Neural network topology design for nonlinear control
Haecker, Jens; Rudolph, Stephan
2001-03-01
Neural networks, especially in nonlinear system identification and control applications, are typically considered to be black-boxes which are difficult to analyze and understand mathematically. Due to this reason, an in- depth mathematical analysis offering insight into the different neural network transformation layers based on a theoretical transformation scheme is desired, but up to now neither available nor known. In previous works it has been shown how proven engineering methods such as dimensional analysis and the Laplace transform may be used to construct a neural controller topology for time-invariant systems. Using the knowledge of neural correspondences of these two classical methods, the internal nodes of the network could also be successfully interpreted after training. As further extension to these works, the paper describes the latest of a theoretical interpretation framework describing the neural network transformation sequences in nonlinear system identification and control. This can be achieved By incorporation of the method of exact input-output linearization in the above mentioned two transform sequences of dimensional analysis and the Laplace transformation. Based on these three theoretical considerations neural network topologies may be designed in special situations by pure translation in the sense of a structural compilation of the known classical solutions into their correspondent neural topology. Based on known exemplary results, the paper synthesizes the proposed approach into the visionary goals of a structural compiler for neural networks. This structural compiler for neural networks is intended to automatically convert classical control formulations into their equivalent neural network structure based on the principles of equivalence between formula and operator, and operator and structure which are discussed in detail in this work.
Design of Robust Neural Network Classifiers
DEFF Research Database (Denmark)
Larsen, Jan; Andersen, Lars Nonboe; Hintz-Madsen, Mads
1998-01-01
This paper addresses a new framework for designing robust neural network classifiers. The network is optimized using the maximum a posteriori technique, i.e., the cost function is the sum of the log-likelihood and a regularization term (prior). In order to perform robust classification, we present...... a modified likelihood function which incorporates the potential risk of outliers in the data. This leads to the introduction of a new parameter, the outlier probability. Designing the neural classifier involves optimization of network weights as well as outlier probability and regularization parameters. We...
Neural network optimization, components, and design selection
Weller, Scott W.
1990-07-01
Neural Networks are part of a revived technology which has received a lot of hype in recent years. As is apt to happen in any hyped technology, jargon and predictions make its assimilation and application difficult. Nevertheless, Neural Networks have found use in a number of areas, working on non-trivial and noncontrived problems. For example, one net has been trained to "read", translating English text into phoneme sequences. Other applications of Neural Networks include data base manipulation and the solving of muting and classification types of optimization problems. Neural Networks are constructed from neurons, which in electronics or software attempt to model but are not constrained by the real thing, i.e., neurons in our gray matter. Neurons are simple processing units connected to many other neurons over pathways which modify the incoming signals. A single synthetic neuron typically sums its weighted inputs, runs this sum through a non-linear function, and produces an output. In the brain, neurons are connected in a complex topology: in hardware/software the topology is typically much simpler, with neurons lying side by side, forming layers of neurons which connect to the layer of neurons which receive their outputs. This simplistic model is much easier to construct than the real thing, and yet can solve real problems. The information in a network, or its "memory", is completely contained in the weights on the connections from one neuron to another. Establishing these weights is called "training" the network. Some networks are trained by design -- once constructed no further learning takes place. Other types of networks require iterative training once wired up, but are not trainable once taught Still other types of networks can continue to learn after initial construction. The main benefit to using Neural Networks is their ability to work with conflicting or incomplete ("fuzzy") data sets. This ability and its usefulness will become evident in the following
Neural network optimization, components, and design selection
Weller, Scott W.
1991-01-01
Neural Networks are part of a revived technology which has received a lot of hype in recent years. As is apt to happen in any hyped technology, jargon and predictions make its assimilation and application difficult. Nevertheless, Neural Networks have found use in a number of areas, working on non-trivial and non-contrived problems. For example, one net has been trained to "read", translating English text into phoneme sequences. Other applications of Neural Networks include data base manipulation and the solving of routing and classification types of optimization problems. It was their use in optimization that got me involved with Neural Networks. As it turned out, "optimization" used in this context was somewhat misleading, because while some network configurations could indeed solve certain kinds of optimization problems, the configuring or "training" of a Neural Network itself is an optimization problem, and most of the literature which talked about Neural Nets and optimization in the same breath did not speak to my goal of using Neural Nets to help solve lens optimization problems. I did eventually apply Neural Network to lens optimization, and I will touch on those results. The application of Neural Nets to the problem of lens selection was much more successful, and those results will dominate this paper.
Enhancing Hohlraum Design with Artificial Neural Networks
Peterson, J. L.; Berzak Hopkins, L. F.; Humbird, K. D.; Brandon, S. T.; Field, J. E.; Langer, S. H.; Nora, R. C.; Spears, B. K.
2017-10-01
A primary goal of hohlraum design is to efficiently convert available laser power and energy to capsule drive, compression and ultimately fusion neutron yield. However, a major challenge of this multi-dimensional optimization problem is the relative computational expense of hohlraum simulations. In this work, we explore overcoming this obstacle with the use of artificial neural networks built off ensembles of hohlraum simulations. These machine learning systems emulate the behavior of full simulations in a fraction of the time, thereby enabling the rapid exploration of design parameters. We will demonstrate this technology with a search for modifications to existing high-yield designs that can maximize neutron production within NIF's current laser power and energy constraints. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734401.
Spacecraft Neural Network Control System Design using FPGA
Hanaa T. El-Madany; Faten H. Fahmy; Ninet M. A. El-Rahman; Hassen T. Dorrah
2011-01-01
Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffer...
Application of design of experiments and artificial neural networks ...
African Journals Online (AJOL)
user
Abstract. This paper discusses the use of Distance based optimal designs in the design of experiments (DOE) and artificial neural networks (ANN) in optimizing the stacking sequence for simply supported laminated composite plate under uniformly distributed load (UDL) for minimizing the deflections and stresses. A number ...
Application of design of experiments and artificial neural networks ...
African Journals Online (AJOL)
This paper discusses the use of Distance based optimal designs in the design of experiments (DOE) and artificial neural networks (ANN) in optimizing the stacking sequence for simply supported laminated composite plate under uniformly distributed load (UDL) for minimizing the deflections and stresses. A number of finite ...
Automatic Data Collection Design for Neural Networks Detection of ...
African Journals Online (AJOL)
However, in Nigeria, collecting fraudulent data is relatively difficult and the human labour involved is expensive and risky. This paper examines some formal procedures for data collection and proposes designing an automatic data collection system for detection of occupational frauds using artificial neural networks.
Neural network design for J function approximation in dynamic programming
Pang, X
1998-01-01
This paper shows that a new type of artificial neural network (ANN) -- the Simultaneous Recurrent Network (SRN) -- can, if properly trained, solve a difficult function approximation problem which conventional ANNs -- either feedforward or Hebbian -- cannot. This problem, the problem of generalized maze navigation, is typical of problems which arise in building true intelligent control systems using neural networks. (Such systems are discussed in the chapter by Werbos in K.Pribram, Brain and Values, Erlbaum 1998.) The paper provides a general review of other types of recurrent networks and alternative training techniques, including a flowchart of the Error Critic training design, arguable the only plausible approach to explain how the brain adapts time-lagged recurrent systems in real-time. The C code of the test is appended. As in the first tests of backprop, the training here was slow, but there are ways to do better after more experience using this type of network.
Design of Jetty Piles Using Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Yongjei Lee
2014-01-01
Full Text Available To overcome the complication of jetty pile design process, artificial neural networks (ANN are adopted. To generate the training samples for training ANN, finite element (FE analysis was performed 50 times for 50 different design cases. The trained ANN was verified with another FE analysis case and then used as a structural analyzer. The multilayer neural network (MBPNN with two hidden layers was used for ANN. The framework of MBPNN was defined as the input with the lateral forces on the jetty structure and the type of piles and the output with the stress ratio of the piles. The results from the MBPNN agree well with those from FE analysis. Particularly for more complex modes with hundreds of different design cases, the MBPNN would possibly substitute parametric studies with FE analysis saving design time and cost.
Design and implementation of a random neural network routing engine.
Kocak, T; Seeber, J; Terzioglu, H
2003-01-01
Random neural network (RNN) is an analytically tractable spiked neural network model that has been implemented in software for a wide range of applications for over a decade. This paper presents the hardware implementation of the RNN model. Recently, cognitive packet networks (CPN) is proposed as an alternative packet network architecture where there is no routing table, instead the RNN based reinforcement learning is used to route packets. Particularly, we describe implementation details for the RNN based routing engine of a CPN network processor chip: the smart packet processor (SPP). The SPP is a dual port device that stores, modifies, and interprets the defining characteristics of multiple RNN models. In addition to hardware design improvements over the software implementation such as the dual access memory, output calculation step, and reduced output calculation module, this paper introduces a major modification to the reinforcement learning algorithm used in the original CPN specification such that the number of weight terms are reduced from 2n/sup 2/ to 2n. This not only yields significant memory savings, but it also simplifies the calculations for the steady state probabilities (neuron outputs in RNN). Simulations have been conducted to confirm the proper functionality for the isolated SPP design as well as for the multiple SPP's in a networked environment.
Hybrid neural network model for the design of beam subjected to ...
Indian Academy of Sciences (India)
This paper demonstrates the applicability of Artiﬁcial Neural Networks (ANN) and Genetic Algorithms (GA) for the design of beams subjected to moment and shear. A hybrid neural network model which combines the features of feed forward neural networks and genetic algorithms has been developed for the design of beam ...
An architecture for designing fuzzy logic controllers using neural networks
Berenji, Hamid R.
1991-01-01
Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.
Liu, Jinkun
2013-01-01
Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design. This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...
Neural Network Assisted Experimental Designs for Food Research
Directory of Open Access Journals (Sweden)
H.S. Ramaswamy
2000-06-01
Full Text Available The ability of artificial neural networks (ANN in predicting full factorial data from the fractional data corresponding to some of the commonly used experimental designs is explored in this paper. Factorial and fractional factorial designs such as L8, L9, L18, and Box and Behnken schemes were considered both in their original form and with some variations (L8+6, L15 and L9+1. Full factorial (3 factors x 5 levels and fractional data were generated employing sixteen different mathematical equations (four in each category: linear, with and without interactions, and non-linear, with and without interactions. Different ANN models were trained and the best model was chosen for each equation based on their ability to predict the fractional data. The best experimental design was then chosen based on their ability to simulate the full- factorial data for each equation. In several cases, the mean relative errors with the L18 design (which had more input data than other models were even higher than with other smaller fractional design. In general, the ANN assisted Lm, Box and Behnken, L15 and L18 designs were found to predict the full factorial data reasonably well with errors less than 5 %. The L8+6 model performed well with several experimental datasets reported in the literature.
Energy Technology Data Exchange (ETDEWEB)
Martinez B, M.R.; Ortiz R, J.M.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde No. 801, 98000 Zacatecas (Mexico)
2006-07-01
An Artificial Neural Network has been designed, trained and tested to unfold neutron spectra and simultaneously to calculate equivalent doses. A set of 187 neutron spectra compiled by the International Atomic Energy Agency and 13 equivalent doses were used in the artificial neural network designed, trained and tested. In order to design the neural network was used the robust design of artificial neural networks methodology, which assures that the quality of the neural networks takes into account from the design stage. Unless previous works, here, for first time a group of neural networks were designed and trained to unfold 187 neutron spectra and at the same time to calculate 13 equivalent doses, starting from the count rates coming from the Bonner spheres system by using a systematic and experimental strategy. (Author)
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.
Garro, Beatriz A; Vázquez, Roberto A
2015-01-01
Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems.
automatic data collection design for neural networks detection
African Journals Online (AJOL)
Dr Obe
data collection system for detection of occupational frauds using artificial neural networks. .... an issue). Limitations. (i) Little flexibility for people to raise their own issues (ii) Little opportunity for people to respond in their own words (iii) Little opportunity to go into depth on any issue (iv) ..... Lecture notes in Artificial Intelligence.
Bayesian and neural networks for preliminary ship design
DEFF Research Database (Denmark)
Clausen, H. B.; Lützen, Marie; Friis-Hansen, Andreas
2001-01-01
000 ships is acquired and various methods for derivation of empirical relations are employed. A regression analysis is carried out to fit functions to the data. Further, the data are used to learn Bayesian and neural networks to encode the relations between the characteristics. On the basis...
Design The Cervical Cancer Detector Use The Artificial Neural Network
Intan Af'idah, Dwi; Didik Widianto, Eko; Setyawan, Budi
2013-06-01
Cancer is one of the contagious diseases that become a public health issue, both in the world and in Indonesia. In the world, 12% of all deaths caused by cancer and is the second killer after cardiovascular disease. Early detection using the IVA is a practical and inexpensive (only requiring acetic acid). However, the accuracy of the method is quite low, as it can not detect the stage of the cancer. While other methods have a better sensitivity than the IVA method, is a method of PAP smear. However, this method is relatively expensive, and requires an experienced pathologist-cytologist. According to the case above, Considered important to make the cancer cervics detector that is used to detect the abnormality and cervical cancer stage and consists of a digital microscope, as well as a computer application based on artificial neural network. The use of cervical cancer detector software and hardware are integrated each other. After the specifications met, the steps to design the cervical cancer detection are: Modifying a conventional microscope by adding a lens, image recording, and the lights, Programming the tools, designing computer applications, Programming features abnormality detection and staging of cancer.
Evolving RBF neural networks for adaptive soft-sensor design.
Alexandridis, Alex
2013-12-01
This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.
Design of FPGA Based Neural Network Controller for Earth Station Power System
Hassen T. Dorrah; Ninet M. A. El-Rahman; Faten H. Fahmy; Hanaa T. El-Madany
2012-01-01
Automation of generating hardware description language code from neural networks models can highly decrease time of implementation those networks into a digital devices, thus significant money savings. To implement the neural network into hardware designer, it is required to translate generated model into device structure. VHDL language is used to describe those networks into hardware. VHDL code has been proposed to implement ANNs as well as to present simulation results with floating point a...
Designing laboratory wind simulations using artificial neural networks
Križan, Josip; Gašparac, Goran; Kozmar, Hrvoje; Antonić, Oleg; Grisogono, Branko
2015-05-01
While experiments in boundary layer wind tunnels remain to be a major research tool in wind engineering and environmental aerodynamics, designing the modeling hardware required for a proper atmospheric boundary layer (ABL) simulation can be costly and time consuming. Hence, possibilities are sought to speed-up this process and make it more time-efficient. In this study, two artificial neural networks (ANNs) are developed to determine an optimal design of the Counihan hardware, i.e., castellated barrier wall, vortex generators, and surface roughness, in order to simulate the ABL flow developing above urban, suburban, and rural terrains, as previous ANN models were created for one terrain type only. A standard procedure is used in developing those two ANNs in order to further enhance best-practice possibilities rather than to improve existing ANN designing methodology. In total, experimental results obtained using 23 different hardware setups are used when creating ANNs. In those tests, basic barrier height, barrier castellation height, spacing density, and height of surface roughness elements are the parameters that were varied to create satisfactory ABL simulations. The first ANN was used for the estimation of mean wind velocity, turbulent Reynolds stress, turbulence intensity, and length scales, while the second one was used for the estimation of the power spectral density of velocity fluctuations. This extensive set of studied flow and turbulence parameters is unmatched in comparison to the previous relevant studies, as it includes here turbulence intensity and power spectral density of velocity fluctuations in all three directions, as well as the Reynolds stress profiles and turbulence length scales. Modeling results agree well with experiments for all terrain types, particularly in the lower ABL within the height range of the most engineering structures, while exhibiting sensitivity to abrupt changes and data scattering in profiles of wind-tunnel results. The
Padgett, Mary L.; Desai, Utpal; Roppel, T.A.; White, Charles R.
1993-01-01
A design procedure is suggested for neural networks which accommodates the inclusion of such knowledge-based systems techniques as fuzzy logic and pairwise comparisons. The use of these procedures in the design of applications combines qualitative and quantitative factors with empirical data to yield a model with justifiable design and parameter selection procedures. The procedure is especially relevant to areas of back-propagation neural network design which are highly responsive to the use of precisely recorded expert knowledge.
The role of simulation in the design of a neural network chip
Desai, Utpal; Roppel, Thaddeus A.; Padgett, Mary L.
1993-01-01
An iterative, simulation-based design procedure for a neural network chip is introduced. For this design procedure, the goal is to produce a chip layout for a neural network in which the weights are determined by transistor gate width-to-length ratios. In a given iteration, the current layout is simulated using the circuit simulator SPICE, and layout adjustments are made based on conventional gradient-decent methods. After the iteration converges, the chip is fabricated. Monte Carlo analysis is used to predict the effect of statistical fabrication process variations on the overall performance of the neural network chip.
Research on architecture of intelligent design platform for artificial neural network expert system
Gu, Honghong
2017-09-01
Based on the review of the development and current situation of CAD technology, the necessity of combination of artificial neural network and expert system, and then present an intelligent design system based on artificial neural network. Moreover, it discussed the feasibility of realization of a design-oriented expert system development tools on the basis of above combination. In addition, knowledge representation strategy and method and the solving process are given in this paper.
Structuring a multi-nodal neural network in vitro within a novel design microfluidic chip.
van de Wijdeven, Rosanne; Ramstad, Ola Huse; Bauer, Ulrich Stefan; Halaas, Øyvind; Sandvig, Axel; Sandvig, Ioanna
2018-01-02
Neural network formation is a complex process involving axon outgrowth and guidance. Axon guidance is facilitated by structural and molecular cues from the surrounding microenvironment. Micro-fabrication techniques can be employed to produce microfluidic chips with a highly controlled microenvironment for neural cells enabling longitudinal studies of complex processes associated with network formation. In this work, we demonstrate a novel open microfluidic chip design that encompasses a freely variable number of nodes interconnected by axon-permissible tunnels, enabling structuring of multi-nodal neural networks in vitro. The chip employs a partially open design to allow high level of control and reproducibility of cell seeding, while reducing shear stress on the cells. We show that by culturing dorsal root ganglion cells (DRGs) in our microfluidic chip, we were able to structure a neural network in vitro. These neurons were compartmentalized within six nodes interconnected through axon growth tunnels. Furthermore, we demonstrate the additional benefit of open top design by establishing a 3D neural culture in matrigel and a neuronal aggregate 3D culture within the chips. In conclusion, our results demonstrate a novel microfluidic chip design applicable to structuring complex neural networks in vitro, thus providing a versatile, highly relevant platform for the study of neural network dynamics applicable to developmental and regenerative neuroscience.
Directory of Open Access Journals (Sweden)
Schwindling Jerome
2010-04-01
Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.
Re-evaluation of the AASHTO-flexible pavement design equation with neural network modeling.
Tiğdemir, Mesut
2014-01-01
Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance.
Re-evaluation of the AASHTO-flexible pavement design equation with neural network modeling.
Directory of Open Access Journals (Sweden)
Mesut Tiğdemir
Full Text Available Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO. More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance.
Evolvable Block-Based Neural Network Design for Applications in Dynamic Environments
Directory of Open Access Journals (Sweden)
Saumil G. Merchant
2010-01-01
Full Text Available Dedicated hardware implementations of artificial neural networks promise to provide faster, lower-power operation when compared to software implementations executing on microprocessors, but rarely do these implementations have the flexibility to adapt and train online under dynamic conditions. A typical design process for artificial neural networks involves offline training using software simulations and synthesis and hardware implementation of the obtained network offline. This paper presents a design of block-based neural networks (BbNNs on FPGAs capable of dynamic adaptation and online training. Specifically the network structure and the internal parameters, the two pieces of the multiparametric evolution of the BbNNs, can be adapted intrinsically, in-field under the control of the training algorithm. This ability enables deployment of the platform in dynamic environments, thereby significantly expanding the range of target applications, deployment lifetimes, and system reliability. The potential and functionality of the platform are demonstrated using several case studies.
Design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization
Castillo, Oscar; Kacprzyk, Janusz
2015-01-01
This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. The book is organized in eight main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of theoretical aspects of fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on fuzzy systems. The second part contains papers with the main theme of neural networks theory, which are basically papers dealing with new concepts and algorithms in neural networks. The third part contains papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The fourth part contains papers describing new nature-inspired optimization algorithms. The fifth part presents div...
Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels
Directory of Open Access Journals (Sweden)
Abbas Ajorkar
2015-04-01
Full Text Available In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control has been designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, a multilayer neural network with back-propagation law is designed. In this structure, the parameters of the moment of inertia matrix and external disturbances are estimated and used in feedback linearization control law. Finally, the performance of the designed attitude controller is investigated by several simulations.
Design and Implementation of Behavior Recognition System Based on Convolutional Neural Network
Directory of Open Access Journals (Sweden)
Yu Bo
2017-01-01
Full Text Available We build a set of human behavior recognition system based on the convolution neural network constructed for the specific human behavior in public places. Firstly, video of human behavior data set will be segmented into images, then we process the images by the method of background subtraction to extract moving foreground characters of body. Secondly, the training data sets are trained into the designed convolution neural network, and the depth learning network is constructed by stochastic gradient descent. Finally, the various behaviors of samples are classified and identified with the obtained network model, and the recognition results are compared with the current mainstream methods. The result show that the convolution neural network can study human behavior model automatically and identify human’s behaviors without any manually annotated trainings.
Designing a neural network for closed thermosyphon with nanofluid using a genetic algorithm
Directory of Open Access Journals (Sweden)
H. Salehi
2011-03-01
Full Text Available Heat transfer of a silver/water nanofluid in a two-phase closed thermosyphon that is thermally enhanced by magnetic field has been predicted by an optimized artificial Neural Network. Artificial neural network is a technique with flexible mathematical structure that is capable of identifying complex non-linear relationships between input and output data. A multi-layer perception neural network was used to estimate the thermal efficiency and resistance of a thermosyphon during application of a magnetic field and using nanoparticles in the water as the working fluid. The magnetic field strength, volume fraction of nanofluid in water and inlet power were used as input parameters and the thermal efficiency and thermal resistance were used as output parameters. The results were compared with experimental data and it was found that the thermal efficiency and resistance estimated by the multi-layer perception neural network are accurate. The GA-ANN (Genetic Algorithm-Artificial Neural network predicts the thermosyphon behavior correctly within the given range of the training data. In this study, a new approach for the auto-design of neural networks, based on a genetic algorithm, has been used to predict collection output of a closed thermosyphon.
Using artificial neural networks in the design of orthotropic bridge decks
Directory of Open Access Journals (Sweden)
Ahmed Shamel Fahmy
2016-12-01
Full Text Available For orthotropic bridge decks a lot of progress has been made in the development of codes to aid in the design process, in addition to software tools for numerical analysis and design. However, professional software tools will not aid the designer in choosing a preliminary economic layout at the conceptual design stage. Designers would go through iterative, lengthy and expensive procedures to reach the best configuration. The present research provides a methodology to investigate the contingency of using artificial neural networks for conceptual design of orthotropic steel-deck bridge. A neural network model was trained with different combinations of dimensions, and eight types of safety checks were performed on all of them. The resulting network can predict whether the deck is safe or not. It is found that this approach for the selection of orthotropic deck dimensions is a better and cost-effective option compared with international codes or expert opinion.
Introduction to neural networks
James, Frederick E
1994-02-02
1. Introduction and overview of Artificial Neural Networks. 2,3. The Feed-forward Network as an inverse Problem, and results on the computational complexity of network training. 4.Physics applications of neural networks.
Optimizing the morphological design of discrete-time cellular neural networks
terBrugge, MH; Spaanenburg, L; Jansen, WJ; Nijhuis, JAG
1996-01-01
The morphological design of Discrete-Time Cellular Neural Networks (DTCNNs) has been presented in a companion paper [1]. DTCNN templates have been given for the elemental morphological operators. One way to obtain realizations for more complex operators is cascading the DTCNN equivalences of the
Use of uniform designs in combination with neural networks for viral infection process development.
Buenno, Laís Hara; Rocha, José Celso; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo
2015-01-01
This work aimed to compare the predictive capacity of empirical models, based on the uniform design utilization combined to artificial neural networks with respect to classical factorial designs in bioprocess, using as example the rabies virus replication in BHK-21 cells. The viral infection process parameters under study were temperature (34°C, 37°C), multiplicity of infection (0.04, 0.07, 0.1), times of infection, and harvest (24, 48, 72 hours) and the monitored output parameter was viral production. A multilevel factorial experimental design was performed for the study of this system. Fractions of this experimental approach (18, 24, 30, 36 and 42 runs), defined according uniform designs, were used as alternative for modelling through artificial neural network and thereafter an output variable optimization was carried out by means of genetic algorithm methodology. Model prediction capacities for all uniform design approaches under study were better than that found for classical factorial design approach. It was demonstrated that uniform design in combination with artificial neural network could be an efficient experimental approach for modelling complex bioprocess like viral production. For the present study case, 67% of experimental resources were saved when compared to a classical factorial design approach. In the near future, this strategy could replace the established factorial designs used in the bioprocess development activities performed within biopharmaceutical organizations because of the improvements gained in the economics of experimentation that do not sacrifice the quality of decisions. © 2015 American Institute of Chemical Engineers.
Gas Turbine Engine Control Design Using Fuzzy Logic and Neural Networks
Directory of Open Access Journals (Sweden)
M. Bazazzadeh
2011-01-01
Full Text Available This paper presents a successful approach in designing a Fuzzy Logic Controller (FLC for a specific Jet Engine. At first, a suitable mathematical model for the jet engine is presented by the aid of SIMULINK. Then by applying different reasonable fuel flow functions via the engine model, some important engine-transient operation parameters (such as thrust, compressor surge margin, turbine inlet temperature, etc. are obtained. These parameters provide a precious database, which train a neural network. At the second step, by designing and training a feedforward multilayer perceptron neural network according to this available database; a number of different reasonable fuel flow functions for various engine acceleration operations are determined. These functions are used to define the desired fuzzy fuel functions. Indeed, the neural networks are used as an effective method to define the optimum fuzzy fuel functions. At the next step, we propose a FLC by using the engine simulation model and the neural network results. The proposed control scheme is proved by computer simulation using the designed engine model. The simulation results of engine model with FLC illustrate that the proposed controller achieves the desired performance and stability.
Directory of Open Access Journals (Sweden)
Md. Abdullah-al-mamun
2015-08-01
Full Text Available Abstract Humans are capable to identifying diverse shape in the different pattern in the real world as effortless fashion due to their intelligence is grow since born with facing several learning process. Same way we can prepared an machine using human like brain called Artificial Neural Network that can be recognize different pattern from the real world object. Although the various techniques is exists to implementation the pattern recognition but recently the artificial neural network approaches have been giving the significant attention. Because the approached of artificial neural network is like a human brain that is learn from different observation and give a decision the previously learning rule. Over the 50 years research now a days pattern recognition for machine learning using artificial neural network got a significant achievement. For this reason many real world problem can be solve by modeling the pattern recognition process. The objective of this paper is to present the theoretical concept for pattern recognition design using Multi-Layer Perceptorn neural networkin the algorithm of artificial Intelligence as the best possible way of utilizing available resources to make a decision that can be a human like performance.
Prediction of Optimal Design and Deflection of Space Structures Using Neural Networks
Directory of Open Access Journals (Sweden)
Reza Kamyab Moghadas
2012-01-01
Full Text Available The main aim of the present work is to determine the optimal design and maximum deflection of double layer grids spending low computational cost using neural networks. The design variables of the optimization problem are cross-sectional area of the elements as well as the length of the span and height of the structures. In this paper, a number of double layer grids with various random values of length and height are selected and optimized by simultaneous perturbation stochastic approximation algorithm. Then, radial basis function (RBF and generalized regression (GR neural networks are trained to predict the optimal design and maximum deflection of the structures. The numerical results demonstrate the efficiency of the proposed methodology.
The use of artificial neural networks in experimental data acquisition and aerodynamic design
Meade, Andrew J., Jr.
1991-01-01
It is proposed that an artificial neural network be used to construct an intelligent data acquisition system. The artificial neural networks (ANN) model has a potential for replacing traditional procedures as well as for use in computational fluid dynamics validation. Potential advantages of the ANN model are listed. As a proof of concept, the author modeled a NACA 0012 airfoil at specific conditions, using the neural network simulator NETS, developed by James Baffes of the NASA Johnson Space Center. The neural network predictions were compared to the actual data. It is concluded that artificial neural networks can provide an elegant and valuable class of mathematical tools for data analysis.
Energy Technology Data Exchange (ETDEWEB)
Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)
1996-12-31
The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.
Xing, Jida; Chen, Jie
2015-06-23
In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous
High-Lift Optimization Design Using Neural Networks on a Multi-Element Airfoil
Greenman, Roxana M.; Roth, Karlin R.; Smith, Charles A. (Technical Monitor)
1998-01-01
The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag, and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural networks were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 83% compared with traditional gradient-based optimization procedures for multiple optimization runs.
Design of Artificial Neural Network-Based pH Estimator
Directory of Open Access Journals (Sweden)
Shebel A. Alsabbah
2010-10-01
Full Text Available Taking into consideration the cost, size and drawbacks might be found with real hardware instrument for measuring pH values such that the complications of the wiring, installing, calibrating and troubleshooting the system, would make a person look for a cheaper, accurate, and alternative choice to perform the measuring operation, Where’s hereby, a feedforward artificial neural network-based pH estimator has to be proposed. The proposed estimator has been designed with multi- layer perceptrons. One input which is a measured base stream and two outputs represent pH values at strong base and strong/weak acids for a titration process. The created data base has been obtained with consideration of temperature variation. The final numerical results ensure the effectiveness and robustness of the design neural network-based pH estimator.
