Object Classification Using Substance Based Neural Network
Directory of Open Access Journals (Sweden)
P. Sengottuvelan
2014-01-01
Full Text Available Object recognition has shown tremendous increase in the field of image analysis. The required set of image objects is identified and retrieved on the basis of object recognition. In this paper, we propose a novel classification technique called substance based image classification (SIC using a wavelet neural network. The foremost task of SIC is to remove the surrounding regions from an image to reduce the misclassified portion and to effectively reflect the shape of an object. At first, the image to be extracted is performed with SIC system through the segmentation of the image. Next, in order to attain more accurate information, with the extracted set of regions, the wavelet transform is applied for extracting the configured set of features. Finally, using the neural network classifier model, misclassification over the given natural images and further background images are removed from the given natural image using the LSEG segmentation. Moreover, to increase the accuracy of object classification, SIC system involves the removal of the regions in the surrounding image. Performance evaluation reveals that the proposed SIC system reduces the occurrence of misclassification and reflects the exact shape of an object to approximately 10–15%.
Dynamic Object Identification with SOM-based neural networks
Directory of Open Access Journals (Sweden)
Aleksey Averkin
2014-03-01
Full Text Available In this article a number of neural networks based on self-organizing maps, that can be successfully used for dynamic object identification, is described. Unique SOM-based modular neural networks with vector quantized associative memory and recurrent self-organizing maps as modules are presented. The structured algorithms of learning and operation of such SOM-based neural networks are described in details, also some experimental results and comparison with some other neural networks are given.
Object Recognition in Aerial Images Using Convolutional Neural Networks
Directory of Open Access Journals (Sweden)
Matija Radovic
2017-06-01
Full Text Available There are numerous applications of unmanned aerial vehicles (UAVs in the management of civil infrastructure assets. A few examples include routine bridge inspections, disaster management, power line surveillance and traffic surveying. As UAV applications become widespread, increased levels of autonomy and independent decision-making are necessary to improve the safety, efficiency, and accuracy of the devices. This paper details the procedure and parameters used for the training of convolutional neural networks (CNNs on a set of aerial images for efficient and automated object recognition. Potential application areas in the transportation field are also highlighted. The accuracy and reliability of CNNs depend on the network’s training and the selection of operational parameters. This paper details the CNN training procedure and parameter selection. The object recognition results show that by selecting a proper set of parameters, a CNN can detect and classify objects with a high level of accuracy (97.5% and computational efficiency. Furthermore, using a convolutional neural network implemented in the “YOLO” (“You Only Look Once” platform, objects can be tracked, detected (“seen”, and classified (“comprehended” from video feeds supplied by UAVs in real-time.
Neural Network Approach to Locating Cryptography in Object Code
Energy Technology Data Exchange (ETDEWEB)
Jason L. Wright; Milos Manic
2009-09-01
Finding and identifying cryptography is a growing concern in the malware analysis community. In this paper, artificial neural networks are used to classify functional blocks from a disassembled program as being either cryptography related or not. The resulting system, referred to as NNLC (Neural Net for Locating Cryptography) is presented and results of applying this system to various libraries are described.
An object recognition using structured light and neural networks
Energy Technology Data Exchange (ETDEWEB)
Kim, Byeong Gab; Kim, Dong Gi; Kang, E Sok [Chungnam National Univ., Taejon (Korea, Republic of); Yoon, Ji Sup [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
This paper presents a 3D image processing which uses neural networks to combine a 2D vision camera and a laser slit beam. A laser slit beam from laser source is slitted by a set of cylindrical lenses and the line image of the networks allow to get the 3D image parameters such as the size, the position and the orientation from the line image without knowing the camera intrinsic parameters. (author). 7 refs., 3 tabs., 5 figs.
Real-time object-to-features vectorisation via Siamese neural networks
Fedorenko, Fedor; Usilin, Sergey
2017-03-01
Object-to-features vectorisation is a hard problem to solve for objects that can be hard to distinguish. Siamese and Triplet neural networks are one of the more recent tools used for such task. However, most networks used are very deep networks that prove to be hard to compute in the Internet of Things setting. In this paper, a computationally efficient neural network is proposed for real-time object-to-features vectorisation into a Euclidean metric space. We use L2 distance to reflect feature vector similarity during both training and testing. In this way, feature vectors we develop can be easily classified using K-Nearest Neighbours classifier. Such approach can be used to train networks to vectorise such "problematic" objects like images of human faces, keypoint image patches, like keypoints on Arctic maps and surrounding marine areas.
Kruithof, M.C.; Bouma, H.; Fischer, N.M.; Schutte, K.
2016-01-01
Object recognition is important to understand the content of video and allow flexible querying in a large number of cameras, especially for security applications. Recent benchmarks show that deep convolutional neural networks are excellent approaches for object recognition. This paper describes an
Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition.
Spoerer, Courtney J; McClure, Patrick; Kriegeskorte, Nikolaus
2017-01-01
Feedforward neural networks provide the dominant model of how the brain performs visual object recognition. However, these networks lack the lateral and feedback connections, and the resulting recurrent neuronal dynamics, of the ventral visual pathway in the human and non-human primate brain. Here we investigate recurrent convolutional neural networks with bottom-up (B), lateral (L), and top-down (T) connections. Combining these types of connections yields four architectures (B, BT, BL, and BLT), which we systematically test and compare. We hypothesized that recurrent dynamics might improve recognition performance in the challenging scenario of partial occlusion. We introduce two novel occluded object recognition tasks to test the efficacy of the models, digit clutter (where multiple target digits occlude one another) and digit debris (where target digits are occluded by digit fragments). We find that recurrent neural networks outperform feedforward control models (approximately matched in parametric complexity) at recognizing objects, both in the absence of occlusion and in all occlusion conditions. Recurrent networks were also found to be more robust to the inclusion of additive Gaussian noise. Recurrent neural networks are better in two respects: (1) they are more neurobiologically realistic than their feedforward counterparts; (2) they are better in terms of their ability to recognize objects, especially under challenging conditions. This work shows that computer vision can benefit from using recurrent convolutional architectures and suggests that the ubiquitous recurrent connections in biological brains are essential for task performance.
Object class segmentation of RGB-D video using recurrent convolutional neural networks.
Pavel, Mircea Serban; Schulz, Hannes; Behnke, Sven
2017-04-01
Object class segmentation is a computer vision task which requires labeling each pixel of an image with the class of the object it belongs to. Deep convolutional neural networks (DNN) are able to learn and take advantage of local spatial correlations required for this task. They are, however, restricted by their small, fixed-sized filters, which limits their ability to learn long-range dependencies. Recurrent Neural Networks (RNN), on the other hand, do not suffer from this restriction. Their iterative interpretation allows them to model long-range dependencies by propagating activity. This property is especially useful when labeling video sequences, where both spatial and temporal long-range dependencies occur. In this work, a novel RNN architecture for object class segmentation is presented. We investigate several ways to train such a network. We evaluate our models on the challenging NYU Depth v2 dataset for object class segmentation and obtain competitive results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Higher-order neural network software for distortion invariant object recognition
Reid, Max B.; Spirkovska, Lilly
1991-01-01
The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.
Hybrid neural network approach for predicting maintainability of object-oriented software
Kumar, Lov; NIT Rourkela; Rath, Santanu Ku.; NIT Rourkela
2014-01-01
Estimation of different parameters for object-oriented systems development such as effort, quality, and risk is of major concern in software development life cycle. Majority of the approaches available in literature for estimation are based on regression analysis and neural network techniques. Also it is observed that numerous software metrics are being used as input for estimation. In this study, object-oriented metrics have been considered to provide requisite input data to design the mo...
Recognizing partially occluded objects by a bidirectional associative memory neural network
Ansari, Nirwan; Liu, Xianjun
1993-07-01
We develop a bidirectional associative memory (BAM)-based neural network to achieve high- speed partial shape recognition. To recognize objects that are partially occluded, we represent each object by a set of landmarks. The landmarks of an object are points of interest relative to the object that have important shape attributes. To achieve recognition, feature values (landmark values) of each model object are trained and stored in the network. Each memory cell is trained to store landmark values of a model object for all possible positions. Given a scene that may consist of several objects, landmarks in the scene are first extracted, and their corresponding landmark values are computed. Scene landmark values are entered to each trained memory cell. The memory cell is shown to be able to recall the position of the model object in the scene. A heuristic measure is then computed to validate the recognition.
Low-complexity object detection with deep convolutional neural network for embedded systems
Tripathi, Subarna; Kang, Byeongkeun; Dane, Gokce; Nguyen, Truong
2017-09-01
We investigate low-complexity convolutional neural networks (CNNs) for object detection for embedded vision applications. It is well-known that consolidation of an embedded system for CNN-based object detection is more challenging due to computation and memory requirement comparing with problems like image classification. To achieve these requirements, we design and develop an end-to-end TensorFlow (TF)-based fully-convolutional deep neural network for generic object detection task inspired by one of the fastest framework, YOLO.1 The proposed network predicts the localization of every object by regressing the coordinates of the corresponding bounding box as in YOLO. Hence, the network is able to detect any objects without any limitations in the size of the objects. However, unlike YOLO, all the layers in the proposed network is fully-convolutional. Thus, it is able to take input images of any size. We pick face detection as an use case. We evaluate the proposed model for face detection on FDDB dataset and Widerface dataset. As another use case of generic object detection, we evaluate its performance on PASCAL VOC dataset. The experimental results demonstrate that the proposed network can predict object instances of different sizes and poses in a single frame. Moreover, the results show that the proposed method achieves comparative accuracy comparing with the state-of-the-art CNN-based object detection methods while reducing the model size by 3× and memory-BW by 3 - 4× comparing with one of the best real-time CNN-based object detectors, YOLO. Our 8-bit fixed-point TF-model provides additional 4× memory reduction while keeping the accuracy nearly as good as the floating-point model. Moreover, the fixed- point model is capable of achieving 20× faster inference speed comparing with the floating-point model. Thus, the proposed method is promising for embedded implementations.
A Constrained Multi-Objective Learning Algorithm for Feed-Forward Neural Network Classifiers
Directory of Open Access Journals (Sweden)
M. Njah
2017-06-01
Full Text Available This paper proposes a new approach to address the optimal design of a Feed-forward Neural Network (FNN based classifier. The originality of the proposed methodology, called CMOA, lie in the use of a new constraint handling technique based on a self-adaptive penalty procedure in order to direct the entire search effort towards finding only Pareto optimal solutions that are acceptable. Neurons and connections of the FNN Classifier are dynamically built during the learning process. The approach includes differential evolution to create new individuals and then keeps only the non-dominated ones as the basis for the next generation. The designed FNN Classifier is applied to six binary classification benchmark problems, obtained from the UCI repository, and results indicated the advantages of the proposed approach over other existing multi-objective evolutionary neural networks classifiers reported recently in the literature.
Development of objective flow regime identification method using self-organizing neural network
Energy Technology Data Exchange (ETDEWEB)
Lee, Jae Young; Kim, Nam Seok; Kwak, Nam Yee [Handong Global Univ., Pohang (Korea, Republic of)
2004-07-01
Two-phase flow shows various flow patterns according to the amount of the void and its relative velocity to the liquid flow. This variation directly affect the interfacial transfer which is the key factor for the design or analysis of the phase change systems. Especially the safety analysis of the nuclear power plant has been performed based on the numerical code furnished with the proper constitutive relations depending highly upon the flow regimes. Heavy efforts have been focused to identify the flow regime and at this moment we stand on relative very stable engineering background compare to the other research field. However, the issues related to objectiveness and transient flow regime are still open to study. Lee et al. and Ishii developed the method for the objective and instantaneous flow regime identification based on the neural network and new index of probability distribution of the flow regime which allows just one second observation for the flow regime identification. In the present paper, we developed the self-organized neural network for more objective approach to this problem. Kohonen's Self-Organizing Map (SOM) has been used for clustering, visualization, and abstraction. The SOM is trained through unsupervised competitive learning using a 'winner takes it all' policy. Therefore, its unsupervised training character delete the possible interference of the regime developer to the neural network training. After developing the computer code, we evaluate the performance of the code with the vertically upward two-phase flow in the pipes of 25.4 and 50.4 cmm I.D. Also, the sensitivity of the number of the clusters to the flow regime identification was made.
Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks
Rai, Man Mohan
2006-01-01
Genetic and evolutionary algorithms have been applied to solve numerous problems in engineering design where they have been used primarily as optimization procedures. These methods have an advantage over conventional gradient-based search procedures became they are capable of finding global optima of multi-modal functions and searching design spaces with disjoint feasible regions. They are also robust in the presence of noisy data. Another desirable feature of these methods is that they can efficiently use distributed and parallel computing resources since multiple function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and independently on ultiple processors. For these reasons genetic and evolutionary algorithms are being used more frequently in design optimization. Examples include airfoil and wing design and compressor and turbine airfoil design. They are also finding increasing use in multiple-objective and multidisciplinary optimization. This lecture will focus on an evolutionary method that is a relatively new member to the general class of evolutionary methods called differential evolution (DE). This method is easy to use and program and it requires relatively few user-specified constants. These constants are easily determined for a wide class of problems. Fine-tuning the constants will off course yield the solution to the optimization problem at hand more rapidly. DE can be efficiently implemented on parallel computers and can be used for continuous, discrete and mixed discrete/continuous optimization problems. It does not require the objective function to be continuous and is noise tolerant. DE and applications to single and multiple-objective optimization will be included in the presentation and lecture notes. A method for aerodynamic design optimization that is based on neural networks will also be included as a part of this lecture. The method offers advantages over traditional optimization methods. It is more
Peng, Liang
2017-01-01
This dissertation develops a novel system for object recognition in videos. The input of the system is a set of unconstrained videos containing a known set of objects. The output is the locations and categories for each object in each frame across all videos. Initially, a shot boundary detection algorithm is applied to the videos to divide them into multiple sequences separated by the identified shot boundaries. Since each of these sequences still contains moderate content variations, we furt...
Seeliger, K; Fritsche, M; Güçlü, U; Schoenmakers, S; Schoffelen, J-M; Bosch, S E; van Gerven, M A J
2017-07-16
Representations learned by deep convolutional neural networks (CNNs) for object recognition are a widely investigated model of the processing hierarchy in the human visual system. Using functional magnetic resonance imaging, CNN representations of visual stimuli have previously been shown to correspond to processing stages in the ventral and dorsal streams of the visual system. Whether this correspondence between models and brain signals also holds for activity acquired at high temporal resolution has been explored less exhaustively. Here, we addressed this question by combining CNN-based encoding models with magnetoencephalography (MEG). Human participants passively viewed 1,000 images of objects while MEG signals were acquired. We modelled their high temporal resolution source-reconstructed cortical activity with CNNs, and observed a feed-forward sweep across the visual hierarchy between 75 and 200 ms after stimulus onset. This spatiotemporal cascade was captured by the network layer representations, where the increasingly abstract stimulus representation in the hierarchical network model was reflected in different parts of the visual cortex, following the visual ventral stream. We further validated the accuracy of our encoding model by decoding stimulus identity in a left-out validation set of viewed objects, achieving state-of-the-art decoding accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Charles F Cadieu
2014-12-01
Full Text Available The primate visual system achieves remarkable visual object recognition performance even in brief presentations, and under changes to object exemplar, geometric transformations, and background variation (a.k.a. core visual object recognition. This remarkable performance is mediated by the representation formed in inferior temporal (IT cortex. In parallel, recent advances in machine learning have led to ever higher performing models of object recognition using artificial deep neural networks (DNNs. It remains unclear, however, whether the representational performance of DNNs rivals that of the brain. To accurately produce such a comparison, a major difficulty has been a unifying metric that accounts for experimental limitations, such as the amount of noise, the number of neural recording sites, and the number of trials, and computational limitations, such as the complexity of the decoding classifier and the number of classifier training examples. In this work, we perform a direct comparison that corrects for these experimental limitations and computational considerations. As part of our methodology, we propose an extension of "kernel analysis" that measures the generalization accuracy as a function of representational complexity. Our evaluations show that, unlike previous bio-inspired models, the latest DNNs rival the representational performance of IT cortex on this visual object recognition task. Furthermore, we show that models that perform well on measures of representational performance also perform well on measures of representational similarity to IT, and on measures of predicting individual IT multi-unit responses. Whether these DNNs rely on computational mechanisms similar to the primate visual system is yet to be determined, but, unlike all previous bio-inspired models, that possibility cannot be ruled out merely on representational performance grounds.
Use of artificial neural networks and geographic objects for classifying remote sensing imagery
Directory of Open Access Journals (Sweden)
Pedro Resende Silva
2014-06-01
Full Text Available The aim of this study was to develop a methodology for mapping land use and land cover in the northern region of Minas Gerais state, where, in addition to agricultural land, the landscape is dominated by native cerrado, deciduous forests, and extensive areas of vereda. Using forest inventory data, as well as RapidEye, Landsat TM and MODIS imagery, three specific objectives were defined: 1 to test use of image segmentation techniques for an object-based classification encompassing spectral, spatial and temporal information, 2 to test use of high spatial resolution RapidEye imagery combined with Landsat TM time series imagery for capturing the effects of seasonality, and 3 to classify data using Artificial Neural Networks. Using MODIS time series and forest inventory data, time signatures were extracted from the dominant vegetation formations, enabling selection of the best periods of the year to be represented in the classification process. Objects created with the segmentation of RapidEye images, along with the Landsat TM time series images, were classified by ten different Multilayer Perceptron network architectures. Results showed that the methodology in question meets both the purposes of this study and the characteristics of the local plant life. With excellent accuracy values for native classes, the study showed the importance of a well-structured database for classification and the importance of suitable image segmentation to meet specific purposes.
Objects Classification by Learning-Based Visual Saliency Model and Convolutional Neural Network
Directory of Open Access Journals (Sweden)
Na Li
2016-01-01
Full Text Available Humans can easily classify different kinds of objects whereas it is quite difficult for computers. As a hot and difficult problem, objects classification has been receiving extensive interests with broad prospects. Inspired by neuroscience, deep learning concept is proposed. Convolutional neural network (CNN as one of the methods of deep learning can be used to solve classification problem. But most of deep learning methods, including CNN, all ignore the human visual information processing mechanism when a person is classifying objects. Therefore, in this paper, inspiring the completed processing that humans classify different kinds of objects, we bring forth a new classification method which combines visual attention model and CNN. Firstly, we use the visual attention model to simulate the processing of human visual selection mechanism. Secondly, we use CNN to simulate the processing of how humans select features and extract the local features of those selected areas. Finally, not only does our classification method depend on those local features, but also it adds the human semantic features to classify objects. Our classification method has apparently advantages in biology. Experimental results demonstrated that our method made the efficiency of classification improve significantly.
Directory of Open Access Journals (Sweden)
Bratsolis Emmanuel
2005-01-01
Full Text Available Stellar spectral classification is not only a tool for labeling individual stars but is also useful in studies of stellar population synthesis. Extracting the physical quantities from the digitized spectral plates involves three main stages: detection, extraction, and classification of spectra. Low-dispersion objective prism images have been used and automated methods have been developed. The detection and extraction problems have been presented in previous works. In this paper, we present a classification method based on an artificial neural network (ANN. We make a brief presentation of the entire automated system and we compare the new classification method with the previously used method of maximum correlation coefficient (MCC. Digitized photographic material has been used here. The method can also be used on CCD spectral images.
Cruz-Ramírez, Manuel; Hervás-Martínez, César; Fernández, Juan Carlos; Briceño, Javier; de la Mata, Manuel
2013-05-01
The optimal allocation of organs in liver transplantation is a problem that can be resolved using machine-learning techniques. Classical methods of allocation included the assignment of an organ to the first patient on the waiting list without taking into account the characteristics of the donor and/or recipient. In this study, characteristics of the donor, recipient and transplant organ were used to determine graft survival. We utilised a dataset of liver transplants collected by eleven Spanish hospitals that provides data on the survival of patients three months after their operations. To address the problem of organ allocation, the memetic Pareto evolutionary non-dominated sorting genetic algorithm 2 (MPENSGA2 algorithm), a multi-objective evolutionary algorithm, was used to train radial basis function neural networks, where accuracy was the measure used to evaluate model performance, along with the minimum sensitivity measurement. The neural network models obtained from the Pareto fronts were used to develop a rule-based system. This system will help medical experts allocate organs. The models obtained with the MPENSGA2 algorithm generally yielded competitive results for all performance metrics considered in this work, namely the correct classification rate (C), minimum sensitivity (MS), area under the receiver operating characteristic curve (AUC), root mean squared error (RMSE) and Cohen's kappa (Kappa). In general, the multi-objective evolutionary algorithm demonstrated a better performance than the mono-objective algorithm, especially with regard to the MS extreme of the Pareto front, which yielded the best values of MS (48.98) and AUC (0.5659). The rule-based system efficiently complements the current allocation system (model for end-stage liver disease, MELD) based on the principles of efficiency and equity. This complementary effect occurred in 55% of the cases used in the simulation. The proposed rule-based system minimises the prediction probability
Yang, Ming; Yu, Min-ying; Shi, Xiu-feng; Teng, Yan-ping
2008-11-01
To introduce Back-propagation (BP) neural network and genetic algorithm for multi-objective optimization of extraction technology of Cortex Fraxini. BP neural network was established and optimized with uniform design. Genetic algotithm was used for multi-objective optimization of extraction technology of cortex fraxini. the optimization of extraction was as follows: extraction temperature was 99 degrees C, concentration of EtOH was 50%, liquid-solid ratio was 7, extraction time was 94 min. The proportional error between predictive value and practical measured value was just -1.16% and -5.14%. Back-propagation neural network and genetic algorithm for multi-objective optimization of extraction technology of cortex fraxini is advisable.
Tawbe, Bilal; Cretu, Ana-Maria
2017-05-11
The realistic representation of deformations is still an active area of research, especially for deformable objects whose behavior cannot be simply described in terms of elasticity parameters. This paper proposes a data-driven neural-network-based approach for capturing implicitly and predicting the deformations of an object subject to external forces. Visual data, in the form of 3D point clouds gathered by a Kinect sensor, is collected over an object while forces are exerted by means of the probing tip of a force-torque sensor. A novel approach based on neural gas fitting is proposed to describe the particularities of a deformation over the selectively simplified 3D surface of the object, without requiring knowledge of the object material. An alignment procedure, a distance-based clustering, and inspiration from stratified sampling support this process. The resulting representation is denser in the region of the deformation (an average of 96.6% perceptual similarity with the collected data in the deformed area), while still preserving the object's overall shape (86% similarity over the entire surface) and only using on average of 40% of the number of vertices in the mesh. A series of feedforward neural networks is then trained to predict the mapping between the force parameters characterizing the interaction with the object and the change in the object shape, as captured by the fitted neural gas nodes. This series of networks allows for the prediction of the deformation of an object when subject to unknown interactions.
Directory of Open Access Journals (Sweden)
Schwindling Jerome
2010-04-01
Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.
Andreon, S.; Gargiulo, G.; Longo, G.; Tagliaferri, R.; Capuano, N.
2000-12-01
Astronomical wide-field imaging performed with new large-format CCD detectors poses data reduction problems of unprecedented scale, which are difficult to deal with using traditional interactive tools. We present here NExt (Neural Extractor), a new neural network (NN) based package capable of detecting objects and performing both deblending and star/galaxy classification in an automatic way. Traditionally, in astronomical images, objects are first distinguished from the noisy background by searching for sets of connected pixels having brightnesses above a given threshold; they are then classified as stars or as galaxies through diagnostic diagrams having variables chosen according to the astronomer's taste and experience. In the extraction step, assuming that images are well sampled, NExt requires only the simplest a priori definition of `what an object is' (i.e. it keeps all structures composed of more than one pixel) and performs the detection via an unsupervised NN, approaching detection as a clustering problem that has been thoroughly studied in the artificial intelligence literature. The first part of the NExt procedure consists of an optimal compression of the redundant information contained in the pixels via a mapping from pixel intensities to a subspace individualized through principal component analysis. At magnitudes fainter than the completeness limit, stars are usually almost indistinguishable from galaxies, and therefore the parameters characterizing the two classes do not lie in disconnected subspaces, thus preventing the use of unsupervised methods. We therefore adopted a supervised NN (i.e. a NN that first finds the rules to classify objects from examples and then applies them to the whole data set). In practice, each object is classified depending on its membership of the regions mapping the input feature space in the training set. In order to obtain an objective and reliable classification, instead of using an arbitrarily defined set of features
Multi-Objective Reinforcement Learning-based Deep Neural Networks for Cognitive Space Communications
Ferreria, Paulo; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy; Bilen, Sven; Reinhart, Richard; Mortensen, Dale
2017-01-01
Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.
Multi-Objective Reinforcement Learning-Based Deep Neural Networks for Cognitive Space Communications
Ferreria, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.
2017-01-01
Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.
Magosso, E; Cuppini, C; Ursino, M
2006-01-01
Synchronization of neuronal activity in the gamma-band has been shown to play an important role in higher cognitive functions, by grouping together the necessary information in different cortical areas to achieve a coherent perception. In the present work, we used a neural network of Wilson-Cowan oscillators to analyze the problem of binding and segmentation of high-level objects. Binding is achieved by implementing in the network the similarity and prior knowledge Gestalt rules. Similarity law is realized via topological maps within the network. Prior knowledge originates by means of a Hebbian rule of synaptic change; objects are memorized in the network with different strengths. Segmentation is realized via a global inhibitor which allows desynchronisation among multiple objects avoiding interference. Simulation results performed with a 40x40 neural grid, using three simultaneous input objects, show that the network is able to recognize and segment objects in several different conditions (different degrees of incompleteness or distortion of input patterns), exhibiting the higher reconstruction performances the higher the strength of object memory. The presented model represents an integrated approach for investigating the relationships among learning, memory, topological organization and gamma-band synchronization.
Convolutional neural networks for segmentation and object detection of human semen
DEFF Research Database (Denmark)
Nissen, Malte Stær; Krause, Oswin; Almstrup, Kristian
2017-01-01
We compare a set of convolutional neural network (CNN) architectures for the task of segmenting and detecting human sperm cells in an image taken from a semen sample. In contrast to previous work, samples are not stained or washed to allow for full sperm quality analysis, making analysis harder due...... are found by using connected components on the CNN predictions. We investigate optimization of a threshold parameter on the size of detected components. Our best network achieves 93.87% precision and 91.89% recall on our test dataset after thresholding outperforming a classical image analysis approach....
Introduction to neural networks
James, Frederick E
1994-02-02
1. Introduction and overview of Artificial Neural Networks. 2,3. The Feed-forward Network as an inverse Problem, and results on the computational complexity of network training. 4.Physics applications of neural networks.
Valdés, Julio J; Barton, Alan J
2007-05-01
A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.
DETECTION OF TEXT OBJECTS IN IMAGES OF REAL SCENES BASED ON CONVOLUTIONAL NEURAL NETWORK MODEL
Directory of Open Access Journals (Sweden)
N. N. Kuzmitsky
2015-01-01
Full Text Available A model of text image detector based on a convolutional neural network architecture is presented, capable of synthesizing high-level features of images in the «black box» mode. An implementation of the detector application, based on algorithms of multi-scale scanning and local responses interpretation is described, allowing to find out text samples on images of real scenes. Advantages in comparison with analogs are shown and efficiency evaluation on an example of a known database is conducted.
Hsu, Ching-Chi; Lin, Jinn; Chao, Ching-Kong
2011-12-01
Optimizing the orthopaedic screws can greatly improve their biomechanical performances. However, a methodical design optimization approach requires a long time to search the best design. Thus, the surrogate objective functions of the orthopaedic screws should be accurately developed. To our knowledge, there is no study to evaluate the strengths and limitations of the surrogate methods in developing the objective functions of the orthopaedic screws. Three-dimensional finite element models for both the tibial locking screws and the spinal pedicle screws were constructed and analyzed. Then, the learning data were prepared according to the arrangement of the Taguchi orthogonal array, and the verification data were selected with use of a randomized selection. Finally, the surrogate objective functions were developed by using either the multiple linear regression or the artificial neural network. The applicability and accuracy of those surrogate methods were evaluated and discussed. The multiple linear regression method could successfully construct the objective function of the tibial locking screws, but it failed to develop the objective function of the spinal pedicle screws. The artificial neural network method showed a greater capacity of prediction in developing the objective functions for the tibial locking screws and the spinal pedicle screws than the multiple linear regression method. The artificial neural network method may be a useful option for developing the objective functions of the orthopaedic screws with a greater structural complexity. The surrogate objective functions of the orthopaedic screws could effectively decrease the time and effort required for the design optimization process. Copyright Â© 2010 Elsevier Ireland Ltd. All rights reserved.
Convolutional neural networks for segmentation and object detection of human semen
DEFF Research Database (Denmark)
Nissen, Malte Stær; Krause, Oswin; Almstrup, Kristian
2017-01-01
We compare a set of convolutional neural network (CNN) architectures for the task of segmenting and detecting human sperm cells in an image taken from a semen sample. In contrast to previous work, samples are not stained or washed to allow for full sperm quality analysis, making analysis harder due...... are found by using connected components on the CNN predictions. We investigate optimization of a threshold parameter on the size of detected components. Our best network achieves 93.87% precision and 91.89% recall on our test dataset after thresholding outperforming a classical image analysis approach....... to clutter. Our results indicate that training on full images is superior to training on patches when class-skew is properly handled. Full image training including up-sampling during training proves to be beneficial in deep CNNs for pixel wise accuracy and detection performance. Predicted sperm cells...
Multi-Frame Convolutional Neural Networks for Object Detection in Temporal Data
2017-03-01
hundred images in each error category. By studying these images we were able to categorize the errors into “common mistakes ” that the network made on...One of the key differences in the results was found in the nature of the errors made by the network. The 3DPeS Dataset contained larger objects that...face-detection pre-processing step. Source: [20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 2.8 Different approaches for
Directory of Open Access Journals (Sweden)
Benjamin Chandler
2016-01-01
Full Text Available Heavily occluded objects are more difficult for classification algorithms to identify correctly than unoccluded objects. This effect is rare and thus hard to measure with datasets like ImageNet and PASCAL VOC, however, owing to biases in human-generated image pose selection. We introduce a dataset that emphasizes occlusion and additions to a standard convolutional neural network aimed at increasing invariance to occlusion. An unmodified convolutional neural network trained and tested on the new dataset rapidly degrades to chance-level accuracy as occlusion increases. Training with occluded data slows this decline but still yields poor performance with high occlusion. Integrating novel preprocessing stages to segment the input and inpaint occlusions is an effective mitigation. A convolutional network so modified is nearly as effective with more than 81% of pixels occluded as it is with no occlusion. Such a network is also more accurate on unoccluded images than an otherwise identical network that has been trained with only unoccluded images. These results depend on successful segmentation. The occlusions in our dataset are deliberately easy to segment from the figure and background. Achieving similar results on a more challenging dataset would require finding a method to split figure, background, and occluding pixels in the input.
Multi-scale modeling of fuzzy spatial objects by means of neural networks
Silván, José L.
2006-10-01
The inherently spatial uncertainty of many geographic objects has been the target of several, though still limited number of, studies. Two types of uncertainties, namely fuzziness and randomness, have been formally characterized within the framework of fuzzy set and probability theories, respectively. However, the scale issue has not been explicitly considered in modelling vagueness, whilst it is true that the degree of uncertainty of many objects is in relation to the scale of its representation. Furthermore, though fuzzy data types have been there for some years, a computational framework for handling fuzzy spatial objects is still lacking. In this article a previously introduced neural representation of polygon layers has been generalized to represent not only polygons but also points, lines, and complex combinations of these in the hard (crisp) and fuzzy domains. Two types of neural units, combined with two types of activation function, were identified as the processing core of the model, where the activation function can be either hard or fuzzy. In the hard case, we show how it is possible to differentiate among interior, exterior and boundary of a polygon by using a tri-valued activation function instead of the binary function originally used. The generalization to fuzzy domains can be implemented in computers, allows hierarchical constructions of complex objects from basic ones and allows us to build upon traditional spatial databases (with crisp boundaries). It is shown how the degree of fuzziness may be related to the scale of the representation under the premise that a decrement in the degree of fuzziness may lead to new details becoming apparent in the boundary. Indications on how to perform a complex overlay of fuzzy maps are also provided.
Energy Technology Data Exchange (ETDEWEB)
Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)
1996-12-31
The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.
Xu, Zihao; Yang, Ming; Wang, Xianghui; Wang, Zhong
2015-08-04
Given the benefit of pulsatile blood flow for perfusion of coronary arteries and end organs, pulsatile ventricular assist devices (VADs) are still widely used as paracorporeal mechanical circulatory support devices in clinical applications. However, poor hemocompatibility limits the service period of the VADs. Most previous improvements on VAD hemocompatibility were conducted by trial-and-error CFD analysis, which does not easily arrive at the best solution. In this paper, a multi-objective optimization method integrating neural networks and NSGA-II (Non-dominated Sorted Genetic Algorithm-II) based on FSI simulation was developed and applied to a pulsatile VAD to optimize its hemocompatibility. First, the VAD blood chamber was parameterized with the principal geometrical parameters. Three hemocompatibility indices including hemolysis, platelet activation, and platelet deposition were chosen as goal functions. The neural networks were built to fit the nonlinear relationship between goal functions and geometrical parameters. Next, a multi-objective optimization algorithm (NSGA-II) was used to search out the Pareto optimal solutions in the built neural networks. Finally, the best compromise solution was selected from the Pareto optimal solutions by a fuzzy membership approach and validated by FSI simulation. The best compromise solution simultaneously possesses an acceptable hemolysis index, platelet activation index, and platelet deposition index, and the corresponding relative errors between the indices predicted by optimization algorithm and the one calculated by FSI simulations are all less than 5%. The results suggest that the proposed multi-objective optimization method has the potential for application in optimizing pulsatile VAD hemocompatibility, and may also be applied to other blood-wetted devices.
DeLong, Caroline M; Heberle, Amanda L; Wisniewski, Matthew G; Mercado, Eduardo
2014-05-01
Object constancy, the ability to recognize objects despite changes in orientation, has not been well studied in the auditory modality. Dolphins use echolocation for object recognition, and objects ensonified by dolphins produce echoes that can vary significantly as a function of orientation. In this experiment, human listeners had to classify echoes from objects varying in material, shape, and size that were ensonified with dolphin signals. Participants were trained to discriminate among the objects using an 18-echo stimulus from a 10° range of aspect angles, then tested with novel aspect angles across a 60° range. Participants were typically successful recognizing the objects at all angles (M = 78 %). Artificial neural networks were trained and tested with the same stimuli with the purpose of identifying acoustic cues that enable object recognition. A multilayer perceptron performed similarly to the humans and revealed that recognition was enabled by both the amplitude and frequency of echoes, as well as the temporal dynamics of these features over the course of echo trains. These results provide insight into representational processes underlying echoic recognition in dolphins and suggest that object constancy perceived through the auditory modality is likely to parallel what has been found in the visual domain in studies with both humans and animals.
Schmalz, M.; Ritter, G.; Key, R.
Accurate and computationally efficient spectral signature classification is a crucial step in the nonimaging detection and recognition of spaceborne objects. In classical hyperspectral recognition applications using linear mixing models, signature classification accuracy depends on accurate spectral endmember discrimination [1]. If the endmembers cannot be classified correctly, then the signatures cannot be classified correctly, and object recognition from hyperspectral data will be inaccurate. In practice, the number of endmembers accurately classified often depends linearly on the number of inputs. This can lead to potentially severe classification errors in the presence of noise or densely interleaved signatures. In this paper, we present an comparison of emerging technologies for nonimaging spectral signature classfication based on a highly accurate, efficient search engine called Tabular Nearest Neighbor Encoding (TNE) [3,4] and a neural network technology called Morphological Neural Networks (MNNs) [5]. Based on prior results, TNE can optimize its classifier performance to track input nonergodicities, as well as yield measures of confidence or caution for evaluation of classification results. Unlike neural networks, TNE does not have a hidden intermediate data structure (e.g., the neural net weight matrix). Instead, TNE generates and exploits a user-accessible data structure called the agreement map (AM), which can be manipulated by Boolean logic operations to effect accurate classifier refinement algorithms. The open architecture and programmability of TNE's agreement map processing allows a TNE programmer or user to determine classification accuracy, as well as characterize in detail the signatures for which TNE did not obtain classification matches, and why such mis-matches occurred. In this study, we will compare TNE and MNN based endmember classification, using performance metrics such as probability of correct classification (Pd) and rate of false
Directory of Open Access Journals (Sweden)
Chandra Shekhar Yadav
2014-01-01
Full Text Available The budget computation for software development is affected by the prediction of software development effort and schedule. Software development effort and schedule can be predicted precisely on the basis of past software project data sets. In this paper, a model for object-oriented software development effort estimation using one hidden layer feed forward neural network (OHFNN has been developed. The model has been further optimized with the help of genetic algorithm by taking weight vector obtained from OHFNN as initial population for the genetic algorithm. Convergence has been obtained by minimizing the sum of squared errors of each input vector and optimal weight vector has been determined to predict the software development effort. The model has been empirically validated on the PROMISE software engineering repository dataset. Performance of the model is more accurate than the well-established constructive cost model (COCOMO.
