Some Examples of Identification with Neural Networks
Sjöberg, Jonas
1994-01-01
In this report some examples on system identification of non-linear systems with neural networks are presented. The systems being identified all have different kinds of non-linearities, more or less known. The examples in this paper show that these non-linearities can be successfully modeled by non-linear models based on neural networks.
Automatic identification of species with neural networks
Directory of Open Access Journals (Sweden)
Andrés Hernández-Serna
2014-11-01
Full Text Available A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.
Automatic target identification using neural networks
Abdallah, Mahmoud A.; Samu, Tayib I.; Grissom, William A.
1995-10-01
Neural network theories are applied to attain human-like performance in areas such as speech recognition, statistical mapping, and target recognition or identification. In target identification, one of the difficult tasks has been the extraction of features to be used to train the neural network which is subsequently used for the target's identification. The purpose of this paper is to describe the development of an automatic target identification system using features extracted from a specific class of targets. The extracted features were the graphical representations of the silhouettes of the targets. Image processing techniques and some Fast Fourier Transform (FFT) properties were implemented to extract the features. The FFT eliminates variations in the extracted features due to rotation or scaling. A Neural Network was trained with the extracted features using the Learning Vector Quantization paradigm. An identification system was set up to test the algorithm. The image processing software was interfaced with MATLAB Neural Network Toolbox via a computer program written in C language to automate the target identification process. The system performed well as at classified the objects used to train it irrespective of rotation, scaling, and translation. This automatic target identification system had a classification success rate of about 95%.
Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach
2016-03-30
Undergraduate Student Paper Postgraduate Student Paper Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach...monitoring, flight parameter, nonlinear modeling, Artificial Neural Network , typical loadcase. Introduction Aircraft load monitoring is an... Neural Networks (ANN), i.e. the BP network and Kohonen Clustering Network , are applied and revised by Kalman Filter and Genetic Algorithm to build
Non-Linear Systems Identification Using Neural Networks
Chen, S.; Billings, S.A.; Grant, P.M.
1989-01-01
Multi-layered neural networks offer an exciting alternative for modelling complex non-linear systems. This paper investigates the identification of discrete-time non-linear systems using neural networks with a single hidden layer. New parameter estimation algorithms are derived for the neural network model based on a prediction error formulation and the application to both simulated and real data is included to demonstrate the effectiveness of the neural network approach.
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
1995-01-01
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Tropical Timber Identification using Backpropagation Neural Network
Siregar, B.; Andayani, U.; Fatihah, N.; Hakim, L.; Fahmi, F.
2017-01-01
Each and every type of wood has different characteristics. Identifying the type of wood properly is important, especially for industries that need to know the type of timber specifically. However, it requires expertise in identifying the type of wood and only limited experts available. In addition, the manual identification even by experts is rather inefficient because it requires a lot of time and possibility of human errors. To overcome these problems, a digital image based method to identify the type of timber automatically is needed. In this study, backpropagation neural network is used as artificial intelligence component. Several stages were developed: a microscope image acquisition, pre-processing, feature extraction using gray level co-occurrence matrix and normalization of data extraction using decimal scaling features. The results showed that the proposed method was able to identify the timber with an accuracy of 94%.
Application of Artificial Neural Networks for Process Identification and Control
Bolf, N.; Jerbić, I.
2006-01-01
During the development of intelligent systems inspired by biological neural system, in the last two decades the researchers from various scientific fields have created neural networks for solving a series of problems from pattern recognition, prediction, diagnostic, software sensor, modelling and identification, control and optimization. In this paper a review of neural network application in the field of chemical engineering with emphasis on identification and process control is given. T...
Boosted jet identification using particle candidates and deep neural networks
CMS Collaboration
2017-01-01
This note presents developments for the identification of hadronically decaying top quarks using deep neural networks in CMS. A new method that utilizes one dimensional convolutional neural networks based on jet constituent particles is proposed. Alternative methods using boosted decision trees based on jet observables are compared. The new method shows significant improvement in performance.
System Identification of X-33 Neural Network
Aggarwal, Shiv
2003-01-01
present attempt, as a start, focuses only on the entry phase. Since the main engine remains cut off in this phase, there is no thrust acting on the system. This considerably simplifies the equations of motion. We introduce another simplification by assuming the system to be linear after some non-linearities are removed analytically from our consideration. Under these assumptions, the problem could be solved by Classical Statistics by employing the least sum of squares approach. Instead we chose to use the Neural Network method. This method has many advantages. It is modern, more efficient, can be adapted to work even when the assumptions are diluted. In fact, Neural Networks try to model the human brain and are capable of pattern recognition.
IDENTIFICATION AND CONTROL OF AN ASYNCHRONOUS MACHINE USING NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
A ZERGAOUI
2000-06-01
Full Text Available In this work, we present the application of artificial neural networks to the identification and control of the asynchronous motor, which is a complex nonlinear system with variable internal dynamics. We show that neural networks can be applied to control the stator currents of the induction motor. The results of the different simulations are presented to evaluate the performance of the neural controller proposed.
NNSYSID - toolbox for system identification with neural networks
DEFF Research Database (Denmark)
Norgaard, M.; Ravn, Ole; Poulsen, Niels Kjølstad
2002-01-01
The NNSYSID toolset for System Identification has been developed as an add on to MATLAB(R). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains a number of nonlinear model structures based on neural networks, effective training algorithms...
System Identification for Nonlinear Control Using Neural Networks
Stengel, Robert F.; Linse, Dennis J.
1990-01-01
An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.
Neural networks for nonlinear dynamic system modelling and identification
Chen, S.; Billings, S. A.
1992-01-01
Many real-world systems exhibit complex non-linear characteristics and cannot be treated satisfactorily using linear systems theory. A neural network which has the ability to learn sophisticated non-linear relationships provides an ideal means of modelling complicated non-linear systems. This paper addresses the issues related to the identification of non-linear discrete-time dynamic systems using neural networks..........
A NEURAL NETWORK BASED IRIS RECOGNITION SYSTEM FOR PERSONAL IDENTIFICATION
Directory of Open Access Journals (Sweden)
Usham Dias
2010-10-01
Full Text Available This paper presents biometric personal identification based on iris recognition using artificial neural networks. Personal identification system consists of localization of the iris region, normalization, enhancement and then iris pattern recognition using neural network. In this paper, through results obtained, we have shown that a person’s left and right eye are unique. In this paper, we also show that the network is sensitive to the initial weights and that over-training gives bad results. We also propose a fast algorithm for the localization of the inner and outer boundaries of the iris region. Results of simulations illustrate the effectiveness of the neural system in personal identification. Finally a hardware iris recognition model is proposed and implementation aspects are discussed.
System Identification, Prediction, Simulation and Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1997-01-01
a Gauss-Newton search direction is applied. 3) Amongst numerous model types, often met in control applications, only the Non-linear ARMAX (NARMAX) model, representing input/output description, is examined. A simulated example confirms that a neural network has the potential to perform excellent System...... Identification, Prediction, Simulation and Control of a dynamic, non-linear and noisy process. Further, the difficulties to control a practical non-linear laboratory process in a satisfactory way by using a traditional controller are overcomed by using a trained neural network to perform non-linear System......The intention of this paper is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...
Neural Network Identification For a C5 Parallel Robot
International Nuclear Information System (INIS)
Daachi, M. E.; Chikouche, D.; Achili, B.; Daachi, B.
2008-01-01
This paper presents the design and analysis of a neural network-based identification of the inverse dynamic model of a C5 parallel robot. The identification structure is designed using the black box form (the dynamic model is completely unknown). This identification uses real data acquired on the C5 parallel robot by applying a nominal control scheme (PD). The desired trajectories of this scheme are based on Fourier series and the coefficients are chosen in a heuristic way. We have used this type of desired trajectories to obtain exciting trajectories for identification procedure. Three identification schemes are tested and compared. The comparison is performed based on the number of parameters used in each architecture and the quality of the generalization error. The used neural network is of MLP type and composed of one hidden layer
Baruch, Ieroham; Mariaca-Gaspar, Carlos; Barrera-Cortes, Josefina
2008-01-01
The chapter proposes a new Kalman filter closed loop topology of recurrent neural network for identification and modeling of an unknown hydrocarbon degradation process carried out in a biopile system and a rotating drum. The proposed KF RNN contained a recurrent neural plant model, a recurrent neural output plant filter and posses global and local feedbacks. The learning algorithm is a modified version of the dynamic Backpropagation one derived using the adjoint KF RNN topology by means of th...
Identification of aerodynamic coefficients with a neural network
Richardson, Kristina Anne
2000-11-01
The components of a framework for the procurement, identification, and employment of aerodynamic coefficients are developed. The basic structure follows the estimation-before-modeling (EBM) technique. In the EBM methodology, state estimation and model determination are broken into two independent steps. An extended Kalman-Bucy filter and a modified Bryson-Frazier smoother are used to estimate state and force histories from a measurement vector. This data is used for maintenance of the aerodynamic mapping. The model satisfies the accuracy, smoothness, and differentiability requirements demanded by nonlinear control laws. A-priori information drawn from the entire input-space is employed to establish a baseline model. Dynamic-system measurements are processed to provide the accurate state and force histories required for on-line updates of the identification model. An extended-Kalman Bucy filter provides state estimates and in combination with a random-walk model accurate force histories. A modified Bryson-Frazier smoother refines these estimates based on future measurements. The identification scheme employs a neural network to provide models of aerodynamic coefficients during dynamic-system operation. These models are valid over the entire input-output space. Prior to flight, a-priori data is incorporated into a base neural network using a new design and training algorithm. This algorithm functions in the face of an eight-dimension input vector. During flight, the parameters of the base neural are fixed, and a second set of activation functions are available for learning the surface created by the difference between the base neural network and the current dynamic-system information. The new neural network is demonstrated on a longitudinal-motion aircraft model, with static and dynamic training data, and its training speed, accuracy, and parsimony abilities versus existing neural networks are established. The identification framework is used to identify the three
Nonlinear identification of process dynamics using neural networks
International Nuclear Information System (INIS)
Parlos, A.G.; Atiya, A.F.; Chong, K.T.
1992-01-01
In this paper the nonlinear identification of process dynamics encountered in nuclear power plant components is addressed, in an input-output sense, using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the model structure to be identified. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard backpropagation learning algorithm is modified, and it is used for the supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The response of representative steam generator is predicted using a neural network, and it is compared to the response obtained from a sophisticated computer model based on first principles. The transient responses compare well, although further research is warranted to determine the predictive capabilities of these networks during more severe operational transients and accident scenarios
A neural network model for non invasive subsurface stratigraphic identification
International Nuclear Information System (INIS)
Sullivan, John M. Jr.; Ludwig, Reinhold; Lai Qiang
2000-01-01
Ground-Penetrating Radar (GRP) is a powerful tool to examine the stratigraphy below ground surface for remote sensing. Increasingly GPR has also found applications in microwave NDE as an interrogation tool to assess dielectric layers. Unfortunately, GPR data is characterized by a high degree of uncertainty and natural physical ambiguity. Robust decomposition routines are sparse for this application. We have developed a hierarchical set of neural network modules which split the task of layer profiling into consecutive stages. Successful GPR profiling of the subsurface stratigraphy is of key importance for many remote sensing applications including microwave NDE. Neural network modules were designed to accomplish the two main processing goals of recognizing the 'subsurface pattern' followed by the identification of the depths of the subsurface layers like permafrost, groundwater table, and bedrock. We used an adaptive transform technique to transform raw GPR data into a small feature vector containing the most representative and discriminative features of the signal. This information formed the input for the neural network processing units. This strategy reduced the number of required training samples for the neural network by orders of magnitude. The entire processing system was trained using the adaptive transformed feature vector inputs and tested with real measured GPR data. The successful results of this system establishes the feasibility the feasibility of delineating subsurface layering nondestructively
On the identification of instabilities with neural networks on JET
International Nuclear Information System (INIS)
Murari, A.; Arena, P.; Buscarino, A.; Fortuna, L.; Iachello, M.
2013-01-01
JET plasmas are affected by various instabilities, which can be particularly dangerous in high performance discharges. An identification method, based on the use of advanced neural networks, called Recurrent Neural Networks (RNNs), has been applied to ELMs. The potential of the recurrent networks to identify the dynamics of the instabilities has been first tested using synthetic data. The networks have then been applied to JET experimental signals. An appropriate selection of the networks topology allows identifying quite well the time evolution of the edge temperature and of the magnetic fields, considered the best indicators of the ELMs. A quite limited number of periodic oscillations are used to train the networks, which then manage to follow quite well the dynamics of the instabilities, in a recurrent configuration on one of the inputs. The time evolution of the aforementioned signals, also during intervals not used in the training and never seen by the networks, are properly reproduced. A careful analysis of the various terms in the RNNs has the potential to give clear indications about the nature of these instabilities and their dynamical behaviour
A modular structure to accident identification using neural networks
International Nuclear Information System (INIS)
Duque Estrada, Cassius Rodrigo
2005-01-01
This work uses the accident identification method based on Artificial Neural Networks (ANN) as basic blocks of a modular structure, allowing the inclusion of new accidents to be identified without modifying the ANN already trained. This structure comprises several modules for accident identification and one module for analysis. Each identification module follows the structure of the basic block. The identification modules are responsible for the recognition of an accident belonging to the specific set of events for which it were trained. The analysis module processes the output from the identification module to determine the system response. In order to test this structure it was proposed a transient identification problem comprising fifty accidents distributed in five identification modules. The results have demonstrated that the accident identification method used as basic block of a modular structure allows the inclusion of new sets of accidents, or variations of a same accident, without modifying the ANN already trained. For this, it is enough to include into the system an specific module for this new set of accidents. (author)
A Gamma Memory Neural Network for System Identification
Motter, Mark A.; Principe, Jose C.
1992-01-01
A gamma neural network topology is investigated for a system identification application. A discrete gamma memory structure is used in the input layer, providing delayed values of both the control inputs and the network output to the input layer. The discrete gamma memory structure implements a tapped dispersive delay line, with the amount of dispersion regulated by a single, adaptable parameter. The network is trained using static back propagation, but captures significant features of the system dynamics. The system dynamics identified with the network are the Mach number dynamics of the 16 Foot Transonic Tunnel at NASA Langley Research Center, Hampton, Virginia. The training data spans an operating range of Mach numbers from 0.4 to 1.3.
Identification of polypeptides by using SOM neural networks
Liu, Jianwei; He, Ting; Zhang, Bo; Shen, Jingling
2014-11-01
Sample with no characteristic absorption can be identified by refractive index features. In this work, qualitative and quantitative identification of THz spectra of polypeptides using self-organization feature map (SOM) artificial neural network has been demonstrated. The absorption and refractive index features of three polypeptides, including Argreline Acetate, Alarelin Acetate, and Bivalirudin Trifluoroacetate, were measured by using the terahertz time-domain spectroscopy technique in the range 0.2-2.2 THz. The experimental results show that the three measured polypeptides present high similarity in absorption spectra but difference in refractive index spectra. After the network training process, the collected spectra were identified by the well-trained SOM network at another time. Analyzing the result we can see that the refractive index spectra are clustered and identify much better than the THz spectra of polypeptides. The study indicates that refractive index spectra can also be clustered by the SOM artificial neural network for identification of THz spectra especially when there is no obvious difference in absorption but significant difference in refractive index spectra.
Heavy flavor identification at CMS with deep neural networks
CMS Collaboration
2017-01-01
At the Large Hadron Collider, the identification of jets originating from heavy flavour quarks (b or c-tagging) is important for searches for new physics and for measurements of standard model processes. A variety of b-tagging algorithms has been developed by CMS to select b-quark jets based on variables such as the impact parameters of the charged-particle tracks, the properties of reconstructed decay vertices, and the presence or absence of a lepton, or combinations thereof. These algorithms heavily rely on machine learning tools and are thus natural candidates for advanced tools like deep neural networks. A new algorithm, DeepCSV, uses a deep neural network. The input is the same set of observables used by the existing CSVv2 b-tagger, with the extension that it uses information of more tracks. Also, the training strategy was adapted and about 50 million jets are used for the training of the deep neural network. The new DeepCSV algorithm outperforms the CSVv2 tagger, with an absolute b-tagging efficiency im...
Multimodal Neural Network for Overhead Person Re-identification
DEFF Research Database (Denmark)
Lejbølle, Aske Rasch; Nasrollahi, Kamal; Krogh, Benjamin
2017-01-01
Person re-identification is a topic which has potential to be used for applications within forensics, flow analysis and queue monitoring. It is the process of matching persons across two or more camera views, most often by extracting colour and texture based hand-crafted features, to identify...... similar persons. Because of challenges regarding changes in lighting between views, occlusion or even privacy issues, more focus has turned to overhead and depth based camera solutions. Therefore, we have developed a system, based on a Convolutional Neural Network (CNN) which is trained using both depth...
Identification and Position Control of Marine Helm using Artificial Neural Network Neural Network
Directory of Open Access Journals (Sweden)
Hui ZHU
2008-02-01
Full Text Available If nonlinearities such as saturation of the amplifier gain and motor torque, gear backlash, and shaft compliances- just to name a few - are considered in the position control system of marine helm, traditional control methods are no longer sufficient to be used to improve the performance of the system. In this paper an alternative approach to traditional control methods - a neural network reference controller - is proposed to establish an adaptive control of the position of the marine helm to achieve the controlled variable at the command position. This neural network controller comprises of two neural networks. One is the plant model network used to identify the nonlinear system and the other the controller network used to control the output to follow the reference model. The experimental results demonstrate that this adaptive neural network reference controller has much better control performance than is obtained with traditional controllers.
Stability Analysis of Neural Networks-Based System Identification
Directory of Open Access Journals (Sweden)
Talel Korkobi
2008-01-01
Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.
Design of multi-layer neural networks for accurate identification of nonlinear mappings
Teixeira, Edilberto; Loparo, Kenneth; Gomide, Fernando A. C.
1991-01-01
Guidelines for the design of multilayer neural networks for the identification of nonlinear mappings are considered. Since nonlinear mappings can be approximated by a one-hidden-layer neural network, an approach to determine the sufficient number of hidden layer nodes to achieve a global minima of the identification error function is considered.
A neural network model of lateralization during letter identification.
Shevtsova, N; Reggia, J A
1999-03-01
The causes of cerebral lateralization of cognitive and other functions are currently not well understood. To investigate one aspect of function lateralization, a bihemispheric neural network model for a simple visual identification task was developed that has two parallel interacting paths of information processing. The model is based on commonly accepted concepts concerning neural connectivity, activity dynamics, and synaptic plasticity. A combination of both unsupervised (Hebbian) and supervised (Widrow-Hoff) learning rules is used to train the model to identify a small set of letters presented as input stimuli in the left visual hemifield, in the central position, and in the right visual hemifield. Each visual hemifield projects onto the contralateral hemisphere, and the two hemispheres interact via a simulated corpus callosum. The contribution of each individual hemisphere to the process of input stimuli identification was studied for a variety of underlying asymmetries. The results indicate that multiple asymmetries may cause lateralization. Lateralization occurred toward the side having larger size, higher excitability, or higher learning rate parameters. It appeared more intensively with strong inhibitory callosal connections, supporting the hypothesis that the corpus callosum plays a functionally inhibitory role. The model demonstrates clearly the dependence of lateralization on different hemisphere parameters and suggests that computational models can be useful in better understanding the mechanisms underlying emergence of lateralization.
Orientation selective neural network for cosmic muon identification
International Nuclear Information System (INIS)
Abramowicz, H.; Tel Aviv Univ.; Horn, D.; Naftaly, U.; Sahar-Pikielny, C.
1997-01-01
We discuss a novel method for identification of a linear pattern of pixels on a two-dimensional grid. Motivated by principles employed by the visual cortex, we construct orientation selective neurons in a neural network that performs this task. The method is then applied to a sample of data collected with the ZEUS detector at HERA in order to identify cosmic muons that leave a linear pattern of signals in the segmented uranium-scintillator calorimeter. A two dimensional representation of the relevant part of the detector is used. The algorithm performs well in the presence of noise and pixels with limited efficiency. Given its architecture, this system becomes a good candidate for fast pattern recognition in parallel processing devices. (orig.)
Fault Identification of Gearbox Degradation with Optimized Wavelet Neural Network
Directory of Open Access Journals (Sweden)
Hanxin Chen
2013-01-01
Full Text Available A novel intelligent method based on wavelet neural network (WNN was proposed to identify the gear crack degradation in gearbox in this paper. The wavelet packet analysis (WPA is applied to extract the fault feature of the vibration signal, which is collected by two acceleration sensors mounted on the gearbox along the vertical and horizontal direction. The back-propagation (BP algorithm is studied and applied to optimize the scale and translation parameters of the Morlet wavelet function, the weight coefficients, threshold values in WNN structure. Four different gear crack damage levels under three different loads and three various motor speeds are presented to obtain the different gear fault modes and gear crack degradation in the experimental system. The results show the feasibility and effectiveness of the proposed method by the identification and classification of the four gear modes and degradation.
System Identification Using Multilayer Differential Neural Networks: A New Result
Directory of Open Access Journals (Sweden)
J. Humberto Pérez-Cruz
2012-01-01
Full Text Available In previous works, a learning law with a dead zone function was developed for multilayer differential neural networks. This scheme requires strictly a priori knowledge of an upper bound for the unmodeled dynamics. In this paper, the learning law is modified in such a way that this condition is relaxed. By this modification, the tuning process is simpler and the dead-zone function is not required anymore. On the basis of this modification and by using a Lyapunov-like analysis, a stronger result is here demonstrated: the exponential convergence of the identification error to a bounded zone. Besides, a value for upper bound of such zone is provided. The workability of this approach is tested by a simulation example.
The research on structural damage identification using rough set and integrated neural network
Li, Juelong; Li, Hairui; Xing, Jianchun; Yang, Qiliang
2013-09-01
A huge amount of information and identification accuracy in large civil engineering structural damage identification has not been addressed yet. To efficiently solve this problem, a new damage identification method based on rough set and integrated neural network is first proposed. In brief, rough set was used to reduce attributes so as to decrease spatial dimensions of data and extract effective features. And then the reduced attributes will be put into the sub-neural network. The sub-neural network can give the preliminary diagnosis from different aspects of damage. The decision fusion network will give the final damage identification results. The identification examples show that this method can simplify the redundant information to reduce the neural network model, making full use of the range of information to effectively improve the accuracy of structural damage identification.
Identification of the non-linear systems using internal recurrent neural networks
Directory of Open Access Journals (Sweden)
Bogdan CODRES
2006-12-01
Full Text Available In the past years utilization of neural networks took a distinct ampleness because of the following properties: distributed representation of information, capacity of generalization in case of uncontained situation in training data set, tolerance to noise, resistance to partial destruction, parallel processing. Another major advantage of neural networks is that they allow us to obtain the model of the investigated system, systems that is not necessarily to be linear. In fact, the true value of neural networks is seen in the case of identification and control of nonlinear systems. In this paper there are presented some identification techniques using neural networks.
Horizontal two phase flow pattern identification by neural networks
International Nuclear Information System (INIS)
Crivelaro, Kelen Cristina Oliveira; Seleghim Junior, Paulo; Hervieu, Eric
1999-01-01
A multiphase fluid can flow according to several flow regimes. The problem associated with multiphase systems are basically related to the behavior of macroscopic parameters, such as pressure drop, thermal exchanges and so on, and their strong correlation to the flow regime. From the industrial applications point of view, the safety and longevity of equipment and systems can only be assured when they work according to the flow regimes for which they were designed to. This implies in the need to diagnose flow regimes in real time. The automatic diagnosis of flow regimes represents an objective of extreme importance, mainly for applications on nuclear and petrochemical industries. In this work, a neural network is used in association to a probe of direct visualization for the identification of a gas-liquid flow horizontal regimes, developed in an experimental circuit. More specifically, the signals produced by the probe are used to compose a qualitative image of the flow, which is promptly sent to the network for the recognition of the regimes. Results are presented for different transitions among the flow regimes, which demonstrate the extremely satisfactory performance of the diagnosis system. (author)
Learning Data Set Influence on Identification Accuracy of Gas Turbine Neural Network Model
Kuznetsov, A. V.; Makaryants, G. M.
2018-01-01
There are many gas turbine engine identification researches via dynamic neural network models. It should minimize errors between model and real object during identification process. Questions about training data set processing of neural networks are usually missed. This article presents a study about influence of data set type on gas turbine neural network model accuracy. The identification object is thermodynamic model of micro gas turbine engine. The thermodynamic model input signal is the fuel consumption and output signal is the engine rotor rotation frequency. Four types input signals was used for creating training and testing data sets of dynamic neural network models - step, fast, slow and mixed. Four dynamic neural networks were created based on these types of training data sets. Each neural network was tested via four types test data sets. In the result 16 transition processes from four neural networks and four test data sets from analogous solving results of thermodynamic model were compared. The errors comparison was made between all neural network errors in each test data set. In the comparison result it was shown error value ranges of each test data set. It is shown that error values ranges is small therefore the influence of data set types on identification accuracy is low.
Identification of illicit drugs by using SOM neural networks
Liang, Meiyan; Shen, Jingling; Wang, Guangqin
2008-07-01
Absorption spectra of six illicit drugs were measured by using the terahertz time-domain spectroscopy technique in the range 0.2-2.6 THz and then clustered with self-organization feature map (SOM) artificial neural network. After the network training process, the spectra collected at another time were identified successfully by the well-trained SOM network. An effective distance was introduced as a quantitative criterion to decide which cluster the new spectra were affiliated with.
International Nuclear Information System (INIS)
Cheon, Se Woo; Kim, Wan Joo; Chang, Soon Heung; Roh, Myung Sub
1991-01-01
The Back-propagation Neural Network (BPN) algorithm is applied to connectionist expert system for the identification of BWR transients. Several powerful features of neural network-based expert systems over traditional rule-based expert systems are described. The general mapping capability of the neural networks enables to identify transients easily. A number of case studies were performed with emphasis on the applicability of the neural networks to the diagnostic domain. It is revealed that the BPN algorithm can identify transients properly, even when incomplete or untrained symptoms are given. It is also shown that multiple transients are easily identified
Identification of aerodynamic coefficients using computational neural networks
Linse, Dennis J.; Stengel, Robert F.
1992-01-01
Precise, smooth aerodynamic models are required for implementing adaptive, nonlinear control strategies. Accurate representations of aerodynamic coefficients can be generated for the complete flight envelope by combining computational neural network models with an Estimation-Before-Modeling paradigm for on-line training information. A novel method of incorporating first-partial-derivative information is employed to estimate the weights in individual feedforward neural networks for each aerodynamic coefficient. The method is demonstrated by generating a model of the normal force coefficient of a twin-jet transport aircraft from simulated flight data, and promising results are obtained.
NNSYSID and NNCTRL Tools for system identification and control with neural networks
DEFF Research Database (Denmark)
Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad
2001-01-01
choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can...
NNSYSID and NNCTRL Tools for system identification and control with neural networks
DEFF Research Database (Denmark)
Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad
2001-01-01
Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can...... choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview...
International Nuclear Information System (INIS)
Peng Yafu; Hsu, C.-F.
2009-01-01
This paper proposes an identification-based adaptive backstepping control (IABC) for the chaotic systems. The IABC system is comprised of a neural backstepping controller and a robust compensation controller. The neural backstepping controller containing a self-organizing fuzzy neural network (SOFNN) identifier is the principal controller, and the robust compensation controller is designed to dispel the effect of minimum approximation error introduced by the SOFNN identifier. The SOFNN identifier is used to online estimate the chaotic dynamic function with structure and parameter learning phases of fuzzy neural network. The structure learning phase consists of the growing and pruning of fuzzy rules; thus the SOFNN identifier can avoid the time-consuming trial-and-error tuning procedure for determining the neural structure of fuzzy neural network. The parameter learning phase adjusts the interconnection weights of neural network to achieve favorable approximation performance. Finally, simulation results verify that the proposed IABC can achieve favorable tracking performance.
Neural network based system for script identification in Indian ...
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... The paper describes a neural network-based script identiﬁcation system which can be used in the machine reading of documents written in English, Hindi and Kannada language scripts. Script identiﬁcation is a basic requirement in automation of document processing, in multi-script, multi-lingual ...
Neural network identification of aircraft nonlinear aerodynamic characteristics
Egorchev, M. V.; Tiumentsev, Yu V.
2018-02-01
The simulation problem for the controlled aircraft motion is considered in the case of imperfect knowledge of the modeling object and its operating conditions. The work aims to develop a class of modular semi-empirical dynamic models that combine the capabilities of theoretical and neural network modeling. We consider the use of semi-empirical neural network models for solving the problem of identifying aerodynamic characteristics of an aircraft. We also discuss the formation problem for a representative set of data characterizing the behavior of a simulated dynamic system, which is one of the critical tasks in the synthesis of ANN-models. The effectiveness of the proposed approach is demonstrated using a simulation example of the aircraft angular motion and identifying the corresponding coefficients of aerodynamic forces and moments.
Cheng, Long; Hou, Zeng-Guang; Lin, Yingzi; Tan, Min; Zhang, Wenjun Chris; Wu, Fang-Xiang
2011-05-01
A recurrent neural network is proposed for solving the non-smooth convex optimization problem with the convex inequality and linear equality constraints. Since the objective function and inequality constraints may not be smooth, the Clarke's generalized gradients of the objective function and inequality constraints are employed to describe the dynamics of the proposed neural network. It is proved that the equilibrium point set of the proposed neural network is equivalent to the optimal solution of the original optimization problem by using the Lagrangian saddle-point theorem. Under weak conditions, the proposed neural network is proved to be stable, and the state of the neural network is convergent to one of its equilibrium points. Compared with the existing neural network models for non-smooth optimization problems, the proposed neural network can deal with a larger class of constraints and is not based on the penalty method. Finally, the proposed neural network is used to solve the identification problem of genetic regulatory networks, which can be transformed into a non-smooth convex optimization problem. The simulation results show the satisfactory identification accuracy, which demonstrates the effectiveness and efficiency of the proposed approach.
Identification of Complex Dynamical Systems with Neural Networks (2/2)
CERN. Geneva
2016-01-01
The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...
Identification of Complex Dynamical Systems with Neural Networks (1/2)
CERN. Geneva
2016-01-01
The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...
International Nuclear Information System (INIS)
Zhou Jin; Chen Tianping; Xiang Lan
2006-01-01
This paper investigates synchronization dynamics of delayed neural networks with all the parameters unknown. By combining the adaptive control and linear feedback with the updated law, some simple yet generic criteria for determining the robust synchronization based on the parameters identification of uncertain chaotic delayed neural networks are derived by using the invariance principle of functional differential equations. It is shown that the approaches developed here further extend the ideas and techniques presented in recent literature, and they are also simple to implement in practice. Furthermore, the theoretical results are applied to a typical chaotic delayed Hopfied neural networks, and numerical simulation also demonstrate the effectiveness and feasibility of the proposed technique
Behavior identification of distinct neighborhoods in large structures using neural networks
Fu, Xiaoyun; Bartlett, James P.
2001-03-01
This paper presents a new method to identify the vibration model for large smart structures. A large structure typically has low frequency vibrations, unique distributed dynamic characteristics, and no simple control model. Study of composite aircraft fuselage vibration suppression required the identification of a distributed parameter control method. Artificial neural networks were used to identify structural vibration characteristics in distinct neighborhoods. Neural networks were trained and compared using a plate model.
Dror, Shahar
1992-01-01
Approved for public release; distribution is unlimited Identification and control of non-linear dynamical systems is a very complex task which requires new methods of approaching. This research addresses the problem of emulation and control via the use of distributed parallel processing, namely artificial neural networks. Four models for describing non-linear MIMO dynamical systems are presented. Based on these models a combined feedforward and recurrent neural networks are structured t...
Neural Network Target Identification System for False Alarm Reduction
Ye, David; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin
2009-01-01
A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feed forward back propagation neural network (NN) is then trained to classify each feature vector and remove false positives. This paper discusses the test of the system performance and parameter optimizations process which adapts the system to various targets and datasets. The test results show that the system was successful in substantially reducing the false positive rate when tested on a sonar image dataset.
Neural Network Substorm Identification: Enabling TREx Sensor Web Modes
Chaddock, D.; Spanswick, E.; Arnason, K. M.; Donovan, E.; Liang, J.; Ahmad, S.; Jackel, B. J.
2017-12-01
Transition Region Explorer (TREx) is a ground-based sensor web of optical and radio instruments that is presently being deployed across central Canada. The project consists of an array of co-located blue-line, full-colour, and near-infrared all-sky imagers, imaging riometers, proton aurora spectrographs, and GNSS systems. A key goal of the TREx project is to create the world's first (artificial) intelligent sensor web for remote sensing space weather. The sensor web will autonomously control and coordinate instrument operations in real-time. To accomplish this, we will use real-time in-line analytics of TREx and other data to dynamically switch between operational modes. An operating mode could be, for example, to have a blue-line imager gather data at a one or two orders of magnitude higher cadence than it operates for its `baseline' mode. The software decision to increase the imaging cadence would be in response to an anticipated increase in auroral activity or other programmatic requirements. Our first test for TREx's sensor web technologies is to develop the capacity to autonomously alter the TREx operating mode prior to a substorm expansion phase onset. In this paper, we present our neural network analysis of historical optical and riometer data and our ability to predict an optical onset. We explore the preliminary insights into using a neural network to pick out trends and features which it deems are similar among substorms.
Individual Identification Using Functional Brain Fingerprint Detected by Recurrent Neural Network.
Chen, Shiyang; Hu, Xiaoping P
2018-03-20
Individual identification based on brain function has gained traction in literature. Investigating individual differences in brain function can provide additional insights into the brain. In this work, we introduce a recurrent neural network based model for identifying individuals based on only a short segment of resting state functional MRI data. In addition, we demonstrate how the global signal and differences in atlases affect the individual identifiability. Furthermore, we investigate neural network features that exhibit the uniqueness of each individual. The results indicate that our model is able to identify individuals based on neural features and provides additional information regarding brain dynamics.
Peng, Jinzhu; Dubay, Rickey
2011-10-01
In this paper, an adaptive control approach based on the neural networks is presented to control a DC motor system with dead-zone characteristics (DZC), where two neural networks are proposed to formulate the traditional identification and control approaches. First, a Wiener-type neural network (WNN) is proposed to identify the motor DZC, which formulates the Wiener model with a linear dynamic block in cascade with a nonlinear static gain. Second, a feedforward neural network is proposed to formulate the traditional PID controller, termed as PID-type neural network (PIDNN), which is then used to control and compensate for the DZC. In this way, the DC motor system with DZC is identified by the WNN identifier, which provides model information to the PIDNN controller in order to make it adaptive. Back-propagation algorithms are used to train both neural networks. Also, stability and convergence analysis are conducted using the Lyapunov theorem. Finally, experiments on the DC motor system demonstrated accurate identification and good compensation for dead-zone with improved control performance over the conventional PID control. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
On-line identification of hybrid systems using an adaptive growing and pruning RBF neural network
DEFF Research Database (Denmark)
Alizadeh, Tohid
2008-01-01
This paper introduces an adaptive growing and pruning radial basis function (GAP-RBF) neural network for on-line identification of hybrid systems. The main idea is to identify a global nonlinear model that can predict the continuous outputs of hybrid systems. In the proposed approach, GAP......-RBF neural network uses a modified unscented kalman filter (UKF) with forgetting factor scheme as the required on-line learning algorithm. The effectiveness of the resulting identification approach is tested and evaluated on a simulated benchmark hybrid system....
Slabbinck, Bram; De Baets, Bernard; Dawyndt, Peter; De Vos, Paul
2008-08-01
Gas chromatographic fatty acid methyl ester analysis of bacteria is an easy, cheap and fast-automated identification tool routinely used in microbiological research. This paper reports on the application of artificial neural networks for genus-wide FAME-based identification of Bacillus species. Using 1,071 FAME profiles covering a genus-wide spectrum of 477 strains and 82 species, different balanced and imbalanced data sets have been created according to different validation methods and model parameters. Following training and validation, each classifier was evaluated on its ability to identify the profiles of a test set. Comparison of the classifiers showed a good identification rate favoring the imbalanced data sets. The presence of the Bacillus cereus and Bacillus subtilis groups made clear that it is of great importance to take into account the limitations of FAME analysis resolution for the construction of identification models. Indeed, as members of such a group cannot easily be distinguished from one another based upon FAME data alone, identification models built upon this data can neither be successful at keeping them apart. Comparison of the different experimental setups ultimately led to a few general recommendations. With respect to the routinely used commercial Sherlock Microbial Identification System (MIS, Microbial ID, Inc. (MIDI), Newark, Delaware, USA), the artificial neural network test results showed a significant improvement in Bacillus species identification. These results indicate that machine learning techniques such as artificial neural networks are most promising tools for FAME-based classification and identification of bacterial species.
International Nuclear Information System (INIS)
Denby, Bruce; Lindsey, Clark; Lyons, Louis
1992-01-01
The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive
Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems
Innocenti, M.; Napolitano, M.
2003-01-01
Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.
DEFF Research Database (Denmark)
Hjerrild, Majbrit; Stensballe, Allan; Rasmussen, Thomas E
2011-01-01
Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...
Study of a transient identification system using a neural network for a PWR plant
International Nuclear Information System (INIS)
Ishihara, Yoshinao; Kasai, Masao; Kambara, Masayuki; Mitsuda, Hiromichi; Kurata, Toshikazu; Shirosaki, Hidekazu
1996-01-01
This paper presents the procedure and results of a system for identifying PWR plant abnormal events, which uses neural network techniques. The neural network recognizes the abnormal event from the patterns of the transient changes of analog data from plant parameters when they deport from their normal state. For the identification of abnormal events in this study, events that cause a reactor to scram during power operation were selected as the design base events. The test data were prepared by simulating the transients on a compact PWR simulator. The simulation data were analyzed to determine how the plant parameters respond after the occurrence of a transient. A method of converting the pattern of the transient changes into characteristic parameters by fitting the data to pre-determined functions was developed. These characteristic parameters were used as the input data to the neural network. The neural network learning procedure used a generalized delta rule, namely a back-propagation algorithm. The neural network can identify the type of an abnormal event from a limited set of events by using these characteristic parameters obtained from the pattern of the changes in the analog data. From the results of this application of a neural network, it was concluded that it would be possible to use the method to identify abnormal events in a nuclear power plant
Flow Regime Identification of Co-Current Downward Two-Phase Flow With Neural Network Approach
International Nuclear Information System (INIS)
Hiroshi Goda; Seungjin Kim; Ye Mi; Finch, Joshua P.; Mamoru Ishii; Jennifer Uhle
2002-01-01
Flow regime identification for an adiabatic vertical co-current downward air-water two-phase flow in the 25.4 mm ID and the 50.8 mm ID round tubes was performed by employing an impedance void meter coupled with the neural network classification approach. This approach minimizes the subjective judgment in determining the flow regimes. The signals obtained by an impedance void meter were applied to train the self-organizing neural network to categorize these impedance signals into a certain number of groups. The characteristic parameters set into the neural network classification included the mean, standard deviation and skewness of impedance signals in the present experiment. The classification categories adopted in the present investigation were four widely accepted flow regimes, viz. bubbly, slug, churn-turbulent, and annular flows. These four flow regimes were recognized based upon the conventional flow visualization approach by a high-speed motion analyzer. The resulting flow regime maps classified by the neural network were compared with the results obtained through the flow visualization method, and consequently the efficiency of the neural network classification for flow regime identification was demonstrated. (authors)
Empirical identification of squeeze-film damper bearings using neural networks
Groves, K. H.; Bonello, P.