Directory of Open Access Journals (Sweden)
Ming-Shyan Wang
2015-01-01
Full Text Available An automatic guided vehicle (AGV is extensively used for productions in a flexible manufacture system with high efficiency and high flexibility. A servomotor-based AGV is designed and implemented in this paper. In order to steer the AGV to go along a predefined path with corner or arc, the conventional proportional-integral-derivative (PID control is used in the system. However, it is difficult to tune PID gains at various conditions. As a result, the neural network (NN control is considered to assist the PID control for gain tuning. The experimental results are first provided to verify the correctness of the neural network plus PID control for 400 W-motor control system. Secondly, the AGV includes two sets of the designed motor systems and CAN BUS transmission so that it can move along the straight line and curve paths shown in the taped videos.
Observer design for switched recurrent neural networks: an average dwell time approach.
Lian, Jie; Feng, Zhi; Shi, Peng
2011-10-01
This paper is concerned with the problem of observer design for switched recurrent neural networks with time-varying delay. The attention is focused on designing the full-order observers that guarantee the global exponential stability of the error dynamic system. Based on the average dwell time approach and the free-weighting matrix technique, delay-dependent sufficient conditions are developed for the solvability of such problem and formulated as linear matrix inequalities. The error-state decay estimate is also given. Then, the stability analysis problem for the switched recurrent neural networks can be covered as a special case of our results. Finally, four illustrative examples are provided to demonstrate the effectiveness and the superiority of the proposed methods. © 2011 IEEE
[Artificial neural networks in Neurosciences].
Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María
2011-11-01
This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.
Peng, Zhouhua; Wang, Dan; Wang, Wei; Liu, Lu
2015-11-01
This paper investigates the containment control problem of networked autonomous underwater vehicles in the presence of model uncertainty and unknown ocean disturbances. A predictor-based neural dynamic surface control design method is presented to develop the distributed adaptive containment controllers, under which the trajectories of follower vehicles nearly converge to the dynamic convex hull spanned by multiple reference trajectories over a directed network. Prediction errors, rather than tracking errors, are used to update the neural adaptation laws, which are independent of the tracking error dynamics, resulting in two time-scales to govern the entire system. The stability property of the closed-loop network is established via Lyapunov analysis, and transient property is quantified in terms of L2 norms of the derivatives of neural weights, which are shown to be smaller than the classical neural dynamic surface control approach. Comparative studies are given to show the substantial improvements of the proposed new method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Taheri, Mahboobeh; Mohebbi, Ali
2008-08-30
In this study, a new approach for the auto-design of neural networks, based on a genetic algorithm (GA), has been used to predict collection efficiency in venturi scrubbers. The experimental input data, including particle diameter, throat gas velocity, liquid to gas flow rate ratio, throat hydraulic diameter, pressure drop across the venturi scrubber and collection efficiency as an output, have been used to create a GA-artificial neural network (ANN) model. The testing results from the model are in good agreement with the experimental data. Comparison of the results of the GA optimized ANN model with the results from the trial-and-error calibrated ANN model indicates that the GA-ANN model is more efficient. Finally, the effects of operating parameters such as liquid to gas flow rate ratio, throat gas velocity, and particle diameter on collection efficiency were determined.
Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.
Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao
2015-02-01
This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.
Artificial neural networks aided conceptual stage design of water harvesting structures
Directory of Open Access Journals (Sweden)
Vinay Chandwani
2016-09-01
Full Text Available The paper presents artificial neural networks (ANNs based methodology for ascertaining the structural parameters of water harvesting structures (WHS at the conceptual stage of design. The ANN is trained using exemplar patterns generated using an in-house MSExcel based design program, to draw a functional relationship between the five inputs design parameters namely, peak flood discharge, safe bearing capacity of strata, length of structure, height of structure and silt factor and four outputs namely, top width, bottom width, foundation depth and flood lift representing the structural parameters of WHS. The results of the study show that, the structural parameters of the WHS predicted using ANN model are in close agreement with the actual field parameters. The versatility of ANN to map complex or complex unknown relationships has been proven in the study. A parametric sensitivity study is also performed to assess the most significant design parameter. The study holistically presents a neural network based decision support tool that can be used to accurately estimate the major design parameters of the WHS at the conceptual stage of design in quick time, aiding the engineer-in-charge to conveniently forecast the budget requirements and minimize the labor involved during the subsequent phases of analysis and design.
Johnston, S P; Prasad, G; Maguire, L; McGinnity, T M
2010-12-01
This paper presents an approach that permits the effective hardware realization of a novel Evolvable Spiking Neural Network (ESNN) paradigm on Field Programmable Gate Arrays (FPGAs). The ESNN possesses a hybrid learning algorithm that consists of a Spike Timing Dependent Plasticity (STDP) mechanism fused with a Genetic Algorithm (GA). The design and implementation direction utilizes the latest advancements in FPGA technology to provide a partitioned hardware/software co-design solution. The approach achieves the maximum FPGA flexibility obtainable for the ESNN paradigm. The algorithm was applied as an embedded intelligent system robotic controller to solve an autonomous navigation and obstacle avoidance problem.
Directory of Open Access Journals (Sweden)
Tienfuan Kerh
2013-01-01
Full Text Available This study proposes an improved computational neural network model that uses three seismic parameters (i.e., local magnitude, epicentral distance, and epicenter depth and two geological conditions (i.e., shear wave velocity and standard penetration test value as the inputs for predicting peak ground acceleration—the key element for evaluating earthquake response. Initial comparison results show that a neural network model with three neurons in the hidden layer can achieve relatively better performance based on the evaluation index of correlation coefficient or mean square error. This study further develops a new weight-based neural network model for estimating peak ground acceleration at unchecked sites. Four locations identified to have higher estimated peak ground accelerations than that of the seismic design value in the 24 subdivision zones are investigated in Taiwan. Finally, this study develops a new equation for the relationship of horizontal peak ground acceleration and focal distance by the curve fitting method. This equation represents seismic characteristics in Taiwan region more reliably and reasonably. The results of this study provide an insight into this type of nonlinear problem, and the proposed method may be applicable to other areas of interest around the world.
Design a PID Controller for Suspension System by Back Propagation Neural Network
Directory of Open Access Journals (Sweden)
M. Heidari
2013-01-01
Full Text Available This paper presents a neural network for designing of a PID controller for suspension system. The suspension system, designed as a quarter model, is used to simplify the problem to one-dimensional spring-damper system. In this paper, back propagation neural network (BPN has been used for determining the gain parameters of a PID controller for suspension system of automotive. The BPN method is found to be the most accurate and quick. The best results were obtained by the BPN by Levenberg-Marquardt algorithm training with 10 neurons in the one hidden layer. Training was continued until the mean squared error is less than . Desired error value was achieved in the BPN, and the BPN was tested with both data used and not used for training. By training of this network, it is possible to estimate the gain parameters of PID controller at any condition. The inputs of network are automotive velocity, overshoot percentage, settling time, and steady state error of suspension system response. Also outputs of the net are the gain parameters of PID controller. Resultant low relative error value of the ANN model indicates the usability of the BPN in this area.
Neural-Network-Biased Genetic Algorithms for Materials Design: Evolutionary Algorithms That Learn.
Patra, Tarak K; Meenakshisundaram, Venkatesh; Hung, Jui-Hsiang; Simmons, David S
2017-02-13
Machine learning has the potential to dramatically accelerate high-throughput approaches to materials design, as demonstrated by successes in biomolecular design and hard materials design. However, in the search for new soft materials exhibiting properties and performance beyond those previously achieved, machine learning approaches are frequently limited by two shortcomings. First, because they are intrinsically interpolative, they are better suited to the optimization of properties within the known range of accessible behavior than to the discovery of new materials with extremal behavior. Second, they require large pre-existing data sets, which are frequently unavailable and prohibitively expensive to produce. Here we describe a new strategy, the neural-network-biased genetic algorithm (NBGA), for combining genetic algorithms, machine learning, and high-throughput computation or experiment to discover materials with extremal properties in the absence of pre-existing data. Within this strategy, predictions from a progressively constructed artificial neural network are employed to bias the evolution of a genetic algorithm, with fitness evaluations performed via direct simulation or experiment. In effect, this strategy gives the evolutionary algorithm the ability to "learn" and draw inferences from its experience to accelerate the evolutionary process. We test this algorithm against several standard optimization problems and polymer design problems and demonstrate that it matches and typically exceeds the efficiency and reproducibility of standard approaches including a direct-evaluation genetic algorithm and a neural-network-evaluated genetic algorithm. The success of this algorithm in a range of test problems indicates that the NBGA provides a robust strategy for employing informatics-accelerated high-throughput methods to accelerate materials design in the absence of pre-existing data.
Design of Course-Keeping Controller for a Ship Based on Backstepping and Neural Networks
Directory of Open Access Journals (Sweden)
Qiang Zhang
2017-06-01
Full Text Available Due to the existence of uncertainties and the unknown time variant environmental disturbances for ship course nonlinear control system, the ship course adaptive neural network robust course-keeping controller is designed by combining the backstepping technique. The neural networks (NNs are employed for the compensating of the nonlinear term of the nonlinear ship course-keeping control system. The designed adaptive laws are designed to estimate the weights of NNs and the bounds of unknown environmental disturbances. The first order commander are introduced to solve the problem of repeating differential operations in the traditional backstepping design method, which let the designed controller easier to implement in navigation practice and structure simplicity. Theoretically, it indicates that the proposed controller can track the setting course in arbitrary expected accuracy, while keeping all control signals in the ship course control closed-loop system are uniformly ultimately bounded. Finally, the training ship of Dalian Maritime University is taken for example; simulation results illustrated the effectiveness and the robustness of the proposed controller.
Directory of Open Access Journals (Sweden)
Jida Xing
2015-06-01
Full Text Available In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared
Design and regularization of neural networks: the optimal use of a validation set
DEFF Research Database (Denmark)
Larsen, Jan; Hansen, Lars Kai; Svarer, Claus
1996-01-01
We derive novel algorithms for estimation of regularization parameters and for optimization of neural net architectures based on a validation set. Regularisation parameters are estimated using an iterative gradient descent scheme. Architecture optimization is performed by approximative...... combinatorial search among the relevant subsets of an initial neural network architecture by employing a validation set based optimal brain damage/surgeon (OBD/OBS) or a mean field combinatorial optimization approach. Numerical results with linear models and feed-forward neural networks demonstrate...
Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold
2014-12-01
In this study, we propose Hybrid Radial Basis Function Neural Networks (HRBFNNs) realized with the aid of fuzzy clustering method (Fuzzy C-Means, FCM) and polynomial neural networks. Fuzzy clustering used to form information granulation is employed to overcome a possible curse of dimensionality, while the polynomial neural network is utilized to build local models. Furthermore, genetic algorithm (GA) is exploited here to optimize the essential design parameters of the model (including fuzzification coefficient, the number of input polynomial fuzzy neurons (PFNs), and a collection of the specific subset of input PFNs) of the network. To reduce dimensionality of the input space, principal component analysis (PCA) is considered as a sound preprocessing vehicle. The performance of the HRBFNNs is quantified through a series of experiments, in which we use several modeling benchmarks of different levels of complexity (different number of input variables and the number of available data). A comparative analysis reveals that the proposed HRBFNNs exhibit higher accuracy in comparison to the accuracy produced by some models reported previously in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Design of FPGA Based Neural Network Controller for Earth Station Power System
Directory of Open Access Journals (Sweden)
Hassen T. Dorrah
2012-06-01
Full Text Available Automation of generating hardware description language code from neural networks models can highly decrease time of implementation those networks into a digital devices, thus significant money savings. To implement the neural network into hardware designer, it is required to translate generated model into device structure. VHDL language is used to describe those networks into hardware. VHDL code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic of the earth station and the satellite power systems using ModelSim PE 6.6 simulator tool. Integration between MATLAB and VHDL is used to save execution time of computation. The results shows that a good agreement between MATLAB and VHDL and a fast/flexible feed forward NN which is capable of dealing with floating point arithmetic operations; minimum number of CLB slices; and good speed of performance. FPGA synthesis results are obtained with view RTL schematic and technology schematic from Xilinix tool. Minimum number of utilized resources is obtained by using Xilinix VERTIX5.
Agha, Salah R; Alnahhal, Mohammed J
2012-11-01
The current study investigates the possibility of obtaining the anthropometric dimensions, critical to school furniture design, without measuring all of them. The study first selects some anthropometric dimensions that are easy to measure. Two methods are then used to check if these easy-to-measure dimensions can predict the dimensions critical to the furniture design. These methods are multiple linear regression and neural networks. Each dimension that is deemed necessary to ergonomically design school furniture is expressed as a function of some other measured anthropometric dimensions. Results show that out of the five dimensions needed for chair design, four can be related to other dimensions that can be measured while children are standing. Therefore, the method suggested here would definitely save time and effort and avoid the difficulty of dealing with students while measuring these dimensions. In general, it was found that neural networks perform better than multiple linear regression in the current study. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Evolving spiking neural networks: a novel growth algorithm exhibits unintelligent design
Schaffer, J. David
2015-06-01
Spiking neural networks (SNNs) have drawn considerable excitement because of their computational properties, believed to be superior to conventional von Neumann machines, and sharing properties with living brains. Yet progress building these systems has been limited because we lack a design methodology. We present a gene-driven network growth algorithm that enables a genetic algorithm (evolutionary computation) to generate and test SNNs. The genome for this algorithm grows O(n) where n is the number of neurons; n is also evolved. The genome not only specifies the network topology, but all its parameters as well. Experiments show the algorithm producing SNNs that effectively produce a robust spike bursting behavior given tonic inputs, an application suitable for central pattern generators. Even though evolution did not include perturbations of the input spike trains, the evolved networks showed remarkable robustness to such perturbations. In addition, the output spike patterns retain evidence of the specific perturbation of the inputs, a feature that could be exploited by network additions that could use this information for refined decision making if required. On a second task, a sequence detector, a discriminating design was found that might be considered an example of "unintelligent design"; extra non-functional neurons were included that, while inefficient, did not hamper its proper functioning.
Directory of Open Access Journals (Sweden)
Narayanan Manikandan
2016-01-01
Full Text Available Software development life cycle has been characterized by destructive disconnects between activities like planning, analysis, design, and programming. Particularly software developed with prediction based results is always a big challenge for designers. Time series data forecasting like currency exchange, stock prices, and weather report are some of the areas where an extensive research is going on for the last three decades. In the initial days, the problems with financial analysis and prediction were solved by statistical models and methods. For the last two decades, a large number of Artificial Neural Networks based learning models have been proposed to solve the problems of financial data and get accurate results in prediction of the future trends and prices. This paper addressed some architectural design related issues for performance improvement through vectorising the strengths of multivariate econometric time series models and Artificial Neural Networks. It provides an adaptive approach for predicting exchange rates and it can be called hybrid methodology for predicting exchange rates. This framework is tested for finding the accuracy and performance of parallel algorithms used.
Design of alluvial Egyptian irrigation canals using artificial neural networks method
Directory of Open Access Journals (Sweden)
Hassan Ibrahim Mohamed
2013-06-01
Full Text Available In the present study, artificial neural networks method (ANNs is used to estimate the main parameters which used in design of stable alluvial channels. The capability of ANN models to predict the stable alluvial channels dimensions is investigated, where the flow rate and sediment mean grain size were considered as input variables and wetted perimeter, hydraulic radius, and water surface slope were considered as output variables. The used ANN models are based on a back propagation algorithm to train a multi-layer feed-forward network (Levenberg Marquardt algorithm. The proposed models were verified using 311 data sets of field data collected from 61 manmade canals and drains. Several statistical measures and graphical representation are used to check the accuracy of the models in comparison with previous empirical equations. The results of the developed ANN model proved that this technique is reliable in such field compared with previously developed methods.
Neural Networks: Implementations and Applications
Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.
1996-01-01
Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas
Biologically Inspired Modular Neural Networks
Azam, Farooq
2000-01-01
This dissertation explores the modular learning in artificial neural networks that mainly driven by the inspiration from the neurobiological basis of the human learning. The presented modularization approaches to the neural network design and learning are inspired by the engineering, complexity, psychological and neurobiological aspects. The main theme of this dissertation is to explore the organization and functioning of the brain to discover new structural and learning ...
1990-12-01
surveyed. Later control of1a robotiic system was used as the prototypical task and a HNN was designed and compared with the state of the art adaptive...Z Solution to the In’.erse kinematics efficiency foi the 6-DOF ,Lise is due to tihe Problem in Roboti s b% Neural Networks IEEE International3 trade...manipulator Desired Mechanism Actwl parameters in closed loop operation.T etr In operation, the controller is given a trajectory by a path Controller RobotI
Energy Technology Data Exchange (ETDEWEB)
Magnier, Laurent; Haghighat, Fariborz [Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., BE-351, Montreal, Quebec H3G 1M8 (Canada)
2010-03-15
Building optimization involving multiple objectives is generally an extremely time-consuming process. The GAINN approach presented in this study first uses a simulation-based Artificial Neural Network (ANN) to characterize building behaviour, and then combines this ANN with a multiobjective Genetic Algorithm (NSGA-II) for optimization. The methodology has been used in the current study for the optimization of thermal comfort and energy consumption in a residential house. Results of ANN training and validation are first discussed. Two optimizations were then conducted taking variables from HVAC system settings, thermostat programming, and passive solar design. By integrating ANN into optimization the total simulation time was considerably reduced compared to classical optimization methodology. Results of the optimizations showed significant reduction in terms of energy consumption as well as improvement in thermal comfort. Finally, thanks to the multiobjective approach, dozens of potential designs were revealed, with a wide range of trade-offs between thermal comfort and energy consumption. (author)
Design and simulation of a nanoelectronic DG MOSFET current source using artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Djeffal, F. [LEA, Department of Electronics, University of Batna 05000 (Algeria)], E-mail: faycaldzdz@hotmail.com; Dibi, Z. [LEA, Department of Electronics, University of Batna 05000 (Algeria)], E-mail: zohirdibi@univ-batna.dz; Hafiane, M.L.; Arar, D. [LEA, Department of Electronics, University of Batna 05000 (Algeria)
2007-09-15
The double gate (DG) MOSFET has received great attention in recent years owing to the inherent suppression of short channel effects (SCEs), excellent subthreshold slope (S), improved drive current (I{sub ds}) and transconductance (gm), volume inversion for symmetric devices and excellent scalability. Therefore, simulation tools which can be applied to design nanoscale transistors in the future require new theory and modeling techniques that capture the physics of quantum transport accurately and efficiently. In this sense, this work presents the applicability of the artificial neural networks (ANN) for the design and simulation of a nanoelectronic DG MOSFET current source. The latter is based on the 2D numerical Non-Equilibrium Green's Function (NEGF) simulation of the current-voltage characteristics of an undoped symmetric DG MOSFET. Our results are discussed in order to obtain some new and useful information about the ULSI technology.
Yashchenko, Vitaliy A.
2000-03-01
On the basis of the analysis of scientific ideas reflecting the law in the structure and functioning the biological structures of a brain, and analysis and synthesis of knowledge, developed by various directions in Computer Science, also there were developed the bases of the theory of a new class neural-like growing networks, not having the analogue in world practice. In a base of neural-like growing networks the synthesis of knowledge developed by classical theories - semantic and neural of networks is. The first of them enable to form sense, as objects and connections between them in accordance with construction of the network. With thus each sense gets a separate a component of a network as top, connected to other tops. In common it quite corresponds to structure reflected in a brain, where each obvious concept is presented by certain structure and has designating symbol. Secondly, this network gets increased semantic clearness at the expense owing to formation not only connections between neural by elements, but also themselves of elements as such, i.e. here has a place not simply construction of a network by accommodation sense structures in environment neural of elements, and purely creation of most this environment, as of an equivalent of environment of memory. Thus neural-like growing networks are represented by the convenient apparatus for modeling of mechanisms of teleological thinking, as a fulfillment of certain psychophysiological of functions.
Design and development of artificial neural networks for depositing powders in coating treatment
Jean, Ming-Der; Liu, Chyuan-Du; Wang, Jen-Ting
2005-05-01
We propose the application of an artificial neural network to a Taguchi orthogonal experiment to develop a robust and efficient method of depositing alloys with a favorable surface morphology by a specific microwelding hardfacing process. An artificial neural network model performs self-learning by updating weightings and repeated learning epochs. The artificial neural network construct can be developed based on data obtained from experiments. The root of mean squares (RMS) error can be minimized by applying results obtained from training and testing samples, such that the predicted and experimental values exhibit a good linear relationship. An analysis of variance indicates that the significant factors explain approximately 70% of the total variance. Consequently, the Taguchi-based neural network model is experimentally confirmed to estimate accurately the hardfacing roughness performance. The experimental results reveal the hardfacing roughness performance of the product of PTA coating is greatly improved by optimizing the coating conditions and is accurately predicted by the artificial neural network model. The combination of the neural network model with Taguchi-based experiments is demonstrated as an effective and intelligent method for developing a robust, efficient, high-quality coating process.
Hopkins, Dale A.
1998-01-01
A key challenge in designing the new High Speed Civil Transport (HSCT) aircraft is determining a good match between the airframe and engine. Multidisciplinary design optimization can be used to solve the problem by adjusting parameters of both the engine and the airframe. Earlier, an example problem was presented of an HSCT aircraft with four mixed-flow turbofan engines and a baseline mission to carry 305 passengers 5000 nautical miles at a cruise speed of Mach 2.4. The problem was solved by coupling NASA Lewis Research Center's design optimization testbed (COMETBOARDS) with NASA Langley Research Center's Flight Optimization System (FLOPS). The computing time expended in solving the problem was substantial, and the instability of the FLOPS analyzer at certain design points caused difficulties. In an attempt to alleviate both of these limitations, we explored the use of two approximation concepts in the design optimization process. The two concepts, which are based on neural network and linear regression approximation, provide the reanalysis capability and design sensitivity analysis information required for the optimization process. The HSCT aircraft optimization problem was solved by using three alternate approaches; that is, the original FLOPS analyzer and two approximate (derived) analyzers. The approximate analyzers were calibrated and used in three different ranges of the design variables; narrow (interpolated), standard, and wide (extrapolated).
Directory of Open Access Journals (Sweden)
Yuan Li
2017-03-01
Full Text Available In this study, an adaptive neural network synchronization (NNS approach, capable of guaranteeing prescribed performance (PP, is designed for non-identical fractional-order chaotic systems (FOCSs. For PP synchronization, we mean that the synchronization error converges to an arbitrary small region of the origin with convergence rate greater than some function given in advance. Neural networks are utilized to estimate unknown nonlinear functions in the closed-loop system. Based on the integer-order Lyapunov stability theorem, a fractional-order adaptive NNS controller is designed, and the PP can be guaranteed. Finally, simulation results are presented to confirm our results.
Li, Yuan; Lv, Hui; Jiao, Dongxiu
2017-03-01
In this study, an adaptive neural network synchronization (NNS) approach, capable of guaranteeing prescribed performance (PP), is designed for non-identical fractional-order chaotic systems (FOCSs). For PP synchronization, we mean that the synchronization error converges to an arbitrary small region of the origin with convergence rate greater than some function given in advance. Neural networks are utilized to estimate unknown nonlinear functions in the closed-loop system. Based on the integer-order Lyapunov stability theorem, a fractional-order adaptive NNS controller is designed, and the PP can be guaranteed. Finally, simulation results are presented to confirm our results.
DEFF Research Database (Denmark)
Krogh, Anders Stærmose; Riis, Søren Kamaric
1999-01-01
A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...
On design and evaluation of tapped-delay neural network architectures
DEFF Research Database (Denmark)
Svarer, Claus; Hansen, Lars Kai; Larsen, Jan
1993-01-01
Pruning and evaluation of tapped-delay neural networks for the sunspot benchmark series are addressed. It is shown that the generalization ability of the networks can be improved by pruning using the optimal brain damage method of Le Cun, Denker and Solla. A stop criterion for the pruning algorithm...
Directory of Open Access Journals (Sweden)
Gilberto Bojorquez
2007-08-01
Full Text Available The development of smart sensors involves the design of reconfigurable systemscapable of working with different input sensors. Reconfigurable systems ideally shouldspend the least possible amount of time in their calibration. An autocalibration algorithmfor intelligent sensors should be able to fix major problems such as offset, variation of gainand lack of linearity, as accurately as possible. This paper describes a new autocalibrationmethodology for nonlinear intelligent sensors based on artificial neural networks, ANN.The methodology involves analysis of several network topologies and training algorithms.The proposed method was compared against the piecewise and polynomial linearizationmethods. Method comparison was achieved using different number of calibration points,and several nonlinear levels of the input signal. This paper also shows that the proposedmethod turned out to have a better overall accuracy than the other two methods. Besides,experimentation results and analysis of the complete study, the paper describes theimplementation of the ANN in a microcontroller unit, MCU. In order to illustrate themethod capability to build autocalibration and reconfigurable systems, a temperaturemeasurement system was designed and tested. The proposed method is an improvement over the classic autocalibration methodologies, because it impacts on the design process of intelligent sensors, autocalibration methodologies and their associated factors, like time and cost.
DEFF Research Database (Denmark)
Hansen, Lars Kai; Salamon, Peter
1990-01-01
We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....
Directory of Open Access Journals (Sweden)
You Hailong
2014-01-01
Full Text Available Plasma etching process plays a critical role in semiconductor manufacturing. Because physical and chemical mechanisms involved in plasma etching are extremely complicated, models supporting process control are difficult to construct. This paper uses a 35-run D-optimal design to efficiently collect data under well planned conditions for important controllable variables such as power, pressure, electrode gap and gas flows of Cl2 and He and the response, etching rate, for building an empirical underlying model. Since the relationship between the control and response variables could be highly nonlinear, a generalized regression neural network is used to select important model variables and their combination effects and to fit the model. Compared with the response surface methodology, the proposed method has better prediction performance in training and testing samples. A success application of the model to control the plasma etching process demonstrates the effectiveness of the methods.
[Application of an artificial neural network in the design of sustained-release dosage forms].
Wei, X H; Wu, J J; Liang, W Q
2001-09-01
To use the artificial neural network (ANN) in Matlab 5.1 tool-boxes to predict the formulations of sustained-release tablets. The solubilities of nine drugs and various ratios of HPMC: Dextrin for 63 tablet formulations were used as the ANN model input, and in vitro accumulation released at 6 sampling times were used as output. The ANN model was constructed by selecting the optimal number of iterations (25) and model structure in which there are one hidden layer and five hidden layer nodes. The optimized ANN model was used for prediction of formulation based on desired target in vitro dissolution-time profiles. ANN predicted profiles based on ANN predicted formulations were closely similar to the target profiles. The ANN could be used for predicting the dissolution profiles of sustained release dosage form and for the design of optimal formulation.
Critical Branching Neural Networks
Kello, Christopher T.
2013-01-01
It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…
Thermal Hydraulic design parameters study for severe accidents using neural networks
Energy Technology Data Exchange (ETDEWEB)
Roh, Chang Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)
1997-12-31
To provide the information on severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore, was performed to investigate the effect of thermal hydraulic design parameters on severe accident progression of pressurized water reactors (PWRs). Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among nine parameters. For training, different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3 and 4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout (SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to the other six parameters. 9 refs., 5 tabs. (Author)
Medarević, Djordje P; Kleinebudde, Peter; Djuriš, Jelena; Djurić, Zorica; Ibrić, Svetlana
2016-01-01
This study for the first time demonstrates combined application of mixture experimental design and artificial neural networks (ANNs) in the solid dispersions (SDs) development. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs were prepared by solvent casting method to improve carbamazepine dissolution rate. The influence of the composition of prepared SDs on carbamazepine dissolution rate was evaluated using d-optimal mixture experimental design and multilayer perceptron ANNs. Physicochemical characterization proved the presence of the most stable carbamazepine polymorph III within the SD matrix. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs significantly improved carbamazepine dissolution rate compared to pure drug. Models developed by ANNs and mixture experimental design well described the relationship between proportions of SD components and percentage of carbamazepine released after 10 (Q10) and 20 (Q20) min, wherein ANN model exhibit better predictability on test data set. Proportions of carbamazepine and poloxamer 188 exhibited the highest influence on carbamazepine release rate. The highest carbamazepine release rate was observed for SDs with the lowest proportions of carbamazepine and the highest proportions of poloxamer 188. ANNs and mixture experimental design can be used as powerful data modeling tools in the systematic development of SDs. Taking into account advantages and disadvantages of both techniques, their combined application should be encouraged.
Biological neural networks as model systems for designing future parallel processing computers
Ross, Muriel D.
1991-01-01
One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.
Energy Technology Data Exchange (ETDEWEB)
Rong Bao, E-mail: rongbao_nust@sina.com; Rui Xiaoting [Nanjing University of Science and Technology, Institute of Launch Dynamics (China); Tao Ling [Chinese Academy of Sciences (ASIPP), Institute of Plasma Physics (China)
2012-11-15
In this paper, a dynamic modeling method and an active vibration control scheme for a smart flexible four-bar linkage mechanism featuring piezoelectric actuators and strain gauge sensors are presented. The dynamics of this smart mechanism is described by the Discrete Time Transfer Matrix Method of Multibody System (MS-DTTMM). Then a nonlinear fuzzy neural network control is employed to suppress the vibration of this smart mechanism. For improving the dynamic performance of the fuzzy neural network, a genetic algorithm based on the MS-DTTMM is designed offline to tune the initial parameters of the fuzzy neural network. The MS-DTTMM avoids the global dynamics equations of the system, which results in the matrices involved are always very small, so the computational efficiency of the dynamic analysis and control system optimization can be greatly improved. Formulations of the method as well as a numerical simulation are given to demonstrate the proposed dynamic method and control scheme.
