectively.

  1. Software Design Challenges in Time Series Prediction Systems Using Parallel Implementation of Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Narayanan Manikandan

    2016-01-01

    Full Text Available Software development life cycle has been characterized by destructive disconnects between activities like planning, analysis, design, and programming. Particularly software developed with prediction based results is always a big challenge for designers. Time series data forecasting like currency exchange, stock prices, and weather report are some of the areas where an extensive research is going on for the last three decades. In the initial days, the problems with financial analysis and prediction were solved by statistical models and methods. For the last two decades, a large number of Artificial Neural Networks based learning models have been proposed to solve the problems of financial data and get accurate results in prediction of the future trends and prices. This paper addressed some architectural design related issues for performance improvement through vectorising the strengths of multivariate econometric time series models and Artificial Neural Networks. It provides an adaptive approach for predicting exchange rates and it can be called hybrid methodology for predicting exchange rates. This framework is tested for finding the accuracy and performance of parallel algorithms used.

  2. Computer vision system for egg volume prediction using backpropagation neural network

    Science.gov (United States)

    Siswantoro, J.; Hilman, M. Y.; Widiasri, M.

    2017-11-01

    Volume is one of considered aspects in egg sorting process. A rapid and accurate volume measurement method is needed to develop an egg sorting system. Computer vision system (CVS) provides a promising solution for volume measurement problem. Artificial neural network (ANN) has been used to predict the volume of egg in several CVSs. However, volume prediction from ANN could have less accuracy due to inappropriate input features or inappropriate ANN structure. This paper proposes a CVS for predicting the volume of egg using ANN. The CVS acquired an image of egg from top view and then processed the image to extract its 1D and 2 D size features. The features were used as input for ANN in predicting the volume of egg. The experiment results show that the proposed CSV can predict the volume of egg with a good accuracy and less computation time.

  3. Comparison of Regression and Artificial Neural Network Models for Surface Roughness Prediction with the Cutting Parameters in CNC Turning

    Directory of Open Access Journals (Sweden)

    Muammer Nalbant

    2007-06-01

    Full Text Available Surface roughness, an indicator of surface quality, is one of the most specified customer requirements in machining of parts. In this study, the experimental results corresponding to the effects of different insert nose radii of cutting tools (0.4, 0.8, 1.2 mm, various depth of cuts (0.75, 1.25, 1.75, 2.25, 2.75 mm, and different feedrates (100, 130, 160, 190, 220 mm/min on the surface quality of the AISI 1030 steel workpieces have been investigated using multiple regression analysis and artificial neural networks (ANN. Regression analysis and neural network-based models used for the prediction of surface roughness were compared for various cutting conditions in turning. The data set obtained from the measurements of surface roughness was employed to and tests the neural network model. The trained neural network models were used in predicting surface roughness for cutting conditions. A comparison of neural network models with regression model was carried out. Coefficient of determination was 0.98 in multiple regression model. The scaled conjugate gradient (SCG model with 9 neurons in hidden layer has produced absolute fraction of variance (R2 values of 0.999 for the training data, and 0.998 for the test data. Predictive neural network model showed better predictions than various regression models for surface roughness. However, both methods can be used for the prediction of surface roughness in turning.

  4. Prediction of geomagnetic storms from solar wind data with the use of a neural network

    Directory of Open Access Journals (Sweden)

    H. Lundstedt

    Full Text Available An artificial feed-forward neural network with one hidden layer and error back-propagation learning is used to predict the geomagnetic activity index (Dst one hour in advance. The Bz-component and ΣBz, the density, and the velocity of the solar wind are used as input to the network. The network is trained on data covering a total of 8700 h, extracted from the 25-year period from 1963 to 1987, taken from the NSSDC data base. The performance of the network is examined with test data, not included in the training set, which covers 386 h and includes four different storms. Whilst the network predicts the initial and main phase well, the recovery phase is not modelled correctly, implying that a single hidden layer error back-propagation network is not enough, if the measured Dst is not available instantaneously. The performance of the network is independent of whether the raw parameters are used, or the electric field and square root of the dynamical pressure.

  5. Sensitivity Analysis of Wavelet Neural Network Model for Short-Term Traffic Volume Prediction

    Directory of Open Access Journals (Sweden)

    Jinxing Shen

    2013-01-01

    Full Text Available In order to achieve a more accurate and robust traffic volume prediction model, the sensitivity of wavelet neural network model (WNNM is analyzed in this study. Based on real loop detector data which is provided by traffic police detachment of Maanshan, WNNM is discussed with different numbers of input neurons, different number of hidden neurons, and traffic volume for different time intervals. The test results show that the performance of WNNM depends heavily on network parameters and time interval of traffic volume. In addition, the WNNM with 4 input neurons and 6 hidden neurons is the optimal predictor with more accuracy, stability, and adaptability. At the same time, a much better prediction record will be achieved with the time interval of traffic volume are 15 minutes. In addition, the optimized WNNM is compared with the widely used back-propagation neural network (BPNN. The comparison results indicated that WNNM produce much lower values of MAE, MAPE, and VAPE than BPNN, which proves that WNNM performs better on short-term traffic volume prediction.

  6. A hybrid deep neural network and physically based distributed model for river stage prediction

    Science.gov (United States)

    hitokoto, Masayuki; sakuraba, Masaaki

    2016-04-01

    We developed the real-time river stage prediction model, using the hybrid deep neural network and physically based distributed model. As the basic model, 4 layer feed-forward artificial neural network (ANN) was used. As a network training method, the deep learning technique was applied. To optimize the network weight, the stochastic gradient descent method based on the back propagation method was used. As a pre-training method, the denoising autoencoder was used. Input of the ANN model is hourly change of water level and hourly rainfall, output data is water level of downstream station. In general, the desirable input of the ANN has strong correlation with the output. In conceptual hydrological model such as tank model and storage-function model, river discharge is governed by the catchment storage. Therefore, the change of the catchment storage, downstream discharge subtracted from rainfall, can be the potent input candidate of the ANN model instead of rainfall. From this point of view, the hybrid deep neural network and physically based distributed model was developed. The prediction procedure of the hybrid model is as follows; first, downstream discharge was calculated by the distributed model, and then estimates the hourly change of catchment storage form rainfall and calculated discharge as the input of the ANN model, and finally the ANN model was calculated. In the training phase, hourly change of catchment storage can be calculated by the observed rainfall and discharge data. The developed model was applied to the one catchment of the OOYODO River, one of the first-grade river in Japan. The modeled catchment is 695 square km. For the training data, 5 water level gauging station and 14 rain-gauge station in the catchment was used. The training floods, superior 24 events, were selected during the period of 2005-2014. Prediction was made up to 6 hours, and 6 models were developed for each prediction time. To set the proper learning parameters and network

  7. Effective feature selection of clinical and genetic to predict warfarin dose using artificial neural network

    Directory of Open Access Journals (Sweden)

    Mohammad Karim Sohrabi

    2016-03-01

    Full Text Available Background: Warfarin is one of the most common oral anticoagulant, which role is to prevent the clots. The dose of this medicine is very important because changes can be dangerous for patients. Diagnosis is difficult for physicians because increase and decrease in use of warfarin is so dangerous for patients. Identifying the clinical and genetic features involved in determining dose could be useful to predict using data mining techniques. The aim of this paper is to provide a convenient way to select the clinical and genetic features to determine the dose of warfarin using artificial neural networks (ANN and evaluate it in order to predict the dose patients. Methods: This experimental study, was investigate from April to May 2014 on 552 patients in Tehran Heart Center Hospital (THC candidates for warfarin anticoagulant therapy within the international normalized ratio (INR therapeutic target. Factors affecting the dose include clinical characteristics and genetic extracted, and different methods of feature selection based on genetic algorithm and particle swarm optimization (PSO and evaluation function neural networks in MATLAB (MathWorks, MA, USA, were performed. Results: Between algorithms used, particle swarm optimization algorithm accuracy was more appropriate, for the mean square error (MSE, root mean square error (RMSE and mean absolute error (MAE were 0.0262, 0.1621 and 0.1164, respectively. Conclusion: In this article, the most important characteristics were identified using methods of feature selection and the stable dose had been predicted based on artificial neural networks. The output is acceptable and with less features, it is possible to achieve the prediction warfarin dose accurately. Since the prescribed dose for the patients is important, the output of the obtained model can be used as a decision support system.

  8. Clinical outcome prediction in aneurysmal subarachnoid hemorrhage using Bayesian neural networks with fuzzy logic inferences.

    Science.gov (United States)

    Lo, Benjamin W Y; Macdonald, R Loch; Baker, Andrew; Levine, Mitchell A H

    2013-01-01

    The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients). Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs). Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique) denoted cut-off points for poor prognosis at greater than 2.5 clusters. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication.

  9. Integrating Independent Component Analysis and Principal Component Analysis with Neural Network to Predict Chinese Stock Market

    Directory of Open Access Journals (Sweden)

    Haifan Liu

    2011-01-01

    Full Text Available We investigate the statistical behaviors of Chinese stock market fluctuations by independent component analysis. The independent component analysis (ICA method is integrated into the neural network model. The proposed approach uses ICA method to analyze the input data of neural network and can obtain the latent independent components (ICs. After analyzing and removing the IC that represents noise, the rest of ICs are used as the input of neural network. In order to forect the fluctuations of Chinese stock market, the data of Shanghai Composite Index is selected and analyzed, and we compare the forecasting performance of the proposed model with those of common BP model integrating principal component analysis (PCA and single BP model. Experimental results show that the proposed model outperforms the other two models no matter in relatively small or relatively large sample, and the performance of BP model integrating PCA is closer to that of the proposed model in relatively large sample. Further, the prediction results on the points where the prices fluctuate violently by the above three models relatively deviate from the corresponding real market data.

  10. Clinical Outcome Prediction in Aneurysmal Subarachnoid Hemorrhage Using Bayesian Neural Networks with Fuzzy Logic Inferences

    Directory of Open Access Journals (Sweden)

    Benjamin W. Y. Lo

    2013-01-01

    Full Text Available Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH. Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients. Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs. Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique denoted cut-off points for poor prognosis at greater than 2.5 clusters. Discussion. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication.

  11. Artificial neural network implementation of a near-ideal error prediction controller

    Science.gov (United States)

    Mcvey, Eugene S.; Taylor, Lynore Denise

    1992-01-01

    A theory has been developed at the University of Virginia which explains the effects of including an ideal predictor in the forward loop of a linear error-sampled system. It has been shown that the presence of this ideal predictor tends to stabilize the class of systems considered. A prediction controller is merely a system which anticipates a signal or part of a signal before it actually occurs. It is understood that an exact prediction controller is physically unrealizable. However, in systems where the input tends to be repetitive or limited, (i.e., not random) near ideal prediction is possible. In order for the controller to act as a stability compensator, the predictor must be designed in a way that allows it to learn the expected error response of the system. In this way, an unstable system will become stable by including the predicted error in the system transfer function. Previous and current prediction controller include pattern recognition developments and fast-time simulation which are applicable to the analysis of linear sampled data type systems. The use of pattern recognition techniques, along with a template matching scheme, has been proposed as one realizable type of near-ideal prediction. Since many, if not most, systems are repeatedly subjected to similar inputs, it was proposed that an adaptive mechanism be used to 'learn' the correct predicted error response. Once the system has learned the response of all the expected inputs, it is necessary only to recognize the type of input with a template matching mechanism and then to use the correct predicted error to drive the system. Suggested here is an alternate approach to the realization of a near-ideal error prediction controller, one designed using Neural Networks. Neural Networks are good at recognizing patterns such as system responses, and the back-propagation architecture makes use of a template matching scheme. In using this type of error prediction, it is assumed that the system error

  12. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    Science.gov (United States)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2017-02-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  13. Predicting the wheel rolling resistance regarding important motion parameters using the artificial neural network

    Directory of Open Access Journals (Sweden)

    F Gheshlaghi

    2016-04-01

    the analytical and statistical methods. It is expected that the neural network can more accurately predict the rolling resistance. In this study, the neural network for experimental data was trained and the relationship among some parameters of velocity, dynamic load and tire pressure and rolling resistance were evaluated. Materials and Methods: The soil bin and single wheel tester of Biosystem Engineering Mechanics Department of Urmia University was used in this study. This soil bin has 24 m length, 2 m width and 1 m depth including a single-wheel tester and the carrier. Tester consists of four horizontal arms and a vertical arm to vertical load. The S-shaped load cells were employed in horizontal arms with a load capacity of 200 kg and another 500 kg in the vertical arm was embedded. The tire used in this study was a general pneumatic tire (Good year 9.5L-14, 6 ply In this study, artificial neural networks were used for optimizing the rolling resistance by 35 neurons, 6 inputs and 1 output choices. Comparison of neural network models according to the mean square error and correlation coefficient was used. In addition, 60% of the data on training, 20% on test and finally 20% of the credits was allocated to the validation and Output parameter of the neural network model has determined the tire rolling resistance. Finally, this study predicts the effects of changing parameters of tire pressure, vertical load and velocity on rolling resistance using a trained neural network. Results and Discussion: Based on obtained error of Levenberg- Marquardt algorithm, neural network with 35 neurons in the hidden layer with sigmoid tangent function and one neuron in the output layer with linear actuator function were selected. The regression coefficient of tested network is 0.92 which seems acceptable, considering the complexity of the studied process. Some of the input parameters to the network are speed, pressure and vertical load which their relationship with the rolling

  14. What are artificial neural networks?

    DEFF Research Database (Denmark)

    Krogh, Anders

    2008-01-01

    Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...

  15. A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion.

    Science.gov (United States)

    Cai, Binghuang; Jiang, Xia

    2014-04-01

    Biomedical prediction based on clinical and genome-wide data has become increasingly important in disease diagnosis and classification. To solve the prediction problem in an effective manner for the improvement of clinical care, we develop a novel Artificial Neural Network (ANN) method based on Matrix Pseudo-Inversion (MPI) for use in biomedical applications. The MPI-ANN is constructed as a three-layer (i.e., input, hidden, and output layers) feed-forward neural network, and the weights connecting the hidden and output layers are directly determined based on MPI without a lengthy learning iteration. The LASSO (Least Absolute Shrinkage and Selection Operator) method is also presented for comparative purposes. Single Nucleotide Polymorphism (SNP) simulated data and real breast cancer data are employed to validate the performance of the MPI-ANN method via 5-fold cross validation. Experimental results demonstrate the efficacy of the developed MPI-ANN for disease classification and prediction, in view of the significantly superior accuracy (i.e., the rate of correct predictions), as compared with LASSO. The results based on the real breast cancer data also show that the MPI-ANN has better performance than other machine learning methods (including support vector machine (SVM), logistic regression (LR), and an iterative ANN). In addition, experiments demonstrate that our MPI-ANN could be used for bio-marker selection as well. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Predicting standard penetration test N-value from cone penetration test data using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Bashar Tarawneh

    2017-01-01

    Full Text Available Standard Penetration Test (SPT and Cone Penetration Test (CPT are the most frequently used field tests to estimate soil parameters for geotechnical analysis and design. Numerous soil parameters are related to the SPT N-value. In contrast, CPT is becoming more popular for site investigation and geotechnical design. Correlation of CPT data with SPT N-value is very beneficial since most of the field parameters are related to SPT N-values. A back-propagation artificial neural network (ANN model was developed to predict the N60-value from CPT data. Data used in this study consisted of 109 CPT-SPT pairs for sand, sandy silt, and silty sand soils. The ANN model input variables are: CPT tip resistance (qc, effective vertical stress (σv′, and CPT sleeve friction (fs. A different set of SPT-CPT data was used to check the reliability of the developed ANN model. It was shown that ANN model either under-predicted the N60-value by 7–16% or over-predicted it by 7–20%. It is concluded that back-propagation neural networks is a good tool to predict N60-value from CPT data with acceptable accuracy.

  17. Using a Backpropagation Artificial Neural Network to Predict Nutrient Removal in Tidal Flow Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-01-01

    Full Text Available Nutrient removal in tidal flow constructed wetlands (TF-CW is a complex series of nonlinear multi-parameter interactions. We simulated three tidal flow systems and a continuous vertical flow system filled with synthetic wastewater and compared the influent and effluent concentrations to examine (1 nutrient removal in artificial TF-CWs, and (2 the ability of a backpropagation (BP artificial neural network to predict nutrient removal. The nutrient removal rates were higher under tidal flow when the idle/reaction time was two, and reached 90 ± 3%, 99 ± 1%, and 58 ± 13% for total nitrogen (TN, ammonium nitrogen (NH4+-N, and total phosphorus (TP, respectively. The main influences on nutrient removal for each scenario were identified by redundancy analysis and were input into the model to train and verify the pollutant effluent concentrations. Comparison of the actual and model-predicted effluent concentrations showed that the model predictions were good. The predicted and actual values were correlated and the margin of error was small. The BP neural network fitted best to TP, with an R2 of 0.90. The R2 values of TN, NH4+-N, and nitrate nitrogen (NO3−-N were 0.67, 0.73, and 0.69, respectively.

  18. Prediction of roadheaders' performance using artificial neural network approaches (MLP and KOSFM

    Directory of Open Access Journals (Sweden)

    Arash Ebrahimabadi

    2015-10-01

    Full Text Available Application of mechanical excavators is one of the most commonly used excavation methods because it can bring the project more productivity, accuracy and safety. Among the mechanical excavators, roadheaders are mechanical miners which have been extensively used in tunneling, mining and civil industries. Performance prediction is an important issue for successful roadheader application and generally deals with machine selection, production rate and bit consumption. The main aim of this research is to investigate the cutting performance (instantaneous cutting rates (ICRs of medium-duty roadheaders by using artificial neural network (ANN approach. There are different categories for ANNs, but based on training algorithm there are two main kinds: supervised and unsupervised. The multi-layer perceptron (MLP and Kohonen self-organizing feature map (KSOFM are the most widely used neural networks for supervised and unsupervised ones, respectively. For gaining this goal, a database was primarily provided from roadheaders' performance and geomechanical characteristics of rock formations in tunnels and drift galleries in Tabas coal mine, the largest and the only fully-mechanized coal mine in Iran. Then the database was analyzed in order to yield the most important factor for ICR by using relatively important factor in which Garson equation was utilized. The MLP network was trained by 3 input parameters including rock mass properties, rock quality designation (RQD, intact rock properties such as uniaxial compressive strength (UCS and Brazilian tensile strength (BTS, and one output parameter (ICR. In order to have more validation on MLP outputs, KSOFM visualization was applied. The mean square error (MSE and regression coefficient (R of MLP were found to be 5.49 and 0.97, respectively. Moreover, KSOFM network has a map size of 8 × 5 and final quantization and topographic errors were 0.383 and 0.032, respectively. The results show that MLP neural networks

  19. Predictions of Diffuse Pollution by the HSPF Model and the Back-Propagation Neural Network Model.

    Science.gov (United States)

    Chang, Chia-Ling; Li, Meng-Yuan

    2017-08-01

      Watershed models are important tools for predicting the possible change of watershed responses. Environmental models comprise the deterministic model and the probabilistic model. This study discusses the Hydrological Simulation Program Fortran (HSPF) and the Back-Propagation Neural Network (BPNN); these two models represent the deterministic model and the probabilistic model, respectively. As the properties of the two models are distinct, they have differing abilities to predict surface-runoff pollution. For the two models, the runoff simulation results are satisfactory. However, due to the limitation of the water quality monitoring records, pollution simulation is more difficult than runoff simulation. The results indicate that the prediction accuracy in the pollution simulation can be improved by adjusting the BPNN neurons. On the contrary, improving the prediction accuracy is limited by HSPF. Although the flexibility of BPNN is higher than HSPF, sufficient historical monitoring records are important for both of these models.

  20. Prediction of Compressive Strength of Concrete Using Artificial Neural Network and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Palika Chopra

    2016-01-01

    Full Text Available An effort has been made to develop concrete compressive strength prediction models with the help of two emerging data mining techniques, namely, Artificial Neural Networks (ANNs and Genetic Programming (GP. The data for analysis and model development was collected at 28-, 56-, and 91-day curing periods through experiments conducted in the laboratory under standard controlled conditions. The developed models have also been tested on in situ concrete data taken from literature. A comparison of the prediction results obtained using both the models is presented and it can be inferred that the ANN model with the training function Levenberg-Marquardt (LM for the prediction of concrete compressive strength is the best prediction tool.

  1. Prediction of hydrogen concentration in containment during severe accidents using fuzzy neural network

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Yeong; Kim, Ju Hyun; Yoo, Kwae Hwan; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2015-03-15

    Recently, severe accidents in nuclear power plants (NPPs) have become a global concern. The aim of this paper is to predict the hydrogen buildup within containment resulting from severe accidents. The prediction was based on NPPs of an optimized power reactor 1,000. The increase in the hydrogen concentration in severe accidents is one of the major factors that threaten the integrity of the containment. A method using a fuzzy neural network (FNN) was applied to predict the hydrogen concentration in the containment. The FNN model was developed and verified based on simulation data acquired by simulating MAAP4 code for optimized power reactor 1,000. The FNN model is expected to assist operators to prevent a hydrogen explosion in severe accident situations and manage the accident properly because they are able to predict the changes in the trend of hydrogen concentration at the beginning of real accidents by using the developed FNN model.

  2. Time-dependent prediction degredation assessment of neural-networks-based TEC forecasting models

    Directory of Open Access Journals (Sweden)

    Th. D. Xenos

    2003-01-01

    Full Text Available An estimation of the difference in TEC prediction accuracy achieved when the prediction varies from 1 h to 7 days in advance is described using classical neural networks. Hourly-daily Faraday-rotation derived TEC measurements from Florence are used. It is shown that the prediction accuracy for the examined dataset, though degrading when time span increases, is always high. In fact, when a relative prediction error margin of ± 10% is considered, the population percentage included therein is almost always well above the 55%. It is found that the results are highly dependent on season and the dataset wealth, whereas they highly depend on the foF2 - TEC variability difference and on hysteresis-like effect between these two ionospheric characteristics.

  3. Predicting Tooth Surface Loss Using Genetic Algorithms-Optimized Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ali Al Haidan

    2014-01-01

    Full Text Available Our aim was to predict tooth surface loss in individuals without the need to conduct clinical examinations. Artificial neural networks (ANNs were used to construct a mathematical model. Input data consisted of age, smoker status, type of tooth brush, brushing, and consumption of pickled food, fizzy drinks, orange, apple, lemon, and dried seeds. Output data were the sum of tooth surface loss scores for selected teeth. The optimized constructed ANN consisted of 2-layer network with 15 neurons in the first layer and one neuron in the second layer. The data of 46 subjects were used to build the model, while the data of 15 subjects were used to test the model. Accepting an error of ±5 scores for all chosen teeth, the accuracy of the network becomes more than 80%. In conclusion, this study shows that modeling tooth surface loss using ANNs is possible and can be achieved with a high degree of accuracy.

  4. Predicting tooth surface loss using genetic algorithms-optimized artificial neural networks.

    Science.gov (United States)

    Al Haidan, Ali; Abu-Hammad, Osama; Dar-Odeh, Najla

    2014-01-01

    Our aim was to predict tooth surface loss in individuals without the need to conduct clinical examinations. Artificial neural networks (ANNs) were used to construct a mathematical model. Input data consisted of age, smoker status, type of tooth brush, brushing, and consumption of pickled food, fizzy drinks, orange, apple, lemon, and dried seeds. Output data were the sum of tooth surface loss scores for selected teeth. The optimized constructed ANN consisted of 2-layer network with 15 neurons in the first layer and one neuron in the second layer. The data of 46 subjects were used to build the model, while the data of 15 subjects were used to test the model. Accepting an error of ±5 scores for all chosen teeth, the accuracy of the network becomes more than 80%. In conclusion, this study shows that modeling tooth surface loss using ANNs is possible and can be achieved with a high degree of accuracy.

  5. Artificial neural networks for diagnosis and survival prediction in colon cancer.

    Science.gov (United States)

    Ahmed, Farid E

    2005-08-06

    ANNs are nonlinear regression computational devices that have been used for over 45 years in classification and survival prediction in several biomedical systems, including colon cancer. Described in this article is the theory behind the three-layer free forward artificial neural networks with backpropagation error, which is widely used in biomedical fields, and a methodological approach to its application for cancer research, as exemplified by colon cancer. Review of the literature shows that applications of these networks have improved the accuracy of colon cancer classification and survival prediction when compared to other statistical or clinicopathological methods. Accuracy, however, must be exercised when designing, using and publishing biomedical results employing machine-learning devices such as ANNs in worldwide literature in order to enhance confidence in the quality and reliability of reported data.

  6. Artificial neural networks for diagnosis and survival prediction in colon cancer

    Directory of Open Access Journals (Sweden)

    Ahmed Farid E

    2005-08-01

    Full Text Available Abstract ANNs are nonlinear regression computational devices that have been used for over 45 years in classification and survival prediction in several biomedical systems, including colon cancer. Described in this article is the theory behind the three-layer free forward artificial neural networks with backpropagation error, which is widely used in biomedical fields, and a methodological approach to its application for cancer research, as exemplified by colon cancer. Review of the literature shows that applications of these networks have improved the accuracy of colon cancer classification and survival prediction when compared to other statistical or clinicopathological methods. Accuracy, however, must be exercised when designing, using and publishing biomedical results employing machine-learning devices such as ANNs in worldwide literature in order to enhance confidence in the quality and reliability of reported data.

  7. Prediction of Maximum Story Drift of MDOF Structures under Simulated Wind Loads Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Omar Payán-Serrano

    2017-05-01

    Full Text Available The aim of this paper is to investigate the prediction of maximum story drift of Multi-Degree of Freedom (MDOF structures subjected to dynamics wind load using Artificial Neural Networks (ANNs through the combination of several structural and turbulent wind parameters. The maximum story drift of 1600 MDOF structures under 16 simulated wind conditions are computed with the purpose of generating the data set for the networks training with the Levenberg–Marquardt method. The Shinozuka and Newmark methods are used to simulate the turbulent wind and dynamic response, respectively. In order to optimize the computational time required for the dynamic analyses, an array format based on the Shinozuka method is presented to perform the parallel computing. Finally, it is observed that the already trained ANNs allow for predicting adequately the maximum story drift with a correlation close to 99%.