2013-02-01
To date empirically obtained SFD models have been based upon the determination of linearised force coefficients; such models are severely limited in their range of applicability since they are only valid for small perturbations from a mean position. The present research provides the introduction and validation of a nonlinear SFD identification technique that uses neural networks, trained from experimental data, to reproduce the input-output function over the full range of the SFD clearance. Details of the commissioning of a specially designed identification test rig and its associated data acquisition system are presented. The neural network's construction and training process is described and relevant testing is detailed. The empirically identified neural network is progressively validated, culminating in remarkably accurate nonlinear vibration response prediction of an SFD test rig subjected to external dual-frequency orthogonal excitation, as present in twin-spool engines (where the nonlinear vibrations are driven by the unbalance on the two rotors turning at different speeds). When used within the dynamic analysis of the test rig, the trained neural network is shown to be capable of predicting complex nonlinear phenomena with excellent accuracy. By comparison to an advanced theoretical model, the results show that the neural networks are able to capture the effects of features that are difficult to include in a hydrodynamic model or are particular to a given SFD.
Rotor Resistance Online Identification of Vector Controlled Induction Motor Based on Neural Network
Directory of Open Access Journals (Sweden)
Bo Fan
2014-01-01
Full Text Available Rotor resistance identification has been well recognized as one of the most critical factors affecting the theoretical study and applications of AC motor’s control for high performance variable frequency speed adjustment. This paper proposes a novel model for rotor resistance parameters identification based on Elman neural networks. Elman recurrent neural network is capable of performing nonlinear function approximation and possesses the ability of time-variable characteristic adaptation. Those influencing factors of specified parameter are analyzed, respectively, and various work states are covered to ensure the completeness of the training samples. Through signal preprocessing on samples and training dataset, different input parameters identifications with one network are compared and analyzed. The trained Elman neural network, applied in the identification model, is able to efficiently predict the rotor resistance in high accuracy. The simulation and experimental results show that the proposed method owns extensive adaptability and performs very well in its application to vector controlled induction motor. This identification method is able to enhance the performance of induction motor’s variable-frequency speed regulation.
Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.
2000-01-01
Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.
A neural network device for on-line particle identification in cosmic ray experiments
International Nuclear Information System (INIS)
Scrimaglio, R.; Finetti, N.; D'Altorio, L.; Rantucci, E.; Raso, M.; Segreto, E.; Tassoni, A.; Cardarilli, G.C.
2004-01-01
On-line particle identification is one of the main goals of many experiments in space both for rare event studies and for optimizing measurements along the orbital trajectory. Neural networks can be a useful tool for signal processing and real time data analysis in such experiments. In this document we report on the performances of a programmable neural device which was developed in VLSI analog/digital technology. Neurons and synapses were accomplished by making use of Operational Transconductance Amplifier (OTA) structures. In this paper we report on the results of measurements performed in order to verify the agreement of the characteristic curves of each elementary cell with simulations and on the device performances obtained by implementing simple neural structures on the VLSI chip. A feed-forward neural network (Multi-Layer Perceptron, MLP) was implemented on the VLSI chip and trained to identify particles by processing the signals of two-dimensional position-sensitive Si detectors. The radiation monitoring device consisted of three double-sided silicon strip detectors. From the analysis of a set of simulated data it was found that the MLP implemented on the neural device gave results comparable with those obtained with the standard method of analysis confirming that the implemented neural network could be employed for real time particle identification
DEFF Research Database (Denmark)
Hjerrild, M.; Stensballe, A.; Rasmussen, T.E.
2004-01-01
Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...... kinase A (PKA) phosphorylation sites. The neural network was trained with a positive set of 258 experimentally verified PKA phosphorylation sites. The predictions by NetPhosK were! validated using four novel PKA substrates: Necdin, RFX5, En-2, and Wee 1. The four proteins were phosphorylated by PKA...
Identification of a nuclear reactor core (VVER) using recurrent neural networks
Energy Technology Data Exchange (ETDEWEB)
Boroushaki, M. E-mail: boroushaki@mehr.sharif.ac.ir; Ghofrani, M.B.; Lucas, C
2002-07-01
Recurrent neural networks (RNNs) in identification of complex nonlinear plants like nuclear reactor core, have difficulty in learning long-term dynamics. Therefore, in most papers in this area, the reactor core is used to identify just the short-term dynamics. In this paper we used a multi-NARX (nonlinear autoregressive with exogenous inputs) structure, including neural networks with different time steps and a heuristic compound learning method, consisting of off-line and on-line batch learnings. This multi-NARX was trained by an accurate 3-dimensional core calculation code. Network responses show that this procedure solves the difficulty in identification of complex nonlinear dynamic MIMO (multi-input multi-output) plants like nuclear reactor core, and can be used in fast prediction of nuclear reactor core dynamics behavior.
International Nuclear Information System (INIS)
Smith, Patrick I.
2003-01-01
Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing
Energy Technology Data Exchange (ETDEWEB)
Nikiforov, M P; Guo, S; Kalinin, S V; Jesse, S [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 (United States); Reukov, V V; Thompson, G L; Vertegel, A A, E-mail: sergei2@ornl.go [Department of Bioengineering, Clemson University, Clemson, SC 29634 (United States)
2009-10-07
Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.
Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control
Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan
2003-01-01
An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.
Lin, Yang-Yin; Chang, Jyh-Yeong; Lin, Chin-Teng
2013-02-01
This paper presents a novel recurrent fuzzy neural network, called an interactively recurrent self-evolving fuzzy neural network (IRSFNN), for prediction and identification of dynamic systems. The recurrent structure in an IRSFNN is formed as an external loops and internal feedback by feeding the rule firing strength of each rule to others rules and itself. The consequent part in the IRSFNN is composed of a Takagi-Sugeno-Kang (TSK) or functional-link-based type. The proposed IRSFNN employs a functional link neural network (FLNN) to the consequent part of fuzzy rules for promoting the mapping ability. Unlike a TSK-type fuzzy neural network, the FLNN in the consequent part is a nonlinear function of input variables. An IRSFNNs learning starts with an empty rule base and all of the rules are generated and learned online through a simultaneous structure and parameter learning. An on-line clustering algorithm is effective in generating fuzzy rules. The consequent update parameters are derived by a variable-dimensional Kalman filter algorithm. The premise and recurrent parameters are learned through a gradient descent algorithm. We test the IRSFNN for the prediction and identification of dynamic plants and compare it to other well-known recurrent FNNs. The proposed model obtains enhanced performance results.
Koyuncu, A.; Cigeroglu, E.; Özgüven, H. N.
2017-10-01
In this study, a new approach is proposed for identification of structural nonlinearities by employing cascaded optimization and neural networks. Linear finite element model of the system and frequency response functions measured at arbitrary locations of the system are used in this approach. Using the finite element model, a training data set is created, which appropriately spans the possible nonlinear configurations space of the system. A classification neural network trained on these data sets then localizes and determines the types of all nonlinearities associated with the nonlinear degrees of freedom in the system. A new training data set spanning the parametric space associated with the determined nonlinearities is created to facilitate parametric identification. Utilizing this data set, initially, a feed forward regression neural network is trained, which parametrically identifies the classified nonlinearities. Then, the results obtained are further improved by carrying out an optimization which uses network identified values as starting points. Unlike identification methods available in literature, the proposed approach does not require data collection from the degrees of freedoms where nonlinear elements are attached, and furthermore, it is sufficiently accurate even in the presence of measurement noise. The application of the proposed approach is demonstrated on an example system with nonlinear elements and on a real life experimental setup with a local nonlinearity.
Neural network based system for script identification in Indian ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
With the recent emergence and widespread application of multimedia technologies, there is increasing demand to create a paperless ... implicit assumption that the language or script of the document to be processed is known beforehand. ... In order to take advantage of the learning and generalization abilities of the neural ...
Dziuba, Bartłomiej; Nalepa, Beata
2012-01-01
In the present study, lactic acid bacteria and propionic acid bacteria have been identified at the genus level with the use of artificial neural networks (ANNs) and Fourier transform infrared spectroscopy (FTIR). Bacterial strains of the genera Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Propionibacterium were analyzed since they deliver health benefits and are routinely used in the food processing industry. The correctness of bacterial identification by ANNs and FTIR was evalu...
On the identification of quark and gluon jets using artificial neural network method
Zhang, Kun Shi
2004-01-01
The identification of quark and gluon jets produced in e^{+}e^{-} collisions using the artificial neural network method is addressed. The structure and the learning algorithm of the BP( back propagation) neural network model is studied. Three characteristic parameters-the average multiplicity and the average transverse momentum of jets and the average value of the angles opposite to the quark or gluon jets are taken as training parameters and are input to the BP network for repeated training. The learning process is ended when the output error of the neural network is less than a preset precision( sigma =0.005). The same training routine is repeated in each of the 8 energy bins ranging from 2.5-22.5 GeV, respectively. The finally updated weights and thresholds of the BP neural network are tested using the quark and gluon jet samples, getting from the nonsymmetric three-jet events produced by the Monte Carlo generator JETSET 7.4. Then the pattern recognition of the mixed sample getting from the combination of ...
International Nuclear Information System (INIS)
Dominguez, Manuel
1998-01-01
In the frame of complex systems modelization, we describe in this report the contribution of neural networks to mechanical friction modelization. This thesis is divided in three parts, each one corresponding to every stage of the realized work. The first part takes stock of the properties of neural networks by replacing them in the statistic frame of learning theory (particularly: non-linear and non-parametric regression models) and by showing the existing links with other more 'classic' techniques from automatics. We show then how identification models can be integrated in the neural networks description as a larger nonlinear model class. A methodology of neural networks use have been developed. We focused on validation techniques using correlation functions for non-linear systems, and on the use of regularization methods. The second part deals with the problematic of friction in mechanical systems. Particularly, we present the main current identified physical phenomena, which are integrated in advanced friction modelization. Characterization of these phenomena allows us to state a priori knowledge to be used in the identification stage. We expose some of the most well-known friction models: Dahl's model, Reset Integrator and Canuda's dynamical model, which are then used in simulation studies. The last part links the former one by illustrating a real-world application: an electric jack from SFIM-Industries, used in the Very Large Telescope (VLT) control scheme. This part begins with physical system presentation. The results are compared with more 'classic' methods. We finish using neural networks compensation scheme in closed-loop control. (author) [fr
Motion model identification of rescue robot based on optimized Jordan neural network
Zhang, Guangbin; Zhang, Runmei; Wang, Guangyin; Wu, Yulu
2017-06-01
Considering the influence of various factors, such as speed, angle, depth of water, weight, and water flow, on the underwater rescue robot, a method based on neural network is proposed. According to the characteristics of Elman and Jordan neural network, a new dynamic neural network is constructed. The network can be used to remember the state of the hidden layer and increase the feedback of the output node. The improved Jordan network is optimized by chaos particle swarm optimization algorithm. The optimized neural network is applied to identify the dynamic model of the underwater rescue robot. The simulation results show that the neural network has good convergence speed and accuracy.
RBF Neural Network Approach for Identification and Control of DC Motors
Directory of Open Access Journals (Sweden)
EA Feilat
2012-12-01
Full Text Available In this paper, a neural network approach for the identification and control of a separately excited direct (DC motor (SEDCM driving a centrifugal pump load is applied. In this application, two radial basis function neural networks (RBFNN are used: The first is a RBFNN identifier trained offline to emulate the dynamic performance of the DC motor-load system. The second is a RBFNN controller, which is trained to make the motor speed follow a selected reference signal. Two RBFNN control schemes are proposed using direct inverse and internal model control schemes. The performance of the RBFNN identifier and controller is investigated in terms of step response, sharp changes in speed trajectory, and sudden load change, as well as changes in motor parameters. The performance of RBFNN in system identification and control has been compared with the performance of the well-known back-propagation neural network (BPNN. The simulation results show that both of the BPNN and RBFNN controllers exhibit excellent dynamic response, adapt well to changes in speed trajectory and load connected to the motor, and adapt to the variations of motor parameters. Furthermore, the simulation results show that the step response of RBFNN internal model and direct inverse controllers are identical.
Identification of Jets Containing b-Hadrons with Recurrent Neural Networks at the ATLAS Experiment
CERN. Geneva
2017-01-01
A novel b-jet identification algorithm is constructed with a Recurrent Neural Network (RNN) at the ATLAS Experiment. This talk presents the expected performance of the RNN based b-tagging in simulated $t \\bar t$ events. The RNN based b-tagging processes properties of tracks associated to jets which are represented in sequences. In contrast to traditional impact-parameter-based b-tagging algorithms which assume the tracks of jets are independent from each other, RNN based b-tagging can exploit the spatial and kinematic correlations of tracks which are initiated from the same b-hadrons. The neural network nature of the tagging algorithm also allows the flexibility of extending input features to include more track properties than can be effectively used in traditional algorithms.
Directory of Open Access Journals (Sweden)
Schwindling Jerome
2010-04-01
Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.
White blood cells identification system based on convolutional deep neural learning networks.
Shahin, A I; Guo, Yanhui; Amin, K M; Sharawi, Amr A
2017-11-16
White blood cells (WBCs) differential counting yields valued information about human health and disease. The current developed automated cell morphology equipments perform differential count which is based on blood smear image analysis. Previous identification systems for WBCs consist of successive dependent stages; pre-processing, segmentation, feature extraction, feature selection, and classification. There is a real need to employ deep learning methodologies so that the performance of previous WBCs identification systems can be increased. Classifying small limited datasets through deep learning systems is a major challenge and should be investigated. In this paper, we propose a novel identification system for WBCs based on deep convolutional neural networks. Two methodologies based on transfer learning are followed: transfer learning based on deep activation features and fine-tuning of existed deep networks. Deep acrivation featues are extracted from several pre-trained networks and employed in a traditional identification system. Moreover, a novel end-to-end convolutional deep architecture called "WBCsNet" is proposed and built from scratch. Finally, a limited balanced WBCs dataset classification is performed through the WBCsNet as a pre-trained network. During our experiments, three different public WBCs datasets (2551 images) have been used which contain 5 healthy WBCs types. The overall system accuracy achieved by the proposed WBCsNet is (96.1%) which is more than different transfer learning approaches or even the previous traditional identification system. We also present features visualization for the WBCsNet activation which reflects higher response than the pre-trained activated one. a novel WBCs identification system based on deep learning theory is proposed and a high performance WBCsNet can be employed as a pre-trained network. Copyright © 2017. Published by Elsevier B.V.
Optical fingerprint identification using cellular neural network and joint transform correlation
Bal, Abdullah; Alam, Mohammad S.; El-Saba, Aed
2004-10-01
An important step in the fingerprint identification system is the extraction of relevant details against distributed complex features. Identification performance is directly related to the enhancement of fingerprint images during or after the enrollment phase. Among the various enhancement algorithms, artificial intelligence based feature extraction techniques are attractive due to their adaptive learning properties. In this paper, we propose a cellular neural network (CNN) based filtering technique due to its ability of parallel processing and generating learnable filtering features. CNN offers high efficient feature extraction and enhancement possibility for fingerprint images. The enhanced fingerprint images are then introduced to joint transform correlator (JTC) architecture to identify unknown fingerprint from the database. Since the fringe-adjusted JTC algorithm has been found to yield significantly better correlation output compared to alternate JTCs, we used it for the identification process. Test results are presented to verify the effectiveness of the proposed algorithm.
Development of objective flow regime identification method using self-organizing neural network
International Nuclear Information System (INIS)
Lee, Jae Young; Kim, Nam Seok; Kwak, Nam Yee
2004-01-01
Two-phase flow shows various flow patterns according to the amount of the void and its relative velocity to the liquid flow. This variation directly affect the interfacial transfer which is the key factor for the design or analysis of the phase change systems. Especially the safety analysis of the nuclear power plant has been performed based on the numerical code furnished with the proper constitutive relations depending highly upon the flow regimes. Heavy efforts have been focused to identify the flow regime and at this moment we stand on relative very stable engineering background compare to the other research field. However, the issues related to objectiveness and transient flow regime are still open to study. Lee et al. and Ishii developed the method for the objective and instantaneous flow regime identification based on the neural network and new index of probability distribution of the flow regime which allows just one second observation for the flow regime identification. In the present paper, we developed the self-organized neural network for more objective approach to this problem. Kohonen's Self-Organizing Map (SOM) has been used for clustering, visualization, and abstraction. The SOM is trained through unsupervised competitive learning using a 'winner takes it all' policy. Therefore, its unsupervised training character delete the possible interference of the regime developer to the neural network training. After developing the computer code, we evaluate the performance of the code with the vertically upward two-phase flow in the pipes of 25.4 and 50.4 cmm I.D. Also, the sensitivity of the number of the clusters to the flow regime identification was made
Identification and control of plasma vertical position using neural network in Damavand tokamak
Energy Technology Data Exchange (ETDEWEB)
Rasouli, H. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of); Advanced Process Automation and Control (APAC) Research Group, Faculty of Electrical Engineering, K.N. Toosi University of Technology, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of); Rasouli, C.; Koohi, A. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)
2013-02-15
In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.
Directory of Open Access Journals (Sweden)
Dongliang Guo
2014-01-01
Full Text Available Indoor localization technique has received much attention in recent years. Many techniques have been developed to solve the problem. Among the recent proposed methods, radio frequency identification (RFID indoor localization technology has the advantages of low-cost, noncontact, non-line-of-sight, and high precision. This paper proposed two radial basis function (RBF neural network based indoor localization methods. The RBF neural networks are trained to learn the mapping relationship between received signal strength indication values and position of objects. Traditional method used the received signal strength directly as the input of neural network; we added another input channel by taking the difference of the received signal strength, thus improving the reliability and precision of positioning. Fuzzy clustering is used to determine the center of radial basis function. In order to reduce the impact of signal fading due to non-line-of-sight and multipath transmission in indoor environment, we improved the Gaussian filter to process received signal strength values. The experimental results show that the proposed method outperforms the existing methods as well as improves the reliability and precision of the RFID indoor positioning system.
Identification and control of plasma vertical position using neural network in Damavand tokamak
Rasouli, H.; Rasouli, C.; Koohi, A.
2013-02-01
In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.
Farhadian, Amir Hossein; Tehrani, Masoud Kavosh; Keshavarz, Mohammad Hossein; Darbani, Seyyed Mohammad Reza
2017-04-20
In this study, for the first time to the best of our knowledge, a combination of the laser-induced breakdown spectroscopy (LIBS) technique and artificial neural network (ANN) analysis has been implemented for the identification of energetic materials, including TNT, RDX, black powder, and propellant. Also, aluminum, copper, inconel, and graphite have been used for more accurate investigation and comparison. After the LIBS test and spectrum acquisition on all samples in both air and argon ambient, optimized neural networks were designed by LIBS data. Based on input data, three ANN algorithms are proposed: the first is fed with the whole LIBS spectra in air (ANN1) and the second with the principle component analysis (PCA) scores of each spectrum in air (ANN2) and the other with the PCA scores of the spectrum in Ar (ANN3). According to the results, error of the network is very low in ANN2 and 3 and the best identification and discrimination was obtained by ANN3. After these, in order to validate and for more investigation of this combined method, we also used Al/RDX standard samples for analysis.
Energy Technology Data Exchange (ETDEWEB)
Silva Rodrigues, F. da [PETROBRAS, Rio de Janeiro, RJ (Brazil); Queiroz Neto, I.A. de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas
1992-07-01
Electro-facies are identified by neural network trained with well log and core data. Differences between neural network and expert system are discussed. According the author, the combination of neural network computing and traditional computing methods, like discriminant analysis, can help in the solution of many problems in electro-facies identification. 5 figs., 1 tab., 11 refs.
Directory of Open Access Journals (Sweden)
Sajad Sabzi
2018-03-01
Full Text Available Accurate classification of fruit varieties in processing factories and during post-harvesting applications is a challenge that has been widely studied. This paper presents a novel approach to automatic fruit identification applied to three common varieties of oranges (Citrus sinensis L., namely Bam, Payvandi and Thomson. A total of 300 color images were used for the experiments, 100 samples for each orange variety, which are publicly available. After segmentation, 263 parameters, including texture, color and shape features, were extracted from each sample using image processing. Among them, the 6 most effective features were automatically selected by using a hybrid approach consisting of an artificial neural network and particle swarm optimization algorithm (ANN-PSO. Then, three different classifiers were applied and compared: hybrid artificial neural network – artificial bee colony (ANN-ABC; hybrid artificial neural network – harmony search (ANN-HS; and k-nearest neighbors (kNN. The experimental results show that the hybrid approaches outperform the results of kNN. The average correct classification rate of ANN-HS was 94.28%, while ANN-ABS achieved 96.70% accuracy with the available data, contrasting with the 70.9% baseline accuracy of kNN. Thus, this new proposed methodology provides a fast and accurate way to classify multiple fruits varieties, which can be easily implemented in processing factories. The main contribution of this work is that the method can be directly adapted to other use cases, since the selection of the optimal features and the configuration of the neural network are performed automatically using metaheuristic algorithms.
Rain/No-Rain Identification from Bispectral Satellite Information using Deep Neural Networks
Tao, Y.
2016-12-01
Satellite-based precipitation estimation products have the advantage of high resolution and global coverage. However, they still suffer from insufficient accuracy. To accurately estimate precipitation from satellite data, there are two most important aspects: sufficient precipitation information in the satellite information and proper methodologies to extract such information effectively. This study applies the state-of-the-art machine learning methodologies to bispectral satellite information for Rain/No-Rain detection. Specifically, we use deep neural networks to extract features from infrared and water vapor channels and connect it to precipitation identification. To evaluate the effectiveness of the methodology, we first applies it to the infrared data only (Model DL-IR only), the most commonly used inputs for satellite-based precipitation estimation. Then we incorporates water vapor data (Model DL-IR + WV) to further improve the prediction performance. Radar stage IV dataset is used as ground measurement for parameter calibration. The operational product, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS), is used as a reference to compare the performance of both models in both winter and summer seasons.The experiments show significant improvement for both models in precipitation identification. The overall performance gains in the Critical Success Index (CSI) are 21.60% and 43.66% over the verification periods for Model DL-IR only and Model DL-IR+WV model compared to PERSIANN-CCS, respectively. Moreover, specific case studies show that the water vapor channel information and the deep neural networks effectively help recover a large number of missing precipitation pixels under warm clouds while reducing false alarms under cold clouds.
Zheng, Jing; Lu, Jiren; Peng, Suping; Jiang, Tianqi
2018-02-01
The conventional arrival pick-up algorithms cannot avoid the manual modification of the parameters for the simultaneous identification of multiple events under different signal-to-noise ratios (SNRs). Therefore, in order to automatically obtain the arrivals of multiple events with high precision under different SNRs, in this study an algorithm was proposed which had the ability to pick up the arrival of microseismic or acoustic emission events based on deep recurrent neural networks. The arrival identification was performed using two important steps, which included a training phase and a testing phase. The training process was mathematically modelled by deep recurrent neural networks using Long Short-Term Memory architecture. During the testing phase, the learned weights were utilized to identify the arrivals through the microseismic/acoustic emission data sets. The data sets were obtained by rock physics experiments of the acoustic emission. In order to obtain the data sets under different SNRs, this study added random noise to the raw experiments' data sets. The results showed that the outcome of the proposed method was able to attain an above 80 per cent hit-rate at SNR 0 dB, and an approximately 70 per cent hit-rate at SNR -5 dB, with an absolute error in 10 sampling points. These results indicated that the proposed method had high selection precision and robustness.
NIRFaceNet: A Convolutional Neural Network for Near-Infrared Face Identification
Directory of Open Access Journals (Sweden)
Min Peng
2016-10-01
Full Text Available Near-infrared (NIR face recognition has attracted increasing attention because of its advantage of illumination invariance. However, traditional face recognition methods based on NIR are designed for and tested in cooperative-user applications. In this paper, we present a convolutional neural network (CNN for NIR face recognition (specifically face identification in non-cooperative-user applications. The proposed NIRFaceNet is modified from GoogLeNet, but has a more compact structure designed specifically for the Chinese Academy of Sciences Institute of Automation (CASIA NIR database and can achieve higher identification rates with less training time and less processing time. The experimental results demonstrate that NIRFaceNet has an overall advantage compared to other methods in the NIR face recognition domain when image blur and noise are present. The performance suggests that the proposed NIRFaceNet method may be more suitable for non-cooperative-user applications.
Artificial Neural Network applied as a methodology of mosquito species identification.
Lorenz, Camila; Ferraudo, Antonio Sergio; Suesdek, Lincoln
2015-12-01
There are about 200 species of mosquitoes (Culicidae) known to be vectors of pathogens that cause diseases in humans. Correct identification of mosquito species is an essential step in the development of effective control strategies for these diseases; recognizing the vectors of pathogens is integral to understanding transmission. Unfortunately, taxonomic identification of mosquitoes is a laborious task, which requires trained experts, and it is jeopardized by the high variability of morphological and molecular characters found within the Culicidae family. In this context, the development of an automatized species identification method would be a valuable and more accessible resource to non-taxonomist and health professionals. In this work, an artificial neural network (ANN) technique was proposed for the identification and classification of 17 species of the genera Anopheles, Aedes, and Culex, based on wing shape characters. We tested the hypothesis that classification using ANN is better than traditional classification by discriminant analysis (DA). Thirty-two wing shape principal components were used as input to a Multilayer Perceptron Classification ANN. The obtained ANN correctly identified species with accuracy rates ranging from 85.70% to 100%, and classified species more efficiently than did the traditional method of multivariate discriminant analysis. The results highlight the power of ANNs to diagnose mosquito species and to partly automatize taxonomic identification. These findings also support the hypothesis that wing venation patterns are species-specific, and thus should be included in taxonomic keys. Copyright © 2015 Elsevier B.V. All rights reserved.
Neural networks for triggering
International Nuclear Information System (INIS)
Denby, B.; Campbell, M.; Bedeschi, F.; Chriss, N.; Bowers, C.; Nesti, F.
1990-01-01
Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab
Dynamic neural networks based on-line identification and control of high performance motor drives
Rubaai, Ahmed; Kotaru, Raj
1995-01-01
In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.
Directory of Open Access Journals (Sweden)
Beata Nalepa
2012-01-01
Full Text Available In the present study, lactic acid bacteria and propionic acid bacteria have been identified at the genus level with the use of artificial neural networks (ANNs and Fourier transform infrared spectroscopy (FTIR. Bacterial strains of the genera Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Propionibacterium were analyzed since they deliver health benefits and are routinely used in the food processing industry. The correctness of bacterial identification by ANNs and FTIR was evaluated at two stages. At first stage, ANNs were tested based on the spectra of 66 reference bacterial strains. At second stage, the evaluation involved 286 spectra of bacterial strains isolated from food products, deposited in our laboratory collection, and identified by genus-specific PCR. ANNs were developed based on the spectra and their first derivatives. The most satisfactory results were reported for the probabilistic neural network, which was built using a combination of W5W4W3 spectral ranges. This network correctly identified the genus of 95 % of the lactic acid bacteria and propionic acid bacteria strains analyzed.
EEG signal classification using PSO trained RBF neural network for epilepsy identification
Directory of Open Access Journals (Sweden)
Sandeep Kumar Satapathy
Full Text Available The electroencephalogram (EEG is a low amplitude signal generated in the brain, as a result of information flow during the communication of several neurons. Hence, careful analysis of these signals could be useful in understanding many human brain disorder diseases. One such disease topic is epileptic seizure identification, which can be identified via a classification process of the EEG signal after preprocessing with the discrete wavelet transform (DWT. To classify the EEG signal, we used a radial basis function neural network (RBFNN. As shown herein, the network can be trained to optimize the mean square error (MSE by using a modified particle swarm optimization (PSO algorithm. The key idea behind the modification of PSO is to introduce a method to overcome the problem of slow searching in and around the global optimum solution. The effectiveness of this procedure was verified by an experimental analysis on a benchmark dataset which is publicly available. The result of our experimental analysis revealed that the improvement in the algorithm is significant with respect to RBF trained by gradient descent and canonical PSO. Here, two classes of EEG signals were considered: the first being an epileptic and the other being non-epileptic. The proposed method produced a maximum accuracy of 99% as compared to the other techniques. Keywords: Electroencephalography, Radial basis function neural network, Particle swarm optimization, Discrete wavelet transform, Machine learning
Introduction to neural networks
International Nuclear Information System (INIS)
Pavlopoulos, P.
1996-01-01
This lecture is a presentation of today's research in neural computation. Neural computation is inspired by knowledge from neuro-science. It draws its methods in large degree from statistical physics and its potential applications lie mainly in computer science and engineering. Neural networks models are algorithms for cognitive tasks, such as learning and optimization, which are based on concepts derived from research into the nature of the brain. The lecture first gives an historical presentation of neural networks development and interest in performing complex tasks. Then, an exhaustive overview of data management and networks computation methods is given: the supervised learning and the associative memory problem, the capacity of networks, the Perceptron networks, the functional link networks, the Madaline (Multiple Adalines) networks, the back-propagation networks, the reduced coulomb energy (RCE) networks, the unsupervised learning and the competitive learning and vector quantization. An example of application in high energy physics is given with the trigger systems and track recognition system (track parametrization, event selection and particle identification) developed for the CPLEAR experiment detectors from the LEAR at CERN. (J.S.). 56 refs., 20 figs., 1 tab., 1 appendix
Identification of hadronic tau decays at the ATLAS detector using artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Duschinger, Dirk; Hanisch, Stefanie; Mader, Wolfgang; Madysa, Nico; Straessner, Arno [Institut fuer Kern- und Teilchenphysik, TU Dresden (Germany)
2016-07-01
One of the primary goals of the ATLAS experiment at the LHC is the search for physics beyond the Standard Model. The efficient identification of hadronically decaying tau leptons is crucial for this as they comprise the final states of several decay channels sensitive to new physics. (e. g. Higgs boson decays H → τ{sub had} τ{sub had}) The identification algorithm currently applied at ATLAS utilizes multi-variate methods and reconstructed particle properties to discriminate against QCD jets, which constitute an important background. This talk presents a new neural-network-based approach to hadronic tau decay identification and investigates its dependence on hyperparameters such as the network topology or number of training cycles. Ensembling is presented as a technique to improve classifier performance and robustness against overtraining. The resulting classifier is compared to the current approach based on Boosted Decision Trees. The study is based on 2012 data taken at the ATLAS detector at a center-of-mass energy of √(s)=8 TeV.
Process identification through modular neural networks and rule extraction (extended abstract)
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.; Blockeel, Hendrik; Denecker, Marc
2002-01-01
Monolithic neural networks may be trained from measured data to establish knowledge about the process. Unfortunately, this knowledge is not guaranteed to be found and – if at all – hard to extract. Modular neural networks are better suited for this purpose. Domain-ordered by topology, rule
Fuzzy Wavelet Neural Network Using a Correntropy Criterion for Nonlinear System Identification
Directory of Open Access Journals (Sweden)
Leandro L. S. Linhares
2015-01-01
Full Text Available Recent researches have demonstrated that the Fuzzy Wavelet Neural Networks (FWNNs are an efficient tool to identify nonlinear systems. In these structures, features related to fuzzy logic, wavelet functions, and neural networks are combined in an architecture similar to the Adaptive Neurofuzzy Inference Systems (ANFIS. In practical applications, the experimental data set used in the identification task often contains unknown noise and outliers, which decrease the FWNN model reliability. In order to reduce the negative effects of these erroneous measurements, this work proposes the direct use of a similarity measure based on information theory in the FWNN learning procedure. The Mean Squared Error (MSE cost function is replaced by the Maximum Correntropy Criterion (MCC in the traditional error backpropagation (BP algorithm. The input-output maps of a real nonlinear system studied in this work are identified from an experimental data set corrupted by different outliers rates and additive white Gaussian noise. The results demonstrate the advantages of the proposed cost function using the MCC as compared to the MSE. This work also investigates the influence of the kernel size on the performance of the MCC in the BP algorithm, since it is the only free parameter of correntropy.
International Nuclear Information System (INIS)
To address regulatory requirements, Ontario Hydro conducts periodic aquatic studies in the neighbourhood of its generating stations in an attempt to determine the impact of its activities on fish populations. The use of sonar is being investigated for its potential in replacing current netting practices, as it is safer, non-consumptive and less labour-intensive. A study is underway into the use of neural networks to identify fish from their sonar echoes. This study investigated the effects of preprocessing techniques and using networks in parallel on the generalization properties. It was found that sample variations were significant enough that nets trained on only one-third of the samples did not generalize adequately. Preprocessing had a noticeable effect on the results and tests on use of other schemes are recommended. The optimum number of neurons in the middle layer for a three-layered net was around 20-25 for the data set, and four-layered nets did not offer any improvements over the three-layered net. Significant improvements in performance are possible with simple parallel combinations of two networks which have been trained using outputs of different preprocessors. 5 refs., 3 figs., 6 tabs
Introduction to neural networks
James, Frederick E
1994-02-02
1. Introduction and overview of Artificial Neural Networks. 2,3. The Feed-forward Network as an inverse Problem, and results on the computational complexity of network training. 4.Physics applications of neural networks.
El-Nagar, Ahmad M
2018-01-01
In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Pereira, Clayton R; Pereira, Danilo R; Rosa, Gustavo H; Albuquerque, Victor H C; Weber, Silke A T; Hook, Christian; Papa, João P
2018-04-16
Parkinson's disease (PD) is considered a degenerative disorder that affects the motor system, which may cause tremors, micrography, and the freezing of gait. Although PD is related to the lack of dopamine, the triggering process of its development is not fully understood yet. In this work, we introduce convolutional neural networks to learn features from images produced by handwritten dynamics, which capture different information during the individual's assessment. Additionally, we make available a dataset composed of images and signal-based data to foster the research related to computer-aided PD diagnosis. The proposed approach was compared against raw data and texture-based descriptors, showing suitable results, mainly in the context of early stage detection, with results nearly to 95%. The analysis of handwritten dynamics using deep learning techniques showed to be useful for automatic Parkinson's disease identification, as well as it can outperform handcrafted features. Copyright © 2018 Elsevier B.V. All rights reserved.
Identification of Jets Containing $b$-Hadrons with Recurrent Neural Networks at the ATLAS Experiment
The ATLAS collaboration
2017-01-01
A novel $b$-jet identification algorithm is constructed with a Recurrent Neural Network (RNN) at the ATLAS experiment at the CERN Large Hadron Collider. The RNN based $b$-tagging algorithm processes charged particle tracks associated to jets without reliance on secondary vertex finding, and can augment existing secondary-vertex based taggers. In contrast to traditional impact-parameter-based $b$-tagging algorithms which assume that tracks associated to jets are independent from each other, the RNN based $b$-tagging algorithm can exploit the spatial and kinematic correlations between tracks which are initiated from the same $b$-hadrons. This new approach also accommodates an extended set of input variables. This note presents the expected performance of the RNN based $b$-tagging algorithm in simulated $t \\bar t$ events at $\\sqrt{s}=13$ TeV.
Preliminary Results of Ocular Artefacts Identification in EEC Series by Neural Network
Directory of Open Access Journals (Sweden)
M. Kofronova
1996-06-01
Full Text Available The human electroencephalogram (EEG, is record of the electrical activity of the brain and contains useful diagnostic information on a variety of neurological disorders. Normal EEG signal are usually registered from electrodes placed on the scalp, and are often very small in amplitude, of 20 Ã‚ÂµV. The EEG, like all biomedical signals, is very susceptible to a variety of large signal contamination or artefacts (signals of other than brain activity which reduce its clinical usefulness. For example, blinking or moving eyes produces large electrical potentials around the eyes called the electrooculogram (EOG. The EOG spreads across the scalp to contaminate the EEG, when it is referred to as an ocular artefact (OA. This paper includes method of identification portion of the EEG record where ocular artefact appears and classification its type by neural network.
Beam Structure Damage Identification Based on BP Neural Network and Support Vector Machine
Directory of Open Access Journals (Sweden)
Bo Yan
2014-01-01
Full Text Available It is not easy to find marine cracks of structures by directly manual testing. When the cracks of important components are extended under extreme offshore environment, the whole structure would lose efficacy, endanger the staff’s safety, and course a significant economic loss and marine environment pollution. Thus, early discovery of structure cracks is very important. In this paper, a beam structure damage identification model based on intelligent algorithm is firstly proposed to identify partial cracks in supported beams on ocean platform. In order to obtain the replacement mode and strain mode of the beams, the paper takes simple supported beam with single crack and double cracks as an example. The results show that the difference curves of strain mode change drastically only on the injured part and different degrees of injury would result in different mutation degrees of difference curve more or less. While the model based on support vector machine (SVM and BP neural network can identify cracks of supported beam intelligently, the methods can discern injured degrees of sound condition, single crack, and double cracks. Furthermore, the two methods are compared. The results show that the two methods presented in the paper have a preferable identification precision and adaptation. And damage identification based on support vector machine (SVM has smaller error results.