Directory of Open Access Journals (Sweden)
Giles M. Foody
2017-08-01
Full Text Available Validation data are often used to evaluate the performance of a trained neural network and used in the selection of a network deemed optimal for the task at-hand. Optimality is commonly assessed with a measure, such as overall classification accuracy. The latter is often calculated directly from a confusion matrix showing the counts of cases in the validation set with particular labelling properties. The sample design used to form the validation set can, however, influence the estimated magnitude of the accuracy. Commonly, the validation set is formed with a stratified sample to give balanced classes, but also via random sampling, which reflects class abundance. It is suggested that if the ultimate aim is to accurately classify a dataset in which the classes do vary in abundance, a validation set formed via random, rather than stratified, sampling is preferred. This is illustrated with the classification of simulated and remotely-sensed datasets. With both datasets, statistically significant differences in the accuracy with which the data could be classified arose from the use of validation sets formed via random and stratified sampling (z = 2.7 and 1.9 for the simulated and real datasets respectively, for both p < 0.05%. The accuracy of the classifications that used a stratified sample in validation were smaller, a result of cases of an abundant class being commissioned into a rarer class. Simple means to address the issue are suggested.
Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.
Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza
2015-11-01
In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Practical neural network recipies in C++
Masters
2014-01-01
This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assum
Hyperbolic Hopfield neural networks.
Kobayashi, M
2013-02-01
In recent years, several neural networks using Clifford algebra have been studied. Clifford algebra is also called geometric algebra. Complex-valued Hopfield neural networks (CHNNs) are the most popular neural networks using Clifford algebra. The aim of this brief is to construct hyperbolic HNNs (HHNNs) as an analog of CHNNs. Hyperbolic algebra is a Clifford algebra based on Lorentzian geometry. In this brief, a hyperbolic neuron is defined in a manner analogous to a phasor neuron, which is a typical complex-valued neuron model. HHNNs share common concepts with CHNNs, such as the angle and energy. However, HHNNs and CHNNs are different in several aspects. The states of hyperbolic neurons do not form a circle, and, therefore, the start and end states are not identical. In the quantized version, unlike complex-valued neurons, hyperbolic neurons have an infinite number of states.
Application of an artificial neural network to ready-mixed concretes mix design
Directory of Open Access Journals (Sweden)
Setién, J.
2003-06-01
Full Text Available This paper presents the practical application of cm artificial neural network (ANN to the problem of concrete mix in a factory. After a brief introduction to the complex problem of concrete mixes design and a quick review of the fundamental basis of neurocomputation, an optimal neural network model has been developed to cope with such a problem. For training the net, several control mixes have been fabricated recording in all cases both the characteristic 28 days compressive strength and the workability measured in terms of the slump of the Abrams' cone. After the training process of the net, the power of its predictive ability is checked by comparison of the results obtained with those corresponding to four reference mixes; in this way, it is shown that the considered approach can be used in multicriterial search for optimal concrete mixes.
En este trabajo se presenta la aplicación práctica de una red neuronal artificial (ANN al problema de la dosificación de hormigones en planta. Tras una breve introducción a la compleja problemática de la dosificación de hormigones y un repaso a los fundamentos de la neurocomputación, se diseña un modelo de red neuronal óptimo para abordar el problema. Para entrenar dicha red, se realizan varias amasadas de prueba, registrándose para cada una de ellas la trabajabilidad, mediante la medida del asiento del cono de Abrams, y ¡a resistencia característica a los 28 días. Una vez entrenada la red, se pone a prueba su carácter predictivo comparando los resultados que proporciona con los de cuatro amasadas de referencia, demostrándose que esta aproximación puede ser utilizada como método multicriterial para la obtención de mezclas óptimas de hormigón.
Energy Technology Data Exchange (ETDEWEB)
Mazrou, Hakim [Division de Physique Radiologique, Centre de Recherche Nucleaire d' Alger (CRNA), 02 Boulevard Frantz, Fanon, B.P. 399, 16000 Alger (Algeria)], E-mail: mazrou_h@crna.dz
2009-10-15
The present work explores, through a comprehensive sensitivity study, a new methodology to find a suitable artificial neural network architecture which improves its performances capabilities in predicting two significant parameters in safety assessment i.e. the multiplication factor k{sub eff} and the fuel powers peaks P{sub max} of the benchmark 10 MW IAEA LEU core research reactor. The performances under consideration were the improvement of network predictions during the validation process and the speed up of computational time during the training phase. To reach this objective, we took benefit from Neural Network MATLAB Toolbox to carry out a widespread sensitivity study. Consequently, the speed up of several popular algorithms has been assessed during the training process. The comprehensive neural system was subsequently trained on different transfer functions, number of hidden neurons, levels of error and size of generalization corpus. Thus, using a personal computer with data created from preceding work, the final results obtained for the treated benchmark were improved in both network generalization phase and much more in computational time during the training process in comparison to the results obtained previously.
Directory of Open Access Journals (Sweden)
Shang-Ming Huang
2017-11-01
Full Text Available 2-Ethylhexyl salicylate, an ultraviolet filter, is widely used to protect skin against sunlight-induced harmful effects in the cosmetic industry. In this study, the green synthesis of 2-ethylhexyl salicylate using immobilized lipase through a solvent-free and reduced pressure evaporation system was investigated. A Box–Behnken design was employed to develop an artificial neural network (ANN model. The parameters for an optimal architecture of an ANN were set out: a quick propagation algorithm, a hyperbolic tangent transfer function, 10,000 iterations, and six nodes within the hidden layer. The best-fitting performance of the ANN was determined by the coefficient of determination and the root-mean-square error between the correlation of predicted and experimental data, indicating that the ANN displayed excellent data-fitting properties. Finally, the experimental conditions of synthesis were well established with the optimal parameters to obtain a high conversion of 2-ethylhexyl salicylate. In conclusion, this study efficiently replaces the traditional solvents with a green process for the synthesis of 2-ethylhexyl salicylate to avoid environmental contamination, and this process is well-modeled by a methodological ANN for optimization, which might be a benefit for industrial production.
Design of Riprap Stone Around Bridge Piers Using Empirical and Neural Network Method
Directory of Open Access Journals (Sweden)
Mojtaba Karimaee Tabarestani
2015-06-01
Full Text Available An attempt was made to develop a method for sizing stable riprap around bridge piers based on a huge amount of experimental data, which is available in the literature. All available experimental data for circular as well as round-nose-and-tail rectangular piers were collected. The data for rectangular piers, with different aspect ratios, aligned with the flow or skewed at different angles to the flow, were used in this analysis. In addition, new experiments were also conducted for larger pier width to riprap size ratio, which was not available in the literature. Based on at least 190 experimental data, the effect of important parameters on riprap stability were studied which showed that the effective pier width is the most effective parameter on riprap stability. In addition, an empirical equation was developed by multiple regression analysis to estimate the stable riprap stone size around bridge piers. The ratio of predicted to experiment riprap size value for all experimental data is larger than one with an average value of 1.75, which is less than many other empirical equations. Finally, in order to achieve a higher accuracy for riprap design, the artificial neural network (ANN method based on utilizing non-dimensional parameters was deployed. The results showed that the ANN model provides around a 7% improved prediction for riprap size compared to the conventional regression formula.
Introduction to Artificial Neural Networks
DEFF Research Database (Denmark)
Larsen, Jan
1999-01-01
The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....
Deconvolution using a neural network
Energy Technology Data Exchange (ETDEWEB)
Lehman, S.K.
1990-11-15
Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.
Design of Optimal Hybrid Position/Force Controller for a Robot Manipulator Using Neural Networks
Directory of Open Access Journals (Sweden)
Vikas Panwar
2007-01-01
Full Text Available The application of quadratic optimization and sliding-mode approach is considered for hybrid position and force control of a robot manipulator. The dynamic model of the manipulator is transformed into a state-space model to contain two sets of state variables, where one describes the constrained motion and the other describes the unconstrained motion. The optimal feedback control law is derived solving matrix differential Riccati equation, which is obtained using Hamilton Jacobi Bellman optimization. The optimal feedback control law is shown to be globally exponentially stable using Lyapunov function approach. The dynamic model uncertainties are compensated with a feedforward neural network. The neural network requires no preliminary offline training and is trained with online weight tuning algorithms that guarantee small errors and bounded control signals. The application of the derived control law is demonstrated through simulation with a 4-DOF robot manipulator to track an elliptical planar constrained surface while applying the desired force on the surface.
Pole discontinuity removal using artificial neural networks for microstrip antenna design
Kulshrestha, Sanjeev; Chheda, Deven J.; Chakrabarty, S. B.; Jyoti, Rajeev; Sharma, S. B.
2011-12-01
This article presents the use of artificial neural networks for the evaluation of integrals with finite number of pole singularities while formulating the integral equation for the electric surface current density. A feed-forward single-layer back-propagated artificial neural network (ANN) model has been trained to approximate the discontinuous integrand function. Generation of a soft continuous function obtained from the ANN model and closed-loop expressions for the evaluation of the integrals are presented. The proposed technique is applied to compute the input impedance of microstrip antenna and results have been compared with IE3D. Integration has been performed using n-point Gaussian quadrature rule for evaluating the reaction matrix.
Two neural network algorithms for designing optimal terminal controllers with open final time
Plumer, Edward S.
1992-01-01
Multilayer neural networks, trained by the backpropagation through time algorithm (BPTT), have been used successfully as state-feedback controllers for nonlinear terminal control problems. Current BPTT techniques, however, are not able to deal systematically with open final-time situations such as minimum-time problems. Two approaches which extend BPTT to open final-time problems are presented. In the first, a neural network learns a mapping from initial-state to time-to-go. In the second, the optimal number of steps for each trial run is found using a line-search. Both methods are derived using Lagrange multiplier techniques. This theoretical framework is used to demonstrate that the derived algorithms are direct extensions of forward/backward sweep methods used in N-stage optimal control. The two algorithms are tested on a Zermelo problem and the resulting trajectories compare favorably to optimal control results.
Artificial neural network modelling
Samarasinghe, Sandhya
2016-01-01
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .
Fuzzy neural network theory and application
Liu, Puyin
2004-01-01
This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he
Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan
2016-01-01
Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method.
Pokorná, L; Revilla, A; Havel, J; Patocka, J
1999-07-01
Galanthamine is a third-generation cholinesterase inhibitor used against Alzheimer's disease. New analytical methods for the determination of galanthamine in pharmaceutical preparatives and biological fluids, such as urine and serum, were developed. An experimental design and artificial neural network approach were used for method optimization. Thirty-five ppb of galanthamine were determined in serum samples (with addition of 10 mM magnesium chloride and using solid-phase preconcentration).
Villarreal, James A.
1991-01-01
A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.
Çelik, Emre; Uzun, Yunus; Kurt, Erol; Öztürk, Nihat; Topaloğlu, Nurettin
2018-01-01
An application of an artificial neural network (ANN) has been implemented in this article to model the nonlinear relationship of the harvested electrical power of a recently developed piezoelectric pendulum with respect to its resistive load R L and magnetic excitation frequency f. Prediction of harvested power for a wide range is a difficult task, because it increases dramatically when f gets closer to the natural frequency f 0 of the system. The neural model of the concerned system is designed upon the basis of a standard multi-layer network with a back propagation learning algorithm. Input data, termed input patterns, to present to the network and the respective output data, termed output patterns, describing desired network output that are carefully collected from the experiment under several conditions in order to train the developed network accurately. Results have indicated that the designed ANN is an effective means for predicting the harvested power of the piezoelectric harvester as functions of R L and f with a root mean square error of 6.65 × 10-3 for training and 1.40 for different test conditions. Using the proposed approach, the harvested power can be estimated reasonably without tackling the difficulty of experimental studies and complexity of analytical formulas representing the concerned system.
DEFF Research Database (Denmark)
Yao, Wei; Fang, Jiakun; Zhao, Ping
2013-01-01
In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have...... system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency...
Neural networks for triggering
Energy Technology Data Exchange (ETDEWEB)
Denby, B. (Fermi National Accelerator Lab., Batavia, IL (USA)); Campbell, M. (Michigan Univ., Ann Arbor, MI (USA)); Bedeschi, F. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy)); Chriss, N.; Bowers, C. (Chicago Univ., IL (USA)); Nesti, F. (Scuola Normale Superiore, Pisa (Italy))
1990-01-01
Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.
Artificial neural networks-based approach to design ARIs using QSAR for diabetes mellitus.
Patra, Jagdish C; Singh, Onkar
2009-11-30
In this article, in the first part, we propose an artificial neural network-based intelligent technique to determine the quantitative structure-activity relationship (QSAR) among known aldose reductase inhibitors (ARIs) for diabetes mellitus using two molecular descriptors, i.e., the electronegativity and molar volume of functional groups present in the main ARI lead structure. We have shown that the multilayer perceptron-based model is capable of determining the QSAR quite satisfactorily, with high R-value. Usually, the design of potent ARIs requires the use of complex computer docking and quantum mechanical (QM) steps involving excessive time and human judgement. In the second part of this article, to reduce the design cycle of potent ARIs, we propose a novel ANN technique to eliminate the computer docking and QM steps, to predict the total score. The MLP-based QSAR models obtained in the first part are used to predict the potent ARIs, using the experimental data reported by Hu et al. (J Mol Graph Mod 2006, 24, 244). The proposed ANN-based model can predict the total score with an R-value of 0.88, which indicates that there exists a close match between the predicted and experimental total scores. Using the ANN model, we obtained 71 potent ARIs out of 6.25 million new ARI compounds created by substituting different functional groups at substituting sites of main lead structure of known ARI. Finally, using high bioactivity relationship and total score values, we determined four potential ARIs out of these 71 compounds. Interestingly, these four ARIs include the two potent ARIs reported by Hu et al. (J Mol Graph Mod 2006, 24, 244) who obtained these through the complex computer docking and QM steps. This fact indicates the effectiveness of our proposed ANN-based technique. We suggest these four compounds to be the most promising candidates for ARIs to prevent the diabetic complications and further recommend for wet bench experiments to find their potential against
Qiao, Wei
Worldwide concern about the environmental problems and a possible energy crisis has led to increasing interest in clean and renewable energy generation. Among various renewable energy sources, wind power is the most rapidly growing one. Therefore, how to provide efficient, reliable, and high-performance wind power generation and distribution has become an important and practical issue in the power industry. In addition, because of the new constraints placed by the environmental and economical factors, the trend of power system planning and operation is toward maximum utilization of the existing infrastructure with tight system operating and stability margins. This trend, together with the increased penetration of renewable energy sources, will bring new challenges to power system operation, control, stability and reliability which require innovative solutions. Flexible ac transmission system (FACTS) devices, through their fast, flexible, and effective control capability, provide one possible solution to these challenges. To fully utilize the capability of individual power system components, e.g., wind turbine generators (WTGs) and FACTS devices, their control systems must be suitably designed with high reliability. Moreover, in order to optimize local as well as system-wide performance and stability of the power system, real-time local and wide-area coordinated control is becoming an important issue. Power systems containing conventional synchronous generators, WTGs, and FACTS devices are large-scale, nonlinear, nonstationary, stochastic and complex systems distributed over large geographic areas. Traditional mathematical tools and system control techniques have limitations to control such complex systems to achieve an optimal performance. Intelligent and bio-inspired techniques, such as swarm intelligence, neural networks, and adaptive critic designs, are emerging as promising alternative technologies for power system control and performance optimization. This
A Higher-Order Neural Network Design for Improving Segmentation Performance in Medical Image Series
Selvi, Eşref; Selver, M. Alper; Güzeliş, Cüneyt; Dicle, Oǧuz
2014-03-01
Segmentation of anatomical structures from medical image series is an ongoing field of research. Although, organs of interest are three-dimensional in nature, slice-by-slice approaches are widely used in clinical applications because of their ease of integration with the current manual segmentation scheme. To be able to use slice-by-slice techniques effectively, adjacent slice information, which represents likelihood of a region to be the structure of interest, plays critical role. Recent studies focus on using distance transform directly as a feature or to increase the feature values at the vicinity of the search area. This study presents a novel approach by constructing a higher order neural network, the input layer of which receives features together with their multiplications with the distance transform. This allows higher-order interactions between features through the non-linearity introduced by the multiplication. The application of the proposed method to 9 CT datasets for segmentation of the liver shows higher performance than well-known higher order classification neural networks.
Research of The Deeper Neural Networks
Directory of Open Access Journals (Sweden)
Xiao You Rong
2016-01-01
Full Text Available Neural networks (NNs have powerful computational abilities and could be used in a variety of applications; however, training these networks is still a difficult problem. With different network structures, many neural models have been constructed. In this report, a deeper neural networks (DNNs architecture is proposed. The training algorithm of deeper neural network insides searching the global optimal point in the actual error surface. Before the training algorithm is designed, the error surface of the deeper neural network is analyzed from simple to complicated, and the features of the error surface is obtained. Based on these characters, the initialization method and training algorithm of DNNs is designed. For the initialization, a block-uniform design method is proposed which separates the error surface into some blocks and finds the optimal block using the uniform design method. For the training algorithm, the improved gradient-descent method is proposed which adds a penalty term into the cost function of the old gradient descent method. This algorithm makes the network have a great approximating ability and keeps the network state stable. All of these improve the practicality of the neural network.
Ventura, Cristina; Latino, Diogo A R S; Martins, Filomena
2013-01-01
The performance of two QSAR methodologies, namely Multiple Linear Regressions (MLR) and Neural Networks (NN), towards the modeling and prediction of antitubercular activity was evaluated and compared. A data set of 173 potentially active compounds belonging to the hydrazide family and represented by 96 descriptors was analyzed. Models were built with Multiple Linear Regressions (MLR), single Feed-Forward Neural Networks (FFNNs), ensembles of FFNNs and Associative Neural Networks (AsNNs) using four different data sets and different types of descriptors. The predictive ability of the different techniques used were assessed and discussed on the basis of different validation criteria and results show in general a better performance of AsNNs in terms of learning ability and prediction of antitubercular behaviors when compared with all other methods. MLR have, however, the advantage of pinpointing the most relevant molecular characteristics responsible for the behavior of these compounds against Mycobacterium tuberculosis. The best results for the larger data set (94 compounds in training set and 18 in test set) were obtained with AsNNs using seven descriptors (R(2) of 0.874 and RMSE of 0.437 against R(2) of 0.845 and RMSE of 0.472 in MLRs, for test set). Counter-Propagation Neural Networks (CPNNs) were trained with the same data sets and descriptors. From the scrutiny of the weight levels in each CPNN and the information retrieved from MLRs, a rational design of potentially active compounds was attempted. Two new compounds were synthesized and tested against M. tuberculosis showing an activity close to that predicted by the majority of the models. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Radziszewski, Kacper
2017-10-01
The following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital. During the experiment, as an input training data set, five local geometry parameters combined has given the best results: Theta, Pi, Rho in spherical coordinate system based on the capital volume centroid, followed by Z value of the Cartesian coordinate system and a distance from vertical planes created based on the capital symmetry. Additionally during the experiment, artificial neural network hidden layers optimal count and structure was found, giving results of the error below 0.2% for the mentioned before input parameters. Once successfully trained artificial network, was able to mimic the details composition on any other geometry type given. Despite of calculating the transformed geometry locally and separately for each of the thousands of surface points, system could create visually attractive and diverse, complex patterns. Designed tool, based on the supervised learning method of machine learning, gives possibility of generating new architectural forms- free of the designer’s imagination bounds. Implementing the infinitely broad computational methods of machine learning, or Artificial Intelligence in general, not only could accelerate and simplify the design process, but give an opportunity to explore never seen before, unpredictable forms or everyday architectural practice solutions.
Optimizing neural network models: motivation and case studies
Harp, S A; T. Samad
2012-01-01
Practical successes have been achieved with neural network models in a variety of domains, including energy-related industry. The large, complex design space presented by neural networks is only minimally explored in current practice. The satisfactory results that nevertheless have been obtained testify that neural networks are a robust modeling technology; at the same time, however, the lack of a systematic design approach implies that the best neural network models generally rem...
Program Aids Simulation Of Neural Networks
Baffes, Paul T.
1990-01-01
Computer program NETS - Tool for Development and Evaluation of Neural Networks - provides simulation of neural-network algorithms plus software environment for development of such algorithms. Enables user to customize patterns of connections between layers of network, and provides features for saving weight values of network, providing for more precise control over learning process. Consists of translating problem into format using input/output pairs, designing network configuration for problem, and finally training network with input/output pairs until acceptable error reached. Written in C.
DEFF Research Database (Denmark)
Agerskov, Claus; Mortensen, Rasmus M.; Bohr, Henrik G.
2015-01-01
mu-opioid, serotonin 2B (5-HT2B) and metabotropic glutamate D5. They are selected due to the availability of pharmacological drug-molecule binding data for these receptors. Feedback and deep belief artificial neural network architectures (NNs) were chosen to perform the task of aiding drug...... networks, trained with greedy learning algorithms, showed superior performance in prediction over the simple feedback NNs. The best networks obtained scores of more than 90 % accuracy in predicting the degree of binding drug molecules to the mentioned receptors and with a maximal Matthew's coefficient of 0...... computational tools, able to aid in drug-design in a fast and cheap fashion, compared to conventional pharmacological techniques....
Rahmanian, Bashir; Pakizeh, Majid; Mansoori, Seyed Ali Akbar; Abedini, Reza
2011-03-15
In this study, micellar-enhanced ultrafiltration (MEUF) was applied to remove zinc ions from wastewater efficiently. Frequently, experimental design and artificial neural networks (ANNs) have been successfully used in membrane filtration process in recent years. In the present work, prediction of the permeate flux and rejection of metal ions by MEUF was tested, using design of experiment (DOE) and ANN models. In order to reach the goal of determining all the influential factors and their mutual effect on the overall performance the fractional factorial design has been used. The results show that due to the complexity in generalization of the MEUF process by any mathematical model, the neural network proves to be a very promising method in compared with fractional factorial design for the purpose of process simulation. These mathematical models are found to be reliable and predictive tools with an excellent accuracy, because their AARE was ±0.229%, ±0.017%, in comparison with experimental values for permeate flux and rejection, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.
Göb, S; Oliveros, E; Bossmann, S H; Braun, A M; Nascimento, C A; Guardani, R
2001-01-01
Among advanced oxidation processes (AOPs), the photochemically enhanced Fenton reaction may be considered as one of the most efficient for the degradation of contaminants in industrial wastewater. This process involves a series of complex reactions. Therefore, an empirical model based on artificial neural networks has been developed for fitting the experimental data obtained in a laboratory batch reactor for the degradation of 2,4-dimethyl aniline (2,4-xylidine), chosen as a model pollutant. The model describes the evolution of the pollutant concentration during irradiation time as a function of the process conditions. It has been used for simulating the behavior of the reaction system in sensitivity studies aimed at optimizing the amounts of reactants employed in the process, an iron(III) salt and hydrogen peroxide, as well as the temperature. The results show that the process is most sensitive to the concentration of iron(III) salt and temperature, whereas the concentration of hydrogen peroxide has a minor effect.
Directory of Open Access Journals (Sweden)
Asis Mazumder
2009-06-01
Full Text Available The general objective of this study is to estimate the performance of the Horizontal Roughing Filter (HRF by using Weglin's design criteria based on 1/3–2/3 filter theory. The main objective of the present study is to validate HRF developed in the laboratory with Slow Sand Filter (SSF as a pretreatment unit with the help of Weglin's design criteria for HRF with respect to raw water condition and neuro-genetic model developed based on the filter dataset. The results achieved from the three different models were compared to find whether the performance of the experimental HRF with SSF output conforms to the other two models which will verify the validity of the former. According to the results, the experimental setup was coherent with the neural model but incoherent with the results from Weglin's formula as lowest mean square error was observed in case of the neuro-genetic model while comparing with the values found from the experimental SSF-HRF unit. As neural models are known to learn a problem with utmost efficiency, the model verification result was taken as positive.
Heiden, Uwe
1980-01-01
The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica ted throughout the text. However, they are not explored in de tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be havior of neurons or neuron pools. In this respect the essay is writt...
Estimation of Conditional Quantile using Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1999-01-01
The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....
Convolutional Neural Network for Image Recognition
Seifnashri, Sahand
2015-01-01
The aim of this project is to use machine learning techniques especially Convolutional Neural Networks for image processing. These techniques can be used for Quark-Gluon discrimination using calorimeters data, but unfortunately I didn’t manage to get the calorimeters data and I just used the Jet data fromminiaodsim(ak4 chs). The Jet data was not good enough for Convolutional Neural Network which is designed for ’image’ recognition. This report is made of twomain part, part one is mainly about implementing Convolutional Neural Network on unphysical data such as MNIST digits and CIFAR-10 dataset and part 2 is about the Jet data.
Energy Technology Data Exchange (ETDEWEB)
Wang, Jiangfeng; Sun, Zhixin; Dai, Yiping [Institute of Turbomachinery, Xi' an Jiaotong University, No.28 Xianning West Road, Xi' an 710049 (China); Ma, Shaolin [Dongfang Steam Turbine Works, Deyang 618201 (China)
2010-04-15
Supercritical CO{sub 2} power cycle shows a high potential to recover low-grade waste heat due to its better temperature glide matching between heat source and working fluid in the heat recovery vapor generator (HRVG). Parametric analysis and exergy analysis are conducted to examine the effects of thermodynamic parameters on the cycle performance and exergy destruction in each component. The thermodynamic parameters of the supercritical CO{sub 2} power cycle is optimized with exergy efficiency as an objective function by means of genetic algorithm (GA) under the given waste heat condition. An artificial neural network (ANN) with the multi-layer feed-forward network type and back-propagation training is used to achieve parametric optimization design rapidly. It is shown that the key thermodynamic parameters, such as turbine inlet pressure, turbine inlet temperature and environment temperature have significant effects on the performance of the supercritical CO{sub 2} power cycle and exergy destruction in each component. It is also shown that the optimum thermodynamic parameters of supercritical CO{sub 2} power cycle can be predicted with good accuracy using artificial neural network under variable waste heat conditions. (author)
Control of autonomous robot using neural networks
Barton, Adam; Volna, Eva
2017-07-01
The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.
Neural Networks for Optimal Control
DEFF Research Database (Denmark)
Sørensen, O.
1995-01-01
Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... examined, and it appears that considering 'normal' neural network models with, say, 500 samples, the problem of over-fitting is neglible, and therefore it is not taken into consideration afterwards. Numerous model types, often met in control applications, are implemented as neural network models...... Kalmann filter) representing state space description. The potentials of neural networks for control of non-linear processes are also examined, focusing on three different groups of control concepts, all considered as generalizations of known linear control concepts to handle also non-linear processes...
An Optoelectronic Neural Network
Neil, Mark A. A.; White, Ian H.; Carroll, John E.
1990-02-01
We describe and present results of an optoelectronic neural network processing system. The system uses an algorithm based on the Hebbian learning rule to memorise a set of associated vector pairs. Recall occurs by the processing of the input vector with these stored associations in an incoherent optical vector multiplier using optical polarisation rotating liquid crystal spatial light modulators to store the vectors and an optical polarisation shadow casting technique to perform multiplications. Results are detected on a photodiode array and thresholded electronically by a controlling microcomputer. The processor is shown to work in autoassociative and heteroassociative modes with up to 10 stored memory vectors of length 64 (equivalent to 64 neurons) and a cycle time of 50ms. We discuss the limiting factors at work in this system, how they affect its scalability and the general applicability of its principles to other systems.
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
simulated process and compared. The closing chapter describes some practical experiments, where the different control concepts and training methods are tested on the same practical process operating in very noisy environments. All tests confirm that neural networks also have the potential to be trained......The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...
Hu, Dawei; Liu, Hong; Yang, Chenliang; Hu, Enzhu
As a subsystem of the bioregenerative life support system (BLSS), light-algae bioreactor (LABR) has properties of high reaction rate, efficiently synthesizing microalgal biomass, absorbing CO2 and releasing O2, so it is significant for BLSS to provide food and maintain gas balance. In order to manipulate the LABR properly, it has been designed as a closed-loop control system, and technology of Artificial Neural Network-Model Predictive Control (ANN-MPC) is applied to design the controller for LABR in which green microalgae, Spirulina platensis is cultivated continuously. The conclusion is drawn by computer simulation that ANN-MPC controller can intelligently learn the complicated dynamic performances of LABR, and automatically, robustly and self-adaptively regulate the light intensity illuminating on the LABR, hence make the growth of microalgae in the LABR be changed in line with the references, meanwhile provide appropriate damping to improve markedly the transient response performance of LABR.
Additive Feed Forward Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1999-01-01
This paper demonstrates a method to control a non-linear, multivariable, noisy process using trained neural networks. The basis for the method is a trained neural network controller acting as the inverse process model. A training method for obtaining such an inverse process model is applied....... A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...
Artificial neural networks a practical course
da Silva, Ivan Nunes; Andrade Flauzino, Rogerio; Liboni, Luisa Helena Bartocci; dos Reis Alves, Silas Franco
2017-01-01
This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.
Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro
2016-01-01
Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brain. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.
Directory of Open Access Journals (Sweden)
Stefano ePanzeri
2016-04-01
Full Text Available Brain-machine interfaces (BMIs can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brains. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.
Directory of Open Access Journals (Sweden)
Tayfun Gokmen
2016-07-01
Full Text Available In recent years, deep neural networks (DNN have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30,000X compared to state-of-the-art microprocessors while providing power efficiency of 84,000 GigaOps/s/W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things sensors.
Gokmen, Tayfun; Vlasov, Yurii
2016-01-01
In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors.
Plumb, A Philip; Rowe, Raymond C; York, Peter; Doherty, Christopher
2002-09-01
The aim of this study was to investigate the effect of experimental design strategy on the modeling of a film coating formulation by artificial neural networks (ANNs). Box-Behnken, central composite and pseudo-random designs of 102, 90 and 100 simulated records, respectively were used to train a multilayer perceptron (MLP) ANN comprising six input and two output nodes separated by a single hidden layer of five nodes. Network over-training was limited by using a test set of 40 pseudo-randomly distributed records. The models were validated using a set of 60 pseudo-randomly distributed records. Crack velocity was highly curved with respect to pigment particle size and size distribution. Similarly, film opacity was highly curved in response to pigment concentration and film thickness. The Box-Behnken and central composite designs generated models that were unable to predict crack velocity and showed extensive bias in prediction of film opacity. The pseudo-random design was unable to predict crack velocity of the test data set but yielded acceptable predictions for the validation set. Film opacity was well predicted by the pseudo-random design model. The poor predictive ability of the Box-Behnken and central composite models was attributed to poor interpolation of the high curvature of the response surfaces. In contrast, the pseudo-random design mapped the interior of the design space allowing improved interpolation and predictive ability. It is concluded that Box-Behnken and central composite experimental designs are inappropriate for ANN modeling of highly curved responses and that extensive internal mapping of the design space is essential to generate predictive ANN models.