  8. Prediction of enzyme activity with neural network models based on electronic and geometrical features of substrates.

    Science.gov (United States)

    Szaleniec, Maciej

    2012-01-01

    Artificial Neural Networks (ANNs) are introduced as robust and versatile tools in quantitative structure-activity relationship (QSAR) modeling. Their application to the modeling of enzyme reactivity is discussed, along with methodological issues. Methods of input variable selection, optimization of network internal structure, data set division and model validation are discussed. The application of ANNs in the modeling of enzyme activity over the last 20 years is briefly recounted. The discussed methodology is exemplified by the case of ethylbenzene dehydrogenase (EBDH). Intelligent Problem Solver and genetic algorithms are applied for input vector selection, whereas k-means clustering is used to partition the data into training and test cases. The obtained models exhibit high correlation between the predicted and experimental values (R(2) > 0.9). Sensitivity analyses and study of the response curves are used as tools for the physicochemical interpretation of the models in terms of the EBDH reaction mechanism. Neural networks are shown to be a versatile tool for the construction of robust QSAR models that can be applied to a range of aspects important in drug design and the prediction of biological activity.

  9. Predicting behavior change from persuasive messages using neural representational similarity and social network analyses.

    Science.gov (United States)

    Pegors, Teresa K; Tompson, Steven; O'Donnell, Matthew Brook; Falk, Emily B

    2017-08-15

    Neural activity in medial prefrontal cortex (MPFC), identified as engaging in self-related processing, predicts later health behavior change. However, it is unknown to what extent individual differences in neural representation of content and lived experience influence this brain-behavior relationship. We examined whether the strength of content-specific representations during persuasive messaging relates to later behavior change, and whether these relationships change as a function of individuals' social network composition. In our study, smokers viewed anti-smoking messages while undergoing fMRI and we measured changes in their smoking behavior one month later. Using representational similarity analyses, we found that the degree to which message content (i.e. health, social, or valence information) was represented in a self-related processing MPFC region was associated with later smoking behavior, with increased representations of negatively valenced (risk) information corresponding to greater message-consistent behavior change. Furthermore, the relationship between representations and behavior change depended on social network composition: smokers who had proportionally fewer smokers in their network showed increases in smoking behavior when social or health content was strongly represented in MPFC, whereas message-consistent behavior (i.e., less smoking) was more likely for those with proportionally more smokers in their social network who represented social or health consequences more strongly. These results highlight the dynamic relationship between representations in MPFC and key outcomes such as health behavior change; a complete understanding of the role of MPFC in motivation and action should take into account individual differences in neural representation of stimulus attributes and social context variables such as social network composition. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. PREDICTION OF BULLS’ SLAUGHTER VALUE FROM GROWTH DATA USING ARTIFICIAL NEURAL NETWORK

    OpenAIRE

    Adamczyk, Krzysztof; MOLENDA, Krzysztof; JAN SZAREK; Skrzyński, Grzegorz

    2006-01-01

    The objective of this research was to investigate the usefulness of artifi cial neural network (ANN) in the prediction of slaughter value of young crossbred bulls based on growth data. The studies were carried out on 104 bulls fattened from 120 days of life until the weight of 500 kg. The bulls were group fed using mainly farm feeds. After slaughter the carcasses were dissected and meat was subjected to physico-chemical and organoleptic analyses. The obtained data were used for the developmen...

  11. On using Artificial Neural Network models to predict game outcomes in Dota 2

    OpenAIRE

    Widin, Viktor; Adler, Julien

    2017-01-01

    Dota 2 is an online strategy game, played in a five versus five format. Its multitude of selectable characters, each with a unique set of abilities and spells, causes every new match to be different from the last and picking the right characters can ultimately decide whether a team wins or loses a game. This report investigates if Artificial Neural Networks can be used to predict game outcomes, based solely on the character selection made in each game. Additionally, the report will explore if...

  12. Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Aminmohammad Saberian

    2014-01-01

    Full Text Available This paper presents a solar power modelling method using artificial neural networks (ANNs. Two neural network structures, namely, general regression neural network (GRNN feedforward back propagation (FFBP, have been used to model a photovoltaic panel output power and approximate the generated power. Both neural networks have four inputs and one output. The inputs are maximum temperature, minimum temperature, mean temperature, and irradiance; the output is the power. The data used in this paper started from January 1, 2006, until December 31, 2010. The five years of data were split into two parts: 2006–2008 and 2009-2010; the first part was used for training and the second part was used for testing the neural networks. A mathematical equation is used to estimate the generated power. At the end, both of these networks have shown good modelling performance; however, FFBP has shown a better performance comparing with GRNN.

  13. Artificial neural networks used for the prediction of the cetane number of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673 601 (India); Padmakumari, K. [Department of Electrical Engineering, National Institute of Technology Calicut, Calicut-673 601 (India)

    2006-12-15

    Cetane number (CN) is one of the most significant properties to specify the ignition quality of any fuel for internal combustion engines. The CN of biodiesel varies widely in the range of 48-67 depending upon various parameters including the oil processing technology and climatic conditions where the feedstock (vegetable oil) is collected. Determination of the CN of a fuel by an experimental procedure is a tedious job for the upcoming biodiesel production industry. The fatty acid composition of base oil predominantly affects the CN of the biodiesel produced from it. This paper discusses the currently available CN estimation techniques and the necessity of accurate prediction of CN of biodiesel. Artificial Neural Network (ANN) models are developed to predict the CN of any biodiesel. The present paper deals with the application of multi-layer feed forward, radial base, generalized regression and recurrent network models for the prediction of CN. The fatty acid compositions of biodiesel and the experimental CNs are used to train the networks. The parameters that affect the development of the model are also discussed. ANN predicted CNs are found to be in agreement with the experimental CNs. Hence, the ANN models developed can be used reliably for the prediction of CN of biodiesel. (author)

  14. Prediction of facial deformation after complete denture prosthesis using BP neural network.

    Science.gov (United States)

    Cheng, Cheng; Cheng, Xiaosheng; Dai, Ning; Jiang, Xiaotong; Sun, Yuchun; Li, Weiwei

    2015-11-01

    With the accelerated aging of world population, complete denture prosthesis plays an increasingly important role in mouth rehabilitation. In addition to recovering stomatognathic system function, restoring the appearance of a third of the area under the face has become a great challenge in complete denture prosthesis. This study analyzes the interactive relationship between the appearance of a third of the area under the face and complete denture, and proposes a new method to predict facial deformation after complete denture prosthesis. Firstly, to improve computational efficiency, the feature template is constructed to replace the deformed facial region. Secondly, a forecast model of elastic deformation is constructed using BP neural network and predicts elastic deformation amount because of the inhomogeneous, anisotropic and nonlinear material properties of soft tissue. Finally, a new feature template is calculated using deformation amount, and the deformation of preoperative model is simulated using Laplacian deformation technique. The average error rates of different hidden layer nodes in the neural network are analysed. Deformation and postoperative models are superimposed for match analysis. Experimental results show that this method can predict facial soft tissue deformation quickly and accurately. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Prediction of zeolite-cement-sand unconfined compressive strength using polynomial neural network

    Science.gov (United States)

    MolaAbasi, H.; Shooshpasha, I.

    2016-04-01

    The improvement of local soils with cement and zeolite can provide great benefits, including strengthening slopes in slope stability problems, stabilizing problematic soils and preventing soil liquefaction. Recently, dosage methodologies are being developed for improved soils based on a rational criterion as it exists in concrete technology. There are numerous earlier studies showing the possibility of relating Unconfined Compressive Strength (UCS) and Cemented sand (CS) parameters (voids/cement ratio) as a power function fits. Taking into account the fact that the existing equations are incapable of estimating UCS for zeolite cemented sand mixture (ZCS) well, artificial intelligence methods are used for forecasting them. Polynomial-type neural network is applied to estimate the UCS from more simply determined index properties such as zeolite and cement content, porosity as well as curing time. In order to assess the merits of the proposed approach, a total number of 216 unconfined compressive tests have been done. A comparison is carried out between the experimentally measured UCS with the predictions in order to evaluate the performance of the current method. The results demonstrate that generalized polynomial-type neural network has a great ability for prediction of the UCS. At the end sensitivity analysis of the polynomial model is applied to study the influence of input parameters on model output. The sensitivity analysis reveals that cement and zeolite content have significant influence on predicting UCS.

  16. Mathematical-Artificial Neural Network Hybrid Model to Predict Roll Force during Hot Rolling of Steel

    Science.gov (United States)

    Rath, S.; Sengupta, P. P.; Singh, A. P.; Marik, A. K.; Talukdar, P.

    2013-07-01

    Accurate prediction of roll force during hot strip rolling is essential for model based operation of hot strip mills. Traditionally, mathematical models based on theory of plastic deformation have been used for prediction of roll force. In the last decade, data driven models like artificial neural network have been tried for prediction of roll force. Pure mathematical models have accuracy limitations whereas data driven models have difficulty in convergence when applied to industrial conditions. Hybrid models by integrating the traditional mathematical formulations and data driven methods are being developed in different parts of world. This paper discusses the methodology of development of an innovative hybrid mathematical-artificial neural network model. In mathematical model, the most important factor influencing accuracy is flow stress of steel. Coefficients of standard flow stress equation, calculated by parameter estimation technique, have been used in the model. The hybrid model has been trained and validated with input and output data collected from finishing stands of Hot Strip Mill, Bokaro Steel Plant, India. It has been found that the model accuracy has been improved with use of hybrid model, over the traditional mathematical model.

  17. Prediction of municipal water production in touristic Mecca City in Saudi Arabia using neural networks

    Directory of Open Access Journals (Sweden)

    AbdelHamid Ajbar

    2015-01-01

    Full Text Available Accurate forecast of municipal water production is critically important for arid and oil rich countries such as Saudi Arabia which depend on costly desalination plants to satisfy the growing water demand. Achieving the desired prediction accuracy is a challenging task since the forecast model should take into consideration a variety of factors such as economic development, climate conditions and population growth. The task is further complicated given that Mecca city is visited regularly by large numbers during specific months in the year due to religious reasons. This study develops a neural network model for forecasting the monthly and annual water demand for Mecca city, Saudi Arabia. The proposed model used historic records of water production and estimated visitors’ distribution to calibrate a neural network model for water demand forecast. The explanatory variables included annually-varying variables such as household income, persons per household, and city population, along with monthly-varying variables such as expected number of visitors each month and maximum monthly temperature. The NN prediction outperforms that of a regular econometric model. The latter is adjusted such that it can provide monthly and annual predictions.

  18. Detecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Elham Ghoochani

    2011-03-01

    Full Text Available Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigue. Muscle fatigue in shoulders and neck is one of the most prevalent problems reported with computer users especially during typing. Surface electromyography (SEMG signals are used for detecting muscle fatigue as a non-invasive method. Material and Methods: Nine healthy females volunteered for signal recoding during typing. EMG signals were recorded from the trapezius muscle, which is subjected to muscle fatigue during typing.  After signal analysis and feature extraction, detecting and predicting muscle fatigue was performed by using the MLP artificial neural network. Results: Recorded signals were analyzed in time and frequency domains for feature extraction. Results of classification showed that the MLP neural network can detect and predict muscle fatigue during typing with 80.79 % ± 1.04% accuracy. Conclusion: Intelligent classification and prediction of muscle fatigue can have many applications in human factors engineering (ergonomics, rehabilitation engineering and biofeedback equipment for mitigating the injuries of repetitive works.

  19. Predicting Asthma Outcome Using Partial Least Square Regression and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    E. Chatzimichail

    2013-01-01

    Full Text Available The long-term solution to the asthma epidemic is believed to be prevention and not treatment of the established disease. Most cases of asthma begin during the first years of life; thus the early determination of which young children will have asthma later in their life counts as an important priority. Artificial neural networks (ANN have been already utilized in medicine in order to improve the performance of the clinical decision-making tools. In this study, a new computational intelligence technique for the prediction of persistent asthma in children is presented. By employing partial least square regression, 9 out of 48 prognostic factors correlated to the persistent asthma have been chosen. Multilayer perceptron and probabilistic neural networks topologies have been investigated in order to obtain the best prediction accuracy. Based on the results, it is shown that the proposed system is able to predict the asthma outcome with a success of 96.77%. The ANN, with which these high rates of reliability were obtained, will help the doctors to identify which of the young patients are at a high risk of asthma disease progression. Moreover, this may lead to better treatment opportunities and hopefully better disease outcomes in adulthood.

  20. Prediction of Load-Carrying Capacity in Steel Shear Wall with Opening Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    E. Khalilzadeh Vahidi

    2016-01-01

    Full Text Available The effects of different parameters on steel plate shear wall (SPSW are investigated. The studied parameters are thickness of plate, location of the opening, thickness of diagonal stiffeners, and thickness of circular stiffener. Load-carrying capacity of the SPSW is studied under static load using nonlinear geometrical and material analysis in ABAQUS and the obtained simulation results are verified. An artificial neural network (ANN is proposed to model the effects of these parameters. According to the results the circular stiffener has more effect compared with the diagonal stiffeners. However, the thickness of the plate has the most significant effect on the SPSW behavior. The results show that the best place for the opening location is the center of SPSW. Multilayer perceptron (MLP neural network was used to predict the maximum load in SPSW with opening. The predicted maximum load values using the proposed MLP model were compared with the simulated validated data. The obtained results show that the proposed ANN model has achieved good agreement with the validated simulated data, with correlation coefficient of more than 0.9975. Therefore, the proposed model is useful, reliable, fast, and cheap tools to predict the maximum load in SPSW.

  1. Prediction of road traffic death rate using neural networks optimised by genetic algorithm.

    Science.gov (United States)

    Jafari, Seyed Ali; Jahandideh, Sepideh; Jahandideh, Mina; Asadabadi, Ebrahim Barzegari

    2015-01-01

    Road traffic injuries (RTIs) are realised as a main cause of public health problems at global, regional and national levels. Therefore, prediction of road traffic death rate will be helpful in its management. Based on this fact, we used an artificial neural network model optimised through Genetic algorithm to predict mortality. In this study, a five-fold cross-validation procedure on a data set containing total of 178 countries was used to verify the performance of models. The best-fit model was selected according to the root mean square errors (RMSE). Genetic algorithm, as a powerful model which has not been introduced in prediction of mortality to this extent in previous studies, showed high performance. The lowest RMSE obtained was 0.0808. Such satisfactory results could be attributed to the use of Genetic algorithm as a powerful optimiser which selects the best input feature set to be fed into the neural networks. Seven factors have been known as the most effective factors on the road traffic mortality rate by high accuracy. The gained results displayed that our model is very promising and may play a useful role in developing a better method for assessing the influence of road traffic mortality risk factors.

  2. Statistical Modeling and Prediction for Tourism Economy Using Dendritic Neural Network

    Directory of Open Access Journals (Sweden)

    Ying Yu

    2017-01-01

    Full Text Available With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient.

  3. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  4. Artificial neural network model for prediction of safety performance indicators goals in nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Souto, Kelling C.; Nunes, Wallace W. [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro, Nilopolis, RJ (Brazil). Lab. de Aplicacoes Computacionais; Machado, Marcelo D., E-mail: dornemd@eletronuclear.gov.b [ELETROBRAS Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Gerencia de Combustivel Nuclear - GCN.T

    2011-07-01

    Safety performance indicators have been developed to provide a quantitative indication of the performance and safety in various industry sectors. These indexes can provide assess to aspects ranging from production, design, and human performance up to management issues in accordance with policy, objectives and goals of the company. The use of safety performance indicators in nuclear power plants around the world is a reality. However, it is necessary to periodically set goal values. Such goals are targets relating to each of the indicators to be achieved by the plant over a predetermined period of operation. The current process of defining these goals is carried out by experts in a subjective way, based on actual data from the plant, and comparison with global indices. Artificial neural networks are computational techniques that present a mathematical model inspired by the neural structure of intelligent organisms that acquire knowledge through experience. This paper proposes an artificial neural network model aimed at predicting values of goals to be used in the evaluation of safety performance indicators for nuclear power plants. (author)

  5. PREDICTION OF BOD AND COD OF A REFINERY WASTEWATER USING MULTILAYER ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Eldon Raj Rene

    2008-06-01

    Full Text Available In the recent past, artificial neural networks (ANNs have shown the ability to learn and capture non-linear static or dynamic behaviour among variables based on the given set of data. Since the knowledge of internal procedure is not necessary, the modelling can take place with minimum previous knowledge about the process through proper training of the network. In the present study, 12 ANN based models were proposed to predict the Biochemical Oxygen Demand (BOD5 and Chemical Oxygen Demand (COD concentrations of wastewater generated from the effluent treatment plant of a petrochemical industry. By employing the standard back error propagation (BEP algorithm, the network was trained with 103 data points for water quality indices such as Total Suspended Solids (TSS, Total Dissolved Solids (TDS, Phenol concentration, Ammoniacal Nitrogen (AMN, Total Organic Carbon (TOC and Kjeldahl’s Nitrogen (KJN to predict BOD and COD. After appropriate training, the network was tested with a separate test data and the best model was chosen based on the sum square error (training and percentage average relative error (% ARE for testing. The results from this study reveal that ANNs can be accurate and efficacious in predicting unknown concentrations of water quality parameters through its versatile training process.

  6. Platforms for artificial neural networks : neurosimulators and performance prediction of MIMD-parallel systems

    NARCIS (Netherlands)

    Vuurpijl, L.G.

    1998-01-01

    In this thesis, two platforms for simulating artificial neural networks are discussed: MIMD-parallel processor systems as an execution platform and neurosimulators as a research and development platform. Because of the parallelism encountered in neural networks, distributed processor systems seem to

  7. Application of neural networks and support vector machine for significant wave height prediction

    Directory of Open Access Journals (Sweden)

    Jadran Berbić

    2017-07-01

    Full Text Available For the purposes of planning and operation of maritime activities, information about wave height dynamics is of great importance. In the paper, real-time prediction of significant wave heights for the following 0.5–5.5 h is provided, using information from 3 or more time points. In the first stage, predictions are made by varying the quantity of significant wave heights from previous time points and various ways of using data are discussed. Afterwards, in the best model, according to the criteria of practicality and accuracy, the influence of wind is taken into account. Predictions are made using two machine learning methods – artificial neural networks (ANN and support vector machine (SVM. The models were built using the built-in functions of software Weka, developed by Waikato University, New Zealand.

  8. CASPIAN SEA LEVEL PREDICTION USING ARTIFICIAL NEURAL NETWORK AND EMPIRICAL MODE DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    Nikolai Makarenko

    2010-01-01

    Full Text Available This paper demonstrates the possibility of using nonlinear modeling for prediction of the Caspian Sea level. Phase space geometry of the of a model can be reconstructed by the embedology methods. Dynamical invariants, such as the Lyapunov exponents, the Kaplan-Yorke dimension, and the prediction horizon were estimated from reconstruction. Fractal and multifractal analyses were carried out for various time intervals of the Caspian Sea level and multifractal spectra were calculated. Then, historical data resolution was improved with the help of fractal approximation. The EMD method was used to reduce noise of the time series. Global nonlinear predictions were made with the help of Artificial Neural Network for combinations of different empirical modes.

  9. Prediction of CHF in concentric-tube open thermosiphon using artificial neural network and genetic algorithm

    Science.gov (United States)

    Chen, R. H.; Su, G. H.; Qiu, S. Z.; Fukuda, Kenji

    2010-03-01

    In this paper, an artificial neural network (ANN) for predicting critical heat flux (CHF) of concentric-tube open thermosiphon has been trained successfully based on the experimental data from the literature. The dimensionless input parameters of the ANN are density ratio, ρ l/ ρ v; the ratio of the heated tube length to the inner diameter of the outer tube, L/ D i; the ratio of frictional area, d i/( D i + d o); and the ratio of equivalent heated diameter to characteristic bubble size, D he/[ σ/ g( ρ l- ρ v)]0.5, the output is Kutateladze number, Ku. The predicted values of ANN are found to be in reasonable agreement with the actual values from the experiments with a mean relative error (MRE) of 8.46%. New correlations for predicting CHF were also proposed by using genetic algorithm (GA) and succeeded to correlate the existing CHF data with better accuracy than the existing empirical correlations.

  10. Artificial chemical reaction optimization of neural networks for efficient prediction of stock market indices

    Directory of Open Access Journals (Sweden)

    S.C. Nayak

    2017-09-01

    Full Text Available The underlying system models of time series prediction are complex and not known a priori, hence, accurate and unbiased estimation cannot be always achieved using well known linear techniques. The estimation process requires more advanced prediction algorithms, such as multilayer perceptrons (MLPs. This paper presents an artificial chemical reaction neural network (ACRNN, which uses artificial chemical reaction optimization (ACRO to train the MLP models for forecasting the stock market indices. The underlying motivation for using ACRO is the ability to overcome the issues of convergence, parameter setting and overfitting and to accurately forecast financial time series data even when the underlying system processes are typically nonlinear. Historical data of seven different stock indices have been collected for 15 years to test the performance of the ACRNN approach. After extensive experimentation, it is observed that the ACRNN technique demonstrates significant improvements in prediction accuracy over the MLP approach.

  11. DELAMINATION PREDICTION IN DRILLING OF CFRP COMPOSITES USING ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    K. PALANIKUMAR

    2011-04-01

    Full Text Available Carbon fibre reinforced plastic (CFRP materials play a major role in the applications of aeronautic, aerospace, sporting and transportation industries. Machining is indispensible and hence drilling of CFRP materials is considered in this present study with respect to spindle speed in rpm, drill size in mm and feed in mm/min. Delamination is one of the major defects to be dealt with. The experiments are carried out using computer numerical control machine and the results are applied to an artificial neural network (ANN for the prediction of delamination factor at the exit plane of the CFRP material. It is found that ANN model predicts the delamination for any given set of machining parameters with a maximum error of 0.81% and a minimum error of 0.03%. Thus an ANN model is highly suitable for the prediction of delamination in CFRP materials.

  12. The prediction of the residual life of electromechanical equipment based on the artificial neural network

    Science.gov (United States)

    Zhukovskiy, Yu L.; Korolev, N. A.; Babanova, I. S.; Boikov, A. V.

    2017-10-01

    This article is devoted to the prediction of the residual life based on an estimate of the technical state of the induction motor. The proposed system allows to increase the accuracy and completeness of diagnostics by using an artificial neural network (ANN), and also identify and predict faulty states of an electrical equipment in dynamics. The results of the proposed system for estimation the technical condition are probability technical state diagrams and a quantitative evaluation of the residual life, taking into account electrical, vibrational, indirect parameters and detected defects. Based on the evaluation of the technical condition and the prediction of the residual life, a decision is made to change the control of the operating and maintenance modes of the electric motors.

  13. Flare Occurrence Prediction based on Convolution Neural Network using SOHO MDI data

    Science.gov (United States)

    Yi, Kangwoo; Moon, Yong-Jae; Park, Eunsu; Shin, Seulki

    2017-08-01

    In this study we apply Convolution Neural Network(CNN) to solar flare occurrence prediction with various parameter options using the 00:00 UT MDI images from 1996 to 2010 (total 4962 images). We assume that only X, M and C class flares correspond to “flare occurrence” and the others to “non-flare”. We have attempted to look for the best options for the models with two CNN pre-trained models (AlexNet and GoogLeNet), by modifying training images and changing hyper parameters. Our major results from this study are as follows. First, the flare occurrence predictions are relatively good with about 80 % accuracies. Second, both flare prediction models based on AlexNet and GoogLeNet have similar results but AlexNet is faster than GoogLeNet. Third, modifying the training images to reduce the projection effect is not effective.

  14. Degradation Prediction Model Based on a Neural Network with Dynamic Windows

    Directory of Open Access Journals (Sweden)

    Xinghui Zhang

    2015-03-01

    Full Text Available Tracking degradation of mechanical components is very critical for effective maintenance decision making. Remaining useful life (RUL estimation is a widely used form of degradation prediction. RUL prediction methods when enough run-to-failure condition monitoring data can be used have been fully researched, but for some high reliability components, it is very difficult to collect run-to-failure condition monitoring data, i.e., from normal to failure. Only a certain number of condition indicators in certain period can be used to estimate RUL. In addition, some existing prediction methods have problems which block RUL estimation due to poor extrapolability. The predicted value converges to a certain constant or fluctuates in certain range. Moreover, the fluctuant condition features also have bad effects on prediction. In order to solve these dilemmas, this paper proposes a RUL prediction model based on neural network with dynamic windows. This model mainly consists of three steps: window size determination by increasing rate, change point detection and rolling prediction. The proposed method has two dominant strengths. One is that the proposed approach does not need to assume the degradation trajectory is subject to a certain distribution. The other is it can adapt to variation of degradation indicators which greatly benefits RUL prediction. Finally, the performance of the proposed RUL prediction model is validated by real field data and simulation data.

  15. Time series prediction in the case of nonlinear loads by using ADALINE and NAR neural networks

    Science.gov (United States)

    Ghiormez, L.; Panoiu, M.; Panoiu, C.; Tirian, O.

    2018-01-01

    This paper presents a study regarding the time series prediction in the case of an electric arc furnace. The considered furnace is a three phase load and it is used to melt scrap in order to obtain liquid steel. The furnace is powered by a three-phase electrical supply and therefore has three graphite electrodes. The furnace is a nonlinear load that can influence the equipment connected to the same electrical power supply network. The nonlinearity is given by the electric arc that appears at the furnace between the graphite electrode and the scrap. Because of the disturbances caused by the electric arc furnace during the elaboration process of steel it is very useful to predict the current of the electric arc and the voltage from the measuring point in the secondary side of the furnace transformer. In order to make the predictions were used ADALINE and NAR neural networks. To train the networks and to make the predictions were used data acquired from the real technological plant.

  16. Predicting the particle size distribution of eroded sediment using artificial neural networks.

    Science.gov (United States)

    Lagos-Avid, María Paz; Bonilla, Carlos A

    2017-03-01

    Water erosion causes soil degradation and nonpoint pollution. Pollutants are primarily transported on the surfaces of fine soil and sediment particles. Several soil loss models and empirical equations have been developed for the size distribution estimation of the sediment leaving the field, including the physically-based models and empirical equations. Usually, physically-based models require a large amount of data, sometimes exceeding the amount of available data in the modeled area. Conversely, empirical equations do not always predict the sediment composition associated with individual events and may require data that are not always available. Therefore, the objective of this study was to develop a model to predict the particle size distribution (PSD) of eroded soil. A total of 41 erosion events from 21 soils were used. These data were compiled from previous studies. Correlation and multiple regression analyses were used to identify the main variables controlling sediment PSD. These variables were the particle size distribution in the soil matrix, the antecedent soil moisture condition, soil erodibility, and hillslope geometry. With these variables, an artificial neural network was calibrated using data from 29 events (r2=0.98, 0.97, and 0.86; for sand, silt, and clay in the sediment, respectively) and then validated and tested on 12 events (r2=0.74, 0.85, and 0.75; for sand, silt, and clay in the sediment, respectively). The artificial neural network was compared with three empirical models. The network presented better performance in predicting sediment PSD and differentiating rain-runoff events in the same soil. In addition to the quality of the particle distribution estimates, this model requires a small number of easily obtained variables, providing a convenient routine for predicting PSD in eroded sediment in other pollutant transport models. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Evolution of a Malignancy Risk Prediction Model for Thyroid Nodules Using the Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Shahram Paydar

    2016-01-01

    fine needle aspiration and surgical histopathology results. The results matched in 63.5% of subjects. On the other hand, fine needle aspiration biopsy results falsely predicted malignant thyroid nodules in 16% of cases (false-negative. In 20.5% of subjects, fine needle aspiration was falsely positive for thyroid malignancy. The Resilient back Propagation (RP training algorithm lead to acceptable accuracy in prediction for the designed artificial neural network (64.66% by the cross- validation method. Under the cross-validation method, a back propagation algorithm that used the resilient back propagation protocol - the accuracy in prediction for the trained artificial neural network was 64.66%. Conclusion: An extensive bio-statistically validated artificial neural network of certain clinical, paraclinical and individual given inputs (predictors has the capability to stratify the malignancy risk of a thyroid nodule in order to individualize patient care. This risk assessment model (tool can virtually minimize unnecessary diagnostic thyroid surgeries as well as FNA misleading.