Directory of Open Access Journals (Sweden)
M. Poor Arab Moghadam
2015-12-01
Full Text Available Car following models as well-known moving objects trajectory problems have been used for more than half a century in all traffic simulation software for describing driving behaviour in traffic flows. However, previous empirical studies and modeling about car following behavior had some important limitations. One of the main and clear defects of the introduced models was the very large number of parameters that made their calibration very time-consuming and costly. Also, any change in these parameters, even slight ones, severely disrupted the output. In this study, an artificial neural network approximator was used to introduce a trajectory model for vehicle movements. In this regard, the Levenberg-Marquardt back propagation function and the hyperbolic tangent sigmoid function were employed as the training and the transfer functions, respectively. One of the important aspects in identifying driver behavior is the reaction time. This parameter shows the period between the time the driver recognizes a stimulus and the time a suitable response is shown to that stimulus. In this paper, the actual data on car following from the NGSIM project was used to determine the performance of the proposed model. This dataset was used for the purpose of expanding behavioral algorithm in micro simulation. Sixty percent of the data was entered into the designed artificial neural network approximator as the training data, twenty percent as the testing data, and twenty percent as the evaluation data. A statistical and a micro simulation method were employed to show the accuracy of the proposed model. Moreover, the two popular Gipps and Helly models were implemented. Finally, it was shown that the accuracy of the proposed model was much higher - and its computational costs were lower - than those of other models when calibration operations were not performed on these models. Therefore, the proposed model can be used for displaying and predicting trajectories of moving
Directory of Open Access Journals (Sweden)
Yanxia Shen
2018-01-01
Full Text Available The intermittency of renewable energy will increase the uncertainty of the power system, so it is necessary to predict the short-term wind power, after which the electrical power system can operate reliably and safely. Unlike the traditional point forecasting, the purpose of this study is to quantify the potential uncertainties of wind power and to construct prediction intervals (PIs and prediction models using wavelet neural network (WNN. Lower upper bound estimation (LUBE of the PIs is achieved by minimizing a multi-objective function covering both interval width and coverage probabilities. Considering the influence of the points out of the PIs to shorten the width of PIs without compromising coverage probability, a new, improved, multi-objective artificial bee colony (MOABC algorithm combining multi-objective evolutionary knowledge, called EKMOABC, is proposed for the optimization of the forecasting model. In this paper, some comparative simulations are carried out and the results show that the proposed model and algorithm can achieve higher quality PIs for wind power forecasting. Taking into account the intermittency of renewable energy, such a type of wind power forecast can actually provide a more reliable reference for dispatching of the power system.
Neural Networks: Implementations and Applications
Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.
1996-01-01
Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas
Yashchenko, Vitaliy A.
2000-03-01
On the basis of the analysis of scientific ideas reflecting the law in the structure and functioning the biological structures of a brain, and analysis and synthesis of knowledge, developed by various directions in Computer Science, also there were developed the bases of the theory of a new class neural-like growing networks, not having the analogue in world practice. In a base of neural-like growing networks the synthesis of knowledge developed by classical theories - semantic and neural of networks is. The first of them enable to form sense, as objects and connections between them in accordance with construction of the network. With thus each sense gets a separate a component of a network as top, connected to other tops. In common it quite corresponds to structure reflected in a brain, where each obvious concept is presented by certain structure and has designating symbol. Secondly, this network gets increased semantic clearness at the expense owing to formation not only connections between neural by elements, but also themselves of elements as such, i.e. here has a place not simply construction of a network by accommodation sense structures in environment neural of elements, and purely creation of most this environment, as of an equivalent of environment of memory. Thus neural-like growing networks are represented by the convenient apparatus for modeling of mechanisms of teleological thinking, as a fulfillment of certain psychophysiological of functions.
Khodaverdi zahraee, N.; Rastiveis, H.
2017-09-01
Earthquake is one of the most divesting natural events that threaten human life during history. After the earthquake, having information about the damaged area, the amount and type of damage can be a great help in the relief and reconstruction for disaster managers. It is very important that these measures should be taken immediately after the earthquake because any negligence could be more criminal losses. The purpose of this paper is to propose and implement an automatic approach for mapping destructed buildings after an earthquake using pre- and post-event high resolution satellite images. In the proposed method after preprocessing, segmentation of both images is performed using multi-resolution segmentation technique. Then, the segmentation results are intersected with ArcGIS to obtain equal image objects on both images. After that, appropriate textural features, which make a better difference between changed or unchanged areas, are calculated for all the image objects. Finally, subtracting the extracted textural features from pre- and post-event images, obtained values are applied as an input feature vector in an artificial neural network for classifying the area into two classes of changed and unchanged areas. The proposed method was evaluated using WorldView2 satellite images, acquired before and after the 2010 Haiti earthquake. The reported overall accuracy of 93% proved the ability of the proposed method for post-earthquake buildings change detection.
Directory of Open Access Journals (Sweden)
N. Khodaverdi zahraee
2017-09-01
Full Text Available Earthquake is one of the most divesting natural events that threaten human life during history. After the earthquake, having information about the damaged area, the amount and type of damage can be a great help in the relief and reconstruction for disaster managers. It is very important that these measures should be taken immediately after the earthquake because any negligence could be more criminal losses. The purpose of this paper is to propose and implement an automatic approach for mapping destructed buildings after an earthquake using pre- and post-event high resolution satellite images. In the proposed method after preprocessing, segmentation of both images is performed using multi-resolution segmentation technique. Then, the segmentation results are intersected with ArcGIS to obtain equal image objects on both images. After that, appropriate textural features, which make a better difference between changed or unchanged areas, are calculated for all the image objects. Finally, subtracting the extracted textural features from pre- and post-event images, obtained values are applied as an input feature vector in an artificial neural network for classifying the area into two classes of changed and unchanged areas. The proposed method was evaluated using WorldView2 satellite images, acquired before and after the 2010 Haiti earthquake. The reported overall accuracy of 93% proved the ability of the proposed method for post-earthquake buildings change detection.
DEFF Research Database (Denmark)
Krogh, Anders Stærmose; Riis, Søren Kamaric
1999-01-01
A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...
Directory of Open Access Journals (Sweden)
Cherepanska I.Yu.
2017-04-01
Full Text Available The research discusses the use of artificial neural networks (ANN as components of a decision support system (DSS to automate quality control manufacturing facilities machining business at the production, which should be focused on the analysis of large amounts of heterogeneous information. The necessity to use ANN as a part of DSS is justified by the fact that quality control during production is multistage and time-consuming process that is formalized difficult, and moreover requires considerable information and material costs for the efficiency of manufacturing operations performed. Taking into account the existing experience of successful use of ANN to solve difficult formal problems associated with handling large volumes of diverse and rapidly changing information, the authors synthesized ANN for automated determination of the causes deterioration of the quality of production objects (PO in the performance of manufacturing operations application. Particular attention is paid to the definition of the dimension of the hidden layer ANN synthesized due to the fact that today still there is no analytical expression to determine the dimension of the hidden layer ANN and size of the latter is determined only by the experimental results of ANN several different structures by comparison the results, in particular the value of mean square error.
Jozwik, Kamila M.; Kriegeskorte, Nikolaus; Storrs, Katherine R.; Mur, Marieke
2017-01-01
Recent advances in Deep convolutional Neural Networks (DNNs) have enabled unprecedentedly accurate computational models of brain representations, and present an exciting opportunity to model diverse cognitive functions. State-of-the-art DNNs achieve human-level performance on object categorisation, but it is unclear how well they capture human behavior on complex cognitive tasks. Recent reports suggest that DNNs can explain significant variance in one such task, judging object similarity. Here, we extend these findings by replicating them for a rich set of object images, comparing performance across layers within two DNNs of different depths, and examining how the DNNs’ performance compares to that of non-computational “conceptual” models. Human observers performed similarity judgments for a set of 92 images of real-world objects. Representations of the same images were obtained in each of the layers of two DNNs of different depths (8-layer AlexNet and 16-layer VGG-16). To create conceptual models, other human observers generated visual-feature labels (e.g., “eye”) and category labels (e.g., “animal”) for the same image set. Feature labels were divided into parts, colors, textures and contours, while category labels were divided into subordinate, basic, and superordinate categories. We fitted models derived from the features, categories, and from each layer of each DNN to the similarity judgments, using representational similarity analysis to evaluate model performance. In both DNNs, similarity within the last layer explains most of the explainable variance in human similarity judgments. The last layer outperforms almost all feature-based models. Late and mid-level layers outperform some but not all feature-based models. Importantly, categorical models predict similarity judgments significantly better than any DNN layer. Our results provide further evidence for commonalities between DNNs and brain representations. Models derived from visual features
DEFF Research Database (Denmark)
Hansen, Lars Kai; Salamon, Peter
1990-01-01
We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....
Critical Branching Neural Networks
Kello, Christopher T.
2013-01-01
It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…
Padgett, Mary L.; Desai, Utpal; Roppel, T.A.; White, Charles R.
1993-01-01
A design procedure is suggested for neural networks which accommodates the inclusion of such knowledge-based systems techniques as fuzzy logic and pairwise comparisons. The use of these procedures in the design of applications combines qualitative and quantitative factors with empirical data to yield a model with justifiable design and parameter selection procedures. The procedure is especially relevant to areas of back-propagation neural network design which are highly responsive to the use of precisely recorded expert knowledge.
Hyperbolic Hopfield neural networks.
Kobayashi, M
2013-02-01
In recent years, several neural networks using Clifford algebra have been studied. Clifford algebra is also called geometric algebra. Complex-valued Hopfield neural networks (CHNNs) are the most popular neural networks using Clifford algebra. The aim of this brief is to construct hyperbolic HNNs (HHNNs) as an analog of CHNNs. Hyperbolic algebra is a Clifford algebra based on Lorentzian geometry. In this brief, a hyperbolic neuron is defined in a manner analogous to a phasor neuron, which is a typical complex-valued neuron model. HHNNs share common concepts with CHNNs, such as the angle and energy. However, HHNNs and CHNNs are different in several aspects. The states of hyperbolic neurons do not form a circle, and, therefore, the start and end states are not identical. In the quantized version, unlike complex-valued neurons, hyperbolic neurons have an infinite number of states.
MBVCNN: Joint convolutional neural networks method for image recognition
Tong, Tong; Mu, Xiaodong; Zhang, Li; Yi, Zhaoxiang; Hu, Pei
2017-05-01
Aiming at the problem of objects in image recognition rectangle, but objects which are input into convolutional neural networks square, the object recognition model was put forward which was based on BING method to realize object estimate, used vectorization of convolutional neural networks to realize input square image in convolutional networks, therefore, built joint convolution neural networks, which achieve multiple size image input. Verified by experiments, the accuracy of multi-object image recognition was improved by 6.70% compared with single vectorization of convolutional neural networks. Therefore, image recognition method of joint convolutional neural networks can enhance the accuracy in image recognition, especially for target in rectangular shape.
Introduction to Artificial Neural Networks
DEFF Research Database (Denmark)
Larsen, Jan
1999-01-01
The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....
Deconvolution using a neural network
Energy Technology Data Exchange (ETDEWEB)
Lehman, S.K.
1990-11-15
Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.
Artificial neural network modelling
Samarasinghe, Sandhya
2016-01-01
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .
Modelling Framework of a Neural Object Recognition
Directory of Open Access Journals (Sweden)
Aswathy K S
2016-02-01
Full Text Available In many industrial, medical and scientific image processing applications, various feature and pattern recognition techniques are used to match specific features in an image with a known template. Despite the capabilities of these techniques, some applications require simultaneous analysis of multiple, complex, and irregular features within an image as in semiconductor wafer inspection. In wafer inspection discovered defects are often complex and irregular and demand more human-like inspection techniques to recognize irregularities. By incorporating neural network techniques such image processing systems with much number of images can be trained until the system eventually learns to recognize irregularities. The aim of this project is to develop a framework of a machine-learning system that can classify objects of different category. The framework utilizes the toolboxes in the Matlab such as Computer Vision Toolbox, Neural Network Toolbox etc.
Villarreal, James A.
1991-01-01
A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.
De, Suvranu; Deo, Dhannanjay; Sankaranarayanan, Ganesh; Arikatla, Venkata S
2011-08-01
BACKGROUND: While an update rate of 30 Hz is considered adequate for real time graphics, a much higher update rate of about 1 kHz is necessary for haptics. Physics-based modeling of deformable objects, especially when large nonlinear deformations and complex nonlinear material properties are involved, at these very high rates is one of the most challenging tasks in the development of real time simulation systems. While some specialized solutions exist, there is no general solution for arbitrary nonlinearities. METHODS: In this work we present PhyNNeSS - a Physics-driven Neural Networks-based Simulation System - to address this long-standing technical challenge. The first step is an off-line pre-computation step in which a database is generated by applying carefully prescribed displacements to each node of the finite element models of the deformable objects. In the next step, the data is condensed into a set of coefficients describing neurons of a Radial Basis Function network (RBFN). During real-time computation, these neural networks are used to reconstruct the deformation fields as well as the interaction forces. RESULTS: We present realistic simulation examples from interactive surgical simulation with real time force feedback. As an example, we have developed a deformable human stomach model and a Penrose-drain model used in the Fundamentals of Laparoscopic Surgery (FLS) training tool box. CONCLUSIONS: A unique computational modeling system has been developed that is capable of simulating the response of nonlinear deformable objects in real time. The method distinguishes itself from previous efforts in that a systematic physics-based pre-computational step allows training of neural networks which may be used in real time simulations. We show, through careful error analysis, that the scheme is scalable, with the accuracy being controlled by the number of neurons used in the simulation. PhyNNeSS has been integrated into SoFMIS (Software Framework for Multimodal
Neural networks for triggering
Energy Technology Data Exchange (ETDEWEB)
Denby, B. (Fermi National Accelerator Lab., Batavia, IL (USA)); Campbell, M. (Michigan Univ., Ann Arbor, MI (USA)); Bedeschi, F. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy)); Chriss, N.; Bowers, C. (Chicago Univ., IL (USA)); Nesti, F. (Scuola Normale Superiore, Pisa (Italy))
1990-01-01
Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.
[Artificial neural networks in Neurosciences].
Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María
2011-11-01
This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.
Heiden, Uwe
1980-01-01
The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica ted throughout the text. However, they are not explored in de tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be havior of neurons or neuron pools. In this respect the essay is writt...
Neural networks and perceptual learning
Tsodyks, Misha; Gilbert, Charles
2005-01-01
Sensory perception is a learned trait. The brain strategies we use to perceive the world are constantly modified by experience. With practice, we subconsciously become better at identifying familiar objects or distinguishing fine details in our environment. Current theoretical models simulate some properties of perceptual learning, but neglect the underlying cortical circuits. Future neural network models must incorporate the top-down alteration of cortical function by expectation or perceptual tasks. These newly found dynamic processes are challenging earlier views of static and feedforward processing of sensory information. PMID:15483598
Neural Networks for Optimal Control
DEFF Research Database (Denmark)
Sørensen, O.
1995-01-01
Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... examined, and it appears that considering 'normal' neural network models with, say, 500 samples, the problem of over-fitting is neglible, and therefore it is not taken into consideration afterwards. Numerous model types, often met in control applications, are implemented as neural network models...... Kalmann filter) representing state space description. The potentials of neural networks for control of non-linear processes are also examined, focusing on three different groups of control concepts, all considered as generalizations of known linear control concepts to handle also non-linear processes...
An Optoelectronic Neural Network
Neil, Mark A. A.; White, Ian H.; Carroll, John E.
1990-02-01
We describe and present results of an optoelectronic neural network processing system. The system uses an algorithm based on the Hebbian learning rule to memorise a set of associated vector pairs. Recall occurs by the processing of the input vector with these stored associations in an incoherent optical vector multiplier using optical polarisation rotating liquid crystal spatial light modulators to store the vectors and an optical polarisation shadow casting technique to perform multiplications. Results are detected on a photodiode array and thresholded electronically by a controlling microcomputer. The processor is shown to work in autoassociative and heteroassociative modes with up to 10 stored memory vectors of length 64 (equivalent to 64 neurons) and a cycle time of 50ms. We discuss the limiting factors at work in this system, how they affect its scalability and the general applicability of its principles to other systems.
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
simulated process and compared. The closing chapter describes some practical experiments, where the different control concepts and training methods are tested on the same practical process operating in very noisy environments. All tests confirm that neural networks also have the potential to be trained......The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...
Directory of Open Access Journals (Sweden)
Wei Cui
2018-01-01
Full Text Available Variation in the format and classification requirements for remote sensing data makes establishing a standard remote sensing sample dataset difficult. As a result, few remote sensing deep neural network models have been widely accepted. We propose a hybrid deep neural network model based on a convolutional auto-encoder and a complementary convolutional neural network to solve this problem. The convolutional auto-encoder supports feature extraction and data dimension reduction of remote sensing data. The extracted features are input into the convolutional neural network and subsequently classified. Experimental results show that in the proposed model, the classification accuracy increases from 0.916 to 0.944, compared to a traditional convolutional neural network model; furthermore, the number of training runs is reduced from 40,000 to 22,000, and the number of labelled samples can be reduced by more than half, all while ensuring a classification accuracy of no less than 0.9, which suggests the effectiveness and feasibility of the proposed model.
Bayesian regularization of neural networks.
Burden, Frank; Winkler, Dave
2008-01-01
Bayesian regularized artificial neural networks (BRANNs) are more robust than standard back-propagation nets and can reduce or eliminate the need for lengthy cross-validation. Bayesian regularization is a mathematical process that converts a nonlinear regression into a "well-posed" statistical problem in the manner of a ridge regression. The advantage of BRANNs is that the models are robust and the validation process, which scales as O(N2) in normal regression methods, such as back propagation, is unnecessary. These networks provide solutions to a number of problems that arise in QSAR modeling, such as choice of model, robustness of model, choice of validation set, size of validation effort, and optimization of network architecture. They are difficult to overtrain, since evidence procedures provide an objective Bayesian criterion for stopping training. They are also difficult to overfit, because the BRANN calculates and trains on a number of effective network parameters or weights, effectively turning off those that are not relevant. This effective number is usually considerably smaller than the number of weights in a standard fully connected back-propagation neural net. Automatic relevance determination (ARD) of the input variables can be used with BRANNs, and this allows the network to "estimate" the importance of each input. The ARD method ensures that irrelevant or highly correlated indices used in the modeling are neglected as well as showing which are the most important variables for modeling the activity data. This chapter outlines the equations that define the BRANN method plus a flowchart for producing a BRANN-QSAR model. Some results of the use of BRANNs on a number of data sets are illustrated and compared with other linear and nonlinear models.
Indian Academy of Sciences (India)
differences between biological neural networks (BNNs) of the brain and ANN s. A thorough understanding of ... neurons. Artificial neural models are loosely based on biology since a complete understanding of the .... A learning scheme for updating a neuron's connections (weights) was proposed by Donald Hebb in 1949.
Neural networks and statistical learning
Du, Ke-Lin
2014-01-01
Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...
Memristor-based neural networks
Thomas, Andy
2013-03-01
The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them.
Pansharpening by Convolutional Neural Networks
National Research Council Canada - National Science Library
Masi, Giuseppe; Cozzolino, Davide; Verdoliva, Luisa; Scarpa, Giuseppe
2016-01-01
A new pansharpening method is proposed, based on convolutional neural networks. We adapt a simple and effective three-layer architecture recently proposed for super-resolution to the pansharpening problem...
What are artificial neural networks?
DEFF Research Database (Denmark)
Krogh, Anders
2008-01-01
Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...
Biologically Inspired Modular Neural Networks
Azam, Farooq
2000-01-01
This dissertation explores the modular learning in artificial neural networks that mainly driven by the inspiration from the neurobiological basis of the human learning. The presented modularization approaches to the neural network design and learning are inspired by the engineering, complexity, psychological and neurobiological aspects. The main theme of this dissertation is to explore the organization and functioning of the brain to discover new structural and learning ...
Complex-Valued Neural Networks
Hirose, Akira
2012-01-01
This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...
Izadyyazdanabadi, Mohammadhassan; Belykh, Evgenii; Martirosyan, Nikolay; Eschbacher, Jennifer; Nakaji, Peter; Yang, Yezhou; Preul, Mark C.
2017-03-01
Confocal laser endomicroscopy (CLE), although capable of obtaining images at cellular resolution during surgery of brain tumors in real time, creates as many non-diagnostic as diagnostic images. Non-useful images are often distorted due to relative motion between probe and brain or blood artifacts. Many images, however, simply lack diagnostic features immediately informative to the physician. Examining all the hundreds or thousands of images from a single case to discriminate diagnostic images from nondiagnostic ones can be tedious. Providing a real time diagnostic value assessment of images (fast enough to be used during the surgical acquisition process and accurate enough for the pathologist to rely on) to automatically detect diagnostic frames would streamline the analysis of images and filter useful images for the pathologist/surgeon. We sought to automatically classify images as diagnostic or non-diagnostic. AlexNet, a deep-learning architecture, was used in a 4-fold cross validation manner. Our dataset includes 16,795 images (8572 nondiagnostic and 8223 diagnostic) from 74 CLE-aided brain tumor surgery patients. The ground truth for all the images is provided by the pathologist. Average model accuracy on test data was 91% overall (90.79 % accuracy, 90.94 % sensitivity and 90.87 % specificity). To evaluate the model reliability we also performed receiver operating characteristic (ROC) analysis yielding 0.958 average for area under ROC curve (AUC). These results demonstrate that a deeply trained AlexNet network can achieve a model that reliably and quickly recognizes diagnostic CLE images.
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu
2017-10-01
This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.
Spiking modular neural networks: A neural network modeling approach for hydrological processes
National Research Council Canada - National Science Library
Kamban Parasuraman; Amin Elshorbagy; Sean K. Carey
2006-01-01
.... In this study, a novel neural network model called the spiking modular neural networks (SMNNs) is proposed. An SMNN consists of an input layer, a spiking layer, and an associator neural network layer...
Clustering: a neural network approach.
Du, K-L
2010-01-01
Clustering is a fundamental data analysis method. It is widely used for pattern recognition, feature extraction, vector quantization (VQ), image segmentation, function approximation, and data mining. As an unsupervised classification technique, clustering identifies some inherent structures present in a set of objects based on a similarity measure. Clustering methods can be based on statistical model identification (McLachlan & Basford, 1988) or competitive learning. In this paper, we give a comprehensive overview of competitive learning based clustering methods. Importance is attached to a number of competitive learning based clustering neural networks such as the self-organizing map (SOM), the learning vector quantization (LVQ), the neural gas, and the ART model, and clustering algorithms such as the C-means, mountain/subtractive clustering, and fuzzy C-means (FCM) algorithms. Associated topics such as the under-utilization problem, fuzzy clustering, robust clustering, clustering based on non-Euclidean distance measures, supervised clustering, hierarchical clustering as well as cluster validity are also described. Two examples are given to demonstrate the use of the clustering methods.
Pixel-wise Segmentation of Street with Neural Networks
Bittel, Sebastian; Kaiser, Vitali; Teichmann, Marvin; Thoma, Martin
2015-01-01
Pixel-wise street segmentation of photographs taken from a drivers perspective is important for self-driving cars and can also support other object recognition tasks. A framework called SST was developed to examine the accuracy and execution time of different neural networks. The best neural network achieved an $F_1$-score of 89.5% with a simple feedforward neural network which trained to solve a regression task.
Tampa Electric Neural Network Sootblowing
Energy Technology Data Exchange (ETDEWEB)
Mark A. Rhode
2003-12-31
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NO{sub x} formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent soot-blowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat
Tampa Electric Neural Network Sootblowing
Energy Technology Data Exchange (ETDEWEB)
Mark A. Rhode
2004-09-30
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NOx formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent sootblowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate
Tampa Electric Neural Network Sootblowing
Energy Technology Data Exchange (ETDEWEB)
Mark A. Rhode
2004-03-31
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NOx formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing co-funding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent sootblowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate
Multigradient for Neural Networks for Equalizers
Directory of Open Access Journals (Sweden)
Chulhee Lee
2003-06-01
Full Text Available Recently, a new training algorithm, multigradient, has been published for neural networks and it is reported that the multigradient outperforms the backpropagation when neural networks are used as a classifier. When neural networks are used as an equalizer in communications, they can be viewed as a classifier. In this paper, we apply the multigradient algorithm to train the neural networks that are used as equalizers. Experiments show that the neural networks trained using the multigradient noticeably outperforms the neural networks trained by the backpropagation.
Multiprocessor Neural Network in Healthcare.
Godó, Zoltán Attila; Kiss, Gábor; Kocsis, Dénes
2015-01-01
A possible way of creating a multiprocessor artificial neural network is by the use of microcontrollers. The RISC processors' high performance and the large number of I/O ports mean they are greatly suitable for creating such a system. During our research, we wanted to see if it is possible to efficiently create interaction between the artifical neural network and the natural nervous system. To achieve as much analogy to the living nervous system as possible, we created a frequency-modulated analog connection between the units. Our system is connected to the living nervous system through 128 microelectrodes. Two-way communication is provided through A/D transformation, which is even capable of testing psychopharmacons. The microcontroller-based analog artificial neural network can play a great role in medical singal processing, such as ECG, EEG etc.
Liquefaction Microzonation of Babol City Using Artificial Neural Network
DEFF Research Database (Denmark)
Farrokhzad, F.; Choobbasti, A.J.; Barari, Amin
2012-01-01
that will be less susceptible to damage during earthquakes. The scope of present study is to prepare the liquefaction microzonation map for the Babol city based on Seed and Idriss (1983) method using artificial neural network. Artificial neural network (ANN) is one of the artificial intelligence (AI) approaches...... is proposed in this paper. To meet this objective, an effort is made to introduce a total of 30 boreholes data in an area of 7 km2 which includes the results of field tests into the neural network model and the prediction of artificial neural network is checked in some test boreholes, finally the liquefaction...
Cotton genotypes selection through artificial neural networks.
Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B
2017-09-27
Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.
Generalization performance of regularized neural network models
DEFF Research Database (Denmark)
Larsen, Jan; Hansen, Lars Kai
1994-01-01
Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...
voltage compensation using artificial neural network
African Journals Online (AJOL)
Offor Theophilos
VOLTAGE COMPENSATION USING ARTIFICIAL NEURAL NETWORK: A CASE STUDY OF. RUMUOLA ... using artificial neural network (ANN) controller based dynamic voltage restorer (DVR). ... substation by simulating with sample of average voltage for Omerelu, Waterlines, Rumuola, Shell Industrial and Barracks.
Plant Growth Models Using Artificial Neural Networks
Bubenheim, David
1997-01-01
In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.
Neural networks and applications tutorial
Guyon, I.
1991-09-01
The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.
Optoelectronic Implementation of Neural Networks
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 9. Optoelectronic Implementation of Neural Networks - Use of Optics in Computing. R Ramachandran. General Article Volume 3 Issue 9 September 1998 pp 45-55. Fulltext. Click here to view fulltext PDF. Permanent link:
Aphasia Classification Using Neural Networks
DEFF Research Database (Denmark)
Axer, H.; Jantzen, Jan; Berks, G.
2000-01-01
A web-based software model (http://fuzzy.iau.dtu.dk/aphasia.nsf) was developed as an example for classification of aphasia using neural networks. Two multilayer perceptrons were used to classify the type of aphasia (Broca, Wernicke, anomic, global) according to the results in some subtests...
Analysis of neural networks through base functions
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.
Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more
Simplified LQG Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1997-01-01
A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...
Novel quantum inspired binary neural network algorithm
Indian Academy of Sciences (India)
In this paper, a quantum based binary neural network algorithm is proposed, named as novel quantum binary neural network algorithm (NQ-BNN). It forms a neural network structure by deciding weights and separability parameter in quantum based manner. Quantum computing concept represents solution probabilistically ...
Rahimi, Masoud; Beigzadeh, Reza; Parvizi, Mehdi; Eiamsa-ard, Smith
2016-08-01
The group method of data handling (GMDH) technique was used to predict heat transfer and friction characteristics in heat exchanger tubes equipped with wire-rod bundles. Nusselt number and friction factor were determined as functions of wire-rod bundle geometric parameters and Reynolds number. The performance of the developed GMDH-type neural networks was found to be superior in comparison with the proposed empirical correlations. For optimization, the genetic algorithm-based multi-objective optimization was applied.
Dynamic properties of cellular neural networks
Directory of Open Access Journals (Sweden)
Angela Slavova
1993-01-01
Full Text Available Dynamic behavior of a new class of information-processing systems called Cellular Neural Networks is investigated. In this paper we introduce a small parameter in the state equation of a cellular neural network and we seek for periodic phenomena. New approach is used for proving stability of a cellular neural network by constructing Lyapunov's majorizing equations. This algorithm is helpful for finding a map from initial continuous state space of a cellular neural network into discrete output. A comparison between cellular neural networks and cellular automata is made.
Sonar discrimination of cylinders from different angles using neural networks neural networks
DEFF Research Database (Denmark)
Andersen, Lars Nonboe; Au, Whiwlow; Larsen, Jan
1999-01-01
This paper describes an underwater object discrimination system applied to recognize cylinders of various compositions from different angles. The system is based on a new combination of simulated dolphin clicks, simulated auditory filters and artificial neural networks. The model demonstrates its...
Neural Networks Methodology and Applications
Dreyfus, Gérard
2005-01-01
Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented...
Neural network controller for underwater work ROV. Suichu sagyoyo ROV no neural network controller
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Y.; Kidoshi, H.; Arahata, M.; Shoji, K.; Takahashi, Y. (Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan))
1993-07-01
The previous underwater work ROV (remotely operated vehicle) has been controlled manually because its dynamic properties are changeable underwater. Ishikawajima-Harima Heavy Industries (IHI) has applied a neural network to an adaptive controller for the ROV. This paper describes objectives of the research, design of control logic, and tank experiments on a model ROV. For the neural network, manual operation was used to provide the initial learning data for the neural network in order to initialize control parameters for optimization. The model ROV was designed to achieve and maintain constant depth in normal operation. As a consequence of the tank experiments, it was demonstrated that the controller can acquire skill of operators, can further improve the acquired skill of operators, and can construct an automatic control system autonomically even if any dynamic properties are not known. 6 refs., 8 figs.
The LILARTI neural network system
Energy Technology Data Exchange (ETDEWEB)
Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.
1992-10-01
The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.
Practical neural network recipies in C++
Masters
2014-01-01
This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assum
Neural network modeling of emotion
Levine, Daniel S.
2007-03-01
This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.
MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION
Directory of Open Access Journals (Sweden)
Artur Popko
2013-06-01
Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.
Satellite image analysis using neural networks
Sheldon, Roger A.
1990-01-01
The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.
Fuzzy neural networks: theory and applications
Gupta, Madan M.
1994-10-01
During recent years, significant advances have been made in two distinct technological areas: fuzzy logic and computational neural networks. The theory of fuzzy logic provides a mathematical framework to capture the uncertainties associated with human cognitive processes, such as thinking and reasoning. It also provides a mathematical morphology to emulate certain perceptual and linguistic attributes associated with human cognition. On the other hand, the computational neural network paradigms have evolved in the process of understanding the incredible learning and adaptive features of neuronal mechanisms inherent in certain biological species. Computational neural networks replicate, on a small scale, some of the computational operations observed in biological learning and adaptation. The integration of these two fields, fuzzy logic and neural networks, have given birth to an emerging technological field -- fuzzy neural networks. Fuzzy neural networks, have the potential to capture the benefits of these two fascinating fields, fuzzy logic and neural networks, into a single framework. The intent of this tutorial paper is to describe the basic notions of biological and computational neuronal morphologies, and to describe the principles and architectures of fuzzy neural networks. Towards this goal, we develop a fuzzy neural architecture based upon the notion of T-norm and T-conorm connectives. An error-based learning scheme is described for this neural structure.
Pediatric Nutritional Requirements Determination with Neural Networks
Karlık, Bekir; Ece, Aydın
1998-01-01
To calculate daily nutritional requirements of children, a computer program has been developed based upon neural network. Three parameters, daily protein, energy and water requirements, were calculated through trained artificial neural networks using a database of 312 children The results were compared with those of calculated from dietary requirements tables of World Health Organisation. No significant difference was found between two calculations. In conclusion, a simple neural network may ...
Adaptive optimization and control using neural networks
Energy Technology Data Exchange (ETDEWEB)
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Neural networks for nuclear spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T. [Pacific Northwest Lab., Richland, WA (United States)] [and others
1995-12-31
In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.
Identifying Broadband Rotational Spectra with Neural Networks
Zaleski, Daniel P.; Prozument, Kirill
2017-06-01
A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.
Neural network based system for equipment surveillance
Vilim, R.B.; Gross, K.C.; Wegerich, S.W.
1998-04-28
A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.
Fuzzy neural network theory and application
Liu, Puyin
2004-01-01
This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he
Pansharpening by Convolutional Neural Networks
Directory of Open Access Journals (Sweden)
Giuseppe Masi
2016-07-01
Full Text Available A new pansharpening method is proposed, based on convolutional neural networks. We adapt a simple and effective three-layer architecture recently proposed for super-resolution to the pansharpening problem. Moreover, to improve performance without increasing complexity, we augment the input by including several maps of nonlinear radiometric indices typical of remote sensing. Experiments on three representative datasets show the proposed method to provide very promising results, largely competitive with the current state of the art in terms of both full-reference and no-reference metrics, and also at a visual inspection.
Optimization with Potts Neural Networks
Söderberg, Bo
The Potts Neural Network approach to non-binary discrete optimization problems is described. It applies to problems that can be described as a set of elementary `multiple choice' options. Instead of the conventional binary (Ising) neurons, mean field Potts neurons, having several available states, are used to describe the elementary degrees of freedom of such problems. The dynamics consists of iterating the mean field equations with annealing until convergence. Due to its deterministic character, the method is quite fast. When applied to problems of Graph Partition and scheduling types, it produces very good solutions also for problems of considerable size.
Subgradient-based neural networks for nonsmooth nonconvex optimization problems.
Bian, Wei; Xue, Xiaoping
2009-06-01
This paper presents a subgradient-based neural network to solve a nonsmooth nonconvex optimization problem with a nonsmooth nonconvex objective function, a class of affine equality constraints, and a class of nonsmooth convex inequality constraints. The proposed neural network is modeled with a differential inclusion. Under a suitable assumption on the constraint set and a proper assumption on the objective function, it is proved that for a sufficiently large penalty parameter, there exists a unique global solution to the neural network and the trajectory of the network can reach the feasible region in finite time and stay there thereafter. It is proved that the trajectory of the neural network converges to the set which consists of the equilibrium points of the neural network, and coincides with the set which consists of the critical points of the objective function in the feasible region. A condition is given to ensure the convergence to the equilibrium point set in finite time. Moreover, under suitable assumptions, the coincidence between the solution to the differential inclusion and the "slow solution" of it is also proved. Furthermore, three typical examples are given to present the effectiveness of the theoretic results obtained in this paper and the good performance of the proposed neural network.
Three dimensional living neural networks
Linnenberger, Anna; McLeod, Robert R.; Basta, Tamara; Stowell, Michael H. B.