Wheeler, Bruce C; Brewer, Gregory J
2010-03-01
Technology has advanced to where it is possible to design and grow-with predefined geometry and surprisingly good fidelity-living networks of neurons in culture dishes. Here we overview the elements of design, emphasizing the lithographic techniques that alter the cell culture surface which in turn influences the attachment and growth of the neural networks. Advanced capability in this area makes it possible to design networks of desired complexity. Other issues addressed include the influence of glial cells and media on activity and the potential for extending the designs into three dimensions. Investigators are advancing the art and science of analyzing and controlling through stimulation the function of the neural networks, including the ability to take advantage of their geometric form in order to influence functional properties.
Indian Academy of Sciences (India)
differences between biological neural networks (BNNs) of the brain and ANN s. A thorough understanding of ... neurons. Artificial neural models are loosely based on biology since a complete understanding of the .... A learning scheme for updating a neuron's connections (weights) was proposed by Donald Hebb in 1949.
Neural networks and statistical learning
Du, Ke-Lin
2014-01-01
Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...
Memristor-based neural networks
Thomas, Andy
2013-03-01
The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them.
Pansharpening by Convolutional Neural Networks
National Research Council Canada - National Science Library
Masi, Giuseppe; Cozzolino, Davide; Verdoliva, Luisa; Scarpa, Giuseppe
2016-01-01
A new pansharpening method is proposed, based on convolutional neural networks. We adapt a simple and effective three-layer architecture recently proposed for super-resolution to the pansharpening problem...
What are artificial neural networks?
DEFF Research Database (Denmark)
Krogh, Anders
2008-01-01
Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...
Exploiting network redundancy for low-cost neural network realizations.
Keegstra, H; Jansen, WJ; Nijhuis, JAG; Spaanenburg, L; Stevens, H; Udding, JT
1996-01-01
A method is presented to optimize a trained neural network for physical realization styles. Target architectures are embedded microcontrollers or standard cell based ASIC designs. The approach exploits the redundancy in the network, required for successful training, to replace the synaptic weighting
Pulse image recognition using fuzzy neural network.
Xu, L S; Meng, Max Q -H; Wang, K Q
2007-01-01
The automatic recognition of pulse images is the key in the research of computerized pulse diagnosis. In order to automatically differentiate the pulse patterns by using small samples, a fuzzy neural network to classify pulse images based on the knowledge of experts in traditional Chinese pulse diagnosis was designed. The designed classifier can make hard decision and soft decision for identifying 18 patterns of pulse images at the accuracy of 91%, which is better than the results that achieved by back-propagation neural network.
A Projection Neural Network for Constrained Quadratic Minimax Optimization.
Liu, Qingshan; Wang, Jun
2015-11-01
This paper presents a projection neural network described by a dynamic system for solving constrained quadratic minimax programming problems. Sufficient conditions based on a linear matrix inequality are provided for global convergence of the proposed neural network. Compared with some of the existing neural networks for quadratic minimax optimization, the proposed neural network in this paper is capable of solving more general constrained quadratic minimax optimization problems, and the designed neural network does not include any parameter. Moreover, the neural network has lower model complexities, the number of state variables of which is equal to that of the dimension of the optimization problems. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.
García, Isela; Fall, Yagamare; García-Mera, Xerardo; Prado-Prado, Francisco
2011-11-01
Glycogen synthase kinase-3 (GSK-3) targets encompass proteins implicated in AD and neurological disorders. The functions of GSK-3 and its implication in various human diseases have triggered an active search for potent and selective GSK-3 inhibitors. In this sense, QSAR could play an important role in studying these GSK-3 inhibitors. For this reason, we developed QSAR models for GSK-3α, linear discriminant analysis (LDA), and artificial neural networks (ANNs) from nearly 50,000 cases with more than 700 different GSK-3α inhibitors obtained from ChEMBL database server; in total we used more than 20,000 different molecules to develop the QSAR models. The model correctly classified 237 out of 275 active compounds (86.2%) and 14,870 out of 15,970 non-active compounds (93.2%) in the training series. The overall training performance was 93.0%. Validation of the model was carried out using an external predicting series. In these series, the model classified correctly 458 out of 549 (83.4%) compounds and 29,637 out of 31,927 non-active compounds (83.4%). The overall predictability performance was 92.7%. In this study, we propose three types of non-linear ANN as alternative to already existing models, such as LDA. Linear neural network: LNN: 236:236-1-1:1 which had an overall training performance of 96% proved to be the best model. In addition, we did a study of the different fragments of the molecules of the database to see which fragments had more influence in the activity. This can help design new inhibitors of GSK-3α. This study reports the attempts to calculate, within a unified framework probabilities of GSK-3α inhibitors against different molecules found in the literature.
Complex-Valued Neural Networks
Hirose, Akira
2012-01-01
This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu
2017-10-01
This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.
Spiking modular neural networks: A neural network modeling approach for hydrological processes
National Research Council Canada - National Science Library
Kamban Parasuraman; Amin Elshorbagy; Sean K. Carey
2006-01-01
.... In this study, a novel neural network model called the spiking modular neural networks (SMNNs) is proposed. An SMNN consists of an input layer, a spiking layer, and an associator neural network layer...
Directory of Open Access Journals (Sweden)
Yiming Jiang
2016-01-01
Full Text Available Over the last few decades, the intelligent control methods such as fuzzy logic control (FLC and neural network (NN control have been successfully used in various applications. The rapid development of digital computer based control systems requires control signals to be calculated in a digital or discrete-time form. In this background, the intelligent control methods developed for discrete-time systems have drawn great attentions. This survey aims to present a summary of the state of the art of the design of FLC and NN-based intelligent control for discrete-time systems. For discrete-time FLC systems, numerous remarkable design approaches are introduced and a series of efficient methods to deal with the robustness, stability, and time delay of FLC discrete-time systems are recommended. Techniques for NN-based intelligent control for discrete-time systems, such as adaptive methods and adaptive dynamic programming approaches, are also reviewed. Overall, this paper is devoted to make a brief summary for recent progresses in FLC and NN-based intelligent control design for discrete-time systems as well as to present our thoughts and considerations of recent trends and potential research directions in this area.
Sovány, Tamás; Tislér, Zsófia; Kristó, Katalin; Kelemen, András; Regdon, Géza
2016-09-01
The application of the Quality by Design principles is one of the key issues of the recent pharmaceutical developments. In the past decade a lot of knowledge was collected about the practical realization of the concept, but there are still a lot of unanswered questions. The key requirement of the concept is the mathematical description of the effect of the critical factors and their interactions on the critical quality attributes (CQAs) of the product. The process design space (PDS) is usually determined by the use of design of experiment (DoE) based response surface methodologies (RSM), but inaccuracies in the applied polynomial models often resulted in the over/underestimation of the real trends and changes making the calculations uncertain, especially in the edge regions of the PDS. The completion of RSM with artificial neural network (ANN) based models is therefore a commonly used method to reduce the uncertainties. Nevertheless, since the different researches are focusing on the use of a given DoE, there is lack of comparative studies on different experimental layouts. Therefore, the aim of present study was to investigate the effect of the different DoE layouts (2 level full factorial, Central Composite, Box-Behnken, 3 level fractional and 3 level full factorial design) on the model predictability and to compare model sensitivities according to the organization of the experimental data set. It was revealed that the size of the design space could differ more than 40% calculated with different polynomial models, which was associated with a considerable shift in its position when higher level layouts were applied. The shift was more considerable when the calculation was based on RSM. The model predictability was also better with ANN based models. Nevertheless, both modelling methods exhibit considerable sensitivity to the organization of the experimental data set, and the use of design layouts is recommended, where the extreme values factors are more represented
Flexible body control using neural networks
Mccullough, Claire L.
1992-01-01
Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.
Neutron spectrometry with artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Rodriguez, J.M.; Mercado S, G.A. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Iniguez de la Torre Bayo, M.P. [Universidad de Valladolid, Valladolid (Spain); Barquero, R. [Hospital Universitario Rio Hortega, Valladolid (Spain); Arteaga A, T. [Envases de Zacatecas, S.A. de C.V., Zacatecas (Mexico)]. e-mail: rvega@cantera.reduaz.mx
2005-07-01
An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the {chi}{sup 2}-test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Neutron spectrometry using artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Vega-Carrillo, Hector Rene [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Unidad Academica de Ing. Electrica, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Unidad Academica de Matematicas, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]. E-mail: fermineutron@yahoo.com; Martin Hernandez-Davila, Victor [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Unidad Academica de Ing. Electrica, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico); Manzanares-Acuna, Eduardo [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico); Mercado Sanchez, Gema A. [Unidad Academica de Matematicas, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico); Pilar Iniguez de la Torre, Maria [Depto. Fisica Teorica, Molecular y Nuclear, Universidad de Valladolid, Valladolid (Spain); Barquero, Raquel [Hospital Universitario Rio Hortega, Valladolid (Spain); Palacios, Francisco; Mendez Villafane, Roberto [Depto. Fisica Teorica, Molecular y Nuclear, Universidad de Valladolid, Valladolid (Spain)]|[Universidad Europea Miguel de Cervantes, C. Padre Julio Chevalier No. 2, 47012 Valladolid (Spain); Arteaga Arteaga, Tarcicio [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Envases de Zacatecas, SA de CV, Parque Industrial de Calera de Victor Rosales, Zac. (Mexico); Manuel Ortiz Rodriguez, Jose [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)]|[Unidad Academica de Ing. Electrica, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico)
2006-04-15
An artificial neural network has been designed to obtain neutron spectra from Bonner spheres spectrometer count rates. The neural network was trained using 129 neutron spectra. These include spectra from isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra based on mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. The re-binned spectra and the UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and their respective spectra were used as output during the neural network training. After training, the network was tested with the Bonner spheres count rates produced by folding a set of neutron spectra with the response matrix. This set contains data used during network training as well as data not used. Training and testing was carried out using the Matlab{sup (R)} program. To verify the network unfolding performance, the original and unfolded spectra were compared using the root mean square error. The use of artificial neural networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated with this ill-conditioned problem.
Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli
2013-03-01
Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.
Nezhadali, Azizollah; Motlagh, Maryam Omidvar; Sadeghzadeh, Samira
2018-02-05
A selective method based on molecularly imprinted polymer (MIP) solid-phase extraction (SPE) using UV-Vis spectrophotometry as a detection technique was developed for the determination of fluoxetine (FLU) in pharmaceutical and human serum samples. The MIPs were synthesized using pyrrole as a functional monomer in the presence of FLU as a template molecule. The factors that affecting the preparation and extraction ability of MIP such as amount of sorbent, initiator concentration, the amount of monomer to template ratio, uptake shaking rate, uptake time, washing buffer pH, take shaking rate, Taking time and polymerization time were considered for optimization. First a Plackett-Burman design (PBD) consists of 12 randomized runs were applied to determine the influence of each factor. The other optimization processes were performed using central composite design (CCD), artificial neural network (ANN) and genetic algorithm (GA). At optimal condition the calibration curve showed linearity over a concentration range of 10-7-10-8M with a correlation coefficient (R2) of 0.9970. The limit of detection (LOD) for FLU was obtained 6.56×10-9M. The repeatability of the method was obtained 1.61%. The synthesized MIP sorbent showed a good selectivity and sensitivity toward FLU. The MIP/SPE method was used for the determination of FLU in pharmaceutical, serum and plasma samples, successfully. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Ye; Du, Xueling; Yuan, Qipeng; Lv, Xinhua
2010-01-01
Polymerase chain reaction (PCR) is one of the most powerful techniques in a variety of clinical and biological research fields. In this paper, a chemometrics approach, combining experimental design (ED) and artificial neural network (ANN), was proposed for optimization of PCR amplification of lycopene cyclase gene carRA in Blakeslea Trispora. Five-level star design was carried out to obtain experimental information and provide data source for ANN modeling. Nine variables were used as inputs in ANN, including the added amount of template, primer, dNTP, polymerase and magnesium ion, the temperature of denaturating, annealing and extension, and the number of cycles. The output variable was the efficiency (yield) of the PCR. Based on the developed model, the effects of each parameter on PCR efficiency were predicted and the most suitable operation condition for present system was determined. At last, the validation experiment was performed under the optimized condition, and the expectant results were produced. The results obtained in this paper showed that the combination of ANN and ED provided a satisfactory optimization model with good descriptive and predictive abilities, indicating that the method of combining ANN and ED can be a useful tool in PCR optimization and other biological applications.
Directory of Open Access Journals (Sweden)
Yongyut Amaritsakul
2013-01-01
Full Text Available Short-segment instrumentation for spine fractures is threatened by relatively high failure rates. Failure of the spinal pedicle screws including breakage and loosening may jeopardize the fixation integrity and lead to treatment failure. Two important design objectives, bending strength and pullout strength, may conflict with each other and warrant a multiobjective optimization study. In the present study using the three-dimensional finite element (FE analytical results based on an L25 orthogonal array, bending and pullout objective functions were developed by an artificial neural network (ANN algorithm, and the trade-off solutions known as Pareto optima were explored by a genetic algorithm (GA. The results showed that the knee solutions of the Pareto fronts with both high bending and pullout strength ranged from 92% to 94% of their maxima, respectively. In mechanical validation, the results of mathematical analyses were closely related to those of experimental tests with a correlation coefficient of −0.91 for bending and 0.93 for pullout (P<0.01 for both. The optimal design had significantly higher fatigue life (P<0.01 and comparable pullout strength as compared with commercial screws. Multiobjective optimization study of spinal pedicle screws using the hybrid of ANN and GA could achieve an ideal with high bending and pullout performances simultaneously.
Nezhadali, Azizollah; Motlagh, Maryam Omidvar; Sadeghzadeh, Samira
2018-02-01
A selective method based on molecularly imprinted polymer (MIP) solid-phase extraction (SPE) using UV-Vis spectrophotometry as a detection technique was developed for the determination of fluoxetine (FLU) in pharmaceutical and human serum samples. The MIPs were synthesized using pyrrole as a functional monomer in the presence of FLU as a template molecule. The factors that affecting the preparation and extraction ability of MIP such as amount of sorbent, initiator concentration, the amount of monomer to template ratio, uptake shaking rate, uptake time, washing buffer pH, take shaking rate, Taking time and polymerization time were considered for optimization. First a Plackett-Burman design (PBD) consists of 12 randomized runs were applied to determine the influence of each factor. The other optimization processes were performed using central composite design (CCD), artificial neural network (ANN) and genetic algorithm (GA). At optimal condition the calibration curve showed linearity over a concentration range of 10- 7-10- 8 M with a correlation coefficient (R2) of 0.9970. The limit of detection (LOD) for FLU was obtained 6.56 × 10- 9 M. The repeatability of the method was obtained 1.61%. The synthesized MIP sorbent showed a good selectivity and sensitivity toward FLU. The MIP/SPE method was used for the determination of FLU in pharmaceutical, serum and plasma samples, successfully.
Amaritsakul, Yongyut; Chao, Ching-Kong; Lin, Jinn
2013-01-01
Short-segment instrumentation for spine fractures is threatened by relatively high failure rates. Failure of the spinal pedicle screws including breakage and loosening may jeopardize the fixation integrity and lead to treatment failure. Two important design objectives, bending strength and pullout strength, may conflict with each other and warrant a multiobjective optimization study. In the present study using the three-dimensional finite element (FE) analytical results based on an L25 orthogonal array, bending and pullout objective functions were developed by an artificial neural network (ANN) algorithm, and the trade-off solutions known as Pareto optima were explored by a genetic algorithm (GA). The results showed that the knee solutions of the Pareto fronts with both high bending and pullout strength ranged from 92% to 94% of their maxima, respectively. In mechanical validation, the results of mathematical analyses were closely related to those of experimental tests with a correlation coefficient of -0.91 for bending and 0.93 for pullout (P < 0.01 for both). The optimal design had significantly higher fatigue life (P < 0.01) and comparable pullout strength as compared with commercial screws. Multiobjective optimization study of spinal pedicle screws using the hybrid of ANN and GA could achieve an ideal with high bending and pullout performances simultaneously.
Automatic identification of species with neural networks.
Hernández-Serna, Andrés; Jiménez-Segura, Luz Fernanda
2014-01-01
A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.
Automatic identification of species with neural networks
Directory of Open Access Journals (Sweden)
Andrés Hernández-Serna
2014-11-01
Full Text Available A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.
Human Face Recognition Using Convolutional Neural Networks
Directory of Open Access Journals (Sweden)
Răzvan-Daniel Albu
2009-10-01
Full Text Available In this paper, I present a novel hybrid face recognition approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns. The convolutional network extracts successively larger features in a hierarchical set of layers. With the weights of the trained neural networks there are created kernel windows used for feature extraction in a 3-stage algorithm. I present experimental results illustrating the efficiency of the proposed approach. I use a database of 796 images of 159 individuals from Reims University which contains quite a high degree of variability in expression, pose, and facial details.
Multigradient for Neural Networks for Equalizers
Directory of Open Access Journals (Sweden)
Chulhee Lee
2003-06-01
Full Text Available Recently, a new training algorithm, multigradient, has been published for neural networks and it is reported that the multigradient outperforms the backpropagation when neural networks are used as a classifier. When neural networks are used as an equalizer in communications, they can be viewed as a classifier. In this paper, we apply the multigradient algorithm to train the neural networks that are used as equalizers. Experiments show that the neural networks trained using the multigradient noticeably outperforms the neural networks trained by the backpropagation.
Multiprocessor Neural Network in Healthcare.
Godó, Zoltán Attila; Kiss, Gábor; Kocsis, Dénes
2015-01-01
A possible way of creating a multiprocessor artificial neural network is by the use of microcontrollers. The RISC processors' high performance and the large number of I/O ports mean they are greatly suitable for creating such a system. During our research, we wanted to see if it is possible to efficiently create interaction between the artifical neural network and the natural nervous system. To achieve as much analogy to the living nervous system as possible, we created a frequency-modulated analog connection between the units. Our system is connected to the living nervous system through 128 microelectrodes. Two-way communication is provided through A/D transformation, which is even capable of testing psychopharmacons. The microcontroller-based analog artificial neural network can play a great role in medical singal processing, such as ECG, EEG etc.
Directory of Open Access Journals (Sweden)
Mahmoud Akbarian
2015-07-01
Results: Twelve features with P<0.05 and four features with P<0.1 were identified by using binary logistic regression as effective features. These sixteen features were used as input variables in artificial neural networks. The accuracy, sensitivity and specificity of the test data for the MLP network were 90.9%, 80.0%, and 94.1% respectively and for the total data were 97.3%, 93.5%, and 99.0% respectively. Conclusion: According to the results, we concluded that feed-forward Multi-Layer Perceptron (MLP neural network with scaled conjugate gradient (trainscg back propagation learning algorithm can help physicians to predict the pregnancy outcomes (spontaneous abortion and live birth among pregnant women with lupus by using identified effective variables.
Kumbur, E. C.; Sharp, K. V.; Mench, M. M.
Developing a robust, intelligent design tool for multivariate optimization of multi-phase transport in fuel cell diffusion media (DM) is of utmost importance to develop advanced DM materials. This study explores the development of a DM design algorithm based on artificial neural network (ANN) that can be used as a powerful tool for predicting the capillary transport characteristics of fuel cell DM. Direct measurements of drainage capillary pressure-saturation curves of the differently engineered DMs (5, 10 and 20 wt.% PTFE) were performed at room temperature under three compressions (0, 0.6 and 1.4 MPa) [E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1295-B1304; E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1305-B1314; E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1315-B1324]. The generated benchmark data were utilized to systematically train a three-layered ANN framework that processes the feed-forward error back propagation methodology. The designed ANN successfully predicts the measured capillary pressures within an average uncertainty of ±5.1% of the measured data, confirming that the present ANN model can be used as a design tool within the range of tested parameters. The ANN simulations reveal that tailoring the DM with high PTFE loading and applying high compression pressure lead to a higher capillary pressure, therefore promoting the liquid water transport within the pores of the DM. Any increase in hydrophobicity of the DM is found to amplify the compression effect, thus yielding a higher capillary pressure for the same saturation level and compression.
Directory of Open Access Journals (Sweden)
G. D. Kostsikava
2016-01-01
Full Text Available Ever since the Soviet Union design solutions were evaluated according to different criteria and indicators. At the present stage of evaluation systems of design solutions stands systemengineering doctrine is allocated. It is complemented by the theory of efficiency and financial sustainability investment project in view of the general market concept. Also great attention is paid to the virtual object modeling. It is urgent to include the behavior prediction of an investment construction project model at each stage of its life cycle. The high cost of all phases of this life cycle makes it necessary to calculate the feasibility of the investment. Very urgent to do it as accurately as possible and before we start of design works on the stage of the investment plan evaluation. Belarus has legislated pre-investment stage of construction project development. To evaluate the design solution at this stage is necessary to develop an investment justification, a project management plan and a business plan. They will evaluate and will compare several options for future objects by the complex. This requires not only time, but considerable financial costs. In order to optimize the process to develop an evaluation system design solutions based on existing projects. It allows the customer (investor choose design solutions to build the object without developing of pre-design documentations for several options. This system it is advisable to try out the example of apartment house building with the assistance of the national fund of project documentation and objects-analogues data bank. The developed evaluation system of design solutions for residential real estate objects in the pre-investment stage is supposed to use the theory of neural networks and neyroprogramming. This system bases on the input parameters projects. The hidden layer neurons are trained to choose suitable projects of apartment houses with their classification. The projects will be classified
Neural networks for sign language translation
Wilson, Beth J.; Anspach, Gretel
1993-09-01
A neural network is used to extract relevant features of sign language from video images of a person communicating in American Sign Language or Signed English. The key features are hand motion, hand location with respect to the body, and handshape. A modular hybrid design is under way to apply various techniques, including neural networks, in the development of a translation system that will facilitate communication between deaf and hearing people. One of the neural networks described here is used to classify video images of handshapes into their linguistic counterpart in American Sign Language. The video image is preprocessed to yield Fourier descriptors that encode the shape of the hand silhouette. These descriptors are then used as inputs to a neural network that classifies their shapes. The network is trained with various examples from different signers and is tested with new images from new signers. The results have shown that for coarse handshape classes, the network is invariant to the type of camera used to film the various signers and to the segmentation technique.
Directory of Open Access Journals (Sweden)
Ihsanul Arief
2016-11-01
Full Text Available Study on cytotoxicity of diarylaniline derivatives by using quantitative structure-activity relationship (QSAR has been done. The structures and cytotoxicities of diarylaniline derivatives were obtained from the literature. Calculation of molecular and electronic parameters was conducted using Austin Model 1 (AM1, Parameterized Model 3 (PM3, Hartree-Fock (HF, and density functional theory (DFT methods. Artificial neural networks (ANN analysis used to produce the best equation with configuration of input data-hidden node-output data = 5-8-1, value of r2 = 0.913; PRESS = 0.069. The best equation used to design and predict new diarylaniline derivatives. The result shows that compound N1-(4′-Cyanophenyl-5-(4″-cyanovinyl-2″,6″-dimethyl-phenoxy-4-dimethylether benzene-1,2-diamine is the best-proposed compound with cytotoxicity value (CC50 of 93.037 μM.
Generalization performance of regularized neural network models
DEFF Research Database (Denmark)
Larsen, Jan; Hansen, Lars Kai
1994-01-01
Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...
voltage compensation using artificial neural network
African Journals Online (AJOL)
Offor Theophilos
VOLTAGE COMPENSATION USING ARTIFICIAL NEURAL NETWORK: A CASE STUDY OF. RUMUOLA ... using artificial neural network (ANN) controller based dynamic voltage restorer (DVR). ... substation by simulating with sample of average voltage for Omerelu, Waterlines, Rumuola, Shell Industrial and Barracks.
Plant Growth Models Using Artificial Neural Networks
Bubenheim, David
1997-01-01
In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.
Neural networks and applications tutorial
Guyon, I.
1991-09-01
The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.
A hardware implementation of neural network with modified HANNIBAL architecture
Energy Technology Data Exchange (ETDEWEB)
Lee, Bum youb; Chung, Duck Jin [Inha University, Inchon (Korea, Republic of)
1996-03-01
A digital hardware architecture for artificial neural network with learning capability is described in this paper. It is a modified hardware architecture known as HANNIBAL(Hardware Architecture for Neural Networks Implementing Back propagation Algorithm Learning). For implementing an efficient neural network hardware, we analyzed various type of multiplier which is major function block of neuro-processor cell. With this result, we design a efficient digital neural network hardware using serial/parallel multiplier, and test the operation. We also analyze the hardware efficiency with logic level simulation. (author). 14 refs., 10 figs., 3 tabs.
Optoelectronic Implementation of Neural Networks
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 9. Optoelectronic Implementation of Neural Networks - Use of Optics in Computing. R Ramachandran. General Article Volume 3 Issue 9 September 1998 pp 45-55. Fulltext. Click here to view fulltext PDF. Permanent link:
Aphasia Classification Using Neural Networks
DEFF Research Database (Denmark)
Axer, H.; Jantzen, Jan; Berks, G.
2000-01-01
A web-based software model (http://fuzzy.iau.dtu.dk/aphasia.nsf) was developed as an example for classification of aphasia using neural networks. Two multilayer perceptrons were used to classify the type of aphasia (Broca, Wernicke, anomic, global) according to the results in some subtests...
Hybrid neural network model for the design of beam subjected to ...
Indian Academy of Sciences (India)
MS received 25 September 2006; revised 8 March 2007. Abstract. There is no direct method for design of beams. In general the dimensions of the beam and reinforcement are initially assumed and then the interaction formula is used to verify the suitability of chosen dimensions. This approach necessitates few trials for ...
Giuseppina, Nicolosi; Salvatore, Tirrito
2015-12-01
Wireless Sensor Networks (WSNs) were studied by researchers in order to manage Heating, Ventilating and Air-Conditioning (HVAC) indoor systems. WSN can be useful specially to regulate indoor confort in a urban canyon scenario, where the thermal parameters vary rapidly, influenced by outdoor climate changing. This paper shows an innovative neural network approach, by using WSN data collected, in order to forecast the indoor temperature to varying the outdoor conditions based on climate parameters and boundary conditions typically of urban canyon. In this work more attention will be done to influence of traffic jam and number of vehicles in queue.
Analysis of neural networks through base functions
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.
Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more
Simplified LQG Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1997-01-01
A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...
Novel quantum inspired binary neural network algorithm
Indian Academy of Sciences (India)
In this paper, a quantum based binary neural network algorithm is proposed, named as novel quantum binary neural network algorithm (NQ-BNN). It forms a neural network structure by deciding weights and separability parameter in quantum based manner. Quantum computing concept represents solution probabilistically ...
Murali, Reena; John, Philips George; Peter S, David
2015-05-15
The ability of small interfering RNA (siRNA) to do posttranscriptional gene regulation by knocking down targeted genes is an important research topic in functional genomics, biomedical research and in cancer therapeutics. Many tools had been developed to design exogenous siRNA with high experimental inhibition. Even though considerable amount of work has been done in designing exogenous siRNA, design of effective siRNA sequences is still a challenging work because the target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. In some cases, siRNAs may tolerate mismatches with the target mRNA, but knockdown of genes other than the intended target could make serious consequences. Hence to design siRNAs, two important concepts must be considered: the ability in knocking down target genes and the off target possibility on any nontarget genes. So before doing gene silencing by siRNAs, it is essential to analyze their off target effects in addition to their inhibition efficacy against a particular target. Only a few methods have been developed by considering both efficacy and off target possibility of siRNA against a gene. In this paper we present a new design of neural network model with whole stacking energy (ΔG) that enables to identify the efficacy and off target effect of siRNAs against target genes. The tool lists all siRNAs against a particular target with their inhibition efficacy and number of matches or sequence similarity with other genes in the database. We could achieve an excellent performance of Pearson Correlation Coefficient (R=0. 74) and Area Under Curve (AUC=0.906) when the threshold of whole stacking energy is ≥-34.6 kcal/mol. To the best of the author's knowledge, this is one of the best score while considering the "combined efficacy and off target possibility" of siRNA for silencing a gene. The proposed model
Application of Neural Networks to House Pricing and Bond Rating
Daniëls, H.A.M.; Kamp, B.; Verkooijen, W.J.H.