  18. Modeling and Prediction of Coal Ash Fusion Temperature based on BP Neural Network

    Directory of Open Access Journals (Sweden)

    Miao Suzhen

    2016-01-01

    Full Text Available Coal ash is the residual generated from combustion of coal. The ash fusion temperature (AFT of coal gives detail information on the suitability of a coal source for gasification procedures, and specifically to which extent ash agglomeration or clinkering is likely to occur within the gasifier. To investigate the contribution of oxides in coal ash to AFT, data of coal ash chemical compositions and Softening Temperature (ST in different regions of China were collected in this work and a BP neural network model was established by XD-APC PLATFORM. In the BP model, the inputs were the ash compositions and the output was the ST. In addition, the ash fusion temperature prediction model was obtained by industrial data and the model was generalized by different industrial data. Compared to empirical formulas, the BP neural network obtained better results. By different tests, the best result and the best configurations for the model were obtained: hidden layer nodes of the BP network was setted as three, the component contents (SiO2, Al2O3, Fe2O3, CaO, MgO were used as inputs and ST was used as output of the model.

  19. Heating value prediction for combustible fraction of municipal solid waste in Semarang using backpropagation neural network

    Science.gov (United States)

    Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi

    2015-12-01

    Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .

  20. Artificial Neural Networks to Predict the Power Output of a PV Panel

    Directory of Open Access Journals (Sweden)

    Valerio Lo Brano

    2014-01-01

    Full Text Available The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs for the power energy output forecasting of photovoltaic (PV modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP, a recursive neural network (RNN, and a gamma memory (GM trained with the back propagation. In order to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air temperature, solar irradiance, and wind speed along with historical power output data available for the two test modules. The model validation was performed by comparing model predictions with power output data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting problem and identified the best topology.

  1. Prediction of Negative Conversion Days of Childhood Nephrotic Syndrome Based on the Improved Backpropagation Neural Network with Momentum

    Directory of Open Access Journals (Sweden)

    Yi-jun Liu

    2015-12-01

    Full Text Available Childhood nephrotic syndrome is a chronic disease harmful to growth of children. Scientific and accurate prediction of negative conversion days for children with nephrotic syndrome offers potential benefits for treatment of patients and helps achieve better cure effect. In this study, the improved backpropagation neural network with momentum is used for prediction. Momentum speeds up convergence and maintains the generalization performance of the neural network, and therefore overcomes weaknesses of the standard backpropagation algorithm. The three-tier network structure is constructed. Eight indicators including age, lgG, lgA and lgM, etc. are selected for network inputs. The scientific computing software of MATLAB and its neural network tools are used to create model and predict. The training sample of twenty-eight cases is used to train the neural network. The test sample of six typical cases belonging to six different age groups respectively is used to test the predictive model. The low mean absolute error of predictive results is achieved at 0.83. The experimental results of the small-size sample show that the proposed approach is to some degree applicable for the prediction of negative conversion days of childhood nephrotic syndrome.

  2. Peak Ground Acceleration Prediction by Artificial Neural Networks for Northwestern Turkey

    Directory of Open Access Journals (Sweden)

    Kemal Günaydın

    2008-01-01

    Full Text Available Three different artificial neural network (ANN methods, namely, feed-forward back-propagation (FFBP, radial basis function (RBF, and generalized regression neural networks (GRNNs were applied to predict peak ground acceleration (PGA. Ninety five three-component records from 15 ground motions that occurred in Northwestern Turkey between 1999 and 2001 were used during the applications. The earthquake moment magnitude, hypocentral distance, focal depth, and site conditions were used as inputs to estimate PGA for vertical (U-D, east-west (E-W, and north-south (N-S directions. The direction of the maximum PGA of the three components was also added to the input layer to obtain the maximum PGA. Testing stage results of three ANN methods indicated that the FFBPs were superior to the GRNN and the RBF for all directions. The PGA values obtained from the FFBP were modified by linear regression analysis. The results showed that these modifications increased the prediction performances.

  3. Predicting the Deflections of Micromachined Electrostatic Actuators Using Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Hing Wah LEE

    2009-03-01

    Full Text Available In this study, a general purpose Artificial Neural Network (ANN model based on the feed-forward back-propagation (FFBP algorithm has been used to predict the deflections of a micromachined structures actuated electrostatically under different loadings and geometrical parameters. A limited range of simulation results obtained via CoventorWare™ numerical software will be used initially to train the neural network via back-propagation algorithm. The micromachined structures considered in the analyses are diaphragm, fixed-fixed beams and cantilevers. ANN simulation results are compared with results obtained via CoventorWare™ simulations and existing analytical work for validation purpose. The proposed ANN model accurately predicts the deflections of the micromachined structures with great reduction of simulation efforts, establishing the method superiority. This method can be extended for applications in other sensors particularly for modeling sensors applying electrostatic actuation which are difficult in nature due to the inherent non-linearity of the electro-mechanical coupling response.

  4. Predicting CYP2C19 catalytic parameters for enantioselective oxidations using artificial neural networks and a chirality code.

    Science.gov (United States)

    Hartman, Jessica H; Cothren, Steven D; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A; Miller, Grover P

    2013-07-01

    Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (k(cat), K(m), and k(cat)/K(m)), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (k(cat) and K(m)) were more consistent with experimental values than those for catalytic efficiency (k(cat)/K(m)). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Artificial neural networks employment in the prediction of evapotranspiration of greenhouse-grown sweet pepper

    Directory of Open Access Journals (Sweden)

    Héliton Pandorfi

    2016-06-01

    Full Text Available ABSTRACT This study aimed to investigate the applicability of artificial neural networks (ANNs in the prediction of evapotranspiration of sweet pepper cultivated in a greenhouse. The used data encompass the second crop cycle, from September 2013 to February 2014, constituting 135 days of daily meteorological data, referring to the following variables: temperature and relative air humidity, wind speed and solar radiation (input variables, as well as evapotranspiration (output variable, determined using data obtained by load-cell weighing lysimeter. The recorded data were divided into three sets for training, testing and validation. The ANN learning model recognized the evapotranspiration patterns with acceptable accuracy, with mean square error of 0.005, in comparison to the data recorded in the lysimeter, with coefficient of determination of 0.87, demonstrating the best approximation for the 4-21-1 network architecture, with multilayers, error back-propagation learning algorithm and learning rate of 0.01.

  6. An artificial neural network to predict resting energy expenditure in obesity.

    Science.gov (United States)

    Disse, Emmanuel; Ledoux, Séverine; Bétry, Cécile; Caussy, Cyrielle; Maitrepierre, Christine; Coupaye, Muriel; Laville, Martine; Simon, Chantal

    2017-09-01

    The resting energy expenditure (REE) determination is important in nutrition for adequate dietary prescription. The gold standard i.e. indirect calorimetry is not available in clinical settings. Thus, several predictive equations have been developed, but they lack of accuracy in subjects with extreme weight including obese populations. Artificial neural networks (ANN) are useful predictive tools in the area of artificial intelligence, used in numerous clinical fields. The aim of this study was to determine the relevance of ANN in predicting REE in obesity. A Multi-Layer Perceptron (MLP) feed-forward neural network with a back propagation algorithm was created and cross-validated in a cohort of 565 obese subjects (BMI within 30-50 kg m-2) with weight, height, sex and age as clinical inputs and REE measured by indirect calorimetry as output. The predictive performances of ANN were compared to those of 23 predictive REE equations in the training set and in two independent sets of 100 and 237 obese subjects for external validation. Among the 23 established prediction equations for REE evaluated, the Harris & Benedict equations recalculated by Roza were the most accurate for the obese population, followed by the USA DRI, Müller and the original Harris & Benedict equations. The final 5-fold cross-validated three-layer 4-3-1 feed-forward back propagation ANN model developed in that study improved precision and accuracy of REE prediction over linear equations (precision = 68.1%, MAPE = 8.6% and RMSPE = 210 kcal/d), independently from BMI subgroups within 30-50 kg m-2. External validation confirmed the better predictive performances of ANN model (precision = 73% and 65%, MAPE = 7.7% and 8.6%, RMSPE = 187 kcal/d and 200 kcal/d in the 2 independent datasets) for the prediction of REE in obese subjects. We developed and validated an ANN model for the prediction of REE in obese subjects that is more precise and accurate than established REE predictive

  7. Application of Artificial Neural Network to Predict Colour Change, Shrinkage and Texture of Osmotically Dehydrated Pumpkin

    Science.gov (United States)

    Tang, S. Y.; Lee, J. S.; Loh, S. P.; Tham, H. J.

    2017-06-01

    The objectives of this study were to use Artificial Neural Network (ANN) to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of process variables such as concentration of osmotic solution, immersion temperature and immersion time on the above mentioned physical properties were studied. The colour of the samples was measured using a colorimeter and the net colour difference changes, ΔE were determined. The texture was measured in terms of hardness by using a Texture Analyzer. As for the shrinkage, displacement of volume method was applied and percentage of shrinkage was obtained in terms of volume changes. A feed-forward backpropagation network with sigmoidal function was developed and best network configuration was chosen based on the highest correlation coefficients between the experimental values versus predicted values. As a comparison, Response Surface Methodology (RSM) statistical analysis was also employed. The performances of both RSM and ANN modelling were evaluated based on absolute average deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability as compared to RSM. The relative importance of the variables on the physical properties were also determined by using connection weight approach in ANN. It was found that solution concentration showed the highest influence on all three physical properties.

  8. Predicting mental conditions based on "history of present illness" in psychiatric notes with deep neural networks.

    Science.gov (United States)

    Tran, Tung; Kavuluru, Ramakanth

    2017-11-01

    Applications of natural language processing to mental health notes are not common given the sensitive nature of the associated narratives. The CEGS N-GRID 2016 Shared Task in Clinical Natural Language Processing (NLP) changed this scenario by providing the first set of neuropsychiatric notes to participants. This study summarizes our efforts and results in proposing a novel data use case for this dataset as part of the third track in this shared task. We explore the feasibility and effectiveness of predicting a set of common mental conditions a patient has based on the short textual description of patient's history of present illness typically occurring in the beginning of a psychiatric initial evaluation note. We clean and process the 1000 records made available through the N-GRID clinical NLP task into a key-value dictionary and build a dataset of 986 examples for which there is a narrative for history of present illness as well as Yes/No responses with regards to presence of specific mental conditions. We propose two independent deep neural network models: one based on convolutional neural networks (CNN) and another based on recurrent neural networks with hierarchical attention (ReHAN), the latter of which allows for interpretation of model decisions. We conduct experiments to compare these methods to each other and to baselines based on linear models and named entity recognition (NER). Our CNN model with optimized thresholding of output probability estimates achieves best overall mean micro-F score of 63.144% for 11 common mental conditions with statistically significant gains (ptext segment averaging 300 words, it is a good predictor for a few conditions such as anxiety, depression, panic disorder, and attention deficit hyperactivity disorder. Proposed CNN and RNN models outperform baseline approaches and complement each other when evaluating on a per-label basis. Copyright © 2017. Published by Elsevier Inc.

  9. Artificial Neural Network Model in Prediction of Meteorological Parameters during Premonsoon Thunderstorms

    Directory of Open Access Journals (Sweden)

    A. J. Litta

    2013-01-01

    Full Text Available Forecasting thunderstorm is one of the most difficult tasks in weather prediction, due to their rather small spatial and temporal extension and the inherent nonlinearity of their dynamics and physics. Accurate forecasting of severe thunderstorms is critical for a large range of users in the community. In this paper, experiments are conducted with artificial neural network model to predict severe thunderstorms that occurred over Kolkata during May 3, 11, and 15, 2009, using thunderstorm affected meteorological parameters. The capabilities of six learning algorithms, namely, Step, Momentum, Conjugate Gradient, Quick Propagation, Levenberg-Marquardt, and Delta-Bar-Delta, in predicting thunderstorms and the usefulness for the advanced prediction were studied and their performances were evaluated by a number of statistical measures. The results indicate that Levenberg-Marquardt algorithm well predicted thunderstorm affected surface parameters and 1, 3, and 24 h advanced prediction models are able to predict hourly temperature and relative humidity adequately with sudden fall and rise during thunderstorm hour. This demonstrates its distinct capability and advantages in identifying meteorological time series comprising nonlinear characteristics. The developed model can be useful in decision making for meteorologists and others who work with real-time thunderstorm forecast.

  10. PREDIKSI MASA KEDALUWARSA WAFER DENGAN ARTIFICIAL NEURAL NETWORK (ANN BERDASARKAN PARAMETER NILAI KAPASITANSI (Prediction of Wafer Shelf Life Using Artificial Neural Network Based on Capacitance Parameter

    Directory of Open Access Journals (Sweden)

    Erna Rusliana Muhamad Saleh

    2014-02-01

    Full Text Available Wafer is type of biscuit frequently found on expired condition in market, therefore prediction method should be implemented to avoid this condition. apart from the prediction of shelf-life of wafer done by laboratory test, which were time-consuming, expensive, required trained panelists, complex equipment and suitable ambience, artificial neural network (ANN based dielectric parameters was proposed in nthis study. The aim of study was to develop model to predict shelf-life employing aNN based capacitance parameter. Back propagation algorithm with trial and error was applied in variations of nodes per hidden layer, number of hidden layers, activation functions, the function of learnings and epochs. The result of study was the model was able to predict wafer shelf-life. The accuracy level was shown by low MSE value (0.01 and high coefficient correlation value (89.25%. Keywords: artificial Neural Network, shelf-life, waffer, dielectric, capacitance   ABSTRAK Wafer adalah jenis makanan kering yang sering ditemukan kedaluwarsa. Penentuan masa kedaluwarsa dengan observasi laboratorium memiliki beberapa kelemahan, diantaranya memakan waktu, panelis terlatih, suasana yang tepat, biaya dan alat uji yang kompleks. alternatif solusinya adalah penggunaan artificial Neural Network (ANN berbasiskan parameter kapasitansi. Tujuan kerja ilmiah ini adalah untuk memprediksi masa kedaluwarsa wafer menggunakan aNN berbasiskan parameter kapasitansi. algoritma pembelajaran yang digunakan adalah Backpropagation dengan trial and error variasi jumlah node per hidden layer, jumlah hidden layer, fungsi aktivasi, fungsi pembelajaran dan epoch. Hasil prediksi menunjukkan bahwa aNN hasil pelatihan yang dikombinasikan dengan parameter kapasitansi mampu memprediksi masa kedaluwarsa wafer dengan MSE terendah 0,01 dan R tertinggi 89,25%. Kata kunci: Jaringan Syaraf Tiruan, masa kedaluwarsa, wafer, dielektrik, kapasitansi

  11. Prediction of individual patient outcome in cancer: comparison of artificial neural networks and Kaplan--Meier methods.

    Science.gov (United States)

    Bostwick, D G; Burke, H B

    2001-04-15

    There is a great need for accurate treatment and outcome prediction in cancer. Two methods for prediction, artificial neural networks and Kaplan--Meier plots, have not, to the authors' knowledge, been compared previously. This review compares the advantages and disadvantages of the use of artificial neural networks and Kaplan--Meier curves for treatment and outcome prediction in cancer. Artificial neural networks are useful for prediction of outcome for individual patients with cancer because they are as accurate as the best traditional statistical methods, are able to capture complex phenomena without a priori knowledge, and can be reduced to a simpler model if the phenomena are not complex. Kaplan--Meier plots are of limited accuracy for prediction because they require partitioning of variables, require cutting continuous variables into discrete pieces, and can only handle one or two variables effectively. Artificial neural networks are an efficient statistical method for outcome prediction in cancer that utilizes all available powerful prognostic factors and maximizes predictive accuracy. Use of Kaplan--Meier plots for predictions is discouraged because of serious technical limitations and low accuracy. Copyright 2001 American Cancer Society.

  12. Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach

    DEFF Research Database (Denmark)

    Buus, S; Lauemøller, S L; Worning, P

    2003-01-01

    We have generated Artificial Neural Networks (ANN) capable of performing sensitive, quantitative predictions of peptide binding to the MHC class I molecule, HLA-A*0204. We have shown that such quantitative ANN are superior to conventional classification ANN, that have been trained to predict...

  13. Predictive control based on neural networks: an application to a fluid catalytic cracking industrial unit

    Directory of Open Access Journals (Sweden)

    V.M.L. Santos

    2000-12-01

    Full Text Available Artificial Neural Networks (ANNs constitute a technology that has recently become the focus of great attention. The reason for this is due mainly to its capacity to treat complex and nonlinear problems. This work consists of the identification and control of a fluid cracking catalytic unit (FCCU using techniques based on multilayered ANNs. The FCC unit is a typical example of a complex and nonlinear process, possessing great interaction among the operation variables and many operational constraints to be attended. Model Predictive Control is indicated in these occasions. The FCC model adopted was validated with plant data by Moro (1992; and was used in this work to replace the real process in the generation of data for the identification of the ANNs and to test the predictive control strategy. The results of the identification and control of the process through ANNs indicate the viability of the technique.

  14. Artificial neural networks predict survival from pancreatic cancer after radical surgery.

    Science.gov (United States)

    Ansari, Daniel; Nilsson, Johan; Andersson, Roland; Regnér, Sara; Tingstedt, Bobby; Andersson, Bodil

    2013-01-01

    Artificial neural networks (ANNs) are nonlinear pattern recognition techniques that can be used as a tool in medical decision making. The objective of this study was to develop an ANN model for predicting survival in patients with pancreatic ductal adenocarcinoma (PDAC). A flexible nonlinear survival model based on ANNs was designed by using clinical and histopathological data from 84 patients who underwent resection for PDAC. Seven of 33 potential risk variables were selected to construct the ANN, including lymph node metastasis, differentiation, body mass index, age, resection margin status, peritumoral inflammation, and American Society of Anesthesiologists grade. Three variables (ie, lymph node metastasis, leukocyte count, and tumor location) were significant according to Cox regression analysis. Harrell's concordance index for the ANN model was .79, and for Cox regression it was .67. For the first time, ANNs have been used to successfully predict individual long-term survival for patients after radical surgery for PDAC. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study.

    Science.gov (United States)

    Li, Qiongge; Chan, Maria F

    2017-01-01

    Over half of cancer patients receive radiotherapy (RT) as partial or full cancer treatment. Daily quality assurance (QA) of RT in cancer treatment closely monitors the performance of the medical linear accelerator (Linac) and is critical for continuous improvement of patient safety and quality of care. Cumulative longitudinal QA measurements are valuable for understanding the behavior of the Linac and allow physicists to identify trends in the output and take preventive actions. In this study, artificial neural networks (ANNs) and autoregressive moving average (ARMA) time-series prediction modeling techniques were both applied to 5-year daily Linac QA data. Verification tests and other evaluations were then performed for all models. Preliminary results showed that ANN time-series predictive modeling has more advantages over ARMA techniques for accurate and effective applicability in the dosimetry and QA field. © 2016 New York Academy of Sciences.

  16. Spread prediction model of continuous steel tube based on BP neural network

    Science.gov (United States)

    Zhai, Jian-wei; Yu, Hui; Zou, Hai-bei; Wang, San-zhong; Liu, Li-gang

    2017-07-01

    According to the geometric pass of roll and technological parameters of three-roller continuous mandrel rolling mill in a factory, a finite element model is established to simulate the continuous rolling process of seamless steel tube, and the reliability of finite element model is verified by comparing with the simulation results and actual results of rolling force, wall thickness and outer diameter of the tube. The effect of roller reduction, roller rotation speed and blooming temperature on the spread rule is studied. Based on BP(Back Propagation) neural network technology, a spread prediction model of continuous rolling tube is established for training wall thickness coefficient and spread coefficient of the continuous rolling tube, and the rapid and accurate prediction of continuous rolling tube size is realized.

  17. A hybrid neural network system for prediction and recognition of promoter regions in human genome.

    Science.gov (United States)

    Chen, Chuan-Bo; Li, Tao

    2005-05-01

    This paper proposes a high specificity and sensitivity algorithm called PromPredictor for recognizing promoter regions in the human genome. PromPredictor extracts compositional features and CpG islands information from genomic sequence, feeding these features as input for a hybrid neural network system (HNN) and then applies the HNN for prediction. It combines a novel promoter recognition model, coding theory, feature selection and dimensionality reduction with machine learning algorithm. Evaluation on Human chromosome 22 was approximately 66% in sensitivity and approximately 48% in specificity. Comparison with two other systems revealed that our method had superior sensitivity and specificity in predicting promoter regions. PromPredictor is written in MATLAB and requires Matlab to run. PromPredictor is freely available at http://www.whtelecom.com/Prompredictor.htm.

  18. Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Susmikanti, Mike, E-mail: mike@batan.go.id [Center for Development of Nuclear Informatics, National Nuclear Energy Agency, PUSPIPTEK, Tangerang (Indonesia); Sulistyo, Jos, E-mail: soj@batan.go.id [Center for Nuclear Facilities Engineering, National Nuclear Energy Agency, PUSPIPTEK, Tangerang (Indonesia)

    2014-09-30

    Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to develop code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix.

  19. Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network

    Science.gov (United States)

    Susmikanti, Mike; Sulistyo, Jos

    2014-09-01

    Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to develop code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix.

  20. Predicting physical-chemical properties of compounds from molecular structures by recursive neural networks.

    Science.gov (United States)

    Bernazzani, Luca; Duce, Celia; Micheli, Alessio; Mollica, Vincenzo; Sperduti, Alessandro; Starita, Antonina; Tiné, Maria Rosaria

    2006-01-01

    In this paper, we report on the potential of a recently developed neural network for structures applied to the prediction of physical chemical properties of compounds. The proposed recursive neural network (RecNN) model is able to directly take as input a structured representation of the molecule and to model a direct and adaptive relationship between the molecular structure and target property. Therefore, it combines in a learning system the flexibility and general advantages of a neural network model with the representational power of a structured domain. As a result, a completely new approach to quantitative structure-activity relationship/quantitative structure-property relationship (QSPR/QSAR) analysis is obtained. An original representation of the molecular structures has been developed accounting for both the occurrence of specific atoms/groups and the topological relationships among them. Gibbs free energy of solvation in water, Delta(solv)G degrees , has been chosen as a benchmark for the model. The different approaches proposed in the literature for the prediction of this property have been reconsidered from a general perspective. The advantages of RecNN as a suitable tool for the automatization of fundamental parts of the QSPR/QSAR analysis have been highlighted. The RecNN model has been applied to the analysis of the Delta(solv)G degrees in water of 138 monofunctional acyclic organic compounds and tested on an external data set of 33 compounds. As a result of the statistical analysis, we obtained, for the predictive accuracy estimated on the test set, correlation coefficient R = 0.9985, standard deviation S = 0.68 kJ mol(-1), and mean absolute error MAE = 0.46 kJ mol(-1). The inherent ability of RecNN to abstract chemical knowledge through the adaptive learning process has been investigated by principal components analysis of the internal representations computed by the network. It has been found that the model recognizes the chemical compounds on the

  1. Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com [Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi (India); Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001 (India); Gupta, Shikha; Rai, Premanjali [Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, New Delhi (India); Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001 (India)

    2013-10-15

    Robust global models capable of discriminating positive and non-positive carcinogens; and predicting carcinogenic potency of chemicals in rodents were developed. The dataset of 834 structurally diverse chemicals extracted from Carcinogenic Potency Database (CPDB) was used which contained 466 positive and 368 non-positive carcinogens. Twelve non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals and nonlinearity in the data were evaluated using Tanimoto similarity index and Brock–Dechert–Scheinkman statistics. Probabilistic neural network (PNN) and generalized regression neural network (GRNN) models were constructed for classification and function optimization problems using the carcinogenicity end point in rat. Validation of the models was performed using the internal and external procedures employing a wide series of statistical checks. PNN constructed using five descriptors rendered classification accuracy of 92.09% in complete rat data. The PNN model rendered classification accuracies of 91.77%, 80.70% and 92.08% in mouse, hamster and pesticide data, respectively. The GRNN constructed with nine descriptors yielded correlation coefficient of 0.896 between the measured and predicted carcinogenic potency with mean squared error (MSE) of 0.44 in complete rat data. The rat carcinogenicity model (GRNN) applied to the mouse and hamster data yielded correlation coefficient and MSE of 0.758, 0.71 and 0.760, 0.46, respectively. The results suggest for wide applicability of the inter-species models in predicting carcinogenic potency of chemicals. Both the PNN and GRNN (inter-species) models constructed here can be useful tools in predicting the carcinogenicity of new chemicals for regulatory purposes. - Graphical abstract: Figure (a) shows classification accuracies (positive and non-positive carcinogens) in rat, mouse, hamster, and pesticide data yielded by optimal PNN model. Figure (b) shows generalization and predictive

  2. DNCON2: Improved protein contact prediction using two-level deep convolutional neural networks.

    Science.gov (United States)

    Adhikari, Badri; Hou, Jie; Cheng, Jianlin

    2017-12-08

    Significant improvements in the prediction of protein residue-residue contacts are observed in the recent years. These contacts, predicted using a variety of coevolution-based and machine learning methods, are the key contributors to the recent progress in ab initio protein structure prediction, as demonstrated in the recent CASP experiments. Continuing the development of new methods to reliably predict contact maps is essential to further improve ab initio structure prediction. In this paper we discuss DNCON2, an improved protein contact map predictor based on two-level deep convolutional neural networks. It consists of six convolutional neural networks - the first five predict contacts at 6, 7.5, 8, 8.5, and 10 Å distance thresholds, and the last one uses these five predictions as additional features to predict final contact maps. On the free-modeling datasets in CASP10, 11, and 12 experiments, DNCON2 achieves mean precisions of 35%, 50%, and 53.4%, respectively, higher than 30.6% by MetaPSICOV on CASP10 dataset, 34% by MetaPSICOV on CASP11 dataset, and 46.3% by Raptor-X on CASP12 dataset, when top L/5 long-range contacts are evaluated. We attribute the improved performance of DNCON2 to the inclusion of short- and medium-range contacts into training, two-level approach to prediction, use of the state-of-the-art optimization and activation functions, and a novel deep learning architecture that allows each filter in a convolutional layer to access all the input features of a protein of arbitrary length. The web server of DNCON2 is at http://sysbio.rnet.missouri.edu/dncon2/ where training and testing datasets as well as the predictions for CASP10, 11, and 12 free-modeling datasets can also be downloaded. Its source code is available at https://github.com/multicom-toolbox/DNCON2/. chengji@missouri.edu. Supplementary data are available at Bioinformatics online.