2015-08-01
We investigate holographic optical tweezing combined with step-and-repeat maskless projection micro-stereolithography for fine control of 3D positioning of living cells within a 3D microstructured hydrogel grid. Samples were fabricated using three different cell lines; PC12, NT2/D1 and iPSC. PC12 cells are a rat cell line capable of differentiation into neuron-like cells NT2/D1 cells are a human cell line that exhibit biochemical and developmental properties similar to that of an early embryo and when exposed to retinoic acid the cells differentiate into human neurons useful for studies of human neurological disease. Finally induced pluripotent stem cells (iPSC) were utilized with the goal of future studies of neural networks fabricated from human iPSC derived neurons. Cells are positioned in the monomer solution with holographic optical tweezers at 1064 nm and then are encapsulated by photopolymerization of polyethylene glycol (PEG) hydrogels formed by thiol-ene photo-click chemistry via projection of a 512x512 spatial light modulator (SLM) illuminated at 405 nm. Fabricated samples are incubated in differentiation media such that cells cease to divide and begin to form axons or axon-like structures. By controlling the position of the cells within the encapsulating hydrogel structure the formation of the neural circuits is controlled. The samples fabricated with this system are a useful model for future studies of neural circuit formation, neurological disease, cellular communication, plasticity, and repair mechanisms.
The Laplacian spectrum of neural networks
de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.
2014-01-01
The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286
Neural network analysis for hazardous waste characterization
Energy Technology Data Exchange (ETDEWEB)
Misra, M.; Pratt, L.Y.; Farris, C. [Colorado School of Mines, Golden, CO (United States)] [and others
1995-12-31
This paper is a summary of our work in developing a system for interpreting electromagnetic (EM) and magnetic sensor information from the dig face characterization experimental cell at INEL to determine the depth and nature of buried objects. This project contained three primary components: (1) development and evaluation of several geophysical interpolation schemes for correcting missing or noisy data, (2) development and evaluation of several wavelet compression schemes for removing redundancies from the data, and (3) construction of two neural networks that used the results of steps (1) and (2) to determine the depth and nature of buried objects. This work is a proof-of-concept study that demonstrates the feasibility of this approach. The resulting system was able to determine the nature of buried objects correctly 87% of the time and was able to locate a buried object to within an average error of 0.8 feet. These statistics were gathered based on a large test set and so can be considered reliable. Considering the limited nature of this study, these results strongly indicate the feasibility of this approach, and the importance of appropriate preprocessing of neural network input data.
Anticipation in Object Manipulation: Behavioral and Neural Correlates.
Schneider, Thomas; Hermsdörfer, Joachim
2016-01-01
One way to foster the understanding of the impressively skilled fine motor control of human object manipulation is to investigate the rules of the underlying fundamental mechanisms. Examining the action of grasping and lifting objects of various characteristics reveals that one vital step to handle objects in a skilled and fluent way is to predict their properties and plan motor actions accordingly. A large number of behavioral studies have extracted the factors on which we rely when we interact with objects in an anticipatory mode of action. At the same time, considerable effort was taken to elucidate the neuroanatomical areas and networks involved and crucial for anticipatory behavior by conducting functional imaging and stimulation studies and examining the deficits of patients with localized brain damage. This chapter gives an overview of these studies and tries to reconcile their findings, in order to provide an insight into the basic principles of anticipatory motor control and their underlying neural substrates.
Neural networks with discontinuous/impact activations
Akhmet, Marat
2014-01-01
This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...
Hindcasting of storm waves using neural networks
Digital Repository Service at National Institute of Oceanography (India)
Rao, S.; Mandal, S.
of any exogenous input requirement makes the network attractive. A neural network is an information processing system modeled on the structure of the human brain. Its merit is the ability to deal with fuzzy information whose interrelation is ambiguous...
Drift chamber tracking with neural networks
Energy Technology Data Exchange (ETDEWEB)
Lindsey, C.S.; Denby, B.; Haggerty, H.
1992-10-01
We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.
Neural network optimization, components, and design selection
Weller, Scott W.
1991-01-01
Neural Networks are part of a revived technology which has received a lot of hype in recent years. As is apt to happen in any hyped technology, jargon and predictions make its assimilation and application difficult. Nevertheless, Neural Networks have found use in a number of areas, working on non-trivial and non-contrived problems. For example, one net has been trained to "read", translating English text into phoneme sequences. Other applications of Neural Networks include data base manipulation and the solving of routing and classification types of optimization problems. It was their use in optimization that got me involved with Neural Networks. As it turned out, "optimization" used in this context was somewhat misleading, because while some network configurations could indeed solve certain kinds of optimization problems, the configuring or "training" of a Neural Network itself is an optimization problem, and most of the literature which talked about Neural Nets and optimization in the same breath did not speak to my goal of using Neural Nets to help solve lens optimization problems. I did eventually apply Neural Network to lens optimization, and I will touch on those results. The application of Neural Nets to the problem of lens selection was much more successful, and those results will dominate this paper.
Research on the Application of Artificial Neural Networks in Tender Offer for Construction Projects
Minli, Zhang; Shanshan, Qiao
The BP model in artificial neural network is used in this paper. Various factors that affect the tender offer is identified and these factors as the input nodes of network to conduct iterated operation in the network is applied in this paper. Through taking advantage of the self-learning function of network, this paper constantly modifies the weight matrix to achieve the objective error of the network error to achieve the function of predicting offer. As a software support tool, MATLAB is used in artificial neural network, the neural network toolbox helps to reduce the workload of writing code greatly and make the application of neural network more widely.
Radiation Behavior of Analog Neural Network Chip
Langenbacher, H.; Zee, F.; Daud, T.; Thakoor, A.
1996-01-01
A neural network experiment conducted for the Space Technology Research Vehicle (STRV-1) 1-b launched in June 1994. Identical sets of analog feed-forward neural network chips was used to study and compare the effects of space and ground radiation on the chips. Three failure mechanisms are noted.
Neural network approach to parton distributions fitting
Piccione, Andrea; Forte, Stefano; Latorre, Jose I.; Rojo, Joan; Piccione, Andrea; Rojo, Joan
2006-01-01
We will show an application of neural networks to extract information on the structure of hadrons. A Monte Carlo over experimental data is performed to correctly reproduce data errors and correlations. A neural network is then trained on each Monte Carlo replica via a genetic algorithm. Results on the proton and deuteron structure functions, and on the nonsinglet parton distribution will be shown.
Self-organization of neural networks
Energy Technology Data Exchange (ETDEWEB)
Clark, J.W.; Winston, J.V.; Rafelski, J.
1984-05-14
The plastic development of a neural-network model operating autonomously in discrete time is described by the temporal modification of interneuronal coupling strengths according to momentary neural activity. A simple algorithm (brainwashing) is found which, applied to nets with initially quasirandom connectivity, leads to model networks with properties conducive to the simulation of memory and learning phenomena. 18 references, 2 figures.
Medical image analysis with artificial neural networks.
Jiang, J; Trundle, P; Ren, J
2010-12-01
Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hidden neural networks: application to speech recognition
DEFF Research Database (Denmark)
Riis, Søren Kamaric
1998-01-01
We evaluate the hidden neural network HMM/NN hybrid on two speech recognition benchmark tasks; (1) task independent isolated word recognition on the Phonebook database, and (2) recognition of broad phoneme classes in continuous speech from the TIMIT database. It is shown how hidden neural networks...
Genetic Algorithm Optimized Neural Networks Ensemble as ...
African Journals Online (AJOL)
Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) for the simultaneous spectrophotometric multicomponent analysis are suggested, with a study on the estimation of the components of an antihypertensive combination, namely, atenolol and losartan potassium.
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Application of Neural Networks for Energy Reconstruction
Damgov, Jordan
2002-01-01
The possibility to use Neural Networks for reconstruction ofthe energy deposited in the calorimetry system of the CMS detector is investigated. It is shown that using feed-forward neural network, good linearity, Gaussian energy distribution and good energy resolution can be achieved. Significant improvement of the energy resolution and linearity is reached in comparison with other weighting methods for energy reconstruction.
Neural Network to Solve Concave Games
Zixin Liu; Nengfa Wang
2014-01-01
The issue on neural network method to solve concave games is concerned. Combined with variational inequality, Ky Fan inequality, and projection equation, concave games are transformed into a neural network model. On the basis of the Lyapunov stable theory, some stability results are also given. Finally, two classic games’ simulation results are given to illustrate the theoretical results.
Recognizing changing seasonal patterns using neural networks
Ph.H.B.F. Franses (Philip Hans); G. Draisma (Gerrit)
1997-01-01
textabstractIn this paper we propose a graphical method based on an artificial neural network model to investigate how and when seasonal patterns in macroeconomic time series change over time. Neural networks are useful since the hidden layer units may become activated only in certain seasons or
Adaptive Neurons For Artificial Neural Networks
Tawel, Raoul
1990-01-01
Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.
BOUNDARY DEPTH INFORMATION USING HOPFIELD NEURAL NETWORK
Directory of Open Access Journals (Sweden)
S. Xu
2016-06-01
Full Text Available Depth information is widely used for representation, reconstruction and modeling of 3D scene. Generally two kinds of methods can obtain the depth information. One is to use the distance cues from the depth camera, but the results heavily depend on the device, and the accuracy is degraded greatly when the distance from the object is increased. The other one uses the binocular cues from the matching to obtain the depth information. It is more and more mature and convenient to collect the depth information of different scenes by stereo matching methods. In the objective function, the data term is to ensure that the difference between the matched pixels is small, and the smoothness term is to smooth the neighbors with different disparities. Nonetheless, the smoothness term blurs the boundary depth information of the object which becomes the bottleneck of the stereo matching. This paper proposes a novel energy function for the boundary to keep the discontinuities and uses the Hopfield neural network to solve the optimization. We first extract the region of interest areas which are the boundary pixels in original images. Then, we develop the boundary energy function to calculate the matching cost. At last, we solve the optimization globally by the Hopfield neural network. The Middlebury stereo benchmark is used to test the proposed method, and results show that our boundary depth information is more accurate than other state-of-the-art methods and can be used to optimize the results of other stereo matching methods.
Initialization of multilayer forecasting artifical neural networks
Bochkarev, Vladimir V.; Maslennikova, Yulia S.
2014-01-01
In this paper, a new method was developed for initialising artificial neural networks predicting dynamics of time series. Initial weighting coefficients were determined for neurons analogously to the case of a linear prediction filter. Moreover, to improve the accuracy of the initialization method for a multilayer neural network, some variants of decomposition of the transformation matrix corresponding to the linear prediction filter were suggested. The efficiency of the proposed neural netwo...
International Conference on Artificial Neural Networks (ICANN)
Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics
2015-01-01
The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...
Neural Based Orthogonal Data Fitting The EXIN Neural Networks
Cirrincione, Giansalvo
2008-01-01
Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Wh
Complex-valued Neural Networks
Hirose, Akira
This paper reviews the features and applications of complex-valued neural networks (CVNNs). First we list the present application fields, and describe the advantages of the CVNNs in two application examples, namely, an adaptive plastic-landmine visualization system and an optical frequency-domain-multiplexed learning logic circuit. Then we briefly discuss the features of complex number itself to find that the phase rotation is the most significant concept, which is very useful in processing the information related to wave phenomena such as lightwave and electromagnetic wave. The CVNNs will also be an indispensable framework of the future microelectronic information-processing hardware where the quantum electron wave plays the principal role.
Collision avoidance using neural networks
Sugathan, Shilpa; Sowmya Shree, B. V.; Warrier, Mithila R.; Vidhyapathi, C. M.
2017-11-01
Now a days, accidents on roads are caused due to the negligence of drivers and pedestrians or due to unexpected obstacles that come into the vehicle’s path. In this paper, a model (robot) is developed to assist drivers for a smooth travel without accidents. It reacts to the real time obstacles on the four critical sides of the vehicle and takes necessary action. The sensor used for detecting the obstacle was an IR proximity sensor. A single layer perceptron neural network is used to train and test all possible combinations of sensors result by using Matlab (offline). A microcontroller (ARM Cortex-M3 LPC1768) is used to control the vehicle through the output data which is received from Matlab via serial communication. Hence, the vehicle becomes capable of reacting to any combination of real time obstacles.
Data systems and computer science: Neural networks base R/T program overview
Gulati, Sandeep
1991-01-01
The research base, in the U.S. and abroad, for the development of neural network technology is discussed. The technical objectives are to develop and demonstrate adaptive, neural information processing concepts. The leveraging of external funding is also discussed.
Piecewise convexity of artificial neural networks.
Rister, Blaine; Rubin, Daniel L
2017-10-01
Although artificial neural networks have shown great promise in applications including computer vision and speech recognition, there remains considerable practical and theoretical difficulty in optimizing their parameters. The seemingly unreasonable success of gradient descent methods in minimizing these non-convex functions remains poorly understood. In this work we offer some theoretical guarantees for networks with piecewise affine activation functions, which have in recent years become the norm. We prove three main results. First, that the network is piecewise convex as a function of the input data. Second, that the network, considered as a function of the parameters in a single layer, all others held constant, is again piecewise convex. Third, that the network as a function of all its parameters is piecewise multi-convex, a generalization of biconvexity. From here we characterize the local minima and stationary points of the training objective, showing that they minimize the objective on certain subsets of the parameter space. We then analyze the performance of two optimization algorithms on multi-convex problems: gradient descent, and a method which repeatedly solves a number of convex sub-problems. We prove necessary convergence conditions for the first algorithm and both necessary and sufficient conditions for the second, after introducing regularization to the objective. Finally, we remark on the remaining difficulty of the global optimization problem. Under the squared error objective, we show that by varying the training data, a single rectifier neuron admits local minima arbitrarily far apart, both in objective value and parameter space. Copyright © 2017 Elsevier Ltd. All rights reserved.
Program Aids Simulation Of Neural Networks
Baffes, Paul T.
1990-01-01
Computer program NETS - Tool for Development and Evaluation of Neural Networks - provides simulation of neural-network algorithms plus software environment for development of such algorithms. Enables user to customize patterns of connections between layers of network, and provides features for saving weight values of network, providing for more precise control over learning process. Consists of translating problem into format using input/output pairs, designing network configuration for problem, and finally training network with input/output pairs until acceptable error reached. Written in C.
Learning Processes of Layered Neural Networks
Fujiki, Sumiyoshi; FUJIKI, Nahomi, M.
1995-01-01
A positive reinforcement type learning algorithm is formulated for a stochastic feed-forward neural network, and a learning equation similar to that of the Boltzmann machine algorithm is obtained. By applying a mean field approximation to the same stochastic feed-forward neural network, a deterministic analog feed-forward network is obtained and the back-propagation learning rule is re-derived.
Modular representation of layered neural networks.
Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio
2018-01-01
Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Research of The Deeper Neural Networks
Directory of Open Access Journals (Sweden)
Xiao You Rong
2016-01-01
Full Text Available Neural networks (NNs have powerful computational abilities and could be used in a variety of applications; however, training these networks is still a difficult problem. With different network structures, many neural models have been constructed. In this report, a deeper neural networks (DNNs architecture is proposed. The training algorithm of deeper neural network insides searching the global optimal point in the actual error surface. Before the training algorithm is designed, the error surface of the deeper neural network is analyzed from simple to complicated, and the features of the error surface is obtained. Based on these characters, the initialization method and training algorithm of DNNs is designed. For the initialization, a block-uniform design method is proposed which separates the error surface into some blocks and finds the optimal block using the uniform design method. For the training algorithm, the improved gradient-descent method is proposed which adds a penalty term into the cost function of the old gradient descent method. This algorithm makes the network have a great approximating ability and keeps the network state stable. All of these improve the practicality of the neural network.
Neural network topology design for nonlinear control
Haecker, Jens; Rudolph, Stephan
2001-03-01
Neural networks, especially in nonlinear system identification and control applications, are typically considered to be black-boxes which are difficult to analyze and understand mathematically. Due to this reason, an in- depth mathematical analysis offering insight into the different neural network transformation layers based on a theoretical transformation scheme is desired, but up to now neither available nor known. In previous works it has been shown how proven engineering methods such as dimensional analysis and the Laplace transform may be used to construct a neural controller topology for time-invariant systems. Using the knowledge of neural correspondences of these two classical methods, the internal nodes of the network could also be successfully interpreted after training. As further extension to these works, the paper describes the latest of a theoretical interpretation framework describing the neural network transformation sequences in nonlinear system identification and control. This can be achieved By incorporation of the method of exact input-output linearization in the above mentioned two transform sequences of dimensional analysis and the Laplace transformation. Based on these three theoretical considerations neural network topologies may be designed in special situations by pure translation in the sense of a structural compilation of the known classical solutions into their correspondent neural topology. Based on known exemplary results, the paper synthesizes the proposed approach into the visionary goals of a structural compiler for neural networks. This structural compiler for neural networks is intended to automatically convert classical control formulations into their equivalent neural network structure based on the principles of equivalence between formula and operator, and operator and structure which are discussed in detail in this work.
A new one-layer neural network for linear and quadratic programming.
Gao, Xingbao; Liao, Li-Zhi
2010-06-01
In this paper, we present a new neural network for solving linear and quadratic programming problems in real time by introducing some new vectors. The proposed neural network is stable in the sense of Lyapunov and can converge to an exact optimal solution of the original problem when the objective function is convex on the set defined by equality constraints. Compared with existing one-layer neural networks for quadratic programming problems, the proposed neural network has the least neurons and requires weak stability conditions. The validity and transient behavior of the proposed neural network are demonstrated by some simulation results.
Training Convolutional Neural Networks for Translational Invariance on SAR ATR
DEFF Research Database (Denmark)
Malmgren-Hansen, David; Engholm, Rasmus; Østergaard Pedersen, Morten
2016-01-01
In this paper we present a comparison of the robustness of Convolutional Neural Networks (CNN) to other classifiers in the presence of uncertainty of the objects localization in SAR image. We present a framework for simulating simple SAR images, translating the object of interest systematically...
Structured learning via convolutional neural networks for vehicle detection
Maqueda, Ana I.; del Blanco, Carlos R.; Jaureguizar, Fernando; García, Narciso
2017-05-01
One of the main tasks in a vision-based traffic monitoring system is the detection of vehicles. Recently, deep neural networks have been successfully applied to this end, outperforming previous approaches. However, most of these works generally rely on complex and high-computational region proposal networks. Others employ deep neural networks as a segmentation strategy to achieve a semantic representation of the object of interest, which has to be up-sampled later. In this paper, a new design for a convolutional neural network is applied to vehicle detection in highways for traffic monitoring. This network generates a spatially structured output that encodes the vehicle locations. Promising results have been obtained in the GRAM-RTM dataset.
Genetic algorithm for neural networks optimization
Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta
2004-11-01
This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.
Estimation of Conditional Quantile using Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1999-01-01
The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....
Vectorized algorithms for spiking neural network simulation.
Brette, Romain; Goodman, Dan F M
2011-06-01
High-level languages (Matlab, Python) are popular in neuroscience because they are flexible and accelerate development. However, for simulating spiking neural networks, the cost of interpretation is a bottleneck. We describe a set of algorithms to simulate large spiking neural networks efficiently with high-level languages using vector-based operations. These algorithms constitute the core of Brian, a spiking neural network simulator written in the Python language. Vectorized simulation makes it possible to combine the flexibility of high-level languages with the computational efficiency usually associated with compiled languages.
Convolutional Neural Network for Image Recognition
Seifnashri, Sahand
2015-01-01
The aim of this project is to use machine learning techniques especially Convolutional Neural Networks for image processing. These techniques can be used for Quark-Gluon discrimination using calorimeters data, but unfortunately I didn’t manage to get the calorimeters data and I just used the Jet data fromminiaodsim(ak4 chs). The Jet data was not good enough for Convolutional Neural Network which is designed for ’image’ recognition. This report is made of twomain part, part one is mainly about implementing Convolutional Neural Network on unphysical data such as MNIST digits and CIFAR-10 dataset and part 2 is about the Jet data.
Neural Network and Letter Recognition.
Lee, Hue Yeon
Neural net architectures and learning algorithms that recognize hand written 36 alphanumeric characters are studied. The thin line input patterns written in 32 x 32 binary array are used. The system is comprised of two major components, viz. a preprocessing unit and a Recognition unit. The preprocessing unit in turn consists of three layers of neurons; the U-layer, the V-layer, and the C -layer. The functions of the U-layer is to extract local features by template matching. The correlation between the detected local features are considered. Through correlating neurons in a plane with their neighboring neurons, the V-layer would thicken the on-cells or lines that are groups of on-cells of the previous layer. These two correlations would yield some deformation tolerance and some of the rotational tolerance of the system. The C-layer then compresses data through the 'Gabor' transform. Pattern dependent choice of center and wavelengths of 'Gabor' filters is the cause of shift and scale tolerance of the system. Three different learning schemes had been investigated in the recognition unit, namely; the error back propagation learning with hidden units, a simple perceptron learning, and a competitive learning. Their performances were analyzed and compared. Since sometimes the network fails to distinguish between two letters that are inherently similar, additional ambiguity resolving neural nets are introduced on top of the above main neural net. The two dimensional Fourier transform is used as the preprocessing and the perceptron is used as the recognition unit of the ambiguity resolver. One hundred different person's handwriting sets are collected. Some of these are used as the training sets and the remainders are used as the test sets. The correct recognition rate of the system increases with the number of training sets and eventually saturates at a certain value. Similar recognition rates are obtained for the above three different learning algorithms. The minimum error
Nonequilibrium landscape theory of neural networks
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-01-01
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451
From neural-based object recognition toward microelectronic eyes
Sheu, Bing J.; Bang, Sa Hyun
1994-01-01
Engineering neural network systems are best known for their abilities to adapt to the changing characteristics of the surrounding environment by adjusting system parameter values during the learning process. Rapid advances in analog current-mode design techniques have made possible the implementation of major neural network functions in custom VLSI chips. An electrically programmable analog synapse cell with large dynamic range can be realized in a compact silicon area. New designs of the synapse cells, neurons, and analog processor are presented. A synapse cell based on Gilbert multiplier structure can perform the linear multiplication for back-propagation networks. A double differential-pair synapse cell can perform the Gaussian function for radial-basis network. The synapse cells can be biased in the strong inversion region for high-speed operation or biased in the subthreshold region for low-power operation. The voltage gain of the sigmoid-function neurons is externally adjustable which greatly facilitates the search of optimal solutions in certain networks. Various building blocks can be intelligently connected to form useful industrial applications. Efficient data communication is a key system-level design issue for large-scale networks. We also present analog neural processors based on perceptron architecture and Hopfield network for communication applications. Biologically inspired neural networks have played an important role towards the creation of powerful intelligent machines. Accuracy, limitations, and prospects of analog current-mode design of the biologically inspired vision processing chips and cellular neural network chips are key design issues.
Neural Network for Estimating Conditional Distribution
DEFF Research Database (Denmark)
Schiøler, Henrik; Kulczycki, P.
Neural networks for estimating conditional distributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency is proved from a mild set of assumptions. A number of applications within...... statistcs, decision theory and signal processing are suggested, and a numerical example illustrating the capabilities of the elaborated network is given...
Person Movement Prediction Using Neural Networks
Vintan, Lucian; Gellert, Arpad; Petzold, Jan; Ungerer, Theo
2006-01-01
Ubiquitous systems use context information to adapt appliance behavior to human needs. Even more convenience is reached if the appliance foresees the user's desires and acts proactively. This paper proposes neural prediction techniques to anticipate a person's next movement. We focus on neural predictors (multi-layer perceptron with back-propagation learning) with and without pre-training. The optimal configuration of the neural network is determined by evaluating movement sequences of real p...
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
Chernoded, Andrey; Dudko, Lev; Myagkov, Igor; Volkov, Petr
2017-10-01
Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
Directory of Open Access Journals (Sweden)
Chernoded Andrey
2017-01-01
Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
[Medical use of artificial neural networks].
Molnár, B; Papik, K; Schaefer, R; Dombóvári, Z; Fehér, J; Tulassay, Z
1998-01-04
The main aim of the research in medical diagnostics is to develop more exact, cost-effective and handsome systems, procedures and methods for supporting the clinicians. In their paper the authors introduce a new method that recently came into the focus referred to as artificial neural networks. Based on the literature of the past 5-6 years they give a brief review--highlighting the most important ones--showing the idea behind neural networks, what they are used for in the medical field. The definition, structure and operation of neural networks are discussed. In the application part they collect examples in order to give an insight in the neural network application research. It is emphasised that in the near future basically new diagnostic equipment can be developed based on this new technology in the field of ECG, EEG and macroscopic and microscopic image analysis systems.
Application of neural networks in coastal engineering
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
methods. That is why it is becoming popular in various fields including coastal engineering. Waves and tides will play important roles in coastal erosion or accretion. This paper briefly describes the back-propagation neural networks and its application...
Additive Feed Forward Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1999-01-01
This paper demonstrates a method to control a non-linear, multivariable, noisy process using trained neural networks. The basis for the method is a trained neural network controller acting as the inverse process model. A training method for obtaining such an inverse process model is applied....... A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...
Blood glucose prediction using neural network
Soh, Chit Siang; Zhang, Xiqin; Chen, Jianhong; Raveendran, P.; Soh, Phey Hong; Yeo, Joon Hock
2008-02-01
We used neural network for blood glucose level determination in this study. The data set used in this study was collected using a non-invasive blood glucose monitoring system with six laser diodes, each laser diode operating at distinct near infrared wavelength between 1500nm and 1800nm. The neural network is specifically used to determine blood glucose level of one individual who participated in an oral glucose tolerance test (OGTT) session. Partial least squares regression is also used for blood glucose level determination for the purpose of comparison with the neural network model. The neural network model performs better in the prediction of blood glucose level as compared with the partial least squares model.
PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK
Directory of Open Access Journals (Sweden)
R. Hadapiningradja Kusumodestoni
2015-11-01
Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.
Using Neural Networks in Diagnosing Breast Cancer
National Research Council Canada - National Science Library
Fogel, David
1997-01-01
.... In the current study, evolutionary programming is used to train neural networks and linear discriminant models to detect breast cancer in suspicious and microcalcifications using radiographic features and patient age...
Neural Networks in Mobile Robot Motion
Directory of Open Access Journals (Sweden)
Danica Janglová
2004-03-01
Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the “free” space using ultrasound range finder data. The second neural network “finds” a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.
Isolated Speech Recognition Using Artificial Neural Networks
National Research Council Canada - National Science Library
Polur, Prasad
2001-01-01
.... A small size vocabulary containing the words YES and NO is chosen. Spectral features using cepstral analysis are extracted per frame and imported to a feedforward neural network which uses a backpropagation with momentum training algorithm...
Control of autonomous robot using neural networks
Barton, Adam; Volna, Eva
2017-07-01
The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.
Neural Networks in Mobile Robot Motion
Directory of Open Access Journals (Sweden)
Danica Janglova
2008-11-01
Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the "free" space using ultrasound range finder data. The second neural network "finds" a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.
Artificial neural networks a practical course
da Silva, Ivan Nunes; Andrade Flauzino, Rogerio; Liboni, Luisa Helena Bartocci; dos Reis Alves, Silas Franco
2017-01-01
This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.
Constructive autoassociative neural network for facial recognition.
Directory of Open Access Journals (Sweden)
Bruno J T Fernandes
Full Text Available Autoassociative artificial neural networks have been used in many different computer vision applications. However, it is difficult to define the most suitable neural network architecture because this definition is based on previous knowledge and depends on the problem domain. To address this problem, we propose a constructive autoassociative neural network called CANet (Constructive Autoassociative Neural Network. CANet integrates the concepts of receptive fields and autoassociative memory in a dynamic architecture that changes the configuration of the receptive fields by adding new neurons in the hidden layer, while a pruning algorithm removes neurons from the output layer. Neurons in the CANet output layer present lateral inhibitory connections that improve the recognition rate. Experiments in face recognition and facial expression recognition show that the CANet outperforms other methods presented in the literature.
Genetic Algorithm Optimized Neural Networks Ensemble as ...
African Journals Online (AJOL)
NJD
Genetic Algorithm Optimized Neural Networks Ensemble as. Calibration Model for Simultaneous Spectrophotometric. Estimation of Atenolol and Losartan Potassium in Tablets. Dondeti Satyanarayana*, Kamarajan Kannan and Rajappan Manavalan. Department of Pharmacy, Annamalai University, Annamalainagar, Tamil ...
Applications of Pulse-Coupled Neural Networks
Ma, Yide; Wang, Zhaobin
2011-01-01
"Applications of Pulse-Coupled Neural Networks" explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields. This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science. Prof. Yide Ma conducts research on intelligent information processing, biomedical image processing, and embedded system development at the School of Information Sci
Neural networks as models of psychopathology.
Aakerlund, L; Hemmingsen, R
1998-04-01
Neural network modeling is situated between neurobiology, cognitive science, and neuropsychology. The structural and functional resemblance with biological computation has made artificial neural networks (ANN) useful for exploring the relationship between neurobiology and computational performance, i.e., cognition and behavior. This review provides an introduction to the theory of ANN and how they have linked theories from neurobiology and psychopathology in schizophrenia, affective disorders, and dementia.
Product Cost Management Structures: a review and neural network modelling
Directory of Open Access Journals (Sweden)
P. Jha
2003-11-01
Full Text Available This paper reviews the growth of approaches in product costing and draws synergies with information management and resource planning systems, to investigate potential application of state of the art modelling techniques of neural networks. Increasing demands on costing systems to serve multiple decision-making objectives, have made it essential to use better techniques for analysis of available data. This need is highlighted in the paper. The approach of neural networks, which have several analogous facets to complement and aid the information demands of modern product costing, Enterprise Resource Planning (ERP structures and the dominant-computing environment (for information management in the object oriented paradigm form the domain for investigation. Simulated data is used in neural network applications across activities that consume resources and deliver products, to generate information for monitoring and control decisions. The results in application for feature extraction and variation detection and their implications are presented in the paper.
A neural network simulation package in CLIPS
Bhatnagar, Himanshu; Krolak, Patrick D.; Mcgee, Brenda J.; Coleman, John
1990-01-01
The intrinsic similarity between the firing of a rule and the firing of a neuron has been captured in this research to provide a neural network development system within an existing production system (CLIPS). A very important by-product of this research has been the emergence of an integrated technique of using rule based systems in conjunction with the neural networks to solve complex problems. The systems provides a tool kit for an integrated use of the two techniques and is also extendible to accommodate other AI techniques like the semantic networks, connectionist networks, and even the petri nets. This integrated technique can be very useful in solving complex AI problems.
SCYNet. Testing supersymmetric models at the LHC with neural networks
Energy Technology Data Exchange (ETDEWEB)
Bechtle, Philip; Belkner, Sebastian; Hamer, Matthias [Universitaet Bonn, Bonn (Germany); Dercks, Daniel [Universitaet Hamburg, Hamburg (Germany); Keller, Tim; Kraemer, Michael; Sarrazin, Bjoern; Schuette-Engel, Jan; Tattersall, Jamie [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany)
2017-10-15
SCYNet (SUSY Calculating Yield Net) is a tool for testing supersymmetric models against LHC data. It uses neural network regression for a fast evaluation of the profile likelihood ratio. Two neural network approaches have been developed: one network has been trained using the parameters of the 11-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-11) as an input and evaluates the corresponding profile likelihood ratio within milliseconds. It can thus be used in global pMSSM-11 fits without time penalty. In the second approach, the neural network has been trained using model-independent signature-related objects, such as energies and particle multiplicities, which were estimated from the parameters of a given new physics model. (orig.)
SCYNet: testing supersymmetric models at the LHC with neural networks
Bechtle, Philip; Belkner, Sebastian; Dercks, Daniel; Hamer, Matthias; Keller, Tim; Krämer, Michael; Sarrazin, Björn; Schütte-Engel, Jan; Tattersall, Jamie
2017-10-01
SCYNet (SUSY Calculating Yield Net) is a tool for testing supersymmetric models against LHC data. It uses neural network regression for a fast evaluation of the profile likelihood ratio. Two neural network approaches have been developed: one network has been trained using the parameters of the 11-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-11) as an input and evaluates the corresponding profile likelihood ratio within milliseconds. It can thus be used in global pMSSM-11 fits without time penalty. In the second approach, the neural network has been trained using model-independent signature-related objects, such as energies and particle multiplicities, which were estimated from the parameters of a given new physics model.
Logarithmic learning for generalized classifier neural network.
Ozyildirim, Buse Melis; Avci, Mutlu
2014-12-01
Generalized classifier neural network is introduced as an efficient classifier among the others. Unless the initial smoothing parameter value is close to the optimal one, generalized classifier neural network suffers from convergence problem and requires quite a long time to converge. In this work, to overcome this problem, a logarithmic learning approach is proposed. The proposed method uses logarithmic cost function instead of squared error. Minimization of this cost function reduces the number of iterations used for reaching the minima. The proposed method is tested on 15 different data sets and performance of logarithmic learning generalized classifier neural network is compared with that of standard one. Thanks to operation range of radial basis function included by generalized classifier neural network, proposed logarithmic approach and its derivative has continuous values. This makes it possible to adopt the advantage of logarithmic fast convergence by the proposed learning method. Due to fast convergence ability of logarithmic cost function, training time is maximally decreased to 99.2%. In addition to decrease in training time, classification performance may also be improved till 60%. According to the test results, while the proposed method provides a solution for time requirement problem of generalized classifier neural network, it may also improve the classification accuracy. The proposed method can be considered as an efficient way for reducing the time requirement problem of generalized classifier neural network. Copyright © 2014 Elsevier Ltd. All rights reserved.
Diabetic retinopathy screening using deep neural network.
Ramachandran, Nishanthan; Hong, Sheng Chiong; Sime, Mary J; Wilson, Graham A
2017-09-07
There is a burgeoning interest in the use of deep neural network in diabetic retinal screening. To determine whether a deep neural network could satisfactorily detect diabetic retinopathy that requires referral to an ophthalmologist from a local diabetic retinal screening programme and an international database. Retrospective audit. Diabetic retinal photos from Otago database photographed during October 2016 (485 photos), and 1200 photos from Messidor international database. Receiver operating characteristic curve to illustrate the ability of a deep neural network to identify referable diabetic retinopathy (moderate or worse diabetic retinopathy or exudates within one disc diameter of the fovea). Area under the receiver operating characteristic curve, sensitivity and specificity. For detecting referable diabetic retinopathy, the deep neural network had an area under receiver operating characteristic curve of 0.901 (95% confidence interval 0.807-0.995), with 84.6% sensitivity and 79.7% specificity for Otago and 0.980 (95% confidence interval 0.973-0.986), with 96.0% sensitivity and 90.0% specificity for Messidor. This study has shown that a deep neural network can detect referable diabetic retinopathy with sensitivities and specificities close to or better than 80% from both an international and a domestic (New Zealand) database. We believe that deep neural networks can be integrated into community screening once they can successfully detect both diabetic retinopathy and diabetic macular oedema. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Symbolic processing in neural networks
Neto, João Pedro; Hava T Siegelmann; Costa,J.Félix
2003-01-01
In this paper we show that programming languages can be translated into recurrent (analog, rational weighted) neural nets. Implementation of programming languages in neural nets turns to be not only theoretical exciting, but has also some practical implications in the recent efforts to merge symbolic and sub symbolic computation. To be of some use, it should be carried in a context of bounded resources. Herein, we show how to use resource bounds to speed up computations over neural nets, thro...
Hindcasting cyclonic waves using neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Rao, S.; Chakravarty, N.V.
the backpropagation networks with updated algorithms are used in this paper. A brief description about the working of a back propagation neural network and three updated algorithms is given below. Backpropagation learning: Backpropagation is the most widely used... algorithm for supervised learning with multi layer feed forward networks. The idea of the backpropagation learning algorithm is the repeated application of the chain rule to compute the influence of each weight in the network with respect to an arbitrary...
Artificial astrocytes improve neural network performance.
Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-04-19
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
Neural Network Analysis and Evaluation of the Fetal Heart Rate
Directory of Open Access Journals (Sweden)
Yasuaki Noguchi
2009-01-01
Full Text Available The aim of the present study is to obtain a highly objective automatic fetal heart rate (FHR diagnosis. The neural network software was composed of three layers with the back propagation, to which 8 FHR data, including sinusoidal FHR, were input and the system was educated by the data of 20 cases with a known outcome. The output was the probability of a normal, intermediate, or pathologic outcome. The neural index studied prolonged monitoring. The neonatal states and the FHR score strongly correlated with the outcome probability. The neural index diagnosis was correct. The completed software was transferred to other computers, where the system function was correct.
Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach
2016-03-30
Undergraduate Student Paper Postgraduate Student Paper Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach...monitoring, flight parameter, nonlinear modeling, Artificial Neural Network , typical loadcase. Introduction Aircraft load monitoring is an... Neural Networks (ANN), i.e. the BP network and Kohonen Clustering Network , are applied and revised by Kalman Filter and Genetic Algorithm to build
Fin-and-tube condenser performance evaluation using neural networks
Energy Technology Data Exchange (ETDEWEB)
Zhao, Ling-Xiao [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [China R and D Center, Carrier Corporation, No. 3239 Shen Jiang Road, Shanghai 201206 (China)
2010-05-15
The paper presents neural network approach to performance evaluation of the fin-and-tube air-cooled condensers which are widely used in air-conditioning and refrigeration systems. Inputs of the neural network include refrigerant and air-flow rates, refrigerant inlet temperature and saturated temperature, and entering air dry-bulb temperature. Outputs of the neural network consist of the heating capacity and the pressure drops on both refrigerant and air sides. The multi-input multi-output (MIMO) neural network is separated into multi-input single-output (MISO) neural networks for training. Afterwards, the trained MISO neural networks are combined into a MIMO neural network, which indicates that the number of training data sets is determined by the biggest MISO neural network not the whole MIMO network. Compared with a validated first-principle model, the standard deviations of neural network models are less than 1.9%, and all errors fall into {+-}5%. (author)
An artifical neural network for detection of simulated dental caries
Energy Technology Data Exchange (ETDEWEB)
Kositbowornchai, S. [Khon Kaen Univ. (Thailand). Dept. of Oral Diagnosis; Siriteptawee, S.; Plermkamon, S.; Bureerat, S. [Khon Kaen Univ. (Thailand). Dept. of Mechanical Engineering; Chetchotsak, D. [Khon Kaen Univ. (Thailand). Dept. of Industrial Engineering
2006-08-15
Objects: A neural network was developed to diagnose artificial dental caries using images from a charged-coupled device (CCD)camera and intra-oral digital radiography. The diagnostic performance of this neural network was evaluated against a gold standard. Materials and methods: The neural network design was the Learning Vector Quantization (LVQ) used to classify a tooth surface as sound or as having dental caries. The depth of the dental caries was indicated on a graphic user interface (GUI) screen developed by Matlab programming. Forty-nine images of both sound and simulated dental caries, derived from a CCD camera and by digital radiography, were used to 'train' an artificial neural network. After the 'training' process, a separate test-set comprising 322 unseen images was evaluated. Tooth sections and microscopic examinations were used to confirm the actual dental caries status.The performance of neural network was evaluated using diagnostic test. Results: The sensitivity (95%CI)/specificity (95%CI) of dental caries detection by the CCD camera and digital radiography were 0.77(0.68-0.85)/0.85(0.75-0.92) and 0.81(0.72-0.88)/0.93(0.84-0.97), respectively. The accuracy of caries depth-detection by the CCD camera and digital radiography was 58 and 40%, respectively. Conclusions: The model neural network used in this study could be a prototype for caries detection but should be improved for classifying caries depth. Our study suggests an artificial neural network can be trained to make the correct interpretations of dental caries. (orig.)
Prototype-Incorporated Emotional Neural Network.
Oyedotun, Oyebade K; Khashman, Adnan
2017-08-15
Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.
On sparsely connected optimal neural networks
Energy Technology Data Exchange (ETDEWEB)
Beiu, V. [Los Alamos National Lab., NM (United States); Draghici, S. [Wayne State Univ., Detroit, MI (United States)
1997-10-01
This paper uses two different approaches to show that VLSI- and size-optimal discrete neural networks are obtained for small fan-in values. These have applications to hardware implementations of neural networks, but also reveal an intrinsic limitation of digital VLSI technology: its inability to cope with highly connected structures. The first approach is based on implementing F{sub n,m} functions. The authors show that this class of functions can be implemented in VLSI-optimal (i.e., minimizing AT{sup 2}) neural networks of small constant fan-ins. In order to estimate the area (A) and the delay (T) of such networks, the following cost functions will be used: (i) the connectivity and the number-of-bits for representing the weights and thresholds--for good estimates of the area; and (ii) the fan-ins and the length of the wires--for good approximates of the delay. The second approach is based on implementing Boolean functions for which the classical Shannon`s decomposition can be used. Such a solution has already been used to prove bounds on the size of fan-in 2 neural networks. They will generalize the result presented there to arbitrary fan-in, and prove that the size is minimized by small fan-in values. Finally, a size-optimal neural network of small constant fan-ins will be suggested for F{sub n,m} functions.
Artificial neural network intelligent method for prediction
Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi
2017-09-01
Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.
Estimating Conditional Distributions by Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1998-01-01
Neural Networks for estimating conditionaldistributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency property is considered from a mild set of assumptions. A number of applications...
Medical Text Classification using Convolutional Neural Networks
Hughes, Mark; Li, Irene; Kotoulas, Spyros; Suzumura, Toyotaro
2017-01-01
We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by about 15%.
Medical Text Classification Using Convolutional Neural Networks.
Hughes, Mark; Li, Irene; Kotoulas, Spyros; Suzumura, Toyotaro
2017-01-01
We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by about 15%.
Artificial Neural Networks and Instructional Technology.
Carlson, Patricia A.
1991-01-01
Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…
Use of artificial neural network for spatial rainfall analysis
Indian Academy of Sciences (India)
In the present study, the precipitation data measured at 23 rain gauge stations over the Achaia County, Greece, were used to estimate the spatial distribution of the mean annual precipitation values over a specific catchment area. The objective of this work was achieved by programming an Artificial Neural Network (ANN) ...
Particle swarm optimization of a neural network model in a ...
Indian Academy of Sciences (India)
sets of cutting conditions and noting the root mean square (RMS) value of spindle motor current as well as ... A multi- objective optimization of hard turning using neural network modelling and swarm intelligence ... being used in this study), and these activated values in turn become the starting signals for the next adjacent ...
Improved neural network modeling of inverse lens distortion
CSIR Research Space (South Africa)
De Villiers, JP
2011-04-01
Full Text Available Inverse lens distortion modelling allows one to find the pixel in a distorted image which corresponds to a known point in object space, such as may be produced by a RADAR. This paper extends recent work using neural networks as a compromise between...
Recurrent Artificial Neural Networks and Finite State Natural Language Processing.
Moisl, Hermann
It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…
On The Comparison of Artificial Neural Network (ANN) and ...
African Journals Online (AJOL)
PROF. OLIVER OSUAGWA
real life problems ranging from management sciences, business schools, and others [10], [12],. [14], [17]. Moreover, this study aims at comparisons of the model performance of neural network and statistical technique (Multinomial Logistic. Regression) in view of other objectives, using secondary data from the department of.
Visual Servoing from Deep Neural Networks
Bateux, Quentin; Marchand, Eric; Leitner, Jürgen; Chaumette, Francois; Corke, Peter
2017-01-01
International audience; We present a deep neural network-based method to perform high-precision, robust and real-time 6 DOF visual servoing. The paper describes how to create a dataset simulating various perturbations (occlusions and lighting conditions) from a single real-world image of the scene. A convolutional neural network is fine-tuned using this dataset to estimate the relative pose between two images of the same scene. The output of the network is then employed in a visual servoing c...
Design of Robust Neural Network Classifiers
DEFF Research Database (Denmark)
Larsen, Jan; Andersen, Lars Nonboe; Hintz-Madsen, Mads
1998-01-01
This paper addresses a new framework for designing robust neural network classifiers. The network is optimized using the maximum a posteriori technique, i.e., the cost function is the sum of the log-likelihood and a regularization term (prior). In order to perform robust classification, we present...... a modified likelihood function which incorporates the potential risk of outliers in the data. This leads to the introduction of a new parameter, the outlier probability. Designing the neural classifier involves optimization of network weights as well as outlier probability and regularization parameters. We...
Electronic device aspects of neural network memories
Lambe, J.; Moopenn, A.; Thakoor, A. P.
1985-01-01
The basic issues related to the electronic implementation of the neural network model (NNM) for content addressable memories are examined. A brief introduction to the principles of the NNM is followed by an analysis of the information storage of the neural network in the form of a binary connection matrix and the recall capability of such matrix memories based on a hardware simulation study. In addition, materials and device architecture issues involved in the future realization of such networks in VLSI-compatible ultrahigh-density memories are considered. A possible space application of such devices would be in the area of large-scale information storage without mechanical devices.
A quantum-implementable neural network model
Chen, Jialin; Wang, Lingli; Charbon, Edoardo
2017-10-01
A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.
Neural network optimization, components, and design selection
Weller, Scott W.
1990-07-01
Neural Networks are part of a revived technology which has received a lot of hype in recent years. As is apt to happen in any hyped technology, jargon and predictions make its assimilation and application difficult. Nevertheless, Neural Networks have found use in a number of areas, working on non-trivial and noncontrived problems. For example, one net has been trained to "read", translating English text into phoneme sequences. Other applications of Neural Networks include data base manipulation and the solving of muting and classification types of optimization problems. Neural Networks are constructed from neurons, which in electronics or software attempt to model but are not constrained by the real thing, i.e., neurons in our gray matter. Neurons are simple processing units connected to many other neurons over pathways which modify the incoming signals. A single synthetic neuron typically sums its weighted inputs, runs this sum through a non-linear function, and produces an output. In the brain, neurons are connected in a complex topology: in hardware/software the topology is typically much simpler, with neurons lying side by side, forming layers of neurons which connect to the layer of neurons which receive their outputs. This simplistic model is much easier to construct than the real thing, and yet can solve real problems. The information in a network, or its "memory", is completely contained in the weights on the connections from one neuron to another. Establishing these weights is called "training" the network. Some networks are trained by design -- once constructed no further learning takes place. Other types of networks require iterative training once wired up, but are not trainable once taught Still other types of networks can continue to learn after initial construction. The main benefit to using Neural Networks is their ability to work with conflicting or incomplete ("fuzzy") data sets. This ability and its usefulness will become evident in the following
HIV lipodystrophy case definition using artificial neural network modelling
DEFF Research Database (Denmark)
Ioannidis, John P A; Trikalinos, Thomas A; Law, Matthew
2003-01-01
OBJECTIVE: A case definition of HIV lipodystrophy has recently been developed from a combination of clinical, metabolic and imaging/body composition variables using logistic regression methods. We aimed to evaluate whether artificial neural networks could improve the diagnostic accuracy. METHODS......: The database of the case-control Lipodystrophy Case Definition Study was split into 504 subjects (265 with and 239 without lipodystrophy) used for training and 284 independent subjects (152 with and 132 without lipodystrophy) used for validation. Back-propagation neural networks with one or two middle layers...... were trained and validated. Results were compared against logistic regression models using the same information. RESULTS: Neural networks using clinical variables only (41 items) achieved consistently superior performance than logistic regression in terms of specificity, overall accuracy and area under...
Neutron spectrometry with artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Rodriguez, J.M.; Mercado S, G.A. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Iniguez de la Torre Bayo, M.P. [Universidad de Valladolid, Valladolid (Spain); Barquero, R. [Hospital Universitario Rio Hortega, Valladolid (Spain); Arteaga A, T. [Envases de Zacatecas, S.A. de C.V., Zacatecas (Mexico)]. e-mail: rvega@cantera.reduaz.mx
2005-07-01
An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the {chi}{sup 2}-test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Neutron spectrometry using artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Vega-Carrillo, Hector Rene [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Unidad Academica de Ing. Electrica, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Unidad Academica de Matematicas, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]. E-mail: fermineutron@yahoo.com; Martin Hernandez-Davila, Victor [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Unidad Academica de Ing. Electrica, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico); Manzanares-Acuna, Eduardo [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico); Mercado Sanchez, Gema A. [Unidad Academica de Matematicas, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico); Pilar Iniguez de la Torre, Maria [Depto. Fisica Teorica, Molecular y Nuclear, Universidad de Valladolid, Valladolid (Spain); Barquero, Raquel [Hospital Universitario Rio Hortega, Valladolid (Spain); Palacios, Francisco; Mendez Villafane, Roberto [Depto. Fisica Teorica, Molecular y Nuclear, Universidad de Valladolid, Valladolid (Spain)]|[Universidad Europea Miguel de Cervantes, C. Padre Julio Chevalier No. 2, 47012 Valladolid (Spain); Arteaga Arteaga, Tarcicio [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Envases de Zacatecas, SA de CV, Parque Industrial de Calera de Victor Rosales, Zac. (Mexico); Manuel Ortiz Rodriguez, Jose [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Unidad Academica de Ing. Electrica, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)
2006-04-15
An artificial neural network has been designed to obtain neutron spectra from Bonner spheres spectrometer count rates. The neural network was trained using 129 neutron spectra. These include spectra from isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra based on mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. The re-binned spectra and the UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and their respective spectra were used as output during the neural network training. After training, the network was tested with the Bonner spheres count rates produced by folding a set of neutron spectra with the response matrix. This set contains data used during network training as well as data not used. Training and testing was carried out using the Matlab{sup (R)} program. To verify the network unfolding performance, the original and unfolded spectra were compared using the root mean square error. The use of artificial neural networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated with this ill-conditioned problem.
Antagonistic neural networks underlying differentiated leadership roles
Richard Eleftherios Boyatzis; Kylie eRochford; Anthony Ian Jack
2014-01-01
The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950’s. Recent research in neuroscience suggests that the division between task oriented and socio-emotional oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks -- the Task Positive Network (TPN) and the Default Mode Network (DMN). Neural activity in ...
Representations in neural network based empirical potentials
Cubuk, Ekin D.; Malone, Brad D.; Onat, Berk; Waterland, Amos; Kaxiras, Efthimios
2017-07-01
Many structural and mechanical properties of crystals, glasses, and biological macromolecules can be modeled from the local interactions between atoms. These interactions ultimately derive from the quantum nature of electrons, which can be prohibitively expensive to simulate. Machine learning has the potential to revolutionize materials modeling due to its ability to efficiently approximate complex functions. For example, neural networks can be trained to reproduce results of density functional theory calculations at a much lower cost. However, how neural networks reach their predictions is not well understood, which has led to them being used as a "black box" tool. This lack of understanding is not desirable especially for applications of neural networks in scientific inquiry. We argue that machine learning models trained on physical systems can be used as more than just approximations since they had to "learn" physical concepts in order to reproduce the labels they were trained on. We use dimensionality reduction techniques to study in detail the representation of silicon atoms at different stages in a neural network, which provides insight into how a neural network learns to model atomic interactions.
Object recognition with hierarchical discriminant saliency networks
Directory of Open Access Journals (Sweden)
Sunhyoung eHan
2014-09-01
Full Text Available The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognitionmodel, the hierarchical discriminant saliency network (HDSN, whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. The HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a neuralnetwork implementation, all layers are convolutional and implement acombination of filtering, rectification, and pooling. The rectificationis performed with a parametric extension of the now popular rectified linearunits (ReLUs, whose parameters can be tuned for the detection of targetobject classes. This enables a number of functional enhancementsover neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation ofsaliency responses by the discriminant power of the underlying features,and the ability to detect both feature presence and absence.In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity totarget object classes and invariance. The resulting performance demonstrates benefits for all the functional enhancements of the HDSN.
Community structure of complex networks based on continuous neural network
Dai, Ting-ting; Shan, Chang-ji; Dong, Yan-shou
2017-09-01
As a new subject, the research of complex networks has attracted the attention of researchers from different disciplines. Community structure is one of the key structures of complex networks, so it is a very important task to analyze the community structure of complex networks accurately. In this paper, we study the problem of extracting the community structure of complex networks, and propose a continuous neural network (CNN) algorithm. It is proved that for any given initial value, the continuous neural network algorithm converges to the eigenvector of the maximum eigenvalue of the network modularity matrix. Therefore, according to the stability of the evolution of the network symbol will be able to get two community structure.
Flexible body control using neural networks
Mccullough, Claire L.
1992-01-01
Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.
Identification and Position Control of Marine Helm using Artificial Neural Network Neural Network
Directory of Open Access Journals (Sweden)
Hui ZHU
2008-02-01
Full Text Available If nonlinearities such as saturation of the amplifier gain and motor torque, gear backlash, and shaft compliances- just to name a few - are considered in the position control system of marine helm, traditional control methods are no longer sufficient to be used to improve the performance of the system. In this paper an alternative approach to traditional control methods - a neural network reference controller - is proposed to establish an adaptive control of the position of the marine helm to achieve the controlled variable at the command position. This neural network controller comprises of two neural networks. One is the plant model network used to identify the nonlinear system and the other the controller network used to control the output to follow the reference model. The experimental results demonstrate that this adaptive neural network reference controller has much better control performance than is obtained with traditional controllers.
Liu, Jinkun
2013-01-01
Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design. This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...
Implementing Signature Neural Networks with Spiking Neurons.
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence
Implementing Signature Neural Networks with Spiking Neurons
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the
Training Deep Spiking Neural Networks Using Backpropagation.
Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael
2016-01-01
Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.
Memory-optimal neural network approximation
Bölcskei, Helmut; Grohs, Philipp; Kutyniok, Gitta; Petersen, Philipp
2017-08-01
We summarize the main results of a recent theory-developed by the authors-establishing fundamental lower bounds on the connectivity and memory requirements of deep neural networks as a function of the complexity of the function class to be approximated by the network. These bounds are shown to be achievable. Specifically, all function classes that are optimally approximated by a general class of representation systems-so-called affine systems-can be approximated by deep neural networks with minimal connectivity and memory requirements. Affine systems encompass a wealth of representation systems from applied harmonic analysis such as wavelets, shearlets, ridgelets, α-shearlets, and more generally α-molecules. This result elucidates a remarkable universality property of deep neural networks and shows that they achieve the optimum approximation properties of all affine systems combined. Finally, we present numerical experiments demonstrating that the standard stochastic gradient descent algorithm generates deep neural networks which provide close-to-optimal approximation rates at minimal connectivity. Moreover, stochastic gradient descent is found to actually learn approximations that are sparse in the representation system optimally sparsifying the function class the network is trained on.
Neural networks for sign language translation
Wilson, Beth J.; Anspach, Gretel
1993-09-01
A neural network is used to extract relevant features of sign language from video images of a person communicating in American Sign Language or Signed English. The key features are hand motion, hand location with respect to the body, and handshape. A modular hybrid design is under way to apply various techniques, including neural networks, in the development of a translation system that will facilitate communication between deaf and hearing people. One of the neural networks described here is used to classify video images of handshapes into their linguistic counterpart in American Sign Language. The video image is preprocessed to yield Fourier descriptors that encode the shape of the hand silhouette. These descriptors are then used as inputs to a neural network that classifies their shapes. The network is trained with various examples from different signers and is tested with new images from new signers. The results have shown that for coarse handshape classes, the network is invariant to the type of camera used to film the various signers and to the segmentation technique.
A breathing circuit alarm system based on neural networks.
Orr, J A; Westenskow, D R
1994-03-01
The objectives of our study were (1) to implement intelligent respiratory alarms with a neural network; and (2) to increase alarm specificity and decrease false-alarm rates compared with current alarms. We trained a neural network to recognize 13 faults in an anesthesia breathing circuit. The system extracted 30 breath-to-breath features from the airway CO2, flow, and pressure signals. We created training data for the network by introducing 13 faults repeatedly in 5 dogs (616 total faults). We used the data to train the neural network using the backward error propagation algorithm. In animals, the trained network reported the alarms correctly for 95.0% of the faults when tested during controlled ventilation, and for 86.9% of the faults during spontaneous breathing. When tested in the operating room, the system found and correctly reported 54 of 57 faults that occurred during 43.6 hr of use. The alarm system produced a total of 74 false alarms during 43.6 hr of monitoring. Neural networks may be useful in creating intelligent anesthesia alarm systems.
Equivalence of Conventional and Modified Network of Generalized Neural Elements
Directory of Open Access Journals (Sweden)
E. V. Konovalov
2016-01-01
Full Text Available The article is devoted to the analysis of neural networks consisting of generalized neural elements. The first part of the article proposes a new neural network model — a modified network of generalized neural elements (MGNE-network. This network developes the model of generalized neural element, whose formal description contains some flaws. In the model of the MGNE-network these drawbacks are overcome. A neural network is introduced all at once, without preliminary description of the model of a single neural element and method of such elements interaction. The description of neural network mathematical model is simplified and makes it relatively easy to construct on its basis a simulation model to conduct numerical experiments. The model of the MGNE-network is universal, uniting properties of networks consisting of neurons-oscillators and neurons-detectors. In the second part of the article we prove the equivalence of the dynamics of the two considered neural networks: the network, consisting of classical generalized neural elements, and MGNE-network. We introduce the definition of equivalence in the functioning of the generalized neural element and the MGNE-network consisting of a single element. Then we introduce the definition of the equivalence of the dynamics of the two neural networks in general. It is determined the correlation of different parameters of the two considered neural network models. We discuss the issue of matching the initial conditions of the two considered neural network models. We prove the theorem about the equivalence of the dynamics of the two considered neural networks. This theorem allows us to apply all previously obtained results for the networks, consisting of classical generalized neural elements, to the MGNE-network.
Distorted Character Recognition Via An Associative Neural Network
Messner, Richard A.; Szu, Harold H.
1987-03-01
The purpose of this paper is two-fold. First, it is intended to provide some preliminary results of a character recognition scheme which has foundations in on-going neural network architecture modeling, and secondly, to apply some of the neural network results in a real application area where thirty years of effort has had little effect on providing the machine an ability to recognize distorted objects within the same object class. It is the author's belief that the time is ripe to start applying in ernest the results of over twenty years of effort in neural modeling to some of the more difficult problems which seem so hard to solve by conventional means. The character recognition scheme proposed utilizes a preprocessing stage which performs a 2-dimensional Walsh transform of an input cartesian image field, then sequency filters this spectrum into three feature bands. Various features are then extracted and organized into three sets of feature vectors. These vector patterns that are stored and recalled associatively. Two possible associative neural memory models are proposed for further investigation. The first being an outer-product linear matrix associative memory with a threshold function controlling the strength of the output pattern (similar to Kohonen's crosscorrelation approach [1]). The second approach is based upon a modified version of Grossberg's neural architecture [2] which provides better self-organizing properties due to its adaptive nature. Preliminary results of the sequency filtering and feature extraction preprocessing stage and discussion about the use of the proposed neural architectures is included.
Neural networks and particle physics
Peterson, Carsten
1993-01-01
1. Introduction : Structure of the Central Nervous System Generics2. Feed-forward networks, Perceptions, Function approximators3. Self-organisation, Feature Maps4. Feed-back Networks, The Hopfield model, Optimization problems, Feed-back, Networks, Deformable templates, Graph bisection
Sea level forecasts using neural networks
Röske, Frank
1997-03-01
In this paper, a new method for predicting the sea level employing a neural network approach is introduced. It was designed to improve the prediction of the sea level along the German North Sea Coast under standard conditions. The sea level at any given time depends upon the tides as well as meteorological and oceanographic factors, such as the winds and external surges induced by air pressure. Since tidal predictions are already sufficiently accurate, they have been subtracted from the observed sea levels. The differences will be predicted up to 18 hours in advance. In this paper, the differences are called anomalies. The prediction of the sea level each hour is distinguished from its predictions at the times of high and low tide. For this study, Cuxhaven was selected as a reference site. The predictions made using neural networks were compared for accuracy with the prognoses prepared using six models: two hydrodynamic models, a statistical model, a nearest neighbor model, which is based on analogies, the persistence model, and the verbal forecasts that are broadcast and kept on record by the Sea Level Forecast Service of the Federal Maritime and Hydrography Agency (BSH) in Hamburg. Predictions were calculated for the year 1993 and compared with the actual levels measured. Artificial neural networks are capable of learning. By applying them to the prediction of sea levels, learning from past events has been attempted. It was also attempted to make the experiences of expert forecasters objective. Instead of using the wide-spread back-propagation networks, the self-organizing feature map of Kohonen, or “Kohonen network”, was applied. The fundamental principle of this network is the transformation of the signal similarity into the neighborhood of the neurons while preserving the topology of the signal space. The self-organization procedure of Kohonen networks can be visualized. To make predictions, these networks have been subdivided into a part describing the
Neural network approaches for noisy language modeling.
Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid
2013-11-01
Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.
Bayesian Recurrent Neural Network for Language Modeling.
Chien, Jen-Tzung; Ku, Yuan-Chu
2016-02-01
A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.
Artificial neural network in cosmic landscape
Liu, Junyu
2017-12-01
In this paper we propose that artificial neural network, the basis of machine learning, is useful to generate the inflationary landscape from a cosmological point of view. Traditional numerical simulations of a global cosmic landscape typically need an exponential complexity when the number of fields is large. However, a basic application of artificial neural network could solve the problem based on the universal approximation theorem of the multilayer perceptron. A toy model in inflation with multiple light fields is investigated numerically as an example of such an application.
Top tagging with deep neural networks [Vidyo
CERN. Geneva
2017-01-01
Recent literature on deep neural networks for top tagging has focussed on image based techniques or multivariate approaches using high level jet substructure variables. Here, we take a sequential approach to this task by using anordered sequence of energy deposits as training inputs. Unlike previous approaches, this strategy does not result in a loss of information during pixelization or the calculation of high level features. We also propose new preprocessing methods that do not alter key physical quantities such as jet mass. We compare the performance of this approach to standard tagging techniques and present results evaluating the robustness of the neural network to pileup.
Automatic identification of species with neural networks.
Hernández-Serna, Andrés; Jiménez-Segura, Luz Fernanda
2014-01-01
A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.
Automatic identification of species with neural networks
Directory of Open Access Journals (Sweden)
Andrés Hernández-Serna
2014-11-01
Full Text Available A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.
Pulse image recognition using fuzzy neural network.
Xu, L S; Meng, Max Q -H; Wang, K Q
2007-01-01
The automatic recognition of pulse images is the key in the research of computerized pulse diagnosis. In order to automatically differentiate the pulse patterns by using small samples, a fuzzy neural network to classify pulse images based on the knowledge of experts in traditional Chinese pulse diagnosis was designed. The designed classifier can make hard decision and soft decision for identifying 18 patterns of pulse images at the accuracy of 91%, which is better than the results that achieved by back-propagation neural network.
Assessing Landslide Hazard Using Artificial Neural Network
DEFF Research Database (Denmark)
Farrokhzad, Farzad; Choobbasti, Asskar Janalizadeh; Barari, Amin
2011-01-01
failure" which is main concentration of the current research and "liquefaction failure". Shear failures along shear planes occur when the shear stress along the sliding surfaces exceed the effective shear strength. These slides have been referred to as landslide. An expert system based on artificial...... neural network has been developed for use in the stability evaluation of slopes under various geological conditions and engineering requirements. The Artificial neural network model of this research uses slope characteristics as input and leads to the output in form of the probability of failure...
Neural networks advances and applications 2
Gelenbe, E
1992-01-01
The present volume is a natural follow-up to Neural Networks: Advances and Applications which appeared one year previously. As the title indicates, it combines the presentation of recent methodological results concerning computational models and results inspired by neural networks, and of well-documented applications which illustrate the use of such models in the solution of difficult problems. The volume is balanced with respect to these two orientations: it contains six papers concerning methodological developments and five papers concerning applications and examples illustrating the theoret
Human Face Recognition Using Convolutional Neural Networks
Directory of Open Access Journals (Sweden)
Răzvan-Daniel Albu
2009-10-01
Full Text Available In this paper, I present a novel hybrid face recognition approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns. The convolutional network extracts successively larger features in a hierarchical set of layers. With the weights of the trained neural networks there are created kernel windows used for feature extraction in a 3-stage algorithm. I present experimental results illustrating the efficiency of the proposed approach. I use a database of 796 images of 159 individuals from Reims University which contains quite a high degree of variability in expression, pose, and facial details.
SAR ATR Based on Convolutional Neural Network
Directory of Open Access Journals (Sweden)
Tian Zhuangzhuang
2016-06-01
Full Text Available This study presents a new method of Synthetic Aperture Radar (SAR image target recognition based on a convolutional neural network. First, we introduce a class separability measure into the cost function to improve this network’s ability to distinguish between categories. Then, we extract SAR image features using the improved convolutional neural network and classify these features using a support vector machine. Experimental results using moving and stationary target acquisition and recognition SAR datasets prove the validity of this method.
Exploiting network redundancy for low-cost neural network realizations.
Keegstra, H; Jansen, WJ; Nijhuis, JAG; Spaanenburg, L; Stevens, H; Udding, JT
1996-01-01
A method is presented to optimize a trained neural network for physical realization styles. Target architectures are embedded microcontrollers or standard cell based ASIC designs. The approach exploits the redundancy in the network, required for successful training, to replace the synaptic weighting
Neural Network Predictive Control for Vanadium Redox Flow Battery
Directory of Open Access Journals (Sweden)
Hai-Feng Shen
2013-01-01
Full Text Available The vanadium redox flow battery (VRB is a nonlinear system with unknown dynamics and disturbances. The flowrate of the electrolyte is an important control mechanism in the operation of a VRB system. Too low or too high flowrate is unfavorable for the safety and performance of VRB. This paper presents a neural network predictive control scheme to enhance the overall performance of the battery. A radial basis function (RBF network is employed to approximate the dynamics of the VRB system. The genetic algorithm (GA is used to obtain the optimum initial values of the RBF network parameters. The gradient descent algorithm is used to optimize the objective function of the predictive controller. Compared with the constant flowrate, the simulation results show that the flowrate optimized by neural network predictive controller can increase the power delivered by the battery during the discharge and decrease the power consumed during the charge.
Removing Epistemological Bias From Empirical Observation of Neural Networks
Waldron, Ronan
1994-01-01
Also in Proceedings of the International Joint Conference on Neural Networks, Nagoya, Japan. This paper addresses the application of neural network research to a theory of autonomous systems. Neural networks, while enjoying considerable success in autonomous systems applications, have failed to provide a firm theoretical underpinning to neural systems embedded in their natural ecological context. This paper proposes a stochastic formulation of such an embedding. A neural sys...
DEFF Research Database (Denmark)
Andersen, Lars Nonboe; Au, Whitlow; Larsen, Jan
1999-01-01
This paper describes a method integrating neural networks into a system for recognizing underwater objects. The system is based on a combination of simulated dolphin sonar signals, simulated auditory filters and artificial neural networks. The system is tested on a cylinder wall thickness...
Cheng, Long; Hou, Zeng-Guang; Lin, Yingzi; Tan, Min; Zhang, Wenjun Chris; Wu, Fang-Xiang
2011-05-01
A recurrent neural network is proposed for solving the non-smooth convex optimization problem with the convex inequality and linear equality constraints. Since the objective function and inequality constraints may not be smooth, the Clarke's generalized gradients of the objective function and inequality constraints are employed to describe the dynamics of the proposed neural network. It is proved that the equilibrium point set of the proposed neural network is equivalent to the optimal solution of the original optimization problem by using the Lagrangian saddle-point theorem. Under weak conditions, the proposed neural network is proved to be stable, and the state of the neural network is convergent to one of its equilibrium points. Compared with the existing neural network models for non-smooth optimization problems, the proposed neural network can deal with a larger class of constraints and is not based on the penalty method. Finally, the proposed neural network is used to solve the identification problem of genetic regulatory networks, which can be transformed into a non-smooth convex optimization problem. The simulation results show the satisfactory identification accuracy, which demonstrates the effectiveness and efficiency of the proposed approach.
Using neural networks for prediction of nuclear parameters
Energy Technology Data Exchange (ETDEWEB)
Pereira Filho, Leonidas; Souto, Kelling Cabral, E-mail: leonidasmilenium@hotmail.com, E-mail: kcsouto@bol.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ (Brazil); Machado, Marcelo Dornellas, E-mail: dornemd@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (GCN.T/ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Gerencia de Combustivel Nuclear
2013-07-01
Dating from 1943, the earliest work on artificial neural networks (ANN), when Warren Mc Cullock and Walter Pitts developed a study on the behavior of the biological neuron, with the goal of creating a mathematical model. Some other work was done until after the 80 witnessed an explosion of interest in ANNs, mainly due to advances in technology, especially microelectronics. Because ANNs are able to solve many problems such as approximation, classification, categorization, prediction and others, they have numerous applications in various areas, including nuclear. Nodal method is adopted as a tool for analyzing core parameters such as boron concentration and pin power peaks for pressurized water reactors. However, this method is extremely slow when it is necessary to perform various core evaluations, for example core reloading optimization. To overcome this difficulty, in this paper a model of Multi-layer Perceptron (MLP) artificial neural network type backpropagation will be trained to predict these values. The main objective of this work is the development of Multi-layer Perceptron (MLP) artificial neural network capable to predict, in very short time, with good accuracy, two important parameters used in the core reloading problem - Boron Concentration and Power Peaking Factor. For the training of the neural networks are provided loading patterns and nuclear data used in cycle 19 of Angra 1 nuclear power plant. Three models of networks are constructed using the same input data and providing the following outputs: 1- Boron Concentration and Power Peaking Factor, 2 - Boron Concentration and 3 - Power Peaking Factor. (author)
Parameter Identification by Bayes Decision and Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1994-01-01
The problem of parameter identification by Bayes point estimation using neural networks is investigated.......The problem of parameter identification by Bayes point estimation using neural networks is investigated....
On The Comparison of Artificial Neural Network (ANN) and ...
African Journals Online (AJOL)
West African Journal of Industrial and Academic Research ... This work presented the results of an experimental comparison of two models: Multinomial Logistic Regression (MLR) and Artificial Neural Network (ANN) for ... Keywords: Multinomial Logistic Regression, Artificial Neural Network, Correct classification rate.
A NEURAL OSCILLATOR-NETWORK MODEL OF TEMPORAL PATTERN GENERATION
Schomaker, Lambert
Most contemporary neural network models deal with essentially static, perceptual problems of classification and transformation. Models such as multi-layer feedforward perceptrons generally do not incorporate time as an essential dimension, whereas biological neural networks are inherently temporal
Object Oriented Modeling Of Social Networks
Zeggelink, Evelien P.H.; Oosten, Reinier van; Stokman, Frans N.
1996-01-01
The aim of this paper is to explain principles of object oriented modeling in the scope of modeling dynamic social networks. As such, the approach of object oriented modeling is advocated within the field of organizational research that focuses on networks. We provide a brief introduction into the
Neural correlates of the perception for novel objects.
Directory of Open Access Journals (Sweden)
Hao Zhang
Full Text Available Perception of novel objects is of enormous importance in our lives. People have to perceive or understand novel objects when seeing an original painting, admiring an unconventional construction, and using an inventive device. However, very little is known about neural mechanisms underlying the perception for novel objects. Perception of novel objects relies on the integration of unusual features of novel objects in order to identify what such objects are. In the present study, functional Magnetic Resonance Imaging (MRI was employed to investigate neural correlates of perception of novel objects. The neuroimaging data on participants engaged in novel object viewing versus ordinary object viewing revealed that perception of novel objects involves significant activation in the left precuneus (Brodmann area 7 and the right visual cortex. The results suggest that the left precuneus is associated with the integration of unusual features of novel objects, while the right visual cortex is sensitive to the detection of such features. Our findings highlight the left precuneus as a crucial component of the neural circuitry underlying perception of novel objects.
Neural networks of human nature and nurture
Directory of Open Access Journals (Sweden)
Daniel S. Levine
2009-11-01
Full Text Available Neural network methods have facilitated the unification of several unfortunate splits in psychology, including nature versus nurture. We review the contributions of this methodology and then discuss tentative network theories of caring behavior, of uncaring behavior, and of how the frontal lobes are involved in the choices between them. The implications of our theory are optimistic about the prospects of society to encourage the human potential for caring.
Neural network for sonogram gap filling
DEFF Research Database (Denmark)
Klebæk, Henrik; Jensen, Jørgen Arendt; Hansen, Lars Kai
1995-01-01
a neural network for predicting mean frequency of the velocity signal and its variance. The neural network then predicts the evolution of the mean and variance in the gaps, and the sonogram and audio signal are reconstructed from these. The technique is applied on in-vivo data from the carotid artery...... in the sonogram and in the audio signal, rendering the audio signal useless, thus making diagnosis difficult. The current goal for ultrasound scanners is to maintain a high refresh rate for the B-mode image and at the same time attain a high maximum velocity in the sonogram display. This precludes the intermixing...... series, and is shown to yield better results, i.e., the variances of the predictions are lower. The ability of the neural predictor to reconstruct both the sonogram and the audio signal, when only 50% of the time is used for velocity data acquisition, is demonstrated for the in-vivo data...