Identification of Hadronic Tau Lepton Decays at the ATLAS Detector Using Artificial Neural Networks
AUTHOR|(CDS)2093068; Zuber, Kai
Tau leptons play an important role in a wide range of physics analyses at the LHC, such as the verification of the Standard Model at the TeV scale or the determination of Higgs boson properties. For the identification of hadronically decaying tau leptons with the ATLAS detector, a sophisticated, multi-variate algorithm is required. This is due to the high production cross section for QCD jets, the dominant background. Artificial neural networks (ANNs) have gained much attention in recent years by winning several pattern recognition contests. In this thesis, a survey of ANNs is given with a focus on developments of the past 20 years. Based on this work, a novel, ANN-based tau identification is presented which is competitive to the current BDT-based approach. The influence of various hyperparameters on the identification is studied and optimized. Both stability and performance are enhanced through formation of ANN ensembles. Additionally, a score-flattening algorithm is presented that is beneficial to physics a...
Person identification in Ethnic Indian Goans using ear biometrics and neural networks.
Dinkar, Ajit D; Sambyal, Shruti S
2012-11-30
This study presents new insights and experimental results for the use of ears as a non-invasive biometric for human identification. To determine the uniqueness of the external ear pattern two methods were employed: The Weighted Scoring System and Pattern Recognition by Neural Networks. A total of 10 external ear features classified into 37 sub-features for both right and left ears of 400 Indians of Goan origin were studied after acquiring standardized side profile digital photographs. These features were then converted to numeric scores by the 'Weighted Scoring System' which were then compared to ascertain the uniqueness of ear pattern in same and different individuals. Apart from this feature-wise comparison, the initially acquired photographs of 800 individual ears were scrutinized and 80 visually similar ear patterns were found. After appropriate pre-processing of five train and five test images of each of these 80 visually similar ear patterns, the images were analyzed by a specially designed software and 360 feature vectors which were the distances from the centroid to the outer edge of the ear were extracted and saved. The feature vectors of train and test images were employed to train and test the Neural Networks. The result revealed that none of the individuals in the study sample had identical weighted scores when both right and left ear scores were considered in combination or when bilateral comparison was made in the same individual. The digital analysis of visually similar ear images by Neural Networks revealed a recognition rate of 94% with an Equal Error Rate at threshold value of 0.225. The inter-individual match score among train images were found to be less than the intra-individual match scores between train and test images or the differences found in former were more than that in the latter. Also, all intra-individual scores were above the system threshold (0.225) hence accepted as match, while all inter-individual scores were below it and hence
Zhang, Zhuoyong; Wang, Yamin; Fan, Guoqiang; Harrington, Peter de B
2007-01-01
Artificial neural networks have gained much attention in recent years as fast and flexible methods for quality control in traditional medicine. Near-infrared (NIR) spectroscopy has become an accepted method for the qualitative and quantitative analyses of traditional Chinese medicine since it is simple, rapid, and non-destructive. The present paper describes a method by which to discriminate official and unofficial rhubarb samples using three layer perceptron neural networks applied to NIR data. Multilayer perceptron neural networks were trained with back propagation, delta-bar-delta and quick propagation algorithms. Results obtained using these methods were all satisfactory, but the best outcomes were obtained with the delta-bar-delta algorithm.
Automated identification of copepods using digital image processing and artificial neural network.
Leow, Lee Kien; Chew, Li-Lee; Chong, Ving Ching; Dhillon, Sarinder Kaur
2015-01-01
Copepods are planktonic organisms that play a major role in the marine food chain. Studying the community structure and abundance of copepods in relation to the environment is essential to evaluate their contribution to mangrove trophodynamics and coastal fisheries. The routine identification of copepods can be very technical, requiring taxonomic expertise, experience and much effort which can be very time-consuming. Hence, there is an urgent need to introduce novel methods and approaches to automate identification and classification of copepod specimens. This study aims to apply digital image processing and machine learning methods to build an automated identification and classification technique. We developed an automated technique to extract morphological features of copepods' specimen from captured images using digital image processing techniques. An Artificial Neural Network (ANN) was used to classify the copepod specimens from species Acartia spinicauda, Bestiolina similis, Oithona aruensis, Oithona dissimilis, Oithona simplex, Parvocalanus crassirostris, Tortanus barbatus and Tortanus forcipatus based on the extracted features. 60% of the dataset was used for a two-layer feed-forward network training and the remaining 40% was used as testing dataset for system evaluation. Our approach demonstrated an overall classification accuracy of 93.13% (100% for A. spinicauda, B. similis and O. aruensis, 95% for T. barbatus, 90% for O. dissimilis and P. crassirostris, 85% for O. similis and T. forcipatus). The methods presented in this study enable fast classification of copepods to the species level. Future studies should include more classes in the model, improving the selection of features, and reducing the time to capture the copepod images.
SLIDE: automatic spine level identification system using a deep convolutional neural network.
Hetherington, Jorden; Lessoway, Victoria; Gunka, Vit; Abolmaesumi, Purang; Rohling, Robert
2017-07-01
Percutaneous spinal needle insertion procedures often require proper identification of the vertebral level to effectively and safely deliver analgesic agents. The current clinical method involves "blind" identification of the vertebral level through manual palpation of the spine, which has only 30% reported accuracy. Therefore, there is a need for better anatomical identification prior to needle insertion. A real-time system was developed to identify the vertebral level from a sequence of ultrasound images, following a clinical imaging protocol. The system uses a deep convolutional neural network (CNN) to classify transverse images of the lower spine. Several existing CNN architectures were implemented, utilizing transfer learning, and compared for adequacy in a real-time system. In the system, the CNN output is processed, using a novel state machine, to automatically identify vertebral levels as the transducer moves up the spine. Additionally, a graphical display was developed and integrated within 3D Slicer. Finally, an augmented reality display, projecting the level onto the patient's back, was also designed. A small feasibility study [Formula: see text] evaluated performance. The proposed CNN successfully discriminates ultrasound images of the sacrum, intervertebral gaps, and vertebral bones, achieving 88% 20-fold cross-validation accuracy. Seventeen of 20 test ultrasound scans had successful identification of all vertebral levels, processed at real-time speed (40 frames/s). A machine learning system is presented that successfully identifies lumbar vertebral levels. The small study on human subjects demonstrated real-time performance. A projection-based augmented reality display was used to show the vertebral level directly on the subject adjacent to the puncture site.
National Research Council Canada - National Science Library
Laine, Trevor
2003-01-01
.... Since input features extracted from sensor data for ATR algorithms are likely to contain significant correlation, models such as artificial neural networks that do not assume independent input data...
Directory of Open Access Journals (Sweden)
Mohammad Reza Zakerzadeh
2011-01-01
Full Text Available Preisach model is a well-known hysteresis identification method in which the hysteresis is modeled by linear combination of hysteresis operators. Although Preisach model describes the main features of system with hysteresis behavior, due to its rigorous numerical nature, it is not convenient to use in real-time control applications. Here a novel neural network approach based on the Preisach model is addressed, provides accurate hysteresis nonlinearity modeling in comparison with the classical Preisach model and can be used for many applications such as hysteresis nonlinearity control and identification in SMA and Piezo actuators and performance evaluation in some physical systems such as magnetic materials. To evaluate the proposed approach, an experimental apparatus consisting one-dimensional flexible aluminum beam actuated with an SMA wire is used. It is shown that the proposed ANN-based Preisach model can identify hysteresis nonlinearity more accurately than the classical one. It also has powerful ability to precisely predict the higher-order hysteresis minor loops behavior even though only the first-order reversal data are in use. It is also shown that to get the same precise results in the classical Preisach model, many more data should be used, and this directly increases the experimental cost.
Syahputra, M. F.; Amalia, C.; Rahmat, R. F.; Abdullah, D.; Napitupulu, D.; Setiawan, M. I.; Albra, W.; Nurdin; Andayani, U.
2018-03-01
Hypertension or high blood pressure can cause damage of blood vessels in the retina of eye called hypertensive retinopathy (HR). In the event Hypertension, it will cause swelling blood vessels and a decrese in retina performance. To detect HR in patients body, it is usually performed through physical examination of opthalmoscope which is still conducted manually by an ophthalmologist. Certainly, in such a manual manner, takes a ong time for a doctor to detetct HR on aa patient based on retina fundus iamge. To overcome ths problem, a method is needed to identify the image of retinal fundus automatically. In this research, backpropagation neural network was used as a method for retinal fundus identification. The steps performed prior to identification were pre-processing (green channel, contrast limited adapative histogram qualization (CLAHE), morphological close, background exclusion, thresholding and connected component analysis), feature extraction using zoning. The results show that the proposed method is able to identify retinal fundus with an accuracy of 95% with maximum epoch of 1500.
Marchitto, T. M., Jr.; Mitra, R.; Zhong, B.; Ge, Q.; Kanakiya, B.; Lobaton, E.
2017-12-01
Identification and picking of foraminifera from sediment samples is often a laborious and repetitive task. Previous attempts to automate this process have met with limited success, but we show that recent advances in machine learning can be brought to bear on the problem. As a `proof of concept' we have developed a system that is capable of recognizing six species of extant planktonic foraminifera that are commonly used in paleoceanographic studies. Our pipeline begins with digital photographs taken under 16 different illuminations using an LED ring, which are then fused into a single 3D image. Labeled image sets were used to train various types of image classification algorithms, and performance on unlabeled image sets was measured in terms of precision (whether IDs are correct) and recall (what fraction of the target species are found). We find that Convolutional Neural Network (CNN) approaches achieve precision and recall values between 80 and 90%, which is similar precision and better recall than human expert performance using the same type of photographs. We have also trained a CNN to segment the 3D images into individual chambers and apertures, which can not only improve identification performance but also automate the measurement of foraminifera for morphometric studies. Given that there are only 35 species of extant planktonic foraminifera larger than 150 μm, we suggest that a fully automated characterization of this assemblage is attainable. This is the first step toward the realization of a foram picking robot.
Progressively expanded neural network for automatic material identification in hyperspectral imagery
Paheding, Sidike
The science of hyperspectral remote sensing focuses on the exploitation of the spectral signatures of various materials to enhance capabilities including object detection, recognition, and material characterization. Hyperspectral imagery (HSI) has been extensively used for object detection and identification applications since it provides plenty of spectral information to uniquely identify materials by their reflectance spectra. HSI-based object detection algorithms can be generally classified into stochastic and deterministic approaches. Deterministic approaches are comparatively simple to apply since it is usually based on direct spectral similarity such as spectral angles or spectral correlation. In contrast, stochastic algorithms require statistical modeling and estimation for target class and non-target class. Over the decades, many single class object detection methods have been proposed in the literature, however, deterministic multiclass object detection in HSI has not been explored. In this work, we propose a deterministic multiclass object detection scheme, named class-associative spectral fringe-adjusted joint transform correlation. Human brain is capable of simultaneously processing high volumes of multi-modal data received every second of the day. In contrast, a machine sees input data simply as random binary numbers. Although machines are computationally efficient, they are inferior when comes to data abstraction and interpretation. Thus, mimicking the learning strength of human brain has been current trend in artificial intelligence. In this work, we present a biological inspired neural network, named progressively expanded neural network (PEN Net), based on nonlinear transformation of input neurons to a feature space for better pattern differentiation. In PEN Net, discrete fixed excitations are disassembled and scattered in the feature space as a nonlinear line. Each disassembled element on the line corresponds to a pattern with similar features
Directory of Open Access Journals (Sweden)
S. Malvar
Full Text Available Abstract The main goal of this article is to study the oscillatory motion of a spherical gas bubble immersed in a Newtonian liquid subjected to a harmonic pressure excitation. We use the classical Rayleigh-Plesset equation to study the radial motion of the bubble undergoing a forcing acoustic pressure field. The second order nonlinear ordinary differential equation that governs the bubble motion is solved through a robust fifth order Runge-Kutta scheme with adaptive time-step. Several interesting patterns are identified. First we develop an asymptotic solution for low amplitudes of excitation pressure to validate our numerical code. Then we develop a bifurcation diagram in order to show how the parameters of the flow modify the vibrational patterns of the bubble. We also train a neural network to identify the vibrational pattern through its FFT data. The combination of neural networks with a bifurcation diagram could be useful for the identification of the flow physical parameters in practical applications. For each pattern we also provide an analysis of the motion of the bubble on the phase-space and interpret physically the system behavior with its FFT. In addition, we analyze nonlinear patterns using standard tools of dynamical systems such as Poincaré sections and calculate the Lyapunov exponents of the system. Based on that, we have identified topological transitions in phase plane using for instance the analysis of Poincaré sections and the solution in the frequency spectrum. We have seen that the mechanisms that dominate the dynamics of the oscillating bubble is the competition of the acoustic field excitation with surface tension forces and momentum diffusion by the action of the surrounding fluid viscosity.
BP Neural Network Could Help Improve Pre-miRNA Identification in Various Species
Directory of Open Access Journals (Sweden)
Limin Jiang
2016-01-01
Full Text Available MicroRNAs (miRNAs are a set of short (21–24 nt noncoding RNAs that play significant regulatory roles in cells. In the past few years, research on miRNA-related problems has become a hot field of bioinformatics because of miRNAs’ essential biological function. miRNA-related bioinformatics analysis is beneficial in several aspects, including the functions of miRNAs and other genes, the regulatory network between miRNAs and their target mRNAs, and even biological evolution. Distinguishing miRNA precursors from other hairpin-like sequences is important and is an essential procedure in detecting novel microRNAs. In this study, we employed backpropagation (BP neural network together with 98-dimensional novel features for microRNA precursor identification. Results show that the precision and recall of our method are 95.53% and 96.67%, respectively. Results further demonstrate that the total prediction accuracy of our method is nearly 13.17% greater than the state-of-the-art microRNA precursor prediction software tools.
Tooth labeling in cone-beam CT using deep convolutional neural network for forensic identification
Miki, Yuma; Muramatsu, Chisako; Hayashi, Tatsuro; Zhou, Xiangrong; Hara, Takeshi; Katsumata, Akitoshi; Fujita, Hiroshi
2017-03-01
In large disasters, dental record plays an important role in forensic identification. However, filing dental charts for corpses is not an easy task for general dentists. Moreover, it is laborious and time-consuming work in cases of large scale disasters. We have been investigating a tooth labeling method on dental cone-beam CT images for the purpose of automatic filing of dental charts. In our method, individual tooth in CT images are detected and classified into seven tooth types using deep convolutional neural network. We employed the fully convolutional network using AlexNet architecture for detecting each tooth and applied our previous method using regular AlexNet for classifying the detected teeth into 7 tooth types. From 52 CT volumes obtained by two imaging systems, five images each were randomly selected as test data, and the remaining 42 cases were used as training data. The result showed the tooth detection accuracy of 77.4% with the average false detection of 5.8 per image. The result indicates the potential utility of the proposed method for automatic recording of dental information.
De-identification of clinical notes via recurrent neural network and conditional random field.
Liu, Zengjian; Tang, Buzhou; Wang, Xiaolong; Chen, Qingcai
2017-11-01
De-identification, identifying information from data, such as protected health information (PHI) present in clinical data, is a critical step to enable data to be shared or published. The 2016 Centers of Excellence in Genomic Science (CEGS) Neuropsychiatric Genome-scale and RDOC Individualized Domains (N-GRID) clinical natural language processing (NLP) challenge contains a de-identification track in de-identifying electronic medical records (EMRs) (i.e., track 1). The challenge organizers provide 1000 annotated mental health records for this track, 600 out of which are used as a training set and 400 as a test set. We develop a hybrid system for the de-identification task on the training set. Firstly, four individual subsystems, that is, a subsystem based on bidirectional LSTM (long-short term memory, a variant of recurrent neural network), a subsystem-based on bidirectional LSTM with features, a subsystem based on conditional random field (CRF) and a rule-based subsystem, are used to identify PHI instances. Then, an ensemble learning-based classifiers is deployed to combine all PHI instances predicted by above three machine learning-based subsystems. Finally, the results of the ensemble learning-based classifier and the rule-based subsystem are merged together. Experiments conducted on the official test set show that our system achieves the highest micro F1-scores of 93.07%, 91.43% and 95.23% under the "token", "strict" and "binary token" criteria respectively, ranking first in the 2016 CEGS N-GRID NLP challenge. In addition, on the dataset of 2014 i2b2 NLP challenge, our system achieves the highest micro F1-scores of 96.98%, 95.11% and 98.28% under the "token", "strict" and "binary token" criteria respectively, outperforming other state-of-the-art systems. All these experiments prove the effectiveness of our proposed method. Copyright © 2017. Published by Elsevier Inc.
Anomaly based intrusion detection for a biometric identification system using neural networks
CSIR Research Space (South Africa)
Mgabile, T
2012-10-01
Full Text Available detection technique that analyses the fingerprint biometric network traffic for evidence of intrusion. The neural network algorithm that imitates the way a human brain works is used in this study to classify normal traffic and learn the correct traffic...
Energy Technology Data Exchange (ETDEWEB)
Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)
1996-12-31
The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.
Johnson, Cameron; Venayagamoorthy, Ganesh Kumar; Mitra, Pinaki
2009-01-01
The application of a spiking neural network (SNN) and a multi-layer perceptron (MLP) for online identification of generator dynamics in a multimachine power system are compared in this paper. An integrate-and-fire model of an SNN which communicates information via the inter-spike interval is applied. The neural network identifiers are used to predict the speed and terminal voltage deviations one time-step ahead of generators in a multimachine power system. The SNN is developed in two steps: (i) neuron centers determined by offline k-means clustering and (ii) output weights obtained by online training. The sensitivity of the SNN to the neuron centers determined in the first step is evaluated on generators of different ratings and parameters. Performances of the SNN and MLP are compared to evaluate robustness on the identification of generator dynamics under small and large disturbances, and to illustrate that SNNs are capable of learning nonlinear dynamics of complex systems.
Flow Pattern Identification of Horizontal Two-Phase Refrigerant Flow Using Neural Networks
2015-12-31
capacitance measurements. In addition, a sensing unit conditioned the sensor signals and transmitted them to a data acquisition system. Details of the...NEURAL NETWORKS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62203F 6. AUTHOR(S) Abdeel J. Roman and...modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT In this work, electrical capacitance tomography (ECT) and neural
International Nuclear Information System (INIS)
Gassman, Esther E.; Kallemeyn, Nicole A.; DeVries, Nicole A.; Shivanna, Kiran H.; Powell, Stephanie M.; Magnotta, Vincent A.; Ramme, Austin J.; Adams, Brian D.; Grosland, Nicole M.
2008-01-01
The objective was to develop tools for automating the identification of bony structures, to assess the reliability of this technique against manual raters, and to validate the resulting regions of interest against physical surface scans obtained from the same specimen. Artificial intelligence-based algorithms have been used for image segmentation, specifically artificial neural networks (ANNs). For this study, an ANN was created and trained to identify the phalanges of the human hand. The relative overlap between the ANN and a manual tracer was 0.87, 0.82, and 0.76, for the proximal, middle, and distal index phalanx bones respectively. Compared with the physical surface scans, the ANN-generated surface representations differed on average by 0.35 mm, 0.29 mm, and 0.40 mm for the proximal, middle, and distal phalanges respectively. Furthermore, the ANN proved to segment the structures in less than one-tenth of the time required by a manual rater. The ANN has proven to be a reliable and valid means of segmenting the phalanx bones from CT images. Employing automated methods such as the ANN for segmentation, eliminates the likelihood of rater drift and inter-rater variability. Automated methods also decrease the amount of time and manual effort required to extract the data of interest, thereby making the feasibility of patient-specific modeling a reality. (orig.)
artificial neural network (ann)
African Journals Online (AJOL)
2004-08-18
Aug 18, 2004 ... forecasting models and artificial intelligence techniques and have become one of the major research fields (Kher and Joshin, 2003). (a) Artificial Neural Network and Electrical Load. Prediction. Neural network analysis is an Artificial Intelligence. (AI) approach to mathematical modeling. Neural. Networks ...
Directory of Open Access Journals (Sweden)
S. N. Naikwad
2009-01-01
Full Text Available A focused time lagged recurrent neural network (FTLR NN with gamma memory filter is designed to learn the subtle complex dynamics of a typical CSTR process. Continuous stirred tank reactor exhibits complex nonlinear operations where reaction is exothermic. It is noticed from literature review that process control of CSTR using neuro-fuzzy systems was attempted by many, but optimal neural network model for identification of CSTR process is not yet available. As CSTR process includes temporal relationship in the input-output mappings, time lagged recurrent neural network is particularly used for identification purpose. The standard back propagation algorithm with momentum term has been proposed in this model. The various parameters like number of processing elements, number of hidden layers, training and testing percentage, learning rule and transfer function in hidden and output layer are investigated on the basis of performance measures like MSE, NMSE, and correlation coefficient on testing data set. Finally effects of different norms are tested along with variation in gamma memory filter. It is demonstrated that dynamic NN model has a remarkable system identification capability for the problems considered in this paper. Thus FTLR NN with gamma memory filter can be used to learn underlying highly nonlinear dynamics of the system, which is a major contribution of this paper.
Pan, Sha-sha; Huang, Fu-rong; Xiao, Chi; Xian, Rui-yi; Ma, Zhi-guo
2015-10-01
To explore rapid reliable methods for detection of Epicarpium citri grandis (ECG), the experiment using Fourier Transform Attenuated Total Reflection Infrared Spectroscopy (FTIR/ATR) and Fluorescence Spectrum Imaging Technology combined with Multilayer Perceptron (MLP) Neural Network pattern recognition, for the identification of ECG, and the two methods are compared. Infrared spectra and fluorescence spectral images of 118 samples, 81 ECG and 37 other kinds of ECG, are collected. According to the differences in tspectrum, the spectra data in the 550-1 800 cm(-1) wavenumber range and 400-720 nm wavelength are regarded as the study objects of discriminant analysis. Then principal component analysis (PCA) is applied to reduce the dimension of spectroscopic data of ECG and MLP Neural Network is used in combination to classify them. During the experiment were compared the effects of different methods of data preprocessing on the model: multiplicative scatter correction (MSC), standard normal variable correction (SNV), first-order derivative(FD), second-order derivative(SD) and Savitzky-Golay (SG). The results showed that: after the infrared spectra data via the Savitzky-Golay (SG) pretreatment through the MLP Neural Network with the hidden layer function as sigmoid, we can get the best discrimination of ECG, the correct percent of training set and testing set are both 100%. Using fluorescence spectral imaging technology, corrected by the multiple scattering (MSC) results in the pretreatment is the most ideal. After data preprocessing, the three layers of the MLP Neural Network of the hidden layer function as sigmoid function can get 100% correct percent of training set and 96.7% correct percent of testing set. It was shown that the FTIR/ATR and fluorescent spectral imaging technology combined with MLP Neural Network can be used for the identification study of ECG and has the advantages of rapid, reliable effect.
Study of quantitative identification of infrared thermal wave testing based on BP neural networks
Wei, Zhang; Tao, Liu; Wei, Yangzheng; Min, Zhangrui
2010-10-01
In order to resolve the problem of quantitative identifying, in pulsed thermography, taking the highest temperature difference and the best testing time as input, and taking defect depth and diameter as output, made use of BP Neural Networks to achieve it, and it was done. According to result, when testing value was in area of swatch, identifying precision was high, and error is less than 3.5%. The feasibility of BP Neural Networks was validated, and it has very important meaning to quantitative identifying of factual application.
The NNSYSID Toolbox - A MATLAB Toolbox for System Identification with Neural Networks
Nørgård, Peter Magnus; Ravn, Ole; Hansen, Lars Kai; Poulsen, Niels Kjølstad
1996-01-01
To assist the identification of nonlinear dynamic systems, a set of tools has been developed for the MATLAB(R) environment. The tools include a number of different model structures, highly effective training algorithms, functions for validating trained networks, and pruning algorithms for determination of optimal network architectures. The toolbox should be regarded as a nonlinear extension to the system identification toolbox provided by The MathWorks, Inc. This paper gives a brief overview ...
Piretzidis, D.; Sra, G.; Sideris, M. G.
2016-12-01
This study explores new methods for identifying correlation errors in harmonic coefficients derived from monthly solutions of the Gravity Recovery and Climate Experiment (GRACE) satellite mission using pattern recognition and neural network algorithms. These correlation errors are evidenced in the differences between monthly solutions and can be suppressed using a de-correlation filter. In all studies so far, the implementation of the de-correlation filter starts from a specific minimum order (i.e., 11 for RL04 and 38 for RL05) until the maximum order of the monthly solution examined. This implementation method has two disadvantages, namely, the omission of filtering correlated coefficients of order less than the minimum order and the filtering of uncorrelated coefficients of order higher than the minimum order. In the first case, the filtered solution is not completely free of correlated errors, whereas the second case results in a monthly solution that suffers from loss of geophysical signal. In the present study, a new method of implementing the de-correlation filter is suggested, by identifying and filtering only the coefficients that show indications of high correlation. Several numerical and geometric properties of the harmonic coefficient series of all orders are examined. Extreme cases of both correlated and uncorrelated coefficients are selected, and their corresponding properties are used to train a two-layer feed-forward neural network. The objective of the neural network is to identify and quantify the correlation by providing the probability of an order of coefficients to be correlated. Results show good performance of the neural network, both in the validation stage of the training procedure and in the subsequent use of the trained network to classify independent coefficients. The neural network is also capable of identifying correlated coefficients even when a small number of training samples and neurons are used (e.g.,100 and 10, respectively).
Identification of Nonlinear Dynamic Systems Using Hammerstein-Type Neural Network
Yu, Hongshan; Peng, Jinzhu; Tang, Yandong
2014-01-01
Hammerstein model has been popularly applied to identify the nonlinear systems. In this paper, a Hammerstein-type neural network (HTNN) is derived to formulate the well-known Hammerstein model. The HTNN consists of a nonlinear static gain in cascade with a linear dynamic part. First, the Lipschitz criterion for order determination is derived. Second, the backpropagation algorithm for updating the network weights is presented, and the stability analysis is also drawn. Finally, simulation resul...
Li, Zhong; Liu, Ming-de; Ji, Shou-xiang
2016-03-01
combined with the artificial neural networks is proved to be a reliable and new method for the identification of the original place of Traditional Chinese Medicine.
Fauziah; Wibowo, E. P.; Madenda, S.; Hustinawati
2018-03-01
Capturing and recording motion in human is mostly done with the aim for sports, health, animation films, criminality, and robotic applications. In this study combined background subtraction and back propagation neural network. This purpose to produce, find similarity movement. The acquisition process using 8 MP resolution camera MP4 format, duration 48 seconds, 30frame/rate. video extracted produced 1444 pieces and results hand motion identification process. Phase of image processing performed is segmentation process, feature extraction, identification. Segmentation using bakground subtraction, extracted feature basically used to distinguish between one object to another object. Feature extraction performed by using motion based morfology analysis based on 7 invariant moment producing four different classes motion: no object, hand down, hand-to-side and hands-up. Identification process used to recognize of hand movement using seven inputs. Testing and training with a variety of parameters tested, it appears that architecture provides the highest accuracy in one hundred hidden neural network. The architecture is used propagate the input value of the system implementation process into the user interface. The result of the identification of the type of the human movement has been clone to produce the highest acuracy of 98.5447%. The training process is done to get the best results.
Neural network approaches to tracer identification as related to PIV research
Energy Technology Data Exchange (ETDEWEB)
Seeley, C.H. Jr.
1992-12-01
Neural networks have become very powerful tools in many fields of interest. This thesis examines the application of neural networks to another rapidly growing field flow visualization. Flow visualization research is used to experimentally determine how fluids behave and to verify computational results obtained analytically. A form of flow visualization, particle image velocimetry (PIV). determines the flow movement by tracking neutrally buoyant particles suspended in the fluid. PIV research has begun to improve rapidly with the advent of digital imagers, which can quickly digitize an image into arrays of grey levels. These grey level arrays are analyzed to determine the location of the tracer particles. Once the particles positions have been determined across multiple image frames, it is possible to track their movements, and hence, the flow of the fluid. This thesis explores the potential of several different neural networks to identify the positions of the tracer particles. Among these networks are Backpropagation, Kohonen (counter-propagation), and Cellular. Each of these algorithms were employed in their basic form, and training and testing were performed on a synthetic grey level array. Modifications were then made to them in attempts to improve the results.
Neural network approaches to tracer identification as related to PIV research
International Nuclear Information System (INIS)
Seeley, C.H. Jr.
1992-12-01
Neural networks have become very powerful tools in many fields of interest. This thesis examines the application of neural networks to another rapidly growing field flow visualization. Flow visualization research is used to experimentally determine how fluids behave and to verify computational results obtained analytically. A form of flow visualization, particle image velocimetry (PIV). determines the flow movement by tracking neutrally buoyant particles suspended in the fluid. PIV research has begun to improve rapidly with the advent of digital imagers, which can quickly digitize an image into arrays of grey levels. These grey level arrays are analyzed to determine the location of the tracer particles. Once the particles positions have been determined across multiple image frames, it is possible to track their movements, and hence, the flow of the fluid. This thesis explores the potential of several different neural networks to identify the positions of the tracer particles. Among these networks are Backpropagation, Kohonen (counter-propagation), and Cellular. Each of these algorithms were employed in their basic form, and training and testing were performed on a synthetic grey level array. Modifications were then made to them in attempts to improve the results
Protalinsky, O. M.; Shcherbatov, I. A.; Stepanov, P. V.
2017-11-01
A growing number of severe accidents in RF call for the need to develop a system that could prevent emergency situations. In a number of cases accident rate is stipulated by careless inspections and neglects in developing repair programs. Across the country rates of accidents are growing because of a so-called “human factor”. In this regard, there has become urgent the problem of identification of the actual state of technological facilities in power engineering using data on engineering processes running and applying artificial intelligence methods. The present work comprises four model states of manufacturing equipment of engineering companies: defect, failure, preliminary situation, accident. Defect evaluation is carried out using both data from SCADA and ASEPCR and qualitative information (verbal assessments of experts in subject matter, photo- and video materials of surveys processed using pattern recognition methods in order to satisfy the requirements). Early identification of defects makes possible to predict the failure of manufacturing equipment using mathematical techniques of artificial neural network. In its turn, this helps to calculate predicted characteristics of reliability of engineering facilities using methods of reliability theory. Calculation of the given parameters provides the real-time estimation of remaining service life of manufacturing equipment for the whole operation period. The neural networks model allows evaluating possibility of failure of a piece of equipment consistent with types of actual defects and their previous reasons. The article presents the grounds for a choice of training and testing samples for the developed neural network, evaluates the adequacy of the neural networks model, and shows how the model can be used to forecast equipment failure. There have been carried out simulating experiments using a computer and retrospective samples of actual values for power engineering companies. The efficiency of the developed
Chaotic diagonal recurrent neural network
International Nuclear Information System (INIS)
Wang Xing-Yuan; Zhang Yi
2012-01-01
We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)
The NNSYSID Toolbox - A MATLAB Toolbox for System Identification with Neural Networks
DEFF Research Database (Denmark)
Nørgård, Peter Magnus; Ravn, Ole; Hansen, Lars Kai
1996-01-01
To assist the identification of nonlinear dynamic systems, a set of tools has been developed for the MATLAB(R) environment. The tools include a number of different model structures, highly effective training algorithms, functions for validating trained networks, and pruning algorithms for determi......To assist the identification of nonlinear dynamic systems, a set of tools has been developed for the MATLAB(R) environment. The tools include a number of different model structures, highly effective training algorithms, functions for validating trained networks, and pruning algorithms...
Neural Networks: Implementations and Applications
Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.
1996-01-01
Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas
DEFF Research Database (Denmark)
Hjerrild, M.; Stensballe, A.; Rasmussen, T.E.
2004-01-01
kinase A (PKA) phosphorylation sites. The neural network was trained with a positive set of 258 experimentally verified PKA phosphorylation sites. The predictions by NetPhosK were! validated using four novel PKA substrates: Necdin, RFX5, En-2, and Wee 1. The four proteins were phosphorylated by PKA...... in vitro and 13 PKA phosphorylation sites were identified by mass spectrometry. NetPhosK was 100% sensitive and 41% specific in predicting PKA sites in the four proteins. These results demonstrate the potential of using integrated computational and experimental methods for detailed investigations...
Dynamic training algorithm for dynamic neural networks
International Nuclear Information System (INIS)
Tan, Y.; Van Cauwenberghe, A.; Liu, Z.
1996-01-01
The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper
Ugena, L; Moncayo, S; Manzoor, S; Rosales, D; Cáceres, J O
2016-01-01
The detection of adulteration of fuels and its use in criminal scenes like arson has a high interest in forensic investigations. In this work, a method based on gas chromatography (GC) and neural networks (NN) has been developed and applied to the identification and discrimination of brands of fuels such as gasoline and diesel without the necessity to determine the composition of the samples. The study included five main brands of fuels from Spain, collected from fifteen different local petrol stations. The methodology allowed the identification of the gasoline and diesel brands with a high accuracy close to 100%, without any false positives or false negatives. A success rate of three blind samples was obtained as 73.3%, 80%, and 100%, respectively. The results obtained demonstrate the potential of this methodology to help in resolving criminal situations.
Directory of Open Access Journals (Sweden)
L. Ugena
2016-01-01
Full Text Available The detection of adulteration of fuels and its use in criminal scenes like arson has a high interest in forensic investigations. In this work, a method based on gas chromatography (GC and neural networks (NN has been developed and applied to the identification and discrimination of brands of fuels such as gasoline and diesel without the necessity to determine the composition of the samples. The study included five main brands of fuels from Spain, collected from fifteen different local petrol stations. The methodology allowed the identification of the gasoline and diesel brands with a high accuracy close to 100%, without any false positives or false negatives. A success rate of three blind samples was obtained as 73.3%, 80%, and 100%, respectively. The results obtained demonstrate the potential of this methodology to help in resolving criminal situations.
Lu, Thomas; Pham, Timothy; Liao, Jason
2011-01-01
This paper presents the development of a fuzzy logic function trained by an artificial neural network to classify the system noise temperature (SNT) of antennas in the NASA Deep Space Network (DSN). The SNT data were classified into normal, marginal, and abnormal classes. The irregular SNT pattern was further correlated with link margin and weather data. A reasonably good correlation is detected among high SNT, low link margin and the effect of bad weather; however we also saw some unexpected non-correlations which merit further study in the future.
Neural networks in signal processing
International Nuclear Information System (INIS)
Govil, R.
2000-01-01
Nuclear Engineering has matured during the last decade. In research and design, control, supervision, maintenance and production, mathematical models and theories are used extensively. In all such applications signal processing is embedded in the process. Artificial Neural Networks (ANN), because of their nonlinear, adaptive nature are well suited to such applications where the classical assumptions of linearity and second order Gaussian noise statistics cannot be made. ANN's can be treated as nonparametric techniques, which can model an underlying process from example data. They can also adopt their model parameters to statistical change with time. Algorithms in the framework of Neural Networks in Signal processing have found new applications potentials in the field of Nuclear Engineering. This paper reviews the fundamentals of Neural Networks in signal processing and their applications in tasks such as recognition/identification and control. The topics covered include dynamic modeling, model based ANN's, statistical learning, eigen structure based processing and generalization structures. (orig.)
DEFF Research Database (Denmark)
Krogh, Anders Stærmose; Riis, Søren Kamaric
1999-01-01
A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...
Tagliaferri, Roberto; Longo, Giuseppe; Milano, Leopoldo; Acernese, Fausto; Barone, Fabrizio; Ciaramella, Angelo; De Rosa, Rosario; Donalek, Ciro; Eleuteri, Antonio; Raiconi, Giancarlo; Sessa, Salvatore; Staiano, Antonino; Volpicelli, Alfredo
2003-01-01
In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).
Application of NARX neural networks in thermal dynamics identification of a pulsating heat pipe
International Nuclear Information System (INIS)
Lee Yawei; Chang Tienli
2009-01-01
The pulsating heat pipe (PHP) receiving much attention in industries is a novel type of cooling device. The distinguishing feature of PHPs is the unsteady flow oscillations formed by the passing non-uniform distributions of vapour plugs and liquid slugs. This study introduces a methodology of a non-linear auto-regressive with exogenous (NARX) neural network to analyze the thermal dynamics of a PHP in both the time and frequency domains. Three heating powers: 30, 70, and 110 W are tested, and all the predicted results are presented in quite good agreement with the measured results. Herein, the harmonic analysis of the non-linear structure can be equivalently conducted with generalized frequency response functions (GFRFs). Based on the non-linear coupling between the various input spectral components, the interpretations of the higher order GFRFs have been extensively presented for demonstrating the non-linear effects on the heat transfer of a PHP at different operating conditions
Directory of Open Access Journals (Sweden)
Umar Draz
2016-01-01
Full Text Available SMEs (Small and Medium Sized Enterprises sector is facing problems relating to implementation of international quality standards. These SMEs need to identify factors affecting business success abroad for intelligent allocation of resources to the process of internationalization. In this paper, MLP NN (Multi-Layer Perceptron Neural Network has been used for identifying relative importance of key variables related to firm basics, manufacturing, quality inspection labs and level of education in determining the exporting status of Pakistani SMEs. A survey has been conducted for scoring out the pertinent variables in SMEs and coded in MLP NNs. It is found that ?firm registered with OEM (Original Equipment Manufacturer and ?size of firm? are the most important in determining exporting status of SMEs followed by other variables. For internationalization, the results aid policy makers in formulating strategies
International Nuclear Information System (INIS)
Draz, U.; Jahanzaib, M.; Asghar, G.
2016-01-01
SMEs (Small and Medium Sized Enterprises) sector is facing problems relating to implementation of international quality standards. These SMEs need to identify factors affecting business success abroad for intelligent allocation of resources to the process of internationalization. In this paper, MLP NN (Multi-Layer Perceptron Neural Network) has been used for identifying relative importance of key variables related to firm basics, manufacturing, quality inspection labs and level of education in determining the exporting status of Pakistani SMEs. A survey has been conducted for scoring out the pertinent variables in SMEs and coded in MLP NNs. It is found that firm registered with OEM (Original Equipment Manufacturer) and size of firm are the most important in determining exporting status of SMEs followed by other variables. For internationalization, the results aid policy makers in formulating strategies. (author)
Neural networks for aircraft control
Linse, Dennis
1990-01-01
Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.
DEFF Research Database (Denmark)
Hansen, Lars Kai; Salamon, Peter
1990-01-01
We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....