  3. Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks.

    Directory of Open Access Journals (Sweden)

    Petros-Pavlos Ypsilantis

    Full Text Available Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient's response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a "radiomics" approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models.

  4. An Evaluation of Artificial Neural Networks in Predicting Pancreatic Cancer Survival.

    Science.gov (United States)

    Walczak, Steven; Velanovich, Vic

    2017-10-01

    This study aims to evaluate the development of an artificial neural network (ANN) method for predicting the survival likelihood of pancreatic adenocarcinoma patients. The ANN predictive model should produce results with a 90% sensitivity. A prospective examination of the records for 283 consecutive pancreatic adenocarcinoma patients is used to identify 219 records with complete data. These records are then used to create two unique samples which are then used to train and validate an ANN predictive model. Numerous network architectures are evaluated, following recommended ANN development protocols. Several backpropagation-trained ANNs were produced that satisfied the 90% sensitivity requirement. An ANN model with over a 91% sensitivity is selected because even though it did not have the highest sensitivity, it was able to achieve over 38% specificity. ANN models can accurately predict the 7-month survival of pancreatic adenocarcinoma patients, both with and without resection, at a 91% sensitivity and 38% specificity. This implies that ANN models may be useful objective decision tools in complex treatment decisions. This information may be used by patients and surgeons in determining optimal treatment plans that minimize regret and improve the quality of life for these patients.

  5. Temperature and relative humidity estimation and prediction in the tobacco drying process using Artificial Neural Networks.

    Science.gov (United States)

    Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M; Aguiar, Javier M; Carro, Belén

    2012-10-17

    This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.

  6. Heave motion prediction of a large barge in random seas by using artificial neural network

    Science.gov (United States)

    Lee, Hsiu Eik; Liew, Mohd Shahir; Zawawi, Noor Amila Wan Abdullah; Toloue, Iraj

    2017-11-01

    This paper describes the development of a multi-layer feed forward artificial neural network (ANN) to predict rigid heave body motions of a large catenary moored barge subjected to multi-directional irregular waves. The barge is idealized as a rigid plate of finite draft with planar dimensions 160m (length) and 100m (width) which is held on station using a six point chain catenary mooring in 50m water depth. Hydroelastic effects are neglected from the physical model as the chief intent of this study is focused on large plate rigid body hydrodynamics modelling using ANN. Even with this assumption, the computational requirements for time domain coupled hydrodynamic simulations of a moored floating body is considerably costly, particularly if a large number of simulations are required such as in the case of response based design (RBD) methods. As an alternative to time consuming numerical hydrodynamics, a regression-type ANN model has been developed for efficient prediction of the barge's heave responses to random waves from various directions. It was determined that a network comprising of 3 input features, 2 hidden layers with 5 neurons each and 1 output was sufficient to produce acceptable predictions within 0.02 mean squared error. By benchmarking results from the ANN with those generated by a fully coupled dynamic model in OrcaFlex, it is demonstrated that the ANN is capable of predicting the barge's heave responses with acceptable accuracy.

  7. Prediction of the moderator temperature field in a heavy water reactor based on a cellular neural network

    Directory of Open Access Journals (Sweden)

    S.O. Starkov

    2017-06-01

    Full Text Available Reactors with heavy water coolants and moderators have been used extensively in today's power industry. Monitoring of the moderator condition plays an important role in ensuring normal operation of a power plant. A cellular neural network, the architecture of which has been adapted for hardware implementation, is proposed for use in a system for prediction of the heavy water moderator temperature. A reactor model composed in accordance with the CANDU Darlington heavy water reactor design was used to form the training sample collection and to control correct operation of the neural network structure. The sample components for the adjustment and configuration of the network topology include key parameters that characterize the energy generation process in the core. The paper considers the feasibility of the temperature prediction only for the calandria's central cross-section. To solve this problem, the cellular neural network architecture has been designed, and major parts of the digital computational element and methods for their implementation based on an FPLD have also been developed. The method is described for organizing an optical coupling between individual neural modules within the network, which enables not only the restructuring of the topology in the training process, but also the assignment of priorities for the propagation of the information signals of neurons depending on the activity in a situation analysis at the neural network structure inlet. Asynchronous activation of cells was used based on an oscillating fractal network, the basis for which was a modified ring oscillator. The efficiency of training the proposed architecture using stochastic diffusion search algorithms is evaluated. A comparative analysis of the model behavior and the results of the neural network operation have shown that the use of the neural network approach is effective in safety systems of power plants.

  8. Modeling and prediction of retardance in citric acid coated ferrofluid using artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jing-Fung, E-mail: jacklin@cc.feu.edu.tw [Department of Industrial Design, Far East University, Taiwan, ROC (China); Sheu, Jer-Jia [Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Taiwan, ROC (China)

    2016-06-01

    Citric acid coated (citrate-stabilized) magnetite (Fe{sub 3}O{sub 4}) magnetic nanoparticles have been conducted and applied in the biomedical fields. Using Taguchi-based measured retardances as the training data, an artificial neural network (ANN) model was developed for the prediction of retardance in citric acid (CA) coated ferrofluid (FF). According to the ANN simulation results in the training stage, the correlation coefficient between predicted retardances and measured retardances was found to be as high as 0.9999998. Based on the well-trained ANN model, the predicted retardance at excellent program from Taguchi method showed less error of 2.17% compared with a multiple regression (MR) analysis of statistical significance. Meanwhile, the parameter analysis at excellent program by the ANN model had the guiding significance to find out a possible program for the maximum retardance. It was concluded that the proposed ANN model had high ability for the prediction of retardance in CA coated FF. - Highlights: • The feedforward ANN is applied for modeling of retardance in CA coated FFs. • ANN can predict the retardance at excellent program with acceptable error to MR. • The proposed ANN has high ability for the prediction of retardance.

  9. Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects

    Science.gov (United States)

    Niu, Z. M.; Liang, H. Z.

    2018-03-01

    Bayesian neural network (BNN) approach is employed to improve the nuclear mass predictions of various models. It is found that the noise error in the likelihood function plays an important role in the predictive performance of the BNN approach. By including a distribution for the noise error, an appropriate value can be found automatically in the sampling process, which optimizes the nuclear mass predictions. Furthermore, two quantities related to nuclear pairing and shell effects are added to the input layer in addition to the proton and mass numbers. As a result, the theoretical accuracies are significantly improved not only for nuclear masses but also for single-nucleon separation energies. Due to the inclusion of the shell effect, in the unknown region, the BNN approach predicts a similar shell-correction structure to that in the known region, e.g., the predictions of underestimation of nuclear mass around the magic numbers in the relativistic mean-field model. This manifests that better predictive performance can be achieved if more physical features are included in the BNN approach.

  10. Prediction of Monthly Summer Monsoon Rainfall Using Global Climate Models Through Artificial Neural Network Technique

    Science.gov (United States)

    Nair, Archana; Singh, Gurjeet; Mohanty, U. C.

    2018-01-01

    The monthly prediction of summer monsoon rainfall is very challenging because of its complex and chaotic nature. In this study, a non-linear technique known as Artificial Neural Network (ANN) has been employed on the outputs of Global Climate Models (GCMs) to bring out the vagaries inherent in monthly rainfall prediction. The GCMs that are considered in the study are from the International Research Institute (IRI) (2-tier CCM3v6) and the National Centre for Environmental Prediction (Coupled-CFSv2). The ANN technique is applied on different ensemble members of the individual GCMs to obtain monthly scale prediction over India as a whole and over its spatial grid points. In the present study, a double-cross-validation and simple randomization technique was used to avoid the over-fitting during training process of the ANN model. The performance of the ANN-predicted rainfall from GCMs is judged by analysing the absolute error, box plots, percentile and difference in linear error in probability space. Results suggest that there is significant improvement in prediction skill of these GCMs after applying the ANN technique. The performance analysis reveals that the ANN model is able to capture the year to year variations in monsoon months with fairly good accuracy in extreme years as well. ANN model is also able to simulate the correct signs of rainfall anomalies over different spatial points of the Indian domain.

  11. Artificial neural networks as alternative tool for minimizing error predictions in manufacturing ultradeformable nanoliposome formulations.

    Science.gov (United States)

    León Blanco, José M; González-R, Pedro L; Arroyo García, Carmen Martina; Cózar-Bernal, María José; Calle Suárez, Marcos; Canca Ortiz, David; Rabasco Álvarez, Antonio María; González Rodríguez, María Luisa

    2018-01-01

    This work was aimed at determining the feasibility of artificial neural networks (ANN) by implementing backpropagation algorithms with default settings to generate better predictive models than multiple linear regression (MLR) analysis. The study was hypothesized on timolol-loaded liposomes. As tutorial data for ANN, causal factors were used, which were fed into the computer program. The number of training cycles has been identified in order to optimize the performance of the ANN. The optimization was performed by minimizing the error between the predicted and real response values in the training step. The results showed that training was stopped at 10 000 training cycles with 80% of the pattern values, because at this point the ANN generalizes better. Minimum validation error was achieved at 12 hidden neurons in a single layer. MLR has great prediction ability, with errors between predicted and real values lower than 1% in some of the parameters evaluated. Thus, the performance of this model was compared to that of the MLR using a factorial design. Optimal formulations were identified by minimizing the distance among measured and theoretical parameters, by estimating the prediction errors. Results indicate that the ANN shows much better predictive ability than the MLR model. These findings demonstrate the increased efficiency of the combination of ANN and design of experiments, compared to the conventional MLR modeling techniques.

  12. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model.

    Directory of Open Access Journals (Sweden)

    Mingyue Qiu

    Full Text Available In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders' expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day's price of the Japanese stock market index by using an optimized artificial neural network (ANN model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA. We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately.

  13. Prediction of Monthly Summer Monsoon Rainfall Using Global Climate Models Through Artificial Neural Network Technique

    Science.gov (United States)

    Nair, Archana; Singh, Gurjeet; Mohanty, U. C.

    2017-08-01

    The monthly prediction of summer monsoon rainfall is very challenging because of its complex and chaotic nature. In this study, a non-linear technique known as Artificial Neural Network (ANN) has been employed on the outputs of Global Climate Models (GCMs) to bring out the vagaries inherent in monthly rainfall prediction. The GCMs that are considered in the study are from the International Research Institute (IRI) (2-tier CCM3v6) and the National Centre for Environmental Prediction (Coupled-CFSv2). The ANN technique is applied on different ensemble members of the individual GCMs to obtain monthly scale prediction over India as a whole and over its spatial grid points. In the present study, a double-cross-validation and simple randomization technique was used to avoid the over-fitting during training process of the ANN model. The performance of the ANN-predicted rainfall from GCMs is judged by analysing the absolute error, box plots, percentile and difference in linear error in probability space. Results suggest that there is significant improvement in prediction skill of these GCMs after applying the ANN technique. The performance analysis reveals that the ANN model is able to capture the year to year variations in monsoon months with fairly good accuracy in extreme years as well. ANN model is also able to simulate the correct signs of rainfall anomalies over different spatial points of the Indian domain.

  14. Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend

    Directory of Open Access Journals (Sweden)

    Montri Inthachot

    2016-01-01

    Full Text Available This study investigated the use of Artificial Neural Network (ANN and Genetic Algorithm (GA for prediction of Thailand’s SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid’s prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span.

  15. EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm.

    Science.gov (United States)

    Kim, Seong Gon; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali

    2016-12-08

    We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation.

  16. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model.

    Science.gov (United States)

    Qiu, Mingyue; Song, Yu

    2016-01-01

    In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders' expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day's price of the Japanese stock market index by using an optimized artificial neural network (ANN) model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA). We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately.

  17. Predicting Microbial Fuel Cell Biofilm Communities and Bioreactor Performance using Artificial Neural Networks.

    Science.gov (United States)

    Lesnik, Keaton Larson; Liu, Hong

    2017-09-19

    The complex interactions that occur in mixed-species bioelectrochemical reactors, like microbial fuel cells (MFCs), make accurate predictions of performance outcomes under untested conditions difficult. While direct correlations between any individual waste stream characteristic or microbial community structure and reactor performance have not been able to be directly established, the increase in sequencing data and readily available computational power enables the development of alternate approaches. In the current study, 33 MFCs were evaluated under a range of conditions including eight separate substrates and three different wastewaters. Artificial Neural Networks (ANNs) were used to establish mathematical relationships between wastewater/solution characteristics, biofilm communities, and reactor performance. ANN models that incorporated biotic interactions predicted reactor performance outcomes more accurately than those that did not. The average percent error of power density predictions was 16.01 ± 4.35%, while the average percent error of Coulombic efficiency and COD removal rate predictions were 1.77 ± 0.57% and 4.07 ± 1.06%, respectively. Predictions of power density improved to within 5.76 ± 3.16% percent error through classifying taxonomic data at the family versus class level. Results suggest that the microbial communities and performance of bioelectrochemical systems can be accurately predicted using data-mining, machine-learning techniques.

  18. Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend.

    Science.gov (United States)

    Inthachot, Montri; Boonjing, Veera; Intakosum, Sarun

    2016-01-01

    This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand's SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid's prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span.

  19. MRI to MGMT: predicting methylation status in glioblastoma patients using convolutional recurrent neural networks.

    Science.gov (United States)

    Han, Lichy; Kamdar, Maulik R

    2018-01-01

    Glioblastoma Multiforme (GBM), a malignant brain tumor, is among the most lethal of all cancers. Temozolomide is the primary chemotherapy treatment for patients diagnosed with GBM. The methylation status of the promoter or the enhancer regions of the O6-methylguanine methyltransferase (MGMT) gene may impact the efficacy and sensitivity of temozolomide, and hence may affect overall patient survival. Microscopic genetic changes may manifest as macroscopic morphological changes in the brain tumors that can be detected using magnetic resonance imaging (MRI), which can serve as noninvasive biomarkers for determining methylation of MGMT regulatory regions. In this research, we use a compendium of brain MRI scans of GBM patients collected from The Cancer Imaging Archive (TCIA) combined with methylation data from The Cancer Genome Atlas (TCGA) to predict the methylation state of the MGMT regulatory regions in these patients. Our approach relies on a bi-directional convolutional recurrent neural network architecture (CRNN) that leverages the spatial aspects of these 3-dimensional MRI scans. Our CRNN obtains an accuracy of 67% on the validation data and 62% on the test data, with precision and recall both at 67%, suggesting the existence of MRI features that may complement existing markers for GBM patient stratification and prognosis. We have additionally presented our model via a novel neural network visualization platform, which we have developed to improve interpretability of deep learning MRI-based classification models.

  20. Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.

    Science.gov (United States)

    Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng

    2016-02-01

    This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.

  1. Neural network and multiple linear regression to predict school children dimensions for ergonomic school furniture design.

    Science.gov (United States)

    Agha, Salah R; Alnahhal, Mohammed J

    2012-11-01

    The current study investigates the possibility of obtaining the anthropometric dimensions, critical to school furniture design, without measuring all of them. The study first selects some anthropometric dimensions that are easy to measure. Two methods are then used to check if these easy-to-measure dimensions can predict the dimensions critical to the furniture design. These methods are multiple linear regression and neural networks. Each dimension that is deemed necessary to ergonomically design school furniture is expressed as a function of some other measured anthropometric dimensions. Results show that out of the five dimensions needed for chair design, four can be related to other dimensions that can be measured while children are standing. Therefore, the method suggested here would definitely save time and effort and avoid the difficulty of dealing with students while measuring these dimensions. In general, it was found that neural networks perform better than multiple linear regression in the current study. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. Neural Network Based Response Prediction of rTMS in Major Depressive Disorder Using QEEG Cordance.

    Science.gov (United States)

    Erguzel, Turker Tekin; Ozekes, Serhat; Gultekin, Selahattin; Tarhan, Nevzat; Hizli Sayar, Gokben; Bayram, Ali

    2015-01-01

    The combination of repetitive transcranial magnetic stimulation (rTMS), a non-pharmacological form of therapy for treating major depressive disorder (MDD), and electroencephalogram (EEG) is a valuable tool for investigating the functional connectivity in the brain. This study aims to explore whether pre-treating frontal quantitative EEG (QEEG) cordance is associated with response to rTMS treatment among MDD patients by using an artificial intelligence approach, artificial neural network (ANN). The artificial neural network using pre-treatment cordance of frontal QEEG classification was carried out to identify responder or non-responder to rTMS treatment among 55 MDD subjects. The classification performance was evaluated using k-fold cross-validation. The ANN classification identified responders to rTMS treatment with a sensitivity of 93.33%, and its overall accuracy reached to 89.09%. Area under Receiver Operating Characteristic (ROC) curve (AUC) value for responder detection using 6, 8 and 10 fold cross validation were 0.917, 0.823 and 0.894 respectively. Potential utility of ANN approach method can be used as a clinical tool in administering rTMS therapy to a targeted group of subjects suffering from MDD. This methodology is more potentially useful to the clinician as prediction is possible using EEG data collected before this treatment process is initiated. It is worth using feature selection algorithms to raise the sensitivity and accuracy values.

  3. Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers.

    Science.gov (United States)

    Chellali, M R; Abderrahim, H; Hamou, A; Nebatti, A; Janovec, J

    2016-07-01

    Neural network (NN) models were evaluated for the prediction of suspended particulates with aerodynamic diameter less than 10-μm (PM10) concentrations. The model evaluation work considered the sequential hourly concentration time series of PM10, which were measured at El Hamma station in Algiers. Artificial neural network models were developed using a combination of meteorological and time-scale as input variables. The results were rather satisfactory, with values of the coefficient of correlation (R (2)) for independent test sets ranging between 0.60 and 0.85 and values of the index of agreement (IA) between 0.87 and 0.96. In addition, the root mean square error (RMSE), the mean absolute error (MAE), the normalized mean squared error (NMSE), the absolute relative percentage error (ARPE), the fractional bias (FB), and the fractional variance (FS) were calculated to assess the performance of the model. It was seen that the overall performance of model 3 was better than models 1 and 2.

  4. Assessment of predictive ability of artificial neural networks using holographic mapping.

    Science.gov (United States)

    Tompos, András; Végvári, Lajos; Tfirst, Ernö; Margitfalvi, József L

    2007-02-01

    In this study, artificial neural networks (ANNs) were used to reveal a quantitative relationship between catalytic composition and catalytic activity. This relationship was predefined using a hypothetical experimental space described by a multidimensional polynomial. The predictive ability of ANNs was investigated, i.e. an attempt was done to evaluate how ANNs can envisage a given hypothetical experimental space. Data sets for training, validation and testing of ANNs were obtained from the hypothetical experimental space using two different ways of sampling. Data were selected, (i) by means of our optimization algorithm called Holographic Research Strategy (HRS); and (ii) randomly. In order to model real experimentation, data were also generated with error. The relationship between the complexity of different network topologies and their predictive ability was investigated. It was shown that when data used for training have been perturbed with a given level of noise, less complex network architectures give acceptable accuracy. Additionally, estimated experimental spaces were visualized in a 2D layout by means of Holographic Mappings (HMs). Analysis of HMs revealed that ANNs trained by data sets obtained upon an optimization procedure provides better description of the experimental space in the vicinity of the optimum than ANNs trained by randomly selected data sets. This fact indicates again the importance of the optimization in combinatorial catalyst library design.

  5. Prediction of the rejection of organic compounds (neutral and ionic) by nanofiltration and reverse osmosis membranes using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ammi, Yamina; Khaouane, Latifa; Hanini, Salah [University of Medea, Medea (Algeria)

    2015-11-15

    This work investigates the use of neural networks in modeling the rejection processes of organic compounds (neutral and ionic) by nanofiltration and reverse osmosis membranes. Three feed-forward neural network (NN) models, characterized by a similar structure (eleven neurons for NN1 and NN2 and twelve neurons for NN3 in the input layer, one hidden layer and one neuron in the output layer), are constructed with the aim of predicting the rejection of organic compounds (neutral and ionic). A set of 956 data points for NN1 and 701 data points for NN2 and NN3 were used to test the neural networks. 80%, 10%, and 10% of the total data were used, respectively, for the training, the validation, and the test of the three models. For the most promising neural network models, the predicted rejection values of the test dataset were compared to measured rejections values; good correlations were found (R= 0.9128 for NN1, R=0.9419 for NN2, and R=0.9527 for NN3). The root mean squared errors for the total dataset were 11.2430% for NN1, 9.0742% for NN2, and 8.2047% for NN3. Furthermore, the comparison between the predicted results and QSAR models shows that the neural network models gave far better.

  6. A biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression data.

    Science.gov (United States)

    Kang, Tianyu; Ding, Wei; Zhang, Luoyan; Ziemek, Daniel; Zarringhalam, Kourosh

    2017-12-19

    Stratification of patient subpopulations that respond favorably to treatment or experience and adverse reaction is an essential step toward development of new personalized therapies and diagnostics. It is currently feasible to generate omic-scale biological measurements for all patients in a study, providing an opportunity for machine learning models to identify molecular markers for disease diagnosis and progression. However, the high variability of genetic background in human populations hampers the reproducibility of omic-scale markers. In this paper, we develop a biological network-based regularized artificial neural network model for prediction of phenotype from transcriptomic measurements in clinical trials. To improve model sparsity and the overall reproducibility of the model, we incorporate regularization for simultaneous shrinkage of gene sets based on active upstream regulatory mechanisms into the model. We benchmark our method against various regression, support vector machines and artificial neural network models and demonstrate the ability of our method in predicting the clinical outcomes using clinical trial data on acute rejection in kidney transplantation and response to Infliximab in ulcerative colitis. We show that integration of prior biological knowledge into the classification as developed in this paper, significantly improves the robustness and generalizability of predictions to independent datasets. We provide a Java code of our algorithm along with a parsed version of the STRING DB database. In summary, we present a method for prediction of clinical phenotypes using baseline genome-wide expression data that makes use of prior biological knowledge on gene-regulatory interactions in order to increase robustness and reproducibility of omic-scale markers. The integrated group-wise regularization methods increases the interpretability of biological signatures and gives stable performance estimates across independent test sets.

  7. Added value of a resting ECG neural network that predicts cardiovascular mortality.

    Science.gov (United States)

    Perez, Marco V; Dewey, Frederick E; Tan, Swee Y; Myers, Jonathan; Froelicher, Victor F

    2009-01-01

    The resting 12-lead electrocardiogram (ECG) remains the most commonly used test in evaluating patients with suspected cardiovascular disease. Prognostic values of individual findings on the ECG have been reported but may be of limited use. The characteristics of 45,855 ECGs ordered by physician's discretion were first recorded and analyzed using a computerized system. Ninety percent of these ECGs were used to train an artifical neural network (ANN) to predict cardiovascular mortality (CVM) based on 132 ECG and four demographic characteristics. The ANN generated a Resting ECG Neural Network (RENN) score that was then tested in the remaining ECGs. The RENN score was finally assessed in a cohort of 2189 patients who underwent exercise treadmill testing and were followed for CVM. The RENN score was able to better predict CVM compared to individual ECG markers or a traditional Cox regression model in the testing cohort. Over a mean of 8.6 years, there were 156 cardiovascular deaths in the treadmill cohort. Among the patients who were classified as intermediate risk by Duke Treadmill Scoring (DTS), the third tertile of the RENN score demonstrated an adjusted Cox hazard ratio of 5.4 (95% CI 2.0-15.2) compared to the first RENN tertile. The 10-year CVM was 2.8%, 8.6% and 22% in the first, second and third RENN tertiles, respectively. An ANN that uses the resting ECG and demographic variables to predict CVM was created. The RENN score can further risk stratify patients deemed at moderate risk on exercise treadmill testing.

  8. Artificial neural network (ANN)-based prediction of depth filter loading capacity for filter sizing.

    Science.gov (United States)

    Agarwal, Harshit; Rathore, Anurag S; Hadpe, Sandeep Ramesh; Alva, Solomon J

    2016-11-01

    This article presents an application of artificial neural network (ANN) modelling towards prediction of depth filter loading capacity for clarification of a monoclonal antibody (mAb) product during commercial manufacturing. The effect of operating parameters on filter loading capacity was evaluated based on the analysis of change in the differential pressure (DP) as a function of time. The proposed ANN model uses inlet stream properties (feed turbidity, feed cell count, feed cell viability), flux, and time to predict the corresponding DP. The ANN contained a single output layer with ten neurons in hidden layer and employed a sigmoidal activation function. This network was trained with 174 training points, 37 validation points, and 37 test points. Further, a pressure cut-off of 1.1 bar was used for sizing the filter area required under each operating condition. The modelling results showed that there was excellent agreement between the predicted and experimental data with a regression coefficient (R2 ) of 0.98. The developed ANN model was used for performing variable depth filter sizing for different clarification lots. Monte-Carlo simulation was performed to estimate the cost savings by using different filter areas for different clarification lots rather than using the same filter area. A 10% saving in cost of goods was obtained for this operation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1436-1443, 2016. © 2016 American Institute of Chemical Engineers.

  9. Improving Gastric Cancer Outcome Prediction Using Single Time-Point Artificial Neural Network Models.

    Science.gov (United States)

    Nilsaz-Dezfouli, Hamid; Abu-Bakar, Mohd Rizam; Arasan, Jayanthi; Adam, Mohd Bakri; Pourhoseingholi, Mohamad Amin

    2017-01-01

    In cancer studies, the prediction of cancer outcome based on a set of prognostic variables has been a long-standing topic of interest. Current statistical methods for survival analysis offer the possibility of modelling cancer survivability but require unrealistic assumptions about the survival time distribution or proportionality of hazard. Therefore, attention must be paid in developing nonlinear models with less restrictive assumptions. Artificial neural network (ANN) models are primarily useful in prediction when nonlinear approaches are required to sift through the plethora of available information. The applications of ANN models for prognostic and diagnostic classification in medicine have attracted a lot of interest. The applications of ANN models in modelling the survival of patients with gastric cancer have been discussed in some studies without completely considering the censored data. This study proposes an ANN model for predicting gastric cancer survivability, considering the censored data. Five separate single time-point ANN models were developed to predict the outcome of patients after 1, 2, 3, 4, and 5 years. The performance of ANN model in predicting the probabilities of death is consistently high for all time points according to the accuracy and the area under the receiver operating characteristic curve.