Digital Neural Networks for New Media
Spaanenburg, Lambert; Malki, Suleyman
Neural Networks perform computationally intensive tasks offering smart solutions for many new media applications. A number of analog and mixed digital/analog implementations have been proposed to smooth the algorithmic gap. But gradually, the digital implementation has become feasible, and the dedicated neural processor is on the horizon. A notable example is the Cellular Neural Network (CNN). The analog direction has matured for low-power, smart vision sensors; the digital direction is gradually being shaped into an IP-core for algorithm acceleration, especially for use in FPGA-based high-performance systems. The chapter discusses the next step towards a flexible and scalable multi-core engine using Application-Specific Integrated Processors (ASIP). This topographic engine can serve many new media tasks, as illustrated by novel applications in Homeland Security. We conclude with a view on the CNN kaleidoscope for the year 2020.
Optimizing neural network models: motivation and case studies
Harp, S A; T. Samad
2012-01-01
Practical successes have been achieved with neural network models in a variety of domains, including energy-related industry. The large, complex design space presented by neural networks is only minimally explored in current practice. The satisfactory results that nevertheless have been obtained testify that neural networks are a robust modeling technology; at the same time, however, the lack of a systematic design approach implies that the best neural network models generally rem...
Stock Price Prediction Based on Procedural Neural Networks
Jiuzhen Liang; Wei Song; Mei Wang
2011-01-01
We present a spatiotemporal model, namely, procedural neural networks for stock price prediction. Compared with some successful traditional models on simulating stock market, such as BNN (backpropagation neural networks, HMM (hidden Markov model) and SVM (support vector machine)), the procedural neural network model processes both spacial and temporal information synchronously without slide time window, which is typically used in the well-known recurrent neural networks. Two differen...
Computational capabilities of graph neural networks.
Scarselli, Franco; Gori, Marco; Tsoi, Ah Chung; Hagenbuchner, Markus; Monfardini, Gabriele
2009-01-01
In this paper, we will consider the approximation properties of a recently introduced neural network model called graph neural network (GNN), which can be used to process-structured data inputs, e.g., acyclic graphs, cyclic graphs, and directed or undirected graphs. This class of neural networks implements a function tau(G,n) is an element of IR(m) that maps a graph G and one of its nodes n onto an m-dimensional Euclidean space. We characterize the functions that can be approximated by GNNs, in probability, up to any prescribed degree of precision. This set contains the maps that satisfy a property called preservation of the unfolding equivalence, and includes most of the practically useful functions on graphs; the only known exception is when the input graph contains particular patterns of symmetries when unfolding equivalence may not be preserved. The result can be considered an extension of the universal approximation property established for the classic feedforward neural networks (FNNs). Some experimental examples are used to show the computational capabilities of the proposed model.
Parameter estimation using compensatory neural networks
Indian Academy of Sciences (India)
Proposed here is a new neuron model, a basis for Compensatory Neural Network Architecture (CNNA), which not only reduces the total number of interconnections among neurons but also reduces the total computing time for training. The suggested model has properties of the basic neuron model as well as the higher ...
Based on BP Neural Network Stock Prediction
Liu, Xiangwei; Ma, Xin
2012-01-01
The stock market has a high profit and high risk features, on the stock market analysis and prediction research has been paid attention to by people. Stock price trend is a complex nonlinear function, so the price has certain predictability. This article mainly with improved BP neural network (BPNN) to set up the stock market prediction model, and…
Epileptiform spike detection via convolutional neural networks
DEFF Research Database (Denmark)
Johansen, Alexander Rosenberg; Jin, Jing; Maszczyk, Tomasz
2016-01-01
The EEG of epileptic patients often contains sharp waveforms called "spikes", occurring between seizures. Detecting such spikes is crucial for diagnosing epilepsy. In this paper, we develop a convolutional neural network (CNN) for detecting spikes in EEG of epileptic patients in an automated...
Artificial neural networks and support vector mac
Indian Academy of Sciences (India)
Quantitative structure-property relationships of electroluminescent materials: Artificial neural networks and support vector machines to predict electroluminescence of organic molecules. ALANA FERNANDES GOLIN and RICARDO STEFANI. ∗. Laboratório de Estudos de Materiais (LEMAT), Instituto de Ciências Exatas e da ...
Neural Networks for protein Structure Prediction
DEFF Research Database (Denmark)
Bohr, Henrik
1998-01-01
This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...
Towards semen quality assessment using neural networks
DEFF Research Database (Denmark)
Linneberg, Christian; Salamon, P.; Svarer, C.
1994-01-01
The paper presents the methodology and results from a neural net based classification of human sperm head morphology. The methodology uses a preprocessing scheme in which invariant Fourier descriptors are lumped into “energy” bands. The resulting networks are pruned using optimal brain damage...
Convolutional Neural Networks for SAR Image Segmentation
DEFF Research Database (Denmark)
Malmgren-Hansen, David; Nobel-Jørgensen, Morten
2015-01-01
Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...
Convolutional Neural Networks - Generalizability and Interpretations
DEFF Research Database (Denmark)
Malmgren-Hansen, David
from data despite it being limited in amount or context representation. Within Machine Learning this thesis focuses on Convolutional Neural Networks for Computer Vision. The research aims to answer how to explore a model's generalizability to the whole population of data samples and how to interpret...
Visualization of neural networks using saliency maps
DEFF Research Database (Denmark)
Mørch, Niels J.S.; Kjems, Ulrik; Hansen, Lars Kai
1995-01-01
The saliency map is proposed as a new method for understanding and visualizing the nonlinearities embedded in feedforward neural networks, with emphasis on the ill-posed case, where the dimensionality of the input-field by far exceeds the number of examples. Several levels of approximations...
Separable explanations of neural network decisions
DEFF Research Database (Denmark)
Rieger, Laura
2017-01-01
Deep Taylor Decomposition is a method used to explain neural network decisions. When applying this method to non-dominant classifications, the resulting explanation does not reflect important features for the chosen classification. We propose that this is caused by the dense layers and propose...
Fast Fingerprint Classification with Deep Neural Network
DEFF Research Database (Denmark)
Michelsanti, Daniel; Guichi, Yanis; Ene, Andreea-Daniela
2017-01-01
. In this work we evaluate the performance of two pre-trained convolutional neural networks fine-tuned on the NIST SD4 benchmark database. The obtained results show that this approach is comparable with other results in the literature, with the advantage of a fast feature extraction stage....
Empirical generalization assessment of neural network models
DEFF Research Database (Denmark)
Larsen, Jan; Hansen, Lars Kai
1995-01-01
This paper addresses the assessment of generalization performance of neural network models by use of empirical techniques. We suggest to use the cross-validation scheme combined with a resampling technique to obtain an estimate of the generalization performance distribution of a specific model...
Localizing Tortoise Nests by Neural Networks.
Directory of Open Access Journals (Sweden)
Roberto Barbuti
Full Text Available The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating. Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN. We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours, the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.
Feature to prototype transition in neural networks
Krotov, Dmitry; Hopfield, John
Models of associative memory with higher order (higher than quadratic) interactions, and their relationship to neural networks used in deep learning are discussed. Associative memory is conventionally described by recurrent neural networks with dynamical convergence to stable points. Deep learning typically uses feedforward neural nets without dynamics. However, a simple duality relates these two different views when applied to problems of pattern classification. From the perspective of associative memory such models deserve attention because they make it possible to store a much larger number of memories, compared to the quadratic case. In the dual description, these models correspond to feedforward neural networks with one hidden layer and unusual activation functions transmitting the activities of the visible neurons to the hidden layer. These activation functions are rectified polynomials of a higher degree rather than the rectified linear functions used in deep learning. The network learns representations of the data in terms of features for rectified linear functions, but as the power in the activation function is increased there is a gradual shift to a prototype-based representation, the two extreme regimes of pattern recognition known in cognitive psychology. Simons Center for Systems Biology.
Applying Artificial Neural Networks for Face Recognition
Directory of Open Access Journals (Sweden)
Thai Hoang Le
2011-01-01
Full Text Available This paper introduces some novel models for all steps of a face recognition system. In the step of face detection, we propose a hybrid model combining AdaBoost and Artificial Neural Network (ABANN to solve the process efficiently. In the next step, labeled faces detected by ABANN will be aligned by Active Shape Model and Multi Layer Perceptron. In this alignment step, we propose a new 2D local texture model based on Multi Layer Perceptron. The classifier of the model significantly improves the accuracy and the robustness of local searching on faces with expression variation and ambiguous contours. In the feature extraction step, we describe a methodology for improving the efficiency by the association of two methods: geometric feature based method and Independent Component Analysis method. In the face matching step, we apply a model combining many Neural Networks for matching geometric features of human face. The model links many Neural Networks together, so we call it Multi Artificial Neural Network. MIT + CMU database is used for evaluating our proposed methods for face detection and alignment. Finally, the experimental results of all steps on CallTech database show the feasibility of our proposed model.
drinking water treatment using artificial neural network
African Journals Online (AJOL)
ogwueleka
synaptic weights are used to store the knowledge.” The neural network approach is a branch of artificial intelligence. The ANN is based on a model of the human neurological system that consists of basic computing elements (called neurons) interconnected together (Figure 1). The model used for all classification attempts.
Artificial neural networks in neutron dosimetry
Energy Technology Data Exchange (ETDEWEB)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. de Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)
2005-07-01
An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the {chi}{sup 2}- test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Learning chaotic attractors by neural networks
Bakker, R; Schouten, JC; Giles, CL; Takens, F; van den Bleek, CM
2000-01-01
An algorithm is introduced that trains a neural network to identify chaotic dynamics from a single measured time series. During training, the algorithm learns to short-term predict the time series. At the same time a criterion, developed by Diks, van Zwet, Takens, and de Goede (1996) is monitored
Nonlinear Time Series Analysis via Neural Networks
Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin
This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.
Neural networks, penalty logic and optimality theory
Blutner, R.; Benz, A.; Blutner, R.
2009-01-01
Ever since the discovery of neural networks, there has been a controversy between two modes of information processing. On the one hand, symbolic systems have proven indispensable for our understanding of higher intelligence, especially when cognitive domains like language and reasoning are examined.
Image inpainting using a neural network
Directory of Open Access Journals (Sweden)
Gapon Nikolay
2017-01-01
Full Text Available The paper describes a new method of two-dimensional signals reconstruction by restoring static images. A new method of spatial reconstruction of static images based on a geometric model using a neural network is proposed, it is based on the search for similar blocks and copying them into the region of distorted or missing pixel values.
Foetal ECG recovery using dynamic neural networks.
Camps-Valls, Gustavo; Martínez-Sober, Marcelino; Soria-Olivas, Emilio; Magdalena-Benedito, Rafael; Calpe-Maravilla, Javier; Guerrero-Martínez, Juan
2004-07-01
Non-invasive electrocardiography has proven to be a very interesting method for obtaining information about the foetus state and thus to assure its well-being during pregnancy. One of the main applications in this field is foetal electrocardiogram (ECG) recovery by means of automatic methods. Evident problems found in the literature are the limited number of available registers, the lack of performance indicators, and the limited use of non-linear adaptive methods. In order to circumvent these problems, we first introduce the generation of synthetic registers and discuss the influence of different kinds of noise to the modelling. Second, a method which is based on numerical (correlation coefficient) and statistical (analysis of variance, ANOVA) measures allows us to select the best recovery model. Finally, finite impulse response (FIR) and gamma neural networks are included in the adaptive noise cancellation (ANC) scheme in order to provide highly non-linear, dynamic capabilities to the recovery model. Neural networks are benchmarked with classical adaptive methods such as the least mean squares (LMS) and the normalized LMS (NLMS) algorithms in simulated and real registers and some conclusions are drawn. For synthetic registers, the most determinant factor in the identification of the models is the foetal-maternal signal-to-noise ratio (SNR). In addition, as the electromyogram contribution becomes more relevant, neural networks clearly outperform the LMS-based algorithm. From the ANOVA test, we found statistical differences between LMS-based models and neural models when complex situations (high foetal-maternal and foetal-noise SNRs) were present. These conclusions were confirmed after doing robustness tests on synthetic registers, visual inspection of the recovered signals and calculation of the recognition rates of foetal R-peaks for real situations. Finally, the best compromise between model complexity and outcomes was provided by the FIR neural network. Both
Analysis of neural networks in terms of domain functions
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, Lambert
Despite their success-story, artificial neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more as a
Extracting knowledge from supervised neural networks in image processing
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, Lambert; Jain, R.; Abraham, A.; Faucher, C.; van der Zwaag, B.J.
Despite their success-story, artificial neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a “magic tool��? but possibly even more as a
neural network based load frequency control for restructuring power
African Journals Online (AJOL)
2012-03-01
Mar 1, 2012 ... Abstract. In this study, an artificial neural network (ANN) application of load frequency control. (LFC) of a Multi-Area power system by using a neural network controller is presented. The comparison between a conventional Proportional Integral (PI) controller and the proposed artificial neural networks ...
Artificial Neural Network Modeling of an Inverse Fluidized Bed ...
African Journals Online (AJOL)
The application of neural networks to model a laboratory scale inverse fluidized bed reactor has been studied. A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological ...
Time series prediction with simple recurrent neural networks ...
African Journals Online (AJOL)
Simple recurrent neural networks are widely used in time series prediction. Most researchers and application developers often choose arbitrarily between Elman or Jordan simple recurrent neural networks for their applications. A hybrid of the two called Elman-Jordan (or Multi-recurrent) neural network is also being used.
Application of radial basis neural network for state estimation of ...
African Journals Online (AJOL)
user
An original application of radial basis function (RBF) neural network for power system state estimation is proposed in this paper. The property of massive parallelism of neural networks is employed for this. The application of RBF neural network for state estimation is investigated by testing its applicability on a IEEE 14 bus ...
New Neural Network Methods for Forecasting Regional Employment
Patuelli, R.; Reggiani, A; Nijkamp, P.; Blien, U.
2006-01-01
In this paper, a set of neural network (NN) models is developed to compute short-term forecasts of regional employment patterns in Germany. Neural networks are modern statistical tools based on learning algorithms that are able to process large amounts of data. Neural networks are enjoying
The Artifical Neural Network as means for modeling Nonlinear Systems
Drábek Oldøich; Taufer Ivan
1998-01-01
The paper deals with nonlinear system identification based on neural network. The topic of this publication is simulation of training and testing a neural network. A contribution is assigned to technologists which are good at the clasical identification problems but their knowledges about identification based on neural network are only on the stage of theoretical bases.
The Artifical Neural Network as means for modeling Nonlinear Systems
Directory of Open Access Journals (Sweden)
Drábek Oldøich
1998-12-01
Full Text Available The paper deals with nonlinear system identification based on neural network. The topic of this publication is simulation of training and testing a neural network. A contribution is assigned to technologists which are good at the clasical identification problems but their knowledges about identification based on neural network are only on the stage of theoretical bases.
Algorithm For A Self-Growing Neural Network
Cios, Krzysztof J.
1996-01-01
CID3 algorithm simulates self-growing neural network. Constructs decision trees equivalent to hidden layers of neural network. Based on ID3 algorithm, which dynamically generates decision tree while minimizing entropy of information. CID3 algorithm generates feedforward neural network by use of either crisp or fuzzy measure of entropy.
Regularized negative correlation learning for neural network ensembles.
Chen, Huanhuan; Yao, Xin
2009-12-01
Negative correlation learning (NCL) is a neural network ensemble learning algorithm that introduces a correlation penalty term to the cost function of each individual network so that each neural network minimizes its mean square error (MSE) together with the correlation of the ensemble. This paper analyzes NCL and reveals that the training of NCL (when lambda = 1) corresponds to training the entire ensemble as a single learning machine that only minimizes the MSE without regularization. This analysis explains the reason why NCL is prone to overfitting the noise in the training set. This paper also demonstrates that tuning the correlation parameter lambda in NCL by cross validation cannot overcome the overfitting problem. The paper analyzes this problem and proposes the regularized negative correlation learning (RNCL) algorithm which incorporates an additional regularization term for the whole ensemble. RNCL decomposes the ensemble's training objectives, including MSE and regularization, into a set of sub-objectives, and each sub-objective is implemented by an individual neural network. In this paper, we also provide a Bayesian interpretation for RNCL and provide an automatic algorithm to optimize regularization parameters based on Bayesian inference. The RNCL formulation is applicable to any nonlinear estimator minimizing the MSE. The experiments on synthetic as well as real-world data sets demonstrate that RNCL achieves better performance than NCL, especially when the noise level is nontrivial in the data set.
Optical implementation of neural networks
Yu, Francis T. S.; Guo, Ruyan
2002-12-01
An adaptive optical neuro-computing (ONC) using inexpensive pocket size liquid crystal televisions (LCTVs) had been developed by the graduate students in the Electro-Optics Laboratory at The Pennsylvania State University. Although this neuro-computing has only 8×8=64 neurons, it can be easily extended to 16×20=320 neurons. The major advantages of this LCTV architecture as compared with other reported ONCs, are low cost and the flexibility to operate. To test the performance, several neural net models are used. These models are Interpattern Association, Hetero-association and unsupervised learning algorithms. The system design considerations and experimental demonstrations are also included.
Identifying Jets Using Artifical Neural Networks
Rosand, Benjamin; Caines, Helen; Checa, Sofia
2017-09-01
We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.
Practical application of artificial neural networks in the neurosciences
Pinti, Antonio
1995-04-01
This article presents a practical application of artificial multi-layer perceptron (MLP) neural networks in neurosciences. The data that are processed are labeled data from the visual analysis of electrical signals of human sleep. The objective of this work is to automatically classify into sleep stages the electrophysiological signals recorded from electrodes placed on a sleeping patient. Two large data bases were designed by experts in order to realize this study. One data base was used to train the network and the other to test its generalization capacity. The classification results obtained with the MLP network were compared to a type K nearest neighbor Knn non-parametric classification method. The MLP network gave a better result in terms of classification than the Knn method. Both classification techniques were implemented on a transputer system. With both networks in their final configuration, the MLP network was 160 times faster than the Knn model in classifying a sleep period.
Artificial neural networks as quantum associative memory
Hamilton, Kathleen; Schrock, Jonathan; Imam, Neena; Humble, Travis
We present results related to the recall accuracy and capacity of Hopfield networks implemented on commercially available quantum annealers. The use of Hopfield networks and artificial neural networks as content-addressable memories offer robust storage and retrieval of classical information, however, implementation of these models using currently available quantum annealers faces several challenges: the limits of precision when setting synaptic weights, the effects of spurious spin-glass states and minor embedding of densely connected graphs into fixed-connectivity hardware. We consider neural networks which are less than fully-connected, and also consider neural networks which contain multiple sparsely connected clusters. We discuss the effect of weak edge dilution on the accuracy of memory recall, and discuss how the multiple clique structure affects the storage capacity. Our work focuses on storage of patterns which can be embedded into physical hardware containing n States Department of Defense and used resources of the Computational Research and Development Programs as Oak Ridge National Laboratory under Contract No. DE-AC0500OR22725 with the U. S. Department of Energy.
Hybrid discrete-time neural networks.
Cao, Hongjun; Ibarz, Borja
2010-11-13
Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.
Computationally Efficient Neural Network Intrusion Security Awareness
Energy Technology Data Exchange (ETDEWEB)
Todd Vollmer; Milos Manic
2009-08-01
An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.
Matrix representation of a Neural Network
DEFF Research Database (Denmark)
Christensen, Bjørn Klint
Processing, by David Rummelhart (Rummelhart 1986) for an easy-to-read introduction. What the paper does explain is how a matrix representation of a neural net allows for a very simple implementation. The matrix representation is introduced in (Rummelhart 1986, chapter 9), but only for a two-layer linear...... network and the feedforward algorithm. This paper develops the idea further to three-layer non-linear networks and the backpropagation algorithm. Figure 1 shows the layout of a three-layer network. There are I input nodes, J hidden nodes and K output nodes all indexed from 0. Bias-node for the hidden...
Reconstruction of periodic signals using neural networks
Directory of Open Access Journals (Sweden)
José Danilo Rairán Antolines
2014-01-01
Full Text Available In this paper, we reconstruct a periodic signal by using two neural networks. The first network is trained to approximate the period of a signal, and the second network estimates the corresponding coefficients of the signal's Fourier expansion. The reconstruction strategy consists in minimizing the mean-square error via backpro-pagation algorithms over a single neuron with a sine transfer function. Additionally, this paper presents mathematical proof about the quality of the approximation as well as a first modification of the algorithm, which requires less data to reach the same estimation; thus making the algorithm suitable for real-time implementations.
Neural networks: Application to medical imaging
Clarke, Laurence P.
1994-01-01
The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.
Fuzzy logic and neural network technologies
Villarreal, James A.; Lea, Robert N.; Savely, Robert T.
1992-01-01
Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.
A Topological Perspective of Neural Network Structure
Sizemore, Ann; Giusti, Chad; Cieslak, Matthew; Grafton, Scott; Bassett, Danielle
The wiring patterns of white matter tracts between brain regions inform functional capabilities of the neural network. Indeed, densely connected and cyclically arranged cognitive systems may communicate and thus perform distinctly. However, previously employed graph theoretical statistics are local in nature and thus insensitive to such global structure. Here we present an investigation of the structural neural network in eight healthy individuals using persistent homology. An extension of homology to weighted networks, persistent homology records both circuits and cliques (all-to-all connected subgraphs) through a repetitive thresholding process, thus perceiving structural motifs. We report structural features found across patients and discuss brain regions responsible for these patterns, finally considering the implications of such motifs in relation to cognitive function.
Liu, Qingshan; Dang, Chuangyin; Huang, Tingwen
2013-02-01
This paper presents a decision-making model described by a recurrent neural network for dynamic portfolio optimization. The portfolio-optimization problem is first converted into a constrained fractional programming problem. Since the objective function in the programming problem is not convex, the traditional optimization techniques are no longer applicable for solving this problem. Fortunately, the objective function in the fractional programming is pseudoconvex on the feasible region. It leads to a one-layer recurrent neural network modeled by means of a discontinuous dynamic system. To ensure the optimal solutions for portfolio optimization, the convergence of the proposed neural network is analyzed and proved. In fact, the neural network guarantees to get the optimal solutions for portfolio-investment advice if some mild conditions are satisfied. A numerical example with simulation results substantiates the effectiveness and illustrates the characteristics of the proposed neural network.
Event Discrimination using Convolutional Neural Networks
Menon, Hareesh; Hughes, Richard; Daling, Alec; Winer, Brian
2017-01-01
Convolutional Neural Networks (CNNs) are computational models that have been shown to be effective at classifying different types of images. We present a method to use CNNs to distinguish events involving the production of a top quark pair and a Higgs boson from events involving the production of a top quark pair and several quark and gluon jets. To do this, we generate and simulate data using MADGRAPH and DELPHES for a general purpose LHC detector at 13 TeV. We produce images using a particle flow algorithm by binning the particles geometrically based on their position in the detector and weighting the bins by the energy of each particle within each bin, and by defining channels based on particle types (charged track, neutral hadronic, neutral EM, lepton, heavy flavor). Our classification results are competitive with standard machine learning techniques. We have also looked into the classification of the substructure of the events, in a process known as scene labeling. In this context, we look for the presence of boosted objects (such as top quarks) with substructure encompassed within single jets. Preliminary results on substructure classification will be presented.
Multiscale Convolutional Neural Networks for Hand Detection
Directory of Open Access Journals (Sweden)
Shiyang Yan
2017-01-01
Full Text Available Unconstrained hand detection in still images plays an important role in many hand-related vision problems, for example, hand tracking, gesture analysis, human action recognition and human-machine interaction, and sign language recognition. Although hand detection has been extensively studied for decades, it is still a challenging task with many problems to be tackled. The contributing factors for this complexity include heavy occlusion, low resolution, varying illumination conditions, different hand gestures, and the complex interactions between hands and objects or other hands. In this paper, we propose a multiscale deep learning model for unconstrained hand detection in still images. Deep learning models, and deep convolutional neural networks (CNNs in particular, have achieved state-of-the-art performances in many vision benchmarks. Developed from the region-based CNN (R-CNN model, we propose a hand detection scheme based on candidate regions generated by a generic region proposal algorithm, followed by multiscale information fusion from the popular VGG16 model. Two benchmark datasets were applied to validate the proposed method, namely, the Oxford Hand Detection Dataset and the VIVA Hand Detection Challenge. We achieved state-of-the-art results on the Oxford Hand Detection Dataset and had satisfactory performance in the VIVA Hand Detection Challenge.
Tumor Diagnosis Using Backpropagation Neural Network Method
Ma, Lixing; Looney, Carl; Sukuta, Sydney; Bruch, Reinhard; Afanasyeva, Natalia
1998-05-01
For characterization of skin cancer, an artificial neural network (ANN) method has been developed to diagnose normal tissue, benign tumor and melanoma. The pattern recognition is based on a three-layer neural network fuzzy learning system. In this study, the input neuron data set is the Fourier Transform infrared (FT-IR)spectrum obtained by a new Fiberoptic Evanescent Wave Fourier Transform Infrared (FEW-FTIR) spectroscopy method in the range of 1480 to 1850 cm-1. Ten input features are extracted from the absorbency values in this region. A single hidden layer of neural nodes with sigmoids activation functions clusters the feature space into small subclasses and the output nodes are separated in different nonconvex classes to permit nonlinear discrimination of disease states. The output is classified as three classes: normal tissue, benign tumor and melanoma. The results obtained from the neural network pattern recognition are shown to be consistent with traditional medical diagnosis. Input features have also been extracted from the absorbency spectra using chemical factor analysis. These abstract features or factors are also used in the classification.
Phase Diagram of Spiking Neural Networks
Directory of Open Access Journals (Sweden)
Hamed eSeyed-Allaei
2015-03-01
Full Text Available In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probablilty of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations. but here, I take a different perspective, inspired by evolution. I simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable by nature. Networks which are configured according to the common values, have the best dynamic range in response to an impulse and their dynamic range is more robust in respect to synaptic weights. In fact, evolution has favored networks of best dynamic range. I present a phase diagram that shows the dynamic ranges of different networks of different parameteres. This phase diagram gives an insight into the space of parameters -- excitatory to inhibitory ratio, sparseness of connections and synaptic weights. It may serve as a guideline to decide about the values of parameters in a simulation of spiking neural network.
Human Parsing with Contextualized Convolutional Neural Network.
Liang, Xiaodan; Xu, Chunyan; Shen, Xiaohui; Yang, Jianchao; Tang, Jinhui; Lin, Liang; Yan, Shuicheng
2016-03-02
In this work, we address the human parsing task with a novel Contextualized Convolutional Neural Network (Co-CNN) architecture, which well integrates the cross-layer context, global image-level context, semantic edge context, within-super-pixel context and cross-super-pixel neighborhood context into a unified network. Given an input human image, Co-CNN produces the pixel-wise categorization in an end-to-end way. First, the cross-layer context is captured by our basic local-to-global-to-local structure, which hierarchically combines the global semantic information and the local fine details across different convolutional layers. Second, the global image-level label prediction is used as an auxiliary objective in the intermediate layer of the Co-CNN, and its outputs are further used for guiding the feature learning in subsequent convolutional layers to leverage the global imagelevel context. Third, semantic edge context is further incorporated into Co-CNN, where the high-level semantic boundaries are leveraged to guide pixel-wise labeling. Finally, to further utilize the local super-pixel contexts, the within-super-pixel smoothing and cross-super-pixel neighbourhood voting are formulated as natural sub-components of the Co-CNN to achieve the local label consistency in both training and testing process. Comprehensive evaluations on two public datasets well demonstrate the significant superiority of our Co-CNN over other state-of-the-arts for human parsing. In particular, the F-1 score on the large dataset [1] reaches 81:72% by Co-CNN, significantly higher than 62:81% and 64:38% by the state-of-the-art algorithms, MCNN [2] and ATR [1], respectively. By utilizing our newly collected large dataset for training, our Co-CNN can achieve 85:36% in F-1 score.
Fuzzy logic and neural networks basic concepts & application
Alavala, Chennakesava R
2008-01-01
About the Book: The primary purpose of this book is to provide the student with a comprehensive knowledge of basic concepts of fuzzy logic and neural networks. The hybridization of fuzzy logic and neural networks is also included. No previous knowledge of fuzzy logic and neural networks is required. Fuzzy logic and neural networks have been discussed in detail through illustrative examples, methods and generic applications. Extensive and carefully selected references is an invaluable resource for further study of fuzzy logic and neural networks. Each chapter is followed by a question bank
Neural Network Approach To Sensory Fusion
Pearson, John C.; Gelfand, Jack J.; Sullivan, W. E.; Peterson, Richard M.; Spence, Clay D.
1988-08-01
We present a neural network model for sensory fusion based on the design of the visual/acoustic target localiza-tion system of the barn owl. This system adaptively fuses its separate visual and acoustic representations of object position into a single joint representation used for head orientation. The building block in this system, as in much of the brain, is the neuronal map. Neuronal maps are large arrays of locally interconnected neurons that represent information in a map-like form, that is, parameter values are systematically encoded by the position of neural activation in the array. The computational load is distributed to a hierarchy of maps, and the computation is performed in stages by transforming the representation from map to map via the geometry of the projections between the maps and the local interactions within the maps. For example, azimuthal position is computed from the frequency and binaural phase information encoded in the signals of the acoustic sensors, while elevation is computed in a separate stream using binaural intensity information. These separate streams are merged in their joint projection onto the external nucleus of the inferior colliculus, a two dimensional array of cells which contains a map of acoustic space. This acoustic map, and the visual map of the retina, jointly project onto the optic tectum, creating a fused visual/acoustic representation of position in space that is used for object localization. In this paper we describe our mathematical model of the stage of visual/acoustic fusion in the optic tectum. The model assumes that the acoustic projection from the external nucleus onto the tectum is roughly topographic and one-to-many, while the visual projection from the retina onto the tectum is topographic and one-to-one. A simple process of self-organization alters the strengths of the acoustic connections, effectively forming a focused beam of strong acoustic connections whose inputs are coincident with the visual inputs
Character Recognition Using Genetically Trained Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.
1998-10-01
Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the
Deep Gate Recurrent Neural Network
2016-11-22
distribution, e.g. a particular book. In this experiment, we use a collection of writings by Nietzsche to train our network. In total, this corpus contains...sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics : Human Language Technologies, pages 142–150...Portland, Oregon, USA, June 2011. Association for Com- putational Linguistics . URL http://www.aclweb.org/anthology/P11-1015. Maja J Matari, Complex
Plug & Play object oriented Bayesian networks
DEFF Research Database (Denmark)
Bangsø, Olav; Flores, J.; Jensen, Finn Verner
2003-01-01
by constructing a junction tree from this network. In this paper we propose a method for translating directly from object oriented Bayesian networks to junction trees, avoiding the intermediate translation. We pursue two main purposes: firstly, to maintain the original structure organized in an instance tree...
Querying moving objects detected by sensor networks
Bestehorn, Markus
2012-01-01
Declarative query interfaces to Sensor Networks (SN) have become a commodity. These interfaces allow access to SN deployed for collecting data using relational queries. However, SN are not confined to data collection, but may track object movement, e.g., wildlife observation or traffic monitoring. While rational approaches are well suited for data collection, research on ""Moving Object Databases"" (MOD) has shown that relational operators are unsuitable to express information needs on object movement, i.e., spatio-temporal queries. ""Querying Moving Objects Detected by Sensor Networks"" studi
A Projection Neural Network for Constrained Quadratic Minimax Optimization.
Liu, Qingshan; Wang, Jun
2015-11-01
This paper presents a projection neural network described by a dynamic system for solving constrained quadratic minimax programming problems. Sufficient conditions based on a linear matrix inequality are provided for global convergence of the proposed neural network. Compared with some of the existing neural networks for quadratic minimax optimization, the proposed neural network in this paper is capable of solving more general constrained quadratic minimax optimization problems, and the designed neural network does not include any parameter. Moreover, the neural network has lower model complexities, the number of state variables of which is equal to that of the dimension of the optimization problems. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.
Review On Applications Of Neural Network To Computer Vision
Li, Wei; Nasrabadi, Nasser M.
1989-03-01
Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.
Deep neural networks for texture classification-A theoretical analysis.
Basu, Saikat; Mukhopadhyay, Supratik; Karki, Manohar; DiBiano, Robert; Ganguly, Sangram; Nemani, Ramakrishna; Gayaka, Shreekant
2018-01-01
We investigate the use of Deep Neural Networks for the classification of image datasets where texture features are important for generating class-conditional discriminative representations. To this end, we first derive the size of the feature space for some standard textural features extracted from the input dataset and then use the theory of Vapnik-Chervonenkis dimension to show that hand-crafted feature extraction creates low-dimensional representations which help in reducing the overall excess error rate. As a corollary to this analysis, we derive for the first time upper bounds on the VC dimension of Convolutional Neural Network as well as Dropout and Dropconnect networks and the relation between excess error rate of Dropout and Dropconnect networks. The concept of intrinsic dimension is used to validate the intuition that texture-based datasets are inherently higher dimensional as compared to handwritten digits or other object recognition datasets and hence more difficult to be shattered by neural networks. We then derive the mean distance from the centroid to the nearest and farthest sampling points in an n-dimensional manifold and show that the Relative Contrast of the sample data vanishes as dimensionality of the underlying vector space tends to infinity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optical neural network system for pose determination of spinning satellites
Lee, Andrew; Casasent, David
1990-01-01
An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.
Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS
Directory of Open Access Journals (Sweden)
Christopher Bergmeir
2012-01-01
Full Text Available Neural networks are important standard machine learning procedures for classification and regression. We describe the R package RSNNS that provides a convenient interface to the popular Stuttgart Neural Network Simulator SNNS. The main features are (a encapsulation of the relevant SNNS parts in a C++ class, for sequential and parallel usage of different networks, (b accessibility of all of the SNNSalgorithmic functionality from R using a low-level interface, and (c a high-level interface for convenient, R-style usage of many standard neural network procedures. The package also includes functions for visualization and analysis of the models and the training procedures, as well as functions for data input/output from/to the original SNNSfile formats.
Nondestructive pavement evaluation using ILLI-PAVE based artificial neural network models.
2008-09-01
The overall objective in this research project is to develop advanced pavement structural analysis models for more accurate solutions with fast computation schemes. Soft computing and modeling approaches, specifically the Artificial Neural Network (A...
Investment Valuation Analysis with Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Hüseyin İNCE
2017-07-01
Full Text Available This paper shows that discounted cash flow and net present value, which are traditional investment valuation models, can be combined with artificial neural network model forecasting. The main inputs for the valuation models, such as revenue, costs, capital expenditure, and their growth rates, are heavily related to sector dynamics and macroeconomics. The growth rates of those inputs are related to inflation and exchange rates. Therefore, predicting inflation and exchange rates is a critical issue for the valuation output. In this paper, the Turkish economy’s inflation rate and the exchange rate of USD/TRY are forecast by artificial neural networks and implemented to the discounted cash flow model. Finally, the results are benchmarked with conventional practices.
Evaluating neural networks and artificial intelligence systems
Alberts, David S.
1994-02-01
Systems have no intrinsic value in and of themselves, but rather derive value from the contributions they make to the missions, decisions, and tasks they are intended to support. The estimation of the cost-effectiveness of systems is a prerequisite for rational planning, budgeting, and investment documents. Neural network and expert system applications, although similar in their incorporation of a significant amount of decision-making capability, differ from each other in ways that affect the manner in which they can be evaluated. Both these types of systems are, by definition, evolutionary systems, which also impacts their evaluation. This paper discusses key aspects of neural network and expert system applications and their impact on the evaluation process. A practical approach or methodology for evaluating a certain class of expert systems that are particularly difficult to measure using traditional evaluation approaches is presented.
Artificial Neural Network for Displacement Vectors Determination
Directory of Open Access Journals (Sweden)
P. Bohmann
1997-09-01
Full Text Available An artificial neural network (NN for displacement vectors (DV determination is presented in this paper. DV are computed in areas which are essential for image analysis and computer vision, in areas where are edges, lines, corners etc. These special features are found by edges operators with the following filtration. The filtration is performed by a threshold function. The next step is DV computation by 2D Hamming artificial neural network. A method of DV computation is based on the full search block matching algorithms. The pre-processing (edges finding is the reason why the correlation function is very simple, the process of DV determination needs less computation and the structure of the NN is simpler.
Neural Network Program Package for Prosody Modeling
Directory of Open Access Journals (Sweden)
J. Santarius
2004-04-01
Full Text Available This contribution describes the programme for one part of theautomatic Text-to-Speech (TTS synthesis. Some experiments (for example[14] documented the considerable improvement of the naturalness ofsynthetic speech, but this approach requires completing the inputfeature values by hand. This completing takes a lot of time for bigfiles. We need to improve the prosody by other approaches which useonly automatically classified features (input parameters. Theartificial neural network (ANN approach is used for the modeling ofprosody parameters. The program package contains all modules necessaryfor the text and speech signal pre-processing, neural network training,sensitivity analysis, result processing and a module for the creationof the input data protocol for Czech speech synthesizer ARTIC [1].