Rulaningtyas, Riries; Suksmono, Andriyan B.; Mengko, Tati L. R.; Saptawati, Putri
2016-03-01
Pulmonary tuberculosis is a deadly infectious disease which occurs in many countries in Asia and Africa. In Indonesia, many people with tuberculosis disease are examined in the community health center. Examination of pulmonary tuberculosis is done through sputum smear with Ziehl - Neelsen staining using conventional light microscope. The results of Ziehl - Neelsen staining will give effect to the appearance of tuberculosis (TB) bacteria in red color and sputum background in blue color. The first examination is to detect the presence of TB bacteria from its color, then from the morphology of the TB bacteria itself. The results of Ziehl - Neelsen staining in sputum smear give the complex color images, so that the clinicians have difficulty when doing slide examination manually because it is time consuming and needs highly training to detect the presence of TB bacteria accurately. The clinicians have heavy workload to examine many sputum smear slides from the patients. To assist the clinicians when reading the sputum smear slide, this research built computer aided diagnose with color image segmentation, feature extraction, and classification method. This research used K-means clustering with patch technique to segment digital sputum smear images which separated the TB bacteria images from the background images. This segmentation method gave the good accuracy 97.68%. Then, feature extraction based on geometrical shape of TB bacteria was applied to this research. The last step, this research used neural network with back propagation method to classify TB bacteria and non TB bacteria images in sputum slides. The classification result of neural network back propagation are learning time (42.69±0.02) second, the number of epoch 5000, error rate of learning 15%, learning accuracy (98.58±0.01)%, and test accuracy (96.54±0.02)%.
DEFF Research Database (Denmark)
Sørensen, Helle Aagaard; Sperotto, Maria Maddalena; Petersen, M.
2002-01-01
The performance of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry with neural networks in wheat variety classification is further evaluated.(1) Two principal issues were studied: (a) the number of varieties that could be classified correctly; and (b) various means....... With the final method, it was possible to classify 30 wheat varieties with 87% correctly classified mass spectra and a correlation coefficient of 0.90....
Critical Branching Neural Networks
Kello, Christopher T.
2013-01-01
It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…
Tomography using neural networks
International Nuclear Information System (INIS)
Demeter, G.; Zoletnik, S.
1997-01-01
Neural networks have been used for fast measurement evaluation in plasma physics, including nonlinear curve fitting to experimental data. Such an approach for fast evaluation of tomographic measurements was utilized on the MT-1M tokamak, especially in the study of impurity injection using laser accelerated pellets and of the transport of these injected impurities. Neural networks were studied for fast processing of tomographic data and large numbers of tomographic data
Padgett, Mary L.; Desai, Utpal; Roppel, T.A.; White, Charles R.
1993-01-01
A design procedure is suggested for neural networks which accommodates the inclusion of such knowledge-based systems techniques as fuzzy logic and pairwise comparisons. The use of these procedures in the design of applications combines qualitative and quantitative factors with empirical data to yield a model with justifiable design and parameter selection procedures. The procedure is especially relevant to areas of back-propagation neural network design which are highly responsive to the use of precisely recorded expert knowledge.
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...... concerning canonical, observable state space forms (minimum realizable form) for SISO as wll as MIMO processes. The tests show that all models, after succeeeful training, which is judged by correlation analysis of the prediction errors, are able to perform non-linear system identification, prediction...
The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software, NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains...
Directory of Open Access Journals (Sweden)
Young-Ji Byon
2017-09-01
Full Text Available Traditionally, departments of transportation (DOTs have dispatched probe vehicles with dedicated vehicles and drivers for monitoring traffic conditions. Emerging assisted GPS (AGPS and accelerometer-equipped smartphones offer new sources of raw data that arise from voluntarily-traveling smartphone users provided that their modes of transportation can correctly be identified. By introducing additional raster map layers that indicate the availability of each mode, it is possible to enhance the accuracy of mode detection results. Even in its simplest form, an artificial neural network (ANN excels at pattern recognition with a relatively short processing timeframe once it is properly trained, which is suitable for real-time mode identification purposes. Dubai is one of the major cities in the Middle East and offers unique environments, such as a high density of extremely high-rise buildings that may introduce multi-path errors with GPS signals. This paper develops real-time mode identification ANNs enhanced with proposed mode availability geographic information system (GIS layers, firstly for a universal mode detection and, secondly for an auto mode detection for the particular intelligent transportation system (ITS application of traffic monitoring, and compares the results with existing approaches. It is found that ANN-based real-time mode identification, enhanced by mode availability GIS layers, significantly outperforms the existing methods.
Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M; Dan, Bernard; McIntyre, Joseph; Cheron, Guy
2014-01-01
In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.
Directory of Open Access Journals (Sweden)
Ana eBengoetxea
2014-09-01
Full Text Available In this study we employed a dynamic recurrent neural network (DRNN in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane. We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others patterns of reciprocal activation operating in orthogonal
Directory of Open Access Journals (Sweden)
Jing Zhao
2016-01-01
Full Text Available The diversity of medical factors makes the analysis and judgment of uncertainty one of the challenges of medical diagnosis. A well-designed classification and judgment system for medical uncertainty can increase the rate of correct medical diagnosis. In this paper, a new multidimensional classifier is proposed by using an intelligent algorithm, which is the general fuzzy cerebellar model neural network (GFCMNN. To obtain more information about uncertainty, an intuitionistic fuzzy linguistic term is employed to describe medical features. The solution of classification is obtained by a similarity measurement. The advantages of the novel classifier proposed here are drawn out by comparing the same medical example under the methods of intuitionistic fuzzy sets (IFSs and intuitionistic fuzzy cross-entropy (IFCE with different score functions. Cross verification experiments are also taken to further test the classification ability of the GFCMNN multidimensional classifier. All of these experimental results show the effectiveness of the proposed GFCMNN multidimensional classifier and point out that it can assist in supporting for correct medical diagnoses associated with multiple categories.
Yu, Jiangsheng; Chen, Xue-Wen
2005-06-01
The classification of high-dimensional data is always a challenge to statistical machine learning. We propose a novel method named shallow feature selection that assigns each feature a probability of being selected based on the structure of training data itself. Independent of particular classifiers, the high dimension of biodata can be fleetly reduced to an applicable case for consequential processing. Moreover, to improve both efficiency and performance of classification, these prior probabilities are further used to specify the distributions of top-level hyperparameters in hierarchical models of Bayesian neural network (BNN), as well as the parameters in Gaussian process models. Three BNN approaches were derived and then applied to identify ovarian cancer from NCI's high-resolution mass spectrometry data, which yielded an excellent performance in 1000 independent k-fold cross validations (k = 2,...,10). For instance, indices of average sensitivity and specificity of 98.56 and 98.42%, respectively, were achieved in the 2-fold cross validations. Furthermore, only one control and one cancer were misclassified in the leave-one-out cross validation. Some other popular classifiers were also tested for comparison. The programs implemented in MatLab, R and Neal's fbm.2004-11-10.
Indian Classical Dance Action Identification and Classification with Convolutional Neural Networks
Directory of Open Access Journals (Sweden)
P. V. V. Kishore
2018-01-01
Full Text Available Extracting and recognizing complex human movements from unconstrained online/offline video sequence is a challenging task in computer vision. This paper proposes the classification of Indian classical dance actions using a powerful artificial intelligence tool: convolutional neural networks (CNN. In this work, human action recognition on Indian classical dance videos is performed on recordings from both offline (controlled recording and online (live performances, YouTube data. The offline data is created with ten different subjects performing 200 familiar dance mudras/poses from different Indian classical dance forms under various background environments. The online dance data is collected from YouTube for ten different subjects. Each dance pose is occupied for 60 frames or images in a video in both the cases. CNN training is performed with 8 different sample sizes, each consisting of multiple sets of subjects. The remaining 2 samples are used for testing the trained CNN. Different CNN architectures were designed and tested with our data to obtain a better accuracy in recognition. We achieved a 93.33% recognition rate compared to other classifier models reported on the same dataset.
Neural networks and applications tutorial
Guyon, I.
1991-09-01
The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.
Directory of Open Access Journals (Sweden)
Chunling DU
2012-03-01
Full Text Available In this work the condition of metallic structures are classified based on the acquired sensor data from a surface-mounted piezoelectric sensor/actuator network. The structures are aluminum plates with riveted holes and possible crack damage at these holes. A 400 kHz sine wave burst is used as diagnostic signals. The combination of time-domain S0 waves from received sensor signals is directly used as features and preprocessing is not needed for the dam age detection. Since the time sequence of the extracted S0 has a high dimension, principal component estimation is applied to reduce its dimension before entering NN (neural network training for classification. An LVQ (learning vector quantization NN is used to classify the conditions as healthy or damaged. A number of FEM (finite element modeling results are taken as inputs to the NN for training, since the simulated S0 waves agree well with the experimental results on real plates. The performance of the classification is then validated by using these testing results.
Introduction to Artificial Neural Networks
DEFF Research Database (Denmark)
Larsen, Jan
1999-01-01
The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....
Deconvolution using a neural network
Energy Technology Data Exchange (ETDEWEB)
Lehman, S.K.
1990-11-15
Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.
Artificial neural network modelling
Samarasinghe, Sandhya
2016-01-01
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .
Neural Networks and Micromechanics
Kussul, Ernst; Baidyk, Tatiana; Wunsch, Donald C.
The title of the book, "Neural Networks and Micromechanics," seems artificial. However, the scientific and technological developments in recent decades demonstrate a very close connection between the two different areas of neural networks and micromechanics. The purpose of this book is to demonstrate this connection. Some artificial intelligence (AI) methods, including neural networks, could be used to improve automation system performance in manufacturing processes. However, the implementation of these AI methods within industry is rather slow because of the high cost of conducting experiments using conventional manufacturing and AI systems. To lower the cost, we have developed special micromechanical equipment that is similar to conventional mechanical equipment but of much smaller size and therefore of lower cost. This equipment could be used to evaluate different AI methods in an easy and inexpensive way. The proved methods could be transferred to industry through appropriate scaling. In this book, we describe the prototypes of low cost microequipment for manufacturing processes and the implementation of some AI methods to increase precision, such as computer vision systems based on neural networks for microdevice assembly and genetic algorithms for microequipment characterization and the increase of microequipment precision.
1993-07-01
simpler linearly separable majority function (Ahmad, Tesauro , 1988), the former has limited applicability to realistic problems and the latter has been...anwered. 6. References Ahmad, S., G. Tesauro , "Scaling and Generalization in Neural Networks: A Case Study", Proceedings of the 1988 Connectionist
DEFF Research Database (Denmark)
Bloch, Helle Aagaard; Kesmir, Can; Petersen, Marianne Kjerstine
1999-01-01
A novel tool for variety identification of wheat (Triticum aestivum L,) has been developed: an artificial neural network (ANN) is used to classify the gliadin fraction analysed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The robustness of this no......A novel tool for variety identification of wheat (Triticum aestivum L,) has been developed: an artificial neural network (ANN) is used to classify the gliadin fraction analysed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The robustness...... of this novel method with respect to various experimental parameters has been tested, The results can be summarised: (i) With this approach 97% of the wheat varieties can be classified correctly with a corresponding correlation coefficient of 1.0, (ii) The method is fast since the time of extracting gliadins...
Yan, Xiaofei; Cheng, Hong; Zhao, Yandong; Yu, Wenhua; Huang, Huan; Zheng, Xiaoliang
2016-08-04
Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN)-based multi-sensor system and artificial neural network (ANN). Sensors (CO, CO₂, smoke, air temperature and relative humidity) were integrated into one node of WSN. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated and flaming-dominated combustion conditions. The results showed that the five sensors have reasonable responses to artificial forest fire. To reduce cost of the nodes, smoke, CO₂ and temperature sensors were chiefly selected through correlation analysis. For achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO₂; smoke and temperature; smoke, CO₂ and temperature. The model test results showed that multi-sensor input yielded higher predicting accuracy (≥82.5%) than single-sensor input (50.9%-92.5%). Based on these, it is possible to reduce the cost with a relatively high fire identification rate and potential application of the system can be tested in future under real forest condition.
Xu, Jing; Wang, Zhongbin; Tan, Chao; Liu, Xinhua
2018-01-01
As a sound signal has the advantages of non-contacted measurement, compact structure, and low power consumption, it has resulted in much attention in many fields. In this paper, the sound signal of the coal mining shearer is analyzed to realize the accurate online cutting pattern identification and guarantee the safety quality of the working face. The original acoustic signal is first collected through an industrial microphone and decomposed by adaptive ensemble empirical mode decomposition (EEMD). A 13-dimensional set composed by the normalized energy of each level is extracted as the feature vector in the next step. Then, a swarm intelligence optimization algorithm inspired by bat foraging behavior is applied to determine key parameters of the traditional variable translation wavelet neural network (VTWNN). Moreover, a disturbance coefficient is introduced into the basic bat algorithm (BA) to overcome the disadvantage of easily falling into local extremum and limited exploration ability. The VTWNN optimized by the modified BA (VTWNN-MBA) is used as the cutting pattern recognizer. Finally, a simulation example, with an accuracy of 95.25%, and a series of comparisons are conducted to prove the effectiveness and superiority of the proposed method. PMID:29382120
Xu, Jing; Wang, Zhongbin; Tan, Chao; Si, Lei; Liu, Xinhua
2018-01-29
As a sound signal has the advantages of non-contacted measurement, compact structure, and low power consumption, it has resulted in much attention in many fields. In this paper, the sound signal of the coal mining shearer is analyzed to realize the accurate online cutting pattern identification and guarantee the safety quality of the working face. The original acoustic signal is first collected through an industrial microphone and decomposed by adaptive ensemble empirical mode decomposition (EEMD). A 13-dimensional set composed by the normalized energy of each level is extracted as the feature vector in the next step. Then, a swarm intelligence optimization algorithm inspired by bat foraging behavior is applied to determine key parameters of the traditional variable translation wavelet neural network (VTWNN). Moreover, a disturbance coefficient is introduced into the basic bat algorithm (BA) to overcome the disadvantage of easily falling into local extremum and limited exploration ability. The VTWNN optimized by the modified BA (VTWNN-MBA) is used as the cutting pattern recognizer. Finally, a simulation example, with an accuracy of 95.25%, and a series of comparisons are conducted to prove the effectiveness and superiority of the proposed method.
International Nuclear Information System (INIS)
You, Seung Han; Hahn, Jin Oh
2012-01-01
By virtue of its ease of operation compared with its conventional manual counterpart, automatic transmissions are commonly used as automotive power transmission control system in today's passenger cars. In accordance with this trend, research efforts on closed-loop automatic transmission controls have been extensively carried out to improve ride quality and fuel economy. State-of-the-art power transmission control algorithms may have limitations in performance because they rely on the steady-state characteristics of the hydraulic actuator rather than fully exploit its dynamic characteristics. Since the ultimate viability of closed-loop power transmission control is dominated by precise pressure control at the level of hydraulic actuator, closed-loop control can potentially attain superior efficacy in case the hydraulic actuator can be easily incorporated into model-based observer/controller design. In this paper, we propose to use a recurrent neural network (RNN) to establish a nonlinear empirical model of a cascade hydraulic actuator in a passenger car automatic transmission, which has potential to be easily incorporated in designing observers and controllers. Experimental analysis is performed to grasp key system characteristics, based on which a nonlinear system identification procedure is carried out. Extensive experimental validation of the established model suggests that it has superb one-step-ahead prediction capability over appropriate frequency range, making it an attractive approach for model-based observer/controller design applications in automotive systems
Hortos, William S.
2010-04-01
Determining methods to secure the process of data fusion against attacks by compromised nodes in wireless sensor networks (WSNs) and to quantify the uncertainty that may exist in the aggregation results is a critical issue in mitigating the effects of intrusion attacks. Published research has introduced the concept of the trustworthiness (reputation) of a single sensor node. Reputation is evaluated using an information-theoretic concept, the Kullback- Leibler (KL) distance. Reputation is added to the set of security features. In data aggregation, an opinion, a metric of the degree of belief, is generated to represent the uncertainty in the aggregation result. As aggregate information is disseminated along routes to the sink node(s), its corresponding opinion is propagated and regulated by Josang's belief model. By applying subjective logic on the opinion to manage trust propagation, the uncertainty inherent in aggregation results can be quantified for use in decision making. The concepts of reputation and opinion are modified to allow their application to a class of dynamic WSNs. Using reputation as a factor in determining interim aggregate information is equivalent to implementation of a reputation-based security filter at each processing stage of data fusion, thereby improving the intrusion detection and identification results based on unsupervised techniques. In particular, the reputation-based version of the probabilistic neural network (PNN) learns the signature of normal network traffic with the random probability weights normally used in the PNN replaced by the trust-based quantified reputations of sensor data or subsequent aggregation results generated by the sequential implementation of a version of Josang's belief model. A two-stage, intrusion detection and identification algorithm is implemented to overcome the problems of large sensor data loads and resource restrictions in WSNs. Performance of the twostage algorithm is assessed in simulations of WSN
ECG Identification System Using Neural Network with Global and Local Features
Tseng, Kuo-Kun; Lee, Dachao; Chen, Charles
2016-01-01
This paper proposes a human identification system via extracted electrocardiogram (ECG) signals. Two hierarchical classification structures based on global shape feature and local statistical feature is used to extract ECG signals. Global shape feature represents the outline information of ECG signals and local statistical feature extracts the…
Srimani, P. K.; Parimala, Y. G.
2011-12-01
A unique approach has been developed to study patterns in ragas of Carnatic Classical music based on artificial neural networks. Ragas in Carnatic music which have found their roots in the Vedic period, have grown on a Scientific foundation over thousands of years. However owing to its vastness and complexities it has always been a challenge for scientists and musicologists to give an all encompassing perspective both qualitatively and quantitatively. Cognition, comprehension and perception of ragas in Indian classical music have always been the subject of intensive research, highly intriguing and many facets of these are hitherto not unravelled. This paper is an attempt to view the melakartha ragas with a cognitive perspective using artificial neural network based approach which has given raise to very interesting results. The 72 ragas of the melakartha system were defined through the combination of frequencies occurring in each of them. The data sets were trained using several neural networks. 100% accurate pattern recognition and classification was obtained using linear regression, TLRN, MLP and RBF networks. Performance of the different network topologies, by varying various network parameters, were compared. Linear regression was found to be the best performing network.
Structured Pyramidal Neural Networks.
Soares, Alessandra M; Fernandes, Bruno J T; Bastos-Filho, Carmelo J A
2017-02-09
The Pyramidal Neural Networks (PNN) are an example of a successful recently proposed model inspired by the human visual system and deep learning theory. PNNs are applied to computer vision and based on the concept of receptive fields. This paper proposes a variation of PNN, named here as Structured Pyramidal Neural Network (SPNN). SPNN has self-adaptive variable receptive fields, while the original PNNs rely on the same size for the fields of all neurons, which limits the model since it is not possible to put more computing resources in a particular region of the image. Another limitation of the original approach is the need to define values for a reasonable number of parameters, which can turn difficult the application of PNNs in contexts in which the user does not have experience. On the other hand, SPNN has a fewer number of parameters. Its structure is determined using a novel method with Delaunay Triangulation and k-means clustering. SPNN achieved better results than PNNs and similar performance when compared to Convolutional Neural Network (CNN) and Support Vector Machine (SVM), but using lower memory capacity and processing time.
Parameter estimation of an aeroelastic aircraft using neural networks
Indian Academy of Sciences (India)
https://www.ias.ac.in/article/fulltext/sadh/025/02/0181-0191. Keywords. Parameter estimation; modelling; aeroelastic aircraft; neural networks; system identification. Abstract. Application of neural networks to the problem of aerodynamic modelling and parameter estimation for aeroelastic aircraft is addressed. A neural model ...
International Nuclear Information System (INIS)
Zhou Yunlong; Chen Fei; Sun Bin
2008-01-01
Based on the characteristic that wavelet packet transform image can be decomposed by different scales, a flow regime identification method based on image wavelet packet information entropy feature and genetic neural network was proposed. Gas-liquid two-phase flow images were captured by digital high speed video systems in horizontal pipe. The information entropy feature from transformation coefficients were extracted using image processing techniques and multi-resolution analysis. The genetic neural network was trained using those eigenvectors, which was reduced by the principal component analysis, as flow regime samples, and the flow regime intelligent identification was realized. The test result showed that image wavelet packet information entropy feature could excellently reflect the difference between seven typical flow regimes, and the genetic neural network with genetic algorithm and BP algorithm merits were with the characteristics of fast convergence for simulation and avoidance of local minimum. The recognition possibility of the network could reach up to about 100%, and a new and effective method was presented for on-line flow regime. (authors)
Artificial neural/chemical networks
Caulfield, H. John
2001-11-01
What strikes the attention of a neural network designer is that the chemicals seem to work not so much on individual neural circuits as on neural cell assemblies. These are large blocks of neural networks that carry out high level tasks using their constituent networks as needed. It follows to us that we might seek ways of achieving that same sort of behavior in an artificial neural network. In what follows, we provide two examples of how that might be done in an artificial system.
Neural electrical activity and neural network growth.
Gafarov, F M
2018-02-09
The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Nielsen, Henrik; Engelbrecht, Jacob; Brunak, Søren
1997-01-01
We have developed a new method for the identication of signal peptides and their cleavage sites based on neural networks trained on separate sets of prokaryotic and eukaryotic sequences. The method performs signicantly better than previous prediction schemes, and can easily be applied to genome...
Program Helps Simulate Neural Networks
Villarreal, James; Mcintire, Gary
1993-01-01
Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.
International Nuclear Information System (INIS)
Souza, T.J.; Medeiros, J.A.C.C.; Gonçalves, A.C.
2017-01-01
Highlights: • An alternative model capable of identifying the control rod that has accidentally dropped. • The identification model is based in readings of the thermocouples. • Radial basis function neural network is applied to predict the temperatures in control rod positions. - Abstract: The accidental dropping of a control rod may cause the reactor to operate unsafely. In this type of event, there is a distortion in the distribution of power and temperature in the core may exceed operating limits reactor safe. This work aims to develop an alternative model capable of identifying, at any time of the cycle, the control rod that has accidentally dropped at the core of a PWR reactor, using the readings of the thermocouples in order to minimize possible losses. The model assumes that in a possible drop of a control rod, the largest temperature change occurs in the position where the control rod is inserted. Considering the fact that there are no temperature gauges in all control rod positions, the proposed model uses radial basis function (RBF) neural networks to make a reconstruction of temperatures in these positions from the measurements of the thermocouples at the time of the accidental drop. The study found that the predictions of the temperatures made by the RBF neural networks showed good results, which enables the identification of the control rod dropped accidentally in the core, by simple inference of the fuel assembly of lowest temperature among temperatures reconstructed.
Directory of Open Access Journals (Sweden)
Matteo Gandetto
2004-09-01
Full Text Available The use of time-frequency distributions is proposed as a nonlinear signal processing technique that is combined with a pattern recognition approach to identify superimposed transmission modes in a reconfigurable wireless terminal based on software-defined radio techniques. In particular, a software-defined radio receiver is described aiming at the identification of two coexistent communication modes: frequency hopping code division multiple access and direct sequence code division multiple access. As a case study, two standards, based on the previous modes and operating in the same band (industrial, scientific, and medical, are considered: IEEE WLAN 802.11b (direct sequence and Bluetooth (frequency hopping. Neural classifiers are used to obtain identification results. A comparison between two different neural classifiers is made in terms of relative error frequency.
Costalago Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L
2016-03-01
Mathematical modelling is used routinely to understand the coding properties and dynamics of responses of neurons and neural networks. Here we analyse the effectiveness of Artificial Neural Networks (ANNs) as a modelling tool for motor neuron responses. We used ANNs to model the synaptic responses of an identified motor neuron, the fast extensor motor neuron, of the desert locust in response to displacement of a sensory organ, the femoral chordotonal organ, which monitors movements of the tibia relative to the femur of the leg. The aim of the study was threefold: first to determine the potential value of ANNs as tools to model and investigate neural networks, second to understand the generalisation properties of ANNs across individuals and to different input signals and third, to understand individual differences in responses of an identified neuron. A metaheuristic algorithm was developed to design the ANN architectures. The performance of the models generated by the ANNs was compared with those generated through previous mathematical models of the same neuron. The results suggest that ANNs are significantly better than LNL and Wiener models in predicting specific neural responses to Gaussian White Noise, but not significantly different when tested with sinusoidal inputs. They are also able to predict responses of the same neuron in different individuals irrespective of which animal was used to develop the model, although notable differences between some individuals were evident. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Morris, R. V.; deSouza, P. A.; Morris, R. V.; Klingelhoefer, G.
2003-01-01
, we have built a specific library containing Moessbauer parameters of those possible Mars minerals. The selected minerals, their Moessbauer parameter values (min. max. s.d and number of available data), main site substitution, behavior as a function of temperature and a ranking as expected to be found on Mars were organized. Mars-analogue Fe-bearing minerals not studied by Moessbauer spectroscopy are being collected and investigated. In addition, it an identification system based on Artificial Neural Networks (ANN) was implemented which enables fast and precise mineral identification from the experimental Moessbauer parameters at a given temperature.
[Artificial neural networks in Neurosciences].
Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María
2011-11-01
This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.
Accelerating Learning By Neural Networks
Toomarian, Nikzad; Barhen, Jacob
1992-01-01
Electronic neural networks made to learn faster by use of terminal teacher forcing. Method of supervised learning involves addition of teacher forcing functions to excitations fed as inputs to output neurons. Initially, teacher forcing functions are strong enough to force outputs to desired values; subsequently, these functions decay with time. When learning successfully completed, terminal teacher forcing vanishes, and dynamics or neural network become equivalent to those of conventional neural network. Simulated neural network with terminal teacher forcing learned to produce close approximation of circular trajectory in 400 iterations.
Neural networks for function approximation in nonlinear control
Linse, Dennis J.; Stengel, Robert F.
1990-01-01
Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.
Heiden, Uwe
1980-01-01
The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica ted throughout the text. However, they are not explored in de tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be havior of neurons or neuron pools. In this respect the essay is writt...
Ribosome binding site recognition using neural networks
Directory of Open Access Journals (Sweden)
Márcio Ferreira da Silva Oliveira
2004-01-01
Full Text Available Pattern recognition is an important process for gene localization in genomes. The ribosome binding sites are signals that can help in the identification of a gene. It is difficult to find these signals in the genome through conventional methods because they are highly degenerated. Artificial Neural Networks is the approach used in this work to address this problem.
Energy Technology Data Exchange (ETDEWEB)
Acernese, F [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Barone, F [Istituto Nazionale di Fisica Nucleare, sez. Napoli, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Rosa, M de [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Rosa, R De [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Eleuteri, A [Istituto Nazionale di Fisica Nucleare, sez. Napoli, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Milano, L [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Complesso Universitario di Monte S Angelo, via Cintia, I-80126 Naples (Italy); Tagliaferri, R [Dipartimento di Matematica ed Informatica, Universita di Salerno, via S Allende, I-84081 Baronissi (Salerno) (Italy)
2002-06-21
In this paper, a neural network-based approach is presented for the real time noise identification of a GW laser interferometric antenna. The 40 m Caltech laser interferometer output data provide a realistic test bed for noise identification algorithms because of the presence of many relevant effects: violin resonances in the suspensions, main power harmonics, ring-down noise from servo control systems, electronic noises, glitches and so on. These effects can be assumed to be present in all the first interferometric long baseline GW antennas such as VIRGO, LIGO, GEO and TAMA. For noise identification, we used the Caltech-40 m laser interferometer data. The results we obtained are pretty good notwithstanding the high initial computational cost. The algorithm we propose is general and robust, taking into account that it does not require a priori information on the data, nor a precise model, and it constitutes a powerful tool for time series data analysis.
Acernese, F; Rosa, M D; Rosa, R D; Eleuteri, A; Milano, L; Tagliaferri, R
2002-01-01
In this paper, a neural network-based approach is presented for the real time noise identification of a GW laser interferometric antenna. The 40 m Caltech laser interferometer output data provide a realistic test bed for noise identification algorithms because of the presence of many relevant effects: violin resonances in the suspensions, main power harmonics, ring-down noise from servo control systems, electronic noises, glitches and so on. These effects can be assumed to be present in all the first interferometric long baseline GW antennas such as VIRGO, LIGO, GEO and TAMA. For noise identification, we used the Caltech-40 m laser interferometer data. The results we obtained are pretty good notwithstanding the high initial computational cost. The algorithm we propose is general and robust, taking into account that it does not require a priori information on the data, nor a precise model, and it constitutes a powerful tool for time series data analysis.
International Nuclear Information System (INIS)
Acernese, F; Barone, F; Rosa, M de; Rosa, R De; Eleuteri, A; Milano, L; Tagliaferri, R
2002-01-01
In this paper, a neural network-based approach is presented for the real time noise identification of a GW laser interferometric antenna. The 40 m Caltech laser interferometer output data provide a realistic test bed for noise identification algorithms because of the presence of many relevant effects: violin resonances in the suspensions, main power harmonics, ring-down noise from servo control systems, electronic noises, glitches and so on. These effects can be assumed to be present in all the first interferometric long baseline GW antennas such as VIRGO, LIGO, GEO and TAMA. For noise identification, we used the Caltech-40 m laser interferometer data. The results we obtained are pretty good notwithstanding the high initial computational cost. The algorithm we propose is general and robust, taking into account that it does not require a priori information on the data, nor a precise model, and it constitutes a powerful tool for time series data analysis
Neural networks at the Tevatron
International Nuclear Information System (INIS)
Badgett, W.; Burkett, K.; Campbell, M.K.; Wu, D.Y.; Bianchin, S.; DeNardi, M.; Pauletta, G.; Santi, L.; Caner, A.; Denby, B.; Haggerty, H.; Lindsey, C.S.; Wainer, N.; Dall'Agata, M.; Johns, K.; Dickson, M.; Stanco, L.; Wyss, J.L.
1992-10-01
This paper summarizes neural network applications at the Fermilab Tevatron, including the first online hardware application in high energy physics (muon tracking): the CDF and DO neural network triggers; offline quark/gluon discrimination at CDF; ND a new tool for top to multijets recognition at CDF
Optoelectronic Implementation of Neural Networks
Indian Academy of Sciences (India)
optical neural network using photo refractive crystals and realized interconnection density of 10 8 to. 1010 per cm3. • B Javidi and others designed a correlato.,. based two-layer neural network associated with a supervised perceptron learning algorithm for r~al-time face recognition. electronic wiring altogether and replace it ...
Neural Networks for Optimal Control
DEFF Research Database (Denmark)
Sørensen, O.
1995-01-01
Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....
Xia, Yonghui; Yang, Zijiang; Han, Maoan
2009-07-01
This paper considers the lag synchronization (LS) issue of unknown coupled chaotic delayed Yang-Yang-type fuzzy neural networks (YYFCNN) with noise perturbation. Separate research work has been published on the stability of fuzzy neural network and LS issue of unknown coupled chaotic neural networks, as well as its application in secure communication. However, there have not been any studies that integrate the two. Motivated by the achievements from both fields, we explored the benefits of integrating fuzzy logic theories into the study of LS problems and applied the findings to secure communication. Based on adaptive feedback control techniques and suitable parameter identification, several sufficient conditions are developed to guarantee the LS of coupled chaotic delayed YYFCNN with or without noise perturbation. The problem studied in this paper is more general in many aspects. Various problems studied extensively in the literature can be treated as special cases of the findings of this paper, such as complete synchronization (CS), effect of fuzzy logic, and noise perturbation. This paper presents an illustrative example and uses simulated results of this example to show the feasibility and effectiveness of the proposed adaptive scheme. This research also demonstrates the effectiveness of application of the proposed adaptive feedback scheme in secure communication by comparing chaotic masking with fuzziness with some previous studies. Chaotic signal with fuzziness is more complex, which makes unmasking more difficult due to the added fuzzy logic.
A Neural Network-Based Interval Pattern Matcher
Directory of Open Access Journals (Sweden)
Jing Lu
2015-07-01
Full Text Available One of the most important roles in the machine learning area is to classify, and neural networks are very important classifiers. However, traditional neural networks cannot identify intervals, let alone classify them. To improve their identification ability, we propose a neural network-based interval matcher in our paper. After summarizing the theoretical construction of the model, we take a simple and a practical weather forecasting experiment, which show that the recognizer accuracy reaches 100% and that is promising.
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
concerning canonical, observable state space forms (minimum realizable form) for SISO as wll as MIMO processes. The tests show that all models, after succeeeful training, which is judged by correlation analysis of the prediction errors, are able to perform non-linear system identification, prediction......, simulation and filtering of dynamic, non-linear, multi-variable and noisy processes in a very satisfactory manner. The further examinations mainly concentrate on two models, the Non-linear ARMAX (NARMAX) model representing input/output description, and the Non-linear Innovation state Space (NISS) model (a...... Kalmann filter) representing state space description. The potentials of neural networks for control of non-linear processes are also examined, focusing on three different groups of control concepts, all considered as generalizations of known linear control concepts to handle also non-linear processes...
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...
Leménager, Tagrid; Dieter, Julia; Hill, Holger; Hoffmann, Sabine; Reinhard, Iris; Beutel, Martin; Vollstädt-Klein, Sabine; Kiefer, Falk; Mann, Karl
2016-09-01
Background and aims Internet gaming addiction appears to be related to self-concept deficits and increased angular gyrus (AG)-related identification with one's avatar. For increased social network use, a few existing studies suggest striatal-related positive social feedback as an underlying factor. However, whether an impaired self-concept and its reward-based compensation through the online presentation of an idealized version of the self are related to pathological social network use has not been investigated yet. We aimed to compare different stages of pathological Internet game and social network use to explore the neural basis of avatar and self-identification in addictive use. Methods About 19 pathological Internet gamers, 19 pathological social network users, and 19 healthy controls underwent functional magnetic resonance imaging while completing a self-retrieval paradigm, asking participants to rate the degree to which various self-concept-related characteristics described their self, ideal, and avatar. Self-concept-related characteristics were also psychometrically assessed. Results Psychometric testing indicated that pathological Internet gamers exhibited higher self-concept deficits generally, whereas pathological social network users exhibit deficits in emotion regulation only. We observed left AG hyperactivations in Internet gamers during avatar reflection and a correlation with symptom severity. Striatal hypoactivations during self-reflection (vs. ideal reflection) were observed in social network users and were correlated with symptom severity. Discussion and conclusion Internet gaming addiction appears to be linked to increased identification with one's avatar, evidenced by high left AG activations in pathological Internet gamers. Addiction to social networks seems to be characterized by emotion regulation deficits, reflected by reduced striatal activation during self-reflection compared to during ideal reflection.
Leménager, Tagrid; Dieter, Julia; Hill, Holger; Hoffmann, Sabine; Reinhard, Iris; Beutel, Martin; Vollstädt-Klein, Sabine; Kiefer, Falk; Mann, Karl
2016-01-01
Background and aims Internet gaming addiction appears to be related to self-concept deficits and increased angular gyrus (AG)-related identification with one’s avatar. For increased social network use, a few existing studies suggest striatal-related positive social feedback as an underlying factor. However, whether an impaired self-concept and its reward-based compensation through the online presentation of an idealized version of the self are related to pathological social network use has not been investigated yet. We aimed to compare different stages of pathological Internet game and social network use to explore the neural basis of avatar and self-identification in addictive use. Methods About 19 pathological Internet gamers, 19 pathological social network users, and 19 healthy controls underwent functional magnetic resonance imaging while completing a self-retrieval paradigm, asking participants to rate the degree to which various self-concept-related characteristics described their self, ideal, and avatar. Self-concept-related characteristics were also psychometrically assessed. Results Psychometric testing indicated that pathological Internet gamers exhibited higher self-concept deficits generally, whereas pathological social network users exhibit deficits in emotion regulation only. We observed left AG hyperactivations in Internet gamers during avatar reflection and a correlation with symptom severity. Striatal hypoactivations during self-reflection (vs. ideal reflection) were observed in social network users and were correlated with symptom severity. Discussion and conclusion Internet gaming addiction appears to be linked to increased identification with one’s avatar, evidenced by high left AG activations in pathological Internet gamers. Addiction to social networks seems to be characterized by emotion regulation deficits, reflected by reduced striatal activation during self-reflection compared to during ideal reflection. PMID:27415603
Directory of Open Access Journals (Sweden)
Ruiyi Que
2012-08-01
Full Text Available Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed.
Que, Ruiyi; Zhu, Rong
2012-01-01
Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed.
Selverston, A I; Moulins, M
1985-01-01
Despite the fact that a large number of neuronal oscillators have been described, there are only a few good examples that illustrate how they operate at the cellular level. For most, there is some isolated information about different aspects of the oscillator network, but too little to explain the whole mechanism. Two quite remarkable features do seem to be emerging from ongoing studies, however. One is that there are very few generalizable features common to neural oscillators. Many utilize reciprocal inhibitory circuits and endogenous burst-generating currents to some extent. All that have been well worked out utilize a combination of both cellular and network properties, but little else in the way of common mechanism is noteworthy. Perhaps the most interesting aspect of recent work is the ability of a particular oscillator to produce a large repertoire of different outputs. This is separate and in addition to changes occurring via phasic sensory feedback. It is in fact a radical functional "rewiring" of the network in response to neuromodulators. The CPG circuits represent only the most basic form of a given pattern. Finally, concerning the role of sensory feedback in generating oscillatory patterns, the concept of the CPG as a group of neurons able to produce oscillatory patterns without any sensory feedback is, in our opinion, still valid. There is no doubt that some oscillators may be quite weak when isolated, but they can still produce bursts with firing sequences similar to those seen in vivo. The fact that sensory feedback can both control and enhance the oscillations has never been in doubt. Similarly, entrainment of the pattern by sensory feedback does not mean that the receptor is part of the generator, only that it has access to it (as do command and coordinating fibers). The real question remains: Can a group of cells produce an oscillatory pattern without phasic sensory input? We must answer this affirmatively even for the insect-flight motor CPG
Vítková, Gabriela; Novotný, Karel; Prokeš, Lubomír; Hrdlička, Aleš; Kaiser, Jozef; Novotný, Jan; Malina, Radomír; Prochazka, David
2012-07-01
The goal of this paper is to compare two selected statistical techniques used for identification of archeological materials merely on the base of their spectra obtained by stand-off laser-induced breakdown spectroscopy (stand-off LIBS). Data processing using linear discriminant analysis (LDA) and artificial neural networks (ANN) were applied on spectra of 18 different samples, some of them archeological and some recent, containing 7 types of material (i.e. shells, mortar, bricks, soil pellets, ceramic, teeth and bones). As the input data PCA scores were taken. The intended aim of this work is to create a database for simple and fast identification of archeological or paleontological materials in situ. This approach can speed up and simplify the sampling process during archeological excavations that nowadays tend to be quite damaging and time-consuming.