  10. Groundwater level prediction by Artificial Neural Network model in Eastern Jeju Island, Korea

    Science.gov (United States)

    Chung, Il-Moon; Lee, Jeongwoo; Chang, Sunwoo

    2017-04-01

    The size of rainfall In the Jeju Island (Republic of Korea) is largest in whole country. Due to the rapid recharge of deep aquifers through highly permeable volcanic basalt rock, most streams dry up shortly after rainfall events. For this reason, accurate estimation of hydrologic components is challenging even with conventional watershed hydrologic model. People in this island rely greatly upon the groundwater resources by pumping for agricultural water use. However, local government has to control the maximum use of agricultural groundwater especially in drought period to avoid groundwater depletion. To adapt this status the groundwater level prediction model is developed by using artificial neural network algorithm. The model uses rainfall and groundwater level data for training and calibration by back propagation and then predicts the groundwater level with predicted rainfall data sets made based on the various scenarios applying drought conditions. For the 10 groundwater stations in eastern area, we performed 6 months prediction successfully. These results can be used for monthly groundwater level prediction for severe drought period in this island. ACKNOWLEDGMENTS: This work was supported by a grant (17RDRP-B076272-03) from Infrastructure and transportation technology promotion research Program funded by the Ministry of Land, Infrastructure and Transport of Korean government.

  11. Coupled Model of Artificial Neural Network and Grey Model for Tendency Prediction of Labor Turnover

    Directory of Open Access Journals (Sweden)

    Yueru Ma

    2014-01-01

    Full Text Available The tendency of labor turnover in the Chinese enterprise shows the characteristics of seasonal fluctuations and irregular distribution of various factors, especially the Chinese traditional social and cultural characteristics. In this paper, we present a coupled model for the tendency prediction of labor turnover. In the model, a time series of tendency prediction of labor turnover was expressed as trend item and its random item. Trend item of tendency prediction of labor turnover is predicted using Grey theory. Random item of trend item is calculated by artificial neural network model (ANN. A case study is presented by the data of 24 months in a Chinese matured enterprise. The model uses the advantages of “accumulative generation” of a Grey prediction method, which weakens the original sequence of random disturbance factors and increases the regularity of data. It also takes full advantage of the ANN model approximation performance, which has a capacity to solve economic problems rapidly, describes the nonlinear relationship easily, and avoids the defects of Grey theory.

  12. Prediction of Breeding Values for Dairy Cattle Using Artificial Neural Networks and Neuro-Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Saleh Shahinfar

    2012-01-01

    Full Text Available Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production.

  13. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters.

    Science.gov (United States)

    Zare Abyaneh, Hamid

    2014-01-23

    This paper examined the efficiency of multivariate linear regression (MLR) and artificial neural network (ANN) models in prediction of two major water quality parameters in a wastewater treatment plant. Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) as well as indirect indicators of organic matters are representative parameters for sewer water quality. Performance of the ANN models was evaluated using coefficient of correlation (r), root mean square error (RMSE) and bias values. The computed values of BOD and COD by model, ANN method and regression analysis were in close agreement with their respective measured values. Results showed that the ANN performance model was better than the MLR model. Comparative indices of the optimized ANN with input values of temperature (T), pH, total suspended solid (TSS) and total suspended (TS) for prediction of BOD was RMSE = 25.1 mg/L, r = 0.83 and for prediction of COD was RMSE = 49.4 mg/L, r = 0.81. It was found that the ANN model could be employed successfully in estimating the BOD and COD in the inlet of wastewater biochemical treatment plants. Moreover, sensitive examination results showed that pH parameter have more effect on BOD and COD predicting to another parameters. Also, both implemented models have predicted BOD better than COD.

  14. Prediction of Breeding Values for Dairy Cattle Using Artificial Neural Networks and Neuro-Fuzzy Systems

    Science.gov (United States)

    Shahinfar, Saleh; Mehrabani-Yeganeh, Hassan; Lucas, Caro; Kalhor, Ahmad; Kazemian, Majid; Weigel, Kent A.

    2012-01-01

    Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production. PMID:22991575

  15. Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques.

    Science.gov (United States)

    Illias, Hazlee Azil; Chai, Xin Rui; Abu Bakar, Ab Halim; Mokhlis, Hazlie

    2015-01-01

    It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works.

  16. Prediction of Thermal Environment in a Large Space Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Yoon

    2018-02-01

    Full Text Available Since the thermal environment of large space buildings such as stadiums can vary depending on the location of the stands, it is important to divide them into different zones and evaluate their thermal environment separately. The thermal environment can be evaluated using physical values measured with the sensors, but the occupant density of the stadium stands is high, which limits the locations available to install the sensors. As a method to resolve the limitations of installing the sensors, we propose a method to predict the thermal environment of each zone in a large space. We set six key thermal factors affecting the thermal environment in a large space to be predicted factors (indoor air temperature, mean radiant temperature, and clothing and the fixed factors (air velocity, metabolic rate, and relative humidity. Using artificial neural network (ANN models and the outdoor air temperature and the surface temperature of the interior walls around the stands as input data, we developed a method to predict the three thermal factors. Learning and verification datasets were established using STAR CCM+ (2016.10, Siemens PLM software, Plano, TX, USA. An analysis of each model’s prediction results showed that the prediction accuracy increased with the number of learning data points. The thermal environment evaluation process developed in this study can be used to control heating, ventilation, and air conditioning (HVAC facilities in each zone in a large space building with sufficient learning by ANN models at the building testing or the evaluation stage.

  17. Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques.

    Directory of Open Access Journals (Sweden)

    Hazlee Azil Illias

    Full Text Available It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN and particle swarm optimisation (PSO techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works.

  18. Anti-glycated activity prediction of polysaccharides from two guava fruits using artificial neural networks.

    Science.gov (United States)

    Yan, Chunyan; Lee, Jinsheng; Kong, Fansheng; Zhang, Dezhi

    2013-10-15

    High-efficiency ultrasonic treatment was used to extract the polysaccharides of Psidium guajava (PPG) and Psidium littorale (PPL). The aims of this study were to compare polysaccharide activities from these two guavas, as well as to investigate the relationship between ultrasonic conditions and anti-glycated activity. A mathematical model of anti-glycated activity was constructed with the artificial neural network (ANN) toolbox of MATLAB software. Response surface plots showed the correlation between ultrasonic conditions and bioactivity. The optimal ultrasonic conditions of PPL for the highest anti-glycated activity were predicted to be 256 W, 60 °C, and 12 min, and the predicted activity was 42.2%. The predicted highest anti-glycated activity of PPG was 27.2% under its optimal predicted ultrasonic condition. The experimental result showed that PPG and PPL possessed anti-glycated and antioxidant activities, and those of PPL were greater. The experimental data also indicated that ANN had good prediction and optimization capability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Prediction of breeding values for dairy cattle using artificial neural networks and neuro-fuzzy systems.

    Science.gov (United States)

    Shahinfar, Saleh; Mehrabani-Yeganeh, Hassan; Lucas, Caro; Kalhor, Ahmad; Kazemian, Majid; Weigel, Kent A

    2012-01-01

    Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production.

  20. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network

    Science.gov (United States)

    Ben Ali, Jaouher; Chebel-Morello, Brigitte; Saidi, Lotfi; Malinowski, Simon; Fnaiech, Farhat

    2015-05-01

    Accurate remaining useful life (RUL) prediction of critical assets is an important challenge in condition based maintenance to improve reliability and decrease machine's breakdown and maintenance's cost. Bearing is one of the most important components in industries which need to be monitored and the user should predict its RUL. The challenge of this study is to propose an original feature able to evaluate the health state of bearings and to estimate their RUL by Prognostics and Health Management (PHM) techniques. In this paper, the proposed method is based on the data-driven prognostic approach. The combination of Simplified Fuzzy Adaptive Resonance Theory Map (SFAM) neural network and Weibull distribution (WD) is explored. WD is used just in the training phase to fit measurement and to avoid areas of fluctuation in the time domain. SFAM training process is based on fitted measurements at present and previous inspection time points as input. However, the SFAM testing process is based on real measurements at present and previous inspections. Thanks to the fuzzy learning process, SFAM has an important ability and a good performance to learn nonlinear time series. As output, seven classes are defined; healthy bearing and six states for bearing degradation. In order to find the optimal RUL prediction, a smoothing phase is proposed in this paper. Experimental results show that the proposed method can reliably predict the RUL of rolling element bearings (REBs) based on vibration signals. The proposed prediction approach can be applied to prognostic other various mechanical assets.

  1. Prediction of Palm Oil-Based Methyl Ester Biodiesel Density Using Artificial Neural Networks

    Science.gov (United States)

    Baroutian, Saeid; Kheireddine Aroua, Mohamed; Raman, Abdul Aziz Abdul; Meriam Nik Sulaiman, Nik

    In this study, a new approach based on Artificial Neural Networks (ANNs) has been designed to estimate the density of pure palm oil-based methyl ester biodiesel. The experimental density data measured at various temperatures from 14 to 90°C at 1°C intervals were used to train the networks. The present research, applied a three layer back propagation neural network with seven neurons in the hidden layer. The results from the network are in good agreement with the measured data and the average absolute percent deviation is 0.29%. The results of ANNs have also been compared with the results of empirical and theoretical estimations.

  2. Ordinal convolutional neural networks for predicting RDoC positive valence psychiatric symptom severity scores.

    Science.gov (United States)

    Rios, Anthony; Kavuluru, Ramakanth

    2017-11-01

    The CEGS N-GRID 2016 Shared Task in Clinical Natural Language Processing (NLP) provided a set of 1000 neuropsychiatric notes to participants as part of a competition to predict psychiatric symptom severity scores. This paper summarizes our methods, results, and experiences based on our participation in the second track of the shared task. Classical methods of text classification usually fall into one of three problem types: binary, multi-class, and multi-label classification. In this effort, we study ordinal regression problems with text data where misclassifications are penalized differently based on how far apart the ground truth and model predictions are on the ordinal scale. Specifically, we present our entries (methods and results) in the N-GRID shared task in predicting research domain criteria (RDoC) positive valence ordinal symptom severity scores (absent, mild, moderate, and severe) from psychiatric notes. We propose a novel convolutional neural network (CNN) model designed to handle ordinal regression tasks on psychiatric notes. Broadly speaking, our model combines an ordinal loss function, a CNN, and conventional feature engineering (wide features) into a single model which is learned end-to-end. Given interpretability is an important concern with nonlinear models, we apply a recent approach called locally interpretable model-agnostic explanation (LIME) to identify important words that lead to instance specific predictions. Our best model entered into the shared task placed third among 24 teams and scored a macro mean absolute error (MMAE) based normalized score (100·(1-MMAE)) of 83.86. Since the competition, we improved our score (using basic ensembling) to 85.55, comparable with the winning shared task entry. Applying LIME to model predictions, we demonstrate the feasibility of instance specific prediction interpretation by identifying words that led to a particular decision. In this paper, we present a method that successfully uses wide features and

  3. The prediction in computer color matching of dentistry based on GA+BP neural network.

    Science.gov (United States)

    Li, Haisheng; Lai, Long; Chen, Li; Lu, Cheng; Cai, Qiang

    2015-01-01

    Although the use of computer color matching can reduce the influence of subjective factors by technicians, matching the color of a natural tooth with a ceramic restoration is still one of the most challenging topics in esthetic prosthodontics. Back propagation neural network (BPNN) has already been introduced into the computer color matching in dentistry, but it has disadvantages such as unstable and low accuracy. In our study, we adopt genetic algorithm (GA) to optimize the initial weights and threshold values in BPNN for improving the matching precision. To our knowledge, we firstly combine the BPNN with GA in computer color matching in dentistry. Extensive experiments demonstrate that the proposed method improves the precision and prediction robustness of the color matching in restorative dentistry.

  4. Relative Permittivity of Carbon Dioxide + Ethanol Mixtures prediction by means of Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Gonzalo Astray

    2014-07-01

    Full Text Available CO2 + ethanol mixtures have a huge scientific interest and enormous relevance for many industrial processes. Obtaining of their chemical and physical properties is a fundamental task. Relative permittivity (r of these mixtures is a key property because allows a better knowledge of the structure and the interactions in other media. In this work predictive values of relative permittivity (r of carbon dioxide + ethanol mixtures were obtained implementing artificial neural networks (ANNs. They are used successfully in very different fields; therefore it is a very useful tool. In this case the obtained results enhance the ones from the usual multiple linear regression analysis. In both cases mass fraction, pressure and temperature experimental data from a direct capacitance method were used.

  5. Predicting mastitis in dairy cows using neural networks and generalized additive models: a comparison

    DEFF Research Database (Denmark)

    Anantharama Ankinakatte, Smitha; Norberg, Elise; Løvendahl, Peter

    2013-01-01

    The aim of this paper is to develop and compare methods for early detection of oncoming mastitis with automated recorded data. The data were collected at the Danish Cattle Research Center (Tjele, Denmark). As indicators of mastitis, electrical conductivity (EC), somatic cell scores (SCS), lactate...... that combines residual components into a score to improve the model. To develop and verify the model, the data are randomly divided into training and validation data sets. To predict the occurrence of mastitis, neural network models (NNs) and generalized additive models (GAMs) are developed using the training...... classification with all indicators, using individual residuals rather than factor scores. When SCS is excluded, GAMs shows better classification result when milk yield is also excluded. In conclusion, the study shows that NNs and GAMs are similar in their ability to detect mastitis, a sensitivity of almost 75...

  6. Interaction prediction between groundwater and quarry extension using discrete choice models and artificial neural networks

    CERN Document Server

    Barthélemy, Johan; Collier, Louise; Hallet, Vincent; Moriamé, Marie; Sartenaer, Annick

    2016-01-01

    Groundwater and rock are intensively exploited in the world. When a quarry is deepened the water table of the exploited geological formation might be reached. A dewatering system is therefore installed so that the quarry activities can continue, possibly impacting the nearby water catchments. In order to recommend an adequate feasibility study before deepening a quarry, we propose two interaction indices between extractive activity and groundwater resources based on hazard and vulnerability parameters used in the assessment of natural hazards. The levels of each index (low, medium, high, very high) correspond to the potential impact of the quarry on the regional hydrogeology. The first index is based on a discrete choice modelling methodology while the second is relying on an artificial neural network. It is shown that these two complementary approaches (the former being probabilistic while the latter fully deterministic) are able to predict accurately the level of interaction. Their use is finally illustrate...

  7. Classification and Prediction of Traffic Flow Based on Real Data Using Neural Networks

    Science.gov (United States)

    Pamuła, Teresa

    2012-12-01

    This paper presents a method of classification of time series of traffic flow, on the section of the main road leading into the city of Gliwice. Video detectors recorded traffic volume data was used, covering the period of one year in 5-minute intervals - from June 2011 to May 2012. In order to classify the data a statistical analysis was performed, which resulted in the proposition of splitting the daily time series into four classes. The series were smoothed to obtain hourly flow rates. The classification was performed using neural networks with different structures and using a variable number of input data. The purpose of classification is the prediction of traffic flow rates in the afternoon basing on the morning traffic and the assessment of daily traffic volumes for a particular day of the week. The results can be utilized by intelligent urban traffic management systems.

  8. Lung nodule malignancy prediction using multi-task convolutional neural network

    Science.gov (United States)

    Li, Xiuli; Kao, Yueying; Shen, Wei; Li, Xiang; Xie, Guotong

    2017-03-01

    In this paper, we investigated the problem of diagnostic lung nodule malignancy prediction using thoracic Computed Tomography (CT) screening. Unlike most existing studies classify the nodules into two types benign and malignancy, we interpreted the nodule malignancy prediction as a regression problem to predict continuous malignancy level. We proposed a joint multi-task learning algorithm using Convolutional Neural Network (CNN) to capture nodule heterogeneity by extracting discriminative features from alternatingly stacked layers. We trained a CNN regression model to predict the nodule malignancy, and designed a multi-task learning mechanism to simultaneously share knowledge among 9 different nodule characteristics (Subtlety, Calcification, Sphericity, Margin, Lobulation, Spiculation, Texture, Diameter and Malignancy), and improved the final prediction result. Each CNN would generate characteristic-specific feature representations, and then we applied multi-task learning on the features to predict the corresponding likelihood for that characteristic. We evaluated the proposed method on 2620 nodules CT scans from LIDC-IDRI dataset with the 5-fold cross validation strategy. The multitask CNN regression result for regression RMSE and mapped classification ACC were 0.830 and 83.03%, while the results for single task regression RMSE 0.894 and mapped classification ACC 74.9%. Experiments show that the proposed method could predict the lung nodule malignancy likelihood effectively and outperforms the state-of-the-art methods. The learning framework could easily be applied in other anomaly likelihood prediction problem, such as skin cancer and breast cancer. It demonstrated the possibility of our method facilitating the radiologists for nodule staging assessment and individual therapeutic planning.

  9. Optimization the Initial Weights of Artificial Neural Networks via Genetic Algorithm Applied to Hip Bone Fracture Prediction

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Chang

    2012-01-01

    Full Text Available This paper aims to find the optimal set of initial weights to enhance the accuracy of artificial neural networks (ANNs by using genetic algorithms (GA. The sample in this study included 228 patients with first low-trauma hip fracture and 215 patients without hip fracture, both of them were interviewed with 78 questions. We used logistic regression to select 5 important factors (i.e., bone mineral density, experience of fracture, average hand grip strength, intake of coffee, and peak expiratory flow rate for building artificial neural networks to predict the probabilities of hip fractures. Three-layer (one hidden layer ANNs models with back-propagation training algorithms were adopted. The purpose in this paper is to find the optimal initial weights of neural networks via genetic algorithm to improve the predictability. Area under the ROC curve (AUC was used to assess the performance of neural networks. The study results showed the genetic algorithm obtained an AUC of 0.858±0.00493 on modeling data and 0.802 ± 0.03318 on testing data. They were slightly better than the results of our previous study (0.868±0.00387 and 0.796±0.02559, resp.. Thus, the preliminary study for only using simple GA has been proved to be effective for improving the accuracy of artificial neural networks.

  10. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...

  11. Epileptic Seizure Prediction by a System of Particle Filter Associated with a Neural Network

    Science.gov (United States)

    Liu, Derong; Pang, Zhongyu; Wang, Zhuo

    2009-12-01

    None of the current epileptic seizure prediction methods can widely be accepted, due to their poor consistency in performance. In this work, we have developed a novel approach to analyze intracranial EEG data. The energy of the frequency band of 4-12 Hz is obtained by wavelet transform. A dynamic model is introduced to describe the process and a hidden variable is included. The hidden variable can be considered as indicator of seizure activities. The method of particle filter associated with a neural network is used to calculate the hidden variable. Six patients' intracranial EEG data are used to test our algorithm including 39 hours of ictal EEG with 22 seizures and 70 hours of normal EEG recordings. The minimum least square error algorithm is applied to determine optimal parameters in the model adaptively. The results show that our algorithm can successfully predict 15 out of 16 seizures and the average prediction time is 38.5 minutes before seizure onset. The sensitivity is about 93.75% and the specificity (false prediction rate) is approximately 0.09 FP/h. A random predictor is used to calculate the sensitivity under significance level of 5%. Compared to the random predictor, our method achieved much better performance.

  12. Cost prediction of antipsychotic medication of psychiatric disorder using artificial neural network model

    Directory of Open Access Journals (Sweden)

    Arash Mirabzadeh

    2013-01-01

    Full Text Available Background: Antipsychotic monotherapy or polypharmacy (concurrent use of two or more antipsychotics are used for treating patients with psychiatric disorders (PDs. Usually, antipsychotic monotherapy has a lower cost than polypharmacy. This study aimed to predict the cost of antipsychotic medications (AM of psychiatric patients in Iran. Materials and Methods: For this purpose, 790 patients with PDs who were discharged between June and September 2010 were selected from Razi Psychiatric Hospital, Tehran, Iran. For cost prediction of AM of PD, neural network (NN and multiple linear regression (MLR models were used. Analysis of data was performed with R 2.15.1 software. Results: Mean ± standard deviation (SD of the duration of hospitalization (days in patients who were on monotherapy and polypharmacy was 31.19 ± 15.55 and 36.69 ± 15.93, respectively (P < 0.001. Mean and median costs of medication for monotherapy (n = 507 were $8.25 and $6.23 and for polypharmacy (n =192 were $13.30 and $9.48, respectively (P = 0.001. The important variables for cost prediction of AM were duration of hospitalization, type of treatment, and type of psychiatric ward in the MLR model, and duration of hospitalization, type of diagnosed disorder, type of treatment, age, Chlorpromazine dosage, and duration of disorder in the NN model. Conclusion: Our findings showed that the artificial NN (ANN model can be used as a flexible model for cost prediction of AM.

  13. Performance Comparison Between Support Vector Regression and Artificial Neural Network for Prediction of Oil Palm Production

    Directory of Open Access Journals (Sweden)

    Mustakim Mustakim

    2016-02-01

    Full Text Available The largest region that produces oil palm in Indonesia has an important role in improving the welfare of society and economy. Oil palm has increased significantly in Riau Province in every period, to determine the production development for the next few years with the functions and benefits of oil palm carried prediction production results that were seen from time series data last 8 years (2005-2013. In its prediction implementation, it was done by comparing the performance of Support Vector Regression (SVR method and Artificial Neural Network (ANN. From the experiment, SVR produced the best model compared with ANN. It is indicated by the correlation coefficient of 95% and 6% for MSE in the kernel Radial Basis Function (RBF, whereas ANN produced only 74% for R2 and 9% for MSE on the 8th experiment with hiden neuron 20 and learning rate 0,1. SVR model generates predictions for next 3 years which increased between 3% - 6% from actual data and RBF model predictions.

  14. A comparative study of support vector machine, artificial neural network and bayesian classifier for mutagenicity prediction.

    Science.gov (United States)

    Sharma, Anju; Kumar, Rajnish; Varadwaj, Pritish Kumar; Ahmad, Ausaf; Ashraf, Ghulam Md

    2011-09-01

    Mutagenicity is the capability of a chemical to carry out mutations in genetic material of an organism. In order to curtail expensive drug failures due to mutagenicity found in late development or even in clinical trials, it is crucial to determine potential mutagenicity problems as early as possible. In this work we have proposed three different classifiers, i.e. Support Vector Machine (SVM), Artificial Neural Network (ANN) and bayesian classifiers, for the prediction of mutagenicity of compounds based on seventeen descriptors. Among the three classifiers Radial Basis Function (RBF) kernel based SVM classifier appeared to be more accurate for classifying the compounds under study on mutagens and non-mutagens. The overall prediction accuracy of SVM model was found to be 71.73% which was appreciably higher than the accuracy of ANN based classifier (59.72%) and bayesian classifier (66.61%). It suggests that SVM based prediction model can be used for predicting mutagenicity more accurately compared to ANN and bayesian classifier for data under consideration.

  15. Pore pressure prediction using probabilistic neural network: case study of South Sumatra Basin

    Science.gov (United States)

    Haris, A.; Sitorus, R. J.; Riyanto, A.

    2017-04-01

    Pore pressure prediction in the planning of the drilling well commonly carried out using seismic stacking velocity and Normal Compaction Trend (NCT) analysis with Eaton’s equation. There are other parameters that correlate to pore pressure, i.e. density, P-impedance, S-impedance, and Vp/Vs ratio. The aims of this study are to predict pore pressure distribution from 2D pre and post-stack seismic data of South Sumatera field by applying the Probabilistic Neural Network (PNN). The pre-stack seismic inversion, which resulted in the elastic parameters such as Density (ρ), Vp/Vs ratio, P-impedance (Zp), S-impedance (Zs), is used as input for PNN training. In another hand, the post-stack seismic data, which resulted in the following parameters such as the average frequency, absolute integrated amplitude, apparent polarity, and dominant frequency, is also used to predict the lateral distribution of pore pressure. Our data training using PNN with pre-stack seismic data provided the best correlation up to 98% compared with the post-stack seismic data. Our prediction, in general, provides the pore pressure model and in detail provides over-pressure. The advantage of PNN shows vertical resolution as good as seismic resolution and provides more helpful information for a further drilling operation.

  16. Response surface and artificial neural network prediction model and optimization for surface roughness in machining

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Sahoo

    2015-04-01

    Full Text Available The present paper deals with the development of prediction model using response surface methodology and artificial neural network and optimizes the process parameter using 3D surface plot. The experiment has been conducted using coated carbide insert in machining AISI 1040 steel under dry environment. The coefficient of determination value for RSM model is found to be high (R2 = 0.99 close to unity. It indicates the goodness of fit for the model and high significance of the model. The percentage of error for RSM model is found to be only from -2.63 to 2.47. The maximum error between ANN model and experimental lies between -1.27 and 0.02 %, which is significantly less than the RSM model. Hence, both the proposed RSM and ANN prediction model sufficiently predict the surface roughness, accurately. However, ANN prediction model seems to be better compared with RSM model. From the 3D surface plots, the optimal parametric combination for the lowest surface roughness is d1-f1-v3 i.e. depth of cut of 0.1 mm, feed of 0.04 mm/rev and cutting speed of 260 m/min respectively.

  17. Epileptic Seizure Prediction by a System of Particle Filter Associated with a Neural Network

    Directory of Open Access Journals (Sweden)

    Derong Liu

    2009-01-01

    Full Text Available None of the current epileptic seizure prediction methods can widely be accepted, due to their poor consistency in performance. In this work, we have developed a novel approach to analyze intracranial EEG data. The energy of the frequency band of 4–12 Hz is obtained by wavelet transform. A dynamic model is introduced to describe the process and a hidden variable is included. The hidden variable can be considered as indicator of seizure activities. The method of particle filter associated with a neural network is used to calculate the hidden variable. Six patients' intracranial EEG data are used to test our algorithm including 39 hours of ictal EEG with 22 seizures and 70 hours of normal EEG recordings. The minimum least square error algorithm is applied to determine optimal parameters in the model adaptively. The results show that our algorithm can successfully predict 15 out of 16 seizures and the average prediction time is 38.5 minutes before seizure onset. The sensitivity is about 93.75% and the specificity (false prediction rate is approximately 0.09 FP/h. A random predictor is used to calculate the sensitivity under significance level of 5%. Compared to the random predictor, our method achieved much better performance.