1997-01-01
Feed forward neural networks receive a growing attention as a data modelling tool in economic classification problems. It is well-known that controlling the design of a neural network can be cumbersome. Inaccuracies may lead to a manifold of problems in the application such as higher errors due to
Johari, Masume; Esmaeili, Farzad; Andalib, Alireza; Garjani, Shabnam; Saberkari, Hamidreza
2017-02-01
Detection of vertical root fractures (VRFs) in their initial stages is a crucial issue, which prevents the propagation of injury to the adjacent supporting structures. Designing a suitable neural network-based model could be a useful method to diagnose the VRFs. The aim of this study was to design a probabilistic neural network (PNN) to diagnose the VRFs in intact and endodontically treated teeth of periapical and CBCT radiographs. Also, we have compared the efficacy of these two imaging techniques in the detection of VRFs. A total of 240 radiographs of teeth (120 radiographs of teeth with no VRFs and 120 teeth with vertical fractures, with half of the teeth in each category treated endodontically and the remaining half intact, i.e. not endodontically treated) were used in 3 groups for training and testing of the neural network as follows: Group 1, 180/60; Group 2, 120/120; and Group 3, 60/180. First, Daubechies 3 wavelet was applied to acquire the image analysis coefficients on two planes; then Gabor filters were used to extract the image characteristics, which were used to educate the PNN. The designed neural network was able to diagnose and classify teeth with and without VRFs. In addition, in order to determine the best training and test sets in the network, the variance of the function of network changes was manipulated at a range of 0-1 and the results were assessed in terms of the parameters evaluated, including sensitivity, specificity and accuracy. In the periapical radiographs, the maximum accuracy, sensitivity and specificity values in the three groups were 70.00, 97.78 and 67.7%, respectively. These values in the CBCT images were 96.6, 93.3 and 100%, respectively, at the variance change range of 0.1-0.65. The designed neural network can be used as a proper model for the diagnosis of VRFs on CBCT images of endodontically treated and intact teeth; in this context, CBCT images are more effective than similar periapical radiographs. Limitations of this
Dynamic properties of cellular neural networks
Directory of Open Access Journals (Sweden)
Angela Slavova
1993-01-01
Full Text Available Dynamic behavior of a new class of information-processing systems called Cellular Neural Networks is investigated. In this paper we introduce a small parameter in the state equation of a cellular neural network and we seek for periodic phenomena. New approach is used for proving stability of a cellular neural network by constructing Lyapunov's majorizing equations. This algorithm is helpful for finding a map from initial continuous state space of a cellular neural network into discrete output. A comparison between cellular neural networks and cellular automata is made.
Combining neural networks for protein secondary structure prediction
DEFF Research Database (Denmark)
Riis, Søren Kamaric
1995-01-01
In this paper structured neural networks are applied to the problem of predicting the secondary structure of proteins. A hierarchical approach is used where specialized neural networks are designed for each structural class and then combined using another neural network. The submodels are designed...... by using a priori knowledge of the mapping between protein building blocks and the secondary structure and by using weight sharing. Since none of the individual networks have more than 600 adjustable weights over-fitting is avoided. When ensembles of specialized experts are combined the performance...
Artificial neural networks in neutron dosimetry
Energy Technology Data Exchange (ETDEWEB)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado, G.A.; Perales M, W.A.; Robles R, J.A. [Unidades Academicas de Estudios Nucleares, UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. de Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)
2005-07-01
An artificial neural network has been designed to obtain the neutron doses using only the Bonner spheres spectrometer's count rates. Ambient, personal and effective neutron doses were included. 187 neutron spectra were utilized to calculate the Bonner count rates and the neutron doses. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. Re-binned spectra, UTA4 response matrix and fluence-to-dose coefficients were used to calculate the count rates in Bonner spheres spectrometer and the doses. Count rates were used as input and the respective doses were used as output during neural network training. Training and testing was carried out in Mat lab environment. The artificial neural network performance was evaluated using the {chi}{sup 2}- test, where the original and calculated doses were compared. The use of Artificial Neural Networks in neutron dosimetry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Neural network controller for underwater work ROV. Suichu sagyoyo ROV no neural network controller
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Y.; Kidoshi, H.; Arahata, M.; Shoji, K.; Takahashi, Y. (Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan))
1993-07-01
The previous underwater work ROV (remotely operated vehicle) has been controlled manually because its dynamic properties are changeable underwater. Ishikawajima-Harima Heavy Industries (IHI) has applied a neural network to an adaptive controller for the ROV. This paper describes objectives of the research, design of control logic, and tank experiments on a model ROV. For the neural network, manual operation was used to provide the initial learning data for the neural network in order to initialize control parameters for optimization. The model ROV was designed to achieve and maintain constant depth in normal operation. As a consequence of the tank experiments, it was demonstrated that the controller can acquire skill of operators, can further improve the acquired skill of operators, and can construct an automatic control system autonomically even if any dynamic properties are not known. 6 refs., 8 figs.
Energy Technology Data Exchange (ETDEWEB)
Ortiz, J.J.; Castillo, A.; Montes, J.L.; Perusquia, R. [ININ, Carretera Mexico-Toluca s/n, 52750 La Marquesa, Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jjortiz@nuclear.inin.mx
2007-07-01
In this work a new system of axial optimization of fuel is presented based on a recurrent multi state neural net called RENODC. They are described with detail the main characteristics of this type of neural net (architecture, energy function and actualization of neural states) and like was adapted to the assemble design of nuclear fuel. The fuel design is proven by means of a fuel recharge and pre determined control rod patterns. By this way a good axial fuel design one has, when the thermal limits are fulfilled along the cycle, the reactor stays critic and at least the wanted longitude of the cycle is reached; also the margin of in cold turned off is verified. The assemble of fuel created with RENODC it is substituted by a recharge assemble and it is sought to verify that the energy requirements and aspects of safety are completed. The used cycle corresponds to a balance cycle of 18 months that it can be applied to the Laguna Verde Nucleo electric Central. The tests demonstrate the effectiveness of the system to reach satisfactory results in times of CPU of around 4 hours. This way, it could be proven that the design proposed with a lightly superior enrichment to that of the substituted design, fulfills the energy requirements. In later stages of this project this system will be coupled to the other optimization modules that are already had. (Author)
Directory of Open Access Journals (Sweden)
Richard P Drewes
2009-05-01
Full Text Available Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading ``glue'' tool for managing all sorts of complex programmatictasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS environment in particular. Brainlab is an integrated model building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS (the NeoCortical Simulator.
Drewes, Rich; Zou, Quan; Goodman, Philip H
2009-01-01
Neuroscience modeling experiments often involve multiple complex neural network and cell model variants, complex input stimuli and input protocols, followed by complex data analysis. Coordinating all this complexity becomes a central difficulty for the experimenter. The Python programming language, along with its extensive library packages, has emerged as a leading "glue" tool for managing all sorts of complex programmatic tasks. This paper describes a toolkit called Brainlab, written in Python, that leverages Python's strengths for the task of managing the general complexity of neuroscience modeling experiments. Brainlab was also designed to overcome the major difficulties of working with the NCS (NeoCortical Simulator) environment in particular. Brainlab is an integrated model-building, experimentation, and data analysis environment for the powerful parallel spiking neural network simulator system NCS.
Neural Networks Methodology and Applications
Dreyfus, Gérard
2005-01-01
Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented...
The LILARTI neural network system
Energy Technology Data Exchange (ETDEWEB)
Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.
1992-10-01
The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.
Automated Modeling of Microwave Structures by Enhanced Neural Networks
Directory of Open Access Journals (Sweden)
Z. Raida
2006-12-01
Full Text Available The paper describes the methodology of the automated creation of neural models of microwave structures. During the creation process, artificial neural networks are trained using the combination of the particle swarm optimization and the quasi-Newton method to avoid critical training problems of the conventional neural nets. In the paper, neural networks are used to approximate the behavior of a planar microwave filter (moment method, Zeland IE3D. In order to evaluate the efficiency of neural modeling, global optimizations are performed using numerical models and neural ones. Both approaches are compared from the viewpoint of CPU-time demands and the accuracy. Considering conclusions, methodological recommendations for including neural networks to the microwave design are formulated.
A Dynamic Neural Network Approach to CBM
2011-03-15
Therefore post-processing is needed to extract the time difference between corresponding events from which to calculate the crankshaft rotational speed...potentially already available from existing sensors (such as a crankshaft timing device) and a Neural Network processor to carry out the calculation . As...files are designated with the “_genmod” suffix. These files were the sources for the training and testing sets and made the extraction process easy
Character Recognition Using Genetically Trained Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.
1998-10-01
Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the
Patel, Alpesh; Mehta, Tarak; Patel, Mukesh; Patel, Kanu; Patel, Natvarlal
2012-09-01
In this paper formulation of porosity osmotic tablet containing isradipine (model drug) as a low and pH dependent solubility was optimized based on the simultaneous optimization technique in which an artificial neural network (ANN) was incorporated. Nonlinear relationships between the causal factors and the response variables were represented well with the response surface predicted by ANN. Three causal factors, i.e., drug, osmotic pressure promoting agent rate (Lactose: Fructose), PEG400 content in coating solution and coating weight, were evaluated based on their effects on drug release rate. In vitro dissolution profile time profiles at four different sampling times (1, 12, 20 and 24h) were chosen as output variables. Commercially available STATISTICA 7 (Stat soft, USA) was used throughout the study. The optimize values for the factors X1-X3 were 1.25:0.75, 22% and 2.5% respectively. Calculated difference (f1 = 11.19) and similarity (f2 = 70.07) factors indicate that there is no difference between predicted and experimental observed drug release profile. Artificial neural network technique can be particularly suitable in the pharmaceutical technology of controlled release dosage forms where systems are complex and nonlinear relationships between independent and dependent variables often exist.
Neural network modeling of emotion
Levine, Daniel S.
2007-03-01
This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.
Ship Benchmark Shaft and Engine Gain FDI Using Neural Network
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Izadi-Zamanabadi, Roozbeh
2002-01-01
This paper concerns fault detection and isolation based on neural network modeling. A neural network is trained to recognize the input-output behavior of a nonlinear plant, and faults are detected if the output estimated by the network differs from the measured plant output by more than a specified...... threshold value. In the paper a method for determining this threshold based on the neural network model is proposed, which can be used for a design strategy to handle residual sensitivity to input variations. The proposed method is used for successful FDI of a diesel engine gain fault in a ship propulsion...
Issues in the use of neural networks in information retrieval
Iatan, Iuliana F
2017-01-01
This book highlights the ability of neural networks (NNs) to be excellent pattern matchers and their importance in information retrieval (IR), which is based on index term matching. The book defines a new NN-based method for learning image similarity and describes how to use fuzzy Gaussian neural networks to predict personality. It introduces the fuzzy Clifford Gaussian network, and two concurrent neural models: (1) concurrent fuzzy nonlinear perceptron modules, and (2) concurrent fuzzy Gaussian neural network modules. Furthermore, it explains the design of a new model of fuzzy nonlinear perceptron based on alpha level sets and describes a recurrent fuzzy neural network model with a learning algorithm based on the improved particle swarm optimization method.
MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION
Directory of Open Access Journals (Sweden)
Artur Popko
2013-06-01
Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.
Neural networks for estimation of ocean wave parameters
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Rao, S.; Raju, D.H.
Ocean wave parameters play a significant role in the design of all coastal and offshore structures. In the present study, neural networks are used to estimate various ocean wave parameters from theoretical Pierson-Moskowitz spectra as well...
Application of a neural network for reflectance spectrum classification
Yang, Gefei; Gartley, Michael
2017-05-01
Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.
Satellite image analysis using neural networks
Sheldon, Roger A.
1990-01-01
The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.
Fuzzy neural networks: theory and applications
Gupta, Madan M.
1994-10-01
During recent years, significant advances have been made in two distinct technological areas: fuzzy logic and computational neural networks. The theory of fuzzy logic provides a mathematical framework to capture the uncertainties associated with human cognitive processes, such as thinking and reasoning. It also provides a mathematical morphology to emulate certain perceptual and linguistic attributes associated with human cognition. On the other hand, the computational neural network paradigms have evolved in the process of understanding the incredible learning and adaptive features of neuronal mechanisms inherent in certain biological species. Computational neural networks replicate, on a small scale, some of the computational operations observed in biological learning and adaptation. The integration of these two fields, fuzzy logic and neural networks, have given birth to an emerging technological field -- fuzzy neural networks. Fuzzy neural networks, have the potential to capture the benefits of these two fascinating fields, fuzzy logic and neural networks, into a single framework. The intent of this tutorial paper is to describe the basic notions of biological and computational neuronal morphologies, and to describe the principles and architectures of fuzzy neural networks. Towards this goal, we develop a fuzzy neural architecture based upon the notion of T-norm and T-conorm connectives. An error-based learning scheme is described for this neural structure.
Pediatric Nutritional Requirements Determination with Neural Networks
Karlık, Bekir; Ece, Aydın
1998-01-01
To calculate daily nutritional requirements of children, a computer program has been developed based upon neural network. Three parameters, daily protein, energy and water requirements, were calculated through trained artificial neural networks using a database of 312 children The results were compared with those of calculated from dietary requirements tables of World Health Organisation. No significant difference was found between two calculations. In conclusion, a simple neural network may ...
Adaptive optimization and control using neural networks
Energy Technology Data Exchange (ETDEWEB)
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Bayesian regularization of neural networks.
Burden, Frank; Winkler, Dave
2008-01-01
Bayesian regularized artificial neural networks (BRANNs) are more robust than standard back-propagation nets and can reduce or eliminate the need for lengthy cross-validation. Bayesian regularization is a mathematical process that converts a nonlinear regression into a "well-posed" statistical problem in the manner of a ridge regression. The advantage of BRANNs is that the models are robust and the validation process, which scales as O(N2) in normal regression methods, such as back propagation, is unnecessary. These networks provide solutions to a number of problems that arise in QSAR modeling, such as choice of model, robustness of model, choice of validation set, size of validation effort, and optimization of network architecture. They are difficult to overtrain, since evidence procedures provide an objective Bayesian criterion for stopping training. They are also difficult to overfit, because the BRANN calculates and trains on a number of effective network parameters or weights, effectively turning off those that are not relevant. This effective number is usually considerably smaller than the number of weights in a standard fully connected back-propagation neural net. Automatic relevance determination (ARD) of the input variables can be used with BRANNs, and this allows the network to "estimate" the importance of each input. The ARD method ensures that irrelevant or highly correlated indices used in the modeling are neglected as well as showing which are the most important variables for modeling the activity data. This chapter outlines the equations that define the BRANN method plus a flowchart for producing a BRANN-QSAR model. Some results of the use of BRANNs on a number of data sets are illustrated and compared with other linear and nonlinear models.
Neural networks for nuclear spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T. [Pacific Northwest Lab., Richland, WA (United States)] [and others
1995-12-31
In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.
Image Filtering with Neural Networks: applications and performance evaluation
Spreeuwers, Lieuwe Jan
1992-01-01
A simple and elegant method to design image filters with neural networks is proposed: using small networks that scan the image and perform position invariant filtering. In the theses examples of image filtering with error backpropagation networks for edge detection, image deblurring and noise
Neural network based system for equipment surveillance
Vilim, R.B.; Gross, K.C.; Wegerich, S.W.
1998-04-28
A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.
Directory of Open Access Journals (Sweden)
Halil Ibrahim Cebeci
2009-12-01
Full Text Available This study explores the relationship between the student performance and instructional design. The research was conducted at the E-Learning School at a university in Turkey. A list of design factors that had potential influence on student success was created through a review of the literature and interviews with relevant experts. From this, the five most import design factors were chosen. The experts scored 25 university courses on the extent to which they demonstrated the chosen design factors. Multiple-regression and supervised artificial neural network (ANN models were used to examine the relationship between student grade point averages and the scores on the five design factors. The results indicated that there is no statistical difference between the two models. Both models identified the use of examples and applications as the most influential factor. The ANN model provided more information and was used to predict the course-specific factor values required for a desired level of success.
Pansharpening by Convolutional Neural Networks
Directory of Open Access Journals (Sweden)
Giuseppe Masi
2016-07-01
Full Text Available A new pansharpening method is proposed, based on convolutional neural networks. We adapt a simple and effective three-layer architecture recently proposed for super-resolution to the pansharpening problem. Moreover, to improve performance without increasing complexity, we augment the input by including several maps of nonlinear radiometric indices typical of remote sensing. Experiments on three representative datasets show the proposed method to provide very promising results, largely competitive with the current state of the art in terms of both full-reference and no-reference metrics, and also at a visual inspection.
Neural networks and perceptual learning
Tsodyks, Misha; Gilbert, Charles
2005-01-01
Sensory perception is a learned trait. The brain strategies we use to perceive the world are constantly modified by experience. With practice, we subconsciously become better at identifying familiar objects or distinguishing fine details in our environment. Current theoretical models simulate some properties of perceptual learning, but neglect the underlying cortical circuits. Future neural network models must incorporate the top-down alteration of cortical function by expectation or perceptual tasks. These newly found dynamic processes are challenging earlier views of static and feedforward processing of sensory information. PMID:15483598
Optimization with Potts Neural Networks
Söderberg, Bo
The Potts Neural Network approach to non-binary discrete optimization problems is described. It applies to problems that can be described as a set of elementary `multiple choice' options. Instead of the conventional binary (Ising) neurons, mean field Potts neurons, having several available states, are used to describe the elementary degrees of freedom of such problems. The dynamics consists of iterating the mean field equations with annealing until convergence. Due to its deterministic character, the method is quite fast. When applied to problems of Graph Partition and scheduling types, it produces very good solutions also for problems of considerable size.
Shirley, C.
2003-12-01
A genetic algorithm (GA) is used to select the operational parameters of artificial neural networks (ANN) which are trained to predict fluid velocity. Populations of three-layer, feedforward backpropagation ANN's with varying numbers of hidden nodes, types and slopes of activation functions, alpha and beta learning rates and initial distributions of weights for both the input and hidden layers are created by the GA. The GA- defined ANN's are trained with inputs-output pairs of hydraulic conductivity neighborhoods and resulting fluid velocities at certain points in the simulation domain. The hydraulic conductivity fields are highly heterogeneous with an ensemble log conductivity variance of 1.0. Results of the GA are defined and selected ANN velocity predictions are presented.
Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar
2017-12-01
The present study aims at predicting and optimizing exergetic efficiency of TiO2-Al2O3/water nanofluid at different Reynolds numbers, volume fractions and twisted ratios using Artificial Neural Networks (ANN) and experimental data. Central Composite Design (CCD) and cascade Radial Basis Function (RBF) were used to display the significant levels of the analyzed factors on the exergetic efficiency. The size of TiO2-Al2O3/water nanocomposite was 20-70 nm. The parameters of ANN model were adapted by a training algorithm of radial basis function (RBF) with a wide range of experimental data set. Total mean square error and correlation coefficient were used to evaluate the results which the best result was obtained from double layer perceptron neural network with 30 neurons in which total Mean Square Error(MSE) and correlation coefficient (R2) were equal to 0.002 and 0.999, respectively. This indicated successful prediction of the network. Moreover, the proposed equation for predicting exergetic efficiency was extremely successful. According to the optimal curves, the optimum designing parameters of double pipe heat exchanger with inner twisted tape and nanofluid under the constrains of exergetic efficiency 0.937 are found to be Reynolds number 2500, twisted ratio 2.5 and volume fraction(v/v%) 0.05.
Three dimensional living neural networks
Linnenberger, Anna; McLeod, Robert R.; Basta, Tamara; Stowell, Michael H. B.
2015-08-01
We investigate holographic optical tweezing combined with step-and-repeat maskless projection micro-stereolithography for fine control of 3D positioning of living cells within a 3D microstructured hydrogel grid. Samples were fabricated using three different cell lines; PC12, NT2/D1 and iPSC. PC12 cells are a rat cell line capable of differentiation into neuron-like cells NT2/D1 cells are a human cell line that exhibit biochemical and developmental properties similar to that of an early embryo and when exposed to retinoic acid the cells differentiate into human neurons useful for studies of human neurological disease. Finally induced pluripotent stem cells (iPSC) were utilized with the goal of future studies of neural networks fabricated from human iPSC derived neurons. Cells are positioned in the monomer solution with holographic optical tweezers at 1064 nm and then are encapsulated by photopolymerization of polyethylene glycol (PEG) hydrogels formed by thiol-ene photo-click chemistry via projection of a 512x512 spatial light modulator (SLM) illuminated at 405 nm. Fabricated samples are incubated in differentiation media such that cells cease to divide and begin to form axons or axon-like structures. By controlling the position of the cells within the encapsulating hydrogel structure the formation of the neural circuits is controlled. The samples fabricated with this system are a useful model for future studies of neural circuit formation, neurological disease, cellular communication, plasticity, and repair mechanisms.
The Laplacian spectrum of neural networks
de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.
2014-01-01
The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286
Neural networks with discontinuous/impact activations
Akhmet, Marat
2014-01-01
This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...
Hindcasting of storm waves using neural networks
Digital Repository Service at National Institute of Oceanography (India)
Rao, S.; Mandal, S.
of any exogenous input requirement makes the network attractive. A neural network is an information processing system modeled on the structure of the human brain. Its merit is the ability to deal with fuzzy information whose interrelation is ambiguous...
Drift chamber tracking with neural networks
Energy Technology Data Exchange (ETDEWEB)
Lindsey, C.S.; Denby, B.; Haggerty, H.
1992-10-01
We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.
Analog neural network-based helicopter gearbox health monitoring system.
Monsen, P T; Dzwonczyk, M; Manolakos, E S
1995-12-01
The development of a reliable helicopter gearbox health monitoring system (HMS) has been the subject of considerable research over the past 15 years. The deployment of such a system could lead to a significant saving in lives and vehicles as well as dramatically reduce the cost of helicopter maintenance. Recent research results indicate that a neural network-based system could provide a viable solution to the problem. This paper presents two neural network-based realizations of an HMS system. A hybrid (digital/analog) neural system is proposed as an extremely accurate off-line monitoring tool used to reduce helicopter gearbox maintenance costs. In addition, an all analog neural network is proposed as a real-time helicopter gearbox fault monitor that can exploit the ability of an analog neural network to directly compute the discrete Fourier transform (DFT) as a sum of weighted samples. Hardware performance results are obtained using the Integrated Neural Computing Architecture (INCA/1) analog neural network platform that was designed and developed at The Charles Stark Draper Laboratory. The results indicate that it is possible to achieve a 100% fault detection rate with 0% false alarm rate by performing a DFT directly on the first layer of INCA/1 followed by a small-size two-layer feed-forward neural network and a simple post-processing majority voting stage.
Radiation Behavior of Analog Neural Network Chip
Langenbacher, H.; Zee, F.; Daud, T.; Thakoor, A.
1996-01-01
A neural network experiment conducted for the Space Technology Research Vehicle (STRV-1) 1-b launched in June 1994. Identical sets of analog feed-forward neural network chips was used to study and compare the effects of space and ground radiation on the chips. Three failure mechanisms are noted.
Neural network approach to parton distributions fitting
Piccione, Andrea; Forte, Stefano; Latorre, Jose I.; Rojo, Joan; Piccione, Andrea; Rojo, Joan
2006-01-01
We will show an application of neural networks to extract information on the structure of hadrons. A Monte Carlo over experimental data is performed to correctly reproduce data errors and correlations. A neural network is then trained on each Monte Carlo replica via a genetic algorithm. Results on the proton and deuteron structure functions, and on the nonsinglet parton distribution will be shown.
Self-organization of neural networks
Energy Technology Data Exchange (ETDEWEB)
Clark, J.W.; Winston, J.V.; Rafelski, J.
1984-05-14
The plastic development of a neural-network model operating autonomously in discrete time is described by the temporal modification of interneuronal coupling strengths according to momentary neural activity. A simple algorithm (brainwashing) is found which, applied to nets with initially quasirandom connectivity, leads to model networks with properties conducive to the simulation of memory and learning phenomena. 18 references, 2 figures.
Medical image analysis with artificial neural networks.
Jiang, J; Trundle, P; Ren, J
2010-12-01
Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hidden neural networks: application to speech recognition
DEFF Research Database (Denmark)
Riis, Søren Kamaric
1998-01-01
We evaluate the hidden neural network HMM/NN hybrid on two speech recognition benchmark tasks; (1) task independent isolated word recognition on the Phonebook database, and (2) recognition of broad phoneme classes in continuous speech from the TIMIT database. It is shown how hidden neural networks...
Genetic Algorithm Optimized Neural Networks Ensemble as ...
African Journals Online (AJOL)
Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) for the simultaneous spectrophotometric multicomponent analysis are suggested, with a study on the estimation of the components of an antihypertensive combination, namely, atenolol and losartan potassium.
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Application of Neural Networks for Energy Reconstruction
Damgov, Jordan
2002-01-01
The possibility to use Neural Networks for reconstruction ofthe energy deposited in the calorimetry system of the CMS detector is investigated. It is shown that using feed-forward neural network, good linearity, Gaussian energy distribution and good energy resolution can be achieved. Significant improvement of the energy resolution and linearity is reached in comparison with other weighting methods for energy reconstruction.
Neural Network to Solve Concave Games
Zixin Liu; Nengfa Wang
2014-01-01
The issue on neural network method to solve concave games is concerned. Combined with variational inequality, Ky Fan inequality, and projection equation, concave games are transformed into a neural network model. On the basis of the Lyapunov stable theory, some stability results are also given. Finally, two classic games’ simulation results are given to illustrate the theoretical results.
Recognizing changing seasonal patterns using neural networks
Ph.H.B.F. Franses (Philip Hans); G. Draisma (Gerrit)
1997-01-01
textabstractIn this paper we propose a graphical method based on an artificial neural network model to investigate how and when seasonal patterns in macroeconomic time series change over time. Neural networks are useful since the hidden layer units may become activated only in certain seasons or
Adaptive Neurons For Artificial Neural Networks
Tawel, Raoul
1990-01-01
Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.
Initialization of multilayer forecasting artifical neural networks
Bochkarev, Vladimir V.; Maslennikova, Yulia S.
2014-01-01
In this paper, a new method was developed for initialising artificial neural networks predicting dynamics of time series. Initial weighting coefficients were determined for neurons analogously to the case of a linear prediction filter. Moreover, to improve the accuracy of the initialization method for a multilayer neural network, some variants of decomposition of the transformation matrix corresponding to the linear prediction filter were suggested. The efficiency of the proposed neural netwo...
Reject mechanisms for massively parallel neural network character recognition systems
Garris, Michael D.; Wilson, Charles L.
1992-12-01
Two reject mechanisms are compared using a massively parallel character recognition system implemented at NIST. The recognition system was designed to study the feasibility of automatically recognizing hand-printed text in a loosely constrained environment. The first method is a simple scalar threshold on the output activation of the winning neurode from the character classifier network. The second method uses an additional neural network trained on all outputs from the character classifier network to accept or reject assigned classifications. The neural network rejection method was expected to perform with greater accuracy than the scalar threshold method, but this was not supported by the test results presented. The scalar threshold method, even though arbitrary, is shown to be a viable reject mechanism for use with neural network character classifiers. Upon studying the performance of the neural network rejection method, analyses show that the two neural networks, the character classifier network and the rejection network, perform very similarly. This can be explained by the strong non-linear function of the character classifier network which effectively removes most of the correlation between character accuracy and all activations other than the winning activation. This suggests that any effective rejection network must receive information from the system which has not been filtered through the non-linear classifier.
Radar Target Classification Using Neural Network and Median Filter
J. Kurty; Matousek, Z.
2001-01-01
The paper deals with Radar Target Classification based on the use of a neural network. A radar signal was acquired from the output of a J frequency band noncoherent radar. We applied the three layer feed forward neural network using the backpropagation learning algorithm. We defined classes of radar targets and designated each of them by its number. Our classification process resulted in the number of a radar target class, which the radar target belongs to.
Radar Target Classification Using Neural Network and Median Filter
Directory of Open Access Journals (Sweden)
J. Kurty
2001-09-01
Full Text Available The paper deals with Radar Target Classification based on the use ofa neural network. A radar signal was acquired from the output of a Jfrequency band noncoherent radar. We applied the three layer feedforward neural network using the backpropagation learning algorithm. Wedefined classes of radar targets and designated each of them by itsnumber. Our classification process resulted in the number of a radartarget class, which the radar target belongs to.
Synchronization of fractional fuzzy cellular neural networks with interactions
Ma, Weiyuan; Li, Changpin; Wu, Yujiang; Wu, Yongqing
2017-10-01
In this paper, we introduce fuzzy theory into the fractional cellular neural networks to dynamically enhance the coupling strength and propose a fractional fuzzy neural network model with interactions. Using the Lyapunov principle of fractional differential equations, we design the adaptive control schemes to realize the synchronization and obtain the synchronization criteria. Finally, we provide some numerical examples to show the effectiveness of our obtained results.
High Accuracy Human Activity Monitoring using Neural network
Sharma, Annapurna; Lee, Young-Dong; Chung, Wan-Young
2011-01-01
This paper presents the designing of a neural network for the classification of Human activity. A Triaxial accelerometer sensor, housed in a chest worn sensor unit, has been used for capturing the acceleration of the movements associated. All the three axis acceleration data were collected at a base station PC via a CC2420 2.4GHz ISM band radio (zigbee wireless compliant), processed and classified using MATLAB. A neural network approach for classification was used with an eye on theoretical a...
International Conference on Artificial Neural Networks (ICANN)
Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics
2015-01-01
The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...
Hemmateenejad, Bahram; Ghavami, Raoof; Miri, Ramin; Shamsipur, Majtaba
2006-02-15
Net analyte signal (NAS)-based multivariate calibration methods were employed for simultaneous determination of anthazoline and naphazoline. The NAS vectors calculated from the absorbance data of the drugs mixture were used as input for classical least squares (CLS), principal component and partial least squares regression PCR and PLS methods. A wavelength selection strategy was used to find the best wavelength region for each drug separately. As a new procedure, we proposed an experimental design-neural network strategy for wavelength region optimization. By use of a full factorial design method, some different wavelength regions were selected by taking into account different spectral parameters including the starting wavelength, the ending wavelength and the wavelength interval. The performance of all the multivariate calibration methods, in all selected wavelength regions for both drugs, was evaluated by calculating a fitness function based on the root mean square error of calibration and validation. A three-layered feed-forward artificial neural network (ANN) model with back-propagation learning algorithm was employed to model the nonlinear relationship between the spectral parameters and fitness of each regression method. From the resulted ANN models, the spectral regions in which lowest fitness could be obtained were chosen. Comparison of the results revealed that the net NAS-PLS resulted in lower prediction error than the other models. The proposed NAS-based calibration method was successfully applied to the simultaneous analyses of anthazoline and naphazoline in a commercial eye drop sample.