Energy Technology Data Exchange (ETDEWEB)
Jimenez, R., E-mail: naharro@uhu.es [Departamento de Ingenieria Eletronica, Sistemas Informaticos y Automatica, Universidad de Huelva, 21071 Huelva (Spain); Sanchez-Raya, M.; Gomez-Galan, J.A. [Departamento de Ingenieria Eletronica, Sistemas Informaticos y Automatica, Universidad de Huelva, 21071 Huelva (Spain); Flores, J.L. [Departamento Ingenieria Electrica y Termica, Universidad de Huelva, 21071 Huelva (Spain); Duenas, J.A.; Martel, I. [Departamento de Fisica Aplicada, Universidad de Huelva, 21071 Huelva (Spain)
2012-05-11
Pulse shape analysis techniques for the identification of heavy ions produced in nuclear reactions have been recently proposed as an alternative to energy loss and time of flight methods. However this technique requires a large amount of memory for storing the shapes of charge and current signals. We have implemented a hardware solution for fast on-line processing of the signals producing the relevant information needed for particle identification. Since the pulse shape analysis can be formulated in terms of a pattern recognition problem, a neural network has been implemented in a FPGA device. The design concept has been tested using {sup 12,13}C ions produced in heavy ion reactions. The actual latency of the system is about 20 {mu}s when using a clock frequency of 50 MHz.
Clustering: a neural network approach.
Du, K-L
2010-01-01
Clustering is a fundamental data analysis method. It is widely used for pattern recognition, feature extraction, vector quantization (VQ), image segmentation, function approximation, and data mining. As an unsupervised classification technique, clustering identifies some inherent structures present in a set of objects based on a similarity measure. Clustering methods can be based on statistical model identification (McLachlan & Basford, 1988) or competitive learning. In this paper, we give a comprehensive overview of competitive learning based clustering methods. Importance is attached to a number of competitive learning based clustering neural networks such as the self-organizing map (SOM), the learning vector quantization (LVQ), the neural gas, and the ART model, and clustering algorithms such as the C-means, mountain/subtractive clustering, and fuzzy C-means (FCM) algorithms. Associated topics such as the under-utilization problem, fuzzy clustering, robust clustering, clustering based on non-Euclidean distance measures, supervised clustering, hierarchical clustering as well as cluster validity are also described. Two examples are given to demonstrate the use of the clustering methods.
A neural network approach to cloud classification
Lee, Jonathan; Weger, Ronald C.; Sengupta, Sailes K.; Welch, Ronald M.
1990-01-01
It is shown that, using high-spatial-resolution data, very high cloud classification accuracies can be obtained with a neural network approach. A texture-based neural network classifier using only single-channel visible Landsat MSS imagery achieves an overall cloud identification accuracy of 93 percent. Cirrus can be distinguished from boundary layer cloudiness with an accuracy of 96 percent, without the use of an infrared channel. Stratocumulus is retrieved with an accuracy of 92 percent, cumulus at 90 percent. The use of the neural network does not improve cirrus classification accuracy. Rather, its main effect is in the improved separation between stratocumulus and cumulus cloudiness. While most cloud classification algorithms rely on linear parametric schemes, the present study is based on a nonlinear, nonparametric four-layer neural network approach. A three-layer neural network architecture, the nonparametric K-nearest neighbor approach, and the linear stepwise discriminant analysis procedure are compared. A significant finding is that significantly higher accuracies are attained with the nonparametric approaches using only 20 percent of the database as training data, compared to 67 percent of the database in the linear approach.
Neural networks and their application to nuclear power plant diagnosis
International Nuclear Information System (INIS)
Reifman, J.
1997-01-01
The authors present a survey of artificial neural network-based computer systems that have been proposed over the last decade for the detection and identification of component faults in thermal-hydraulic systems of nuclear power plants. The capabilities and advantages of applying neural networks as decision support systems for nuclear power plant operators and their inherent characteristics are discussed along with their limitations and drawbacks. The types of neural network structures used and their applications are described and the issues of process diagnosis and neural network-based diagnostic systems are identified. A total of thirty-four publications are reviewed
Sun, Yangbo; Chen, Long; Huang, Bisheng; Chen, Keli
2017-07-01
As a mineral, the traditional Chinese medicine calamine has a similar shape to many other minerals. Investigations of commercially available calamine samples have shown that there are many fake and inferior calamine goods sold on the market. The conventional identification method for calamine is complicated, therefore as a result of the large scale of calamine samples, a rapid identification method is needed. To establish a qualitative model using near-infrared (NIR) spectroscopy for rapid identification of various calamine samples, large quantities of calamine samples including crude products, counterfeits and processed products were collected and correctly identified using the physicochemical and powder X-ray diffraction method. The NIR spectroscopy method was used to analyze these samples by combining the multi-reference correlation coefficient (MRCC) method and the error back propagation artificial neural network algorithm (BP-ANN), so as to realize the qualitative identification of calamine samples. The accuracy rate of the model based on NIR and MRCC methods was 85%; in addition, the model, which took comprehensive multiple factors into consideration, can be used to identify crude calamine products, its counterfeits and processed products. Furthermore, by in-putting the correlation coefficients of multiple references as the spectral feature data of samples into BP-ANN, a BP-ANN model of qualitative identification was established, of which the accuracy rate was increased to 95%. The MRCC method can be used as a NIR-based method in the process of BP-ANN modeling.
Neural networks and statistical learning
Du, Ke-Lin
2014-01-01
Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...
Neural Networks For Robot Control
National Research Council Canada - National Science Library
Nasr, Chaiban
2001-01-01
...; and optimization of the architecture; (b) Application of artificial neural networks in controlling closed-loop 2D planar robot arm and comparison with the use of proportional-integral-differential (PID) controllers...
What are artificial neural networks?
DEFF Research Database (Denmark)
Krogh, Anders
2008-01-01
Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...
Backpropagation neural networks: pattern recognition
Studenikin, Oleg
2005-01-01
In this Master’s degree work artificial neural networks and back propagation learning algorithm for human faces and pattern recognition are analyzed. In the second part of work artificial neural networks and their architecture and structures models are analyzed. In the third part of article the backpropagation procedure and procedures theoretical learning principle are analyzed. In the fourth part different kinds of ANN methods and patterns extracting methods in recognition, learning and ...
Neural network based facial recognition system
Luebbers, Paul G.; Uwechue, Okechukwu A.; Pandya, Abhijit S.
1994-03-01
Researchers have for many years tried to develop machine recognition systems using video images of the human face as the input, with limited success. This paper presents a technique for recognizing individuals based on facial features using a novel multi-layer neural network architecture called `PWRNET'. We envision a real-time version of this technique to be used for high security applications. Two systems are proposed. One involves taking a grayscale video image and using it directly, the other involves decomposing the grayscale image into a series of binary images using the isodensity regions of the image. Isodensity regions are the areas within an image where the intensity is within a certain range. The binary image is produced by setting the pixels inside this intensity range to one, and the rest of the pixels in the image to zero. Features based on moments are subsequently extracted from these grayscale images. These features are then used for classification of the image. The classification is accomplished using an artificial neural network called `PWRNET', which produces a polynomial expression of the trained network. There is one neural network for each individual to be identified, with an output value which is either positive or negative identification. A detailed development of the design is presented, and identification for small population of individuals is presented. It is shown that the system is effective for variations in both scale and translation, which are considered to be reasonable variations for this type of facial identification.
Computationally Efficient Neural Network Intrusion Security Awareness
Energy Technology Data Exchange (ETDEWEB)
Todd Vollmer; Milos Manic
2009-08-01
An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.
Directory of Open Access Journals (Sweden)
Zhongbin Wang
2014-04-01
Full Text Available In order to accurately identify the change of shearer cutting load, a novel approach was proposed through integration of improved particle swarm optimization and wavelet neural network. An improved updating strategy for inertia weight was presented to avoid falling into the local optimum. Moreover, immune mechanism was applied in the proposed approach to enhance the population diversity and improve the quality of solution, and the flowchart of the proposed approach was designed. Furthermore, a simulation example was carried out and comparison results indicated that the proposed approach was feasible, efficient, and outperforming others. Finally, an industrial application example of coal mining face was demonstrated to specify the effect of the proposed system.
International Nuclear Information System (INIS)
Lefevre, F.
1993-02-01
The photon multidetector system TAPS, a European collaboration, was installed for the second series of experiments at GANIL in the fall of 1992. It was used in conjunction with a multidetector for charged particles and the high resolution spectrometer SPEG. This experimental set-up is described. A dedicated software package, written in the PAW environment, for the online control and analysis of data has been developed and is described in detail. One aspect of the TAPS experimental program involves the detection of neutral mesons via two-photon decay. The identification by this decay channel is not trivial due to the so-called combinatorial background-the generation of photon pairs not associated with a meson decay. A method based on a neural network has been developed in order to aid in the extraction of the meson signal. The method is based on that of Hopfield and has been modified to incorporate the self-connection of cells. Our network is thus well suited to solve optimization problems where the initial state of the system represents the data constituting the problem. The performance of the network is presented using simulations and it is demonstrated that the signal-to-noise ratio can be improved given constraints on the solid angle of the detector and the correct identification of the photons
International Nuclear Information System (INIS)
Vítková, Gabriela; Novotný, Karel; Prokeš, Lubomír; Hrdlička, Aleš; Kaiser, Jozef; Novotný, Jan; Malina, Radomír; Prochazka, David
2012-01-01
The goal of this paper is to compare two selected statistical techniques used for identification of archeological materials merely on the base of their spectra obtained by stand-off laser-induced breakdown spectroscopy (stand-off LIBS). Data processing using linear discriminant analysis (LDA) and artificial neural networks (ANN) were applied on spectra of 18 different samples, some of them archeological and some recent, containing 7 types of material (i.e. shells, mortar, bricks, soil pellets, ceramic, teeth and bones). As the input data PCA scores were taken. The intended aim of this work is to create a database for simple and fast identification of archeological or paleontological materials in situ. This approach can speed up and simplify the sampling process during archeological excavations that nowadays tend to be quite damaging and time-consuming. - Highlights: ► We use statistical techniques for identification of archeological materials. ► Input data for LDA and ANN are PC scores counted from stand-off LIBS spectra. ► The method used for identification of archeological materials provides good results. ► After recording more spectra we can get useful tool for rapid analysis in situ.
Energy Technology Data Exchange (ETDEWEB)
Vitkova, Gabriela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Novotny, Karel, E-mail: codl@sci.muni.cz [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Prokes, Lubomir [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Hrdlicka, Ales [Central European Institute of Technology, CEITEC MU, Masaryk University (Czech Republic); Kaiser, Jozef [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); X-ray micro CT and nano CT research group, CEITEC-Central European Institute of Technology, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Novotny, Jan [X-ray micro CT and nano CT research group, CEITEC-Central European Institute of Technology, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Malina, Radomir; Prochazka, David [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic)
2012-07-15
The goal of this paper is to compare two selected statistical techniques used for identification of archeological materials merely on the base of their spectra obtained by stand-off laser-induced breakdown spectroscopy (stand-off LIBS). Data processing using linear discriminant analysis (LDA) and artificial neural networks (ANN) were applied on spectra of 18 different samples, some of them archeological and some recent, containing 7 types of material (i.e. shells, mortar, bricks, soil pellets, ceramic, teeth and bones). As the input data PCA scores were taken. The intended aim of this work is to create a database for simple and fast identification of archeological or paleontological materials in situ. This approach can speed up and simplify the sampling process during archeological excavations that nowadays tend to be quite damaging and time-consuming. - Highlights: Black-Right-Pointing-Pointer We use statistical techniques for identification of archeological materials. Black-Right-Pointing-Pointer Input data for LDA and ANN are PC scores counted from stand-off LIBS spectra. Black-Right-Pointing-Pointer The method used for identification of archeological materials provides good results. Black-Right-Pointing-Pointer After recording more spectra we can get useful tool for rapid analysis in situ.
Complex-Valued Neural Networks
Hirose, Akira
2012-01-01
This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...
Antenna analysis using neural networks
Smith, William T.
1992-01-01
Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu
2017-10-01
This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.
Artificial Neural Network Model for Predicting Compressive
Salim T. Yousif; Salwa M. Abdullah
2013-01-01
Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum...
Cotton genotypes selection through artificial neural networks.
Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B
2017-09-27
Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.
Neural System Prediction and Identification Challenge
Directory of Open Access Journals (Sweden)
Ioannis eVlachos
2013-12-01
Full Text Available Can we infer the function of a biological neural network (BNN if we know the connectivity and activity of all its constituent neurons? This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC. We provide the connectivity and activity of all neurons and invite participants (i to infer the functions implemented (hard-wired in spiking neural networks (SNNs by stimulating and recording the activity of neurons and, (ii to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered.
Neural system prediction and identification challenge.
Vlachos, Ioannis; Zaytsev, Yury V; Spreizer, Sebastian; Aertsen, Ad; Kumar, Arvind
2013-01-01
Can we infer the function of a biological neural network (BNN) if we know the connectivity and activity of all its constituent neurons?This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC). We provide the connectivity and activity of all neurons and invite participants (1) to infer the functions implemented (hard-wired) in spiking neural networks (SNNs) by stimulating and recording the activity of neurons and, (2) to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered.
Dynamic load modeling using neural networks
Energy Technology Data Exchange (ETDEWEB)
Ferreira, C.; Silva, A.P. Alves da; Torres, G. Lambert [Escola Federal de Engenharia de Itajuba, MG (Brazil). Inst. de Engenharia Eletrica
1996-07-01
Accurate dynamic load models allow more precise calculations of power system controls and stability limits. System identification methods can be applied to estimate load models based on measurements. Parametric and nonparametric are the two classes in system identification methods. The parametric approach has been the only one used for load modeling so far. In this paper, the performance of a nonparametric load model based on the functional polynomial artificial neural network is compared with a linear model and with the popular Zip model. The impact of clustering different load compositions is also investigated. Substation buses (138 kV) from the Brazilian system feeding important industrial consumers have been modeled. (author)
Agarwal, Smriti; Bisht, Amit Singh; Singh, Dharmendra; Pathak, Nagendra Prasad
2014-12-01
Millimetre wave imaging (MMW) is gaining tremendous interest among researchers, which has potential applications for security check, standoff personal screening, automotive collision-avoidance, and lot more. Current state-of-art imaging techniques viz. microwave and X-ray imaging suffers from lower resolution and harmful ionizing radiation, respectively. In contrast, MMW imaging operates at lower power and is non-ionizing, hence, medically safe. Despite these favourable attributes, MMW imaging encounters various challenges as; still it is very less explored area and lacks suitable imaging methodology for extracting complete target information. Keeping in view of these challenges, a MMW active imaging radar system at 60 GHz was designed for standoff imaging application. A C-scan (horizontal and vertical scanning) methodology was developed that provides cross-range resolution of 8.59 mm. The paper further details a suitable target identification and classification methodology. For identification of regular shape targets: mean-standard deviation based segmentation technique was formulated and further validated using a different target shape. For classification: probability density function based target material discrimination methodology was proposed and further validated on different dataset. Lastly, a novel artificial neural network based scale and rotation invariant, image reconstruction methodology has been proposed to counter the distortions in the image caused due to noise, rotation or scale variations. The designed neural network once trained with sample images, automatically takes care of these deformations and successfully reconstructs the corrected image for the test targets. Techniques developed in this paper are tested and validated using four different regular shapes viz. rectangle, square, triangle and circle.
Vibration monitoring with artificial neural networks
International Nuclear Information System (INIS)
Alguindigue, I.
1991-01-01
Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural network to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected from operating machinery. Two neural networks algorithms were used in our project: the Recirculation algorithm for data compression and the Backpropagation algorithm to perform the actual classification of the patterns. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results to date are very encouraging
Multigradient for Neural Networks for Equalizers
Directory of Open Access Journals (Sweden)
Chulhee Lee
2003-06-01
Full Text Available Recently, a new training algorithm, multigradient, has been published for neural networks and it is reported that the multigradient outperforms the backpropagation when neural networks are used as a classifier. When neural networks are used as an equalizer in communications, they can be viewed as a classifier. In this paper, we apply the multigradient algorithm to train the neural networks that are used as equalizers. Experiments show that the neural networks trained using the multigradient noticeably outperforms the neural networks trained by the backpropagation.
Directory of Open Access Journals (Sweden)
Alan E. Bilsland
2015-09-01
Full Text Available Cellular senescence is a barrier to tumorigenesis in normal cells, and tumor cells undergo senescence responses to genotoxic stimuli, which is a potential target phenotype for cancer therapy. However, in this setting, mixed-mode responses are common with apoptosis the dominant effect. Hence, more selective senescence inducers are required. Here we report a machine learning–based in silico screen to identify potential senescence agonists. We built profiles of differentially affected biological process networks from expression data obtained under induced telomere dysfunction conditions in colorectal cancer cells and matched these to a panel of 17 protein targets with confirmatory screening data in PubChem. We trained a neural network using 3517 compounds identified as active or inactive against these targets. The resulting classification model was used to screen a virtual library of ~2M lead-like compounds. One hundred and forty-seven virtual hits were acquired for validation in growth inhibition and senescence-associated β-galactosidase assays. Among the found hits, a benzimidazolone compound, CB-20903630, had low micromolar IC50 for growth inhibition of HCT116 cells and selectively induced senescence-associated β-galactosidase activity in the entire treated cell population without cytotoxicity or apoptosis induction. Growth suppression was mediated by G1 blockade involving increased p21 expression and suppressed cyclin B1, CDK1, and CDC25C. In addition, the compound inhibited growth of multicellular spheroids and caused severe retardation of population kinetics in long-term treatments. Preliminary structure-activity and structure clustering analyses are reported, and expression analysis of CB-20903630 against other cell cycle suppressor compounds suggested a PI3K/AKT-inhibitor–like profile in normal cells, with different pathways affected in cancer cells.
Analysis of IMS spectra using neural networks
Energy Technology Data Exchange (ETDEWEB)
Bell, S.E.
1992-01-01
Ion mobility spectrometry (IMS) has been used for over 20 years, and IMS coupled to gas chromatography (GC/IMS) has been used for over 10 years. There still is no systematic approach to IMS spectral interpretation such as exists for mass spectrometry and infrared spectrometry. Neural networks, a form of adaptive pattern recognition, were examined as a method of data reduction for IMS and GC/IMS. A wide variety of volatile organics were analyzed using IMS and GC/IMS and submitted to different networks for identification. Several different networks and data preprocessing algorithms were studied. A network was linked to a simple rule-based expert system and analyzed. The expert system was used to filter out false positive identifications made by the network using retention indices. The various network configurations were compared to other pattern recognition techniques, including human experts. The network performance was comparable to human experts, but responded much faster. Preliminary comparison of the network to other pattern recognition showed comparable performance. Linkage of the network output to the rule-based retention index system yielded the best performance.
Analysis of IMS spectra using neural networks
Energy Technology Data Exchange (ETDEWEB)
Bell, S.E.
1992-09-01
Ion mobility spectrometry (IMS) has been used for over 20 years, and IMS coupled to gas chromatography (GC/IMS) has been used for over 10 years. There still is no systematic approach to IMS spectral interpretation such as exists for mass spectrometry and infrared spectrometry. Neural networks, a form of adaptive pattern recognition, were examined as a method of data reduction for IMS and GC/IMS. A wide variety of volatile organics were analyzed using IMS and GC/IMS and submitted to different networks for identification. Several different networks and data preprocessing algorithms were studied. A network was linked to a simple rule-based expert system and analyzed. The expert system was used to filter out false positive identifications made by the network using retention indices. The various network configurations were compared to other pattern recognition techniques, including human experts. The network performance was comparable to human experts, but responded much faster. Preliminary comparison of the network to other pattern recognition showed comparable performance. Linkage of the network output to the rule-based retention index system yielded the best performance.
Houshang Ehsani, Amir; Quiel, Friedrich
2007-10-01
The Shuttle Radar Topography Mission (SRTM) was launched on 11 February 2000 and 3 arc second data were publicly released in July 2004. Easy availability of SRTM 3 arc second data, covering almost 80% of the land surface on earth, has resulted in great advances in morphometric studies and numerical description of landscape features. In this study we introduce a new procedure using Neural Network - Self Organizing Map - to characterize morphometric features of landscapes.. We also investigate the effect of two resolutions for morphometric feature identification. Specifically we investigate how the SRTM 3arc second latitude / longitude data projected to UTM coordinates with 90 meter respectively 28.5 m grid, corresponding to Landsat TM data resolution, affect the morphometric characterization. Morphometric parameters such as slope, maximum curvature, minimum curvature and cross-sectional curvature are derived by fitting a bivariate quadratic surface with a window size of 5×5 for the 90 m data (450 m on the ground) and 9×9 for the 28.5 m data (about 250 m) . Kohonen Self Organizing Map as an unsupervised neural network algorithm is employed for the classification of these morphometric parameters into 10 exclusive and exhaustive classes. These classes were analyzed and interpreted as morphometric features such as ridge, channel, crest line, planar and valley bottom for both data sets based on morphometric signatures, feature space and 3D inspection of the area. The difference change detection technique was used between two DEMs (DEM-90 and DEM-28.5 m) to analyze differences in morphometric features identification. The results showed that the introduced method is very useful for identification of morphometric features. Increasing spatial resolution from 90 meter to 28.5 meter, can produce digital elevation models (DEMs) allowing more precise identification of morphometric features and landforms. Increasing spatial resolution overcomes the main constrains for
Optimization of multilayer neural network parameters for speaker recognition
Tovarek, Jaromir; Partila, Pavol; Rozhon, Jan; Voznak, Miroslav; Skapa, Jan; Uhrin, Dominik; Chmelikova, Zdenka
2016-05-01
This article discusses the impact of multilayer neural network parameters for speaker identification. The main task of speaker identification is to find a specific person in the known set of speakers. It means that the voice of an unknown speaker (wanted person) belongs to a group of reference speakers from the voice database. One of the requests was to develop the text-independent system, which means to classify wanted person regardless of content and language. Multilayer neural network has been used for speaker identification in this research. Artificial neural network (ANN) needs to set parameters like activation function of neurons, steepness of activation functions, learning rate, the maximum number of iterations and a number of neurons in the hidden and output layers. ANN accuracy and validation time are directly influenced by the parameter settings. Different roles require different settings. Identification accuracy and ANN validation time were evaluated with the same input data but different parameter settings. The goal was to find parameters for the neural network with the highest precision and shortest validation time. Input data of neural networks are a Mel-frequency cepstral coefficients (MFCC). These parameters describe the properties of the vocal tract. Audio samples were recorded for all speakers in a laboratory environment. Training, testing and validation data set were split into 70, 15 and 15 %. The result of the research described in this article is different parameter setting for the multilayer neural network for four speakers.
The ATLAS collaboration
2017-01-01
The application of boosted decision trees and deep neural networks to the identification of hadronically-decaying W bosons and top quarks using high-level jet observables as inputs is investigated using Monte Carlo simulations. In the case of both boosted decision trees and deep neural networks, the use of machine learning techniques is found to improve the background rejection with respect to simple reference single jet substructure and mass taggers. Linear correlations between the resulting classifiers and the substructure variables are also presented.
Nitta, Tatsumi; The ATLAS collaboration
2017-01-01
The application of boosted decision trees and deep neural networks to the identification of hadronically-decaying W bosons and top quarks using high-level jet observables as inputs is investigated using Monte Carlo simulations. In the case of both boosted decision trees and deep neural networks, the use of machine learning techniques is found to improve the background rejection with respect to simple reference single jet substructure and mass taggers. Linear correlations between the resulting classifiers and the substructure variables are also presented.
Neural Networks for Flight Control
Jorgensen, Charles C.
1996-01-01
Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.
Generalization performance of regularized neural network models
DEFF Research Database (Denmark)
Larsen, Jan; Hansen, Lars Kai
1994-01-01
Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...
Directory of Open Access Journals (Sweden)
Bernard Y Tumbelaka
2014-01-01
Full Text Available Objectives: The aim of the present research was to identify pulpitis through periapical radiography by applying edges as basis image features, the texture description and the artificial neural networks (ANNs. Materials and Methods: Input image data records of 10 molar and 10 canine teeth were used. The clinical diagnosis of interest cases were represented as normal pulp, reversible and irreversible pulpitis, and necrotic pulp. The following image processing steps were done. First, the data records were converted digitally and preprocessed as its original image using the Gaussian Filter to obtain the best smoothed intensity distribution. Second, the local image differentiation was used to produce edge detector operators, e(x,y as the image gradient; ∇f(x,y providing useful information about the local intensity variations. Third, these results were analyzed by using the texture descriptors to obtain digitally the image entropy, H. The fourth step, all were characterized by the ANNs. Results: The edge detection carried important information about the object boundaries of pulpal health and pain conditions in the dental pulp significantly. The image entropy which was identified, the diagnostic term, was obtained from texture descriptors in the segmentation regions where the curves of pulp states tent convergence with the normal pulp line from 4.9014 to 4.6843 decreasing to the reversible and the irreversible pulpitis line include the nectrotic pulp line from 4.6812 to 4.5926 and then inputting to the ANNs analysis at the same of mean square error around 0.0003. Conclusions: Referred to these results, the correlation of the image entropy and the ANNs analysis could be linearly classified with the critical point of 4.6827. Finally, it could be concluded that the direct reading radiography is better to be digitized in order to provide us the best choice for diagnosis validation.
Artificial Neural Networks for Beginners
Gershenson, Carlos
2003-01-01
The scope of this teaching package is to make a brief induction to Artificial Neural Networks (ANNs) for people who have no previous knowledge of them. We first make a brief introduction to models of networks, for then describing in general terms ANNs. As an application, we explain the backpropagation algorithm, since it is widely used and many other algorithms are derived from it. The user should know algebra and the handling of functions and vectors. Differential calculus is recommendable, ...
Interest Rate Forecasting with Neural Networks
Jan Täppinen
1998-01-01
This paper compares neural networks and linear regression models in interest rate forecasting using US term structure data. The expectations hypothesis gets some extra support from the neural network model as compared to the regression model. A neural network with the whole yield curve spectre from the difference between 1 and 3-month rates to the difference between 5 and 10-year rates predicts changes in interest rates quite well. However, during 1994?1995 the neural networks (as well as the...
Neural network to diagnose lining condition
Yemelyanov, V. A.; Yemelyanova, N. Y.; Nedelkin, A. A.; Zarudnaya, M. V.
2018-03-01
The paper presents data on the problem of diagnosing the lining condition at the iron and steel works. The authors describe the neural network structure and software that are designed and developed to determine the lining burnout zones. The simulation results of the proposed neural networks are presented. The authors note the low learning and classification errors of the proposed neural networks. To realize the proposed neural network, the specialized software has been developed.
Numerical experiments with neural networks
International Nuclear Information System (INIS)
Miranda, Enrique.
1990-01-01
Neural networks are highly idealized models which, in spite of their simplicity, reproduce some key features of the real brain. In this paper, they are introduced at a level adequate for an undergraduate computational physics course. Some relevant magnitudes are defined and evaluated numerically for the Hopfield model and a short term memory model. (Author)
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Artificial Neural Networks A Brief Introduction. Jitendra R Raol Sunilkumar S Mankame. General Article Volume 1 Issue 2 February 1996 pp 47-54. Fulltext. Click here to view fulltext PDF. Permanent link:
Optoelectronic Implementation of Neural Networks
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 9. Optoelectronic Implementation of Neural Networks - Use of Optics in Computing. R Ramachandran. General Article Volume 3 Issue 9 September 1998 pp 45-55. Fulltext. Click here to view fulltext PDF. Permanent link:
Indian Academy of Sciences (India)
works. They have the ability to learn from empirical datal information. They find use in computer science and control engineering fields. In recent years artificial ... However there are vast differences between biological neural networks (BNNs) of the brain and ANN s. A thorough understanding of biologically derived NNs ...
Medical Imaging with Neural Networks
International Nuclear Information System (INIS)
Pattichis, C.; Cnstantinides, A.
1994-01-01
The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors)
Simplified LQG Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1997-01-01
A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...
Novel quantum inspired binary neural network algorithm
Indian Academy of Sciences (India)
In this paper, a quantum based binary neural network algorithm is proposed, named as novel quantum binary neural network algorithm (NQ-BNN). It forms a neural network structure by deciding weights and separability parameter in quantum based manner. Quantum computing concept represents solution probabilistically ...
Analysis of neural networks through base functions
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.
Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more
Energy Technology Data Exchange (ETDEWEB)
Guerra, Fabio A. [Institute of Technology for Development, LACTEC, Low Voltage Technology Unit, UTBT Centro Politecnico UFPR, Zip code 81531-980, Curitiba, PR (Brazil)], E-mail: guerra@lactec.org.br; Coelho, Leandro dos S. [Pontifical Catholic University of Parana, PUCPR, Production and Systems Engineering Graduate Program, LAS/PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil)], E-mail: leandro.coelho@pucpr.br
2008-03-15
An important problem in engineering is the identification of nonlinear systems, among them radial basis function neural networks (RBF-NN) using Gaussian activation functions models, which have received particular attention due to their potential to approximate nonlinear behavior. Several design methods have been proposed for choosing the centers and spread of Gaussian functions and training the RBF-NN. The selection of RBF-NN parameters such as centers, spreads, and weights can be understood as a system identification problem. This paper presents a hybrid training approach based on clustering methods (k-means and c-means) to tune the centers of Gaussian functions used in the hidden layer of RBF-NNs. This design also uses particle swarm optimization (PSO) for centers (local clustering search method) and spread tuning, and the Penrose-Moore pseudoinverse for the adjustment of RBF-NN weight outputs. Simulations involving this RBF-NN design to identify Lorenz's chaotic system indicate that the performance of the proposed method is superior to that of the conventional RBF-NN trained for k-means and the Penrose-Moore pseudoinverse for multi-step ahead forecasting.
International Nuclear Information System (INIS)
Guerra, Fabio A.; Coelho, Leandro dos S.
2008-01-01
An important problem in engineering is the identification of nonlinear systems, among them radial basis function neural networks (RBF-NN) using Gaussian activation functions models, which have received particular attention due to their potential to approximate nonlinear behavior. Several design methods have been proposed for choosing the centers and spread of Gaussian functions and training the RBF-NN. The selection of RBF-NN parameters such as centers, spreads, and weights can be understood as a system identification problem. This paper presents a hybrid training approach based on clustering methods (k-means and c-means) to tune the centers of Gaussian functions used in the hidden layer of RBF-NNs. This design also uses particle swarm optimization (PSO) for centers (local clustering search method) and spread tuning, and the Penrose-Moore pseudoinverse for the adjustment of RBF-NN weight outputs. Simulations involving this RBF-NN design to identify Lorenz's chaotic system indicate that the performance of the proposed method is superior to that of the conventional RBF-NN trained for k-means and the Penrose-Moore pseudoinverse for multi-step ahead forecasting
Directory of Open Access Journals (Sweden)
Lei Si
2015-11-01
Full Text Available In order to efficiently and accurately identify the cutting condition of a shearer, this paper proposed an intelligent multi-sensor data fusion identification method using the parallel quasi-Newton neural network (PQN-NN and the Dempster-Shafer (DS theory. The vibration acceleration signals and current signal of six cutting conditions were collected from a self-designed experimental system and some special state features were extracted from the intrinsic mode functions (IMFs based on the ensemble empirical mode decomposition (EEMD. In the experiment, three classifiers were trained and tested by the selected features of the measured data, and the DS theory was used to combine the identification results of three single classifiers. Furthermore, some comparisons with other methods were carried out. The experimental results indicate that the proposed method performs with higher detection accuracy and credibility than the competing algorithms. Finally, an industrial application example in the fully mechanized coal mining face was demonstrated to specify the effect of the proposed system.
Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Xu, Jing; Zheng, Kehong
2015-11-13
In order to efficiently and accurately identify the cutting condition of a shearer, this paper proposed an intelligent multi-sensor data fusion identification method using the parallel quasi-Newton neural network (PQN-NN) and the Dempster-Shafer (DS) theory. The vibration acceleration signals and current signal of six cutting conditions were collected from a self-designed experimental system and some special state features were extracted from the intrinsic mode functions (IMFs) based on the ensemble empirical mode decomposition (EEMD). In the experiment, three classifiers were trained and tested by the selected features of the measured data, and the DS theory was used to combine the identification results of three single classifiers. Furthermore, some comparisons with other methods were carried out. The experimental results indicate that the proposed method performs with higher detection accuracy and credibility than the competing algorithms. Finally, an industrial application example in the fully mechanized coal mining face was demonstrated to specify the effect of the proposed system.
Online fouling detection in electrical circulation heaters using neural networks
Energy Technology Data Exchange (ETDEWEB)
Lalot, S. [M.E.T.I.E.R., Longuenesse Cedex (France); Universite de Valenciennes (France). LME; Lecoeuche, S. [M.E.T.I.E.R., Longuenesse Cedex (France); Universite de Lille (France). Laboratoire 13D
2003-06-01
Here is presented a method that is able to detect fouling during the service of a circulation electrical heater. The neural based technique is divided in two major steps: identification and classification. Each step uses a neural network, the connection weights of the first one being the inputs of the second network. Each step is detailed and the main characteristics and abilities of the two neural networks are given. It is shown that the method is able to discriminate fouling from viscosity modification that would lead to the same type of effect on the total heat transfer coefficient. (author)
Computation within cultured neural networks.
DeMarse, T; Cadotte, A; Douglas, P; He, P; Trinh, V
2004-01-01
In this paper we present three related areas of research we are pursuing to study neural computation in vitro. Rat cortical neurons cultured on 60 channel multielectrode array (MEA) allow the researcher to measure from and stimulate sixty different sites across a small population of neurons grown in vitro. Using this system we can send stimulation patterns into the network and study how these living neural networks compute by measuring its outputs. Our first series of studies uses chaotic control techniques to study the dynamics and potentially control the behavior of cortical network. At the same time, we are beginning to apply a model of computation called the liquid state machine or LSM model developed by Wolfgang Maass to provide a firm mathematical framework from which to proceed with our investigations. Each of these components is integrated into a third area investigating the role of computation and feedback using a real-time sensory-motor feedback robotic flight system.
Railway track circuit fault diagnosis using recurrent neural networks
de Bruin, T.D.; Verbert, K.A.J.; Babuska, R.
2017-01-01
Timely detection and identification of faults in railway track circuits are crucial for the safety and availability of railway networks. In this paper, the use of the long-short-term memory (LSTM) recurrent neural network is proposed to accomplish these tasks based on the commonly available
Character Recognition Using Genetically Trained Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.
1998-10-01
Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the
Lasch, Peter; Beyer, Wolfgang; Nattermann, Herbert; Stämmler, Maren; Siegbrecht, Enrico; Grunow, Roland; Naumann, Dieter
2009-11-01
This report demonstrates the applicability of a combination of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) and chemometrics for rapid and reliable identification of vegetative cells of the causative agent of anthrax, Bacillus anthracis. Bacillus cultures were prepared under standardized conditions and inactivated according to a recently developed MS-compatible inactivation protocol for highly pathogenic microorganisms. MALDI-TOF MS was then employed to collect spectra from the microbial samples and to build up a database of bacterial reference spectra. This database comprised mass peak profiles of 374 strains from Bacillus and related genera, among them 102 strains of B. anthracis and 121 strains of B. cereus. The information contained in the database was investigated by means of visual inspection of gel view representations, univariate t tests for biomarker identification, unsupervised hierarchical clustering, and artificial neural networks (ANNs). Analysis of gel views and independent t tests suggested B. anthracis- and B. cereus group-specific signals. For example, mass spectra of B. anthracis exhibited discriminating biomarkers at 4,606, 5,413, and 6,679 Da. A systematic search in proteomic databases allowed tentative assignment of some of the biomarkers to ribosomal protein or small acid-soluble proteins. Multivariate pattern analysis by unsupervised hierarchical cluster analysis further revealed a subproteome-based taxonomy of the genus Bacillus. Superior classification accuracy was achieved when supervised ANNs were employed. For the identification of B. anthracis, independent validation of optimized ANN models yielded a diagnostic sensitivity of 100% and a specificity of 100%.
Photon spectrometry utilizing neural networks
International Nuclear Information System (INIS)
Silveira, R.; Benevides, C.; Lima, F.; Vilela, E.
2015-01-01
Having in mind the time spent on the uneventful work of characterization of the radiation beams used in a ionizing radiation metrology laboratory, the Metrology Service of the Centro Regional de Ciencias Nucleares do Nordeste - CRCN-NE verified the applicability of artificial intelligence (artificial neural networks) to perform the spectrometry in photon fields. For this, was developed a multilayer neural network, as an application for the classification of patterns in energy, associated with a thermoluminescent dosimetric system (TLD-700 and TLD-600). A set of dosimeters was initially exposed to various well known medium energies, between 40 keV and 1.2 MeV, coinciding with the beams determined by ISO 4037 standard, for the dose of 10 mSv in the quantity Hp(10), on a chest phantom (ISO slab phantom) with the purpose of generating a set of training data for the neural network. Subsequently, a new set of dosimeters irradiated in unknown energies was presented to the network with the purpose to test the method. The methodology used in this work was suitable for application in the classification of energy beams, having obtained 100% of the classification performed. (authors)
Analysis of complex systems using neural networks
International Nuclear Information System (INIS)
Uhrig, R.E.
1992-01-01
The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems
UAV Trajectory Modeling Using Neural Networks
Xue, Min
2017-01-01
Massive small unmanned aerial vehicles are envisioned to operate in the near future. While there are lots of research problems need to be addressed before dense operations can happen, trajectory modeling remains as one of the keys to understand and develop policies, regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The fidelity requirement of a small unmanned vehicle trajectory model is high because these vehicles are sensitive to winds due to their small size and low operational altitude. Both vehicle control systems and dynamic models are needed for trajectory modeling, which makes the modeling a great challenge, especially considering the fact that manufactures are not willing to share their control systems. This work proposed to use a neural network approach for modelling small unmanned vehicle's trajectory without knowing its control system and bypassing exhaustive efforts for aerodynamic parameter identification. As a proof of concept, instead of collecting data from flight tests, this work used the trajectory data generated by a mathematical vehicle model for training and testing the neural network. The results showed great promise because the trained neural network can predict 4D trajectories accurately, and prediction errors were less than 2:0 meters in both temporal and spatial dimensions.
Artificial Neural Network Model for Predicting Compressive
Directory of Open Access Journals (Sweden)
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Representation of neutron noise data using neural networks
International Nuclear Information System (INIS)
Korsah, K.; Damiano, B.; Wood, R.T.