  18. Prediction of protein function using a deep convolutional neural network ensemble

    Directory of Open Access Journals (Sweden)

    Evangelia I. Zacharaki

    2017-07-01

    Full Text Available Background The availability of large databases containing high resolution three-dimensional (3D models of proteins in conjunction with functional annotation allows the exploitation of advanced supervised machine learning techniques for automatic protein function prediction. Methods In this work, novel shape features are extracted representing protein structure in the form of local (per amino acid distribution of angles and amino acid distances, respectively. Each of the multi-channel feature maps is introduced into a deep convolutional neural network (CNN for function prediction and the outputs are fused through support vector machines or a correlation-based k-nearest neighbor classifier. Two different architectures are investigated employing either one CNN per multi-channel feature set, or one CNN per image channel. Results Cross validation experiments on single-functional enzymes (n = 44,661 from the PDB database achieved 90.1% correct classification, demonstrating an improvement over previous results on the same dataset when sequence similarity was not considered. Discussion The automatic prediction of protein function can provide quick annotations on extensive datasets opening the path for relevant applications, such as pharmacological target identification. The proposed method shows promise for structure-based protein function prediction, but sufficient data may not yet be available to properly assess the method’s performance on non-homologous proteins and thus reduce the confounding factor of evolutionary relationships.

  19. Prediction of Reactor Vessel Water Level Using Fuzzy Neural Networks in Severe Accidents due to LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soonho; Kim, Jaehawn; Na, Mangyun [Chosun Univ., Gwangju (Korea, Republic of)

    2013-05-15

    When the initial events that may lead to the severe accident such as Loss Of Coolant Accident (LOCA) and Steam Generator Tube Rupture (SGTR) occurs at a nuclear power plant, it is most important to check the status of the plant conditions by observing the safety-related parameters such as neutron flux, pressurizer pressure, steam generator pressure and water level. In this paper, we propose a method of predicting the water level of coolant in the reactor vessel that directly affect the important events such as the exposure of the reactor core and the damage of reactor vessel by using a Fuzzy Neural Network (FNN) method. In addition, the data for verifying a proposed model was obtained by simulating the severe accident scenarios for the OPR1000 nuclear power plant using the MAAP4 code. In this paper, a prediction model was developed for predicting the reactor vessel water level using the FNN method. The proposed FNN model was verified based on the simulation data of OPR1000 by using MAAP4 code. As a result of simulation, we could see that the performance of the proposed FNN model is quite satisfactory but some large errors are observed occasionally. If the proposed FNN model is optimized by using a variety of data, it is possible to predict the reactor vessel water level exactly.

  20. Using remote sensing satellite data and artificial neural network for prediction of potato yield in Bangladesh

    Science.gov (United States)

    Akhand, Kawsar; Nizamuddin, Mohammad; Roytman, Leonid; Kogan, Felix

    2016-09-01

    Potato is one of the staple foods and cash crops in Bangladesh. It is widely cultivated in all of the districts and ranks second after rice in production. Bangladesh is the fourth largest potato producer in Asia and is among the world's top 15 potato producing countries. The weather condition for potato cultivation is favorable during the sowing, growing and harvesting period. It is a winter crop and is cultivated during the period of November to March. Bangladesh is mainly an agricultural based country with respect to agriculture's contribution to GDP, employment and consumption. Potato is a prominent crop in consideration of production, its internal demand and economic value. Bangladesh has a big economic activities related to potato cultivation and marketing, especially the economic relations among farmers, traders, stockers and cold storage owners. Potato yield prediction before harvest is an important issue for the Government and the stakeholders in managing and controlling the potato market. Advanced very high resolution radiometer (AVHRR) based satellite data product vegetation health indices VCI (vegetation condition index) and TCI (temperature condition index) are used as predictors for early prediction. Artificial neural network (ANN) is used to develop a prediction model. The simulated result from this model is encouraging and the error of prediction is less than 10%.

  1. Marginally Stable Triangular Recurrent Neural Network Architecture for Time Series Prediction.

    Science.gov (United States)

    Sivakumar, Seshadri; Sivakumar, Shyamala

    2017-09-25

    This paper introduces a discrete-time recurrent neural network architecture using triangular feedback weight matrices that allows a simplified approach to ensuring network and training stability. The triangular structure of the weight matrices is exploited to readily ensure that the eigenvalues of the feedback weight matrix represented by the block diagonal elements lie on the unit circle in the complex z-plane by updating these weights based on the differential of the angular error variable. Such placement of the eigenvalues together with the extended close interaction between state variables facilitated by the nondiagonal triangular elements, enhances the learning ability of the proposed architecture. Simulation results show that the proposed architecture is highly effective in time-series prediction tasks associated with nonlinear and chaotic dynamic systems with underlying oscillatory modes. This modular architecture with dual upper and lower triangular feedback weight matrices mimics fully recurrent network architectures, while maintaining learning stability with a simplified training process. While training, the block-diagonal weights (hence the eigenvalues) of the dual triangular matrices are constrained to the same values during weight updates aimed at minimizing the possibility of overfitting. The dual triangular architecture also exploits the benefit of parsing the input and selectively applying the parsed inputs to the two subnetworks to facilitate enhanced learning performance.

  2. Early Yield Prediction Using Image Analysis of Apple Fruit and Tree Canopy Features with Neural Networks

    Directory of Open Access Journals (Sweden)

    Hong Cheng

    2017-01-01

    Full Text Available (1 Background: Since early yield prediction is relevant for resource requirements of harvesting and marketing in the whole fruit industry, this paper presents a new approach of using image analysis and tree canopy features to predict early yield with artificial neural networks (ANN; (2 Methods: Two back propagation neural network (BPNN models were developed for the early period after natural fruit drop in June and the ripening period, respectively. Within the same periods, images of apple cv. “Gala” trees were captured from an orchard near Bonn, Germany. Two sample sets were developed to train and test models; each set included 150 samples from the 2009 and 2010 growing season. For each sample (each canopy image, pixels were segmented into fruit, foliage, and background using image segmentation. The four features extracted from the data set for the canopy were: total cross-sectional area of fruits, fruit number, total cross-section area of small fruits, and cross-sectional area of foliage, and were used as inputs. With the actual weighted yield per tree as a target, BPNN was employed to learn their mutual relationship as a prerequisite to develop the prediction; (3 Results: For the developed BPNN model of the early period after June drop, correlation coefficients (R2 between the estimated and the actual weighted yield, mean forecast error (MFE, mean absolute percentage error (MAPE, and root mean square error (RMSE were 0.81, −0.05, 10.7%, 2.34 kg/tree, respectively. For the model of the ripening period, these measures were 0.83, −0.03, 8.9%, 2.3 kg/tree, respectively. In 2011, the two previously developed models were used to predict apple yield. The RMSE and R2 values between the estimated and harvested apple yield were 2.6 kg/tree and 0.62 for the early period (small, green fruit and improved near harvest (red, large fruit to 2.5 kg/tree and 0.75 for a tree with ca. 18 kg yield per tree. For further method verification, the cv.

  3. Detection and prediction of driver drowsiness using artificial neural network models.

    Science.gov (United States)

    Jacobé de Naurois, Charlotte; Bourdin, Christophe; Stratulat, Anca; Diaz, Emmanuelle; Vercher, Jean-Louis

    2017-12-01

    Not just detecting but also predicting impairment of a car driver's operational state is a challenge. This study aims to determine whether the standard sources of information used to detect drowsiness can also be used to predict when a given drowsiness level will be reached. Moreover, we explore whether adding data such as driving time and participant information improves the accuracy of detection and prediction of drowsiness. Twenty-one participants drove a car simulator for 110min under conditions optimized to induce drowsiness. We measured physiological and behavioral indicators such as heart rate and variability, respiration rate, head and eyelid movements (blink duration, frequency and PERCLOS) and recorded driving behavior such as time-to-lane-crossing, speed, steering wheel angle, position on the lane. Different combinations of this information were tested against the real state of the driver, namely the ground truth, as defined from video recordings via the Trained Observer Rating. Two models using artificial neural networks were developed, one to detect the degree of drowsiness every minute, and the other to predict every minute the time required to reach a particular drowsiness level (moderately drowsy). The best performance in both detection and prediction is obtained with behavioral indicators and additional information. The model can detect the drowsiness level with a mean square error of 0.22 and can predict when a given drowsiness level will be reached with a mean square error of 4.18min. This study shows that, on a controlled and very monotonous environment conducive to drowsiness in a driving simulator, the dynamics of driver impairment can be predicted. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Artificial neural network approach to predicting engine-out emissions and performance parameters of a turbo charged diesel engine

    Directory of Open Access Journals (Sweden)

    Özener Orkun

    2013-01-01

    Full Text Available This study details the artificial neural network (ANN modelling of a diesel engine to predict the torque, power, brake-specific fuel consumption and pollutant emissions, including carbon dioxide, carbon monoxide, nitrogen oxides, total hydrocarbons and filter smoke number. To collect data for training and testing the neural network, experiments were performed on a four cylinder, four stroke compression ignition engine. A total of 108 test points were run on a dynamometer. For the first part of this work, a parameter packet was used as the inputs for the neural network, and satisfactory regression was found with the outputs (over ~95%, excluding total hydrocarbons. The second stage of this work addressed developing new networks with additional inputs for predicting the total hydrocarbons, and the regression was raised from 75 % to 90 %. This study shows that the ANN approach can be used for accurately predicting characteristic values of an internal combustion engine and that the neural network performance can be increased using additional related input data.

  5. Prediction of survival after radical cystectomy for invasive bladder carcinoma: risk group stratification, nomograms or artificial neural networks?

    Science.gov (United States)

    el-Mekresh, Mohsen; Akl, Ahmed; Mosbah, Ahmed; Abdel-Latif, Mohamed; Abol-Enein, Hassan; Ghoneim, Mohamed A

    2009-08-01

    We compared 3 predictive models for survival after radical cystectomy, risk group stratification, nomogram and artificial neural networks, in terms of their accuracy, performance and level of complexity. Between 1996 and 2002, 1,133 patients were treated with single stage radical cystectomy as monotherapy for invasive bladder cancer. A randomly selected 776 cases (70%) were used as a reference series. The remaining 357 cases (test series) were used for external validation. Survival estimates were analyzed using univariate and then multivariate appraisal. The results of multivariate analysis were used for risk group stratification and construction of a nomogram, whereas all studied variables were entered directly into the artificial neural networks. Overall 5-year disease-free survival was 64.5% with no statistical difference between the reference and test series. Comparisons of the 3 predictive models revealed that artificial neural networks outperformed the other 2 models in terms of the value of the area under the receiver operator characteristic curve, sensitivity and specificity, as well as positive and negative predictive values. In this study artificial neural networks outperformed the risk group stratification model and nomogram construction in predicting patient 5-year survival probability, and in terms of sensitivity and specificity.

  6. Predictions on the Development Dimensions of Provincial Tourism Discipline Based on the Artificial Neural Network BP Model

    Science.gov (United States)

    Yang, Yang; Hu, Jun; Lv, Yingchun; Zhang, Mu

    2013-01-01

    As the tourism industry has gradually become the strategic mainstay industry of the national economy, the scope of the tourism discipline has developed rigorously. This paper makes a predictive study on the development of the scope of Guangdong provincial tourism discipline based on the artificial neural network BP model in order to find out how…

  7. A regional neural network model for predicting mean daily river water temperature

    Science.gov (United States)

    Wagner, Tyler; DeWeber, Jefferson Tyrell

    2014-01-01

    Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May–October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate

  8. A regional neural network ensemble for predicting mean daily river water temperature

    Science.gov (United States)

    DeWeber, Jefferson Tyrell; Wagner, Tyler

    2014-09-01

    Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May-October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate and land use

  9. Prediction of grindability with multivariable regression and neural network in Chinese coal

    Energy Technology Data Exchange (ETDEWEB)

    Li Peisheng; Xiong Youhui; Yu Dunxi; Sun Xuexin [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion

    2005-12-01

    Grindability index of coal is usually determined by Hardgrove Grindability Index (HGI). The correlation between the proximate analysis of Chinese coal and HGI was studied. It was found from statistical analysis that, the higher the moisture and the volatile matter content in coal, the less the HGI will be. On the contrary, the higher the ash and the fixed carbon content in coal, the higher the HGI will be. But the correlation between proximate analysis and HGI in coals is nonlinear. The prediction equation of HGI reported in literature, which is based on proximate analysis of coal and linear regression method, is not correct for coals in China. In this paper, the generalized regression neural network (GRNN) method was used to predict the HGI. A higher precision in the prediction result was obtained through such new method. By this method, the HGI can be estimated indirectly from the proximate analysis of coal when the HGI measurement equipment is not available. 12 refs., 2 figs., 1 tab.

  10. A neural network based intelligent predictive sensor for cloudiness, solar radiation and air temperature.

    Science.gov (United States)

    Ferreira, Pedro M; Gomes, João M; Martins, Igor A C; Ruano, António E

    2012-11-12

    Accurate measurements of global solar radiation and atmospheric temperature,as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature.

  11. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    Science.gov (United States)

    Ferreira, Pedro M.; Gomes, João M.; Martins, Igor A. C.; Ruano, António E.

    2012-01-01

    Accurate measurements of global solar radiation and atmospheric temperature, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature. PMID:23202230

  12. Feature Selection Combined with Neural Network Structure Optimization for HIV-1 Protease Cleavage Site Prediction

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2015-01-01

    Full Text Available It is crucial to understand the specificity of HIV-1 protease for designing HIV-1 protease inhibitors. In this paper, a new feature selection method combined with neural network structure optimization is proposed to analyze the specificity of HIV-1 protease and find the important positions in an octapeptide that determined its cleavability. Two kinds of newly proposed features based on Amino Acid Index database plus traditional orthogonal encoding features are used in this paper, taking both physiochemical and sequence information into consideration. Results of feature selection prove that p2, p1, p1′, and p2′ are the most important positions. Two feature fusion methods are used in this paper: combination fusion and decision fusion aiming to get comprehensive feature representation and improve prediction performance. Decision fusion of subsets that getting after feature selection obtains excellent prediction performance, which proves feature selection combined with decision fusion is an effective and useful method for the task of HIV-1 protease cleavage site prediction. The results and analysis in this paper can provide useful instruction and help designing HIV-1 protease inhibitor in the future.

  13. Cost-Sensitive Radial Basis Function Neural Network Classifier for Software Defect Prediction

    Directory of Open Access Journals (Sweden)

    P. Kumudha

    2016-01-01

    Full Text Available Effective prediction of software modules, those that are prone to defects, will enable software developers to achieve efficient allocation of resources and to concentrate on quality assurance activities. The process of software development life cycle basically includes design, analysis, implementation, testing, and release phases. Generally, software testing is a critical task in the software development process wherein it is to save time and budget by detecting defects at the earliest and deliver a product without defects to the customers. This testing phase should be carefully operated in an effective manner to release a defect-free (bug-free software product to the customers. In order to improve the software testing process, fault prediction methods identify the software parts that are more noted to be defect-prone. This paper proposes a prediction approach based on conventional radial basis function neural network (RBFNN and the novel adaptive dimensional biogeography based optimization (ADBBO model. The developed ADBBO based RBFNN model is tested with five publicly available datasets from the NASA data program repository. The computed results prove the effectiveness of the proposed ADBBO-RBFNN classifier approach with respect to the considered metrics in comparison with that of the early predictors available in the literature for the same datasets.

  14. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    Directory of Open Access Journals (Sweden)

    Pedro M. Ferreira

    2012-11-01

    Full Text Available Accurate measurements of global solar radiation and atmospheric temperature,as well as the availability of the predictions of their evolution over time, are importantfor different areas of applications, such as agriculture, renewable energy and energymanagement, or thermal comfort in buildings. For this reason, an intelligent, light-weightand portable sensor was developed, using artificial neural network models as the time-seriespredictor mechanisms. These have been identified with the aid of a procedure based on themulti-objective genetic algorithm. As cloudiness is the most significant factor affecting thesolar radiation reaching a particular location on the Earth surface, it has great impact on theperformance of predictive solar radiation models for that location. This work also representsone step towards the improvement of such models by using ground-to-sky hemisphericalcolour digital images as a means to estimate cloudiness by the fraction of visible skycorresponding to clouds and to clear sky. The implementation of predictive models inthe prototype has been validated and the system is able to function reliably, providingmeasurements and four-hour forecasts of cloudiness, solar radiation and air temperature.

  15. Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN).

    Science.gov (United States)

    Park, Sechan; Kim, Minjeong; Kim, Minhae; Namgung, Hyeong-Gyu; Kim, Ki-Tae; Cho, Kyung Hwa; Kwon, Soon-Bark

    2018-01-05

    The indoor air quality of subway systems can significantly affect the health of passengers since these systems are widely used for short-distance transit in metropolitan urban areas in many countries. The particles generated by abrasion during subway operations and the vehicle-emitted pollutants flowing in from the street in particular affect the air quality in underground subway stations. Thus the continuous monitoring of particulate matter (PM) in underground station is important to evaluate the exposure level of PM to passengers. However, it is difficult to obtain indoor PM data because the measurement systems are expensive and difficult to install and operate for significant periods of time in spaces crowded with people. In this study, we predicted the indoor PM concentration using the information of outdoor PM, the number of subway trains running, and information on ventilation operation by the artificial neural network (ANN) model. As well, we investigated the relationship between ANN's performance and the depth of underground subway station. ANN model showed a high correlation between the predicted and actual measured values and it was able to predict 67∼80% of PM at 6 subway station. In addition, we found that platform shape and depth influenced the model performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Dry unit weight of compacted soils prediction using GMDH-type neural network

    Science.gov (United States)

    Hassanlourad, Mahmoud; Ardakani, Alireza; Kordnaeij, Afshin; Mola-Abasi, Hossein

    2017-08-01

    Dry unit weight ( {γ}_d of soils is usually determined by in situ tests, such as rubber balloon, sand cone, nuclear density measurements, etc. The elastic wave method using compressional wave has been broadly used to determine various geotechnical parameters. In the present paper, the polynomial neural network (NN) is used to estimate the {γ}_d of compacted soils indirectly depending on P -wave velocity ( V_p , moisture content ( ω and plasticity index ( PI as well as fine-grained particles (FC). Eight natural soil samples (88 data) were applied for developing a polynomial representation of model. To determine the performance of the proposed model, a comparison was carried out between the predicted and experimentally measured values. The results show that the developed GMDH-type NN has a great ability (R^2=0.942) to predict the {γ}_d of the compacted soils and is more efficient (53% to 73% improvement) than the previous reported methods. Finally, the derived model sensitivity analysis has been performed to evaluate the effect of each input variable on the proposed model output and shows that the P -wave velocity is the most influential parameter on the predicted {γ}_d.

  17. Neural Network of Predictive Motor Timing in the Context of Gender Differences

    Directory of Open Access Journals (Sweden)

    Pavel Filip

    2016-01-01

    Full Text Available Time perception is an essential part of our everyday lives, in both the prospective and the retrospective domains. However, our knowledge of temporal processing is mainly limited to the networks responsible for comparing or maintaining specific intervals or frequencies. In the presented fMRI study, we sought to characterize the neural nodes engaged specifically in predictive temporal analysis, the estimation of the future position of an object with varying movement parameters, and the contingent neuroanatomical signature of differences in behavioral performance between genders. The established dominant cerebellar engagement offers novel evidence in favor of a pivotal role of this structure in predictive short-term timing, overshadowing the basal ganglia reported together with the frontal cortex as dominant in retrospective temporal processing in the subsecond spectrum. Furthermore, we discovered lower performance in this task and massively increased cerebellar activity in women compared to men, indicative of strategy differences between the genders. This promotes the view that predictive temporal computing utilizes comparable structures in the retrospective timing processes, but with a definite dominance of the cerebellum.

  18. Feature Selection Combined with Neural Network Structure Optimization for HIV-1 Protease Cleavage Site Prediction.

    Science.gov (United States)

    Liu, Hui; Shi, Xiaomiao; Guo, Dongmei; Zhao, Zuowei; Yimin

    2015-01-01

    It is crucial to understand the specificity of HIV-1 protease for designing HIV-1 protease inhibitors. In this paper, a new feature selection method combined with neural network structure optimization is proposed to analyze the specificity of HIV-1 protease and find the important positions in an octapeptide that determined its cleavability. Two kinds of newly proposed features based on Amino Acid Index database plus traditional orthogonal encoding features are used in this paper, taking both physiochemical and sequence information into consideration. Results of feature selection prove that p2, p1, p1', and p2' are the most important positions. Two feature fusion methods are used in this paper: combination fusion and decision fusion aiming to get comprehensive feature representation and improve prediction performance. Decision fusion of subsets that getting after feature selection obtains excellent prediction performance, which proves feature selection combined with decision fusion is an effective and useful method for the task of HIV-1 protease cleavage site prediction. The results and analysis in this paper can provide useful instruction and help designing HIV-1 protease inhibitor in the future.

  19. Prediction of the nutrient content in dairy manure using artificial neural network modeling.

    Science.gov (United States)

    Chen, L J; Cui, L Y; Xing, L; Han, L J

    2008-12-01

    Nutrients in animal manure are valuable inputs in agronomic crop production. Timely and reliable information on animal manure nutrient content will facilitate the utilization of manure as organic fertilizer and reduce any associated potential environmental problems. The objective of this study was to investigate the feasibility of using multiple linear regression (MLR), polynomial regression, and artificial neural network (ANN) models to determine nutrient content in dairy manure. Fresh manure samples (n = 86) from Holstein dairy cattle were collected from 34 dairy farms located in Beijing city, China. All samples were analyzed for nutrient content (ammonium nitrogen, total potassium, total nitrogen, and total phosphorus) by standard laboratory methods. The physicochemical properties (specific gravity, electrical conductivity, and pH) of dairy manure samples were measured. Relationships between nutrient content and physicochemical properties were explored by MLR, polynomial regression, and ANN models. Several parameters (R(2), modeling efficiency statistic, mean squared error of prediction, mean bias, linear bias, and maximum bias) were calculated to evaluate model performance. The residual analysis results indicated that all MLR models for the testing data set had significant mean and linear bias. When compared with MLR and polynomial regression models, the ANN model for all nutrient contents had better performance with higher R(2) and modeling efficiency statistics and lower mean squared error of prediction, mean bias, linear bias, and maximum bias. These findings demonstrated that the ANN model may be an appropriate tool to predict dairy manure nutrient content.

  20. Density prediction for petroleum and derivatives by gamma-ray attenuation and artificial neural networks.

    Science.gov (United States)

    Salgado, C M; Brandão, L E B; Conti, C C; Salgado, W L

    2016-10-01

    This work presents a new methodology for density prediction of petroleum and derivatives for products' monitoring application. The approach is based on pulse height distribution pattern recognition by means of an artificial neural network (ANN). The detection system uses appropriate broad beam geometry, comprised of a (137)Cs gamma-ray source and a NaI(Tl) detector diametrically positioned on the other side of the pipe in order measure the transmitted beam. Theoretical models for different materials have been developed using MCNP-X code, which was also used to provide training, test and validation data for the ANN. 88 simulations have been carried out, with density ranging from 0.55 to 1.26gcm(-3) in order to cover the most practical situations. Validation tests have included different patterns from those used in the ANN training phase. The results show that the proposed approach may be successfully applied for prediction of density for these types of materials. The density can be automatically predicted without a prior knowledge of the actual material composition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mortality Predicted Accuracy for Hepatocellular Carcinoma Patients with Hepatic Resection Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Herng-Chia Chiu

    2013-01-01

    Full Text Available The aim of this present study is firstly to compare significant predictors of mortality for hepatocellular carcinoma (HCC patients undergoing resection between artificial neural network (ANN and logistic regression (LR models and secondly to evaluate the predictive accuracy of ANN and LR in different survival year estimation models. We constructed a prognostic model for 434 patients with 21 potential input variables by Cox regression model. Model performance was measured by numbers of significant predictors and predictive accuracy. The results indicated that ANN had double to triple numbers of significant predictors at 1-, 3-, and 5-year survival models as compared with LR models. Scores of accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC of 1-, 3-, and 5-year survival estimation models using ANN were superior to those of LR in all the training sets and most of the validation sets. The study demonstrated that ANN not only had a great number of predictors of mortality variables but also provided accurate prediction, as compared with conventional methods. It is suggested that physicians consider using data mining methods as supplemental tools for clinical decision-making and prognostic evaluation.

  2. Prediction of deformation characteristics of sintered aluminium preforms using neural networks

    Science.gov (United States)

    Selvakumar, N.; Radha, P.; Narayanasamy, R.; Davidson, M. Joseph

    2004-07-01

    Neural networks (NNs) are employed to study the deformation characteristics of sintered aluminium preforms. The proposed NN model has used the measured parameters, namely the load, the aspect ratio and the initial preform fractional density ratio to predict multiple material characteristics, namely the axial stress, the hoop stress, the hydrostatic stress, the axial strain, the hoop strain and the Poisson's ratio. The model is based on a 'four layered NN' with back propagation learning algorithm. The experimental set-up available in the laboratory has been used to get the training data for the sintered aluminium with various preform densities and different aspect ratios (0.50, 0.75 and 1.00) using MoS2 as lubricant. The predicted values from the proposed NN coincide well with the experimental values. In addition, a comparative study between the regression analysis and the NN revealed that the NN can predict the material characteristics of sintered aluminium preform better than regression polynomials within a few per cent error.

  3. Intelligent Monitoring System on Prediction of Building Damage Index using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Reni Suryanita

    2012-03-01

    Full Text Available An earthquake potentially destroys a tall building. The building damage can be indexed by FEMA into three categories namely Immediate Occupancy (IO, Life Safety (LS, and Collapse Prevention (CP. To determine the damage index, the building model has been simulated into structure analysis software. Acceleration data has been analyzed using non linear method in structure analysis program. The earthquake load is time history at surface, PGA=0105g. This work proposes an intelligent monitoring system utilizing Artificial Neural Network to predict the building damage index. The system also provides an alert system and notification to inform the status of the damage. Data learning is trained on ANN utilizing feed forward and back propagation algorithm. The alert system is designed to be able to activate the alarm sound, view the alert bar or text, and send notification via email to the security or management. The system is tested using sample data represented in three conditions involving IO, LS, and CP. The results show that the proposed intelligent monitoring system could provide prediction of up to 92% rate of accuracy and activate the alert. Implementation of the system in building monitoring would allow for rapid, intelligent and accurate prediction of the building damage index due to earthquake.