Energy Technology Data Exchange (ETDEWEB)
Ortiz R, J. M. [Escuela Politecnica Superior, Departamento de Electrotecnia y Electronica, Avda. Menendez Pidal s/n, Cordoba (Spain); Martinez B, M. R.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego D, E.; Lorente F, A. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, ETSI Industriales, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Mendez V, R.; Los Arcos M, J. M.; Guerrero A, J. E., E-mail: morvymm@yahoo.com.m [CIEMAT, Laboratorio de Metrologia de Radiaciones Ionizantes, Avda. Complutense 22, 28040 Madrid (Spain)
2011-02-15
With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks (Ann) have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Ann still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning Ann parameters. In recent years the use of hybrid technologies, combining Ann and genetic algorithms, has been utilized to. In this work, several Ann topologies were trained and tested using Ann and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out. (Author)
Neural Based Orthogonal Data Fitting The EXIN Neural Networks
Cirrincione, Giansalvo
2008-01-01
Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Wh
Ivić, Branka; Ibrić, Svetlana; Cvetković, Nebojsa; Petrović, Aleksandra; Trajković, Svetlana; Djurić, Zorica
2010-07-01
The purpose of the study was to screen the effects of formulation factors on the in vitro release profile of diclofenac sodium from matrix tablets using design of experiment (DOE). Formulations of diclofenac sodium tablets, with Carbopol 71G as matrix substance, were optimized by artificial neural network. According to Central Composite Design, 10 formulations of diclofenac sodium matrix tablets were prepared. As network inputs, concentration of Carbopol 71G and the Kollidon K-25 were selected. In vitro dissolution time profiles at 5 different sampling times were chosen as responses. The independent variables and the release parameters were processed by multilayer perceptrons neural network (MLP). Results of drug release studies indicate that drug release rates vary between different formulations, with a range of 1 h to more than 8 h to complete dissolution. For two tested formulations there was no difference between experimental and MLP predicted in vitro profiles. The MLP model was optimized. The root mean square value for the trained network was 0.07%, which indicated that the optimal MLP model was reached. The optimal tablet formulation predicted by MLP was with 23% of Carbopol 71G and 0.8% of Kollidon K-25. Calculated difference factor (f(1) 7.37) and similarity factor (f(2) 70.79) indicate that there is no difference between predicted and experimentally observed drug release profiles for the optimal formulation. The satisfactory prediction of drug release for optimal formulation by the MLP in this study has shown the applicability of this optimization method in modeling extended release tablet formulation.
Optical implementation of neural networks
Yu, Francis T. S.; Guo, Ruyan
2002-12-01
An adaptive optical neuro-computing (ONC) using inexpensive pocket size liquid crystal televisions (LCTVs) had been developed by the graduate students in the Electro-Optics Laboratory at The Pennsylvania State University. Although this neuro-computing has only 8×8=64 neurons, it can be easily extended to 16×20=320 neurons. The major advantages of this LCTV architecture as compared with other reported ONCs, are low cost and the flexibility to operate. To test the performance, several neural net models are used. These models are Interpattern Association, Hetero-association and unsupervised learning algorithms. The system design considerations and experimental demonstrations are also included.
Clustering: a neural network approach.
Du, K-L
2010-01-01
Clustering is a fundamental data analysis method. It is widely used for pattern recognition, feature extraction, vector quantization (VQ), image segmentation, function approximation, and data mining. As an unsupervised classification technique, clustering identifies some inherent structures present in a set of objects based on a similarity measure. Clustering methods can be based on statistical model identification (McLachlan & Basford, 1988) or competitive learning. In this paper, we give a comprehensive overview of competitive learning based clustering methods. Importance is attached to a number of competitive learning based clustering neural networks such as the self-organizing map (SOM), the learning vector quantization (LVQ), the neural gas, and the ART model, and clustering algorithms such as the C-means, mountain/subtractive clustering, and fuzzy C-means (FCM) algorithms. Associated topics such as the under-utilization problem, fuzzy clustering, robust clustering, clustering based on non-Euclidean distance measures, supervised clustering, hierarchical clustering as well as cluster validity are also described. Two examples are given to demonstrate the use of the clustering methods.
Complex-valued Neural Networks
Hirose, Akira
This paper reviews the features and applications of complex-valued neural networks (CVNNs). First we list the present application fields, and describe the advantages of the CVNNs in two application examples, namely, an adaptive plastic-landmine visualization system and an optical frequency-domain-multiplexed learning logic circuit. Then we briefly discuss the features of complex number itself to find that the phase rotation is the most significant concept, which is very useful in processing the information related to wave phenomena such as lightwave and electromagnetic wave. The CVNNs will also be an indispensable framework of the future microelectronic information-processing hardware where the quantum electron wave plays the principal role.
Collision avoidance using neural networks
Sugathan, Shilpa; Sowmya Shree, B. V.; Warrier, Mithila R.; Vidhyapathi, C. M.
2017-11-01
Now a days, accidents on roads are caused due to the negligence of drivers and pedestrians or due to unexpected obstacles that come into the vehicle’s path. In this paper, a model (robot) is developed to assist drivers for a smooth travel without accidents. It reacts to the real time obstacles on the four critical sides of the vehicle and takes necessary action. The sensor used for detecting the obstacle was an IR proximity sensor. A single layer perceptron neural network is used to train and test all possible combinations of sensors result by using Matlab (offline). A microcontroller (ARM Cortex-M3 LPC1768) is used to control the vehicle through the output data which is received from Matlab via serial communication. Hence, the vehicle becomes capable of reacting to any combination of real time obstacles.
Tampa Electric Neural Network Sootblowing
Energy Technology Data Exchange (ETDEWEB)
Mark A. Rhode
2003-12-31
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NO{sub x} formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent soot-blowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat
Tampa Electric Neural Network Sootblowing
Energy Technology Data Exchange (ETDEWEB)
Mark A. Rhode
2004-09-30
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NOx formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent sootblowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate
Tampa Electric Neural Network Sootblowing
Energy Technology Data Exchange (ETDEWEB)
Mark A. Rhode
2004-03-31
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NOx formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing co-funding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent sootblowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate
Shukla, Pitamber; Basu, Ishita; Graupe, Daniel; Tuninetti, Daniela; Slavin, Konstantin V
2012-01-01
The current Food and Drug Administration approved system for the treatment of tremor disorders through Deep Brain Stimulation (DBS) of the area of the brain that controls movement, operates open-loop. It does not automatically adapt to the instantaneous patient's needs or to the progression of the disease. This paper demonstrates an adaptive closed-loop controlled DBS that, after switching off stimulation, tracks few physiological signals to predict the reappearance of tremor before the patient experiences discomfort, at which point it instructs the DBS controller to switch on stimulation again. The core of the proposed approach is a Neural Network (NN) which effectively extracts tremor predictive information from non-invasively recorded surface-electromyogram(sEMG) and accelerometer signals measured at the symptomatic extremities. A simple feed-forward back-propagation NN architecture is shown to successfully predict tremor in 31 out of 33 trials in two Parkinson's Disease patients with an overall accuracy of 75.8% and sensitivity of 92.3%. This work therefore shows that closed-loop DBS control is feasible in the near future and that it can be achieved without modifications of the electrodes implanted in the brain, i.e., is backward compatible with approved DBS systems.
Aktas, Elcin; Eroglu, Hakan; Kockan, Umit; Oner, Levent
2013-08-01
The purpose of this study was to apply the optimization method incorporating artificial neural network (ANN) using pH-independent release of weakly basic drug, carvedilol from HPMC-based matrix formulation. Because of weakly basic nature of carvedilol, drug shows pH-dependent solubility. The enteric polymer EUDRAGIT L100 was added formulations to overcome pH-dependent solubility of carvedilol. Effects of the Hydroxypropylmethyl cellulose (HPMC) K4M and EUDRAGIT L100 amount on drug release were investigated. For this purpose 13 kinds of formulations were prepared at three different levels of each variables. The optimization of the formulation was evaluated by using ANN method. Two formulation parameters, the amounts of HPMC K4M and Eudragit L100 at three levels (-1, 0, 1) were selected as independent/input variables. In-vitro dissolution sampling times at twelve different time points were selected as dependent/output variables. By using experimental dissolution results and amount of HPMC K4M and EUDRAGIT L100, percentage of dissolved carvedilol was predicted by ANN. Similarity factor (f2) between predicted and experimentally observed profile was calculated and f2 value was found 76.33. This value showed that there was no difference between predicted and experimentally observed drug release profile. As a result of these experiments, it was found that ANNs can be successfully used to optimize controlled release drug delivery systems.
Directory of Open Access Journals (Sweden)
Matthias eEhrlich
2013-10-01
Full Text Available One of the major outcomes of neuroscientific research are models of Neural Network Structures. Descriptions of these models usually consist of a non-standardized mixture of text, figures, and other means of visual information communication in print media. However, as neuroscience is an interdisciplinary domain by nature, a standardized way of consistently representing models of Neural Network Structures is required. While generic descriptions of such models in textual form have recently been developed, a formalized way of schematically expressing them does not exist to date. Hence, in this paper we present Neural Schematics as a concept inspired by similar approaches from other disciplines for a generic two dimensional representation of said structures. After introducing Neural Network Structures in general, a set of current visualizations of models of Neural Network Structures is reviewed and analyzed for what information they convey and how their elements are rendered. This analysis then allows for the definition of general items and symbols to consistently represent these models as Neural Schematics on a two dimensional plane. We will illustrate the possibilities an agreed upon standard can yield on sampled diagrams transformed into Neural Schematics and an example application for the design and modeling of large-scale Neural Network Structures.
Learning Processes of Layered Neural Networks
Fujiki, Sumiyoshi; FUJIKI, Nahomi, M.
1995-01-01
A positive reinforcement type learning algorithm is formulated for a stochastic feed-forward neural network, and a learning equation similar to that of the Boltzmann machine algorithm is obtained. By applying a mean field approximation to the same stochastic feed-forward neural network, a deterministic analog feed-forward network is obtained and the back-propagation learning rule is re-derived.
Modular representation of layered neural networks.
Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio
2018-01-01
Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, L. M.
2017-09-01
A novel model-free adaptive sliding mode strategy is proposed for a generalized projective synchronization (GPS) between two entirely unknown fractional-order chaotic systems subject to the external disturbances. To solve the difficulties from the little knowledge about the master-slave system and to overcome the bad effects of the external disturbances on the generalized projective synchronization, the radial basis function neural networks are used to approach the packaged unknown master system and the packaged unknown slave system (including the external disturbances). Consequently, based on the slide mode technology and the neural network theory, a model-free adaptive sliding mode controller is designed to guarantee asymptotic stability of the generalized projective synchronization error. The main contribution of this paper is that a control strategy is provided for the generalized projective synchronization between two entirely unknown fractional-order chaotic systems subject to the unknown external disturbances, and the proposed control strategy only requires that the master system has the same fractional orders as the slave system. Moreover, the proposed method allows us to achieve all kinds of generalized projective chaos synchronizations by turning the user-defined parameters onto the desired values. Simulation results show the effectiveness of the proposed method and the robustness of the controlled system.
Directory of Open Access Journals (Sweden)
M Mehri
2014-09-01
Full Text Available A uniform design (UD was used to construct models to explain the growth response of Japanese quails to dietary metabolizable energy (ME, and digestible methionine (dMet and lysine (dLys under tropical condition. In total, 100 floor pens with seven birds each were fed 25 UD different diets containing 25 ME (2808-3092 kcal/kg, dMet (0.31-0.49% of diet, and dLys (0.91-1.39% of diet levels from 7 to 14 d of age. A platform of artificial neural network based on UD (ANN-UD was generated to describe the growth response of the birds to dietary inputs using random search. Artificial neural networks of body weight gain (BWG and feed conversion ratio (FCR were optimized using random search algorithm. The optimization the ANN-UD results showed that maximum BWG may be achieved with 2995 kcal ME/kg, 0.45% dMet, and 1.18% dLys of diet; and minimum FCR may be obtained with 3000 kcal ME/kg, 0.45% dMet, and 1.17% dLys of diet. The result of this study showed that a ANN and UD hybrid model can be used successfully to optimize the nutritional requirements of quail chicks.
Dimensionality reduction in conic section function neural network
Indian Academy of Sciences (India)
This paper details how dimensionality can be reduced in conic section function neural networks (CSFNN). This is particularly important for hardware implementation of networks. One of the main problems to be solved when considering the hardware design is the high connectivity requirement. If the effect that each of the ...
Modeling Broadband Microwave Structures by Artificial Neural Networks
Directory of Open Access Journals (Sweden)
V. Otevrel
2004-06-01
Full Text Available The paper describes the exploitation of feed-forward neural networksand recurrent neural networks for replacing full-wave numerical modelsof microwave structures in complex microwave design tools. Building aneural model, attention is turned to the modeling accuracy and to theefficiency of building a model. Dealing with the accuracy, we describea method of increasing it by successive completing a training set.Neural models are mutually compared in order to highlight theiradvantages and disadvantages. As a reference model for comparisons,approximations based on standard cubic splines are used. Neural modelsare used to replace both the time-domain numeric models and thefrequency-domain ones.
Genetic algorithm for neural networks optimization
Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta
2004-11-01
This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.
Vectorized algorithms for spiking neural network simulation.
Brette, Romain; Goodman, Dan F M
2011-06-01
High-level languages (Matlab, Python) are popular in neuroscience because they are flexible and accelerate development. However, for simulating spiking neural networks, the cost of interpretation is a bottleneck. We describe a set of algorithms to simulate large spiking neural networks efficiently with high-level languages using vector-based operations. These algorithms constitute the core of Brian, a spiking neural network simulator written in the Python language. Vectorized simulation makes it possible to combine the flexibility of high-level languages with the computational efficiency usually associated with compiled languages.
Projection learning algorithm for threshold - controlled neural networks
Energy Technology Data Exchange (ETDEWEB)
Reznik, A.M.
1995-03-01
The projection learning algorithm proposed in [1, 2] and further developed in [3] substantially improves the efficiency of memorizing information and accelerates the learning process in neural networks. This algorithm is compatible with the completely connected neural network architecture (the Hopfield network [4]), but its application to other networks involves a number of difficulties. The main difficulties include constraints on interconnection structure and the need to eliminate the state uncertainty of latent neurons if such are present in the network. Despite the encouraging preliminary results of [3], further extension of the applications of the projection algorithm therefore remains problematic. In this paper, which is a continuation of the work begun in [3], we consider threshold-controlled neural networks. Networks of this type are quite common. They represent the receptor neuron layers in some neurocomputer designs. A similar structure is observed in the lower divisions of biological sensory systems [5]. In multilayer projection neural networks with lateral interconnections, the neuron layers or parts of these layers may also have the structure of a threshold-controlled completely connected network. Here the thresholds are the potentials delivered through the projection connections from other parts of the network. The extension of the projection algorithm to the class of threshold-controlled networks may accordingly prove to be useful both for extending its technical applications and for better understanding of the operation of the nervous system in living organisms.
Neural Network and Letter Recognition.
Lee, Hue Yeon
Neural net architectures and learning algorithms that recognize hand written 36 alphanumeric characters are studied. The thin line input patterns written in 32 x 32 binary array are used. The system is comprised of two major components, viz. a preprocessing unit and a Recognition unit. The preprocessing unit in turn consists of three layers of neurons; the U-layer, the V-layer, and the C -layer. The functions of the U-layer is to extract local features by template matching. The correlation between the detected local features are considered. Through correlating neurons in a plane with their neighboring neurons, the V-layer would thicken the on-cells or lines that are groups of on-cells of the previous layer. These two correlations would yield some deformation tolerance and some of the rotational tolerance of the system. The C-layer then compresses data through the 'Gabor' transform. Pattern dependent choice of center and wavelengths of 'Gabor' filters is the cause of shift and scale tolerance of the system. Three different learning schemes had been investigated in the recognition unit, namely; the error back propagation learning with hidden units, a simple perceptron learning, and a competitive learning. Their performances were analyzed and compared. Since sometimes the network fails to distinguish between two letters that are inherently similar, additional ambiguity resolving neural nets are introduced on top of the above main neural net. The two dimensional Fourier transform is used as the preprocessing and the perceptron is used as the recognition unit of the ambiguity resolver. One hundred different person's handwriting sets are collected. Some of these are used as the training sets and the remainders are used as the test sets. The correct recognition rate of the system increases with the number of training sets and eventually saturates at a certain value. Similar recognition rates are obtained for the above three different learning algorithms. The minimum error
Nonequilibrium landscape theory of neural networks
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-01-01
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451
Parameterizing Stellar Spectra Using Deep Neural Networks
Li, Xiang-Ru; Pan, Ru-Yang; Duan, Fu-Qing
2017-03-01
Large-scale sky surveys are observing massive amounts of stellar spectra. The large number of stellar spectra makes it necessary to automatically parameterize spectral data, which in turn helps in statistically exploring properties related to the atmospheric parameters. This work focuses on designing an automatic scheme to estimate effective temperature ({T}{eff}), surface gravity ({log}g) and metallicity [Fe/H] from stellar spectra. A scheme based on three deep neural networks (DNNs) is proposed. This scheme consists of the following three procedures: first, the configuration of a DNN is initialized using a series of autoencoder neural networks; second, the DNN is fine-tuned using a gradient descent scheme; third, three atmospheric parameters {T}{eff}, {log}g and [Fe/H] are estimated using the computed DNNs. The constructed DNN is a neural network with six layers (one input layer, one output layer and four hidden layers), for which the number of nodes in the six layers are 3821, 1000, 500, 100, 30 and 1, respectively. This proposed scheme was tested on both real spectra and theoretical spectra from Kurucz’s new opacity distribution function models. Test errors are measured with mean absolute errors (MAEs). The errors on real spectra from the Sloan Digital Sky Survey (SDSS) are 0.1477, 0.0048 and 0.1129 dex for {log}g, {log}{T}{eff} and [Fe/H] (64.85 K for {T}{eff}), respectively. Regarding theoretical spectra from Kurucz’s new opacity distribution function models, the MAE of the test errors are 0.0182, 0.0011 and 0.0112 dex for {log}g, {log}{T}{eff} and [Fe/H] (14.90 K for {T}{eff}), respectively.
Neural Network for Estimating Conditional Distribution
DEFF Research Database (Denmark)
Schiøler, Henrik; Kulczycki, P.
Neural networks for estimating conditional distributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency is proved from a mild set of assumptions. A number of applications within...... statistcs, decision theory and signal processing are suggested, and a numerical example illustrating the capabilities of the elaborated network is given...
Person Movement Prediction Using Neural Networks
Vintan, Lucian; Gellert, Arpad; Petzold, Jan; Ungerer, Theo
2006-01-01
Ubiquitous systems use context information to adapt appliance behavior to human needs. Even more convenience is reached if the appliance foresees the user's desires and acts proactively. This paper proposes neural prediction techniques to anticipate a person's next movement. We focus on neural predictors (multi-layer perceptron with back-propagation learning) with and without pre-training. The optimal configuration of the neural network is determined by evaluating movement sequences of real p...
Stable architectures for deep neural networks
Haber, Eldad; Ruthotto, Lars
2018-01-01
Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.
Predicting the parameters of energy installations with laser ignition: Neural network models
Directory of Open Access Journals (Sweden)
Alexey A. Pastukhov
2015-06-01
Full Text Available This article considers the possibility of using artificial neural networks for predicting the parameters of the model energy installation with laser ignition. The main stages of creating a prognostic model based on an artificial neural network have been presented. Input data were analyzed by principal component method. The synthesized neural network was designed to predict the parameter value of the model in question. The artificial neural network was trained by a back-propagation algorithm. The efficiency of the artificial neural networks and their applicability to predicting parameter values of various rocket engine elements were demonstrated.
Improved Local Weather Forecasts Using Artificial Neural Networks
DEFF Research Database (Denmark)
Wollsen, Morten Gill; Jørgensen, Bo Nørregaard
2015-01-01
Solar irradiance and temperature forecasts are used in many different control systems. Such as intelligent climate control systems in commercial greenhouses, where the solar irradiance affects the use of supplemental lighting. This paper proposes a novel method to predict the forthcoming weather...... using an artificial neural network. The neural network used is a NARX network, which is known to model non-linear systems well. The predictions are compared to both a design reference year as well as commercial weather forecasts based upon numerical modelling. The results presented in this paper show...... that the network outperforms the commercial forecast for lower step aheads (forecast. However, the neural network approach is fast, fairly precise and allows for further expansion with higher resolution....
Structured learning via convolutional neural networks for vehicle detection
Maqueda, Ana I.; del Blanco, Carlos R.; Jaureguizar, Fernando; García, Narciso
2017-05-01
One of the main tasks in a vision-based traffic monitoring system is the detection of vehicles. Recently, deep neural networks have been successfully applied to this end, outperforming previous approaches. However, most of these works generally rely on complex and high-computational region proposal networks. Others employ deep neural networks as a segmentation strategy to achieve a semantic representation of the object of interest, which has to be up-sampled later. In this paper, a new design for a convolutional neural network is applied to vehicle detection in highways for traffic monitoring. This network generates a spatially structured output that encodes the vehicle locations. Promising results have been obtained in the GRAM-RTM dataset.
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
Chernoded, Andrey; Dudko, Lev; Myagkov, Igor; Volkov, Petr
2017-10-01
Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
Directory of Open Access Journals (Sweden)
Chernoded Andrey
2017-01-01
Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
[Medical use of artificial neural networks].
Molnár, B; Papik, K; Schaefer, R; Dombóvári, Z; Fehér, J; Tulassay, Z
1998-01-04
The main aim of the research in medical diagnostics is to develop more exact, cost-effective and handsome systems, procedures and methods for supporting the clinicians. In their paper the authors introduce a new method that recently came into the focus referred to as artificial neural networks. Based on the literature of the past 5-6 years they give a brief review--highlighting the most important ones--showing the idea behind neural networks, what they are used for in the medical field. The definition, structure and operation of neural networks are discussed. In the application part they collect examples in order to give an insight in the neural network application research. It is emphasised that in the near future basically new diagnostic equipment can be developed based on this new technology in the field of ECG, EEG and macroscopic and microscopic image analysis systems.
Application of neural networks in coastal engineering
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
methods. That is why it is becoming popular in various fields including coastal engineering. Waves and tides will play important roles in coastal erosion or accretion. This paper briefly describes the back-propagation neural networks and its application...
Blood glucose prediction using neural network
Soh, Chit Siang; Zhang, Xiqin; Chen, Jianhong; Raveendran, P.; Soh, Phey Hong; Yeo, Joon Hock
2008-02-01
We used neural network for blood glucose level determination in this study. The data set used in this study was collected using a non-invasive blood glucose monitoring system with six laser diodes, each laser diode operating at distinct near infrared wavelength between 1500nm and 1800nm. The neural network is specifically used to determine blood glucose level of one individual who participated in an oral glucose tolerance test (OGTT) session. Partial least squares regression is also used for blood glucose level determination for the purpose of comparison with the neural network model. The neural network model performs better in the prediction of blood glucose level as compared with the partial least squares model.
PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK
Directory of Open Access Journals (Sweden)
R. Hadapiningradja Kusumodestoni
2015-11-01
Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.
Using Neural Networks in Diagnosing Breast Cancer
National Research Council Canada - National Science Library
Fogel, David
1997-01-01
.... In the current study, evolutionary programming is used to train neural networks and linear discriminant models to detect breast cancer in suspicious and microcalcifications using radiographic features and patient age...
Neural Networks in Mobile Robot Motion
Directory of Open Access Journals (Sweden)
Danica Janglová
2004-03-01
Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the “free” space using ultrasound range finder data. The second neural network “finds” a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.
Isolated Speech Recognition Using Artificial Neural Networks
National Research Council Canada - National Science Library
Polur, Prasad
2001-01-01
.... A small size vocabulary containing the words YES and NO is chosen. Spectral features using cepstral analysis are extracted per frame and imported to a feedforward neural network which uses a backpropagation with momentum training algorithm...
Neural Networks in Mobile Robot Motion
Directory of Open Access Journals (Sweden)
Danica Janglova
2008-11-01
Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the "free" space using ultrasound range finder data. The second neural network "finds" a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.
Constructive autoassociative neural network for facial recognition.
Directory of Open Access Journals (Sweden)
Bruno J T Fernandes
Full Text Available Autoassociative artificial neural networks have been used in many different computer vision applications. However, it is difficult to define the most suitable neural network architecture because this definition is based on previous knowledge and depends on the problem domain. To address this problem, we propose a constructive autoassociative neural network called CANet (Constructive Autoassociative Neural Network. CANet integrates the concepts of receptive fields and autoassociative memory in a dynamic architecture that changes the configuration of the receptive fields by adding new neurons in the hidden layer, while a pruning algorithm removes neurons from the output layer. Neurons in the CANet output layer present lateral inhibitory connections that improve the recognition rate. Experiments in face recognition and facial expression recognition show that the CANet outperforms other methods presented in the literature.
Genetic Algorithm Optimized Neural Networks Ensemble as ...
African Journals Online (AJOL)
NJD
Genetic Algorithm Optimized Neural Networks Ensemble as. Calibration Model for Simultaneous Spectrophotometric. Estimation of Atenolol and Losartan Potassium in Tablets. Dondeti Satyanarayana*, Kamarajan Kannan and Rajappan Manavalan. Department of Pharmacy, Annamalai University, Annamalainagar, Tamil ...
Applications of Pulse-Coupled Neural Networks
Ma, Yide; Wang, Zhaobin
2011-01-01
"Applications of Pulse-Coupled Neural Networks" explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields. This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science. Prof. Yide Ma conducts research on intelligent information processing, biomedical image processing, and embedded system development at the School of Information Sci
Neural networks as models of psychopathology.
Aakerlund, L; Hemmingsen, R
1998-04-01
Neural network modeling is situated between neurobiology, cognitive science, and neuropsychology. The structural and functional resemblance with biological computation has made artificial neural networks (ANN) useful for exploring the relationship between neurobiology and computational performance, i.e., cognition and behavior. This review provides an introduction to the theory of ANN and how they have linked theories from neurobiology and psychopathology in schizophrenia, affective disorders, and dementia.
A neural network simulation package in CLIPS
Bhatnagar, Himanshu; Krolak, Patrick D.; Mcgee, Brenda J.; Coleman, John
1990-01-01
The intrinsic similarity between the firing of a rule and the firing of a neuron has been captured in this research to provide a neural network development system within an existing production system (CLIPS). A very important by-product of this research has been the emergence of an integrated technique of using rule based systems in conjunction with the neural networks to solve complex problems. The systems provides a tool kit for an integrated use of the two techniques and is also extendible to accommodate other AI techniques like the semantic networks, connectionist networks, and even the petri nets. This integrated technique can be very useful in solving complex AI problems.
Logarithmic learning for generalized classifier neural network.
Ozyildirim, Buse Melis; Avci, Mutlu
2014-12-01
Generalized classifier neural network is introduced as an efficient classifier among the others. Unless the initial smoothing parameter value is close to the optimal one, generalized classifier neural network suffers from convergence problem and requires quite a long time to converge. In this work, to overcome this problem, a logarithmic learning approach is proposed. The proposed method uses logarithmic cost function instead of squared error. Minimization of this cost function reduces the number of iterations used for reaching the minima. The proposed method is tested on 15 different data sets and performance of logarithmic learning generalized classifier neural network is compared with that of standard one. Thanks to operation range of radial basis function included by generalized classifier neural network, proposed logarithmic approach and its derivative has continuous values. This makes it possible to adopt the advantage of logarithmic fast convergence by the proposed learning method. Due to fast convergence ability of logarithmic cost function, training time is maximally decreased to 99.2%. In addition to decrease in training time, classification performance may also be improved till 60%. According to the test results, while the proposed method provides a solution for time requirement problem of generalized classifier neural network, it may also improve the classification accuracy. The proposed method can be considered as an efficient way for reducing the time requirement problem of generalized classifier neural network. Copyright © 2014 Elsevier Ltd. All rights reserved.
Diabetic retinopathy screening using deep neural network.
Ramachandran, Nishanthan; Hong, Sheng Chiong; Sime, Mary J; Wilson, Graham A
2017-09-07
There is a burgeoning interest in the use of deep neural network in diabetic retinal screening. To determine whether a deep neural network could satisfactorily detect diabetic retinopathy that requires referral to an ophthalmologist from a local diabetic retinal screening programme and an international database. Retrospective audit. Diabetic retinal photos from Otago database photographed during October 2016 (485 photos), and 1200 photos from Messidor international database. Receiver operating characteristic curve to illustrate the ability of a deep neural network to identify referable diabetic retinopathy (moderate or worse diabetic retinopathy or exudates within one disc diameter of the fovea). Area under the receiver operating characteristic curve, sensitivity and specificity. For detecting referable diabetic retinopathy, the deep neural network had an area under receiver operating characteristic curve of 0.901 (95% confidence interval 0.807-0.995), with 84.6% sensitivity and 79.7% specificity for Otago and 0.980 (95% confidence interval 0.973-0.986), with 96.0% sensitivity and 90.0% specificity for Messidor. This study has shown that a deep neural network can detect referable diabetic retinopathy with sensitivities and specificities close to or better than 80% from both an international and a domestic (New Zealand) database. We believe that deep neural networks can be integrated into community screening once they can successfully detect both diabetic retinopathy and diabetic macular oedema. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Symbolic processing in neural networks
Neto, João Pedro; Hava T Siegelmann; Costa,J.Félix
2003-01-01
In this paper we show that programming languages can be translated into recurrent (analog, rational weighted) neural nets. Implementation of programming languages in neural nets turns to be not only theoretical exciting, but has also some practical implications in the recent efforts to merge symbolic and sub symbolic computation. To be of some use, it should be carried in a context of bounded resources. Herein, we show how to use resource bounds to speed up computations over neural nets, thro...