Supervised Sequence Labelling with Recurrent Neural Networks
Graves, Alex
2012-01-01
Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional...
Hierarchical Neural Network Structures for Phoneme Recognition
Vasquez, Daniel; Minker, Wolfgang
2013-01-01
In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach.
Neural Network Solves "Traveling-Salesman" Problem
Thakoor, Anilkumar P.; Moopenn, Alexander W.
1990-01-01
Experimental electronic neural network solves "traveling-salesman" problem. Plans round trip of minimum distance among N cities, visiting every city once and only once (without backtracking). This problem is paradigm of many problems of global optimization (e.g., routing or allocation of resources) occuring in industry, business, and government. Applied to large number of cities (or resources), circuits of this kind expected to solve problem faster and more cheaply.
Learning in Neural Networks: VLSI Implementation Strategies
Duong, Tuan Anh
1995-01-01
Fully-parallel hardware neural network implementations may be applied to high-speed recognition, classification, and mapping tasks in areas such as vision, or can be used as low-cost self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning is required not only to satisfy application requirements, but also to overcome hardware-imposed limitations such as reduced dynamic range of connections.
Convolutional Neural Networks for Font Classification
Tensmeyer, Chris; Saunders, Daniel; Martinez, Tony
2017-01-01
Classifying pages or text lines into font categories aids transcription because single font Optical Character Recognition (OCR) is generally more accurate than omni-font OCR. We present a simple framework based on Convolutional Neural Networks (CNNs), where a CNN is trained to classify small patches of text into predefined font classes. To classify page or line images, we average the CNN predictions over densely extracted patches. We show that this method achieves state-of-the-art performance...
Deep Learning in Neural Networks: An Overview
Schmidhuber, Juergen
2014-01-01
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium. Shallow and deep learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpr...
A Dynamic Neural Network Approach to CBM
2011-03-15
Therefore post-processing is needed to extract the time difference between corresponding events from which to calculate the crankshaft rotational speed...potentially already available from existing sensors (such as a crankshaft timing device) and a Neural Network processor to carry out the calculation . As...files are designated with the “_genmod” suffix. These files were the sources for the training and testing sets and made the extraction process easy
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, Lars J.; Keller, Paul E.
1997-01-01
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.
Identifying Tracks Duplicates via Neural Network
Sunjerga, Antonio; CERN. Geneva. EP Department
2017-01-01
The goal of the project is to study feasibility of state of the art machine learning techniques in track reconstruction. Machine learning techniques provide promising ways to speed up the pattern recognition of tracks by adding more intelligence in the algorithms. Implementation of neural network to process of track duplicates identifying will be discussed. Different approaches are shown and results are compared to method that is currently in use.
Multilingual Text Detection with Nonlinear Neural Network
Directory of Open Access Journals (Sweden)
Lin Li
2015-01-01
Full Text Available Multilingual text detection in natural scenes is still a challenging task in computer vision. In this paper, we apply an unsupervised learning algorithm to learn language-independent stroke feature and combine unsupervised stroke feature learning and automatically multilayer feature extraction to improve the representational power of text feature. We also develop a novel nonlinear network based on traditional Convolutional Neural Network that is able to detect multilingual text regions in the images. The proposed method is evaluated on standard benchmarks and multilingual dataset and demonstrates improvement over the previous work.
Forecasting Energy Commodity Prices Using Neural Networks
Directory of Open Access Journals (Sweden)
Massimo Panella
2012-01-01
Full Text Available A new machine learning approach for price modeling is proposed. The use of neural networks as an advanced signal processing tool may be successfully used to model and forecast energy commodity prices, such as crude oil, coal, natural gas, and electricity prices. Energy commodities have shown explosive growth in the last decade. They have become a new asset class used also for investment purposes. This creates a huge demand for better modeling as what occurred in the stock markets in the 1970s. Their price behavior presents unique features causing complex dynamics whose prediction is regarded as a challenging task. The use of a Mixture of Gaussian neural network may provide significant improvements with respect to other well-known models. We propose a computationally efficient learning of this neural network using the maximum likelihood estimation approach to calibrate the parameters. The optimal model is identified using a hierarchical constructive procedure that progressively increases the model complexity. Extensive computer simulations validate the proposed approach and provide an accurate description of commodities prices dynamics.
Flood estimation: a neural network approach
Energy Technology Data Exchange (ETDEWEB)
Swain, P.C.; Seshachalam, C.; Umamahesh, N.V. [Regional Engineering Coll., Warangal (India). Water and Environment Div.
2000-07-01
The artificial neural network (ANN) approach described in this study aims at predicting the flood flow into a reservoir. This differs from the traditional methods of flow prediction in the sense that it belongs to a class of data driven approaches, where as the traditional methods are model driven. Physical processes influencing the occurrences of streamflow in a river are highly complex, and are very difficult to be modelled by available statistical or deterministic models. ANNs provide model free solutions and hence can be expected to be appropriate in these conditions. Non-linearity, adaptivity, evidential response and fault tolerance are additional properties and capabilities of the neural networks. This paper highlights the applicability of neural networks for predicting daily flood flow taking the Hirakud reservoir on river Mahanadi in Orissa, India as the case study. The correlation between the observed and predicted flows and the relative error are considered to measure the performance of the model. The correlation between the observed and the modelled flows are computed to be 0.9467 in testing phase of the model. (orig.)
Artificial Neural Network Model for Predicting Compressive
Directory of Open Access Journals (Sweden)
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Artificial neural network applications in ionospheric studies
Directory of Open Access Journals (Sweden)
L. R. Cander
1998-06-01
Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.
Improved Extension Neural Network and Its Applications
Directory of Open Access Journals (Sweden)
Yu Zhou
2014-01-01
Full Text Available Extension neural network (ENN is a new neural network that is a combination of extension theory and artificial neural network (ANN. The learning algorithm of ENN is based on supervised learning algorithm. One of important issues in the field of classification and recognition of ENN is how to achieve the best possible classifier with a small number of labeled training data. Training data selection is an effective approach to solve this issue. In this work, in order to improve the supervised learning performance and expand the engineering application range of ENN, we use a novel data selection method based on shadowed sets to refine the training data set of ENN. Firstly, we use clustering algorithm to label the data and induce shadowed sets. Then, in the framework of shadowed sets, the samples located around each cluster centers (core data and the borders between clusters (boundary data are selected as training data. Lastly, we use selected data to train ENN. Compared with traditional ENN, the proposed improved ENN (IENN has a better performance. Moreover, IENN is independent of the supervised learning algorithms and initial labeled data. Experimental results verify the effectiveness and applicability of our proposed work.
CALIBRATION OF ONLINE ANALYZERS USING NEURAL NETWORKS
Energy Technology Data Exchange (ETDEWEB)
Rajive Ganguli; Daniel E. Walsh; Shaohai Yu
2003-12-05
Neural networks were used to calibrate an online ash analyzer at the Usibelli Coal Mine, Healy, Alaska, by relating the Americium and Cesium counts to the ash content. A total of 104 samples were collected from the mine, with 47 being from screened coal, and the rest being from unscreened coal. Each sample corresponded to 20 seconds of coal on the running conveyor belt. Neural network modeling used the quick stop training procedure. Therefore, the samples were split into training, calibration and prediction subsets. Special techniques, using genetic algorithms, were developed to representatively split the sample into the three subsets. Two separate approaches were tried. In one approach, the screened and unscreened coal was modeled separately. In another, a single model was developed for the entire dataset. No advantage was seen from modeling the two subsets separately. The neural network method performed very well on average but not individually, i.e. though each prediction was unreliable, the average of a few predictions was close to the true average. Thus, the method demonstrated that the analyzers were accurate at 2-3 minutes intervals (average of 6-9 samples), but not at 20 seconds (each prediction).
UAV Trajectory Modeling Using Neural Networks
Xue, Min
2017-01-01
Massive small unmanned aerial vehicles are envisioned to operate in the near future. While there are lots of research problems need to be addressed before dense operations can happen, trajectory modeling remains as one of the keys to understand and develop policies, regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The fidelity requirement of a small unmanned vehicle trajectory model is high because these vehicles are sensitive to winds due to their small size and low operational altitude. Both vehicle control systems and dynamic models are needed for trajectory modeling, which makes the modeling a great challenge, especially considering the fact that manufactures are not willing to share their control systems. This work proposed to use a neural network approach for modelling small unmanned vehicle's trajectory without knowing its control system and bypassing exhaustive efforts for aerodynamic parameter identification. As a proof of concept, instead of collecting data from flight tests, this work used the trajectory data generated by a mathematical vehicle model for training and testing the neural network. The results showed great promise because the trained neural network can predict 4D trajectories accurately, and prediction errors were less than 2:0 meters in both temporal and spatial dimensions.
A neural network model for texture discrimination.
Xing, J; Gerstein, G L
1993-01-01
A model of texture discrimination in visual cortex was built using a feedforward network with lateral interactions among relatively realistic spiking neural elements. The elements have various membrane currents, equilibrium potentials and time constants, with action potentials and synapses. The model is derived from the modified programs of MacGregor (1987). Gabor-like filters are applied to overlapping regions in the original image; the neural network with lateral excitatory and inhibitory interactions then compares and adjusts the Gabor amplitudes in order to produce the actual texture discrimination. Finally, a combination layer selects and groups various representations in the output of the network to form the final transformed image material. We show that both texture segmentation and detection of texture boundaries can be represented in the firing activity of such a network for a wide variety of synthetic to natural images. Performance details depend most strongly on the global balance of strengths of the excitatory and inhibitory lateral interconnections. The spatial distribution of lateral connective strengths has relatively little effect. Detailed temporal firing activities of single elements in the lateral connected network were examined under various stimulus conditions. Results show (as in area 17 of cortex) that a single element's response to image features local to its receptive field can be altered by changes in the global context.
Categorization in neural networks and prosopagnosia
Virasoro, M. A.
1989-12-01
Prosopagnosia is a syndrome characterized by a generalized difficulty to visually recognize individual patterns among those that are similar, and can therefore be said to belong to the same category. I suggest that the existence of this disfunction may be an important clue for understanding the categorization process in the brain. In this direction the performance of neural networks under random destruction of synapses is analysed. It is found that in almost every network that stores correlated patterns the coding of the discriminating details between individuals inside a class is more sensitive to noise or to random destruction than the coding that distinguishes between classes. It follows that a process of death and/or deterioration at an intermediate level of intensity, even if it acts randomly on the network may lead to a malfunctioning of the network that resembles prosopagnosia.
Artificial Neural Network Analysis of Xinhui Pericarpium Citri ...
African Journals Online (AJOL)
Purpose: To develop an effective analytical method to distinguish old peels of Xinhui Pericarpium citri reticulatae (XPCR) stored for > 3 years from new peels stored for < 3 years. Methods: Artificial neural networks (ANN) models, including general regression neural network (GRNN) and multi-layer feedforward neural ...
Deep Convolutional Neural Networks: Structure, Feature Extraction and Training
Directory of Open Access Journals (Sweden)
Namatēvs Ivars
2017-12-01
Full Text Available Deep convolutional neural networks (CNNs are aimed at processing data that have a known network like topology. They are widely used to recognise objects in images and diagnose patterns in time series data as well as in sensor data classification. The aim of the paper is to present theoretical and practical aspects of deep CNNs in terms of convolution operation, typical layers and basic methods to be used for training and learning. Some practical applications are included for signal and image classification. Finally, the present paper describes the proposed block structure of CNN for classifying crucial features from 3D sensor data.
UAV Trajectory Modeling Using Neural Networks
Xue, Min
2017-01-01
Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural
Evolutionary Algorithms For Neural Networks Binary And Real Data Classification
Directory of Open Access Journals (Sweden)
Dr. Hanan A.R. Akkar
2015-08-01
Full Text Available Artificial neural networks are complex networks emulating the way human rational neurons process data. They have been widely used generally in prediction clustering classification and association. The training algorithms that used to determine the network weights are almost the most important factor that influence the neural networks performance. Recently many meta-heuristic and Evolutionary algorithms are employed to optimize neural networks weights to achieve better neural performance. This paper aims to use recently proposed algorithms for optimizing neural networks weights comparing these algorithms performance with other classical meta-heuristic algorithms used for the same purpose. However to evaluate the performance of such algorithms for training neural networks we examine such algorithms to classify four opposite binary XOR clusters and classification of continuous real data sets such as Iris and Ecoli.
Runoff Modelling in Urban Storm Drainage by Neural Networks
DEFF Research Database (Denmark)
Rasmussen, Michael R.; Brorsen, Michael; Schaarup-Jensen, Kjeld
1995-01-01
A neural network is used to simulate folw and water levels in a sewer system. The calibration of th neural network is based on a few measured events and the network is validated against measureed events as well as flow simulated with the MOUSE model (Lindberg and Joergensen, 1986). The neural...... network is used to compute flow or water level at selected points in the sewer system, and to forecast the flow from a small residential area. The main advantages of the neural network are the build-in self calibration procedure and high speed performance, but the neural network cannot be used to extract...... knowledge of the runoff process. The neural network was found to simulate 150 times faster than e.g. the MOUSE model....
Comparing Models GRM, Refraction Tomography and Neural Network to Analyze Shallow Landslide
Directory of Open Access Journals (Sweden)
Armstrong F. Sompotan
2011-11-01
Full Text Available Detailed investigations of landslides are essential to understand fundamental landslide mechanisms. Seismic refraction method has been proven as a useful geophysical tool for investigating shallow landslides. The objective of this study is to introduce a new workflow using neural network in analyzing seismic refraction data and to compare the result with some methods; that are general reciprocal method (GRM and refraction tomography. The GRM is effective when the velocity structure is relatively simple and refractors are gently dipping. Refraction tomography is capable of modeling the complex velocity structures of landslides. Neural network is found to be more potential in application especially in time consuming and complicated numerical methods. Neural network seem to have the ability to establish a relationship between an input and output space for mapping seismic velocity. Therefore, we made a preliminary attempt to evaluate the applicability of neural network to determine velocity and elevation of subsurface synthetic models corresponding to arrival times. The training and testing process of the neural network is successfully accomplished using the synthetic data. Furthermore, we evaluated the neural network using observed data. The result of the evaluation indicates that the neural network can compute velocity and elevation corresponding to arrival times. The similarity of those models shows the success of neural network as a new alternative in seismic refraction data interpretation.
Network traffic anomaly prediction using Artificial Neural Network
Ciptaningtyas, Hening Titi; Fatichah, Chastine; Sabila, Altea
2017-03-01
As the excessive increase of internet usage, the malicious software (malware) has also increase significantly. Malware is software developed by hacker for illegal purpose(s), such as stealing data and identity, causing computer damage, or denying service to other user[1]. Malware which attack computer or server often triggers network traffic anomaly phenomena. Based on Sophos's report[2], Indonesia is the riskiest country of malware attack and it also has high network traffic anomaly. This research uses Artificial Neural Network (ANN) to predict network traffic anomaly based on malware attack in Indonesia which is recorded by Id-SIRTII/CC (Indonesia Security Incident Response Team on Internet Infrastructure/Coordination Center). The case study is the highest malware attack (SQL injection) which has happened in three consecutive years: 2012, 2013, and 2014[4]. The data series is preprocessed first, then the network traffic anomaly is predicted using Artificial Neural Network and using two weight update algorithms: Gradient Descent and Momentum. Error of prediction is calculated using Mean Squared Error (MSE) [7]. The experimental result shows that MSE for SQL Injection is 0.03856. So, this approach can be used to predict network traffic anomaly.
Marginalization in Random Nonlinear Neural Networks
Vasudeva Raju, Rajkumar; Pitkow, Xaq
2015-03-01
Computations involved in tasks like causal reasoning in the brain require a type of probabilistic inference known as marginalization. Marginalization corresponds to averaging over irrelevant variables to obtain the probability of the variables of interest. This is a fundamental operation that arises whenever input stimuli depend on several variables, but only some are task-relevant. Animals often exhibit behavior consistent with marginalizing over some variables, but the neural substrate of this computation is unknown. It has been previously shown (Beck et al. 2011) that marginalization can be performed optimally by a deterministic nonlinear network that implements a quadratic interaction of neural activity with divisive normalization. We show that a simpler network can perform essentially the same computation. These Random Nonlinear Networks (RNN) are feedforward networks with one hidden layer, sigmoidal activation functions, and normally-distributed weights connecting the input and hidden layers. We train the output weights connecting the hidden units to an output population, such that the output model accurately represents a desired marginal probability distribution without significant information loss compared to optimal marginalization. Simulations for the case of linear coordinate transformations show that the RNN model has good marginalization performance, except for highly uncertain inputs that have low amplitude population responses. Behavioral experiments, based on these results, could then be used to identify if this model does indeed explain how the brain performs marginalization.
Neural Network Model of memory retrieval
Directory of Open Access Journals (Sweden)
Stefano eRecanatesi
2015-12-01
Full Text Available Human memory can store large amount of information. Nevertheless, recalling is often achallenging task. In a classical free recall paradigm, where participants are asked to repeat abriefly presented list of words, people make mistakes for lists as short as 5 words. We present amodel for memory retrieval based on a Hopfield neural network where transition between itemsare determined by similarities in their long-term memory representations. Meanfield analysis ofthe model reveals stable states of the network corresponding (1 to single memory representationsand (2 intersection between memory representations. We show that oscillating feedback inhibitionin the presence of noise induces transitions between these states triggering the retrieval ofdifferent memories. The network dynamics qualitatively predicts the distribution of time intervalsrequired to recall new memory items observed in experiments. It shows that items having largernumber of neurons in their representation are statistically easier to recall and reveals possiblebottlenecks in our ability of retrieving memories. Overall, we propose a neural network model ofinformation retrieval broadly compatible with experimental observations and is consistent with ourrecent graphical model (Romani et al., 2013.
Neural Network Control of Asymmetrical Multilevel Converters
Directory of Open Access Journals (Sweden)
Patrice WIRA
2009-12-01
Full Text Available This paper proposes a neural implementation of a harmonic eliminationstrategy (HES to control a Uniform Step Asymmetrical Multilevel Inverter(USAMI. The mapping between the modulation rate and the requiredswitching angles is learned and approximated with a Multi-Layer Perceptron(MLP neural network. After learning, appropriate switching angles can bedetermined with the neural network leading to a low-computational-costneural controller which is well suited for real-time applications. Thistechnique can be applied to multilevel inverters with any number of levels. Asan example, a nine-level inverter and an eleven-level inverter are consideredand the optimum switching angles are calculated on-line. Comparisons to thewell-known sinusoidal pulse-width modulation (SPWM have been carriedout in order to evaluate the performance of the proposed approach. Simulationresults demonstrate the technical advantages of the proposed neuralimplementation over the conventional method (SPWM in eliminatingharmonics while controlling a nine-level and eleven-level USAMI. Thisneural approach is applied for the supply of an asynchronous machine andresults show that it ensures a highest quality torque by efficiently cancelingthe harmonics generated by the inverters.
Takiyama, Ken
2017-12-01
How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.
Flood routing modelling with Artificial Neural Networks
Directory of Open Access Journals (Sweden)
R. Peters
2006-01-01
Full Text Available For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks. To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting. In order to solve this problem we tested the application of Artificial Neural Networks (ANN. First studies show the ability of adequately trained multilayer feedforward networks (MLFN to reproduce the model performance.
Granular neural networks, pattern recognition and bioinformatics
Pal, Sankar K; Ganivada, Avatharam
2017-01-01
This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinf...
Quantum generalisation of feedforward neural networks
Wan, Kwok Ho; Dahlsten, Oscar; Kristjánsson, Hlér; Gardner, Robert; Kim, M. S.
2017-09-01
We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding ancillary bits. Then they are generalised to being quantum reversible, i.e., unitary (the classical networks we generalise are called feedforward, and have step-function activation functions). The quantum network can be trained efficiently using gradient descent on a cost function to perform quantum generalisations of classical tasks. We demonstrate numerically that it can: (i) compress quantum states onto a minimal number of qubits, creating a quantum autoencoder, and (ii) discover quantum communication protocols such as teleportation. Our general recipe is theoretical and implementation-independent. The quantum neuron module can naturally be implemented photonically.
The Usage of Neural Networks for the Medical Diagnosis
Malyshevska, Kateryna
2009-01-01
The problem of cancer diagnosis from multi-channel images using the neural networks is investigated. The goal of this work is to classify the different tissue types which are used to determine the cancer risk. The radial basis function networks and backpropagation neural networks are used for classification. The results of experiments are presented.
Daily Nigerian peak load forecasting using artificial neural network ...
African Journals Online (AJOL)
A daily peak load forecasting technique that uses artificial neural network with seasonal indices is presented in this paper. A neural network of relatively smaller size than the main prediction network is used to predict the daily peak load for a period of one year over which the actual daily load data are available using one ...
Prediction of Parametric Roll Resonance by Multilayer Perceptron Neural Network
DEFF Research Database (Denmark)
Míguez González, M; López Peña, F.; Díaz Casás, V.
2011-01-01
acknowledged in the last few years. This work proposes a prediction system based on a multilayer perceptron (MP) neural network. The training and testing of the MP network is accomplished by feeding it with simulated data of a three degrees-of-freedom nonlinear model of a fishing vessel. The neural network...
Advances in Artificial Neural Networks - Methodological Development and Application
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...
Particle swarm optimization of a neural network model in a ...
Indian Academy of Sciences (India)
This paper presents a particle swarm optimization (PSO) technique to train an artificial neural network (ANN) for prediction of flank wear in drilling, and compares the network performance with that of the back propagation neural network (BPNN). This analysis is carried out following a series of experiments employing high ...
Age and the neural network of personal familiarity.
Directory of Open Access Journals (Sweden)
Markus Donix
Full Text Available BACKGROUND: Accessing information that defines personally familiar context in real-world situations is essential for the social interactions and the independent functioning of an individual. Personal familiarity is associated with the availability of semantic and episodic information as well as the emotional meaningfulness surrounding a stimulus. These features are known to be associated with neural activity in distinct brain regions across different stimulus conditions (e.g., when perceiving faces, voices, places, objects, which may reflect a shared neural basis. Although perceiving context-rich personal familiarity may appear unchanged in aging on the behavioral level, it has not yet been studied whether this can be supported by neuroimaging data. METHODOLOGY/PRINCIPAL FINDINGS: We used functional magnetic resonance imaging to investigate the neural network associated with personal familiarity during the perception of personally familiar faces and places. Twelve young and twelve elderly cognitively healthy subjects participated in the study. Both age groups showed a similar activation pattern underlying personal familiarity, predominantly in anterior cingulate and posterior cingulate cortices, irrespective of the stimulus type. The young subjects, but not the elderly subjects demonstrated an additional anterior cingulate deactivation when perceiving unfamiliar stimuli. CONCLUSIONS/SIGNIFICANCE: Although we found evidence for an age-dependent reduction in frontal cortical deactivation, our data show that there is a stimulus-independent neural network associated with personal familiarity of faces and places, which is less susceptible to aging-related changes.
Frequency tagging yields an objective neural signature of Gestalt formation.
Alp, Nihan; Kogo, Naoki; Van Belle, Goedele; Wagemans, Johan; Rossion, Bruno
2016-04-01
The human visual system integrates separate visual inputs into coherently organized percepts, going beyond the information given. A striking example is the perception of an illusory square when physically separated inducers are positioned and oriented in a square-like configuration (illusory condition). This illusory square disappears when the specific configuration is broken, for instance, by rotating each inducer (non-illusory condition). Here we used frequency tagging and electroencephalography (EEG) to identify an objective neural signature of the global integration required for illusory surface perception. Two diagonal inducers were contrast-modulated at different frequency rates f1 and f2, leading to EEG responses exactly at these frequencies over the occipital cortex. Most importantly, nonlinear intermodulation (IM) components (e.g., f1+f2) appeared in the frequency spectrum, and were much larger in response to the illusory square figure than the non-illusory control condition. Since the IMs reflect long-range interactions between the signals from the inducers, these data provide an objective (i.e., at a precise and predicted EEG frequency) signature of neural processes involved in the emergence of illusory surface perception. More generally, these findings help to establish EEG frequency-tagging as a highly valuable approach to investigate the underlying neural mechanisms of subjective Gestalt phenomena in an objective and quantitative manner, at the system level in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Survey on Neural Networks Used for Medical Image Processing.
Shi, Zhenghao; He, Lifeng; Suzuki, Kenji; Nakamura, Tsuyoshi; Itoh, Hidenori
2009-02-01
This paper aims to present a review of neural networks used in medical image processing. We classify neural networks by its processing goals and the nature of medical images. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of neural network application for medical image processing and an outlook for the future research are also discussed. By this survey, we try to answer the following two important questions: (1) What are the major applications of neural networks in medical image processing now and in the nearby future? (2) What are the major strengths and weakness of applying neural networks for solving medical image processing tasks? We believe that this would be very helpful researchers who are involved in medical image processing with neural network techniques.
Permeability prediction in shale gas reservoirs using Neural Network
Aliouane, Leila; Ouadfeul, Sid-Ali
2017-04-01
Here, we suggest the use of the artificial neural network for permeability prediction in shale gas reservoirs using artificial neural network. Prediction of Permeability in shale gas reservoirs is a complicated task that requires new models where Darcy's fluid flow model is not suitable. Proposed idea is based on the training of neural network machine using the set of well-logs data as an input and the measured permeability as an output. In this case the Multilayer Perceptron neural network machines is used with Levenberg Marquardt algorithm. Application to two horizontal wells drilled in the Barnett shale formation exhibit the power of neural network model to resolve such as problem. Keywords: Artificial neural network, permeability, prediction , shale gas.
Financial Time Series Prediction Using Elman Recurrent Random Neural Networks
Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli
2016-01-01
In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423
Feedforward Backpropagation Neural Networks in Prediction of Farmer Risk Preferences
Kastens, Terry L.; Featherstone, Allen M.
1996-01-01
An out-of-sample prediction of Kansas farmers' responses to five surveyed questions involving risk is used to compare ordered multinomial logistic regression models with feedforward backpropagation neural network models. Although the logistic models often predict more accurately than the neural network models in a mean-squared error sense, the neural network models are shown to be more accommodating of loss functions associated with a desire to predict certain combinations of categorical resp...
Classification of behavior using unsupervised temporal neural networks
Energy Technology Data Exchange (ETDEWEB)
Adair, K.L. [Florida State Univ., Tallahassee, FL (United States). Dept. of Computer Science; Argo, P. [Los Alamos National Lab., NM (United States)
1998-03-01
Adding recurrent connections to unsupervised neural networks used for clustering creates a temporal neural network which clusters a sequence of inputs as they appear over time. The model presented combines the Jordan architecture with the unsupervised learning technique Adaptive Resonance Theory, Fuzzy ART. The combination yields a neural network capable of quickly clustering sequential pattern sequences as the sequences are generated. The applicability of the architecture is illustrated through a facility monitoring problem.
Survey on Neural Networks Used for Medical Image Processing
Shi, Zhenghao; He, Lifeng; Suzuki, Kenji; Nakamura, Tsuyoshi; Itoh, Hidenori
2009-01-01
This paper aims to present a review of neural networks used in medical image processing. We classify neural networks by its processing goals and the nature of medical images. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of neural network application for medical image processing and an outlook for the future research are also discussed. By this survey, we try to answer the following two important questions: (1) Wh...
One pass learning for generalized classifier neural network.
Ozyildirim, Buse Melis; Avci, Mutlu
2016-01-01
Generalized classifier neural network introduced as a kind of radial basis function neural network, uses gradient descent based optimized smoothing parameter value to provide efficient classification. However, optimization consumes quite a long time and may cause a drawback. In this work, one pass learning for generalized classifier neural network is proposed to overcome this disadvantage. Proposed method utilizes standard deviation of each class to calculate corresponding smoothing parameter. Since different datasets may have different standard deviations and data distributions, proposed method tries to handle these differences by defining two functions for smoothing parameter calculation. Thresholding is applied to determine which function will be used. One of these functions is defined for datasets having different range of values. It provides balanced smoothing parameters for these datasets through logarithmic function and changing the operation range to lower boundary. On the other hand, the other function calculates smoothing parameter value for classes having standard deviation smaller than the threshold value. Proposed method is tested on 14 datasets and performance of one pass learning generalized classifier neural network is compared with that of probabilistic neural network, radial basis function neural network, extreme learning machines, and standard and logarithmic learning generalized classifier neural network in MATLAB environment. One pass learning generalized classifier neural network provides more than a thousand times faster classification than standard and logarithmic generalized classifier neural network. Due to its classification accuracy and speed, one pass generalized classifier neural network can be considered as an efficient alternative to probabilistic neural network. Test results show that proposed method overcomes computational drawback of generalized classifier neural network and may increase the classification performance. Copyright
Neural networks analysis on SSME vibration simulation data
Lo, Ching F.; Wu, Kewei
1993-01-01
The neural networks method is applied to investigate the feasibility in detecting anomalies in turbopump vibration of SSME to supplement the statistical method utilized in the prototype system. The investigation of neural networks analysis is conducted using SSME vibration data from a NASA developed numerical simulator. The limited application of neural networks to the HPFTP has also shown the effectiveness in diagnosing the anomalies of turbopump vibrations.
A Neural Network-Based Interval Pattern Matcher
Directory of Open Access Journals (Sweden)
Jing Lu
2015-07-01
Full Text Available One of the most important roles in the machine learning area is to classify, and neural networks are very important classifiers. However, traditional neural networks cannot identify intervals, let alone classify them. To improve their identification ability, we propose a neural network-based interval matcher in our paper. After summarizing the theoretical construction of the model, we take a simple and a practical weather forecasting experiment, which show that the recognizer accuracy reaches 100% and that is promising.
Discrete Orthogonal Transforms and Neural Networks for Image Interpolation
Directory of Open Access Journals (Sweden)
J. Polec
1999-09-01
Full Text Available In this contribution we present transform and neural network approaches to the interpolation of images. From transform point of view, the principles from [1] are modified for 1st and 2nd order interpolation. We present several new interpolation discrete orthogonal transforms. From neural network point of view, we present interpolation possibilities of multilayer perceptrons. We use various configurations of neural networks for 1st and 2nd order interpolation. The results are compared by means of tables.
Neural Networks for Modeling and Control of Particle Accelerators
Edelen, A.L.; Chase, B.E.; Edstrom, D.; Milton, S.V.; Stabile, P.
2016-01-01
We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.
Training product unit neural networks with genetic algorithms
Janson, D. J.; Frenzel, J. F.; Thelen, D. C.
1991-01-01
The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.
Wave transmission prediction of multilayer floating breakwater using neural network
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Patil, S.G.; Hegde, A.V.
in unison to solve a specific problem. The network learns through examples, so it requires good examples to train properly and further a trained network model can be used for prediction purpose. Proceedings of ICOE 2009 Wave transmission... prediction of multilayer floating breakwater using neural network 577 In order to allow the network to learn both non-linear and linear relationships between input nodes and output nodes, multiple-layer neural networks are often used...
Parameterizing Stellar Spectra Using Deep Neural Networks
Li, Xiang-Ru; Pan, Ru-Yang; Duan, Fu-Qing
2017-03-01
Large-scale sky surveys are observing massive amounts of stellar spectra. The large number of stellar spectra makes it necessary to automatically parameterize spectral data, which in turn helps in statistically exploring properties related to the atmospheric parameters. This work focuses on designing an automatic scheme to estimate effective temperature ({T}{eff}), surface gravity ({log}g) and metallicity [Fe/H] from stellar spectra. A scheme based on three deep neural networks (DNNs) is proposed. This scheme consists of the following three procedures: first, the configuration of a DNN is initialized using a series of autoencoder neural networks; second, the DNN is fine-tuned using a gradient descent scheme; third, three atmospheric parameters {T}{eff}, {log}g and [Fe/H] are estimated using the computed DNNs. The constructed DNN is a neural network with six layers (one input layer, one output layer and four hidden layers), for which the number of nodes in the six layers are 3821, 1000, 500, 100, 30 and 1, respectively. This proposed scheme was tested on both real spectra and theoretical spectra from Kurucz’s new opacity distribution function models. Test errors are measured with mean absolute errors (MAEs). The errors on real spectra from the Sloan Digital Sky Survey (SDSS) are 0.1477, 0.0048 and 0.1129 dex for {log}g, {log}{T}{eff} and [Fe/H] (64.85 K for {T}{eff}), respectively. Regarding theoretical spectra from Kurucz’s new opacity distribution function models, the MAE of the test errors are 0.0182, 0.0011 and 0.0112 dex for {log}g, {log}{T}{eff} and [Fe/H] (14.90 K for {T}{eff}), respectively.
Precipitation Nowcast using Deep Recurrent Neural Network
Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.
2016-12-01
An accurate precipitation nowcast (0-6 hours) with a fine temporal and spatial resolution has always been an important prerequisite for flood warning, streamflow prediction and risk management. Most of the popular approaches used for forecasting precipitation can be categorized into two groups. One type of precipitation forecast relies on numerical modeling of the physical dynamics of atmosphere and another is based on empirical and statistical regression models derived by local hydrologists or meteorologists. Given the recent advances in artificial intelligence, in this study a powerful Deep Recurrent Neural Network, termed as Long Short-Term Memory (LSTM) model, is creatively used to extract the patterns and forecast the spatial and temporal variability of Cloud Top Brightness Temperature (CTBT) observed from GOES satellite. Then, a 0-6 hours precipitation nowcast is produced using a Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) algorithm, in which the CTBT nowcast is used as the PERSIANN algorithm's raw inputs. Two case studies over the continental U.S. have been conducted that demonstrate the improvement of proposed approach as compared to a classical Feed Forward Neural Network and a couple simple regression models. The advantages and disadvantages of the proposed method are summarized with regard to its capability of pattern recognition through time, handling of vanishing gradient during model learning, and working with sparse data. The studies show that the LSTM model performs better than other methods, and it is able to learn the temporal evolution of the precipitation events through over 1000 time lags. The uniqueness of PERSIANN's algorithm enables an alternative precipitation nowcast approach as demonstrated in this study, in which the CTBT prediction is produced and used as the inputs for generating precipitation nowcast.
Usefulness of Artificial Neural Networks for Predicting Financial and Economic Crisis
Directory of Open Access Journals (Sweden)
Mioara CHIRITA
2012-08-01
Full Text Available The objective of the present study is to explore the issue of the forecasting of economic crisis using the neural network. The subject is of great importance in the economy, more so as that most countries affected by crisis, declared at the end of 2010, the economic growth but the crisis paralyzed the financial world over the past three years. Neural network techniques have been frequently applied in order to predict problems like economic forecasting. The results show that creating a model using the neural networks might be a powerful tool and could be applied to prevent economic crises.
Method of Creation of “Core-Gisseismic Attributes” Dependences With Use of Trainable Neural Networks
Directory of Open Access Journals (Sweden)
Gafurov Denis
2016-01-01
Full Text Available The study describes methodological techniques and results of geophysical well logging and seismic data interpretation by means of trainable neural networks. Objects of research are wells and seismic materials of Talakan field. The article also presents forecast of construction and reservoir properties of Osa horizon. The paper gives an example of creation of geological (lithological -facial model of the field based on developed methodical techniques of complex interpretation of geologicgeophysical data by trainable neural network. The constructed lithological -facial model allows specifying a geological structure of the field. The developed methodical techniques and the trained neural networks may be applied to adjacent sites for research of carbonate horizons.
Control of 12-Cylinder Camless Engine with Neural Networks
Directory of Open Access Journals (Sweden)
Ashhab Moh’d Sami
2017-01-01
Full Text Available The 12-cyliner camless engine breathing process is modeled with artificial neural networks (ANN’s. The inputs to the net are the intake valve lift (IVL and intake valve closing timing (IVC whereas the output of the net is the cylinder air charge (CAC. The ANN is trained with data collected from an engine simulation model which is based on thermodynamics principles and calibrated against real engine data. A method for adapting single-output feed-forward neural networks is proposed and applied to the camless engine ANN model. As a consequence the overall 12-cyliner camless engine feedback controller is upgraded and the necessary changes are implemented in order to contain the adaptive neural network with the objective of tracking the cylinder air charge (driver’s torque demand while minimizing the pumping losses (increasing engine efficiency. All the needed measurements are extracted only from the two conventional and inexpensive sensors, namely, the mass air flow through the throttle body (MAF and the intake manifold absolute pressure (MAP sensors. The feedback controller’s capability is demonstrated through computer simulation.