  4. Cost-Sensitive Radial Basis Function Neural Network Classifier for Software Defect Prediction.

    Science.gov (United States)

    Kumudha, P; Venkatesan, R

    Effective prediction of software modules, those that are prone to defects, will enable software developers to achieve efficient allocation of resources and to concentrate on quality assurance activities. The process of software development life cycle basically includes design, analysis, implementation, testing, and release phases. Generally, software testing is a critical task in the software development process wherein it is to save time and budget by detecting defects at the earliest and deliver a product without defects to the customers. This testing phase should be carefully operated in an effective manner to release a defect-free (bug-free) software product to the customers. In order to improve the software testing process, fault prediction methods identify the software parts that are more noted to be defect-prone. This paper proposes a prediction approach based on conventional radial basis function neural network (RBFNN) and the novel adaptive dimensional biogeography based optimization (ADBBO) model. The developed ADBBO based RBFNN model is tested with five publicly available datasets from the NASA data program repository. The computed results prove the effectiveness of the proposed ADBBO-RBFNN classifier approach with respect to the considered metrics in comparison with that of the early predictors available in the literature for the same datasets.

  5. Length of Hospital Stay Prediction at the Admission Stage for Cardiology Patients Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Pei-Fang (Jennifer Tsai

    2016-01-01

    Full Text Available For hospitals’ admission management, the ability to predict length of stay (LOS as early as in the preadmission stage might be helpful to monitor the quality of inpatient care. This study is to develop artificial neural network (ANN models to predict LOS for inpatients with one of the three primary diagnoses: coronary atherosclerosis (CAS, heart failure (HF, and acute myocardial infarction (AMI in a cardiovascular unit in a Christian hospital in Taipei, Taiwan. A total of 2,377 cardiology patients discharged between October 1, 2010, and December 31, 2011, were analyzed. Using ANN or linear regression model was able to predict correctly for 88.07% to 89.95% CAS patients at the predischarge stage and for 88.31% to 91.53% at the preadmission stage. For AMI or HF patients, the accuracy ranged from 64.12% to 66.78% at the predischarge stage and 63.69% to 67.47% at the preadmission stage when a tolerance of 2 days was allowed.

  6. Prediction of Polymer Flooding Performance with an Artificial Neural Network: A Two-Polymer-Slug Case

    Directory of Open Access Journals (Sweden)

    Jestril Ebaga-Ololo

    2017-07-01

    Full Text Available Many previous contributions to methods of forecasting the performance of polymer flooding using artificial neural networks (ANNs have been made by numerous researchers previously. In most of those forecasting cases, only a single polymer slug was employed to meet the objective of the study. The intent of this manuscript is to propose an efficient recovery factor prediction tool at different injection stages of two polymer slugs during polymer flooding using an ANN. In this regard, a back-propagation algorithm was coupled with six input parameters to predict three output parameters via a hidden layer composed of 10 neurons. Evaluation of the ANN model performance was made with multiple linear regression. With an acceptable correlation coefficient, the proposed ANN tool was able to predict the recovery factor with errors of <1%. In addition, to understand the influence of each parameter on the output parameters, a sensitivity analysis was applied to the input parameters. The results showed less impact from the second polymer concentration, owing to changes in permeability after the injection of the first polymer slug.

  7. Application of a neural network predictive control based on GGAP-RBF for the supercritical main steam

    Science.gov (United States)

    Li, Yun-Juan; Fang, Yan-jun; Li, Qi

    2012-01-01

    The Supercritical Main Steam has a large inertia, delay and nonlinear and dynamic characteristics change with the operating conditions, it is difficult to establish the precise mathematical model, this algorithm based on RBF neural network GGAP posed a direct neural network predictive controller, the combination of online learning and control to a supercritical power plant main stream temperature as the research object, MATLAB simulation results show that the superheated steam temperature system can achieve effective control, performance than the conventional PID control has greatly improved.

  8. Artificial neural network for predicting pathological stage of clinically localized prostate cancer in a Taiwanese population.

    Science.gov (United States)

    Tsao, Chih-Wei; Liu, Ching-Yu; Cha, Tai-Lung; Wu, Sheng-Tang; Sun, Guang-Huan; Yu, Dah-Shyong; Chen, Hong-I; Chang, Sun-Yran; Chen, Shih-Chang; Hsu, Chien-Yeh

    2014-10-01

    We developed an artificial neural network (ANN) model to predict prostate cancer pathological staging in patients prior to when they received radical prostatectomy as this is more effective than logistic regression (LR), or combined use of age, prostate-specific antigen (PSA), body mass index (BMI), digital rectal examination (DRE), trans-rectal ultrasound (TRUS), biopsy Gleason sum, and primary biopsy Gleason grade. Our study evaluated 299 patients undergoing retro-pubic radical prostatectomy or robotic-assisted laparoscopic radical prostatectomy surgical procedures with pelvic lymph node dissection. The results were intended to predict the pathological stage of prostate cancer (T2 or T3) after radical surgery. The predictive ability of ANN was compared with LR and validation of the 2007 Partin Tables was estimated by the areas under the receiving operating characteristic curve (AUCs). Of the 299 patients we evaluated, 109 (36.45%) displayed prostate cancer with extra-capsular extension (ECE), and 190 (63.55%) displayed organ-confined disease (OCD). LR analysis showed that only PSA and BMI were statistically significant predictors of prostate cancer with capsule invasion. Overall, ANN outperformed LR significantly (0.795 ± 0.023 versus 0.746 ± 0.025, p = 0.016). Validation using the current Partin Tables for the participants of our study was assessed, and the predictive capacity of AUC for OCD was 0.695. ANN was superior to LR at predicting OCD in prostate cancer. Compared with the validation of current Partin Tables for the Taiwanese population, the ANN model resulted in larger AUCs and more accurate prediction of the pathologic stage of prostate cancer. Copyright © 2014. Published by Elsevier B.V.

  9. Artificial neural networks in the outcome prediction of adjustable gastric banding in obese women.

    Directory of Open Access Journals (Sweden)

    Paolo Piaggi

    2010-10-01

    Full Text Available Obesity is unanimously regarded as a global epidemic and a major contributing factor to the development of many common illnesses. Laparoscopic Adjustable Gastric Banding (LAGB is one of the most popular surgical approaches worldwide. Yet, substantial variability in the results and significant rate of failure can be expected, and it is still debated which categories of patients are better suited to this type of bariatric procedure. The aim of this study was to build a statistical model based on both psychological and physical data to predict weight loss in obese patients treated by LAGB, and to provide a valuable instrument for the selection of patients that may benefit from this procedure.The study population consisted of 172 obese women, with a mean ± SD presurgical and postsurgical Body Mass Index (BMI of 42.5 ± 5.1 and 32.4 ± 4.8 kg/m(2, respectively. Subjects were administered the comprehensive test of psychopathology Minnesota Multiphasic Personality Inventory-2 (MMPI-2. Main goal of the study was to use presurgical data to predict individual therapeutical outcome in terms of Excess Weight Loss (EWL after 2 years. Multiple linear regression analysis using the MMPI-2 scores, BMI and age was performed to determine the variables that best predicted the EWL. Based on the selected variables including age, and 3 psychometric scales, Artificial Neural Networks (ANNs were employed to improve the goodness of prediction. Linear and non linear models were compared in their classification and prediction tasks: non linear model resulted to be better at data fitting (36% vs. 10% variance explained, respectively and provided more reliable parameters for accuracy and mis-classification rates (70% and 30% vs. 66% and 34%, respectively.ANN models can be successfully applied for prediction of weight loss in obese women treated by LAGB. This approach may constitute a valuable tool for selection of the best candidates for surgery, taking advantage of an

  10. The prediction of maximum temperature for single chips' cooling using artificial neural networks

    Science.gov (United States)

    Ozsunar, Abuzer; Arcaklıoglu, Erol; Nusret Dur, F.

    2009-02-01

    A CFD simulation usually requires extensive computer storage and lengthy computational time. The application of artificial neural network models to thermal management of chips is still limited. In this study, the main objective is to find a neural network solution for obtaining suitable thickness levels and material for a chip subjected to a constant heat power. To achieve this aim a neural network is trained and tested using the results of the CFD program package Fluent. The back-propagation learning algorithm with three different variants, single layer and logistic sigmoid transfer function is employed in the network. By using the weights of the network, various formulations are designed for the output. The network has resulted in R 2 values of 0.999, and the mean% errors smaller than 0.8 and 0.7 for the training and test data, respectively. The analysis is extended for different thickness and input power values. Comparison of some randomly selected results obtained by the neural network model and the CFD program has yielded a maximum error of 1.8%, mean absolute percentage error of 0.55% and R 2 of 0.99994.

  11. Streamflow predictions in Alpine Catchments by using artificial neural networks. Application in the Alto Genil Basin (South Spain)

    Science.gov (United States)

    Jimeno-Saez, Patricia; Pegalajar-Cuellar, Manuel; Pulido-Velazquez, David

    2017-04-01

    This study explores techniques of modeling water inflow series, focusing on techniques of short-term steamflow prediction. An appropriate estimation of streamflow in advance is necessary to anticipate measures to mitigate the impacts and risks related to drought conditions. This study analyzes the prediction of future streamflow of nineteen subbasins in the Alto-Genil basin in Granada (Southeast of Spain). Some of these basin streamflow have an important component of snowmelt due to part of the system is located in Sierra Nevada Mountain Range, the highest mountain of continental Spain. Streamflow prediction models have been calibrated using time series of historical natural streamflows. The available streamflow measurements have been downloaded from several public data sources. These original data have been preprocessed to turn them to the original natural regime, removing the anthropic effects. The missing values in the adopted horizon period to calibrate the prediction models have been estimated by using a Temez hydrological balance model, approaching the snowmelt processes with a hybrid degree day method. In the experimentation, ARIMA models are used as baseline method, and recurrent neural networks ELMAN and nonlinear autoregressive neural network (NAR) to test if the prediction accuracy can be improved. After performing the multiple experiments with these models, non-parametric statistical tests are applied to select the best of these techniques. In the experiments carried out with ARIMA, it is concluded that ARIMA models are not adequate in this case study due to the existence of a nonlinear component that cannot be modeled. Secondly, ELMAN and NAR neural networks with multi-start training is performed with each network structure to deal with the local optimum problem, since in neural network training there is a very strong dependence on the initial weights of the network. The obtained results suggest that both neural networks are efficient for the short

  12. A comparison of two types of neural network for weld quality prediction in small scale resistance spot welding

    Science.gov (United States)

    Wan, Xiaodong; Wang, Yuanxun; Zhao, Dawei; Huang, YongAn

    2017-09-01

    Our study aims at developing an effective quality monitoring system in small scale resistance spot welding of titanium alloy. The measured electrical signals were interpreted in combination with the nugget development. Features were extracted from the dynamic resistance and electrode voltage curve. A higher welding current generally indicated a lower overall dynamic resistance level. A larger electrode voltage peak and higher change rate of electrode voltage could be detected under a smaller electrode force or higher welding current condition. Variation of the extracted features and weld quality was found more sensitive to the change of welding current than electrode force. Different neural network model were proposed for weld quality prediction. The back propagation neural network was more proper in failure load estimation. The probabilistic neural network model was more appropriate to be applied in quality level classification. A real-time and on-line weld quality monitoring system may be developed by taking advantages of both methods.

  13. Prediction of degree of crystallinity for the LTA zeolite using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Ghanbari Shahram

    2017-10-01

    Full Text Available Zeolites are microporous aluminosilicate/silicate crystalline materials with three-dimensional tetrahedral configuration. In this study, the degree of crystallinity of the synthesized Linde Type A (LTA zeolite, which is the main indicator of its quality/purity is tried to be modeled. Effect of crystallization time, temperature, molar ratio of the synthesis gel on the relative crystallinity of the LTA zeolites is investigated using artificial neural networks. Our experimental observations and some data collected from literature have been used for adjusting the parameters of the proposed model and evaluating its performance. It has been observed that two-layer perceptron network with eight hidden neurons is the most accurate approach for the considered task. The designed model predicts the experimental datasets with a mean square error of 3.99 × 10-6, absolute average relative deviation of 8.69 %, and regression coefficient of 0.9596. The proposed model can decrease the required time and number of experiments to evaluate the extent of crystallinity of the LTA zeolites.

  14. Artificial Neural Network System to Predict the Postoperative Outcome of Percutaneous Nephrolithotomy.

    Science.gov (United States)

    Aminsharifi, Alireza; Irani, Dariush; Pooyesh, Shima; Parvin, Hamid; Dehghani, Sakineh; Yousofi, Khalilolah; Fazel, Ebrahim; Zibaie, Fatemeh

    2017-05-01

    To construct, train, and apply an artificial neural network (ANN) system for prediction of different outcome variables of percutaneous nephrolithotomy (PCNL). We calculated predictive accuracy, sensitivity, and precision for each outcome variable. During the study period, all adult patients who underwent PCNL at our institute were enrolled in the study. Preoperative and postoperative variables were recorded, and stone-free status was assessed perioperatively with computed tomography scans. MATLAB software was used to design and train the network in a feed forward back-propagation error adjustment scheme. Preoperative and postoperative data from 200 patients (training set) were used to analyze the effect and relative relevance of preoperative values on postoperative parameters. The validated adequately trained ANN was used to predict postoperative outcomes in the subsequent 254 adult patients (test set) whose preoperative values were serially fed into the system. To evaluate system accuracy in predicting each postoperative variable, predicted values were compared with actual outcomes. Two hundred fifty-four patients (155 [61%] males) were considered the test set. Mean stone burden was 6702.86 ± 381.6 mm3. Overall stone-free rate was 76.4%. Fifty-four out of 254 patients (21.3%) required ancillary procedures (shockwave lithotripsy 5.9%, transureteral lithotripsy 10.6%, and repeat PCNL 4.7%). The accuracy and sensitivity of the system in predicting different postoperative variables ranged from 81.0% to 98.2%. As a complex nonlinear mathematical model, our ANN system is an interconnected data mining tool, which prospectively analyzes and "learns" the relationships between variables. The accuracy and sensitivity of the system for predicting the stone-free rate, the need for blood transfusion, and post-PCNL ancillary procedures ranged from 81.0% to 98.2%.The stone burden and the stone morphometry were among the most significant preoperative characteristics that

  15. Predicting prostate biopsy outcome: artificial neural networks and polychotomous regression are equivalent models.

    Science.gov (United States)

    Lawrentschuk, Nathan; Lockwood, Gina; Davies, Peter; Evans, Andy; Sweet, Joan; Toi, Ants; Fleshner, Neil E

    2011-03-01

    Complex statistical models utilizing multiple inputs to derive a risk assessment may benefit prostate cancer (PC) detection where focus has been on prostate-specific antigen (PSA). This study develops a polychotomous logistic regression (PR) model and an artificial neural network (ANN) for predicting biopsy results, particularly for clinically significant PC. There were 3,025 men undergoing TRUS-guided biopsy (BX) with PSA <10 ng/ml selected. BX outcome classified as benign, atypical small acinar proliferation or high-grade prostatic intraepithelial neoplasia (ASAP/PIN), non-significant (NSPC) or clinically significant PC (CSPC). PR and ANN models were developed to distinguish between BX categories. Predictors were age, PSA, abnormal digital rectal examination (DRE), positive transrectal ultrasound (TRUS) and prostate volume. Among the BXs, 44% were benign, 14% ASAP/PIN, 16% NSPC and 25% CSPC. Median age, PSA and volume were 64 years, 5.7 ng/ml and 50 cc. TRUS lesion was present in 47%, and DRE was abnormal in 39%. PR and ANN models did not differ on percentage BX outcomes correctly predicted (55, 57%, respectively) and were equally poor for both ASAP/PIN (0%) and NSPC (2%). For PR and ANN, 74-78% ASAP/PIN predicted benign, 2% NSPC and 20-24% CSPC. For NSPC, 69-71% predicted benign, 27-29% CSPC. Benign outcomes were well identified (86-88%), although 12-13% classified CSPC. CSPC was correctly identified in 65-66% with misclassifications largely benign (33% for PR and ANN). Neither PR nor ANN was able to distinguish between the four biopsy outcomes: ASAP/PIN and NSPC were not distinguished from benign or CSPC. ANN did not perform better than PR. Inclusion of additional predictors may increase the performance of statistical models in predicting BX outcome.

  16. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    Directory of Open Access Journals (Sweden)

    Zhijia Chen

    2015-01-01

    Full Text Available In IaaS (infrastructure as a service cloud environment, users are provisioned with virtual machines (VMs. To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN. We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands.

  17. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    Science.gov (United States)

    Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong

    2015-01-01

    In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896

  18. Computational Models of Financial Price Prediction: A Survey of Neural Networks, Kernel Machines and Evolutionary Computation Approaches

    Directory of Open Access Journals (Sweden)

    Javier Sandoval

    2011-12-01

    Full Text Available A review of the representative models of machine learning research applied to the foreign exchange rate and stock price prediction problem is conducted.  The article is organized as follows: The first section provides a context on the definitions and importance of foreign exchange rate and stock markets.  The second section reviews machine learning models for financial prediction focusing on neural networks, SVM and evolutionary methods. Lastly, the third section draws some conclusions.

  19. Salinity independent volume fraction prediction in water-gas-oil multiphase flows using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B., E-mail: otero@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: brandao@ien.gov.b [Instituto de Engenharia Nuclear (DIRA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos

    2011-07-01

    This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)

  20. Response surface and neural network based predictive models of cutting temperature in hard turning

    Directory of Open Access Journals (Sweden)

    Mozammel Mia

    2016-11-01

    Full Text Available The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM and Artificial Neural Network (ANN were employed to predict the temperature in respect of cutting speed, feed rate and material hardness. The number and orientation of the experimental trials, conducted in both dry and high pressure coolant (HPC environments, were planned using full factorial design. The temperature was measured by using the tool-work thermocouple. In RSM model, two quadratic equations of temperature were derived from experimental data. The analysis of variance (ANOVA and mean absolute percentage error (MAPE were performed to suffice the adequacy of the models. In ANN model, 80% data were used to train and 20% data were employed for testing. Like RSM, herein, the error analysis was also conducted. The accuracy of the RSM and ANN model was found to be ⩾99%. The ANN models exhibit an error of ∼5% MAE for testing data. The regression coefficient was found to be greater than 99.9% for both dry and HPC. Both these models are acceptable, although the ANN model demonstrated a higher accuracy. These models, if employed, are expected to provide a better control of cutting temperature in turning of hardened steel.

  1. Sludge Bulking Prediction Using Principle Component Regression and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Inchio Lou

    2012-01-01

    Full Text Available Sludge bulking is the most common solids settling problem in wastewater treatment plants, which is caused by the excessive growth of filamentous bacteria extending outside the flocs, resulting in decreasing the wastewater treatment efficiency and deteriorating the water quality in the effluent. Previous studies using molecular techniques have been widely used from the microbiological aspects, while the mechanisms have not yet been completely understood to form the deterministic cause-effect relationship. In this study, system identification techniques based on the analysis of the inputs and outputs of the activated sludge system are applied to the data-driven modeling. Principle component regression (PCR and artificial neural network (ANN were identified using the data from Chongqing wastewater treatment plant (CQWWTP, including temperature, pH, biochemical oxygen demand (BOD, chemical oxygen demand (COD, suspended solids (SSs, ammonia (NH4+, total nitrogen (TN, total phosphorus (TP, and mixed liquor suspended solids (MLSSs. The models were subsequently used to predict the sludge volume index (SVI, the indicator of the bulking occurrence. Comparison of the results obtained by both models is also presented. The results showed that ANN has better prediction power (R2=0.9 than PCR (R2=0.7 and thus provides a useful guide for practical sludge bulking control.

  2. Landslide Displacement Prediction With Uncertainty Based on Neural Networks With Random Hidden Weights.

    Science.gov (United States)

    Lian, Cheng; Zeng, Zhigang; Yao, Wei; Tang, Huiming; Chen, Chun Lung Philip

    2016-12-01

    In this paper, we propose a new approach to establish a landslide displacement forecasting model based on artificial neural networks (ANNs) with random hidden weights. To quantify the uncertainty associated with the predictions, a framework for probabilistic forecasting of landslide displacement is developed. The aim of this paper is to construct prediction intervals (PIs) instead of deterministic forecasting. A lower-upper bound estimation (LUBE) method is adopted to construct ANN-based PIs, while a new single hidden layer feedforward ANN with random hidden weights for LUBE is proposed. Unlike the original implementation of LUBE, the input weights and hidden biases of the ANN are randomly chosen, and only the output weights need to be adjusted. Combining particle swarm optimization (PSO) and gravitational search algorithm (GSA), a hybrid evolutionary algorithm, PSOGSA, is utilized to optimize the output weights. Furthermore, a new ANN objective function, which combines a modified combinational coverage width-based criterion with one-norm regularization, is proposed. Two benchmark data sets and two real-world landslide data sets are presented to illustrate the capability and merit of our method. Experimental results reveal that the proposed method can construct high-quality PIs.

  3. Lung cancer prediction using neural network ensemble with histogram of oriented gradient genomic features.

    Science.gov (United States)

    Adetiba, Emmanuel; Olugbara, Oludayo O

    2015-01-01

    This paper reports an experimental comparison of artificial neural network (ANN) and support vector machine (SVM) ensembles and their "nonensemble" variants for lung cancer prediction. These machine learning classifiers were trained to predict lung cancer using samples of patient nucleotides with mutations in the epidermal growth factor receptor, Kirsten rat sarcoma viral oncogene, and tumor suppressor p53 genomes collected as biomarkers from the IGDB.NSCLC corpus. The Voss DNA encoding was used to map the nucleotide sequences of mutated and normal genomes to obtain the equivalent numerical genomic sequences for training the selected classifiers. The histogram of oriented gradient (HOG) and local binary pattern (LBP) state-of-the-art feature extraction schemes were applied to extract representative genomic features from the encoded sequences of nucleotides. The ANN ensemble and HOG best fit the training dataset of this study with an accuracy of 95.90% and mean square error of 0.0159. The result of the ANN ensemble and HOG genomic features is promising for automated screening and early detection of lung cancer. This will hopefully assist pathologists in administering targeted molecular therapy and offering counsel to early stage lung cancer patients and persons in at risk populations.

  4. Lung Cancer Prediction Using Neural Network Ensemble with Histogram of Oriented Gradient Genomic Features

    Directory of Open Access Journals (Sweden)

    Emmanuel Adetiba

    2015-01-01

    Full Text Available This paper reports an experimental comparison of artificial neural network (ANN and support vector machine (SVM ensembles and their “nonensemble” variants for lung cancer prediction. These machine learning classifiers were trained to predict lung cancer using samples of patient nucleotides with mutations in the epidermal growth factor receptor, Kirsten rat sarcoma viral oncogene, and tumor suppressor p53 genomes collected as biomarkers from the IGDB.NSCLC corpus. The Voss DNA encoding was used to map the nucleotide sequences of mutated and normal genomes to obtain the equivalent numerical genomic sequences for training the selected classifiers. The histogram of oriented gradient (HOG and local binary pattern (LBP state-of-the-art feature extraction schemes were applied to extract representative genomic features from the encoded sequences of nucleotides. The ANN ensemble and HOG best fit the training dataset of this study with an accuracy of 95.90% and mean square error of 0.0159. The result of the ANN ensemble and HOG genomic features is promising for automated screening and early detection of lung cancer. This will hopefully assist pathologists in administering targeted molecular therapy and offering counsel to early stage lung cancer patients and persons in at risk populations.

  5. Prediction of intended career choice in family medicine using artificial neural networks.

    Science.gov (United States)

    Petek Šter, Marija; Švab, Igor; Šter, Branko

    2015-03-01

    Due to the importance of family medicine and a relative shortage of doctors in this discipline, it is important to know how the decision to choose a career in this field is made. Since this decision is closely linked to students' attitudes towards family medicine, we were interested in identifying those attitudes that predict intended career choice in family medicine. A cross-sectional study was performed among 316 final-year medical students of the Ljubljana Medical Faculty in Slovenia. The students filled out a 164-item questionnaire, developed based on the European definition of family medicine and the EURACT Educational Agenda, using a seven-point Likert scale containing attitudes towards family medicine. The students also recorded their interest in family medicine on a five-point Likert scale. Attitudes were selected using a feature selection procedure with artificial neural networks that best differentiated between students who are likely and students who are unlikely to become family physicians. Thirty-one out of 164 attitudes predict a career in family medicine, with a classification accuracy of at least 85%. Predictors of intended career choice in family medicine are related to three categories: understanding of the discipline, working in a coherent health care system and person-centredness. The most important predictor is an appreciation of a long-term doctor-patient relationship. Students whose intended career choice is family medicine differ from other students in having more positive attitudes towards family physicians' competences and towards characteristics of family medicine and primary care.

  6. Prediction of Potential Hit Song and Musical Genre Using Artificial Neural Networks

    Science.gov (United States)

    Monterola, Christopher; Abundo, Cheryl; Tugaff, Jeric; Venturina, Lorcel Ericka

    Accurately quantifying the goodness of music based on the seemingly subjective taste of the public is a multi-million industry. Recording companies can make sound decisions on which songs or artists to prioritize if accurate forecasting is achieved. We extract 56 single-valued musical features (e.g. pitch and tempo) from 380 Original Pilipino Music (OPM) songs (190 are hit songs) released from 2004 to 2006. Based on an effect size criterion which measures a variable's discriminating power, the 20 highest ranked features are fed to a classifier tasked to predict hit songs. We show that regardless of musical genre, a trained feed-forward neural network (NN) can predict potential hit songs with an average accuracy of ΦNN = 81%. The accuracy is about +20% higher than those of standard classifiers such as linear discriminant analysis (LDA, ΦLDA = 61%) and classification and regression trees (CART, ΦCART = 57%). Both LDA and CART are above the proportional chance criterion (PCC, ΦPCC = 50%) but are slightly below the suggested acceptable classifier requirement of 1.25*ΦPCC = 63%. Utilizing a similar procedure, we demonstrate that different genres (ballad, alternative rock or rock) of OPM songs can be automatically classified with near perfect accuracy using LDA or NN but only around 77% using CART.

  7. Response surface and neural network based predictive models of cutting temperature in hard turning.

    Science.gov (United States)

    Mia, Mozammel; Dhar, Nikhil R

    2016-11-01

    The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM) and Artificial Neural Network (ANN) were employed to predict the temperature in respect of cutting speed, feed rate and material hardness. The number and orientation of the experimental trials, conducted in both dry and high pressure coolant (HPC) environments, were planned using full factorial design. The temperature was measured by using the tool-work thermocouple. In RSM model, two quadratic equations of temperature were derived from experimental data. The analysis of variance (ANOVA) and mean absolute percentage error (MAPE) were performed to suffice the adequacy of the models. In ANN model, 80% data were used to train and 20% data were employed for testing. Like RSM, herein, the error analysis was also conducted. The accuracy of the RSM and ANN model was found to be ⩾99%. The ANN models exhibit an error of ∼5% MAE for testing data. The regression coefficient was found to be greater than 99.9% for both dry and HPC. Both these models are acceptable, although the ANN model demonstrated a higher accuracy. These models, if employed, are expected to provide a better control of cutting temperature in turning of hardened steel.