Hindcasting cyclonic waves using neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Rao, S.; Chakravarty, N.V.
the backpropagation networks with updated algorithms are used in this paper. A brief description about the working of a back propagation neural network and three updated algorithms is given below. Backpropagation learning: Backpropagation is the most widely used... algorithm for supervised learning with multi layer feed forward networks. The idea of the backpropagation learning algorithm is the repeated application of the chain rule to compute the influence of each weight in the network with respect to an arbitrary...
Advanced neural network-based computational schemes for robust fault diagnosis
Mrugalski, Marcin
2014-01-01
The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practica...
Learning of N-layers neural network
Directory of Open Access Journals (Sweden)
Vladimír Konečný
2005-01-01
Full Text Available In the last decade we can observe increasing number of applications based on the Artificial Intelligence that are designed to solve problems from different areas of human activity. The reason why there is so much interest in these technologies is that the classical way of solutions does not exist or these technologies are not suitable because of their robustness. They are often used in applications like Business Intelligence that enable to obtain useful information for high-quality decision-making and to increase competitive advantage.One of the most widespread tools for the Artificial Intelligence are the artificial neural networks. Their high advantage is relative simplicity and the possibility of self-learning based on set of pattern situations.For the learning phase is the most commonly used algorithm back-propagation error (BPE. The base of BPE is the method minima of error function representing the sum of squared errors on outputs of neural net, for all patterns of the learning set. However, while performing BPE and in the first usage, we can find out that it is necessary to complete the handling of the learning factor by suitable method. The stability of the learning process and the rate of convergence depend on the selected method. In the article there are derived two functions: one function for the learning process management by the relative great error function value and the second function when the value of error function approximates to global minimum.The aim of the article is to introduce the BPE algorithm in compact matrix form for multilayer neural networks, the derivation of the learning factor handling method and the presentation of the results.
Region stability analysis and tracking control of memristive recurrent neural network.
Bao, Gang; Zeng, Zhigang; Shen, Yanjun
2018-02-01
Memristor is firstly postulated by Leon Chua and realized by Hewlett-Packard (HP) laboratory. Research results show that memristor can be used to simulate the synapses of neurons. This paper presents a class of recurrent neural network with HP memristors. Firstly, it shows that memristive recurrent neural network has more compound dynamics than the traditional recurrent neural network by simulations. Then it derives that n dimensional memristive recurrent neural network is composed of [Formula: see text] sub neural networks which do not have a common equilibrium point. By designing the tracking controller, it can make memristive neural network being convergent to the desired sub neural network. At last, two numerical examples are given to verify the validity of our result. Copyright © 2017 Elsevier Ltd. All rights reserved.
Artificial astrocytes improve neural network performance.
Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-04-19
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach
2016-03-30
Undergraduate Student Paper Postgraduate Student Paper Parametric Identification of Aircraft Loads: An Artificial Neural Network Approach...monitoring, flight parameter, nonlinear modeling, Artificial Neural Network , typical loadcase. Introduction Aircraft load monitoring is an... Neural Networks (ANN), i.e. the BP network and Kohonen Clustering Network , are applied and revised by Kalman Filter and Genetic Algorithm to build
Evolving neural networks using a genetic algorithm for heartbeat classification.
Sekkal, Mansouria; Chikh, Mohamed Amine; Settouti, Nesma
2011-07-01
This study investigates the effectiveness of a genetic algorithm (GA) evolved neural network (NN) classifier and its application to the classification of premature ventricular contraction (PVC) beats. As there is no standard procedure to determine the network structure for complicated cases, generally the design of the NN would be dependent on the user's experience. To prevent this problem, we propose a neural classifier that uses a GA for the determination of optimal connections between neurons for better recognition. The MIT-BIH arrhythmia database is employed to evaluate its accuracy. First, the topology of the NN was determined using the trial and error method. Second, the genetic operators were carefully designed to optimize the neural network structure. Performance and accuracy of the two techniques are presented and compared. Copyright © 2011 Informa UK, Ltd.
Fin-and-tube condenser performance evaluation using neural networks
Energy Technology Data Exchange (ETDEWEB)
Zhao, Ling-Xiao [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [China R and D Center, Carrier Corporation, No. 3239 Shen Jiang Road, Shanghai 201206 (China)
2010-05-15
The paper presents neural network approach to performance evaluation of the fin-and-tube air-cooled condensers which are widely used in air-conditioning and refrigeration systems. Inputs of the neural network include refrigerant and air-flow rates, refrigerant inlet temperature and saturated temperature, and entering air dry-bulb temperature. Outputs of the neural network consist of the heating capacity and the pressure drops on both refrigerant and air sides. The multi-input multi-output (MIMO) neural network is separated into multi-input single-output (MISO) neural networks for training. Afterwards, the trained MISO neural networks are combined into a MIMO neural network, which indicates that the number of training data sets is determined by the biggest MISO neural network not the whole MIMO network. Compared with a validated first-principle model, the standard deviations of neural network models are less than 1.9%, and all errors fall into {+-}5%. (author)
Prototype-Incorporated Emotional Neural Network.
Oyedotun, Oyebade K; Khashman, Adnan
2017-08-15
Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.
On sparsely connected optimal neural networks
Energy Technology Data Exchange (ETDEWEB)
Beiu, V. [Los Alamos National Lab., NM (United States); Draghici, S. [Wayne State Univ., Detroit, MI (United States)
1997-10-01
This paper uses two different approaches to show that VLSI- and size-optimal discrete neural networks are obtained for small fan-in values. These have applications to hardware implementations of neural networks, but also reveal an intrinsic limitation of digital VLSI technology: its inability to cope with highly connected structures. The first approach is based on implementing F{sub n,m} functions. The authors show that this class of functions can be implemented in VLSI-optimal (i.e., minimizing AT{sup 2}) neural networks of small constant fan-ins. In order to estimate the area (A) and the delay (T) of such networks, the following cost functions will be used: (i) the connectivity and the number-of-bits for representing the weights and thresholds--for good estimates of the area; and (ii) the fan-ins and the length of the wires--for good approximates of the delay. The second approach is based on implementing Boolean functions for which the classical Shannon`s decomposition can be used. Such a solution has already been used to prove bounds on the size of fan-in 2 neural networks. They will generalize the result presented there to arbitrary fan-in, and prove that the size is minimized by small fan-in values. Finally, a size-optimal neural network of small constant fan-ins will be suggested for F{sub n,m} functions.
Artificial neural network intelligent method for prediction
Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi
2017-09-01
Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.
Estimating Conditional Distributions by Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1998-01-01
Neural Networks for estimating conditionaldistributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency property is considered from a mild set of assumptions. A number of applications...
Medical Text Classification using Convolutional Neural Networks
Hughes, Mark; Li, Irene; Kotoulas, Spyros; Suzumura, Toyotaro
2017-01-01
We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by about 15%.
Medical Text Classification Using Convolutional Neural Networks.
Hughes, Mark; Li, Irene; Kotoulas, Spyros; Suzumura, Toyotaro
2017-01-01
We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by about 15%.
Artificial Neural Networks and Instructional Technology.
Carlson, Patricia A.
1991-01-01
Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…
Neural networks within multi-core optic fibers.
Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael
2016-07-07
Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.
Analysis of the experimental positron lifetime spectra by neural networks
Directory of Open Access Journals (Sweden)
Avdić Senada
2003-01-01
Full Text Available This paper deals with the analysis of experimental positron lifetime spectra in polymer materials by using various algorithms of neural networks. A method based on the use of artificial neural networks for unfolding the mean lifetime and intensity of the spectral components of simulated positron lifetime spectra was previously suggested and tested on simulated data [Pžzsitetal, Applied Surface Science, 149 (1998, 97]. In this work, the applicability of the method to the analysis of experimental positron spectra has been verified in the case of spectra from polymer materials with three components. It has been demonstrated that the backpropagation neural network can determine the spectral parameters with a high accuracy and perform the decomposi-tion of lifetimes which differ by 10% or more. The backpropagation network has not been suitable for the identification of both the parameters and the number of spectral components. Therefore, a separate artificial neural network module has been designed to solve the classification problem. Module types based on self-organizing map and learning vector quantization algorithms have been tested. The learning vector quantization algorithm was found to have better performance and reliability. A complete artificial neural network analysis tool of positron lifetime spectra has been constructed to include a spectra classification module and parameter evaluation modules for spectra with a different number of components. In this way, both flexibility and high resolution can be achieved.
Neural networks within multi-core optic fibers
Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael
2016-07-01
Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.
Neural networks to formulate special fats
Directory of Open Access Journals (Sweden)
Garcia, R. K.
2012-09-01
Full Text Available Neural networks are a branch of artificial intelligence based on the structure and development of biological systems, having as its main characteristic the ability to learn and generalize knowledge. They are used for solving complex problems for which traditional computing systems have a low efficiency. To date, applications have been proposed for different sectors and activities. In the area of fats and oils, the use of neural networks has focused mainly on two issues: the detection of adulteration and the development of fatty products. The formulation of fats for specific uses is the classic case of a complex problem where an expert or group of experts defines the proportions of each base, which, when mixed, provide the specifications for the desired product. Some conventional computer systems are currently available to assist the experts; however, these systems have some shortcomings. This article describes in detail a system for formulating fatty products, shortenings or special fats, from three or more components by using neural networks (MIX. All stages of development, including design, construction, training, evaluation, and operation of the network will be outlined.
Las redes neuronales son una rama de la inteligencia artificial basadas en la estructura y funcionamiento de sistemas biológicos, teniendo como principal característica la capacidad de aprender y generalizar conocimiento. Estas son utilizadas en la resolución de problemas complejos, en los cuales los sistemas computacionales tradicionales presentan una eficiencia baja. Hasta la fecha, han sido propuestas aplicaciones para los más diversos sectores y actividades. En el área de grasas y aceites, la utilización de redes neuronales se ha concentrado principalmente en dos asuntos: la detección de adulteraciones y la formulación de productos grasos. La formulación de grasas para uso específico es el caso clásico de problema complejo donde un experto o grupo de
Kontrol Kecepatan Motor Induksi menggunakan Algoritma Backpropagation Neural Network
Directory of Open Access Journals (Sweden)
MUHAMMAD RUSWANDI DJALAL
2017-07-01
Full Text Available ABSTRAKBanyak strategi kontrol berbasis kecerdasan buatan telah diusulkan dalam penelitian seperti Fuzzy Logic dan Artificial Neural Network (ANN. Tujuan dari penelitian ini adalah untuk mendesain sebuah kontrol agar kecepatan motor induksi dapat diatur sesuai kebutuhan serta membandingkan kinerja motor induksi tanpa kontrol dan dengan kontrol. Dalam penelitian ini diusulkan sebuah metode artificial neural network untuk mengontrol kecepatan motor induksi tiga fasa. Kecepatan referensi motor diatur pada kecepatan 140 rad/s, 150 rad/s, dan 130 rad/s. Perubahan kecepatan diatur pada setiap interval 0.3 detik dan waktu simulasi maksimum adalah 0,9 detik. Kasus 1 tanpa kontrol, menunjukkan respon torka dan kecepatan dari motor induksi tiga fasa tanpa kontrol. Meskipun kecepatan motor induksi tiga fasa diatur berubah pada setiap 0,3 detik tidak akan mempengaruhi torka. Selain itu, motor induksi tiga fasa tanpa kontrol memiliki kinerja yang buruk dikarenakan kecepatan motor induksi tidak dapat diatur sesuai dengan kebutuhan. Kasus 2 dengan control backpropagation neural network, meskipun kecepatan motor induksi tiga fasa berubah pada setiap 0.3 detik tidak akan mempengaruhi torsi. Selain itu, kontrol backpropagation neural network memiliki kinerja yang baik dikarenakan kecepatan motor induksi dapat diatur sesuai dengan kebutuhan.Kata kunci: Backpropagation Neural Network (BPNN, NN Training, NN Testing, Motor.ABSTRACTMany artificial intelligence-based control strategies have been proposed in research such as Fuzzy Logic and Artificial Neural Network (ANN. The purpose of this research was design a control for the induction motor speed that could be adjusted as needed and compare the performance of induction motor without control and with control. In this research, it was proposed an artificial neural network method to control the speed of three-phase induction motors. The reference speed of motor was set at the rate of 140 rad / s, 150 rad / s, and 130
Visual Servoing from Deep Neural Networks
Bateux, Quentin; Marchand, Eric; Leitner, Jürgen; Chaumette, Francois; Corke, Peter
2017-01-01
International audience; We present a deep neural network-based method to perform high-precision, robust and real-time 6 DOF visual servoing. The paper describes how to create a dataset simulating various perturbations (occlusions and lighting conditions) from a single real-world image of the scene. A convolutional neural network is fine-tuned using this dataset to estimate the relative pose between two images of the same scene. The output of the network is then employed in a visual servoing c...
Electronic device aspects of neural network memories
Lambe, J.; Moopenn, A.; Thakoor, A. P.
1985-01-01
The basic issues related to the electronic implementation of the neural network model (NNM) for content addressable memories are examined. A brief introduction to the principles of the NNM is followed by an analysis of the information storage of the neural network in the form of a binary connection matrix and the recall capability of such matrix memories based on a hardware simulation study. In addition, materials and device architecture issues involved in the future realization of such networks in VLSI-compatible ultrahigh-density memories are considered. A possible space application of such devices would be in the area of large-scale information storage without mechanical devices.
A quantum-implementable neural network model
Chen, Jialin; Wang, Lingli; Charbon, Edoardo
2017-10-01
A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.
An Adaptive-PSO-Based Self-Organizing RBF Neural Network.
Han, Hong-Gui; Lu, Wei; Hou, Ying; Qiao, Jun-Fei
2018-01-01
In this paper, a self-organizing radial basis function (SORBF) neural network is designed to improve both accuracy and parsimony with the aid of adaptive particle swarm optimization (APSO). In the proposed APSO algorithm, to avoid being trapped into local optimal values, a nonlinear regressive function is developed to adjust the inertia weight. Furthermore, the APSO algorithm can optimize both the network size and the parameters of an RBF neural network simultaneously. As a result, the proposed APSO-SORBF neural network can effectively generate a network model with a compact structure and high accuracy. Moreover, the analysis of convergence is given to guarantee the successful application of the APSO-SORBF neural network. Finally, multiple numerical examples are presented to illustrate the effectiveness of the proposed APSO-SORBF neural network. The results demonstrate that the proposed method is more competitive in solving nonlinear problems than some other existing SORBF neural networks.
Mehrizad, Ali; Gharbani, Parvin
2016-01-01
The present study deals with use of central composite design (CCD) and artificial neural network (ANN) in modeling and optimization of reactive blue 21 (RB21) removal from aqueous media under photo-ozonation process. Four effective operational parameters (including: initial concentration of RB21, O(3) concentration, UV light intensity and reaction time) were chosen and the experiments were designed by CCD based on response surface methodology (RSM). The obtained results from the CCD model were used in modeling the process by ANN. Under optimum condition (O(3) concentration of 3.95 mg L(-1), UV intensity of 20.5 W m(-2), reaction time of 7.77 min and initial dye concentration of 40.21 mg L(-1)), RB21 removal efficiency reached to up 98.88%. A topology of ANN with a three-layer consisting of four input neurons, 14 hidden neurons and one output neuron was designed. The relative significance of each major factor was calculated based on the connection weights of the ANN model. Dye and ozone concentrations were the most important variables in the photo-ozonation of RB21, followed by reaction time and UV light intensity. The comparison of predicted values by CCD and ANN with experimental results showed that both methods were highly efficient in the modeling of the process.
Fernandez, Michael; Caballero, Julio; Fernandez, Leyden; Sarai, Akinori
2011-02-01
Many articles in "in silico" drug design implemented genetic algorithm (GA) for feature selection, model optimization, conformational search, or docking studies. Some of these articles described GA applications to quantitative structure-activity relationships (QSAR) modeling in combination with regression and/or classification techniques. We reviewed the implementation of GA in drug design QSAR and specifically its performance in the optimization of robust mathematical models such as Bayesian-regularized artificial neural networks (BRANNs) and support vector machines (SVMs) on different drug design problems. Modeled data sets encompassed ADMET and solubility properties, cancer target inhibitors, acetylcholinesterase inhibitors, HIV-1 protease inhibitors, ion-channel and calcium entry blockers, and antiprotozoan compounds as well as protein classes, functional, and conformational stability data. The GA-optimized predictors were often more accurate and robust than previous published models on the same data sets and explained more than 65% of data variances in validation experiments. In addition, feature selection over large pools of molecular descriptors provided insights into the structural and atomic properties ruling ligand-target interactions.
Pivetta, Tiziana; Isaia, Francesco; Trudu, Federica; Pani, Alessandra; Manca, Matteo; Perra, Daniela; Amato, Filippo; Havel, Josef
2013-10-15
The combination of two or more drugs using multidrug mixtures is a trend in the treatment of cancer. The goal is to search for a synergistic effect and thereby reduce the required dose and inhibit the development of resistance. An advanced model-free approach for data exploration and analysis, based on artificial neural networks (ANN) and experimental design is proposed to predict and quantify the synergism of drugs. The proposed method non-linearly correlates the concentrations of drugs with the cytotoxicity of the mixture, providing the possibility of choosing the optimal drug combination that gives the maximum synergism. The use of ANN allows for the prediction of the cytotoxicity of each combination of drugs in the chosen concentration interval. The method was validated by preparing and experimentally testing the combinations with the predicted highest synergistic effect. In all cases, the data predicted by the network were experimentally confirmed. The method was applied to several binary mixtures of cisplatin and [Cu(1,10-orthophenanthroline)2(H2O)](ClO4)2, Cu(1,10-orthophenanthroline)(H2O)2(ClO4)2 or [Cu(1,10-orthophenanthroline)2(imidazolidine-2-thione)](ClO4)2. The cytotoxicity of the two drugs, alone and in combination, was determined against human acute T-lymphoblastic leukemia cells (CCRF-CEM). For all systems, a synergistic effect was found for selected combinations. © 2013 Elsevier B.V. All rights reserved.
Qualitative analysis and control of complex neural networks with delays
Wang, Zhanshan; Zheng, Chengde
2016-01-01
This book focuses on the stability of the dynamical neural system, synchronization of the coupling neural system and their applications in automation control and electrical engineering. The redefined concept of stability, synchronization and consensus are adopted to provide a better explanation of the complex neural network. Researchers in the fields of dynamical systems, computer science, electrical engineering and mathematics will benefit from the discussions on complex systems. The book will also help readers to better understand the theory behind the control technique and its design.
An artifical neural network for detection of simulated dental caries
Energy Technology Data Exchange (ETDEWEB)
Kositbowornchai, S. [Khon Kaen Univ. (Thailand). Dept. of Oral Diagnosis; Siriteptawee, S.; Plermkamon, S.; Bureerat, S. [Khon Kaen Univ. (Thailand). Dept. of Mechanical Engineering; Chetchotsak, D. [Khon Kaen Univ. (Thailand). Dept. of Industrial Engineering
2006-08-15
Objects: A neural network was developed to diagnose artificial dental caries using images from a charged-coupled device (CCD)camera and intra-oral digital radiography. The diagnostic performance of this neural network was evaluated against a gold standard. Materials and methods: The neural network design was the Learning Vector Quantization (LVQ) used to classify a tooth surface as sound or as having dental caries. The depth of the dental caries was indicated on a graphic user interface (GUI) screen developed by Matlab programming. Forty-nine images of both sound and simulated dental caries, derived from a CCD camera and by digital radiography, were used to 'train' an artificial neural network. After the 'training' process, a separate test-set comprising 322 unseen images was evaluated. Tooth sections and microscopic examinations were used to confirm the actual dental caries status.The performance of neural network was evaluated using diagnostic test. Results: The sensitivity (95%CI)/specificity (95%CI) of dental caries detection by the CCD camera and digital radiography were 0.77(0.68-0.85)/0.85(0.75-0.92) and 0.81(0.72-0.88)/0.93(0.84-0.97), respectively. The accuracy of caries depth-detection by the CCD camera and digital radiography was 58 and 40%, respectively. Conclusions: The model neural network used in this study could be a prototype for caries detection but should be improved for classifying caries depth. Our study suggests an artificial neural network can be trained to make the correct interpretations of dental caries. (orig.)
Directory of Open Access Journals (Sweden)
S Khalili
2015-09-01
Full Text Available Introduction: Grading agricultural products always has a particular important position for submission to domestic and overseas markets. The grading causes more profitable product ranges and customer satisfaction. Grading treatment is carried out based on various parameters such as color, ripeness level, dimensions and weight. Product weight is one of the most effective parameters in grading operation. Egg weight is directly related to the smallness and coarseness of eggs. In egg grading, the largeness value is very important in marketing. This research aimed to design, fabricate and evaluate the egg weighing system based on its dielectric properties. Materials and Methods: To perform this research, the stages of work are divided into several sections including, design and construction of the hardware section, writing code for the software section to collect data, conducting nondestructive tests and data collection, analysis of obtained data using artificial intelligence, and giving the results of analysis for device calibration of the system as the software code. The large eggs as dielectric substances cause more increase in the capacity of the capacitive sensor. Furthermore, by derivation of a relation between capacity of capacitive sensor and egg weight, one can predict the weight of the sample. A prototype unit of weighing system was designed and fabricated. The designed unit was composed of a chassis, a voltage source, a sinusoidal signal generator, a voltage measurement unit, an AVR micro controller, a COM port, a capacitive sensor, and an LCD and a keyboard. Neural network technique was used for egg weight prediction. The designed net receives 16 voltage values at different frequencies as inputs and its output is the egg weight. In order to calibrate and evaluate the weighing unit, 150 fresh egg samples were provided on egg laying day from a local poultry farm. Experiments were divided into three groups. The experiments were carried out on
Antagonistic neural networks underlying differentiated leadership roles
Richard Eleftherios Boyatzis; Kylie eRochford; Anthony Ian Jack
2014-01-01
The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950’s. Recent research in neuroscience suggests that the division between task oriented and socio-emotional oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks -- the Task Positive Network (TPN) and the Default Mode Network (DMN). Neural activity in ...
Representations in neural network based empirical potentials
Cubuk, Ekin D.; Malone, Brad D.; Onat, Berk; Waterland, Amos; Kaxiras, Efthimios
2017-07-01
Many structural and mechanical properties of crystals, glasses, and biological macromolecules can be modeled from the local interactions between atoms. These interactions ultimately derive from the quantum nature of electrons, which can be prohibitively expensive to simulate. Machine learning has the potential to revolutionize materials modeling due to its ability to efficiently approximate complex functions. For example, neural networks can be trained to reproduce results of density functional theory calculations at a much lower cost. However, how neural networks reach their predictions is not well understood, which has led to them being used as a "black box" tool. This lack of understanding is not desirable especially for applications of neural networks in scientific inquiry. We argue that machine learning models trained on physical systems can be used as more than just approximations since they had to "learn" physical concepts in order to reproduce the labels they were trained on. We use dimensionality reduction techniques to study in detail the representation of silicon atoms at different stages in a neural network, which provides insight into how a neural network learns to model atomic interactions.
Community structure of complex networks based on continuous neural network
Dai, Ting-ting; Shan, Chang-ji; Dong, Yan-shou
2017-09-01
As a new subject, the research of complex networks has attracted the attention of researchers from different disciplines. Community structure is one of the key structures of complex networks, so it is a very important task to analyze the community structure of complex networks accurately. In this paper, we study the problem of extracting the community structure of complex networks, and propose a continuous neural network (CNN) algorithm. It is proved that for any given initial value, the continuous neural network algorithm converges to the eigenvector of the maximum eigenvalue of the network modularity matrix. Therefore, according to the stability of the evolution of the network symbol will be able to get two community structure.
Identification and Position Control of Marine Helm using Artificial Neural Network Neural Network
Directory of Open Access Journals (Sweden)
Hui ZHU
2008-02-01
Full Text Available If nonlinearities such as saturation of the amplifier gain and motor torque, gear backlash, and shaft compliances- just to name a few - are considered in the position control system of marine helm, traditional control methods are no longer sufficient to be used to improve the performance of the system. In this paper an alternative approach to traditional control methods - a neural network reference controller - is proposed to establish an adaptive control of the position of the marine helm to achieve the controlled variable at the command position. This neural network controller comprises of two neural networks. One is the plant model network used to identify the nonlinear system and the other the controller network used to control the output to follow the reference model. The experimental results demonstrate that this adaptive neural network reference controller has much better control performance than is obtained with traditional controllers.
A cultured human neural network operates a robotic actuator.
Pizzi, R M R; Rossetti, D; Cino, G; Marino, D; A L Vescovi; Baer, W
2009-02-01
The development of bio-electronic prostheses, hybrid human-electronics devices and bionic robots has been the aim of many researchers. Although neurophysiologic processes have been widely investigated and bio-electronics has developed rapidly, the dynamics of a biological neuronal network that receive sensory inputs, store and control information is not yet understood. Toward this end, we have taken an interdisciplinary approach to study the learning and response of biological neural networks to complex stimulation patterns. This paper describes the design, execution, and results of several experiments performed in order to investigate the behavior of complex interconnected structures found in biological neural networks. The experimental design consisted of biological human neurons stimulated by parallel signal patterns intended to simulate complex perceptions. The response patterns were analyzed with an innovative artificial neural network (ANN), called ITSOM (Inductive Tracing Self Organizing Map). This system allowed us to decode the complex neural responses from a mixture of different stimulations and learned memory patterns inherent in the cell colonies. In the experiment described in this work, neurons derived from human neural stem cells were connected to a robotic actuator through the ANN analyzer to demonstrate our ability to produce useful control from simulated perceptions stimulating the cells. Preliminary results showed that in vitro human neuron colonies can learn to reply selectively to different stimulation patterns and that response signals can effectively be decoded to operate a minirobot. Lastly the fascinating performance of the hybrid system is evaluated quantitatively and potential future work is discussed.
Forecast of consumer behaviour based on neural networks models comparison
Directory of Open Access Journals (Sweden)
Michael Štencl
2012-01-01
Full Text Available The aim of this article is comparison of accuracy level of forecasted values of several artificial neural network models. The comparison is performed on datasets of Czech household consumption values. Several statistical models often resolve this task with more or fewer restrictions. In previous work where models’ input conditions were not so strict and model with missing data was used (the time series didn’t contain many values we have obtained comparably good results with artificial neural networks. Two views – practical and theoretical, motivate the purpose of this study. Forecasting models for medium term prognosis of the main trends of Czech household consumption is part of the faculty research design grant MSM 6215648904/03/02 (Sub-task 5.3 which defines the practical purpose. Testing of nonlinear autoregressive artificial neural network model compared with feed-forward neural network and radial basis function neural network defines the theoretical purpose. The performance metrics of the models were evaluated using a combination of common error metrics, namely Correlation Coefficient and Mean Square Error, together with the number of epochs and/or main prediction error.
Detecting atrial fibrillation by deep convolutional neural networks.
Xia, Yong; Wulan, Naren; Wang, Kuanquan; Zhang, Henggui
2018-02-01
Atrial fibrillation (AF) is the most common cardiac arrhythmia. The incidence of AF increases with age, causing high risks of stroke and increased morbidity and mortality. Efficient and accurate diagnosis of AF based on the ECG is valuable in clinical settings and remains challenging. In this paper, we proposed a novel method with high reliability and accuracy for AF detection via deep learning. The short-term Fourier transform (STFT) and stationary wavelet transform (SWT) were used to analyze ECG segments to obtain two-dimensional (2-D) matrix input suitable for deep convolutional neural networks. Then, two different deep convolutional neural network models corresponding to STFT output and SWT output were developed. Our new method did not require detection of P or R peaks, nor feature designs for classification, in contrast to existing algorithms. Finally, the performances of the two models were evaluated and compared with those of existing algorithms. Our proposed method demonstrated favorable performances on ECG segments as short as 5 s. The deep convolutional neural network using input generated by STFT, presented a sensitivity of 98.34%, specificity of 98.24% and accuracy of 98.29%. For the deep convolutional neural network using input generated by SWT, a sensitivity of 98.79%, specificity of 97.87% and accuracy of 98.63% was achieved. The proposed method using deep convolutional neural networks shows high sensitivity, specificity and accuracy, and, therefore, is a valuable tool for AF detection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neural-network-based fuzzy logic decision systems
Kulkarni, Arun D.; Giridhar, G. B.; Coca, Praveen
1994-10-01
During the last few years there has been a large and energetic upswing in research efforts aimed at synthesizing fuzzy logic with neural networks. This combination of neural networks and fuzzy logic seems natural because the two approaches generally attack the design of `intelligent' system from quite different angles. Neural networks provide algorithms for learning, classification, and optimization whereas fuzzy logic often deals with issues such as reasoning in a high (semantic or linguistic) level. Consequently the two technologies complement each other. In this paper, we combine neural networks with fuzzy logic techniques. We propose an artificial neural network (ANN) model for a fuzzy logic decision system. The model consists of six layers. The first three layers map the input variables to fuzzy set membership functions. The last three layers implement the decision rules. The model learns the decision rules using a supervised gradient descent procedure. As an illustration we considered two examples. The first example deals with pixel classification in multispectral satellite images. In our second example we used the fuzzy decision system to analyze data from magnetic resonance imaging (MRI) scans for tissue classification.
Neural network for prediction of superheater fireside corrosion
Energy Technology Data Exchange (ETDEWEB)
Makkonen, P. [Foster Wheeler Energia Oy, Karhula R and D Center, Karhula (Finland)
1998-12-31
Superheater corrosion causes vast annual losses to the power companies. If the corrosion could be reliably predicted, new power plants could be designed accordingly, and knowledge of fuel selection and determination of process conditions could be utilized to minimize superheater corrosion. If relations between inputs and the output are poorly known, conventional models depending on corrosion theories will fail. A prediction model based on a neural network is capable of learning from errors and improving its performance as the amount of data increases. The neural network developed during this study predicts superheater corrosion with 80 % accuracy at early stage of the project. (orig.) 10 refs.