1992-01-01
This paper describes a neural network-based method of representing neutron noise spectra using a model developed at the Oak Ridge National Laboratory (ORNL). The backpropagation neural network learned to represent neutron noise data in terms of four descriptors, and the network response matched calculated values to within 3.5 percent. These preliminary results are encouraging, and further research is directed towards the application of neural networks in a diagnostics system for the identification of the causes of changes in structural spectral resonances. This work is part of our current investigation of advanced technologies such as expert systems and neural networks for neutron noise data reduction, analysis, and interpretation. The objective is to improve the state-of-the-art of noise analysis as a diagnostic tool for nuclear power plants and other mechanical systems
Convolutional neural networks and face recognition task
Sochenkova, A.; Sochenkov, I.; Makovetskii, A.; Vokhmintsev, A.; Melnikov, A.
2017-09-01
Computer vision tasks are remaining very important for the last couple of years. One of the most complicated problems in computer vision is face recognition that could be used in security systems to provide safety and to identify person among the others. There is a variety of different approaches to solve this task, but there is still no universal solution that would give adequate results in some cases. Current paper presents following approach. Firstly, we extract an area containing face, then we use Canny edge detector. On the next stage we use convolutional neural networks (CNN) to finally solve face recognition and person identification task.
Neural Networks Methodology and Applications
Dreyfus, Gérard
2005-01-01
Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented...
Chaotic wandering motion in connected neural networks
Ohno, Takashi; Shimizu, Toshihiro
2000-06-01
A new type of neural network is proposed. In a system, which consists of one host network and three terminal networks, the associative memory problem is investigated. In each network different patterns are stored. It is shown that each network can retrieve the patterns stored in other networks, and the terminal networks exhibit synchronized behavior. The time evolution and the mechanism of retrieval investigated. .
The LILARTI neural network system
Energy Technology Data Exchange (ETDEWEB)
Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.
1992-10-01
The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.
Parameterization Of Solar Radiation Using Neural Network
International Nuclear Information System (INIS)
Jiya, J. D.; Alfa, B.
2002-01-01
This paper presents a neural network technique for parameterization of global solar radiation. The available data from twenty-one stations is used for training the neural network and the data from other ten stations is used to validate the neural model. The neural network utilizes latitude, longitude, altitude, sunshine duration and period number to parameterize solar radiation values. The testing data was not used in the training to demonstrate the performance of the neural network in unknown stations to parameterize solar radiation. The results indicate a good agreement between the parameterized solar radiation values and actual measured values
Practical neural network recipies in C++
Masters
2014-01-01
This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assum
Neural network modeling of emotion
Levine, Daniel S.
2007-03-01
This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.
Neural networks and their potential application to nuclear power plants
International Nuclear Information System (INIS)
Uhrig, R.E.
1991-01-01
A network of artificial neurons, usually called an artificial neural network is a data processing system consisting of a number of highly interconnected processing elements in an architecture inspired by the structure of the cerebral cortex portion of the brain. Hence, neural networks are often capable of doing things which humans or animals do well but which conventional computers often do poorly. Neural networks exhibit characteristics and capabilities not provided by any other technology. Neural networks may be designed so as to classify an input pattern as one of several predefined types or to create, as needed, categories or classes of system states which can be interpreted by a human operator. Neural networks have the ability to recognize patterns, even when the information comprising these patterns is noisy, sparse, or incomplete. Thus, systems of artificial neural networks show great promise for use in environments in which robust, fault-tolerant pattern recognition is necessary in a real-time mode, and in which the incoming data may be distorted or noisy. The application of neural networks, a rapidly evolving technology used extensively in defense applications, alone or in conjunction with other advanced technologies, to some of the problems of operating nuclear power plants has the potential to enhance the safety, reliability and operability of nuclear power plants. The potential applications of neural networking include, but are not limited to diagnosing specific abnormal conditions, identification of nonlinear dynamics and transients, detection of the change of mode of operation, control of temperature and pressure during start-up, signal validation, plant-wide monitoring using autoassociative neural networks, monitoring of check valves, modeling of the plant thermodynamics, emulation of core reload calculations, analysis of temporal sequences in NRC's ''licensee event reports,'' and monitoring of plant parameters
Neural Networks in Nonlinear Aircraft Control
Linse, Dennis J.
1990-01-01
Recent research indicates that artificial neural networks offer interesting learning or adaptive capabilities. The current research focuses on the potential for application of neural networks in a nonlinear aircraft control law. The current work has been to determine which networks are suitable for such an application and how they will fit into a nonlinear control law.
Adaptive optimization and control using neural networks
Energy Technology Data Exchange (ETDEWEB)
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Oil reservoir properties estimation using neural networks
Energy Technology Data Exchange (ETDEWEB)
Toomarian, N.B. [California Inst. of Tech., Pasadena, CA (United States); Barhen, J.; Glover, C.W. [Oak Ridge National Lab., TN (United States). Center for Engineering Systems Advanced Research; Aminzadeh, F. [UNOCAL Corp., Sugarland, TX (United States)
1997-02-01
This paper investigates the applicability as well as the accuracy of artificial neural networks for estimating specific parameters that describe reservoir properties based on seismic data. This approach relies on JPL`s adjoint operators general purpose neural network code to determine the best suited architecture. The authors believe that results presented in this work demonstrate that artificial neural networks produce surprisingly accurate estimates of the reservoir parameters.
Fuzzy neural network theory and application
Liu, Puyin
2004-01-01
This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he
Artificial Neural Networks and Concentration Residual Augmented ...
African Journals Online (AJOL)
Artificial Neural Networks and Concentration Residual Augmented Classical Least Squares for the Simultaneous Determination of Diphenhydramine, Benzonatate, Guaifenesin and Phenylephrine in their Quaternary Mixture.
Boolean Factor Analysis by Attractor Neural Network
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.
2007-01-01
Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007
Neural network based system for equipment surveillance
Vilim, R.B.; Gross, K.C.; Wegerich, S.W.
1998-04-28
A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.
Aphasia Classification Using Neural Networks
DEFF Research Database (Denmark)
Axer, H.; Jantzen, Jan; Berks, G.
2000-01-01
A web-based software model (http://fuzzy.iau.dtu.dk/aphasia.nsf) was developed as an example for classification of aphasia using neural networks. Two multilayer perceptrons were used to classify the type of aphasia (Broca, Wernicke, anomic, global) according to the results in some subtests...... of the Aachen Aphasia Test (AAT). First a coarse classification was achieved by using an assessment of spontaneous speech of the patient. This classifier produced correct results in 87% of the test cases. For a second test, data analysis tools were used to select four features out of the 30 available test...
Finite connectivity attractor neural networks
International Nuclear Information System (INIS)
Wemmenhove, B; Coolen, A C C
2003-01-01
We study a family of diluted attractor neural networks with a finite average number of (symmetric) connections per neuron. As in finite connectivity spin glasses, their equilibrium properties are described by order parameter functions, for which we derive an integral equation in replica symmetric approximation. A bifurcation analysis of this equation reveals the locations of the paramagnetic to recall and paramagnetic to spin-glass transition lines in the phase diagram. The line separating the retrieval phase from the spin-glass phase is calculated at zero temperature. All phase transitions are found to be continuous
Finite connectivity attractor neural networks
Wemmenhove, B.; Coolen, A. C. C.
2003-09-01
We study a family of diluted attractor neural networks with a finite average number of (symmetric) connections per neuron. As in finite connectivity spin glasses, their equilibrium properties are described by order parameter functions, for which we derive an integral equation in replica symmetric approximation. A bifurcation analysis of this equation reveals the locations of the paramagnetic to recall and paramagnetic to spin-glass transition lines in the phase diagram. The line separating the retrieval phase from the spin-glass phase is calculated at zero temperature. All phase transitions are found to be continuous.
Image Restoration Technology Based on Discrete Neural network
Directory of Open Access Journals (Sweden)
Zhou Duoying
2015-01-01
Full Text Available With the development of computer science and technology, the development of artificial intelligence advances rapidly in the field of image restoration. Based on the MATLAB platform, this paper constructs a kind of image restoration technology of artificial intelligence based on the discrete neural network and feedforward network, and carries out simulation and contrast of the restoration process by the use of the bionic algorithm. Through the application of simulation restoration technology, this paper verifies that the discrete neural network has a good convergence and identification capability in the image restoration technology with a better effect than that of the feedforward network. The restoration technology based on the discrete neural network can provide a reliable mathematical model for this field.
Empirical modeling of nuclear power plants using neural networks
International Nuclear Information System (INIS)
Parlos, A.G.; Atiya, A.; Chong, K.T.
1991-01-01
A summary of a procedure for nonlinear identification of process dynamics encountered in nuclear power plant components is presented in this paper using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the nonlinear structure for system identification. In the overall identification process, the feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of time-dependent system nonlinearities. The standard backpropagation learning algorithm is modified and is used to train the proposed hybrid network in a supervised manner. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The nonlinear response of a representative steam generator is predicted using a neural network and is compared to the response obtained from a sophisticated physical model during both high- and low-power operation. The transient responses compare well, though further research is warranted for training and testing of recurrent neural networks during more severe operational transients and accident scenarios
The Laplacian spectrum of neural networks
de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.
2014-01-01
The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286
Neural networks with discontinuous/impact activations
Akhmet, Marat
2014-01-01
This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...
A neural network for the Bragg synthetic curves recognition
International Nuclear Information System (INIS)
Reynoso V, M.R.; Vega C, J.J.; Fernandez A, J.; Belmont M, E.; Policroniades R, R.; Moreno B, E.
1996-01-01
A ionization chamber was employed named Bragg curve spectroscopy. The Bragg peak amplitude is a monotone growing function of Z, which permits to identify elements through their measurement. A better technique for this measurement is to improve the use of neural networks with the purpose of the identification of the Bragg curve. (Author)
Drift chamber tracking with neural networks
International Nuclear Information System (INIS)
Lindsey, C.S.; Denby, B.; Haggerty, H.
1992-10-01
We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed
Hidden neural networks: application to speech recognition
DEFF Research Database (Denmark)
Riis, Søren Kamaric
1998-01-01
We evaluate the hidden neural network HMM/NN hybrid on two speech recognition benchmark tasks; (1) task independent isolated word recognition on the Phonebook database, and (2) recognition of broad phoneme classes in continuous speech from the TIMIT database. It is shown how hidden neural networks...
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Neural Network Algorithm for Particle Loading
International Nuclear Information System (INIS)
Lewandowski, J.L.V.
2003-01-01
An artificial neural network algorithm for continuous minimization is developed and applied to the case of numerical particle loading. It is shown that higher-order moments of the probability distribution function can be efficiently renormalized using this technique. A general neural network for the renormalization of an arbitrary number of moments is given
Neural Network to Solve Concave Games
Liu, Zixin; Wang, Nengfa
2014-01-01
The issue on neural network method to solve concave games is concerned. Combined with variational inequality, Ky Fan inequality, and projection equation, concave games are transformed into a neural network model. On the basis of the Lyapunov stable theory, some stability results are also given. Finally, two classic games’ simulation results are given to illustrate the theoretical results.
Neural network classification - A Bayesian interpretation
Wan, Eric A.
1990-01-01
The relationship between minimizing a mean squared error and finding the optimal Bayesian classifier is reviewed. This provides a theoretical interpretation for the process by which neural networks are used in classification. A number of confidence measures are proposed to evaluate the performance of the neural network classifier within a statistical framework.
Neural Network Classifier Based on Growing Hyperspheres
Czech Academy of Sciences Publication Activity Database
Jiřina Jr., Marcel; Jiřina, Marcel
2000-01-01
Roč. 10, č. 3 (2000), s. 417-428 ISSN 1210-0552. [Neural Network World 2000. Prague, 09.07.2000-12.07.2000] Grant - others:MŠMT ČR(CZ) VS96047; MPO(CZ) RP-4210 Institutional research plan: AV0Z1030915 Keywords : neural network * classifier * hyperspheres * big -dimensional data Subject RIV: BA - General Mathematics
Adaptive Neurons For Artificial Neural Networks
Tawel, Raoul
1990-01-01
Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.
Recognizing changing seasonal patterns using neural networks
Ph.H.B.F. Franses (Philip Hans); G. Draisma (Gerrit)
1997-01-01
textabstractIn this paper we propose a graphical method based on an artificial neural network model to investigate how and when seasonal patterns in macroeconomic time series change over time. Neural networks are useful since the hidden layer units may become activated only in certain seasons or
A Survey of Neural Network Publications.
Vijayaraman, Bindiganavale S.; Osyk, Barbara
This paper is a survey of publications on artificial neural networks published in business journals for the period ending July 1996. Its purpose is to identify and analyze trends in neural network research during that period. This paper shows which topics have been heavily researched, when these topics were researched, and how that research has…
Neural network monitoring of resistance welding processes
Quero Reboul, José Manuel; Millán Vázquez de la Torre, Rafael Luis; García Franquelo, Leopoldo; Cañas, J.
1994-01-01
Control of weld quality is one of the most important and complex processes to be carried out on production lines. Neural networks have shown good results in fields such as modelling and control of physical processes. It is suggested in this article that a neural classifier should be used to carry out non‐destructive on‐line analysis. This system has been developed and installed at resistance welding stations. Results confirm the validity of neural networks used for this type of application.
Introduction to Concepts in Artificial Neural Networks
Niebur, Dagmar
1995-01-01
This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.
Vein matching using artificial neural network in vein authentication systems
Noori Hoshyar, Azadeh; Sulaiman, Riza
2011-10-01
Personal identification technology as security systems is developing rapidly. Traditional authentication modes like key; password; card are not safe enough because they could be stolen or easily forgotten. Biometric as developed technology has been applied to a wide range of systems. According to different researchers, vein biometric is a good candidate among other biometric traits such as fingerprint, hand geometry, voice, DNA and etc for authentication systems. Vein authentication systems can be designed by different methodologies. All the methodologies consist of matching stage which is too important for final verification of the system. Neural Network is an effective methodology for matching and recognizing individuals in authentication systems. Therefore, this paper explains and implements the Neural Network methodology for finger vein authentication system. Neural Network is trained in Matlab to match the vein features of authentication system. The Network simulation shows the quality of matching as 95% which is a good performance for authentication system matching.
International Conference on Artificial Neural Networks (ICANN)
Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics
2015-01-01
The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...
Neural Based Orthogonal Data Fitting The EXIN Neural Networks
Cirrincione, Giansalvo
2008-01-01
Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Wh
Application of neural networks in coastal engineering
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
/plain; charset=UTF-8 ~lffE~fSTE?rS'ponsoredShort-Term Training Programme on EtiStal Erosion Areas (CEA) - Protection & Management ~_.Jai_ .........~••_ •. 06 - 18, January, 2003 II LECTURE VOLUME II Dr. A. Vittal Hegde Co-ordinator Dr. Subba Rao Co...Clion & Management " 6-18, Jal1uory 2003 at NlTK. Suralhkal 227 NEURAL·NETWORK The word 'Neural Network' is used to normally describe the "Artificial Neural Network"(ANN). Biological neural networks are much more complicated in their elementary structures than...
Fast Fingerprint Classification with Deep Neural Network
DEFF Research Database (Denmark)
Michelsanti, Daniel; Guichi, Yanis; Ene, Andreea-Daniela
2018-01-01
Reducing the number of comparisons in automated fingerprint identification systems is essential when dealing with a large database. Fingerprint classification allows to achieve this goal by dividing fingerprints into several categories, but it presents still some challenges due to the large intra......-class variations and the small inter-class variations. The vast majority of the previous methods uses global characteristics, in particular the orientation image, as features of a classifier. This makes the feature extraction stage highly dependent on preprocessing techniques and usually computationally expensive....... In this work we evaluate the performance of two pre-trained convolutional neural networks fine-tuned on the NIST SD4 benchmark database. The obtained results show that this approach is comparable with other results in the literature, with the advantage of a fast feature extraction stage....
Artificial neural networks in neurosurgery.
Azimi, Parisa; Mohammadi, Hasan Reza; Benzel, Edward C; Shahzadi, Sohrab; Azhari, Shirzad; Montazeri, Ali
2015-03-01
Artificial neural networks (ANNs) effectively analyze non-linear data sets. The aimed was A review of the relevant published articles that focused on the application of ANNs as a tool for assisting clinical decision-making in neurosurgery. A literature review of all full publications in English biomedical journals (1993-2013) was undertaken. The strategy included a combination of key words 'artificial neural networks', 'prognostic', 'brain', 'tumor tracking', 'head', 'tumor', 'spine', 'classification' and 'back pain' in the title and abstract of the manuscripts using the PubMed search engine. The major findings are summarized, with a focus on the application of ANNs for diagnostic and prognostic purposes. Finally, the future of ANNs in neurosurgery is explored. A total of 1093 citations were identified and screened. In all, 57 citations were found to be relevant. Of these, 50 articles were eligible for inclusion in this review. The synthesis of the data showed several applications of ANN in neurosurgery, including: (1) diagnosis and assessment of disease progression in low back pain, brain tumours and primary epilepsy; (2) enhancing clinically relevant information extraction from radiographic images, intracranial pressure processing, low back pain and real-time tumour tracking; (3) outcome prediction in epilepsy, brain metastases, lumbar spinal stenosis, lumbar disc herniation, childhood hydrocephalus, trauma mortality, and the occurrence of symptomatic cerebral vasospasm in patients with aneurysmal subarachnoid haemorrhage; (4) the use in the biomechanical assessments of spinal disease. ANNs can be effectively employed for diagnosis, prognosis and outcome prediction in neurosurgery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Type-2 fuzzy neural networks and their applications
Aliev, Rafik Aziz
2014-01-01
This book deals with the theory, design principles, and application of hybrid intelligent systems using type-2 fuzzy sets in combination with other paradigms of Soft Computing technology such as Neuro-Computing and Evolutionary Computing. It provides a self-contained exposition of the foundation of type-2 fuzzy neural networks and presents a vast compendium of its applications to control, forecasting, decision making, system identification and other real problems. Type-2 Fuzzy Neural Networks and Their Applications is helpful for teachers and students of universities and colleges, for scientis
Acoustic target detection and classification using neural networks
Robertson, James A.; Conlon, Mark
1993-01-01
A neural network approach to the classification of acoustic emissions of ground vehicles and helicopters is demonstrated. Data collected during the Joint Acoustic Propagation Experiment conducted in July of l991 at White Sands Missile Range, New Mexico was used to train a classifier to distinguish between the spectrums of a UH-1, M60, M1 and M114. An output node was also included that would recognize background (i.e. no target) data. Analysis revealed specific hidden nodes responding to the features input into the classifier. Initial results using the neural network were encouraging with high correct identification rates accompanied by high levels of confidence.
Dixit, Vivechana; Tewari, Jagdish C; Cho, Byoung-Kwan; Irudayaraj, Joseph M K
2005-12-01
Fourier transform infrared (FT-IR) single bounce micro-attenuated total reflectance (mATR) spectroscopy, combined with multivariate and artificial neural network (ANN) data analysis, was used to determine the adulteration of industrial grade glycerol in selected red wines. Red wine samples were artificially adulterated with industrial grade glycerol over the concentration range from 0.1 to 15% and calibration models were developed and validated. Single bounce infrared spectra of glycerol adulterated wine samples were recorded in the fingerprint mid-infrared region, 900-1500 cm(-1). Partial least squares (PLS) and PLS first derivatives were used for quantitative analysis (r2 = 0.945 to 0.998), while linear discriminant analysis (LDA) and canonical variate analysis (CVA) were used for classification and discrimination. The standard error of prediction (SEP) in the validation set was between 1.44 and 2.25%. Classification of glycerol adulterants in the different brands of red wine using CVA resulted in a classification accuracy in the range between 94 and 98%. Artificial neural network analysis based on the quick back propagation network (BPN) and the radial basis function network (RBFN) algorithms had classification success rates of 93% using BPN and 100% using RBFN. The genetic algorithm network was able to predict the concentrations of glycerol in wine up to an accuracy of r2 = 0.998.
Local Dynamics in Trained Recurrent Neural Networks
Rivkind, Alexander; Barak, Omri
2017-06-01
Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.
Local Dynamics in Trained Recurrent Neural Networks.
Rivkind, Alexander; Barak, Omri
2017-06-23
Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.
Advanced neural network-based computational schemes for robust fault diagnosis
Mrugalski, Marcin
2014-01-01
The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practica...
Neural networks and orbit control in accelerators
International Nuclear Information System (INIS)
Bozoki, E.; Friedman, A.
1994-01-01
An overview of the architecture, workings and training of Neural Networks is given. We stress the aspects which are important for the use of Neural Networks for orbit control in accelerators and storage rings, especially its ability to cope with the nonlinear behavior of the orbit response to 'kicks' and the slow drift in the orbit response during long-term operation. Results obtained for the two NSLS storage rings with several network architectures and various training methods for each architecture are given
VLSI Cells Placement Using the Neural Networks
International Nuclear Information System (INIS)
Azizi, Hacene; Zouaoui, Lamri; Mokhnache, Salah
2008-01-01
The artificial neural networks have been studied for several years. Their effectiveness makes it possible to expect high performances. The privileged fields of these techniques remain the recognition and classification. Various applications of optimization are also studied under the angle of the artificial neural networks. They make it possible to apply distributed heuristic algorithms. In this article, a solution to placement problem of the various cells at the time of the realization of an integrated circuit is proposed by using the KOHONEN network
Robust Planning and Control Using Neural Networks
1990-06-30
hyperspace . We have been investigating CMAC neural networks with tapered, rather than rectangular, receptive fields. Such networks promise better (continuous...CMOS Logic Cell Arrays.’ UNH Intelligent Structures Group Report ECE.IS.90.01, Feb. 6,1990. Miller, W. T., Box, B. A., Whitney, E. C., and Glynn, J...M., ’Design and Implementation of a High Speed CMAC Neural Network Using Logic Programmable CMOS Logic Cell Arrays." To be presented at the Naval
Pattern recognition using chaotic neural networks
Tan, Z.; Hepburn, B. S.; Tucker, C.; Ali, M. K.
1998-01-01
Pattern recognition by chaotic neural networks is studied using a hyperchaotic neural network as model. Virtual basins of attraction are introduced around unstable periodic orbits which are then used as patterns. Search for periodic orbits in dynamical systems is treated as a process of pattern recognition. The role of synapses on patterns in chaotic networks is discussed. It is shown that distorted states having only limited information of the patterns are successfully recognized.
Pattern recognition using chaotic neural networks
Directory of Open Access Journals (Sweden)
Z. Tan
1998-01-01
Full Text Available Pattern recognition by chaotic neural networks is studied using a hyperchaotic neural network as model. Virtual basins of attraction are introduced around unstable periodic orbits which are then used as patterns. Search for periodic orbits in dynamical systems is treated as a process of pattern recognition. The role of synapses on patterns in chaotic networks is discussed. It is shown that distorted states having only limited information of the patterns are successfully recognized.
System identification of an unmanned quadcopter system using MRAN neural
Pairan, M. F.; Shamsudin, S. S.
2017-12-01
This project presents the performance analysis of the radial basis function neural network (RBF) trained with Minimal Resource Allocating Network (MRAN) algorithm for real-time identification of quadcopter. MRAN’s performance is compared with the RBF with Constant Trace algorithm for 2500 input-output pair data sampling. MRAN utilizes adding and pruning hidden neuron strategy to obtain optimum RBF structure, increase prediction accuracy and reduce training time. The results indicate that MRAN algorithm produces fast training time and more accurate prediction compared with standard RBF. The model proposed in this paper is capable of identifying and modelling a nonlinear representation of the quadcopter flight dynamics.
Use of neural networks in the analysis of complex systems
International Nuclear Information System (INIS)
Uhrig, R.E.
1992-01-01
The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms) to some of the problems of complex engineering systems has the potential to enhance the safety reliability and operability of these systems. The work described here deals with complex systems or parts of such systems that can be isolated from the total system. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network. The neural networks are usually simulated on modern high-speed computers that carry out the calculations serially. However, it is possible to implement neural networks using specially designed microchips where the network calculations are truly carried out in parallel, thereby providing virtually instantaneous outputs for each set of inputs. Specific applications described include: Diagnostics: State of the Plant; Hybrid System for Transient Identification; Detection of Change of Mode in Complex Systems; Sensor Validation; Plant-Wide Monitoring; Monitoring of Performance and Efficiency; and Analysis of Vibrations. Although the specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems
Structured neural networks for pattern recognition.
Murino, V
1998-01-01
This paper proposes a novel approach for the design of structures of neural networks for pattern recognition. The basic idea lies in subdividing the whole classification problem in smaller and simpler problems at different levels, each managed by appropriate components of a complex neural architecture. Three neural structures are presented and applied in a surveillance system aimed at monitoring a railway waiting room classifying potential dangerous situations. Each architecture is composed by nodes, which are actual multilayer perceptrons trained to discriminate between subsets of classes until a complete separation among the classes is achieved. This approach showed better performances with respect to a classical statistical classification procedures and to a single neural network.
Modular representation of layered neural networks.
Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio
2018-01-01
Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Weight Constraints in Neural Networks
Directory of Open Access Journals (Sweden)
Subha Fernando
2012-01-01
Full Text Available Hebbian plasticity precisely describes how synapses increase their synaptic strengths according to the correlated activities between two neurons; however, it fails to explain how these activities dilute the strength of the same synapses. Recent literature has proposed spike-timing-dependent plasticity and short-term plasticity on multiple dynamic stochastic synapses that can control synaptic excitation and remove many user-defined constraints. Under this hypothesis, a network model was implemented giving more computational power to receptors, and the behavior at a synapse was defined by the collective dynamic activities of stochastic receptors. An experiment was conducted to analyze can spike-timing-dependent plasticity interplay with short-term plasticity to balance the excitation of the Hebbian neurons without weight constraints? If so what underline mechanisms help neurons to maintain such excitation in computational environment? According to our results both plasticity mechanisms work together to balance the excitation of the neural network as our neurons stabilized its weights for Poisson inputs with mean firing rates from 10 Hz to 40 Hz. The behavior generated by the two neurons was similar to the behavior discussed under synaptic redistribution, so that synaptic weights were stabilized while there was a continuous increase of presynaptic probability of release and higher turnover rate of postsynaptic receptors.
Application of neural network to CT
International Nuclear Information System (INIS)
Ma, Xiao-Feng; Takeda, Tatsuoki
1999-01-01
This paper presents a new method for two-dimensional image reconstruction by using a multilayer neural network. Multilayer neural networks are extensively investigated and practically applied to solution of various problems such as inverse problems or time series prediction problems. From learning an input-output mapping from a set of examples, neural networks can be regarded as synthesizing an approximation of multidimensional function (that is, solving the problem of hypersurface reconstruction, including smoothing and interpolation). From this viewpoint, neural networks are well suited to the solution of CT image reconstruction. Though a conventionally used object function of a neural network is composed of a sum of squared errors of the output data, we can define an object function composed of a sum of residue of an integral equation. By employing an appropriate line integral for this integral equation, we can construct a neural network that can be used for CT. We applied this method to some model problems and obtained satisfactory results. As it is not necessary to discretized the integral equation using this reconstruction method, therefore it is application to the problem of complicated geometrical shapes is also feasible. Moreover, in neural networks, interpolation is performed quite smoothly, as a result, inverse mapping can be achieved smoothly even in case of including experimental and numerical errors, However, use of conventional back propagation technique for optimization leads to an expensive computation cost. To overcome this drawback, 2nd order optimization methods or parallel computing will be applied in future. (J.P.N.)
Flight control with adaptive critic neural network
Han, Dongchen
2001-10-01
In this dissertation, the adaptive critic neural network technique is applied to solve complex nonlinear system control problems. Based on dynamic programming, the adaptive critic neural network can embed the optimal solution into a neural network. Though trained off-line, the neural network forms a real-time feedback controller. Because of its general interpolation properties, the neurocontroller has inherit robustness. The problems solved here are an agile missile control for U.S. Air Force and a midcourse guidance law for U.S. Navy. In the first three papers, the neural network was used to control an air-to-air agile missile to implement a minimum-time heading-reverse in a vertical plane corresponding to following conditions: a system without constraint, a system with control inequality constraint, and a system with state inequality constraint. While the agile missile is a one-dimensional problem, the midcourse guidance law is the first test-bed for multiple-dimensional problem. In the fourth paper, the neurocontroller is synthesized to guide a surface-to-air missile to a fixed final condition, and to a flexible final condition from a variable initial condition. In order to evaluate the adaptive critic neural network approach, the numerical solutions for these cases are also obtained by solving two-point boundary value problem with a shooting method. All of the results showed that the adaptive critic neural network could solve complex nonlinear system control problems.
Vibration analysis in nuclear power plant using neural networks
International Nuclear Information System (INIS)
Loskiewicz-Buczak, A.; Alguindigue, I.E.
1993-01-01
Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. This paper documents the authors' work on the design of a vibration monitoring methodology enhanced by neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural networks to handle data which may be distorted or noisy. This paper describes three neural networks-based methods for the automation of some of the activities related to motion and vibration monitoring in engineering systems
Neural network applications to measurement calibration verification in power plants
International Nuclear Information System (INIS)
Ipakchi, A.; Khadem, M.; Peng, C.M.; Colley, R.W.
1991-01-01
Nuclear power plant operations and safety rely on the proper operation of the plant monitoring, controls and protection systems. These systems in turn, depend on plant instrumentation for a correct reporting of equipments status and the thermofluid condition of the process. The incorrect reading can be due to instrument failure or drift in calibration. Plant instrumentation are therefore recalibrated on a periodic basis. This is a time consuming and costly operation. This paper presents the preliminary results of an EPRI sponsored research project to develop a neural network-based analytical redundancy technique for instrument calibration reduction. The neural network will be used to predict the reading of a target instrument using readings from other dissimilar instruments. This technique is similar to the conventional on-line parameter identification and model-based observer methods. A methodology for selecting required dissimilar instruments inter-related to the target instrument, and determining the neural network structure is presented
Machine Learning Topological Invariants with Neural Networks
Zhang, Pengfei; Shen, Huitao; Zhai, Hui
2018-02-01
In this Letter we supervisedly train neural networks to distinguish different topological phases in the context of topological band insulators. After training with Hamiltonians of one-dimensional insulators with chiral symmetry, the neural network can predict their topological winding numbers with nearly 100% accuracy, even for Hamiltonians with larger winding numbers that are not included in the training data. These results show a remarkable success that the neural network can capture the global and nonlinear topological features of quantum phases from local inputs. By opening up the neural network, we confirm that the network does learn the discrete version of the winding number formula. We also make a couple of remarks regarding the role of the symmetry and the opposite effect of regularization techniques when applying machine learning to physical systems.
Estimation of Conditional Quantile using Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1999-01-01
The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....
Genetic algorithm for neural networks optimization
Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta
2004-11-01
This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.
Applications of neural network to numerical analyses
International Nuclear Information System (INIS)
Takeda, Tatsuoki; Fukuhara, Makoto; Ma, Xiao-Feng; Liaqat, Ali
1999-01-01
Applications of a multi-layer neural network to numerical analyses are described. We are mainly concerned with the computed tomography and the solution of differential equations. In both cases as the objective functions for the training process of the neural network we employed residuals of the integral equation or the differential equations. This is different from the conventional neural network training where sum of the squared errors of the output values is adopted as the objective function. For model problems both the methods gave satisfactory results and the methods are considered promising for some kind of problems. (author)
Decision boundary feature extraction for neural networks
Lee, Chulhee; Landgrebe, David A.
1992-01-01
We propose a new feature extraction method for neural networks. The method is based on the recently published decision boundary feature extraction algorithm. It has been shown that all the necessary features for classification can be extracted from the decision boundary. To apply the decision boundary feature extraction method, we first define the decision boundary in neural networks. Next, we propose a procedure for extracting all the necessary features for classification from the decision boundary. The proposed algorithm preserves the characteristics of neural networks, which can define arbitrary decision boundary. Experiments show promising results.
Convolutional Neural Network for Image Recognition
Seifnashri, Sahand
2015-01-01
The aim of this project is to use machine learning techniques especially Convolutional Neural Networks for image processing. These techniques can be used for Quark-Gluon discrimination using calorimeters data, but unfortunately I didn’t manage to get the calorimeters data and I just used the Jet data fromminiaodsim(ak4 chs). The Jet data was not good enough for Convolutional Neural Network which is designed for ’image’ recognition. This report is made of twomain part, part one is mainly about implementing Convolutional Neural Network on unphysical data such as MNIST digits and CIFAR-10 dataset and part 2 is about the Jet data.
Nonequilibrium landscape theory of neural networks
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-01-01
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451
Neural Network for Estimating Conditional Distribution
DEFF Research Database (Denmark)
Schiøler, Henrik; Kulczycki, P.
Neural networks for estimating conditional distributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency is proved from a mild set of assumptions. A number of applications within...... statistcs, decision theory and signal processing are suggested, and a numerical example illustrating the capabilities of the elaborated network is given...
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
Directory of Open Access Journals (Sweden)
Chernoded Andrey
2017-01-01
Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
Improved transformer protection using probabilistic neural network ...
African Journals Online (AJOL)
user
secure and dependable protection for power transformers. Owing to its superior learning and generalization capabilities Artificial. Neural Network (ANN) can considerably enhance the scope of WI method. ANN approach is faster, robust and easier to implement than the conventional waveform approach. The use of neural ...
Artificial neural networks a practical course
da Silva, Ivan Nunes; Andrade Flauzino, Rogerio; Liboni, Luisa Helena Bartocci; dos Reis Alves, Silas Franco
2017-01-01
This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.
Neural Networks in Mobile Robot Motion
Directory of Open Access Journals (Sweden)
Danica Janglova
2008-11-01
Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the "free" space using ultrasound range finder data. The second neural network "finds" a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.
Memory pattern analysis of cellular neural networks
International Nuclear Information System (INIS)
Zeng Zhigang; Huang Deshuang; Wang Zengfu
2005-01-01
In this Letter, we have shown that the n-dimensional cellular neural network and delay cellular neural network can have not more than 3 n memory patterns, can have 2 n memory patterns which are locally exponentially stable. And we have obtained the estimates of attractive domain of such 2 n locally exponentially stable memory patterns. In addition, we have derived the conditions that the equilibrium point is locally exponentially stable when the equilibrium point locate the designated position. Some sufficient conditions have been obtained to guarantee the global exponential stability for the cellular neural networks. Those conditions can be directly derived from the parameters of the neural networks, are very easy to verified. The results presented in this Letter are the improvement and extension of the existed ones. Finally, the validity and performance of the results are illustrated by two simulation results
Control Augmentation Using Adaptive Fuzzy Neural Networks
Kato, Akio; Wada, Yoshihisa
Control to improve control characteristics of aircraft, CA (Control Augmentation), is used to realize the desirable motion of aircraft corresponding to pilot's control action. When the control laws using fuzzy inference were designed, trial and error was repeated for optimization of the parameter. Here, in designing control laws using fuzzy neural networks, the systematic optimization of the parameter was possible using the learning algorithm usually used in neural networks, by expressing the fuzzy inference in the form of neural networks. Here, the control laws, which learned the characteristics of the aircraft for one flight condition only, were used in all flight conditions without changing any parameter. Evaluation of the designed control laws showed good performance in all flight conditions. This proves that fuzzy neural networks are an effective and flexible method when applied to control laws for control augmentation of aircraft.
Imbibition well stimulation via neural network design
Weiss, William
2007-08-14
A method for stimulation of hydrocarbon production via imbibition by utilization of surfactants. The method includes use of fuzzy logic and neural network architecture constructs to determine surfactant use.
Neural Networks in Mobile Robot Motion
Directory of Open Access Journals (Sweden)
Danica Janglová
2004-03-01
Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the “free” space using ultrasound range finder data. The second neural network “finds” a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.
Using Neural Networks in Diagnosing Breast Cancer
National Research Council Canada - National Science Library
Fogel, David
1997-01-01
.... In the current study, evolutionary programming is used to train neural networks and linear discriminant models to detect breast cancer in suspicious and microcalcifications using radiographic features and patient age...
Control of autonomous robot using neural networks
Barton, Adam; Volna, Eva
2017-07-01
The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.
PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK
Directory of Open Access Journals (Sweden)
R. Hadapiningradja Kusumodestoni
2015-11-01
Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.
Isolated Speech Recognition Using Artificial Neural Networks
National Research Council Canada - National Science Library
Polur, Prasad
2001-01-01
.... A small size vocabulary containing the words YES and NO is chosen. Spectral features using cepstral analysis are extracted per frame and imported to a feedforward neural network which uses a backpropagation with momentum training algorithm...
Pilot Model Using Neural Networks
Kato, Akio; Matsubara, Genyo; Nakamura, Takeshi
The motion of an aircraft controlled by a pilot is decided depending on the characteristics of a man-machine system. Although analysis and investigation are usually performed using a mathematical model of the aircraft including the control system, a method for making a mathematical model of the pilot, which is necessary for the analysis and study of man-machine systems, has not been established. Although a method for constructing a mathematical model of a pilot using a transfer function 1) has been reported, it is thought that a more accurate and more flexible pilot model may be obtained by applying a neural network (NN). Therefore, various studies have examined a pilot model to which a NN has been applied. As a result, it has been clarified that the application of a NN to a pilot model provides better performance compared to the case of applying a transfer function. Moreover, it has also been clarified that a single versatile pilot model, which can deal with various conditions, can be obtained by applying a NN and studying the control results under various conditions.
Parameter estimation in space systems using recurrent neural networks
Parlos, Alexander G.; Atiya, Amir F.; Sunkel, John W.
1991-01-01
The identification of time-varying parameters encountered in space systems is addressed, using artificial neural systems. A hybrid feedforward/feedback neural network, namely a recurrent multilayer perception, is used as the model structure in the nonlinear system identification. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard back-propagation-learning algorithm is modified and it is used for both the off-line and on-line supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying parameters of nonlinear dynamic systems is investigated by estimating the mass properties of a representative large spacecraft. The changes in the spacecraft inertia are predicted using a trained neural network, during two configurations corresponding to the early and late stages of the spacecraft on-orbit assembly sequence. The proposed on-line mass properties estimation capability offers encouraging results, though, further research is warranted for training and testing the predictive capabilities of these networks beyond nominal spacecraft operations.