  8. Artificial neural network prediction of quantitative structure - retention relationships of polycyclic aromatic hydocarbons in gas chromatography

    Directory of Open Access Journals (Sweden)

    SNEZANA SREMAC

    2005-11-01

    Full Text Available A feed-forward artificial neural network (ANN model was used to link molecular structures (boiling points, connectivity indices and molecular weights and retention indices of polycyclic aromatic hydrocarbons (PAHs in linear temperature-programmed gas chromatography. A randomly taken subset of PAH retention data reported by Lee et al. [Anal. Chem. 51 (1979 768], containing retention index data for 30 PAHs, was used to make the ANN model. The prediction ability of the trained ANN was tested on unseen data for 18 PAHs from the same article, as well as on the retention data for 7 PAHs experimentally obtained in this work. In addition, two different data sets with known retention indices taken from the literature were analyzed by the same ANN model. It has been shown that the relative accuracy as the degree of agreement between the measured and the predicted retention indices in all testing sets, for most of the studied PAHs, were within the experimental error margins (±3%.

  9. NEURAL METHODS FOR THE FINANCIAL PREDICTION

    Directory of Open Access Journals (Sweden)

    Jerzy Balicki

    2016-06-01

    Full Text Available Artificial neural networks can be used to predict share investment on the stock market, assess the reliability of credit client or predicting banking crises. Moreover, this paper discusses the principles of cooperation neural network algorithms with evolutionary method, and support vector machines. In addition, a reference is made to other methods of artificial intelligence, which are used in finance prediction.

  10. Neural Networks: Implementations and Applications

    NARCIS (Netherlands)

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  11. Predicting manual arm strength: A direct comparison between artificial neural network and multiple regression approaches.

    Science.gov (United States)

    La Delfa, Nicholas J; Potvin, Jim R

    2016-02-29

    In ergonomics, strength prediction has typically been accomplished using linked-segment biomechanical models, and independent estimates of strength about each axis of the wrist, elbow and shoulder joints. It has recently been shown that multiple regression approaches, using the simple task-relevant inputs of hand location and force direction, may be a better method for predicting manual arm strength (MAS) capabilities. Artificial neural networks (ANNs) also serve as a powerful data fitting approach, but their application to occupational biomechanics and ergonomics is limited. Therefore, the purpose of this study was to perform a direct comparison between ANN and regression models, by evaluating their ability to predict MAS with identical sets of development and validation MAS data. Multi-directional MAS data were obtained from 95 healthy female participants at 36 hand locations within the reach envelope. ANN and regression models were developed using a random, but identical, sample of 85% of the MAS data (n=456). The remaining 15% of the data (n=80) were used to validate the two approaches. When compared to the development data, the ANN predictions had a much higher explained variance (90.2% vs. 66.5%) and much lower RMSD (9.3N vs. 17.2N), vs. the regression model. The ANN also performed better with the independent validation data (r(2)=78.6%, RMSD=15.1) compared to the regression approach (r(2)=65.3%, RMSD=18.6N). These results suggest that ANNs provide a more accurate and robust alternative to regression approaches, and should be considered more often in biomechanics and ergonomics evaluations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Prediction of persistent hemodynamic depression after carotid angioplasty and stenting using artificial neural network model.

    Science.gov (United States)

    Jeon, Jin Pyeong; Kim, Chulho; Oh, Byoung-Doo; Kim, Sun Jeong; Kim, Yu-Seop

    2017-12-05

    To assess and compare predictive factors for persistent hemodynamic depression (PHD) after carotid artery angioplasty and stenting (CAS) using artificial neural network (ANN) and multiple logistic regression (MLR) or support vector machines (SVM) models. A retrospective data set of patients (n=76) who underwent CAS from 2007 to 2014 was used as input (training cohort) to a back-propagation ANN using TensorFlow platform. PHD was defined when systolic blood pressure was less than 90mmHg or heart rate was less 50 beats/min that lasted for more than one hour. The resulting ANN was prospectively tested in 33 patients (test cohort) and compared with MLR or SVM models according to accuracy and receiver operating characteristics (ROC) curve analysis. No significant difference in baseline characteristics between the training cohort and the test cohort was observed. PHD was observed in 21 (27.6%) patients in the training cohort and 10 (30.3%) patients in the test cohort. In the training cohort, the accuracy of ANN for the prediction of PHD was 98.7% and the area under the ROC curve (AUROC) was 0.961. In the test cohort, the number of correctly classified instances was 32 (97.0%) using the ANN model. In contrast, the accuracy rate of MLR or SVM model was both 75.8%. ANN (AUROC: 0.950; 95% CI [confidence interval]: 0.813-0.996) showed superior predictive performance compared to MLR model (AUROC: 0.796; 95% CI: 0.620-0.915, p<0.001) or SVM model (AUROC: 0.885; 95% CI: 0.725-0.969, p<0.001). The ANN model seems to have more powerful prediction capabilities than MLR or SVM model for persistent hemodynamic depression after CAS. External validation with a large cohort is needed to confirm our results. Copyright © 2017. Published by Elsevier B.V.

  13. Spatial prediction of ground subsidence susceptibility using an artificial neural network.

    Science.gov (United States)

    Lee, Saro; Park, Inhye; Choi, Jong-Kuk

    2012-02-01

    Ground subsidence in abandoned underground coal mine areas can result in loss of life and property. We analyzed ground subsidence susceptibility (GSS) around abandoned coal mines in Jeong-am, Gangwon-do, South Korea, using artificial neural network (ANN) and geographic information system approaches. Spatial data of subsidence area, topography, and geology, as well as various ground-engineering data, were collected and used to create a raster database of relevant factors for a GSS map. Eight major factors causing ground subsidence were extracted from the existing ground subsidence area: slope, depth of coal mine, distance from pit, groundwater depth, rock-mass rating, distance from fault, geology, and land use. Areas of ground subsidence were randomly divided into a training set to analyze GSS using the ANN and a test set to validate the predicted GSS map. Weights of each factor's relative importance were determined by the back-propagation training algorithms and applied to the input factor. The GSS was then calculated using the weights, and GSS maps were created. The process was repeated ten times to check the stability of analysis model using a different training data set. The map was validated using area-under-the-curve analysis with the ground subsidence areas that had not been used to train the model. The validation showed prediction accuracies between 94.84 and 95.98%, representing overall satisfactory agreement. Among the input factors, "distance from fault" had the highest average weight (i.e., 1.5477), indicating that this factor was most important. The generated maps can be used to estimate hazards to people, property, and existing infrastructure, such as the transportation network, and as part of land-use and infrastructure planning.

  14. Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) using Complex Quantum Neuron (CQN): Applications to time series prediction.

    Science.gov (United States)

    Cui, Yiqian; Shi, Junyou; Wang, Zili

    2015-11-01

    Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.

    Science.gov (United States)

    Han, Youngmahn; Kim, Dongsup

    2017-12-28

    Computational scanning of peptide candidates that bind to a specific major histocompatibility complex (MHC) can speed up the peptide-based vaccine development process and therefore various methods are being actively developed. Recently, machine-learning-based methods have generated successful results by training large amounts of experimental data. However, many machine learning-based methods are generally less sensitive in recognizing locally-clustered interactions, which can synergistically stabilize peptide binding. Deep convolutional neural network (DCNN) is a deep learning method inspired by visual recognition process of animal brain and it is known to be able to capture meaningful local patterns from 2D images. Once the peptide-MHC interactions can be encoded into image-like array(ILA) data, DCNN can be employed to build a predictive model for peptide-MHC binding prediction. In this study, we demonstrated that DCNN is able to not only reliably predict peptide-MHC binding, but also sensitively detect locally-clustered interactions. Nonapeptide-HLA-A and -B binding data were encoded into ILA data. A DCNN, as a pan-specific prediction model, was trained on the ILA data. The DCNN showed higher performance than other prediction tools for the latest benchmark datasets, which consist of 43 datasets for 15 HLA-A alleles and 25 datasets for 10 HLA-B alleles. In particular, the DCNN outperformed other tools for alleles belonging to the HLA-A3 supertype. The F1 scores of the DCNN were 0.86, 0.94, and 0.67 for HLA-A*31:01, HLA-A*03:01, and HLA-A*68:01 alleles, respectively, which were significantly higher than those of other tools. We found that the DCNN was able to recognize locally-clustered interactions that could synergistically stabilize peptide binding. We developed ConvMHC, a web server to provide user-friendly web interfaces for peptide-MHC class I binding predictions using the DCNN. ConvMHC web server can be accessible via http://jumong.kaist.ac.kr:8080/convmhc

  16. Comparison of logistic regression and artificial neural network in low back pain prediction: second national health survey.

    Science.gov (United States)

    Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H

    2012-01-01

    The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant.

  17. Acquisition and Neural Network Prediction of 3D Deformable Object Shape Using a Kinect and a Force-Torque Sensor.

    Science.gov (United States)

    Tawbe, Bilal; Cretu, Ana-Maria

    2017-05-11

    The realistic representation of deformations is still an active area of research, especially for deformable objects whose behavior cannot be simply described in terms of elasticity parameters. This paper proposes a data-driven neural-network-based approach for capturing implicitly and predicting the deformations of an object subject to external forces. Visual data, in the form of 3D point clouds gathered by a Kinect sensor, is collected over an object while forces are exerted by means of the probing tip of a force-torque sensor. A novel approach based on neural gas fitting is proposed to describe the particularities of a deformation over the selectively simplified 3D surface of the object, without requiring knowledge of the object material. An alignment procedure, a distance-based clustering, and inspiration from stratified sampling support this process. The resulting representation is denser in the region of the deformation (an average of 96.6% perceptual similarity with the collected data in the deformed area), while still preserving the object's overall shape (86% similarity over the entire surface) and only using on average of 40% of the number of vertices in the mesh. A series of feedforward neural networks is then trained to predict the mapping between the force parameters characterizing the interaction with the object and the change in the object shape, as captured by the fitted neural gas nodes. This series of networks allows for the prediction of the deformation of an object when subject to unknown interactions.

  18. A qualitative approach for predicting the Microtox (Photobacterium phosphoreum) toxicity of nitriles and nitro compounds using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, K.L.E.; McKinnon, M.B.; Niculescu, S.P. [National Water Research Inst., Burlington, Ontario (Canada)

    1995-12-31

    The recent availability of a large normalized toxicity database (COMPUTOX{trademark}) and modern neural network algorithms, allows the possibility to develop representative QSAR models over large toxicity ranges. Exploration of organic cyanides using a feed-forward backpropagation neural network model produces interesting results. This non-congeneric data set (N = 73), covering over 6 orders of magnitude, was used to predict Microtox toxicity via 31 functional group descriptors, an exploded chemical formula and log P. The training data for the network was obtained in two steps: first, statistical standardizing of each of the 51 data input fields and second, transformation/compression using the sigmoid logistic function. The feedforward neural model, architecture 51-26-13-1, provided the best feedback to the training using the criteria of accuracy and presence of the white noise Gaussian character of the residuals (for computing confidence intervals). The model was validated with a simplified Jacknife procedure by randomly splitting the data into five disjoint subsets of (almost) equal volume. For each of the subsets, the weights obtained from training the network on the complementary data subsets after 1,000, 1,500, 2,000, 2,500 and 3,000 training cycles, were computed and, with input from the considered subset, used to predict Microtox values. Finally, the sets consisting of measured and predicted values were reassembled. The best correlation, between measured and predicted values was obtained at 1,500 training cycles. Simultaneously, the distribution of the residuals showed pronounced white noise Gaussian character. Higher numbers of cycles cause overtraining, due to memorization of the input data. The results prove the predictive capacity of this neural network model and show that it is appropriate for this data set. Similar results were obtained for other chemical classes.

  19. Setup of a Parameterized FE Model for the Die Roll Prediction in Fine Blanking using Artificial Neural Networks

    Science.gov (United States)

    Stanke, J.; Trauth, D.; Feuerhack, A.; Klocke, F.

    2017-09-01

    Die roll is a morphological feature of fine blanked sheared edges. The die roll reduces the functional part of the sheared edge. To compensate for the die roll thicker sheet metal strips and secondary machining must be used. However, in order to avoid this, the influence of various fine blanking process parameters on the die roll has been experimentally and numerically studied, but there is still a lack of knowledge on the effects of some factors and especially factor interactions on the die roll. Recent changes in the field of artificial intelligence motivate the hybrid use of the finite element method and artificial neural networks to account for these non-considered parameters. Therefore, a set of simulations using a validated finite element model of fine blanking is firstly used to train an artificial neural network. Then the artificial neural network is trained with thousands of experimental trials. Thus, the objective of this contribution is to develop an artificial neural network that reliably predicts the die roll. Therefore, in this contribution, the setup of a fully parameterized 2D FE model is presented that will be used for batch training of an artificial neural network. The FE model enables an automatic variation of the edge radii of blank punch and die plate, the counter and blank holder force, the sheet metal thickness and part diameter, V-ring height and position, cutting velocity as well as material parameters covered by the Hensel-Spittel model for 16MnCr5 (1.7131, AISI/SAE 5115). The FE model is validated using experimental trails. The results of this contribution is a FE model suitable to perform 9.623 simulations and to pass the simulated die roll width and height automatically to an artificial neural network.

  20. Predicting Final GPA of Graduate School Students: Comparing Artificial Neural Networking and Simultaneous Multiple Regression

    Science.gov (United States)

    Anderson, Joan L.

    2006-01-01

    Data from graduate student applications at a large Western university were used to determine which factors were the best predictors of success in graduate school, as defined by cumulative graduate grade point average. Two statistical models were employed and compared: artificial neural networking and simultaneous multiple regression. Both models…

  1. Behavioral and Physiological Neural Network Analyses: A Common Pathway toward Pattern Recognition and Prediction

    Science.gov (United States)

    Ninness, Chris; Lauter, Judy L.; Coffee, Michael; Clary, Logan; Kelly, Elizabeth; Rumph, Marilyn; Rumph, Robin; Kyle, Betty; Ninness, Sharon K.

    2012-01-01

    Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study…

  2. Water demand prediction using artificial neural networks and support vector regression

    CSIR Research Space (South Africa)

    Msiza, IS

    2008-11-01

    Full Text Available comparison are Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). In this study it was observed that ANNs perform significantly better than SVMs. This performance is measured against the generalization ability of the two techniques in water...

  3. A comparison of neural network models, fuzzy logic, and multiple linear regression for prediction of hatchability.

    Science.gov (United States)

    Mehri, M

    2013-04-01

    Application of appropriate models to approximate the performance function warrants more precise prediction and helps to make the best decisions in the poultry industry. This study reevaluated the factors affecting hatchability in laying hens from 29 to 56 wk of age. Twenty-eight data lines representing 4 inputs consisting of egg weight, eggshell thickness, egg sphericity, and yolk/albumin ratio and 1 output, hatchability, were obtained from the literature and used to train an artificial neural network (ANN). The prediction ability of ANN was compared with that of fuzzy logic to evaluate the fitness of these 2 methods. The models were compared using R(2), mean absolute deviation (MAD), mean squared error (MSE), mean absolute percentage error (MAPE), and bias. The developed model was used to assess the relative importance of each variable on the hatchability by calculating the variable sensitivity ratio. The statistical evaluations showed that the ANN-based model predicted hatchability more accurately than fuzzy logic. The ANN-based model had a higher determination of coefficient (R(2) = 0.99) and lower residual distribution (MAD = 0.005; MSE = 0.00004; MAPE = 0.732; bias = 0.0012) than fuzzy logic (R(2) = 0.87; MAD = 0.014; MSE = 0.0004; MAPE = 2.095; bias = 0.0046). The sensitivity analysis revealed that the most important variable in the ANN-based model of hatchability was egg weight (variable sensitivity ratio, VSR = 283.11), followed by yolk/albumin ratio (VSR = 113.16), eggshell thickness (VSR = 16.23), and egg sphericity (VSR = 3.63). The results of this research showed that the universal approximation capability of ANN made it a powerful tool to approximate complex functions such as hatchability in the incubation process.

  4. Parameterization and prediction of nanoparticle transport in porous media: A reanalysis using artificial neural network

    Science.gov (United States)

    Babakhani, Peyman; Bridge, Jonathan; Doong, Ruey-an; Phenrat, Tanapon

    2017-06-01

    The continuing rapid expansion of industrial and consumer processes based on nanoparticles (NP) necessitates a robust model for delineating their fate and transport in groundwater. An ability to reliably specify the full parameter set for prediction of NP transport using continuum models is crucial. In this paper we report the reanalysis of a data set of 493 published column experiment outcomes together with their continuum modeling results. Experimental properties were parameterized into 20 factors which are commonly available. They were then used to predict five key continuum model parameters as well as the effluent concentration via artificial neural network (ANN)-based correlations. The Partial Derivatives (PaD) technique and Monte Carlo method were used for the analysis of sensitivities and model-produced uncertainties, respectively. The outcomes shed light on several controversial relationships between the parameters, e.g., it was revealed that the trend of Katt with average pore water velocity was positive. The resulting correlations, despite being developed based on a "black-box" technique (ANN), were able to explain the effects of theoretical parameters such as critical deposition concentration (CDC), even though these parameters were not explicitly considered in the model. Porous media heterogeneity was considered as a parameter for the first time and showed sensitivities higher than those of dispersivity. The model performance was validated well against subsets of the experimental data and was compared with current models. The robustness of the correlation matrices was not completely satisfactory, since they failed to predict the experimental breakthrough curves (BTCs) at extreme values of ionic strengths.

  5. Multiple Linear Regression and Artificial Neural Network to Predict Blood Glucose in Overweight Patients.

    Science.gov (United States)

    Wang, J; Wang, F; Liu, Y; Xu, J; Lin, H; Jia, B; Zuo, W; Jiang, Y; Hu, L; Lin, F

    2016-01-01

    Overweight individuals are at higher risk for developing type II diabetes than the general population. We conducted this study to analyze the correlation between blood glucose and biochemical parameters, and developed a blood glucose prediction model tailored to overweight patients. A total of 346 overweight Chinese people patients ages 18-81 years were involved in this study. Their levels of fasting glucose (fs-GLU), blood lipids, and hepatic and renal functions were measured and analyzed by multiple linear regression (MLR). Based the MLR results, we developed a back propagation artificial neural network (BP-ANN) model by selecting tansig as the transfer function of the hidden layers nodes, and purelin for the output layer nodes, with training goal of 0.5×10(-5). There was significant correlation between fs-GLU with age, BMI, and blood biochemical indexes (P<0.05). The results of MLR analysis indicated that age, fasting alanine transaminase (fs-ALT), blood urea nitrogen (fs-BUN), total protein (fs-TP), uric acid (fs-BUN), and BMI are 6 independent variables related to fs-GLU. Based on these parameters, the BP-ANN model was performed well and reached high prediction accuracy when training 1 000 epoch (R=0.9987). The level of fs-GLU was predictable using the proposed BP-ANN model based on 6 related parameters (age, fs-ALT, fs-BUN, fs-TP, fs-UA and BMI) in overweight patients. © Georg Thieme Verlag KG Stuttgart · New York.

  6. [Preliminary application of Back-Propagation artificial neural network model on the prediction of infectious diarrhea incidence in Shanghai].

    Science.gov (United States)

    Li, Jian; Gu, Jun-zhong; Mao, Sheng-hua; Xiao, Wen-jia; Jin, Hui-ming; Zheng, Ya-xu; Wang, Yong-ming; Hu, Jia-yu

    2013-12-01

    To establish BP artificial neural network predicting model regarding the daily cases of infectious diarrhea in Shanghai. Data regarding both the incidence of infectious diarrhea from 2005 to 2008 in Shanghai and meteorological factors including temperature, relative humidity, rainfall, atmospheric pressure, duration of sunshine and wind speed within the same periods were collected and analyzed with the MatLab R2012b software. Meteorological factors that were correlated with infectious diarrhea were screened by Spearman correlation analysis. Principal component analysis (PCA) was used to remove the multi-colinearities between meteorological factors. Back-Propagation (BP) neural network was employed to establish related prediction models regarding the daily infectious diarrhea incidence, using artificial neural networks toolbox. The established models were evaluated through the fitting, predicting and forecasting processes. Data from Spearman correlation analysis indicated that the incidence of infectious diarrhea had a highly positive correlation with factors as daily maximum temperature, minimum temperature, average temperature, minimum relative humidity and average relative humidity in the previous two days (P prediction. Then appeared to be 4.7811, 6.8921,0.7918,0.8418 and 5.8163, 7.8062,0.7202,0.8180, respectively. The rate on mean error regarding the predictive value to actual incidence in 2008 was 5.30% and the forecasting precision reached 95.63% . Temperature and air pressure showed important impact on the incidence of infectious diarrhea. The BP neural network model had the advantages of low simulation forecasting errors and high forecasting hit rate that could ideally predict and forecast the effects on the incidence of infectious diarrhea.

  7. Predicting Student Academic Performance: A Comparison of Two Meta-Heuristic Algorithms Inspired by Cuckoo Birds for Training Neural Networks

    Directory of Open Access Journals (Sweden)

    Jeng-Fung Chen

    2014-10-01

    Full Text Available Predicting student academic performance with a high accuracy facilitates admission decisions and enhances educational services at educational institutions. This raises the need to propose a model that predicts student performance, based on the results of standardized exams, including university entrance exams, high school graduation exams, and other influential factors. In this study, an approach to the problem based on the artificial neural network (ANN with the two meta-heuristic algorithms inspired by cuckoo birds and their lifestyle, namely, Cuckoo Search (CS and Cuckoo Optimization Algorithm (COA is proposed. In particular, we used previous exam results and other factors, such as the location of the student’s high school and the student’s gender as input variables, and predicted the student academic performance. The standard CS and standard COA were separately utilized to train the feed-forward network for prediction. The algorithms optimized the weights between layers and biases of the neuron network. The simulation results were then discussed and analyzed to investigate the prediction ability of the neural network trained by these two algorithms. The findings demonstrated that both CS and COA have potential in training ANN and ANN-COA obtained slightly better results for predicting student academic performance in this case. It is expected that this work may be used to support student admission procedures and strengthen the service system in educational institutions.

  8. Short-term load and wind power forecasting using neural network-based prediction intervals.

    Science.gov (United States)

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2014-02-01

    Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time.

  9. Wavelength prediction of laser incident on amorphous silicon detector by neural network

    Science.gov (United States)

    Esmaeili Sani, V.; Moussavi-Zarandi, A.; Kafaee, M.

    2011-10-01

    In this paper we present a method based on artificial neural networks (ANN) and the use of only one amorphous semiconductor detector to predict the wavelength of incident laser. Amorphous semiconductors and especially amorphous hydrogenated silicon, a-Si:H, are now widely used in many electronic devices, such as solar cells, many types of position sensitive detectors and X-ray imagers for medical applications. In order to study the electrical properties and detection characteristics of thin films of a-Si:H, n-i-p structures have been simulated by SILVACO software. The basic electronic properties of most of the materials used are known, but device modeling depends on a large number of parameters that are not all well known. In addition, the relationship between the shape of the induced anode current and the wavelength of the incident laser leads to complicated calculations. Soft data-based computational methods can model multidimensional non-linear processes and represent the complex input-output relation between the form of the output signal and the wavelength of incident laser.

  10. Egg volume prediction using machine vision technique based on pappus theorem and artificial neural network.

    Science.gov (United States)

    Soltani, Mahmoud; Omid, Mahmoud; Alimardani, Reza

    2015-05-01

    Egg size is one of the important properties of egg that is judged by customers. Accordingly, in egg sorting and grading, the size of eggs must be considered. In this research, a new method of egg volume prediction was proposed without need to measure weight of egg. An accurate and efficient image processing algorithm was designed and implemented for computing major and minor diameters of eggs. Two methods of egg size modeling were developed. In the first method, a mathematical model was proposed based on Pappus theorem. In second method, Artificial Neural Network (ANN) technique was used to estimate egg volume. The determined egg volume by these methods was compared statistically with actual values. For mathematical modeling, the R(2), Mean absolute error and maximum absolute error values were obtained as 0.99, 0.59 cm(3) and 1.69 cm(3), respectively. To determine the best ANN, R(2) test and RMSEtest were used as selection criteria. The best ANN topology was 2-28-1 which had the R(2) test and RMSEtest of 0.992 and 0.66, respectively. After system calibration, the proposed models were evaluated. The results which indicated the mathematical modeling yielded more satisfying results. So this technique was selected for egg size determination.

  11. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals.

    Science.gov (United States)

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2015-09-01

    Penetration of renewable energy resources, such as wind and solar power, into power systems significantly increases the uncertainties on system operation, stability, and reliability in smart grids. In this paper, the nonparametric neural network-based prediction intervals (PIs) are implemented for forecast uncertainty quantification. Instead of a single level PI, wind power forecast uncertainties are represented in a list of PIs. These PIs are then decomposed into quantiles of wind power. A new scenario generation method is proposed to handle wind power forecast uncertainties. For each hour, an empirical cumulative distribution function (ECDF) is fitted to these quantile points. The Monte Carlo simulation method is used to generate scenarios from the ECDF. Then the wind power scenarios are incorporated into a stochastic security-constrained unit commitment (SCUC) model. The heuristic genetic algorithm is utilized to solve the stochastic SCUC problem. Five deterministic and four stochastic case studies incorporated with interval forecasts of wind power are implemented. The results of these cases are presented and discussed together. Generation costs, and the scheduled and real-time economic dispatch reserves of different unit commitment strategies are compared. The experimental results show that the stochastic model is more robust than deterministic ones and, thus, decreases the risk in system operations of smart grids.

  12. Novel transformation-based response prediction of shear building using interval neural network

    Science.gov (United States)

    Chakraverty, S.; Sahoo, Deepti Moyi

    2017-04-01

    Present paper uses powerful technique of interval neural network (INN) to simulate and estimate structural response of multi-storey shear buildings subject to earthquake motion. The INN is first trained for a real earthquake data, viz., the ground acceleration as input and the numerically generated responses of different floors of multi-storey buildings as output. Till date, no model exists to handle positive and negative data in the INN. As such here, the bipolar data in [ -1, 1] are converted first to unipolar form, i.e., to [0, 1] by means of a novel transformation for the first time to handle the above training patterns in normalized form. Once the training is done, again the unipolar data are converted back to its bipolar form by using the inverse transformation. The trained INN architecture is then used to simulate and test the structural response of different floors for