Estimating Type Ia Supernova Metallicities Using Neural Networks
Villar, V. Ashley
2017-01-01
Normal Type Ia supernovae (SNe) can be used as standardizable candles because their progenitors, white dwarfs, are a fairly homogenous class of objects. However, intrinsic variability in these events arise from a number of factors, including metallicity. Recent studies have investigated the effects of metallicity on Type Ia SNe observables from both a theoretical approach, by tuning model metallicity to analyze spectral features, and an observational approach, by studying the effect of host metallicity on light curves. In this work, we take a new, data-driven approach to the problem. Inspired by the success of neural networks in the field of image processing, we aim to estimate the metallicities of Type Ia SNe progenitors from their near-maximum spectra using feed-forward neural networks. We first collect a sample of near-maximum Type Ia SNe spectra from the literature to be smoothed and down-sampled. We then estimate the metallicities of the SNe hosts using the B-band magnitudes. We build a multilayer perceptron to generate a model that takes as input the down-sampled spectra and returns a scalar metallicity. Finally, we discuss basic considerations to be taken when working with spectral (as opposed to image) data using neural networks.
Application of neural networks to waste site screening
Energy Technology Data Exchange (ETDEWEB)
Dabiri, A.E.; Kraft, T.; Hilton, J.M. [Science Applications International Corp., San Diego, CA (United States)
1993-03-01
Waste site screening requires knowledge of the actual concentrations of hazardous materials and rates of flow around and below the site with time. The present approach to site screening consists primarily of drilling, boreholes near contaminated site and chemically analyzing the extracted physical samples and processing the data. In addition, hydraulic and geochemical soil properties are obtained so that numerical simulation models can be used to interpret and extrapolate the field data. The objective of this work is to investigate the feasibility of using neural network techniques to reduce the cost of waste site screening. A successful technique may lead to an ability to reduce the number of boreholes and the number of samples analyzed from each borehole to properly screen the waste site. The analytic tool development described here is inexpensive because it makes use of neural network techniques that can interpolate rapidly and which can learn how to analyze data rather than having to be explicitly programmed. In the following sections, data collection and data analyses will be described, followed by a section on different neural network techniques used. The results will be presented and compared with mathematical model. Finally, the last section will summarize the research work performed and make several recommendations for future work.
Advances in Artificial Neural Networks – Methodological Development and Application
Directory of Open Access Journals (Sweden)
Yanbo Huang
2009-08-01
Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological
Robustness of the ATLAS pixel clustering neural network algorithm
AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration
2016-01-01
Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. In the ATLAS track reconstruction algorithm, an artificial neural network is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The robustness of the neural network algorithm is presented, probing its sensitivity to uncertainties in the detector conditions. The robustness is studied by evaluating the stability of the algorithm's performance under a range of variations in the inputs to the neural networks. Within reasonable variation magnitudes, the neural networks prove to be robust to most variation types.
Decoding small surface codes with feedforward neural networks
Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen
2018-01-01
Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.
Optical-Correlator Neural Network Based On Neocognitron
Chao, Tien-Hsin; Stoner, William W.
1994-01-01
Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.
Material procedure quality forecast based on genetic BP neural network
Zheng, Bao-Hua
2017-07-01
Material procedure quality forecast plays an important role in quality control. This paper proposes a prediction model based on genetic algorithm (GA) and back propagation (BP) neural network. It can obtain the initial weights and thresholds of optimized BP neural network with the GA global search ability. A material process quality prediction model with the optimized BP neural network is adopted to predict the error of future process to measure the accuracy of process quality. The results show that the proposed method has the advantages of high accuracy and fast convergence rate compared with BP neural network.
Neural network models: Insights and prescriptions from practical applications
Energy Technology Data Exchange (ETDEWEB)
Samad, T. [Honeywell Technology Center, Minneapolis, MN (United States)
1995-12-31
Neural networks are no longer just a research topic; numerous applications are now testament to their practical utility. In the course of developing these applications, researchers and practitioners have been faced with a variety of issues. This paper briefly discusses several of these, noting in particular the rich connections between neural networks and other, more conventional technologies. A more comprehensive version of this paper is under preparation that will include illustrations on real examples. Neural networks are being applied in several different ways. Our focus here is on neural networks as modeling technology. However, much of the discussion is also relevant to other types of applications such as classification, control, and optimization.
Power converters and AC electrical drives with linear neural networks
Cirrincione, Maurizio
2012-01-01
The first book of its kind, Power Converters and AC Electrical Drives with Linear Neural Networks systematically explores the application of neural networks in the field of power electronics, with particular emphasis on the sensorless control of AC drives. It presents the classical theory based on space-vectors in identification, discusses control of electrical drives and power converters, and examines improvements that can be attained when using linear neural networks. The book integrates power electronics and electrical drives with artificial neural networks (ANN). Organized into four parts,
A hardware implementation of neural network with modified HANNIBAL architecture
Energy Technology Data Exchange (ETDEWEB)
Lee, Bum youb; Chung, Duck Jin [Inha University, Inchon (Korea, Republic of)
1996-03-01
A digital hardware architecture for artificial neural network with learning capability is described in this paper. It is a modified hardware architecture known as HANNIBAL(Hardware Architecture for Neural Networks Implementing Back propagation Algorithm Learning). For implementing an efficient neural network hardware, we analyzed various type of multiplier which is major function block of neuro-processor cell. With this result, we design a efficient digital neural network hardware using serial/parallel multiplier, and test the operation. We also analyze the hardware efficiency with logic level simulation. (author). 14 refs., 10 figs., 3 tabs.
Neural network and its application to CT imaging
Energy Technology Data Exchange (ETDEWEB)
Nikravesh, M.; Kovscek, A.R.; Patzek, T.W. [Lawrence Berkeley National Lab., CA (United States)] [and others
1997-02-01
We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.
Modelling electric trains energy consumption using Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Martinez Fernandez, P.; Garcia Roman, C.; Insa Franco, R.
2016-07-01
Nowadays there is an evident concern regarding the efficiency and sustainability of the transport sector due to both the threat of climate change and the current financial crisis. This concern explains the growth of railways over the last years as they present an inherent efficiency compared to other transport means. However, in order to further expand their role, it is necessary to optimise their energy consumption so as to increase their competitiveness. Improving railways energy efficiency requires both reliable data and modelling tools that will allow the study of different variables and alternatives. With this need in mind, this paper presents the development of consumption models based on neural networks that calculate the energy consumption of electric trains. These networks have been trained based on an extensive set of consumption data measured in line 1 of the Valencia Metro Network. Once trained, the neural networks provide a reliable estimation of the vehicles consumption along a specific route when fed with input data such as train speed, acceleration or track longitudinal slope. These networks represent a useful modelling tool that may allow a deeper study of railway lines in terms of energy expenditure with the objective of reducing the costs and environmental impact associated to railways. (Author)
Ocean wave forecasting using recurrent neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
to the biological neurons, works on the input and output passing through a hidden layer. The ANN used here is a data- oriented modeling technique to find relations between input and output patterns by self learning and without any fixed mathematical form assumed... = 1/p ? Ep (2) Where, Ep = ? ? (Tk ?Ok)2 (3) p is the total number of training patterns; Tk is the actual output and Ok is the predicted output at kth output node. In the learning process of backpropagation neural network...
Convolutional neural networks and face recognition task
Sochenkova, A.; Sochenkov, I.; Makovetskii, A.; Vokhmintsev, A.; Melnikov, A.
2017-09-01
Computer vision tasks are remaining very important for the last couple of years. One of the most complicated problems in computer vision is face recognition that could be used in security systems to provide safety and to identify person among the others. There is a variety of different approaches to solve this task, but there is still no universal solution that would give adequate results in some cases. Current paper presents following approach. Firstly, we extract an area containing face, then we use Canny edge detector. On the next stage we use convolutional neural networks (CNN) to finally solve face recognition and person identification task.
Convolution neural networks for ship type recognition
Rainey, Katie; Reeder, John D.; Corelli, Alexander G.
2016-05-01
Algorithms to automatically recognize ship type from satellite imagery are desired for numerous maritime applications. This task is difficult, and example imagery accurately labeled with ship type is hard to obtain. Convolutional neural networks (CNNs) have shown promise in image recognition settings, but many of these applications rely on the availability of thousands of example images for training. This work attempts to under- stand for which types of ship recognition tasks CNNs might be well suited. We report the results of baseline experiments applying a CNN to several ship type classification tasks, and discuss many of the considerations that must be made in approaching this problem.
Artificial Neural Network applied to lightning flashes
Gin, R. B.; Guedes, D.; Bianchi, R.
2013-05-01
The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a
Defect detection on videos using neural network
Directory of Open Access Journals (Sweden)
Sizyakin Roman
2017-01-01
Full Text Available In this paper, we consider a method for defects detection in a video sequence, which consists of three main steps; frame compensation, preprocessing by a detector, which is base on the ranking of pixel values, and the classification of all pixels having anomalous values using convolutional neural networks. The effectiveness of the proposed method shown in comparison with the known techniques on several frames of the video sequence with damaged in natural conditions. The analysis of the obtained results indicates the high efficiency of the proposed method. The additional use of machine learning as postprocessing significantly reduce the likelihood of false alarm.
Directory of Open Access Journals (Sweden)
W. L. C. Rutten
2006-01-01
Full Text Available One type of future, improved neural interface is the “cultured probe”. It is a hybrid type of neural information transducer or prosthesis, for stimulation and/or recording of neural activity. It would consist of a microelectrode array (MEA on a planar substrate, each electrode being covered and surrounded by a local circularly confined network (“island” of cultured neurons. The main purpose of the local networks is that they act as biofriendly intermediates for collateral sprouts from the in vivo system, thus allowing for an effective and selective neuron–electrode interface. As a secondary purpose, one may envisage future information processing applications of these intermediary networks. In this paper, first, progress is shown on how substrates can be chemically modified to confine developing networks, cultured from dissociated rat cortex cells, to “islands” surrounding an electrode site. Additional coating of neurophobic, polyimide-coated substrate by triblock-copolymer coating enhances neurophilic-neurophobic adhesion contrast. Secondly, results are given on neuronal activity in patterned, unconnected and connected, circular “island” networks. For connected islands, the larger the island diameter (50, 100 or 150 μm, the more spontaneous activity is seen. Also, activity may show a very high degree of synchronization between two islands. For unconnected islands, activity may start at 22 days in vitro (DIV, which is two weeks later than in unpatterned networks.
Research on quasi-dynamic calibration model of plastic sensitive element based on neural networks
Wang, Fang; Kong, Deren; Yang, Lixia; Zhang, Zouzou
2017-08-01
Quasi-dynamic calibration accuracy of the plastic sensitive element depends on the accuracy of the fitting model between pressure and deformation. By using the excellent nonlinear mapping ability of RBF (Radial Basis Function) neural network, a calibration model is established which use the peak pressure as the input and use the deformation of the plastic sensitive element as the output in this paper. The calibration experiments of a batch of copper cylinders are carried out on the quasi-dynamic pressure calibration device, which pressure range is within the range of 200MPa to 700MPa. The experiment data are acquired according to the standard pressure monitoring system. The network train and study are done to quasi dynamic calibration model based on neural network by using MATLAB neural network toolbox. Taking the testing samples as the research object, the prediction accuracy of neural network model is compared with the exponential fitting model and the second-order polynomial fitting model. The results show that prediction of the neural network model is most close to the testing samples, and the accuracy of prediction model based on neural network is better than 0.5%, respectively one order higher than the second-order polynomial fitting model and two orders higher than the exponential fitting model. The quasi-dynamic calibration model between pressure peak and deformation of plastic sensitive element, which is based on neural network, provides important basis for creating higher accuracy quasi-dynamic calibration table.
Characterization of Early Cortical Neural Network ...
We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentially absent on DIV 2 and developed rapidly between DIV 5 and 12. Spiking activity was primarily sporadic and unorganized at early DIV, and became progressively more organized with time in culture, with bursting parameters, synchrony and network bursting increasing between DIV 5 and 12. We selected 12 features to describe network activity and principal components analysis using these features demonstrated a general segregation of data by age at both the well and plate levels. Using a combination of random forest classifiers and Support Vector Machines, we demonstrated that 4 features (CV of within burst ISI, CV of IBI, network spike rate and burst rate) were sufficient to predict the age (either DIV 5, 7, 9 or 12) of each well recording with >65% accuracy. When restricting the classification problem to a binary decision, we found that classification improved dramatically, e.g. 95% accuracy for discriminating DIV 5 vs DIV 12 wells. Further, we present a novel resampling approach to determine the number of wells that might be needed for conducting comparisons of different treatments using mwMEA plates. Overall, these results demonstrate that network development on mwMEA plates is similar to
Stable architectures for deep neural networks
Haber, Eldad; Ruthotto, Lars
2018-01-01
Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.
Phase diagram of spiking neural networks.
Seyed-Allaei, Hamed
2015-01-01
In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probability of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations, and trials and errors, but here, I take a different perspective, inspired by evolution, I systematically simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable. I stimulate networks with pulses and then measure their: dynamic range, dominant frequency of population activities, total duration of activities, maximum rate of population and the occurrence time of maximum rate. The results are organized in phase diagram. This phase diagram gives an insight into the space of parameters - excitatory to inhibitory ratio, sparseness of connections and synaptic weights. This phase diagram can be used to decide the parameters of a model. The phase diagrams show that networks which are configured according to the common values, have a good dynamic range in response to an impulse and their dynamic range is robust in respect to synaptic weights, and for some synaptic weights they oscillates in α or β frequencies, independent of external stimuli.
An efficient neural network approach to dynamic robot motion planning.
Yang, S X; Meng, M
2000-03-01
In this paper, a biologically inspired neural network approach to real-time collision-free motion planning of mobile robots or robot manipulators in a nonstationary environment is proposed. Each neuron in the topologically organized neural network has only local connections, whose neural dynamics is characterized by a shunting equation. Thus the computational complexity linearly depends on the neural network size. The real-time robot motion is planned through the dynamic activity landscape of the neural network without any prior knowledge of the dynamic environment, without explicitly searching over the free workspace or the collision paths, and without any learning procedures. Therefore it is computationally efficient. The global stability of the neural network is guaranteed by qualitative analysis and the Lyapunov stability theory. The effectiveness and efficiency of the proposed approach are demonstrated through simulation studies.
Programmable synaptic chip for electronic neural networks
Moopenn, A.; Langenbacher, H.; Thakoor, A. P.; Khanna, S. K.
1988-01-01
A binary synaptic matrix chip has been developed for electronic neural networks. The matrix chip contains a programmable 32X32 array of 'long channel' NMOSFET binary connection elements implemented in a 3-micron bulk CMOS process. Since the neurons are kept off-chip, the synaptic chip serves as a 'cascadable' building block for a multi-chip synaptic network as large as 512X512 in size. As an alternative to the programmable NMOSFET (long channel) connection elements, tailored thin film resistors are deposited, in series with FET switches, on some CMOS test chips, to obtain the weak synaptic connections. Although deposition and patterning of the resistors require additional processing steps, they promise substantial savings in silicon area. The performance of synaptic chip in a 32-neuron breadboard system in an associative memory test application is discussed.
Dynamics of macro- and microscopic neural networks
DEFF Research Database (Denmark)
Mikkelsen, Kaare
2014-01-01
GN), which is a class of signals with a non-trivial low-frequency component. It is assumed that certain characteristica about the low-frequency component can yield information about the neural processes behind the signal. The method has been used in a range of different studies over the course of the past 10...... that the method continues to find use, of which examples are presented. In the second part of the thesis, numerical simulations of networks of neurons are described. To simplify the analysis, a relatively simpled neuron model - Leaky Integrate and Fire - is chosen. The strengths of the connections between...... shown that the syncronizing effect of the plasticity disappears when the strengths of the connections are frozen in time. Subsequently, the so-called ``Sisyphus'' mechanism is discussed, which is shown to cause slow fluctuations in the both the network synchronization and the strengths...
A Convolutional Neural Network Neutrino Event Classifier
Aurisano, A; Rocco, D; Himmel, A; Messier, M D; Niner, E; Pawloski, G; Psihas, F; Sousa, A; Vahle, P
2016-01-01
Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.
Brain tumor segmentation with Deep Neural Networks.
Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo
2017-01-01
In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster. Copyright © 2016 Elsevier B.V. All rights reserved.
Recurrent Neural Network for Text Classification with Multi-Task Learning
Liu, Pengfei; Qiu, Xipeng; Huang, Xuanjing
2016-01-01
Neural network based methods have obtained great progress on a variety of natural language processing tasks. However, in most previous works, the models are learned based on single-task supervised objectives, which often suffer from insufficient training data. In this paper, we use the multi-task learning framework to jointly learn across multiple related tasks. Based on recurrent neural network, we propose three different mechanisms of sharing information to model text with task-specific and...
The Adaptive Neural Network Control of Quadrotor Helicopter
Directory of Open Access Journals (Sweden)
A. S. Yushenko
2017-01-01
Full Text Available The current steady-rising interest in using the unmanned multi-rotor aerial vehicles (UMAV designed to solve a wide range of tasks is, mainly, due to their simple design and high weight-carrying capacity as compared to classical helicopter options. Unfortunately, to solve a problem of multi-copter control is complicated because of essential nonlinearity and environmental perturbations. The most widely spread PID controllers and linear-quadratic regulators do not quite well cope with this task. The need arises for the prompt adjustment of PID controller coefficients in the course of operation or their complete re-tuning in cases of changing parameters of the control object.One of the control methods under changing conditions is the use of the sliding mode. This technology enables us to reach the stabilization and proper operation of the controlled system even under accidental external exposures and when there is a lack of the reasonably accurate mathematical model of the control object. The sliding principle is to ensure the system motion in the immediate vicinity of the sliding surface in the phase space. On the other hand, the sliding mode has some essential disadvantages. The most significant one is the high-frequency jitter of the system near the sliding surface. The sliding mode also implies the complete knowledge of the system dynamics. Various methods have been proposed to eliminate these drawbacks. For example, A.G. Aissaoui’s, H. Abid’s and M. Abid’s paper describes the application of fuzzy logic to control a drive and in Lon-Chen Hung’s and Hung-Yuan Chung’s paper an artificial neural network is used for the manipulator control.This paper presents a method of the quad-copter control with the aid of a neural network controller. This method enables us to control the system without a priori information on parameters of the dynamic model of the controlled object. The main neural network is a MIMO (“Multiple Input Multiple
de Kamps, Marc; van der Velde, Frank
2006-03-01
In this paper, we will first introduce the notions of systematicity and combinatorial productivity and we will argue that these notions are essential for human cognition and probably for every agent that needs to be able to deal with novel, unexpected situations in a complex environment. Agents that use compositional representations are faced with the so-called binding problem and the question of how to create neural network architectures that can deal with it is essential for understanding higher level cognition. Moreover, an architecture that can solve this problem is likely to scale better with problem size than other neural network architectures. Then, we will discuss object-based attention. The influence of spatial attention is well known, but there is solid evidence for object-based attention as well. We will discuss experiments that demonstrate object-based attention and will discuss a model that can explain the data of these experiments very well. The model strongly suggests that this mode of attention provides a neural basis for parallel search. Next, we will show a model for binding in visual cortex. This model is based on a so-called neural blackboard architecture, where higher cortical areas act as processors, specialized for specific features of a visual stimulus, and lower visual areas act as a blackboard for communication between these processors. This implies that lower visual areas are involved in more than bottom-up visual processing, something which already was apparent from the large number of recurrent connections from higher to lower visual areas. This model identifies a specific role for these feedback connections. Finally, we will discuss the experimental evidence that exists for this architecture. .
Artificial neural networks in pancreatic disease.
Bartosch-Härlid, A; Andersson, B; Aho, U; Nilsson, J; Andersson, R
2008-07-01
An artificial neural network (ANNs) is a non-linear pattern recognition technique that is rapidly gaining in popularity in medical decision-making. This study investigated the use of ANNs for diagnostic and prognostic purposes in pancreatic disease, especially acute pancreatitis and pancreatic cancer. PubMed was searched for articles on the use of ANNs in pancreatic diseases using the MeSH terms 'neural networks (computer)', 'pancreatic neoplasms', 'pancreatitis' and 'pancreatic diseases'. A systematic review of the articles was performed. Eleven articles were identified, published between 1993 and 2007. The situations that lend themselves best to analysis by ANNs are complex multifactorial relationships, medical decisions when a second opinion is needed and when automated interpretation is required, for example in a situation of an inadequate number of experts. Conventional linear models have limitations in terms of diagnosis and prediction of outcome in acute pancreatitis and pancreatic cancer. Management of these disorders can be improved by applying ANNs to existing clinical parameters and newly established gene expression profiles. (c) 2008 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.
Maximum Entropy Approaches to Living Neural Networks
Directory of Open Access Journals (Sweden)
John M. Beggs
2010-01-01
Full Text Available Understanding how ensembles of neurons collectively interact will be a key step in developing a mechanistic theory of cognitive processes. Recent progress in multineuron recording and analysis techniques has generated tremendous excitement over the physiology of living neural networks. One of the key developments driving this interest is a new class of models based on the principle of maximum entropy. Maximum entropy models have been reported to account for spatial correlation structure in ensembles of neurons recorded from several different types of data. Importantly, these models require only information about the firing rates of individual neurons and their pairwise correlations. If this approach is generally applicable, it would drastically simplify the problem of understanding how neural networks behave. Given the interest in this method, several groups now have worked to extend maximum entropy models to account for temporal correlations. Here, we review how maximum entropy models have been applied to neuronal ensemble data to account for spatial and temporal correlations. We also discuss criticisms of the maximum entropy approach that argue that it is not generally applicable to larger ensembles of neurons. We conclude that future maximum entropy models will need to address three issues: temporal correlations, higher-order correlations, and larger ensemble sizes. Finally, we provide a brief list of topics for future research.
Evolving Neural Networks for the Classification of Galaxies
Energy Technology Data Exchange (ETDEWEB)
Cantu-Paz, E; Kamath, C
2002-01-23
The FIRST survey (Faint Images of the Radio Sky at Twenty-cm) is scheduled to cover 10,000 square degrees of the northern and southern galactic caps. Until recently, astronomers classified radio-emitting galaxies through a visual inspection of FIRST images. Besides being subjective, prone to error and tedious, this manual approach is becoming infeasible: upon completion, FIRST will include almost a million galaxies. This paper describes the application of six methods of evolving neural networks (NNs) with genetic algorithms (GAs) to identify bent-double galaxies. The objective is to demonstrate that GAs can successfully address some common problems in the application of NNs to classification problems, such as training the networks, choosing appropriate network topologies, and selecting relevant features. The results indicate that most of the methods perform equally well on our data, but the feature selection method gives superior results.
Energy coding in neural network with inhibitory neurons.
Wang, Ziyin; Wang, Rubin; Fang, Ruiyan
2015-04-01
This paper aimed at assessing and comparing the effects of the inhibitory neurons in the neural network on the neural energy distribution, and the network activities in the absence of the inhibitory neurons to understand the nature of neural energy distribution and neural energy coding. Stimulus, synchronous oscillation has significant difference between neural networks with and without inhibitory neurons, and this difference can be quantitatively evaluated by the characteristic energy distribution. In addition, the synchronous oscillation difference of the neural activity can be quantitatively described by change of the energy distribution if the network parameters are gradually adjusted. Compared with traditional method of correlation coefficient analysis, the quantitative indicators based on nervous energy distribution characteristics are more effective in reflecting the dynamic features of the neural network activities. Meanwhile, this neural coding method from a global perspective of neural activity effectively avoids the current defects of neural encoding and decoding theory and enormous difficulties encountered. Our studies have shown that neural energy coding is a new coding theory with high efficiency and great potential.
Learning of N-layers neural network
Directory of Open Access Journals (Sweden)
Vladimír Konečný
2005-01-01
Full Text Available In the last decade we can observe increasing number of applications based on the Artificial Intelligence that are designed to solve problems from different areas of human activity. The reason why there is so much interest in these technologies is that the classical way of solutions does not exist or these technologies are not suitable because of their robustness. They are often used in applications like Business Intelligence that enable to obtain useful information for high-quality decision-making and to increase competitive advantage.One of the most widespread tools for the Artificial Intelligence are the artificial neural networks. Their high advantage is relative simplicity and the possibility of self-learning based on set of pattern situations.For the learning phase is the most commonly used algorithm back-propagation error (BPE. The base of BPE is the method minima of error function representing the sum of squared errors on outputs of neural net, for all patterns of the learning set. However, while performing BPE and in the first usage, we can find out that it is necessary to complete the handling of the learning factor by suitable method. The stability of the learning process and the rate of convergence depend on the selected method. In the article there are derived two functions: one function for the learning process management by the relative great error function value and the second function when the value of error function approximates to global minimum.The aim of the article is to introduce the BPE algorithm in compact matrix form for multilayer neural networks, the derivation of the learning factor handling method and the presentation of the results.
Energy Technology Data Exchange (ETDEWEB)
Ortiz R, J. M. [Escuela Politecnica Superior, Departamento de Electrotecnia y Electronica, Avda. Menendez Pidal s/n, Cordoba (Spain); Martinez B, M. R.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego D, E.; Lorente F, A. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, ETSI Industriales, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Mendez V, R.; Los Arcos M, J. M.; Guerrero A, J. E., E-mail: morvymm@yahoo.com.m [CIEMAT, Laboratorio de Metrologia de Radiaciones Ionizantes, Avda. Complutense 22, 28040 Madrid (Spain)
2011-02-15
With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks (Ann) have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Ann still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning Ann parameters. In recent years the use of hybrid technologies, combining Ann and genetic algorithms, has been utilized to. In this work, several Ann topologies were trained and tested using Ann and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out. (Author)
Semantic segmentation of bioimages using convolutional neural networks
CSIR Research Space (South Africa)
Wiehman, S
2016-07-01
Full Text Available Convolutional neural networks have shown great promise in both general image segmentation problems as well as bioimage segmentation. In this paper, the application of different convolutional network architectures is explored on the C. elegans live...
Artificial neural networks with an infinite number of nodes
Blekas, K.; Lagaris, I. E.
2017-10-01
A new class of Artificial Neural Networks is described incorporating a node density function and functional weights. This network containing an infinite number of nodes, excels in generalizing and possesses a superior extrapolation capability.
Altered Synchronizations among Neural Networks in Geriatric Depression.
Wang, Lihong; Chou, Ying-Hui; Potter, Guy G; Steffens, David C
2015-01-01
Although major depression has been considered as a manifestation of discoordinated activity between affective and cognitive neural networks, only a few studies have examined the relationships among neural networks directly. Because of the known disconnection theory, geriatric depression could be a useful model in studying the interactions among different networks. In the present study, using independent component analysis to identify intrinsically connected neural networks, we investigated the alterations in synchronizations among neural networks in geriatric depression to better understand the underlying neural mechanisms. Resting-state fMRI data was collected from thirty-two patients with geriatric depression and thirty-two age-matched never-depressed controls. We compared the resting-state activities between the two groups in the default-mode, central executive, attention, salience, and affective networks as well as correlations among these networks. The depression group showed stronger activity than the controls in an affective network, specifically within the orbitofrontal region. However, unlike the never-depressed controls, geriatric depression group lacked synchronized/antisynchronized activity between the affective network and the other networks. Those depressed patients with lower executive function has greater synchronization between the salience network with the executive and affective networks. Our results demonstrate the effectiveness of the between-network analyses in examining neural models for geriatric depression.
Adaptive training of feedforward neural networks by Kalman filtering
Energy Technology Data Exchange (ETDEWEB)
Ciftcioglu, Oe. [Istanbul Technical Univ. (Turkey). Dept. of Electrical Engineering; Tuerkcan, E. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)
1995-02-01
Adaptive training of feedforward neural networks by Kalman filtering is described. Adaptive training is particularly important in estimation by neural network in real-time environmental where the trained network is used for system estimation while the network is further trained by means of the information provided by the experienced/exercised ongoing operation. As result of this, neural network adapts itself to a changing environment to perform its mission without recourse to re-training. The performance of the training method is demonstrated by means of actual process signals from a nuclear power plant. (orig.).
Automated Modeling of Microwave Structures by Enhanced Neural Networks
Directory of Open Access Journals (Sweden)
Z. Raida
2006-12-01
Full Text Available The paper describes the methodology of the automated creation of neural models of microwave structures. During the creation process, artificial neural networks are trained using the combination of the particle swarm optimization and the quasi-Newton method to avoid critical training problems of the conventional neural nets. In the paper, neural networks are used to approximate the behavior of a planar microwave filter (moment method, Zeland IE3D. In order to evaluate the efficiency of neural modeling, global optimizations are performed using numerical models and neural ones. Both approaches are compared from the viewpoint of CPU-time demands and the accuracy. Considering conclusions, methodological recommendations for including neural networks to the microwave design are formulated.
Quantum Entanglement in Neural Network States
Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.
2017-04-01
Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the
Neural networks to formulate special fats
Directory of Open Access Journals (Sweden)
Garcia, R. K.
2012-09-01
Full Text Available Neural networks are a branch of artificial intelligence based on the structure and development of biological systems, having as its main characteristic the ability to learn and generalize knowledge. They are used for solving complex problems for which traditional computing systems have a low efficiency. To date, applications have been proposed for different sectors and activities. In the area of fats and oils, the use of neural networks has focused mainly on two issues: the detection of adulteration and the development of fatty products. The formulation of fats for specific uses is the classic case of a complex problem where an expert or group of experts defines the proportions of each base, which, when mixed, provide the specifications for the desired product. Some conventional computer systems are currently available to assist the experts; however, these systems have some shortcomings. This article describes in detail a system for formulating fatty products, shortenings or special fats, from three or more components by using neural networks (MIX. All stages of development, including design, construction, training, evaluation, and operation of the network will be outlined.
Las redes neuronales son una rama de la inteligencia artificial basadas en la estructura y funcionamiento de sistemas biológicos, teniendo como principal característica la capacidad de aprender y generalizar conocimiento. Estas son utilizadas en la resolución de problemas complejos, en los cuales los sistemas computacionales tradicionales presentan una eficiencia baja. Hasta la fecha, han sido propuestas aplicaciones para los más diversos sectores y actividades. En el área de grasas y aceites, la utilización de redes neuronales se ha concentrado principalmente en dos asuntos: la detección de adulteraciones y la formulación de productos grasos. La formulación de grasas para uso específico es el caso clásico de problema complejo donde un experto o grupo de
Quantum Entanglement in Neural Network States
Directory of Open Access Journals (Sweden)
Dong-Ling Deng
2017-05-01
Full Text Available Machine learning, one of today’s most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our
An efficient neural network based method for medical image segmentation.
Torbati, Nima; Ayatollahi, Ahmad; Kermani, Ali
2014-01-01
The aim of this research is to propose a new neural network based method for medical image segmentation. Firstly, a modified self-organizing map (SOM) network, named moving average SOM (MA-SOM), is utilized to segment medical images. After the initial segmentation stage, a merging process is designed to connect the objects of a joint cluster together. A two-dimensional (2D) discrete wavelet transform (DWT) is used to build the input feature space of the network. The experimental results show that MA-SOM is robust to noise and it determines the input image pattern properly. The segmentation results of breast ultrasound images (BUS) demonstrate that there is a significant correlation between the tumor region selected by a physician and the tumor region segmented by our proposed method. In addition, the proposed method segments X-ray computerized tomography (CT) and magnetic resonance (MR) head images much better than the incremental supervised neural network (ISNN) and SOM-based methods. © 2013 Published by Elsevier Ltd.
Structure Learning for Deep Neural Networks Based on Multiobjective Optimization.
Liu, Jia; Gong, Maoguo; Miao, Qiguang; Wang, Xiaogang; Li, Hao
2017-05-05
This paper focuses on the connecting structure of deep neural networks and proposes a layerwise structure learning method based on multiobjective optimization. A model with better generalization can be obtained by reducing the connecting parameters in deep networks. The aim is to find the optimal structure with high representation ability and better generalization for each layer. Then, the visible data are modeled with respect to structure based on the products of experts. In order to mitigate the difficulty of estimating the denominator in PoE, the denominator is simplified and taken as another objective, i.e., the connecting sparsity. Moreover, for the consideration of the contradictory nature between the representation ability and the network connecting sparsity, the multiobjective model is established. An improved multiobjective evolutionary algorithm is used to solve this model. Two tricks are designed to decrease the computational cost according to the properties of input data. The experiments on single-layer level, hierarchical level, and application level demonstrate the effectiveness of the proposed algorithm, and the learned structures can improve the performance of deep neural networks.
Prediction horizon effects on stochastic modelling hints for neural networks
Energy Technology Data Exchange (ETDEWEB)
Drossu, R.; Obradovic, Z. [Washington State Univ., Pullman, WA (United States)
1995-12-31
The objective of this paper is to investigate the relationship between stochastic models and neural network (NN) approaches to time series modelling. Experiments on a complex real life prediction problem (entertainment video traffic) indicate that prior knowledge can be obtained through stochastic analysis both with respect to an appropriate NN architecture as well as to an appropriate sampling rate, in the case of a prediction horizon larger than one. An improvement of the obtained NN predictor is also proposed through a bias removal post-processing, resulting in much better performance than the best stochastic model.
Rod-Shaped Neural Units for Aligned 3D Neural Network Connection.
Kato-Negishi, Midori; Onoe, Hiroaki; Ito, Akane; Takeuchi, Shoji
2017-08-01
This paper proposes neural tissue units with aligned nerve fibers (called rod-shaped neural units) that connect neural networks with aligned neurons. To make the proposed units, 3D fiber-shaped neural tissues covered with a calcium alginate hydrogel layer are prepared with a microfluidic system and are cut in an accurate and reproducible manner. These units have aligned nerve fibers inside the hydrogel layer and connectable points on both ends. By connecting the units with a poly(dimethylsiloxane) guide, 3D neural tissues can be constructed and maintained for more than two weeks of culture. In addition, neural networks can be formed between the different neural units via synaptic connections. Experimental results indicate that the proposed rod-shaped neural units are effective tools for the construction of spatially complex connections with aligned nerve fibers in vitro. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multiple image sensor data fusion through artificial neural networks
With multisensor data fusion technology, the data from multiple sensors are fused in order to make a more accurate estimation of the environment through measurement, processing and analysis. Artificial neural networks are the computational models that mimic biological neural networks. With high per...
Behaviour in O of the Neural Networks Training Cost
DEFF Research Database (Denmark)
Goutte, Cyril
1998-01-01
We study the behaviour in zero of the derivatives of the cost function used when training non-linear neural networks. It is shown that a fair number offirst, second and higher order derivatives vanish in zero, validating the belief that 0 is a peculiar and potentially harmful location....... These calculations arerelated to practical and theoretical aspects of neural networks training....
Neural network model to control an experimental chaotic pendulum
Bakker, R; Schouten, JC; Takens, F; vandenBleek, CM
1996-01-01
A feedforward neural network was trained to predict the motion of an experimental, driven, and damped pendulum operating in a chaotic regime. The network learned the behavior of the pendulum from a time series of the pendulum's angle, the single measured variable. The validity of the neural
Classification of Urinary Calculi using Feed-Forward Neural Networks
African Journals Online (AJOL)
In this work the results of classification of these types of calculi (using their infrared spectra in the region 1450–450 cm–1) by feed-forward neural networks are presented. Genetic algorithms were used for optimization of neural networks and for selection of the spectral regions most suitable for classification purposes.
Optimal Brain Surgeon on Artificial Neural Networks in
DEFF Research Database (Denmark)
Christiansen, Niels Hørbye; Job, Jonas Hultmann; Klyver, Katrine
2012-01-01
It is shown how the procedure know as optimal brain surgeon can be used to trim and optimize artificial neural networks in nonlinear structural dynamics. Beside optimizing the neural network, and thereby minimizing computational cost in simulation, the surgery procedure can also serve as a quick...
Neural networks as a tool for unit commitment
DEFF Research Database (Denmark)
Rønne-Hansen, Peter; Rønne-Hansen, Jan
1991-01-01
Some of the fundamental problems when solving the power system unit commitment problem by means of neural networks have been attacked. It has been demonstrated for a small example that neural networks might be a viable alternative. Some of the major problems solved in this initiating phase form...