Learning Maneuvers Using Neural Network Models
1994-08-07
parametric function approximators such as neural networks ( Tesauro 1991). The prediction process runs in a series of epochs. Each epoch ends when a...function approximator such as a neural network. This technique has recently been used successfully on a large complex problem, Backgammon, by Tesauro (1991...Morgan Kaufman. Tesauro , G. J. (1991). Practical Issues in Temporal Difference Learning. Report RC 17223 (76307), IBM T. J. Watson Research Center
Neural Photo Editing with Introspective Adversarial Networks
Brock, Andrew; Lim, Theodore; Ritchie, J. M.; Weston, Nick
2016-01-01
The increasingly photorealistic sample quality of generative image models suggests their feasibility in applications beyond image generation. We present the Neural Photo Editor, an interface that leverages the power of generative neural networks to make large, semantically coherent changes to existing images. To tackle the challenge of achieving accurate reconstructions without loss of feature quality, we introduce the Introspective Adversarial Network, a novel hybridization of the VAE and GA...
Novel LDPC Decoder via MLP Neural Networks
Karami, Alireza; Attari, Mahmoud Ahmadian
2014-01-01
In this paper, a new method for decoding Low Density Parity Check (LDPC) codes, based on Multi-Layer Perceptron (MLP) neural networks is proposed. Due to the fact that in neural networks all procedures are processed in parallel, this method can be considered as a viable alternative to Message Passing Algorithm (MPA), with high computational complexity. Our proposed algorithm runs with soft criterion and concurrently does not use probabilistic quantities to decide what the estimated codeword i...
Using neural networks in software repositories
Eichmann, David (Editor); Srinivas, Kankanahalli; Boetticher, G.
1992-01-01
The first topic is an exploration of the use of neural network techniques to improve the effectiveness of retrieval in software repositories. The second topic relates to a series of experiments conducted to evaluate the feasibility of using adaptive neural networks as a means of deriving (or more specifically, learning) measures on software. Taken together, these two efforts illuminate a very promising mechanism supporting software infrastructures - one based upon a flexible and responsive technology.
Genetic Algorithms for Evolving Deep Neural Networks
David, Eli; Greental, Iddo
2017-01-01
In recent years, deep learning methods applying unsupervised learning to train deep layers of neural networks have achieved remarkable results in numerous fields. In the past, many genetic algorithms based methods have been successfully applied to training neural networks. In this paper, we extend previous work and propose a GA-assisted method for deep learning. Our experimental results indicate that this GA-assisted approach improves the performance of a deep autoencoder, producing a sparser...
Neural networks, D0, and the SSC
International Nuclear Information System (INIS)
Barter, C.; Cutts, D.; Hoftun, J.S.; Partridge, R.A.; Sornborger, A.T.; Johnson, C.T.; Zeller, R.T.
1989-01-01
We outline several exploratory studies involving neural network simulations applied to pattern recognition in high energy physics. We describe the D0 data acquisition system and a natual means by which algorithms derived from neural networks techniques may be incorporated into recently developed hardware associated with the D0 MicroVAX farm nodes. Such applications to the event filtering needed by SSC detectors look interesting. 10 refs., 11 figs
Application of neural networks in CRM systems
Directory of Open Access Journals (Sweden)
Bojanowska Agnieszka
2017-01-01
Full Text Available The central aim of this study is to investigate how to apply artificial neural networks in Customer Relationship Management (CRM. The paper presents several business applications of neural networks in software systems designed to aid CRM, e.g. in deciding on the profitability of building a relationship with a given customer. Furthermore, a framework for a neural-network based CRM software tool is developed. Building beneficial relationships with customers is generating considerable interest among various businesses, and is often mentioned as one of the crucial objectives of enterprises, next to their key aim: to bring satisfactory profit. There is a growing tendency among businesses to invest in CRM systems, which together with an organisational culture of a company aid managing customer relationships. It is the sheer amount of gathered data as well as the need for constant updating and analysis of this breadth of information that may imply the suitability of neural networks for the application in question. Neural networks exhibit considerably higher computational capabilities than sequential calculations because the solution to a problem is obtained without the need for developing a special algorithm. In the majority of presented CRM applications neural networks constitute and are presented as a managerial decision-taking optimisation tool.
Neural networks for process control and optimization: two industrial applications.
Bloch, Gérard; Denoeux, Thierry
2003-01-01
The two most widely used neural models, multilayer perceptron (MLP) and radial basis function network (RBFN), are presented in the framework of system identification and control. The main steps for building such nonlinear black box models are regressor choice, selection of internal architecture, and parameter estimation. The advantages of neural network models are summarized: universal approximation capabilities, flexibility, and parsimony. Two applications are described in steel industry and water treatment, respectively, the control of alloying process in a hot dipped galvanizing line and the control of a coagulation process in a drinking water treatment plant. These examples highlight the interest of neural techniques, when complex nonlinear phenomena are involved, but the empirical knowledge of control operators can be learned.
Artificial Astrocytes Improve Neural Network Performance
Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-01-01
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157
Artificial astrocytes improve neural network performance.
Directory of Open Access Journals (Sweden)
Ana B Porto-Pazos
Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
NEURAL NETWORKS FOR STOCK MARKET OPTION PRICING
Directory of Open Access Journals (Sweden)
Sergey A. Sannikov
2017-03-01
Full Text Available Introduction: The use of neural networks for non-linear models helps to understand where linear model drawbacks, coused by their specification, reveal themselves. This paper attempts to find this out. The objective of research is to determine the meaning of “option prices calculation using neural networks”. Materials and Methods: We use two kinds of variables: endogenous (variables included in the model of neural network and variables affecting on the model (permanent disturbance. Results: All data are divided into 3 sets: learning, affirming and testing. All selected variables are normalised from 0 to 1. Extreme values of income were shortcut. Discussion and Conclusions: Using the 33-14-1 neural network with direct links we obtained two sets of forecasts. Optimal criteria of strategies in stock markets’ option pricing were developed.
Self-organized critical neural networks
International Nuclear Information System (INIS)
Bornholdt, Stefan; Roehl, Torsten
2003-01-01
A mechanism for self-organization of the degree of connectivity in model neural networks is studied. Network connectivity is regulated locally on the basis of an order parameter of the global dynamics, which is estimated from an observable at the single synapse level. This principle is studied in a two-dimensional neural network with randomly wired asymmetric weights. In this class of networks, network connectivity is closely related to a phase transition between ordered and disordered dynamics. A slow topology change is imposed on the network through a local rewiring rule motivated by activity-dependent synaptic development: Neighbor neurons whose activity is correlated, on average develop a new connection while uncorrelated neighbors tend to disconnect. As a result, robust self-organization of the network towards the order disorder transition occurs. Convergence is independent of initial conditions, robust against thermal noise, and does not require fine tuning of parameters
Customer Targeting: A Neural Network Approach Guided by Genetic Algorithms
YongSeog Kim; W. Nick Street; Gary J. Russell; Filippo Menczer
2005-01-01
One of the key problems in database marketing is the identification and profiling of households that are most likely to be interested in a particular product or service. Principal component analysis (PCA) of customer background information followed by logistic regression analysis of response behavior is commonly used by database marketers. In this paper, we propose a new approach that uses artificial neural networks (ANNs) guided by genetic algorithms (GAs) to target households. We show that ...
Fin-and-tube condenser performance evaluation using neural networks
Energy Technology Data Exchange (ETDEWEB)
Zhao, Ling-Xiao [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [China R and D Center, Carrier Corporation, No. 3239 Shen Jiang Road, Shanghai 201206 (China)
2010-05-15
The paper presents neural network approach to performance evaluation of the fin-and-tube air-cooled condensers which are widely used in air-conditioning and refrigeration systems. Inputs of the neural network include refrigerant and air-flow rates, refrigerant inlet temperature and saturated temperature, and entering air dry-bulb temperature. Outputs of the neural network consist of the heating capacity and the pressure drops on both refrigerant and air sides. The multi-input multi-output (MIMO) neural network is separated into multi-input single-output (MISO) neural networks for training. Afterwards, the trained MISO neural networks are combined into a MIMO neural network, which indicates that the number of training data sets is determined by the biggest MISO neural network not the whole MIMO network. Compared with a validated first-principle model, the standard deviations of neural network models are less than 1.9%, and all errors fall into {+-}5%. (author)
Artificial neural network intelligent method for prediction
Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi
2017-09-01
Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.
Prototype-Incorporated Emotional Neural Network.
Oyedotun, Oyebade K; Khashman, Adnan
2017-08-15
Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.
Estimating Conditional Distributions by Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1998-01-01
Neural Networks for estimating conditionaldistributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency property is considered from a mild set of assumptions. A number of applications...
Medical Text Classification Using Convolutional Neural Networks.
Hughes, Mark; Li, Irene; Kotoulas, Spyros; Suzumura, Toyotaro
2017-01-01
We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by about 15%.
Learning drifting concepts with neural networks
Biehl, Michael; Schwarze, Holm
1993-01-01
The learning of time-dependent concepts with a neural network is studied analytically and numerically. The linearly separable target rule is represented by an N-vector, whose time dependence is modelled by a random or deterministic drift process. A single-layer network is trained online using
Design of Robust Neural Network Classifiers
DEFF Research Database (Denmark)
Larsen, Jan; Andersen, Lars Nonboe; Hintz-Madsen, Mads
1998-01-01
This paper addresses a new framework for designing robust neural network classifiers. The network is optimized using the maximum a posteriori technique, i.e., the cost function is the sum of the log-likelihood and a regularization term (prior). In order to perform robust classification, we present...... a modified likelihood function which incorporates the potential risk of outliers in the data. This leads to the introduction of a new parameter, the outlier probability. Designing the neural classifier involves optimization of network weights as well as outlier probability and regularization parameters. We...
Neural network for sonogram gap filling
DEFF Research Database (Denmark)
Klebæk, Henrik; Jensen, Jørgen Arendt; Hansen, Lars Kai
1995-01-01
. The neural network is trained on part of the data and the network is pruned by the optimal brain damage procedure in order to reduce the number of parameters in the network, and thereby reduce the risk of overfitting. The neural predictor is compared to using a linear filter for the mean and variance time......In duplex imaging both an anatomical B-mode image and a sonogram are acquired, and the time for data acquisition is divided between the two images. This gives problems when rapid B-mode image display is needed, since there is not time for measuring the velocity data. Gaps then appear...
A quantum-implementable neural network model
Chen, Jialin; Wang, Lingli; Charbon, Edoardo
2017-10-01
A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.
Neutron spectrometry using artificial neural networks
International Nuclear Information System (INIS)
Vega-Carrillo, Hector Rene; Martin Hernandez-Davila, Victor; Manzanares-Acuna, Eduardo; Mercado Sanchez, Gema A.; Pilar Iniguez de la Torre, Maria; Barquero, Raquel; Palacios, Francisco; Mendez Villafane, Roberto; Arteaga Arteaga, Tarcicio; Manuel Ortiz Rodriguez, Jose
2006-01-01
An artificial neural network has been designed to obtain neutron spectra from Bonner spheres spectrometer count rates. The neural network was trained using 129 neutron spectra. These include spectra from isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra based on mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. The re-binned spectra and the UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and their respective spectra were used as output during the neural network training. After training, the network was tested with the Bonner spheres count rates produced by folding a set of neutron spectra with the response matrix. This set contains data used during network training as well as data not used. Training and testing was carried out using the Matlab ( R) program. To verify the network unfolding performance, the original and unfolded spectra were compared using the root mean square error. The use of artificial neural networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated with this ill-conditioned problem
Neutron spectrometry with artificial neural networks
International Nuclear Information System (INIS)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Rodriguez, J.M.; Mercado S, G.A.; Iniguez de la Torre Bayo, M.P.; Barquero, R.; Arteaga A, T.
2005-01-01
An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the χ 2 -test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Neutron spectrometry with artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Rodriguez, J.M.; Mercado S, G.A. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Iniguez de la Torre Bayo, M.P. [Universidad de Valladolid, Valladolid (Spain); Barquero, R. [Hospital Universitario Rio Hortega, Valladolid (Spain); Arteaga A, T. [Envases de Zacatecas, S.A. de C.V., Zacatecas (Mexico)]. e-mail: rvega@cantera.reduaz.mx
2005-07-01
An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the {chi}{sup 2}-test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Directory of Open Access Journals (Sweden)
Shing-Hong Liu
2013-01-01
Full Text Available An automatic configuration that can detect the position of R-waves, classify the normal sinus rhythm (NSR and other four arrhythmic types from the continuous ECG signals obtained from the MIT-BIH arrhythmia database is proposed. In this configuration, a support vector machine (SVM was used to detect and mark the ECG heartbeats with raw signals and differential signals of a lead ECG. An algorithm based on the extracted markers segments waveforms of Lead II and V1 of the ECG as the pattern classification features. A self-constructing neural fuzzy inference network (SoNFIN was used to classify NSR and four arrhythmia types, including premature ventricular contraction (PVC, premature atrium contraction (PAC, left bundle branch block (LBBB, and right bundle branch block (RBBB. In a real scenario, the classification results show the accuracy achieved is 96.4%. This performance is suitable for a portable ECG monitor system for home care purposes.
Neural network based multiscale image restoration approach
de Castro, Ana Paula A.; da Silva, José D. S.
2007-02-01
This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.
Neural network technologies for image classification
Korikov, A. M.; Tungusova, A. V.
2015-11-01
We analyze the classes of problems with an objective necessity to use neural network technologies, i.e. representation and resolution problems in the neural network logical basis. Among these problems, image recognition takes an important place, in particular the classification of multi-dimensional data based on information about textural characteristics. These problems occur in aerospace and seismic monitoring, materials science, medicine and other. We reviewed different approaches for the texture description: statistical, structural, and spectral. We developed a neural network technology for resolving a practical problem of cloud image classification for satellite snapshots from the spectroradiometer MODIS. The cloud texture is described by the statistical characteristics of the GLCM (Gray Level Co- Occurrence Matrix) method. From the range of neural network models that might be applied for image classification, we chose the probabilistic neural network model (PNN) and developed an implementation which performs the classification of the main types and subtypes of clouds. Also, we chose experimentally the optimal architecture and parameters for the PNN model which is used for image classification.
Inverting radiometric measurements with a neural network
Measure, Edward M.; Yee, Young P.; Balding, Jeff M.; Watkins, Wendell R.
1992-02-01
A neural network scheme for retrieving remotely sensed vertical temperature profiles was applied to observed ground based radiometer measurements. The neural network used microwave radiance measurements and surface measurements of temperature and pressure as inputs. Because the microwave radiometer is capable of measuring 4 oxygen channels at 5 different elevation angles (9, 15, 25, 40, and 90 degs), 20 microwave measurements are potentially available. Because these measurements have considerable redundancy, a neural network was experimented with, accepting as inputs microwave measurements taken at 53.88 GHz, 40 deg; 57.45 GHz, 40 deg; and 57.45, 90 deg. The primary test site was located at White Sands Missile Range (WSMR), NM. Results are compared with measurements made simultaneously with balloon borne radiosonde instruments and with radiometric temperature retrievals made using more conventional retrieval algorithms. The neural network was trained using a Widrow-Hoff delta rule procedure. Functions of date to include season dependence in the retrieval process and functions of time to include diurnal effects were used as inputs to the neural network.
Flexible body control using neural networks
Mccullough, Claire L.
1992-01-01
Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.
Vibration monitoring of EDF rotating machinery using artificial neural networks
International Nuclear Information System (INIS)
Alguindigue, I.E.; Loskiewicz-Buczak, A.; Uhrig, R.E.; Hamon, L.; Lefevre, F.
1991-01-01
Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural networks to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected by Electricite de France (EDF). Two neural networks algorithms were used in our project: the Recirculation algorithm and the Backpropagation algorithm. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results are very encouraging
Implementing Signature Neural Networks with Spiking Neurons.
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence
Training Deep Spiking Neural Networks Using Backpropagation.
Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael
2016-01-01
Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.
Fault Diagnosis Using Artificial Neural Network
International Nuclear Information System (INIS)
Maayof, R.M.A.; Abdelwahed, S.M.; Ayad, N.M.A.; Elmeniawy, N.M.H.
2004-01-01
This paper represents a special diagnostic system for handling and curing the possible failures of the Cairo Fourier Diffractometer Facility (CFDF). Two intelligent techniques, the neural network system (back propagation method) and the rule-based expert system are discussed. Both systems are integrated together as a pre-processor loosely coupled in order to build the proposed hybrid expert system. The inputs to the neural network level are the indicators conditions (symptoms), from the CFDF control panel. The outputs correspond to the status of the main parts of the CFDF. The rule-based expert system takes the inputs and outputs of the neural networks and also information from the user, to isolate and define precisely the possible faults of the CFDF. It has been found that the developed diagnostic system is both adequate and flexible for the CFDF
Recurrent Neural Network for Computing Outer Inverse.
Živković, Ivan S; Stanimirović, Predrag S; Wei, Yimin
2016-05-01
Two linear recurrent neural networks for generating outer inverses with prescribed range and null space are defined. Each of the proposed recurrent neural networks is based on the matrix-valued differential equation, a generalization of dynamic equations proposed earlier for the nonsingular matrix inversion, the Moore-Penrose inversion, as well as the Drazin inversion, under the condition of zero initial state. The application of the first approach is conditioned by the properties of the spectrum of a certain matrix; the second approach eliminates this drawback, though at the cost of increasing the number of matrix operations. The cases corresponding to the most common generalized inverses are defined. The conditions that ensure stability of the proposed neural network are presented. Illustrative examples present the results of numerical simulations.
Kannada character recognition system using neural network
Kumar, Suresh D. S.; Kamalapuram, Srinivasa K.; Kumar, Ajay B. R.
2013-03-01
Handwriting recognition has been one of the active and challenging research areas in the field of pattern recognition. It has numerous applications which include, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. As there is no sufficient number of works on Indian language character recognition especially Kannada script among 15 major scripts in India. In this paper an attempt is made to recognize handwritten Kannada characters using Feed Forward neural networks. A handwritten Kannada character is resized into 20x30 Pixel. The resized character is used for training the neural network. Once the training process is completed the same character is given as input to the neural network with different set of neurons in hidden layer and their recognition accuracy rate for different Kannada characters has been calculated and compared. The results show that the proposed system yields good recognition accuracy rates comparable to that of other handwritten character recognition systems.
Deep Neural Network Detects Quantum Phase Transition
Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki
2018-03-01
We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.
Open quantum generalisation of Hopfield neural networks
Rotondo, P.; Marcuzzi, M.; Garrahan, J. P.; Lesanovsky, I.; Müller, M.
2018-03-01
We propose a new framework to understand how quantum effects may impact on the dynamics of neural networks. We implement the dynamics of neural networks in terms of Markovian open quantum systems, which allows us to treat thermal and quantum coherent effects on the same footing. In particular, we propose an open quantum generalisation of the Hopfield neural network, the simplest toy model of associative memory. We determine its phase diagram and show that quantum fluctuations give rise to a qualitatively new non-equilibrium phase. This novel phase is characterised by limit cycles corresponding to high-dimensional stationary manifolds that may be regarded as a generalisation of storage patterns to the quantum domain.
Neural Network Classifiers for Local Wind Prediction.
Kretzschmar, Ralf; Eckert, Pierre; Cattani, Daniel; Eggimann, Fritz
2004-05-01
This paper evaluates the quality of neural network classifiers for wind speed and wind gust prediction with prediction lead times between +1 and +24 h. The predictions were realized based on local time series and model data. The selection of appropriate input features was initiated by time series analysis and completed by empirical comparison of neural network classifiers trained on several choices of input features. The selected input features involved day time, yearday, features from a single wind observation device at the site of interest, and features derived from model data. The quality of the resulting classifiers was benchmarked against persistence for two different sites in Switzerland. The neural network classifiers exhibited superior quality when compared with persistence judged on a specific performance measure, hit and false-alarm rates.
Reconstruction of neutron spectra through neural networks
International Nuclear Information System (INIS)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.
2003-01-01
A neural network has been used to reconstruct the neutron spectra starting from the counting rates of the detectors of the Bonner sphere spectrophotometric system. A group of 56 neutron spectra was selected to calculate the counting rates that would produce in a Bonner sphere system, with these data and the spectra it was trained the neural network. To prove the performance of the net, 12 spectra were used, 6 were taken of the group used for the training, 3 were obtained of mathematical functions and those other 3 correspond to real spectra. When comparing the original spectra of those reconstructed by the net we find that our net has a poor performance when reconstructing monoenergetic spectra, this attributes it to those characteristic of the spectra used for the training of the neural network, however for the other groups of spectra the results of the net are appropriate with the prospective ones. (Author)
Equivalence of Conventional and Modified Network of Generalized Neural Elements
Directory of Open Access Journals (Sweden)
E. V. Konovalov
2016-01-01
Full Text Available The article is devoted to the analysis of neural networks consisting of generalized neural elements. The first part of the article proposes a new neural network model — a modified network of generalized neural elements (MGNE-network. This network developes the model of generalized neural element, whose formal description contains some flaws. In the model of the MGNE-network these drawbacks are overcome. A neural network is introduced all at once, without preliminary description of the model of a single neural element and method of such elements interaction. The description of neural network mathematical model is simplified and makes it relatively easy to construct on its basis a simulation model to conduct numerical experiments. The model of the MGNE-network is universal, uniting properties of networks consisting of neurons-oscillators and neurons-detectors. In the second part of the article we prove the equivalence of the dynamics of the two considered neural networks: the network, consisting of classical generalized neural elements, and MGNE-network. We introduce the definition of equivalence in the functioning of the generalized neural element and the MGNE-network consisting of a single element. Then we introduce the definition of the equivalence of the dynamics of the two neural networks in general. It is determined the correlation of different parameters of the two considered neural network models. We discuss the issue of matching the initial conditions of the two considered neural network models. We prove the theorem about the equivalence of the dynamics of the two considered neural networks. This theorem allows us to apply all previously obtained results for the networks, consisting of classical generalized neural elements, to the MGNE-network.
Neural networks and particle physics
Peterson, Carsten
1993-01-01
1. Introduction : Structure of the Central Nervous System Generics2. Feed-forward networks, Perceptions, Function approximators3. Self-organisation, Feature Maps4. Feed-back Networks, The Hopfield model, Optimization problems, Feed-back, Networks, Deformable templates, Graph bisection
Neural network approaches for noisy language modeling.
Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid
2013-11-01
Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.
Generating Seismograms with Deep Neural Networks
Krischer, L.; Fichtner, A.
2017-12-01
The recent surge of successful uses of deep neural networks in computer vision, speech recognition, and natural language processing, mainly enabled by the availability of fast GPUs and extremely large data sets, is starting to see many applications across all natural sciences. In seismology these are largely confined to classification and discrimination tasks. In this contribution we explore the use of deep neural networks for another class of problems: so called generative models.Generative modelling is a branch of statistics concerned with generating new observed data samples, usually by drawing from some underlying probability distribution. Samples with specific attributes can be generated by conditioning on input variables. In this work we condition on seismic source (mechanism and location) and receiver (location) parameters to generate multi-component seismograms.The deep neural networks are trained on synthetic data calculated with Instaseis (http://instaseis.net, van Driel et al. (2015)) and waveforms from the global ShakeMovie project (http://global.shakemovie.princeton.edu, Tromp et al. (2010)). The underlying radially symmetric or smoothly three dimensional Earth structures result in comparatively small waveform differences from similar events or at close receivers and the networks learn to interpolate between training data samples.Of particular importance is the chosen misfit functional. Generative adversarial networks (Goodfellow et al. (2014)) implement a system in which two networks compete: the generator network creates samples and the discriminator network distinguishes these from the true training examples. Both are trained in an adversarial fashion until the discriminator can no longer distinguish between generated and real samples. We show how this can be applied to seismograms and in particular how it compares to networks trained with more conventional misfit metrics. Last but not least we attempt to shed some light on the black-box nature of
Inferring network interactions using recurrent neural networks and swarm intelligence.
Ressom, Habtom W; Zhang, Yuji; Xuan, Jianhua; Wang, Yue; Clarke, Robert
2006-01-01
We present a novel algorithm combining artificial neural networks and swarm intelligence (SI) methods to infer network interactions. The algorithm uses ant colony optimization (ACO) to identify the optimal architecture of a recurrent neural network (RNN), while the weights of the RNN are optimized using particle swarm optimization (PSO). Our goal is to construct an RNN that mimics the true structure of an unknown network and the time-series data that the network generated. We applied the proposed hybrid SI-RNN algorithm to infer a simulated genetic network. The results indicate that the algorithm has a promising potential to infer complex interactions such as gene regulatory networks from time-series gene expression data.
Railway Track Circuit Fault Diagnosis Using Recurrent Neural Networks.
de Bruin, Tim; Verbert, Kim; Babuska, Robert
2017-03-01
Timely detection and identification of faults in railway track circuits are crucial for the safety and availability of railway networks. In this paper, the use of the long-short-term memory (LSTM) recurrent neural network is proposed to accomplish these tasks based on the commonly available measurement signals. By considering the signals from multiple track circuits in a geographic area, faults are diagnosed from their spatial and temporal dependences. A generative model is used to show that the LSTM network can learn these dependences directly from the data. The network correctly classifies 99.7% of the test input sequences, with no false positive fault detections. In addition, the t-Distributed Stochastic Neighbor Embedding (t-SNE) method is used to examine the resulting network, further showing that it has learned the relevant dependences in the data. Finally, we compare our LSTM network with a convolutional network trained on the same task. From this comparison, we conclude that the LSTM network architecture is better suited for the railway track circuit fault detection and identification tasks than the convolutional network.
Neural networks advances and applications 2
Gelenbe, E
1992-01-01
The present volume is a natural follow-up to Neural Networks: Advances and Applications which appeared one year previously. As the title indicates, it combines the presentation of recent methodological results concerning computational models and results inspired by neural networks, and of well-documented applications which illustrate the use of such models in the solution of difficult problems. The volume is balanced with respect to these two orientations: it contains six papers concerning methodological developments and five papers concerning applications and examples illustrating the theoret
Human Face Recognition Using Convolutional Neural Networks
Directory of Open Access Journals (Sweden)
Răzvan-Daniel Albu
2009-10-01
Full Text Available In this paper, I present a novel hybrid face recognition approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns. The convolutional network extracts successively larger features in a hierarchical set of layers. With the weights of the trained neural networks there are created kernel windows used for feature extraction in a 3-stage algorithm. I present experimental results illustrating the efficiency of the proposed approach. I use a database of 796 images of 159 individuals from Reims University which contains quite a high degree of variability in expression, pose, and facial details.
Optimal control learning with artificial neural networks
International Nuclear Information System (INIS)
Martinez, J.M.; Parey, C.; Houkari, M.
1993-01-01
This paper shows neural networks capabilities in optimal control applications of non linear dynamic systems. Our method is issued of a classical method concerning the direct research of the optimal control using gradient techniques. We show that neural approach and backpropagation paradigm are able to solve efficiently equations relative to necessary conditions for an optimizing solution. We have taken into account the known capabilities of multi layered networks in approximation functions. And for dynamic systems, we have generalized the indirect learning of inverse model adaptive architecture that is capable to define an optimal control in relation to a temporal criterion. (orig.)
Alpha spectral analysis via artificial neural networks
International Nuclear Information System (INIS)
Kangas, L.J.; Hashem, S.; Keller, P.E.; Kouzes, R.T.; Troyer, G.L.
1994-10-01
An artificial neural network system that assigns quality factors to alpha particle energy spectra is discussed. The alpha energy spectra are used to detect plutonium contamination in the work environment. The quality factors represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with a quality factor by an expert and used in training the artificial neural network expert system. The investigation shows that the expert knowledge of alpha spectra quality factors can be transferred to an ANN system
Additive Feed Forward Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1999-01-01
. A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...
Top tagging with deep neural networks [Vidyo
CERN. Geneva
2017-01-01
Recent literature on deep neural networks for top tagging has focussed on image based techniques or multivariate approaches using high level jet substructure variables. Here, we take a sequential approach to this task by using anordered sequence of energy deposits as training inputs. Unlike previous approaches, this strategy does not result in a loss of information during pixelization or the calculation of high level features. We also propose new preprocessing methods that do not alter key physical quantities such as jet mass. We compare the performance of this approach to standard tagging techniques and present results evaluating the robustness of the neural network to pileup.
Target recognition based on convolutional neural network
Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian
2017-11-01
One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.
Indian Academy of Sciences (India)
cial intelligence. However to understand the basics of ANNs, a knowledge of neurobiology is not necessary. Yet, it is a good idea to understand how ANNs have been derived from real biological neural systems (see Figures 1,2 and the accompanying boxes). The soma of the cell body receives inputs from other neurons via.
Neural networks for improved target differentiation and localization with sonar.
Ayrulu, B; Barshan, B
2001-04-01
This study investigates the processing of sonar signals using neural networks for robust differentiation of commonly encountered features in indoor robot environments. Differentiation of such features is of interest for intelligent systems in a variety of applications. Different representations of amplitude and time-of-flight measurement patterns acquired from a real sonar system are processed. In most cases, best results are obtained with the low-frequency component of the discrete wavelet transform of these patterns. Modular and non-modular neural network structures trained with the back-propagation and generating-shrinking algorithms are used to incorporate learning in the identification of parameter relations for target primitives. Networks trained with the generating-shrinking algorithm demonstrate better generalization and interpolation capability and faster convergence rate. Neural networks can differentiate more targets employing only a single sensor node, with a higher correct differentiation percentage (99%) than achieved with previously reported methods (61-90%) employing multiple sensor nodes. A sensor node is a pair of transducers with fixed separation, that can rotate and scan the target to collect data. Had the number of sensing nodes been reduced in the other methods, their performance would have been even worse. The success of the neural network approach shows that the sonar signals do contain sufficient information to differentiate all target types, but the previously reported methods are unable to resolve this identifying information. This work can find application in areas where recognition of patterns hidden in sonar signals is required. Some examples are system control based on acoustic signal detection and identification, map building, navigation, obstacle avoidance, and target-tracking applications for mobile robots and other intelligent systems.
Exploiting network redundancy for low-cost neural network realizations.
Keegstra, H; Jansen, WJ; Nijhuis, JAG; Spaanenburg, L; Stevens, H; Udding, JT
1996-01-01
A method is presented to optimize a trained neural network for physical realization styles. Target architectures are embedded microcontrollers or standard cell based ASIC designs. The approach exploits the redundancy in the network, required for successful training, to replace the synaptic weighting
Neutron spectrum unfolding using neural networks
International Nuclear Information System (INIS)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.
2004-01-01
An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using a large set of neutron spectra compiled by the International Atomic Energy Agency. These include spectra from iso- topic neutron sources, reference and operational neutron spectra obtained from accelerators and nuclear reactors. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and correspondent spectrum was used as output during neural network training. The network has 7 input nodes, 56 neurons as hidden layer and 31 neurons in the output layer. After training the network was tested with the Bonner spheres count rates produced by twelve neutron spectra. The network allows unfolding the neutron spectrum from count rates measured with Bonner spheres. Good results are obtained when testing count rates belong to neutron spectra used during training, acceptable results are obtained for count rates obtained from actual neutron fields; however the network fails when count rates belong to monoenergetic neutron sources. (Author)
Semantic Networks and Neural Nets.
1984-06-01
and memory retrieval [Anderson 83]. Most other work using semantic network models assumes that the network is passive and is interpreted by a control...representation also permits representation of sufficient conditions. Imagine that being blue is a sufficient property of blueberries i.e. "if something...B BALL .LB 25 3. Inference in memory networks Section 2 described a notation for representing knowledge and also provided a partial specification of
Artificial neural networks for classifying olfactory signals.
Linder, R; Pöppl, S J
2000-01-01
For practical applications, artificial neural networks have to meet several requirements: Mainly they should learn quick, classify accurate and behave robust. Programs should be user-friendly and should not need the presence of an expert for fine tuning diverse learning parameters. The present paper demonstrates an approach using an oversized network topology, adaptive propagation (APROP), a modified error function, and averaging outputs of four networks described for the first time. As an example, signals from different semiconductor gas sensors of an electronic nose were classified. The electronic nose smelt different types of edible oil with extremely different a-priori-probabilities. The fully-specified neural network classifier fulfilled the above mentioned demands. The new approach will be helpful not only for classifying olfactory signals automatically but also in many other fields in medicine, e.g. in data mining from medical databases.
Computational chaos in massively parallel neural networks
Barhen, Jacob; Gulati, Sandeep
1989-01-01
A fundamental issue which directly impacts the scalability of current theoretical neural network models to massively parallel embodiments, in both software as well as hardware, is the inherent and unavoidable concurrent asynchronicity of emerging fine-grained computational ensembles and the possible emergence of chaotic manifestations. Previous analyses attributed dynamical instability to the topology of the interconnection matrix, to parasitic components or to propagation delays. However, researchers have observed the existence of emergent computational chaos in a concurrently asynchronous framework, independent of the network topology. Researcher present a methodology enabling the effective asynchronous operation of large-scale neural networks. Necessary and sufficient conditions guaranteeing concurrent asynchronous convergence are established in terms of contracting operators. Lyapunov exponents are computed formally to characterize the underlying nonlinear dynamics. Simulation results are presented to illustrate network convergence to the correct results, even in the presence of large delays.
A neural network with modular hierarchical learning
Baldi, Pierre F. (Inventor); Toomarian, Nikzad (Inventor)
1994-01-01
This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.
An Artificial Neural Network Controller for Intelligent Transportation Systems Applications
1996-01-01
An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...
Wave transmission prediction of multilayer floating breakwater using neural network
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Patil, S.G.; Hegde, A.V.
. Among many neural network architectures, the three layers feed forward error backpropagation neural network (BNN) is the most commonly used representing the input nodes as first layer, hidden nodes as second layer and output nodes as third layer...
Solos (Dice Game) and Conductor (Neural Network)
Marquetti, Andre
2015-01-01
Solos (Dice Game) and Conductor (Neural Network) combines a multilayered environment made of solo pieces, ensemble music, and a digital network. A series of short interludes separate each solo and the Main Section of the composition. The Main Section re-unifies the instruments’ solos by granting the performer the opportunity to improvise over a repeated vamp. Unique audio synthesis methods identify each solo instrument. The solo morphology for the clarinet is an open-notated piece derived fro...
Neural Networks Applied to Optimal Flight Control
McKelvey, Tomas
1992-01-01
This paper presents a method for developing control laws for nonlinear systems based on an optimal control formulation. Due to the nonlinearities of the system, no analytical solution exists. The method proposed here uses the 'black box' structure of a neural network to model a feedback control law. The network is trained with the back-propagation learning method by using examples of optimal control produced with a differential dynamic programming technique. Two different optimal control prob...
Convergence Results for Neural Networks via Electrodynamics
Panigrahy, Rina; Rahimi, Ali; Sachdeva, Sushant; Zhang, Qiuyi
2018-01-01
We study whether a depth two neural network can learn another depth two network using gradient descent. Assuming a linear output node, we show that the question of whether gradient descent converges to the target function is equivalent to the following question in electrodynamics: Given $k$ fixed protons in $\\mathbb{R}^d,$ and $k$ electrons, each moving due to the attractive force from the protons and repulsive force from the remaining electrons, whether at equilibrium all the electrons will ...
Simplified Learning Scheme For Analog Neural Network
Eberhardt, Silvio P.
1991-01-01
Synaptic connections adjusted one at a time in small increments. Simplified gradient-descent learning scheme for electronic neural-network processor less efficient than better-known back-propagation scheme, but offers two advantages: easily implemented in circuitry because data-access circuitry separated from learning circuitry; and independence of data-access circuitry makes possible to implement feedforward as well as feedback networks, including those of multiple-attractor type. Important in such applications as recognition of patterns.
Auto-associative nanoelectronic neural network
Energy Technology Data Exchange (ETDEWEB)
Nogueira, C. P. S. M.; Guimarães, J. G. [Departamento de Engenharia Elétrica - Laboratório de Dispositivos e Circuito Integrado, Universidade de Brasília, CP 4386, CEP 70904-970 Brasília DF (Brazil)
2014-05-15
In this paper, an auto-associative neural network using single-electron tunneling (SET) devices is proposed and simulated at low temperature. The nanoelectronic auto-associative network is able to converge to a stable state, previously stored during training. The recognition of the pattern involves decreasing the energy of the input state until it achieves a point of local minimum energy, which corresponds to one of the stored patterns.
Auto-associative nanoelectronic neural network
International Nuclear Information System (INIS)
Nogueira, C. P. S. M.; Guimarães, J. G.
2014-01-01
In this paper, an auto-associative neural network using single-electron tunneling (SET) devices is proposed and simulated at low temperature. The nanoelectronic auto-associative network is able to converge to a stable state, previously stored during training. The recognition of the pattern involves decreasing the energy of the input state until it achieves a point of local minimum energy, which corresponds to one of the stored patterns
A short-term neural network memory
Energy Technology Data Exchange (ETDEWEB)
Morris, R.J.T.; Wong, W.S.
1988-12-01
Neural network memories with storage prescriptions based on Hebb's rule are known to collapse as more words are stored. By requiring that the most recently stored word be remembered precisely, a new simple short-term neutral network memory is obtained and its steady state capacity analyzed and simulated. Comparisons are drawn with Hopfield's method, the delta method of Widrow and Hoff, and the revised marginalist model of Mezard, Nadal, and Toulouse.
Learning-parameter adjustment in neural networks
Heskes, Tom M.; Kappen, Bert
1992-06-01
We present a learning-parameter adjustment algorithm, valid for a large class of learning rules in neural-network literature. The algorithm follows directly from a consideration of the statistics of the weights in the network. The characteristic behavior of the algorithm is calculated, both in a fixed and a changing environment. A simple example, Widrow-Hoff learning for statistical classification, serves as an illustration.
Momoh, James A.; Wang, Yanchun; Dolce, James L.
1997-01-01
This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.
[Terahertz Spectroscopic Identification with Deep Belief Network].