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
1995-01-01
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Classes of feedforward neural networks and their circuit complexity
Shawe-Taylor, John S.; Anthony, Martin H.G.; Kern, Walter
1992-01-01
This paper aims to place neural networks in the context of boolean circuit complexity. We define appropriate classes of feedforward neural networks with specified fan-in, accuracy of computation and depth and using techniques of communication complexity proceed to show that the classes fit into a
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Boosted jet identification using particle candidates and deep neural networks
CMS Collaboration
2017-01-01
This note presents developments for the identification of hadronically decaying top quarks using deep neural networks in CMS. A new method that utilizes one dimensional convolutional neural networks based on jet constituent particles is proposed. Alternative methods using boosted decision trees based on jet observables are compared. The new method shows significant improvement in performance.
Mapping Neural Network Derived from the Parzen Window Estimator
DEFF Research Database (Denmark)
Schiøler, Henrik; Hartmann, U.
1992-01-01
The article presents a general theoretical basis for the construction of mapping neural networks. The theory is based on the Parzen Window estimator for......The article presents a general theoretical basis for the construction of mapping neural networks. The theory is based on the Parzen Window estimator for...
Implementation of neural network based non-linear predictive control
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1999-01-01
of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...
Neural Network for Optimization of Existing Control Systems
DEFF Research Database (Denmark)
Madsen, Per Printz
1995-01-01
The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....
Using Neural Networks to Predict MBA Student Success
Naik, Bijayananda; Ragothaman, Srinivasan
2004-01-01
Predicting MBA student performance for admission decisions is crucial for educational institutions. This paper evaluates the ability of three different models--neural networks, logit, and probit to predict MBA student performance in graduate programs. The neural network technique was used to classify applicants into successful and marginal student…
Artificial Neural Network Modeling of an Inverse Fluidized Bed ...
African Journals Online (AJOL)
MICHAEL
modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological decomposition of pollutants in the reactor. The neural network has been trained with experimental data obtained from an inverse fluidized bed reactor treating the starch industry wastewater.
The harmonics detection method based on neural network applied ...
African Journals Online (AJOL)
user
Consequently, many structures based on artificial neural network (ANN) have been developed in the literature, The most significant ... Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total Harmonic Distortion. 1. ..... and pure shunt active fitters, IEEE 38th Conf on Industry Applications, Vol. 2, pp.
Application of Neural Networks to House Pricing and Bond Rating
Daniëls, H.A.M.; Kamp, B.; Verkooijen, W.J.H.
1997-01-01
Feed forward neural networks receive a growing attention as a data modelling tool in economic classification problems. It is well-known that controlling the design of a neural network can be cumbersome. Inaccuracies may lead to a manifold of problems in the application such as higher errors due to
Neural Networks for Language Identification: A Comparative Study.
MacNamara, Shane; Cunningham, Padraig; Byrne, John
1998-01-01
Analyzes a neural network for its ability to perform a task involving identification of the language entries in a 19th-century library catalog containing entries in 14 different languages. Compares the neural network's performance with that of trigrams and a suffix/morphology analysis; the trigrams prove to be superior. (AEF)
Multilayer perceptron neural network for downscaling rainfall in arid ...
Indian Academy of Sciences (India)
Multilayer perceptron neural network for downscaling rainfall in arid region: A case study of Baluchistan, Pakistan ... A multilayer perceptron (MLP) neural network has been proposed in the present study for the downscaling of rainfall in the data scarce arid region of Baluchistan province of Pakistan, which is considered as ...
Application of a neural network for reflectance spectrum classification
Yang, Gefei; Gartley, Michael
2017-05-01
Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.
Artificial neural networks in predicting current in electric arc furnaces
Panoiu, M.; Panoiu, C.; Iordan, A.; Ghiormez, L.
2014-03-01
The paper presents a study of the possibility of using artificial neural networks for the prediction of the current and the voltage of Electric Arc Furnaces. Multi-layer perceptron and radial based functions Artificial Neural Networks implemented in Matlab were used. The study is based on measured data items from an Electric Arc Furnace in an industrial plant in Romania.
Parameter estimation of an aeroelastic aircraft using neural networks
Indian Academy of Sciences (India)
e-mail: scr@iitk.ac.in. Abstract. Application of neural networks to the problem of aerodynamic modelling and parameter estimation for aeroelastic aircraft is addressed. A neural model capable of ... of the network in terms of the number of neurons in the hidden layer, the learning rate, the momentum rate etc. is not an exact ...
Artificial neural networks for prediction of percentage of water ...
Indian Academy of Sciences (India)
According to these input parameters, in the neural networks model, the percentage of water absorption of each specimen was predicted. The training and testing results in the neural networks model have shown a strong potential for predicting the percentage of water absorption of the geopolymer specimens.
Comparative performance of some popular artificial neural network ...
Indian Academy of Sciences (India)
Comparative performance of some popular artificial neural network algorithms on benchmark and function approximation problems ... dynamic range of these functions, it is suggested that these functions can also be considered as standard benchmark problems for function approximation using artificial neural networks.
Liu, Qingshan; Wang, Jun
2013-05-01
This paper presents a one-layer projection neural network for solving nonsmooth optimization problems with generalized convex objective functions and subject to linear equalities and bound constraints. The proposed neural network is designed based on two projection operators: linear equality constraints, and bound constraints. The objective function in the optimization problem can be any nonsmooth function which is not restricted to be convex but is required to be convex (pseudoconvex) on a set defined by the constraints. Compared with existing recurrent neural networks for nonsmooth optimization, the proposed model does not have any design parameter, which is more convenient for design and implementation. It is proved that the output variables of the proposed neural network are globally convergent to the optimal solutions provided that the objective function is at least pseudoconvex. Simulation results of numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.
Spacecraft Neural Network Control System Design using FPGA
Hanaa T. El-Madany; Faten H. Fahmy; Ninet M. A. El-Rahman; Hassen T. Dorrah
2011-01-01
Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffer...
IDENTIFICATION AND CONTROL OF AN ASYNCHRONOUS MACHINE USING NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
A ZERGAOUI
2000-06-01
Full Text Available In this work, we present the application of artificial neural networks to the identification and control of the asynchronous motor, which is a complex nonlinear system with variable internal dynamics. We show that neural networks can be applied to control the stator currents of the induction motor. The results of the different simulations are presented to evaluate the performance of the neural controller proposed.
A Novel Neural Network for Generally Constrained Variational Inequalities.
Gao, Xingbao; Liao, Li-Zhi
2017-09-01
This paper presents a novel neural network for solving generally constrained variational inequality problems by constructing a system of double projection equations. By defining proper convex energy functions, the proposed neural network is proved to be stable in the sense of Lyapunov and converges to an exact solution of the original problem for any starting point under the weaker cocoercivity condition or the monotonicity condition of the gradient mapping on the linear equation set. Furthermore, two sufficient conditions are provided to ensure the stability of the proposed neural network for a special case. The proposed model overcomes some shortcomings of existing continuous-time neural networks for constrained variational inequality, and its stability only requires some monotonicity conditions of the underlying mapping and the concavity of nonlinear inequality constraints on the equation set. The validity and transient behavior of the proposed neural network are demonstrated by some simulation results.
Neural network for constrained nonsmooth optimization using Tikhonov regularization.
Qin, Sitian; Fan, Dejun; Wu, Guangxi; Zhao, Lijun
2015-03-01
This paper presents a one-layer neural network to solve nonsmooth convex optimization problems based on the Tikhonov regularization method. Firstly, it is shown that the optimal solution of the original problem can be approximated by the optimal solution of a strongly convex optimization problems. Then, it is proved that for any initial point, the state of the proposed neural network enters the equality feasible region in finite time, and is globally convergent to the unique optimal solution of the related strongly convex optimization problems. Compared with the existing neural networks, the proposed neural network has lower model complexity and does not need penalty parameters. In the end, some numerical examples and application are given to illustrate the effectiveness and improvement of the proposed neural network. Copyright © 2014 Elsevier Ltd. All rights reserved.
Obstacle avoidance for power wheelchair using bayesian neural network.
Trieu, Hoang T; Nguyen, Hung T; Willey, Keith
2007-01-01
In this paper we present a real-time obstacle avoidance algorithm using a Bayesian neural network for a laser based wheelchair system. The raw laser data is modified to accommodate the wheelchair dimensions, allowing the free-space to be determined accurately in real-time. Data acquisition is performed to collect the patterns required for training the neural network. A Bayesian frame work is applied to determine the optimal neural network structure for the training data. This neural network is trained under the supervision of the Bayesian rule and the obstacle avoidance task is then implemented for the wheelchair system. Initial results suggest this approach provides an effective solution for autonomous tasks, suggesting Bayesian neural networks may be useful for wider assistive technology applications.
23rd Workshop of the Italian Neural Networks Society (SIREN)
Esposito, Anna; Morabito, Francesco
2014-01-01
This volume collects a selection of contributions which has been presented at the 23rd Italian Workshop on Neural Networks, the yearly meeting of the Italian Society for Neural Networks (SIREN). The conference was held in Vietri sul Mare, Salerno, Italy during May 23-24, 2013. The annual meeting of SIREN is sponsored by International Neural Network Society (INNS), European Neural Network Society (ENNS) and IEEE Computational Intelligence Society (CIS). The book – as well as the workshop- is organized in two main components, a special session and a group of regular sessions featuring different aspects and point of views of artificial neural networks, artificial and natural intelligence, as well as psychological and cognitive theories for modeling human behaviors and human machine interactions, including Information Communication applications of compelling interest. .
Investigation of efficient features for image recognition by neural networks.
Goltsev, Alexander; Gritsenko, Vladimir
2012-04-01
In the paper, effective and simple features for image recognition (named LiRA-features) are investigated in the task of handwritten digit recognition. Two neural network classifiers are considered-a modified 3-layer perceptron LiRA and a modular assembly neural network. A method of feature selection is proposed that analyses connection weights formed in the preliminary learning process of a neural network classifier. In the experiments using the MNIST database of handwritten digits, the feature selection procedure allows reduction of feature number (from 60 000 to 7000) preserving comparable recognition capability while accelerating computations. Experimental comparison between the LiRA perceptron and the modular assembly neural network is accomplished, which shows that recognition capability of the modular assembly neural network is somewhat better. Copyright © 2011 Elsevier Ltd. All rights reserved.
Issues in the use of neural networks in information retrieval
Iatan, Iuliana F
2017-01-01
This book highlights the ability of neural networks (NNs) to be excellent pattern matchers and their importance in information retrieval (IR), which is based on index term matching. The book defines a new NN-based method for learning image similarity and describes how to use fuzzy Gaussian neural networks to predict personality. It introduces the fuzzy Clifford Gaussian network, and two concurrent neural models: (1) concurrent fuzzy nonlinear perceptron modules, and (2) concurrent fuzzy Gaussian neural network modules. Furthermore, it explains the design of a new model of fuzzy nonlinear perceptron based on alpha level sets and describes a recurrent fuzzy neural network model with a learning algorithm based on the improved particle swarm optimization method.
Neural Networks for Synthesis and Optimization of Antenna Arrays
Directory of Open Access Journals (Sweden)
S. A. Djennas
2007-04-01
Full Text Available This paper describes a usual application of back-propagation neural networks for synthesis and optimization of antenna array. The neural network is able to model and to optimize the antennas arrays, by acting on radioelectric or geometric parameters and by taking into account predetermined general criteria. The neural network allows not only establishing important analytical equations for the optimization step, but also a great flexibility between the system parameters in input and output. This step of optimization becomes then possible due to the explicit relation given by the neural network. According to different formulations of the synthesis problem such as acting on the feed law (amplitude and/or phase and/or space position of the radiating sources, results on antennas arrays synthesis and optimization by neural networks are presented and discussed. However ANN is able to generate very fast the results of synthesis comparing to other approaches.
A neural network for noise correlation classification
Paitz, Patrick; Gokhberg, Alexey; Fichtner, Andreas
2018-02-01
We present an artificial neural network (ANN) for the classification of ambient seismic noise correlations into two categories, suitable and unsuitable for noise tomography. By using only a small manually classified data subset for network training, the ANN allows us to classify large data volumes with low human effort and to encode the valuable subjective experience of data analysts that cannot be captured by a deterministic algorithm. Based on a new feature extraction procedure that exploits the wavelet-like nature of seismic time-series, we efficiently reduce the dimensionality of noise correlation data, still keeping relevant features needed for automated classification. Using global- and regional-scale data sets, we show that classification errors of 20 per cent or less can be achieved when the network training is performed with as little as 3.5 per cent and 16 per cent of the data sets, respectively. Furthermore, the ANN trained on the regional data can be applied to the global data, and vice versa, without a significant increase of the classification error. An experiment where four students manually classified the data, revealed that the classification error they would assign to each other is substantially larger than the classification error of the ANN (>35 per cent). This indicates that reproducibility would be hampered more by human subjectivity than by imperfections of the ANN.
Antagonistic neural networks underlying differentiated leadership roles.
Boyatzis, Richard E; Rochford, Kylie; Jack, Anthony I
2014-01-01
The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks - the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.
Antagonistic Neural Networks Underlying Differentiated Leadership Roles
Directory of Open Access Journals (Sweden)
Richard Eleftherios Boyatzis
2014-03-01
Full Text Available The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950’s. Recent research in neuroscience suggests that the division between task oriented and socio-emotional oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks -- the Task Positive Network (TPN and the Default Mode Network (DMN. Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.
Antagonistic neural networks underlying differentiated leadership roles
Boyatzis, Richard E.; Rochford, Kylie; Jack, Anthony I.
2014-01-01
The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks – the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success. PMID:24624074
Comparison of Neural Network Error Measures for Simulation of Slender Marine Structures
DEFF Research Database (Denmark)
Christiansen, Niels H.; Voie, Per Erlend Torbergsen; Winther, Ole
2014-01-01
platform is designed and tested. The purpose of setting up the network is to reduce calculation time in a fatigue life analysis. Therefore, the networks trained on different error functions are compared with respect to accuracy of rain flow counts of stress cycles over a number of time series simulations......Training of an artificial neural network (ANN) adjusts the internal weights of the network in order to minimize a predefined error measure. This error measure is given by an error function. Several different error functions are suggested in the literature. However, the far most common measure...... for regression is the mean square error. This paper looks into the possibility of improving the performance of neural networks by selecting or defining error functions that are tailor-made for a specific objective. A neural network trained to simulate tension forces in an anchor chain on a floating offshore...
Kobayashi, Takahisa; Simon, Donald L.
2002-01-01
As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.
Real-Time Control Strategy of Elman Neural Network for the Parallel Hybrid Electric Vehicle
Directory of Open Access Journals (Sweden)
Ruijun Liu
2014-01-01
Full Text Available Through researching the instantaneous control strategy and Elman neural network, the paper established equivalent fuel consumption functions under the charging and discharging conditions of power batteries, deduced the optimal control objective function of instantaneous equivalent consumption, established the instantaneous optimal control model, and designs the Elman neural network controller. Based on the ADVISOR 2002 platform, the instantaneous optimal control strategy and the Elman neural network control strategy were simulated on a parallel HEV. The simulation results were analyzed in the end. The contribution of the paper is that the trained Elman neural network control strategy can reduce the simulation time by 96% and improve the real-time performance of energy control, which also ensures the good performance of power and fuel economy.
Combining neural networks for protein secondary structure prediction
DEFF Research Database (Denmark)
Riis, Søren Kamaric
1995-01-01
In this paper structured neural networks are applied to the problem of predicting the secondary structure of proteins. A hierarchical approach is used where specialized neural networks are designed for each structural class and then combined using another neural network. The submodels are designed...... by using a priori knowledge of the mapping between protein building blocks and the secondary structure and by using weight sharing. Since none of the individual networks have more than 600 adjustable weights over-fitting is avoided. When ensembles of specialized experts are combined the performance...
Ship Benchmark Shaft and Engine Gain FDI Using Neural Network
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Izadi-Zamanabadi, Roozbeh
2002-01-01
This paper concerns fault detection and isolation based on neural network modeling. A neural network is trained to recognize the input-output behavior of a nonlinear plant, and faults are detected if the output estimated by the network differs from the measured plant output by more than a specified...... threshold value. In the paper a method for determining this threshold based on the neural network model is proposed, which can be used for a design strategy to handle residual sensitivity to input variations. The proposed method is used for successful FDI of a diesel engine gain fault in a ship propulsion...
Forex Market Prediction Using NARX Neural Network with Bagging
Directory of Open Access Journals (Sweden)
Shahbazi Nima
2016-01-01
Full Text Available We propose a new methodfor predicting movements in Forex market based on NARX neural network withtime shifting bagging techniqueand financial indicators, such as relative strength index and stochastic indicators. Neural networks have prominent learning ability but they often exhibit bad and unpredictable performance for noisy data. When compared with the static neural networks, our method significantly reducesthe error rate of the responseandimproves the performance of the prediction. We tested three different types ofarchitecture for predicting the response and determined the best network approach. We applied our method to prediction the hourly foreign exchange rates and found remarkable predictability in comprehensive experiments with 2 different foreign exchange rates (GBPUSD and EURUSD.
Sign Language Recognition using Neural Networks
Directory of Open Access Journals (Sweden)
Sabaheta Djogic
2014-11-01
Full Text Available – Sign language plays a great role as communication media for people with hearing difficulties.In developed countries, systems are made for overcoming a problem in communication with deaf people. This encouraged us to develop a system for the Bosnian sign language since there is a need for such system. The work is done with the use of digital image processing methods providing a system that teaches a multilayer neural network using a back propagation algorithm. Images are processed by feature extraction methods, and by masking method the data set has been created. Training is done using cross validation method for better performance thus; an accuracy of 84% is achieved.
Recognition of Gestures using Artifical Neural Network
Directory of Open Access Journals (Sweden)
Marcel MORE
2013-12-01
Full Text Available Sensors for motion measurements are now becoming more widespread. Thanks to their parameters and affordability they are already used not only in the professional sector, but also in devices intended for daily use or entertainment. One of their applications is in control of devices by gestures. Systems that can determine type of gesture from measured motion have many uses. Some are for example in medical practice, but they are still more often used in devices such as cell phones, where they serve as a non-standard form of input. Today there are already several approaches for solving this problem, but building sufficiently reliable system is still a challenging task. In our project we are developing solution based on artificial neural network. In difference to other solutions, this one doesn’t require building model for each measuring system and thus it can be used in combination with various sensors just with minimal changes in his structure.
Spatial Dynamics of Multilayer Cellular Neural Networks
Wu, Shi-Liang; Hsu, Cheng-Hsiung
2018-02-01
The purpose of this work is to study the spatial dynamics of one-dimensional multilayer cellular neural networks. We first establish the existence of rightward and leftward spreading speeds of the model. Then we show that the spreading speeds coincide with the minimum wave speeds of the traveling wave fronts in the right and left directions. Moreover, we obtain the asymptotic behavior of the traveling wave fronts when the wave speeds are positive and greater than the spreading speeds. According to the asymptotic behavior and using various kinds of comparison theorems, some front-like entire solutions are constructed by combining the rightward and leftward traveling wave fronts with different speeds and a spatially homogeneous solution of the model. Finally, various qualitative features of such entire solutions are investigated.
Enhancing Hohlraum Design with Artificial Neural Networks
Peterson, J. L.; Berzak Hopkins, L. F.; Humbird, K. D.; Brandon, S. T.; Field, J. E.; Langer, S. H.; Nora, R. C.; Spears, B. K.
2017-10-01
A primary goal of hohlraum design is to efficiently convert available laser power and energy to capsule drive, compression and ultimately fusion neutron yield. However, a major challenge of this multi-dimensional optimization problem is the relative computational expense of hohlraum simulations. In this work, we explore overcoming this obstacle with the use of artificial neural networks built off ensembles of hohlraum simulations. These machine learning systems emulate the behavior of full simulations in a fraction of the time, thereby enabling the rapid exploration of design parameters. We will demonstrate this technology with a search for modifications to existing high-yield designs that can maximize neutron production within NIF's current laser power and energy constraints. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734401.
Tropical Timber Identification using Backpropagation Neural Network
Siregar, B.; Andayani, U.; Fatihah, N.; Hakim, L.; Fahmi, F.
2017-01-01
Each and every type of wood has different characteristics. Identifying the type of wood properly is important, especially for industries that need to know the type of timber specifically. However, it requires expertise in identifying the type of wood and only limited experts available. In addition, the manual identification even by experts is rather inefficient because it requires a lot of time and possibility of human errors. To overcome these problems, a digital image based method to identify the type of timber automatically is needed. In this study, backpropagation neural network is used as artificial intelligence component. Several stages were developed: a microscope image acquisition, pre-processing, feature extraction using gray level co-occurrence matrix and normalization of data extraction using decimal scaling features. The results showed that the proposed method was able to identify the timber with an accuracy of 94%.
Thrips (Thysanoptera) identification using artificial neural networks.
Fedor, P; Malenovský, I; Vanhara, J; Sierka, W; Havel, J
2008-10-01
We studied the use of a supervised artificial neural network (ANN) model for semi-automated identification of 18 common European species of Thysanoptera from four genera: Aeolothrips Haliday (Aeolothripidae), Chirothrips Haliday, Dendrothrips Uzel, and Limothrips Haliday (all Thripidae). As input data, we entered 17 continuous morphometric and two qualitative two-state characters measured or determined on different parts of the thrips body (head, pronotum, forewing and ovipositor) and the sex. Our experimental data set included 498 thrips specimens. A relatively simple ANN architecture (multilayer perceptrons with a single hidden layer) enabled a 97% correct simultaneous identification of both males and females of all the 18 species in an independent test. This high reliability of classification is promising for a wider application of ANN in the practice of Thysanoptera identification.
Neural network training as a dissipative process.
Gori, Marco; Maggini, Marco; Rossi, Alessandro
2016-09-01
This paper analyzes the practical issues and reports some results on a theory in which learning is modeled as a continuous temporal process driven by laws describing the interactions of intelligent agents with their own environment. The classic regularization framework is paired with the idea of temporal manifolds by introducing the principle of least cognitive action, which is inspired by the related principle of mechanics. The introduction of the counterparts of the kinetic and potential energy leads to an interpretation of learning as a dissipative process. As an example, we apply the theory to supervised learning in neural networks and show that the corresponding Euler-Lagrange differential equations can be connected to the classic gradient descent algorithm on the supervised pairs. We give preliminary experiments to confirm the soundness of the theory. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neural networks in support of manned space
Werbos, Paul J.
1989-01-01
Many lobbyists in Washington have argued that artificial intelligence (AI) is an alternative to manned space activity. In actuality, this is the opposite of the truth, especially as regards artificial neural networks (ANNs), that form of AI which has the greatest hope of mimicking human abilities in learning, ability to interface with sensors and actuators, flexibility and balanced judgement. ANNs and their relation to expert systems (the more traditional form of AI), and the limitations of both technologies are briefly reviewed. A Few highlights of recent work on ANNs, including an NSF-sponsored workshop on ANNs for control applications are given. Current thinking on ANNs for use in certain key areas (the National Aerospace Plane, teleoperation, the control of large structures, fault diagnostics, and docking) which may be crucial to the long term future of man in space is discussed.
Novel maximum-margin training algorithms for supervised neural networks.
Ludwig, Oswaldo; Nunes, Urbano
2010-06-01
This paper proposes three novel training methods, two of them based on the backpropagation approach and a third one based on information theory for multilayer perceptron (MLP) binary classifiers. Both backpropagation methods are based on the maximal-margin (MM) principle. The first one, based on the gradient descent with adaptive learning rate algorithm (GDX) and named maximum-margin GDX (MMGDX), directly increases the margin of the MLP output-layer hyperplane. The proposed method jointly optimizes both MLP layers in a single process, backpropagating the gradient of an MM-based objective function, through the output and hidden layers, in order to create a hidden-layer space that enables a higher margin for the output-layer hyperplane, avoiding the testing of many arbitrary kernels, as occurs in case of support vector machine (SVM) training. The proposed MM-based objective function aims to stretch out the margin to its limit. An objective function based on Lp-norm is also proposed in order to take into account the idea of support vectors, however, overcoming the complexity involved in solving a constrained optimization problem, usually in SVM training. In fact, all the training methods proposed in this paper have time and space complexities O(N) while usual SVM training methods have time complexity O(N (3)) and space complexity O(N (2)) , where N is the training-data-set size. The second approach, named minimization of interclass interference (MICI), has an objective function inspired on the Fisher discriminant analysis. Such algorithm aims to create an MLP hidden output where the patterns have a desirable statistical distribution. In both training methods, the maximum area under ROC curve (AUC) is applied as stop criterion. The third approach offers a robust training framework able to take the best of each proposed training method. The main idea is to compose a neural model by using neurons extracted from three other neural networks, each one previously trained by
Financial time series prediction using spiking neural networks.
Directory of Open Access Journals (Sweden)
David Reid
Full Text Available In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.
Combining neural networks and genetic algorithms for hydrological flow forecasting
Neruda, Roman; Srejber, Jan; Neruda, Martin; Pascenko, Petr
2010-05-01
We present a neural network approach to rainfall-runoff modeling for small size river basins based on several time series of hourly measured data. Different neural networks are considered for short time runoff predictions (from one to six hours lead time) based on runoff and rainfall data observed in previous time steps. Correlation analysis shows that runoff data, short time rainfall history, and aggregated API values are the most significant data for the prediction. Neural models of multilayer perceptron and radial basis function networks with different numbers of units are used and compared with more traditional linear time series predictors. Out of possible 48 hours of relevant history of all the input variables, the most important ones are selected by means of input filters created by a genetic algorithm. The genetic algorithm works with population of binary encoded vectors defining input selection patterns. Standard genetic operators of two-point crossover, random bit-flipping mutation, and tournament selection were used. The evaluation of objective function of each individual consists of several rounds of building and testing a particular neural network model. The whole procedure is rather computational exacting (taking hours to days on a desktop PC), thus a high-performance mainframe computer has been used for our experiments. Results based on two years worth data from the Ploucnice river in Northern Bohemia suggest that main problems connected with this approach to modeling are ovetraining that can lead to poor generalization, and relatively small number of extreme events which makes it difficult for a model to predict the amplitude of the event. Thus, experiments with both absolute and relative runoff predictions were carried out. In general it can be concluded that the neural models show about 5 per cent improvement in terms of efficiency coefficient over liner models. Multilayer perceptrons with one hidden layer trained by back propagation algorithm and
Method for stitching microbial images using a neural network
Semenishchev, E. A.; Voronin, V. V.; Marchuk, V. I.; Tolstova, I. V.
2017-05-01
Currently an analog microscope has a wide distribution in the following fields: medicine, animal husbandry, monitoring technological objects, oceanography, agriculture and others. Automatic method is preferred because it will greatly reduce the work involved. Stepper motors are used to move the microscope slide and allow to adjust the focus in semi-automatic or automatic mode view with transfer images of microbiological objects from the eyepiece of the microscope to the computer screen. Scene analysis allows to locate regions with pronounced abnormalities for focusing specialist attention. This paper considers the method for stitching microbial images, obtained of semi-automatic microscope. The method allows to keep the boundaries of objects located in the area of capturing optical systems. Objects searching are based on the analysis of the data located in the area of the camera view. We propose to use a neural network for the boundaries searching. The stitching image boundary is held of the analysis borders of the objects. To auto focus, we use the criterion of the minimum thickness of the line boundaries of object. Analysis produced the object located in the focal axis of the camera. We use method of recovery of objects borders and projective transform for the boundary of objects which are based on shifted relative to the focal axis. Several examples considered in this paper show the effectiveness of the proposed approach on several test images.
Large deep neural networks for MS lesion segmentation
Prieto, Juan C.; Cavallari, Michele; Palotai, Miklos; Morales Pinzon, Alfredo; Egorova, Svetlana; Styner, Martin; Guttmann, Charles R. G.
2017-02-01
Multiple sclerosis (MS) is a multi-factorial autoimmune disorder, characterized by spatial and temporal dissemination of brain lesions that are visible in T2-weighted and Proton Density (PD) MRI. Assessment of lesion burden and is useful for monitoring the course of the disease, and assessing correlates of clinical outcomes. Although there are established semi-automated methods to measure lesion volume, most of them require human interaction and editing, which are time consuming and limits the ability to analyze large sets of data with high accuracy. The primary objective of this work is to improve existing segmentation algorithms and accelerate the time consuming operation of identifying and validating MS lesions. In this paper, a Deep Neural Network for MS Lesion Segmentation is implemented. The MS lesion samples are extracted from the Partners Comprehensive Longitudinal Investigation of Multiple Sclerosis (CLIMB) study. A set of 900 subjects with T2, PD and a manually corrected label map images were used to train a Deep Neural Network and identify MS lesions. Initial tests using this network achieved a 90% accuracy rate. A secondary goal was to enable this data repository for big data analysis by using this algorithm to segment the remaining cases available in the CLIMB repository.
Intelligent reservoir operation system based on evolving artificial neural networks
Chaves, Paulo; Chang, Fi-John
2008-06-01
We propose a novel intelligent reservoir operation system based on an evolving artificial neural network (ANN). Evolving means the parameters of the ANN model are identified by the GA evolutionary optimization technique. Accordingly, the ANN model should represent the operational strategies of reservoir operation. The main advantages of the Evolving ANN Intelligent System (ENNIS) are as follows: (i) only a small number of parameters to be optimized even for long optimization horizons, (ii) easy to handle multiple decision variables, and (iii) the straightforward combination of the operation model with other prediction models. The developed intelligent system was applied to the operation of the Shihmen Reservoir in North Taiwan, to investigate its applicability and practicability. The proposed method is first built to a simple formulation for the operation of the Shihmen Reservoir, with single objective and single decision. Its results were compared to those obtained by dynamic programming. The constructed network proved to be a good operational strategy. The method was then built and applied to the reservoir with multiple (five) decision variables. The results demonstrated that the developed evolving neural networks improved the operation performance of the reservoir when compared to its current operational strategy. The system was capable of successfully simultaneously handling various decision variables and provided reasonable and suitable decisions.
Image Finder Mobile Application Based on Neural Networks
Directory of Open Access Journals (Sweden)
Nabil M. Hewahi
2017-04-01
Full Text Available Nowadays taking photos via mobile phone has become a very important part of everyone’s life. Almost each and every person who has a smart phone also has thousands of photos in their mobile device. At times it becomes very difficult to find a particular photo from thousands of photos, and it takes time. This research was done to come up with an innovative solution that could solve this problem. The solution will allow the user to find the required photo by simply drawing a sketch on the objects in the required picture, for example a tree or car, etc. Two types of supervised Artificial Neural Networks are used for this purpose; one is trained to identify the handmade sketches and other is trained to identify the images. The proposed approach introduces a mechanism to relate the sketches with the images by matching them after training. The experimentation results for testing the trained neural networks reached 100% for the sketches, and 84% for the images of two objects as a case study.
Analog neural network-based helicopter gearbox health monitoring system.
Monsen, P T; Dzwonczyk, M; Manolakos, E S
1995-12-01
The development of a reliable helicopter gearbox health monitoring system (HMS) has been the subject of considerable research over the past 15 years. The deployment of such a system could lead to a significant saving in lives and vehicles as well as dramatically reduce the cost of helicopter maintenance. Recent research results indicate that a neural network-based system could provide a viable solution to the problem. This paper presents two neural network-based realizations of an HMS system. A hybrid (digital/analog) neural system is proposed as an extremely accurate off-line monitoring tool used to reduce helicopter gearbox maintenance costs. In addition, an all analog neural network is proposed as a real-time helicopter gearbox fault monitor that can exploit the ability of an analog neural network to directly compute the discrete Fourier transform (DFT) as a sum of weighted samples. Hardware performance results are obtained using the Integrated Neural Computing Architecture (INCA/1) analog neural network platform that was designed and developed at The Charles Stark Draper Laboratory. The results indicate that it is possible to achieve a 100% fault detection rate with 0% false alarm rate by performing a DFT directly on the first layer of INCA/1 followed by a small-size two-layer feed-forward neural network and a simple post-processing majority voting stage.
Architecture Analysis of an FPGA-Based Hopfield Neural Network
Directory of Open Access Journals (Sweden)
Miguel Angelo de Abreu de Sousa
2014-01-01
Full Text Available Interconnections between electronic circuits and neural computation have been a strongly researched topic in the machine learning field in order to approach several practical requirements, including decreasing training and operation times in high performance applications and reducing cost, size, and energy consumption for autonomous or embedded developments. Field programmable gate array (FPGA hardware shows some inherent features typically associated with neural networks, such as, parallel processing, modular executions, and dynamic adaptation, and works on different types of FPGA-based neural networks were presented in recent years. This paper aims to address different aspects of architectural characteristics analysis on a Hopfield Neural Network implemented in FPGA, such as maximum operating frequency and chip-area occupancy according to the network capacity. Also, the FPGA implementation methodology, which does not employ multipliers in the architecture developed for the Hopfield neural model, is presented, in detail.
ARTIFICIAL NEURAL NETWORK FOR MODELS OF HUMAN OPERATOR
Directory of Open Access Journals (Sweden)
Martin Ruzek
2017-12-01
Full Text Available This paper presents a new approach to mental functions modeling with the use of artificial neural networks. The artificial neural networks seems to be a promising method for the modeling of a human operator because the architecture of the ANN is directly inspired by the biological neuron. On the other hand, the classical paradigms of artificial neural networks are not suitable because they simplify too much the real processes in biological neural network. The search for a compromise between the complexity of biological neural network and the practical feasibility of the artificial network led to a new learning algorithm. This algorithm is based on the classical multilayered neural network; however, the learning rule is different. The neurons are updating their parameters in a way that is similar to real biological processes. The basic idea is that the neurons are competing for resources and the criterion to decide which neuron will survive is the usefulness of the neuron to the whole neural network. The neuron is not using "teacher" or any kind of superior system, the neuron receives only the information that is present in the biological system. The learning process can be seen as searching of some equilibrium point that is equal to a state with maximal importance of the neuron for the neural network. This position can change if the environment changes. The name of this type of learning, the homeostatic artificial neural network, originates from this idea, as it is similar to the process of homeostasis known in any living cell. The simulation results suggest that this type of learning can be useful also in other tasks of artificial learning and recognition.
Selection in sugarcane families with artificial neural networks
Directory of Open Access Journals (Sweden)
Bruno Portela Brasileiro
2015-04-01
Full Text Available The objective of this study was to evaluate Artificial Neural Networks (ANN applied in an selection process within sugarcane families. The best ANN model produced no mistake, but was able to classify all genotypes correctly, i.e., the network made the same selective choice as the breeder during the simulation individual best linear unbiased predictor (BLUPIS, demonstrating the ability of the ANN to learn from the inputs and outputs provided in the training and validation phases. Since the ANN-based selection facilitates the identification of the best plants and the development of a new selection strategy in the best families, to ensure that the best genotypes of the population are evaluated in the following stages of the breeding program, we recommend to rank families by BLUP, followed by selection of the best families and finally, select the seedlings by ANN, from information at the individual level in the best families.
Discriminating lysosomal membrane protein types using dynamic neural network.
Tripathi, Vijay; Gupta, Dwijendra Kumar
2014-01-01
This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.
From image edges to geons to viewpoint-invariant object models: a neural net implementation
Biederman, Irving; Hummel, John E.; Gerhardstein, Peter C.; Cooper, Eric E.
1992-03-01
Three striking and fundamental characteristics of human shape recognition are its invariance with viewpoint in depth (including scale), its tolerance of unfamiliarity, and its robustness with the actual contours present in an image (as long as the same convex parts [geons] can be activated). These characteristics are expressed in an implemented neural network model (Hummel & Biederman, 1992) that takes a line drawing of an object as input and generates a structural description of geons and their relations which is then used for object classification. The model's capacity for structural description derives from its solution to the dynamic binding problem of neural networks: independent units representing an object's parts (in terms of their shape attributes and interrelations) are bound temporarily when those attributes occur in conjunction in the system's input. Temporary conjunctions of attributes are represented by synchronized activity among the units representing those attributes. Specifically, the model induces temporal correlation in the firing of activated units to: (1) parse images into their constituent parts; (2) bind together the attributes of a part; and (3) determine the relations among the parts and bind them to the parts to which they apply. Because it conjoins independent units temporarily, dynamic binding allows tremendous economy of representation, and permits the representation to reflect an object's attribute structure. The model's recognition performance conforms well to recent results from shape priming experiments. Moreover, the manner in which the model's performance degrades due to accidental synchrony produced by an excess of phase sets suggests a basis for a theory of visual attention.