Ma, Shuai; Shen, Tao; Wang, Rui-qi; Lai, Hua; Yu, Zheng-tao
2015-12-01
Feature extraction and classification are the key issues of terahertz spectroscopy identification. Because many materials have no apparent absorption peaks in the terahertz band, it is difficult to extract theirs terahertz spectroscopy feature and identify. To this end, a novel of identify terahertz spectroscopy approach with Deep Belief Network (DBN) was studied in this paper, which combines the advantages of DBN and K-Nearest Neighbors (KNN) classifier. Firstly, cubic spline interpolation and S-G filter were used to normalize the eight kinds of substances (ATP, Acetylcholine Bromide, Bifenthrin, Buprofezin, Carbazole, Bleomycin, Buckminster and Cylotriphosphazene) terahertz transmission spectra in the range of 0.9-6 THz. Secondly, the DBN model was built by two restricted Boltzmann machine (RBM) and then trained layer by layer using unsupervised approach. Instead of using handmade features, the DBN was employed to learn suitable features automatically with raw input data. Finally, a KNN classifier was applied to identify the terahertz spectrum. Experimental results show that using the feature learned by DBN can identify the terahertz spectrum of different substances with the recognition rate of over 90%, which demonstrates that the proposed method can automatically extract the effective features of terahertz spectrum. Furthermore, this KNN classifier was compared with others (BP neural network, SOM neural network and RBF neural network). Comparisons showed that the recognition rate of KNN classifier is better than the other three classifiers. Using the approach that automatic extract terahertz spectrum features by DBN can greatly reduce the workload of feature extraction. This proposed method shows a promising future in the application of identifying the mass terahertz spectroscopy.
Artificial neural networks in neutron dosimetry
International Nuclear Information System (INIS)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A.; Gallego, E.; Lorente, A.
2005-01-01
An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the χ 2 - test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Parameter estimation using compensatory neural networks
Indian Academy of Sciences (India)
Proposed here is a new neuron model, a basis for Compensatory Neural Network Architecture (CNNA), which not only reduces the total number of interconnections among neurons but also reduces the total computing time for training. The suggested model has properties of the basic neuron model as well as the higher ...
Neural Networks for protein Structure Prediction
DEFF Research Database (Denmark)
Bohr, Henrik
1998-01-01
This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...
Visualization of neural networks using saliency maps
DEFF Research Database (Denmark)
Mørch, Niels J.S.; Kjems, Ulrik; Hansen, Lars Kai
1995-01-01
The saliency map is proposed as a new method for understanding and visualizing the nonlinearities embedded in feedforward neural networks, with emphasis on the ill-posed case, where the dimensionality of the input-field by far exceeds the number of examples. Several levels of approximations...
Towards semen quality assessment using neural networks
DEFF Research Database (Denmark)
Linneberg, Christian; Salamon, P.; Svarer, C.
1994-01-01
The paper presents the methodology and results from a neural net based classification of human sperm head morphology. The methodology uses a preprocessing scheme in which invariant Fourier descriptors are lumped into “energy” bands. The resulting networks are pruned using optimal brain damage...
Image Encryption and Chaotic Cellular Neural Network
Peng, Jun; Zhang, Du
Machine learning has been playing an increasingly important role in information security and assurance. One of the areas of new applications is to design cryptographic systems by using chaotic neural network due to the fact that chaotic systems have several appealing features for information security applications. In this chapter, we describe a novel image encryption algorithm that is based on a chaotic cellular neural network. We start by giving an introduction to the concept of image encryption and its main technologies, and an overview of the chaotic cellular neural network. We then discuss the proposed image encryption algorithm in details, which is followed by a number of security analyses (key space analysis, sensitivity analysis, information entropy analysis and statistical analysis). The comparison with the most recently reported chaos-based image encryption algorithms indicates that the algorithm proposed in this chapter has a better security performance. Finally, we conclude the chapter with possible future work and application prospects of the chaotic cellular neural network in other information assurance and security areas.
Separable explanations of neural network decisions
DEFF Research Database (Denmark)
Rieger, Laura
2017-01-01
Deep Taylor Decomposition is a method used to explain neural network decisions. When applying this method to non-dominant classifications, the resulting explanation does not reflect important features for the chosen classification. We propose that this is caused by the dense layers and propose...
Localizing Tortoise Nests by Neural Networks.
Directory of Open Access Journals (Sweden)
Roberto Barbuti
Full Text Available The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating. Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN. We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours, the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.
Feature to prototype transition in neural networks
Krotov, Dmitry; Hopfield, John
Models of associative memory with higher order (higher than quadratic) interactions, and their relationship to neural networks used in deep learning are discussed. Associative memory is conventionally described by recurrent neural networks with dynamical convergence to stable points. Deep learning typically uses feedforward neural nets without dynamics. However, a simple duality relates these two different views when applied to problems of pattern classification. From the perspective of associative memory such models deserve attention because they make it possible to store a much larger number of memories, compared to the quadratic case. In the dual description, these models correspond to feedforward neural networks with one hidden layer and unusual activation functions transmitting the activities of the visible neurons to the hidden layer. These activation functions are rectified polynomials of a higher degree rather than the rectified linear functions used in deep learning. The network learns representations of the data in terms of features for rectified linear functions, but as the power in the activation function is increased there is a gradual shift to a prototype-based representation, the two extreme regimes of pattern recognition known in cognitive psychology. Simons Center for Systems Biology.
water demand prediction using artificial neural network
African Journals Online (AJOL)
user
2017-01-01
Jan 1, 2017 ... 2 DEPT OF ELECTRICAL & ELECTRONICS ENGR'G ABUBAKA TAFAWA BALEWA UNIV., BAUCHI, BAUCHI STATE. NIGERIA. E-mail addresses: ... cubic meters per capital per year (water scarcity), health, economic ..... task of the neural network, the data set was normalized to [0, 1] range using equation.
Parameter estimation using compensatory neural networks
Indian Academy of Sciences (India)
Abstract. Proposed here is a new neuron model, a basis for Compensatory. Neural Network Architecture (CNNA), which not only reduces the total number of interconnections among neurons but also reduces the total computing time for training. The suggested model has properties of the basic neuron model as well as the ...
Novel quantum inspired binary neural network algorithm
Indian Academy of Sciences (India)
This parameter is taken as the threshold of neuron for learning of neural network. This algorithm is tested with three benchmark datasets and ... Author Affiliations. OM PRAKASH PATEL1 ARUNA TIWARI. Department of Computer Science and Engineering, Indian Institute of Technology Indore, Indore 453552, India ...
Localizing Tortoise Nests by Neural Networks.
Barbuti, Roberto; Chessa, Stefano; Micheli, Alessio; Pucci, Rita
2016-01-01
The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating). Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS) which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN). We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours), the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.
Applying Artificial Neural Networks for Face Recognition
Directory of Open Access Journals (Sweden)
Thai Hoang Le
2011-01-01
Full Text Available This paper introduces some novel models for all steps of a face recognition system. In the step of face detection, we propose a hybrid model combining AdaBoost and Artificial Neural Network (ABANN to solve the process efficiently. In the next step, labeled faces detected by ABANN will be aligned by Active Shape Model and Multi Layer Perceptron. In this alignment step, we propose a new 2D local texture model based on Multi Layer Perceptron. The classifier of the model significantly improves the accuracy and the robustness of local searching on faces with expression variation and ambiguous contours. In the feature extraction step, we describe a methodology for improving the efficiency by the association of two methods: geometric feature based method and Independent Component Analysis method. In the face matching step, we apply a model combining many Neural Networks for matching geometric features of human face. The model links many Neural Networks together, so we call it Multi Artificial Neural Network. MIT + CMU database is used for evaluating our proposed methods for face detection and alignment. Finally, the experimental results of all steps on CallTech database show the feasibility of our proposed model.
Energy Complexity of Recurrent Neural Networks
Czech Academy of Sciences Publication Activity Database
Šíma, Jiří
2014-01-01
Roč. 26, č. 5 (2014), s. 953-973 ISSN 0899-7667 R&D Projects: GA ČR GAP202/10/1333 Institutional support: RVO:67985807 Keywords : neural network * finite automaton * energy complexity * optimal size Subject RIV: IN - Informatics, Computer Science Impact factor: 2.207, year: 2014
Parameter estimation using compensatory neural networks
Indian Academy of Sciences (India)
of interconnections among neurons but also reduces the total computing time for training. The suggested model has properties of the basic neuron ..... Engelbrecht A P, Cloete I, Geldenhuys J, Zurada J M 1995 Automatic scaling using gamma learning for feedforward neural networks. From natural to artificial computing.
Nonlinear Time Series Analysis via Neural Networks
Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin
This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.
Neural model of the genetic network
Czech Academy of Sciences Publication Activity Database
Vohradský, Jiří
2001-01-01
Roč. 276, č. 39 (2001), s. 36168-36173 ISSN 0021-9258 R&D Projects: GA ČR GA204/00/1253 Institutional research plan: CEZ:AV0Z5020903 Keywords : bacteriophage * neural network Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.258, year: 2001
Based on BP Neural Network Stock Prediction
Liu, Xiangwei; Ma, Xin
2012-01-01
The stock market has a high profit and high risk features, on the stock market analysis and prediction research has been paid attention to by people. Stock price trend is a complex nonlinear function, so the price has certain predictability. This article mainly with improved BP neural network (BPNN) to set up the stock market prediction model, and…
Improved transformer protection using probabilistic neural network ...
African Journals Online (AJOL)
This article presents a novel technique to distinguish between magnetizing inrush current and internal fault current of power transformer. An algorithm has been developed around the theme of the conventional differential protection method in which parallel combination of Probabilistic Neural Network (PNN) and Power ...
Artificial neural networks and support vector mac
Indian Academy of Sciences (India)
number of independent, in this case the chemical features, and by the number of dependent variables, in this study, the electroluminescence. The software WEKA (Hall et al. 2009) was used to develop artificial neural networks models that could predict electroluminescence with good accuracy. It generated five artificial ...
Convolutional Neural Networks for SAR Image Segmentation
DEFF Research Database (Denmark)
Malmgren-Hansen, David; Nobel-Jørgensen, Morten
2015-01-01
Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...
Dissipative rendering and neural network control system design
Gonzalez, Oscar R.
1995-01-01
Model-based control system designs are limited by the accuracy of the models of the plant, plant uncertainty, and exogenous signals. Although better models can be obtained with system identification, the models and control designs still have limitations. One approach to reduce the dependency on particular models is to design a set of compensators that will guarantee robust stability to a set of plants. Optimization over the compensator parameters can then be used to get the desired performance. Conservativeness of this approach can be reduced by integrating fundamental properties of the plant models. This is the approach of dissipative control design. Dissipative control designs are based on several variations of the Passivity Theorem, which have been proven for nonlinear/linear and continuous-time/discrete-time systems. These theorems depend not on a specific model of a plant, but on its general dissipative properties. Dissipative control design has found wide applicability in flexible space structures and robotic systems that can be configured to be dissipative. Currently, there is ongoing research to improve the performance of dissipative control designs. For aircraft systems that are not dissipative active control may be used to make them dissipative and then a dissipative control design technique can be used. It is also possible that rendering a system dissipative and dissipative control design may be combined into one step. Furthermore, the transformation of a non-dissipative system to dissipative can be done robustly. One sequential design procedure for finite dimensional linear time-invariant systems has been developed. For nonlinear plants that cannot be controlled adequately with a single linear controller, model-based techniques have additional problems. Nonlinear system identification is still a research topic. Lacking analytical models for model-based design, artificial neural network algorithms have recently received considerable attention. Using
Darras, T.; Borrell Estupina, V.; Kong-A-Siou, L.; Vayssade, B.; Johannet, A.; Pistre, S.
2015-10-01
Flash floods pose significant hazards in urbanised zones and have important implications financially and for humans alike in both the present and future due to the likelihood that global climate change will exacerbate their consequences. It is thus of crucial importance to improve the models of these phenomena especially when they occur in heterogeneous and karst basins where they are difficult to describe physically. Toward this goal, this paper applies a recent methodology (Knowledge eXtraction (KnoX) methodology) dedicated to extracting knowledge from a neural network model to better determine the contributions and time responses of several well-identified geographic zones of an aquifer. To assess the interest of this methodology, a case study was conducted in southern France: the Lez hydrosystem whose river crosses the conurbation of Montpellier (400 000 inhabitants). Rainfall contributions and time transfers were estimated and analysed in four geologically delimited zones to estimate the sensitivity of flash floods to water coming from the surface or karst. The Causse de Viols-le-Fort is shown to be the main contributor to flash floods and the delay between surface and underground flooding is estimated to be 3 h. This study will thus help operational flood warning services to better characterise critical rainfall and develop measurements to design efficient flood forecasting models. This generic method can be applied to any basin with sufficient rainfall-run-off measurements.
Artificial Neural Network Modeling of an Inverse Fluidized Bed ...
African Journals Online (AJOL)
The application of neural networks to model a laboratory scale inverse fluidized bed reactor has been studied. A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological ...
A hyperstable neural network for the modelling and control of ...
Indian Academy of Sciences (India)
A hyperstable neural network for the modelling and control of nonlinear systems ... Computer control; neural networks; nonlinear systems; adaptive control. ... control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure.
Tensor Basis Neural Network v. 1.0 (beta)
Energy Technology Data Exchange (ETDEWEB)
2017-03-28
This software package can be used to build, train, and test a neural network machine learning model. The neural network architecture is specifically designed to embed tensor invariance properties by enforcing that the model predictions sit on an invariant tensor basis. This neural network architecture can be used in developing constitutive models for applications such as turbulence modeling, materials science, and electromagnetism.
An Application of Automaton Neural Networks to Artificial Agents
Kawano, Yoji; Nakao, Zensho; Chen, Yen Wei; 仲尾, 善勝; 陳, 延偉
1999-01-01
There is presented a model that transfers artificial intelligence into an intelligent Neural Network, which is called AUtomaton Neural Network (AUNN), and is composed of two algorithms: an automaton algorithm and a neural network algorithm.The model was applied to artificial agents to provide them with intelligence, and its applicability was demonstrated by computer simulation.
Application of radial basis neural network for state estimation of ...
African Journals Online (AJOL)
An original application of radial basis function (RBF) neural network for power system state estimation is proposed in this paper. The property of massive parallelism of neural networks is employed for this. The application of RBF neural network for state estimation is investigated by testing its applicability on a IEEE 14 bus ...
neural network based load frequency control for restructuring power
African Journals Online (AJOL)
2012-03-01
Mar 1, 2012 ... Abstract. In this study, an artificial neural network (ANN) application of load frequency control. (LFC) of a Multi-Area power system by using a neural network controller is presented. The comparison between a conventional Proportional Integral (PI) controller and the proposed artificial neural networks ...
Time series prediction with simple recurrent neural networks ...
African Journals Online (AJOL)
Simple recurrent neural networks are widely used in time series prediction. Most researchers and application developers often choose arbitrarily between Elman or Jordan simple recurrent neural networks for their applications. A hybrid of the two called Elman-Jordan (or Multi-recurrent) neural network is also being used.
Neural networks in economic modelling : An empirical study
Verkooijen, W.J.H.
1996-01-01
This dissertation addresses the statistical aspects of neural networks and their usability for solving problems in economics and finance. Neural networks are discussed in a framework of modelling which is generally accepted in econometrics. Within this framework a neural network is regarded as a
Advanced approach to numerical forecasting using artificial neural networks
Directory of Open Access Journals (Sweden)
Michael Štencl
2009-01-01
Full Text Available Current global market is driven by many factors, such as the information age, the time and amount of information distributed by many data channels it is practically impossible analyze all kinds of incoming information flows and transform them to data with classical methods. New requirements could be met by using other methods. Once trained on patterns artificial neural networks can be used for forecasting and they are able to work with extremely big data sets in reasonable time. The patterns used for learning process are samples of past data. This paper uses Radial Basis Functions neural network in comparison with Multi Layer Perceptron network with Back-propagation learning algorithm on prediction task. The task works with simplified numerical time series and includes forty observations with prediction for next five observations. The main topic of the article is the identification of the main differences between used neural networks architectures together with numerical forecasting. Detected differences then verify on practical comparative example.
Comparison between extreme learning machine and wavelet neural networks in data classification
Yahia, Siwar; Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri
2017-03-01
Extreme learning Machine is a well known learning algorithm in the field of machine learning. It's about a feed forward neural network with a single-hidden layer. It is an extremely fast learning algorithm with good generalization performance. In this paper, we aim to compare the Extreme learning Machine with wavelet neural networks, which is a very used algorithm. We have used six benchmark data sets to evaluate each technique. These datasets Including Wisconsin Breast Cancer, Glass Identification, Ionosphere, Pima Indians Diabetes, Wine Recognition and Iris Plant. Experimental results have shown that both extreme learning machine and wavelet neural networks have reached good results.
Identifying Jets Using Artifical Neural Networks
Rosand, Benjamin; Caines, Helen; Checa, Sofia
2017-09-01
We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.
Energy Technology Data Exchange (ETDEWEB)
Renz, Manuel; /Karlsruhe U., EKP
2008-06-01
In the first part of this diploma thesis, the current version of the KIT Flavor Separator, a neural network which is able to distinguish between tagged b-quark jets and tagged c/light-quark jets, is presented. In comparison with previous versions four new input variables are utilized and new Monte Carlo samples with a larger number of simulated events are used for the training of the neural network. It is illustrated that the output of the neural network is continuously distributed between 1 and -1, whereas b-quark jets accumulate at 1, however, c-quark jets and light-quark jets have outputs next to -1. To ensure that the network output describes observed events correctly, the shapes of all input variables are compared in simulation and data. Thus the mismodelling of any input variable is excluded. Moreover, the b jet and light jet output distributions are compared with the output of samples of observed events, which are enhanced in the particular flavor. In contrast to previous versions, no b-jet output correction function has to be calculated, because the agreement between simulation and collision data is excellent for b-quark jets. For the light-jet output, correction functions are developed. Different applications of the KIT Flavor Separator are mentioned. For example it provides a precious input to all three CDF single top quark analyses. Furthermore, it is shown that the KIT Flavor Separator is a universal tool, which can be used in every high-p{sub T} analysis that requires the identification of b-quark jets with high efficiency. As it is pointed out, a further application is the estimation of the flavor composition of a given sample of observed events. In addition a neural network, which is able to separate c-quark jets from light-quark jets, is trained. It is shown, that all three flavors can be separated in the c-net-Flavor Separator plane. As a result, the uncertainties on the estimation of the flavor composition in events with one tagged jet are cut
International Nuclear Information System (INIS)
Renz, Manuel
2008-01-01
In the first part of this diploma thesis, the current version of the KIT Flavor Separator, a neural network which is able to distinguish between tagged b-quark jets and tagged c/light-quark jets, is presented. In comparison with previous versions four new input variables are utilized and new Monte Carlo samples with a larger number of simulated events are used for the training of the neural network. It is illustrated that the output of the neural network is continuously distributed between 1 and -1, whereas b-quark jets accumulate at 1, however, c-quark jets and light-quark jets have outputs next to -1. To ensure that the network output describes observed events correctly, the shapes of all input variables are compared in simulation and data. Thus the mismodelling of any input variable is excluded. Moreover, the b jet and light jet output distributions are compared with the output of samples of observed events, which are enhanced in the particular flavor. In contrast to previous versions, no b-jet output correction function has to be calculated, because the agreement between simulation and collision data is excellent for b-quark jets. For the light-jet output, correction functions are developed. Different applications of the KIT Flavor Separator are mentioned. For example it provides a precious input to all three CDF single top quark analyses. Furthermore, it is shown that the KIT Flavor Separator is a universal tool, which can be used in every high-p T analysis that requires the identification of b-quark jets with high efficiency. As it is pointed out, a further application is the estimation of the flavor composition of a given sample of observed events. In addition a neural network, which is able to separate c-quark jets from light-quark jets, is trained. It is shown, that all three flavors can be separated in the c-net-Flavor Separator plane. As a result, the uncertainties on the estimation of the flavor composition in events with one tagged jet are cut into
Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks
Pallett, Tobias J.; Ahmad, Shaheen
1991-01-01
In this report we determine the dynamic model of a miniature helicopter in hovering flight. Identification procedures for the nonlinear terms are also described. The model is then used to design several linearized control laws and a neural network controller. The controllers were then flight tested on a miniature helicopter flight control test bed the details of which are also presented in this report. Experimental performance of the linearized and neural network controllers are discussed. It...
Fuzzy Logic Module of Convolutional Neural Network for Handwritten Digits Recognition
Popko, E. A.; Weinstein, I. A.
2016-08-01
Optical character recognition is one of the important issues in the field of pattern recognition. This paper presents a method for recognizing handwritten digits based on the modeling of convolutional neural network. The integrated fuzzy logic module based on a structural approach was developed. Used system architecture adjusted the output of the neural network to improve quality of symbol identification. It was shown that proposed algorithm was flexible and high recognition rate of 99.23% was achieved.
Noise in genetic and neural networks
Swain, Peter S.; Longtin, André
2006-06-01
Both neural and genetic networks are significantly noisy, and stochastic effects in both cases ultimately arise from molecular events. Nevertheless, a gulf exists between the two fields, with researchers in one often being unaware of similar work in the other. In this Special Issue, we focus on bridging this gap and present a collection of papers from both fields together. For each field, the networks studied range from just a single gene or neuron to endogenous networks. In this introductory article, we describe the sources of noise in both genetic and neural systems. We discuss the modeling techniques in each area and point out similarities. We hope that, by reading both sets of papers, ideas developed in one field will give insight to scientists from the other and that a common language and methodology will develop.
Fuzzy logic and neural network technologies
Villarreal, James A.; Lea, Robert N.; Savely, Robert T.
1992-01-01
Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.
Neural networks: Application to medical imaging
Clarke, Laurence P.
1994-01-01
The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.
Neural network construction via back-propagation
International Nuclear Information System (INIS)
Burwick, T.T.
1994-06-01
A method is presented that combines back-propagation with multi-layer neural network construction. Back-propagation is used not only to adjust the weights but also the signal functions. Going from one network to an equivalent one that has additional linear units, the non-linearity of these units and thus their effective presence is then introduced via back-propagation (weight-splitting). The back-propagated error causes the network to include new units in order to minimize the error function. We also show how this formalism allows to escape local minima
Reconstruction of periodic signals using neural networks
Directory of Open Access Journals (Sweden)
José Danilo Rairán Antolines
2014-01-01
Full Text Available In this paper, we reconstruct a periodic signal by using two neural networks. The first network is trained to approximate the period of a signal, and the second network estimates the corresponding coefficients of the signal's Fourier expansion. The reconstruction strategy consists in minimizing the mean-square error via backpro-pagation algorithms over a single neuron with a sine transfer function. Additionally, this paper presents mathematical proof about the quality of the approximation as well as a first modification of the algorithm, which requires less data to reach the same estimation; thus making the algorithm suitable for real-time implementations.
Impedance void-meter and neural networks for vertical two-phase flows
International Nuclear Information System (INIS)
Mi, Y.; Li, M.; Xiao, Z.; Tsoukalas, L.H.; Ishii, M.
1998-01-01
Most two-phase flow measurements, including void fraction measurements, depend on correct flow regime identification. There are two steps towards successful identification of flow regimes: one is to develop a non-intrusive instrument to demonstrate area-averaged void fluctuations, the other to develop a non-linear mapping approach to perform objective identification of flow regimes. A non-intrusive impedance void-meter provides input signals to a neural mapping approach used to identify flow regimes. After training, both supervised and self-organizing neural network learning paradigms performed flow regime identification successfully. The methodology presented holds considerable promise for multiphase flow diagnostic and measurement applications. (author)
The Growing Hierarchical Neural Gas Self-Organizing Neural Network.
Palomo, Esteban J; Lopez-Rubio, Ezequiel
2017-09-01
The growing neural gas (GNG) self-organizing neural network stands as one of the most successful examples of unsupervised learning of a graph of processing units. Despite its success, little attention has been devoted to its extension to a hierarchical model, unlike other models such as the self-organizing map, which has many hierarchical versions. Here, a hierarchical GNG is presented, which is designed to learn a tree of graphs. Moreover, the original GNG algorithm is improved by a distinction between a growth phase where more units are added until no significant improvement in the quantization error is obtained, and a convergence phase where no unit creation is allowed. This means that a principled mechanism is established to control the growth of the structure. Experiments are reported, which demonstrate the self-organization and hierarchy learning abilities of our approach and its performance for vector quantization applications.
Phase Diagram of Spiking Neural Networks
Directory of Open Access Journals (Sweden)
Hamed eSeyed-Allaei
2015-03-01
Full Text Available In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probablilty of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations. but here, I take a different perspective, inspired by evolution. I simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable by nature. Networks which are configured according to the common values, have the best dynamic range in response to an impulse and their dynamic range is more robust in respect to synaptic weights. In fact, evolution has favored networks of best dynamic range. I present a phase diagram that shows the dynamic ranges of different networks of different parameteres. This phase diagram gives an insight into the space of parameters -- excitatory to inhibitory ratio, sparseness of connections and synaptic weights. It may serve as a guideline to decide about the values of parameters in a simulation of spiking neural network.
Membership generation using multilayer neural network
Kim, Jaeseok
1992-01-01
There has been intensive research in neural network applications to pattern recognition problems. Particularly, the back-propagation network has attracted many researchers because of its outstanding performance in pattern recognition applications. In this section, we describe a new method to generate membership functions from training data using a multilayer neural network. The basic idea behind the approach is as follows. The output values of a sigmoid activation function of a neuron bear remarkable resemblance to membership values. Therefore, we can regard the sigmoid activation values as the membership values in fuzzy set theory. Thus, in order to generate class membership values, we first train a suitable multilayer network using a training algorithm such as the back-propagation algorithm. After the training procedure converges, the resulting network can be treated as a membership generation network, where the inputs are feature values and the outputs are membership values in the different classes. This method allows fairly complex membership functions to be generated because the network is highly nonlinear in general. Also, it is to be noted that the membership functions are generated from a classification point of view. For pattern recognition applications, this is highly desirable, although the membership values may not be indicative of the degree of typicality of a feature value in a particular class.
Lancashire, Lee J; Rees, Robert C; Ball, Graham R
2008-06-01
The advent of microarrays has attracted considerable interest from biologists due to the potential for high throughput analysis of hundreds of thousands of gene transcripts. Subsequent analysis of the data may identify specific features which correspond to characteristics of interest within the population, for example, analysis of gene expression profiles in cancer patients to identify molecular signatures corresponding with prognostic outcome. These high throughput technologies have resulted in an unprecedented rate of data generation, often of high complexity, highlighting the need for novel data analysis methodologies that will cope with data of this nature. Stepwise methods using artificial neural networks (ANNs) have been developed to identify an optimal subset of predictive gene transcripts from highly dimensional microarray data. Here these methods have been applied to a gene microarray dataset to identify and validate gene signatures corresponding with estrogen receptor and lymph node status in breast cancer. Many gene transcripts were identified whose expression could differentiate patients to very high accuracies based upon firstly whether they were positive or negative for estrogen receptor, and secondly whether metastasis to the axillary lymph node had occurred. A number of these genes had been previously reported to have a role in cancer. Significantly fewer genes were used compared to other previous studies. The models using the optimal gene subsets were internally validated using an extensive random sample cross-validation procedure and externally validated using a follow up dataset from a different cohort of patients on a newer array chip containing the same and additional probe sets. Here, the models retained high accuracies, emphasising the potential power of this approach in analysing complex systems. These findings show how the proposed method allows for the rapid analysis and subsequent detailed interrogation of gene expression signatures to
Cancer classification based on gene expression using neural networks.
Hu, H P; Niu, Z J; Bai, Y P; Tan, X H
2015-12-21
Based on gene expression, we have classified 53 colon cancer patients with UICC II into two groups: relapse and no relapse. Samples were taken from each patient, and gene information was extracted. Of the 53 samples examined, 500 genes were considered proper through analyses by S-Kohonen, BP, and SVM neural networks. Classification accuracy obtained by S-Kohonen neural network reaches 91%, which was more accurate than classification by BP and SVM neural networks. The results show that S-Kohonen neural network is more plausible for classification and has a certain feasibility and validity as compared with BP and SVM neural networks.
Fuzzy logic and neural networks basic concepts & application
Alavala, Chennakesava R
2008-01-01
About the Book: The primary purpose of this book is to provide the student with a comprehensive knowledge of basic concepts of fuzzy logic and neural networks. The hybridization of fuzzy logic and neural networks is also included. No previous knowledge of fuzzy logic and neural networks is required. Fuzzy logic and neural networks have been discussed in detail through illustrative examples, methods and generic applications. Extensive and carefully selected references is an invaluable resource for further study of fuzzy logic and neural networks. Each chapter is followed by a question bank
Wavelet neural networks with applications in financial engineering, chaos, and classification
Alexandridis, Antonios K
2014-01-01
Through extensive examples and case studies, Wavelet Neural Networks provides a step-by-step introduction to modeling, training, and forecasting using wavelet networks. The acclaimed authors present a statistical model identification framework to successfully apply wavelet networks in various applications, specifically, providing the mathematical and statistical framework needed for model selection, variable selection, wavelet network construction, initialization, training, forecasting and prediction, confidence intervals, prediction intervals, and model adequacy testing. The text is ideal for
Spiking Neural Network in Precision Agriculture
Directory of Open Access Journals (Sweden)
Nadia Adnan Shiltagh
2015-07-01
Full Text Available In this paper, precision agriculture system is introduced based on Wireless Sensor Network (WSN. Soil moisture considered one of environment factors that effect on crop. The period of irrigation must be monitored. Neural network capable of learning the behavior of the agricultural soil in absence of mathematical model. This paper introduced modified type of neural network that is known as Spiking Neural Network (SNN. In this work, the precision agriculture system is modeled, contains two SNNs which have been identified off-line based on logged data, one of these SNNs represents the monitor that located at sink where the period of irrigation is calculated and the other represents the soil. In addition, to reduce power consumption of sensor nodes Modified Chain-Cluster based Mixed (MCCM routing algorithm is used. According to MCCM, the sensors will send their packets that are less than threshold moisture level to the sink. The SNN with Modified Spike-Prop (MSP training algorithm is capable of identifying soil, irrigation periods and monitoring the soil moisture level, this means that SNN has the ability to be an identifier and monitor. By applying this system the particular agriculture area reaches to the desired moisture level.
Applications of neural networks in training science.
Pfeiffer, Mark; Hohmann, Andreas
2012-04-01
Training science views itself as an integrated and applied science, developing practical measures founded on scientific method. Therefore, it demands consideration of a wide spectrum of approaches and methods. Especially in the field of competitive sports, research questions are usually located in complex environments, so that mainly field studies are drawn upon to obtain broad external validity. Here, the interrelations between different variables or variable sets are mostly of a nonlinear character. In these cases, methods like neural networks, e.g., the pattern recognizing methods of Self-Organizing Kohonen Feature Maps or similar instruments to identify interactions might be successfully applied to analyze data. Following on from a classification of data analysis methods in training-science research, the aim of the contribution is to give examples of varied sports in which network approaches can be effectually used in training science. First, two examples are given in which neural networks are employed for pattern recognition. While one investigation deals with the detection of sporting talent in swimming, the other is located in game sports research, identifying tactical patterns in team handball. The third and last example shows how an artificial neural network can be used to predict competitive performance in swimming. Copyright © 2011 Elsevier B.V. All rights reserved.
Mechanical stress in abdominal aortic aneurysms using artificial neural networks
Soudah Prieto, Eduardo; Rodriguez, Jose; López González, Roberto
2015-01-01
Combination of numerical modeling and artificial intelligence (AI) in bioengineering processes are a promising pathway for the further development of bioengineering sciences. The objective of this work is to use Artificial Neural Networks (ANN) to reduce the long computational times needed in the analysis of shear stress in the Abdominal Aortic Aneurysm (AAA) by finite element methods (FEM). For that purpose two different neural networks are created. The first neural network (Mesh Neural Netw...
Neural dynamics in superconducting networks
Segall, Kenneth; Schult, Dan; Crotty, Patrick; Miller, Max
2012-02-01
We discuss the use of Josephson junction networks as analog models for simulating neuron behaviors. A single unit called a ``Josephson Junction neuron'' composed of two Josephson junctions [1] displays behavior that shows characteristics of single neurons such as action potentials, thresholds and refractory periods. Synapses can be modeled as passive filters and can be used to connect neurons together. The sign of the bias current to the Josephson neuron can be used to determine if the neuron is excitatory or inhibitory. Due to the intrinsic speed of Josephson junctions and their scaling properties as analog models, a large network of Josephson neurons measured over typical lab times contains dynamics which would essentially be impossible to calculate on a computer We discuss the operating principle of the Josephson neuron, coupling Josephson neurons together to make large networks, and the Kuramoto-like synchronization of a system of disordered junctions.[4pt] [1] ``Josephson junction simulation of neurons,'' P. Crotty, D. Schult and K. Segall, Physical Review E 82, 011914 (2010).
Artificial neural network for bubbles pattern recognition on the images
Poletaev, I. E.; Pervunin, K. S.; Tokarev, M. P.
2016-10-01
Two-phase bubble flows have been used in many technological and energy processes as processing oil, chemical and nuclear reactors. This explains large interest to experimental and numerical studies of such flows last several decades. Exploiting of optical diagnostics for analysis of the bubble flows allows researchers obtaining of instantaneous velocity fields and gaseous phase distribution with the high spatial resolution non-intrusively. Behavior of light rays exhibits an intricate manner when they cross interphase boundaries of gaseous bubbles hence the identification of the bubbles images is a complicated problem. This work presents a method of bubbles images identification based on a modern technology of deep learning called convolutional neural networks (CNN). Neural networks are able to determine overlapping, blurred, and non-spherical bubble images. They can increase accuracy of the bubble image recognition, reduce the number of outliers, lower data processing time, and significantly decrease the number of settings for the identification in comparison with standard recognition methods developed before. In addition, usage of GPUs speeds up the learning process of CNN owning to the modern adaptive subgradient optimization techniques.
Neural networks as a control methodology
Mccullough, Claire L.
1990-01-01
While conventional computers must be programmed in a logical fashion by a person who thoroughly understands the task to be performed, the motivation behind neural networks is to develop machines which can train themselves to perform tasks, using available information about desired system behavior and learning from experience. There are three goals of this fellowship program: (1) to evaluate various neural net methods and generate computer software to implement those deemed most promising on a personal computer equipped with Matlab; (2) to evaluate methods currently in the professional literature for system control using neural nets to choose those most applicable to control of flexible structures; and (3) to apply the control strategies chosen in (2) to a computer simulation of a test article, the Control Structures Interaction Suitcase Demonstrator, which is a portable system consisting of a small flexible beam driven by a torque motor and mounted on springs tuned to the first flexible mode of the beam. Results of each are discussed.
Training multi-layered neural network neocognitron.
Fukushima, Kunihiko
2013-04-01
This paper proposes new learning rules suited for training multi-layered neural networks and applies them to the neocognitron. The neocognitron is a hierarchical multi-layered neural network capable of robust visual pattern recognition. It acquires the ability to recognize visual patterns through learning. For training intermediate layers of the hierarchical network of the neocognitron, we use a new learning rule named add-if-silent. By the use of the add-if-silent rule, the learning process becomes much simpler and more stable, and the computational cost for learning is largely reduced. Nevertheless, a high recognition rate can be kept without increasing the scale of the network. For the highest stage of the network, we use the method of interpolating-vector. We have previously reported that the recognition rate is greatly increased if this method is used during recognition. This paper proposes a new method of using it for both learning and recognition. Computer simulation demonstrates that the new neocognitron, which uses the add-if-silent and the interpolating-vector, produces a higher recognition rate for handwritten digits recognition with a smaller scale of the network than the neocognitron of previous versions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS
Directory of Open Access Journals (Sweden)
Christopher Bergmeir
2012-01-01
Full Text Available Neural networks are important standard machine learning procedures for classification and regression. We describe the R package RSNNS that provides a convenient interface to the popular Stuttgart Neural Network Simulator SNNS. The main features are (a encapsulation of the relevant SNNS parts in a C++ class, for sequential and parallel usage of different networks, (b accessibility of all of the SNNSalgorithmic functionality from R using a low-level interface, and (c a high-level interface for convenient, R-style usage of many standard neural network procedures. The package also includes functions for visualization and analysis of the models and the training procedures, as well as functions for data input/output from/to the original SNNSfile formats.
Heart abnormality detection by using artificial neural network
African Journals Online (AJOL)
2017-09-10
Sep 10, 2017 ... Multilayer Perceptron (MLP) [17] is the most suitable and referred neural networks in the pattern recognition detection. This network can be trained to form various decision surfaces in the input space [3]. 2.1. Hybrid Multilayer Perceptron (HMLP). An MLP network is a feed-forward artificial neural network that ...
Artificial Neural Network Modeling of an Inverse Fluidized Bed ...
African Journals Online (AJOL)
MICHAEL
input. RBF Training Procedure. The radial basis neural networks have been designed by the using the function newrb available in the neural network toolbox supported by MATLAB 7.0. The function newrb iteratively creates a radial basis network by including one neuron at a time. Neurons are added to the network until the ...
Artificial Neural Network for Displacement Vectors Determination
Directory of Open Access Journals (Sweden)
P. Bohmann
1997-09-01
Full Text Available An artificial neural network (NN for displacement vectors (DV determination is presented in this paper. DV are computed in areas which are essential for image analysis and computer vision, in areas where are edges, lines, corners etc. These special features are found by edges operators with the following filtration. The filtration is performed by a threshold function. The next step is DV computation by 2D Hamming artificial neural network. A method of DV computation is based on the full search block matching algorithms. The pre-processing (edges finding is the reason why the correlation function is very simple, the process of DV determination needs less computation and the structure of the NN is simpler.
Hexacopter trajectory control using a neural network
Artale, V.; Collotta, M.; Pau, G.; Ricciardello, A.
2013-10-01
The modern flight control systems are complex due to their non-linear nature. In fact, modern aerospace vehicles are expected to have non-conventional flight envelopes and, then, they must guarantee a high level of robustness and adaptability in order to operate in uncertain environments. Neural Networks (NN), with real-time learning capability, for flight control can be used in applications with manned or unmanned aerial vehicles. Indeed, using proven lower level control algorithms with adaptive elements that exhibit long term learning could help in achieving better adaptation performance while performing aggressive maneuvers. In this paper we show a mathematical modeling and a Neural Network for a hexacopter dynamics in order to develop proper methods for stabilization and trajectory control.
Gas Classification Using Deep Convolutional Neural Networks.
Peng, Pai; Zhao, Xiaojin; Pan, Xiaofang; Ye, Wenbin
2018-01-08
In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. Together, these various layers make up a powerful deep model for gas classification. Experimental results show that the proposed DCNN method is an effective technique for classifying electronic nose data. We also demonstrate that the DCNN method can provide higher classification accuracy than comparable Support Vector Machine (SVM) methods and Multiple Layer Perceptron (MLP).