Type-2 fuzzy neural networks and their applications
Aliev, Rafik Aziz
2014-01-01
This book deals with the theory, design principles, and application of hybrid intelligent systems using type-2 fuzzy sets in combination with other paradigms of Soft Computing technology such as Neuro-Computing and Evolutionary Computing. It provides a self-contained exposition of the foundation of type-2 fuzzy neural networks and presents a vast compendium of its applications to control, forecasting, decision making, system identification and other real problems. Type-2 Fuzzy Neural Networks and Their Applications is helpful for teachers and students of universities and colleges, for scientis
Implementing Signature Neural Networks with Spiking Neurons.
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence
Implementing Signature Neural Networks with Spiking Neurons
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the
Training Deep Spiking Neural Networks Using Backpropagation.
Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael
2016-01-01
Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.
Memory-optimal neural network approximation
Bölcskei, Helmut; Grohs, Philipp; Kutyniok, Gitta; Petersen, Philipp
2017-08-01
We summarize the main results of a recent theory-developed by the authors-establishing fundamental lower bounds on the connectivity and memory requirements of deep neural networks as a function of the complexity of the function class to be approximated by the network. These bounds are shown to be achievable. Specifically, all function classes that are optimally approximated by a general class of representation systems-so-called affine systems-can be approximated by deep neural networks with minimal connectivity and memory requirements. Affine systems encompass a wealth of representation systems from applied harmonic analysis such as wavelets, shearlets, ridgelets, α-shearlets, and more generally α-molecules. This result elucidates a remarkable universality property of deep neural networks and shows that they achieve the optimum approximation properties of all affine systems combined. Finally, we present numerical experiments demonstrating that the standard stochastic gradient descent algorithm generates deep neural networks which provide close-to-optimal approximation rates at minimal connectivity. Moreover, stochastic gradient descent is found to actually learn approximations that are sparse in the representation system optimally sparsifying the function class the network is trained on.
Sathiya, P.; Panneerselvam, K.; Soundararajan, R.
2012-09-01
Laser welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Therefore, mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel were investigated. Full factorial design was used to carry out the experimental design. Artificial Neural networks (ANN) program was developed in MatLab software to establish the relationships between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (Argon, Helium and Nitrogen). The established models were used for optimizing the process parameters using Genetic Algorithm (GA). Optimum solutions for the three different gases and their respective responses were obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.
Neural network models of learning and categorization in multigame experiments
Directory of Open Access Journals (Sweden)
Davide eMarchiori
2011-12-01
Full Text Available Previous research has shown that regret-driven neural networks predict behavior in repeated completely mixed games remarkably well, substantially equating the performance of the most accurate established models of learning. This result prompts the question of what is the added value of modeling learning through neural networks. We submit that this modeling approach allows for models that are able to distinguish among and respond differently to different payoff structures. Moreover, the process of categorization of a game is implicitly carried out by these models, thus without the need of any external explicit theory of similarity between games. To validate our claims, we designed and ran two multigame experiments in which subjects faced, in random sequence, different instances of two completely mixed 2x2 games. Then, we tested on our experimental data two regret-driven neural network models, and compared their performance with that of other established models of learning and Nash equilibrium.
The extraction of information and knowledge from trained neural networks.
Livingstone, David J; Browne, Antony; Crichton, Raymond; Hudson, Brian D; Whitley, David C; Ford, Martyn G
2008-01-01
In the past, neural networks were viewed as classification and regression systems whose internal representations were incomprehensible. It is now becoming apparent that algorithms can be designed that extract comprehensible representations from trained neural networks, enabling them to be used for data mining and knowledge discovery, that is, the discovery and explanation of previously unknown relationships present in data. This chapter reviews existing algorithms for extracting comprehensible representations from neural networks and outlines research to generalize and extend the capabilities of one of these algorithms, TREPAN. This algorithm has been generalized for application to bioinformatics data sets, including the prediction of splice junctions in human DNA sequences, and cheminformatics. The results generated on these data sets are compared with those generated by a conventional data mining technique (C5) and appropriate conclusions are drawn.
An artificial neural network controller for intelligent transportation systems applications
Energy Technology Data Exchange (ETDEWEB)
Vitela, J.E.; Hanebutte, U.R.; Reifman, J. [Argonne National Lab., IL (United States). Reactor Analysis Div.
1996-04-01
An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems applications. The AICC is based on a simple nonlinear model of the vehicle dynamics. A Neural Network Controller (NNC) code developed at Argonne National Laboratory to control discrete dynamical systems was used for this purpose. In order to test the NNC, an AICC-simulator containing graphical displays was developed for a system of two vehicles driving in a single lane. Two simulation cases are shown, one involving a lead vehicle with constant velocity and the other a lead vehicle with varying acceleration. More realistic vehicle dynamic models will be considered in future work.
A hyperstable neural network for the modelling and control of ...
Indian Academy of Sciences (India)
A multivariable hyperstable robust adaptive decoupling control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure. The Popov theorem is used in the design of the controller. The modelling errors, coupling action and other ...
Detecting danger labels with RAM-based neural networks
DEFF Research Database (Denmark)
Jørgensen, T.M.; Christensen, S.S.; Andersen, A.W.
1996-01-01
An image processing system for the automatic location of danger labels on the back of containers is presented. The system uses RAM-based neural networks to locate and classify labels after a pre-processing step involving specially designed non-linear edge filters and RGB-to-HSV conversion. Results...
An artificial neural network based fast radiative transfer model for ...
Indian Academy of Sciences (India)
the present study, a fast radiative transfer model using neural networks is proposed to simulate radiances corresponding to the wavenumbers of ... in construction, purpose and design and already in use are used. The fast RT model is able to ... porates measurements from various instruments in comparison with other ...
Radial basis function neural network in fault detection of automotive ...
African Journals Online (AJOL)
Radial basis function neural network in fault detection of automotive engines. Adnan Hamad, Dingli Yu, JB Gomm, Mahavir S Sangha. Abstract. Fault detection and isolation have become one of the most important aspects of automobile design. A fault detection (FD) scheme is developed for automotive engines in this paper.
Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System
DEFF Research Database (Denmark)
Lehmann, Torsten
1998-01-01
In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop a ...... chip to solve simple classical conditioning tasks, thus verifying the design methodologies put forward in the paper....
Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture
Energy Technology Data Exchange (ETDEWEB)
Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)
2015-01-01
Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.
NNSYSID - toolbox for system identification with neural networks
DEFF Research Database (Denmark)
Norgaard, M.; Ravn, Ole; Poulsen, Niels Kjølstad
2002-01-01
The NNSYSID toolset for System Identification has been developed as an add on to MATLAB(R). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains a number of nonlinear model structures based on neural networks, effective training algorithms...
Equivalence of Conventional and Modified Network of Generalized Neural Elements
Directory of Open Access Journals (Sweden)
E. V. Konovalov
2016-01-01
Full Text Available The article is devoted to the analysis of neural networks consisting of generalized neural elements. The first part of the article proposes a new neural network model — a modified network of generalized neural elements (MGNE-network. This network developes the model of generalized neural element, whose formal description contains some flaws. In the model of the MGNE-network these drawbacks are overcome. A neural network is introduced all at once, without preliminary description of the model of a single neural element and method of such elements interaction. The description of neural network mathematical model is simplified and makes it relatively easy to construct on its basis a simulation model to conduct numerical experiments. The model of the MGNE-network is universal, uniting properties of networks consisting of neurons-oscillators and neurons-detectors. In the second part of the article we prove the equivalence of the dynamics of the two considered neural networks: the network, consisting of classical generalized neural elements, and MGNE-network. We introduce the definition of equivalence in the functioning of the generalized neural element and the MGNE-network consisting of a single element. Then we introduce the definition of the equivalence of the dynamics of the two neural networks in general. It is determined the correlation of different parameters of the two considered neural network models. We discuss the issue of matching the initial conditions of the two considered neural network models. We prove the theorem about the equivalence of the dynamics of the two considered neural networks. This theorem allows us to apply all previously obtained results for the networks, consisting of classical generalized neural elements, to the MGNE-network.
Neural PID Control Strategy for Networked Process Control
Directory of Open Access Journals (Sweden)
Jianhua Zhang
2013-01-01
Full Text Available A new method with a two-layer hierarchy is presented based on a neural proportional-integral-derivative (PID iterative learning method over the communication network for the closed-loop automatic tuning of a PID controller. It can enhance the performance of the well-known simple PID feedback control loop in the local field when real networked process control applied to systems with uncertain factors, such as external disturbance or randomly delayed measurements. The proposed PID iterative learning method is implemented by backpropagation neural networks whose weights are updated via minimizing tracking error entropy of closed-loop systems. The convergence in the mean square sense is analysed for closed-loop networked control systems. To demonstrate the potential applications of the proposed strategies, a pressure-tank experiment is provided to show the usefulness and effectiveness of the proposed design method in network process control systems.
Neural networks and particle physics
Peterson, Carsten
1993-01-01
1. Introduction : Structure of the Central Nervous System Generics2. Feed-forward networks, Perceptions, Function approximators3. Self-organisation, Feature Maps4. Feed-back Networks, The Hopfield model, Optimization problems, Feed-back, Networks, Deformable templates, Graph bisection
Cotton genotypes selection through artificial neural networks.
Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B
2017-09-27
Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.
Neural network approaches for noisy language modeling.
Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid
2013-11-01
Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.
Reliability Modeling of Microelectromechanical Systems Using Neural Networks
Perera. J. Sebastian
2000-01-01
Microelectromechanical systems (MEMS) are a broad and rapidly expanding field that is currently receiving a great deal of attention because of the potential to significantly improve the ability to sense, analyze, and control a variety of processes, such as heating and ventilation systems, automobiles, medicine, aeronautical flight, military surveillance, weather forecasting, and space exploration. MEMS are very small and are a blend of electrical and mechanical components, with electrical and mechanical systems on one chip. This research establishes reliability estimation and prediction for MEMS devices at the conceptual design phase using neural networks. At the conceptual design phase, before devices are built and tested, traditional methods of quantifying reliability are inadequate because the device is not in existence and cannot be tested to establish the reliability distributions. A novel approach using neural networks is created to predict the overall reliability of a MEMS device based on its components and each component's attributes. The methodology begins with collecting attribute data (fabrication process, physical specifications, operating environment, property characteristics, packaging, etc.) and reliability data for many types of microengines. The data are partitioned into training data (the majority) and validation data (the remainder). A neural network is applied to the training data (both attribute and reliability); the attributes become the system inputs and reliability data (cycles to failure), the system output. After the neural network is trained with sufficient data. the validation data are used to verify the neural networks provided accurate reliability estimates. Now, the reliability of a new proposed MEMS device can be estimated by using the appropriate trained neural networks developed in this work.
Boltzmann learning of parameters in cellular neural networks
DEFF Research Database (Denmark)
Hansen, Lars Kai
1992-01-01
The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified...... by unsupervised adaptation of an image segmentation cellular network. The learning rule is applied to adaptive segmentation of satellite imagery...
Neuronmaster: an integrated tool for applications in neural networks
Rivas-Echeverria, Francklin; Colina-Morles, Eliezer; Sole, Solazver; Perez-Mendez, Anna; Bravo-Bravo, Cesar; Bravo-Bravo, Victor
2001-03-01
This work presents the design of an integral environment for the suitable development of neural networks applications. The integrated environment contemplates the following features: A data processing module which encompasses statistical data analysis techniques for variables selection reduction, a variety of learning algorithms, code generator for different computer languages to enable network implementation, a learning sessions planning module and database connectivity facilities via ODBC, RPC, and API.
Artificial neural network in cosmic landscape
Liu, Junyu
2017-12-01
In this paper we propose that artificial neural network, the basis of machine learning, is useful to generate the inflationary landscape from a cosmological point of view. Traditional numerical simulations of a global cosmic landscape typically need an exponential complexity when the number of fields is large. However, a basic application of artificial neural network could solve the problem based on the universal approximation theorem of the multilayer perceptron. A toy model in inflation with multiple light fields is investigated numerically as an example of such an application.
Top tagging with deep neural networks [Vidyo
CERN. Geneva
2017-01-01
Recent literature on deep neural networks for top tagging has focussed on image based techniques or multivariate approaches using high level jet substructure variables. Here, we take a sequential approach to this task by using anordered sequence of energy deposits as training inputs. Unlike previous approaches, this strategy does not result in a loss of information during pixelization or the calculation of high level features. We also propose new preprocessing methods that do not alter key physical quantities such as jet mass. We compare the performance of this approach to standard tagging techniques and present results evaluating the robustness of the neural network to pileup.
Assessing Landslide Hazard Using Artificial Neural Network
DEFF Research Database (Denmark)
Farrokhzad, Farzad; Choobbasti, Asskar Janalizadeh; Barari, Amin
2011-01-01
failure" which is main concentration of the current research and "liquefaction failure". Shear failures along shear planes occur when the shear stress along the sliding surfaces exceed the effective shear strength. These slides have been referred to as landslide. An expert system based on artificial...... neural network has been developed for use in the stability evaluation of slopes under various geological conditions and engineering requirements. The Artificial neural network model of this research uses slope characteristics as input and leads to the output in form of the probability of failure...
Neural networks advances and applications 2
Gelenbe, E
1992-01-01
The present volume is a natural follow-up to Neural Networks: Advances and Applications which appeared one year previously. As the title indicates, it combines the presentation of recent methodological results concerning computational models and results inspired by neural networks, and of well-documented applications which illustrate the use of such models in the solution of difficult problems. The volume is balanced with respect to these two orientations: it contains six papers concerning methodological developments and five papers concerning applications and examples illustrating the theoret
SAR ATR Based on Convolutional Neural Network
Directory of Open Access Journals (Sweden)
Tian Zhuangzhuang
2016-06-01
Full Text Available This study presents a new method of Synthetic Aperture Radar (SAR image target recognition based on a convolutional neural network. First, we introduce a class separability measure into the cost function to improve this network’s ability to distinguish between categories. Then, we extract SAR image features using the improved convolutional neural network and classify these features using a support vector machine. Experimental results using moving and stationary target acquisition and recognition SAR datasets prove the validity of this method.
Sea level forecasts using neural networks
Röske, Frank
1997-03-01
In this paper, a new method for predicting the sea level employing a neural network approach is introduced. It was designed to improve the prediction of the sea level along the German North Sea Coast under standard conditions. The sea level at any given time depends upon the tides as well as meteorological and oceanographic factors, such as the winds and external surges induced by air pressure. Since tidal predictions are already sufficiently accurate, they have been subtracted from the observed sea levels. The differences will be predicted up to 18 hours in advance. In this paper, the differences are called anomalies. The prediction of the sea level each hour is distinguished from its predictions at the times of high and low tide. For this study, Cuxhaven was selected as a reference site. The predictions made using neural networks were compared for accuracy with the prognoses prepared using six models: two hydrodynamic models, a statistical model, a nearest neighbor model, which is based on analogies, the persistence model, and the verbal forecasts that are broadcast and kept on record by the Sea Level Forecast Service of the Federal Maritime and Hydrography Agency (BSH) in Hamburg. Predictions were calculated for the year 1993 and compared with the actual levels measured. Artificial neural networks are capable of learning. By applying them to the prediction of sea levels, learning from past events has been attempted. It was also attempted to make the experiences of expert forecasters objective. Instead of using the wide-spread back-propagation networks, the self-organizing feature map of Kohonen, or “Kohonen network”, was applied. The fundamental principle of this network is the transformation of the signal similarity into the neighborhood of the neurons while preserving the topology of the signal space. The self-organization procedure of Kohonen networks can be visualized. To make predictions, these networks have been subdivided into a part describing the
Yeh, Wei-Chang
Network reliability is an important index to the provision of useful information for decision support in the modern world. There is always a need to calculate symbolic network reliability functions (SNRFs) due to dynamic and rapid changes in network parameters. In this brief, the proposed squeezed artificial neural network (SqANN) approach uses the Monte Carlo simulation to estimate the corresponding reliability of a given designed matrix from the Box-Behnken design, and then the Taguchi method is implemented to find the appropriate number of neurons and activation functions of the hidden layer and the output layer in ANN to evaluate SNRFs. According to the experimental results of the benchmark networks, the comparison appears to support the superiority of the proposed SqANN method over the traditional ANN-based approach with at least 16.6% improvement in the median absolute deviation in the cost of extra 2 s on average for all experiments.Network reliability is an important index to the provision of useful information for decision support in the modern world. There is always a need to calculate symbolic network reliability functions (SNRFs) due to dynamic and rapid changes in network parameters. In this brief, the proposed squeezed artificial neural network (SqANN) approach uses the Monte Carlo simulation to estimate the corresponding reliability of a given designed matrix from the Box-Behnken design, and then the Taguchi method is implemented to find the appropriate number of neurons and activation functions of the hidden layer and the output layer in ANN to evaluate SNRFs. According to the experimental results of the benchmark networks, the comparison appears to support the superiority of the proposed SqANN method over the traditional ANN-based approach with at least 16.6% improvement in the median absolute deviation in the cost of extra 2 s on average for all experiments.
Neural-network-based voice-tracking algorithm
Baker, Mary; Stevens, Charise; Chaparro, Brennen; Paschall, Dwayne
2002-11-01
A voice-tracking algorithm was developed and tested for the purposes of electronically separating the voice signals of simultaneous talkers. Many individuals suffer from hearing disorders that often inhibit their ability to focus on a single speaker in a multiple speaker environment (the cocktail party effect). Digital hearing aid technology makes it possible to implement complex algorithms for speech processing in both the time and frequency domains. In this work, an average magnitude difference function (AMDF) was performed on mixed voice signals in order to determine the fundamental frequencies present in the signals. A time prediction neural network was trained to recognize normal human voice inflection patterns, including rising, falling, rising-falling, and falling-rising patterns. The neural network was designed to track the fundamental frequency of a single talker based on the training procedure. The output of the neural network can be used to design an active filter for speaker segregation. Tests were done using audio mixing of two to three speakers uttering short phrases. The AMDF function accurately identified the fundamental frequencies present in the signal. The neural network was tested using a single speaker uttering a short sentence. The network accurately tracked the fundamental frequency of the speaker.
Self-organization in neural networks - Applications in structural optimization
Hajela, Prabhat; Fu, B.; Berke, Laszlo
1993-01-01
The present paper discusses the applicability of ART (Adaptive Resonance Theory) networks, and the Hopfield and Elastic networks, in problems of structural analysis and design. A characteristic of these network architectures is the ability to classify patterns presented as inputs into specific categories. The categories may themselves represent distinct procedural solution strategies. The paper shows how this property can be adapted in the structural analysis and design problem. A second application is the use of Hopfield and Elastic networks in optimization problems. Of particular interest are problems characterized by the presence of discrete and integer design variables. The parallel computing architecture that is typical of neural networks is shown to be effective in such problems. Results of preliminary implementations in structural design problems are also included in the paper.
Removing Epistemological Bias From Empirical Observation of Neural Networks
Waldron, Ronan
1994-01-01
Also in Proceedings of the International Joint Conference on Neural Networks, Nagoya, Japan. This paper addresses the application of neural network research to a theory of autonomous systems. Neural networks, while enjoying considerable success in autonomous systems applications, have failed to provide a firm theoretical underpinning to neural systems embedded in their natural ecological context. This paper proposes a stochastic formulation of such an embedding. A neural sys...
Enhancing optical communication with deep neural networks
Lohani, Sanjaya; Knutson, Erin; Tkach, Sam; Huver, Sean; Glasser, Ryan; Tulane University Collaboration; Deep Science AI Collaboration
The spatial profile of optical modes may be altered such that they contain nonzero orbital angular momentum (OAM). Laguerre-Gauss (LG) states of light have a helical wavefront and well-defined OAM, and have recently been shown to allow for larger information transfer rates in optical communications as compared to using only Gaussian modes. A primary difficulty, however, is the accurate classification of different OAM optical states, which contain different values of OAM, in the detection stage. The difficulty in this differentiation increases as larger degrees of OAM are used. Here we show the performance of deep neural networks in the simultaneous classification of numerically generated, noisy, Laguerre-Gauss states with OAM value up to 100 can reach near 100% accuracy. This method relies only on the intensity profile of the detected OAM states, avoiding bulky and difficult-to-implement methods that are required to measure the phase profile of the modes in the receiver of the communication platform. This allows for a simplification in the network design and an increase in performance when using states with large degrees of OAM. We anticipate that this approach will allow for significant advances in the development of optical communication technologies. We acknowledge funding from the Louisiana State Board of Regents and Northrop Grumman - NG NEXT.
Parameter Identification by Bayes Decision and Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1994-01-01
The problem of parameter identification by Bayes point estimation using neural networks is investigated.......The problem of parameter identification by Bayes point estimation using neural networks is investigated....
On The Comparison of Artificial Neural Network (ANN) and ...
African Journals Online (AJOL)
West African Journal of Industrial and Academic Research ... This work presented the results of an experimental comparison of two models: Multinomial Logistic Regression (MLR) and Artificial Neural Network (ANN) for ... Keywords: Multinomial Logistic Regression, Artificial Neural Network, Correct classification rate.
A NEURAL OSCILLATOR-NETWORK MODEL OF TEMPORAL PATTERN GENERATION
Schomaker, Lambert
Most contemporary neural network models deal with essentially static, perceptual problems of classification and transformation. Models such as multi-layer feedforward perceptrons generally do not incorporate time as an essential dimension, whereas biological neural networks are inherently temporal
Shahsavari, Shadab; Rezaie Shirmard, Leila; Amini, Mohsen; Abedin Dokoosh, Farid
2017-01-01
Formulation of a nanoparticulate Fingolimod delivery system based on biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was optimized according to artificial neural networks (ANNs). Concentration of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PVA and amount of Fingolimod is considered as the input value, and the particle size, polydispersity index, loading capacity, and entrapment efficacy as output data in experimental design study. In vitro release study was carried out for best formulation according to statistical analysis. ANNs are employed to generate the best model to determine the relationships between various values. In order to specify the model with the best accuracy and proficiency for the in vitro release, a multilayer percepteron with different training algorithm has been examined. Three training model formulations including Levenberg-Marquardt (LM), gradient descent, and Bayesian regularization were employed for training the ANN models. It is demonstrated that the predictive ability of each training algorithm is in the order of LM > gradient descent > Bayesian regularization. Also, optimum formulation was achieved by LM training function with 15 hidden layers and 20 neurons. The transfer function of the hidden layer for this formulation and the output layer were tansig and purlin, respectively. Also, the optimization process was developed by minimizing the error among the predicted and observed values of training algorithm (about 0.0341). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Marengo, E; Gianotti, V; Angioi, S; Gennaro, M C
2004-03-12
Particular attention are recently receiving antimicrobial agents added as preservatives in hygiene and cosmetics commercial products, since some of them are suspected to be harmful to the human health. The preservatives used belong to different classes of chemical species and are generally used in their mixtures. Multi-component methods able to simultaneously determinate species with different chemical structure are therefore highly required in quality control analysis. This paper presents an ion interaction RP-HPLC method for the simultaneous separation of the 20 typical antimicrobial agents most used in cosmetics and hygiene products, that are: benzoic acid, salicylic acid, 4-hydroxybenzoic acid, methyl-, ethyl-, propyl-, butyl-, benzyl-benzoate, methyl-, ethyl-, propyl-, butyl-, benzyl-paraben, o-phenyl-phenol, 4-chloro-m-cresol, triclocarban, dehydroacetic acid, bronopol, sodium pyrithione and chlorhexidine. For the development of the method and the optimization of the chromatographic conditions, an experimental design was planned and models were built by the use of artificial neural network to correlate the retention time of each analyte to the variables and their interactions. The neuronal models developed showed good predictive ability and were used, by a grid search algorithm, to optimize the chromatographic conditions for the separation of the mixture.
Frías-García, Sergio; Sánchez, M Jesús; Rodríguez- Delgado, Miguel Angel
2004-04-01
The micellar electrokinetic chromatography separation of a group of triazine compounds was optimized using a combination of experimental design (ED) and artificial neural network (ANN). Different variables affecting separation were selected and used as input in the ANN. A chromatographic exponential function (CEF) combining resolution and separation time was used as output to obtain optimal separation conditions. An optimized buffer (19.3 mM sodium borate, 15.4 mM disodium hydrogen phosphate, 28.4 mM SDS, pH 9.45, and 7.5% 1-propanol) provides the best separation with regard to resolution and separation time. Besides, an analysis of variance (ANOVA) approach of the MEKC separation, using the same variables, was developed, and the best capability of the combination of ED-ANN for the optimization of the analytical methodology was demonstrated by comparing the results obtained from both approaches. In order to validate the proposed method, the different analytical parameters as repeatability and day-to-day precision were calculated. Finally, the optimized method was applied to the determination of these compounds in spiked and nonspiked ground water samples.
Atila, U.; Karas, I. R.; Turan, M. K.; Rahman, A. A.
2013-09-01
One of the most dangerous disaster threatening the high rise and complex buildings of today's world including thousands of occupants inside is fire with no doubt. When we consider high population and the complexity of such buildings it is clear to see that performing a rapid and safe evacuation seems hard and human being does not have good memories in case of such disasters like world trade center 9/11. Therefore, it is very important to design knowledge based realtime interactive evacuation methods instead of classical strategies which lack of flexibility. This paper presents a 3D-GIS implementation which simulates the behaviour of an intelligent indoor pedestrian navigation model proposed for a self -evacuation of a person in case of fire. The model is based on Multilayer Perceptron (MLP) which is one of the most preferred artificial neural network architecture in classification and prediction problems. A sample fire scenario following through predefined instructions has been performed on 3D model of the Corporation Complex in Putrajaya (Malaysia) and the intelligent evacuation process has been realized within a proposed 3D-GIS based simulation.
NNSYSID and NNCTRL Tools for system identification and control with neural networks
DEFF Research Database (Denmark)
Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad
2001-01-01
a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview...
NNSYSID and NNCTRL Tools for system identification and control with neural networks
DEFF Research Database (Denmark)
Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad
2001-01-01
choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can...
Neural networks of human nature and nurture
Directory of Open Access Journals (Sweden)
Daniel S. Levine
2009-11-01
Full Text Available Neural network methods have facilitated the unification of several unfortunate splits in psychology, including nature versus nurture. We review the contributions of this methodology and then discuss tentative network theories of caring behavior, of uncaring behavior, and of how the frontal lobes are involved in the choices between them. The implications of our theory are optimistic about the prospects of society to encourage the human potential for caring.
Applications of Wavelet Neural Network Model to Building Settlement Prediction: A Case Study
Directory of Open Access Journals (Sweden)
Qulin TAN
2014-04-01
Full Text Available Deformation monitoring is a significant work for engineering safety, which is performed throughout the entire process of engineering design, construction and operation. Based on the theoretic analysis of wavelet and neural network, we applied the improved BP neural network model, auxiliary wavelet neural network model and embedded wavelet neural network model to the settlement prediction in one practical engineering monitoring project with MATLAB software programming. The cumulative and the interval settlement was predicted and compared with measured data. The overall performances of the three models were analyzed and compared. The results show that the accuracies of two kinds of wavelet neural network models are roughly the same, which prediction errors of monitoring points are less than 1mm, obviously superior to the single BP neural network model.
Neural network for sonogram gap filling
DEFF Research Database (Denmark)
Klebæk, Henrik; Jensen, Jørgen Arendt; Hansen, Lars Kai
1995-01-01
a neural network for predicting mean frequency of the velocity signal and its variance. The neural network then predicts the evolution of the mean and variance in the gaps, and the sonogram and audio signal are reconstructed from these. The technique is applied on in-vivo data from the carotid artery...... in the sonogram and in the audio signal, rendering the audio signal useless, thus making diagnosis difficult. The current goal for ultrasound scanners is to maintain a high refresh rate for the B-mode image and at the same time attain a high maximum velocity in the sonogram display. This precludes the intermixing...... series, and is shown to yield better results, i.e., the variances of the predictions are lower. The ability of the neural predictor to reconstruct both the sonogram and the audio signal, when only 50% of the time is used for velocity data acquisition, is demonstrated for the in-vivo data...
Digital Neural Networks for New Media
Spaanenburg, Lambert; Malki, Suleyman
Neural Networks perform computationally intensive tasks offering smart solutions for many new media applications. A number of analog and mixed digital/analog implementations have been proposed to smooth the algorithmic gap. But gradually, the digital implementation has become feasible, and the dedicated neural processor is on the horizon. A notable example is the Cellular Neural Network (CNN). The analog direction has matured for low-power, smart vision sensors; the digital direction is gradually being shaped into an IP-core for algorithm acceleration, especially for use in FPGA-based high-performance systems. The chapter discusses the next step towards a flexible and scalable multi-core engine using Application-Specific Integrated Processors (ASIP). This topographic engine can serve many new media tasks, as illustrated by novel applications in Homeland Security. We conclude with a view on the CNN kaleidoscope for the year 2020.
Dynamic Object Identification with SOM-based neural networks
Directory of Open Access Journals (Sweden)
Aleksey Averkin
2014-03-01
Full Text Available In this article a number of neural networks based on self-organizing maps, that can be successfully used for dynamic object identification, is described. Unique SOM-based modular neural networks with vector quantized associative memory and recurrent self-organizing maps as modules are presented. The structured algorithms of learning and operation of such SOM-based neural networks are described in details, also some experimental results and comparison with some other neural networks are given.
Stock Price Prediction Based on Procedural Neural Networks
Jiuzhen Liang; Wei Song; Mei Wang
2011-01-01
We present a spatiotemporal model, namely, procedural neural networks for stock price prediction. Compared with some successful traditional models on simulating stock market, such as BNN (backpropagation neural networks, HMM (hidden Markov model) and SVM (support vector machine)), the procedural neural network model processes both spacial and temporal information synchronously without slide time window, which is typically used in the well-known recurrent neural networks. Two differen...
Neural network signal understanding for instrumentation
DEFF Research Database (Denmark)
Pau, L. F.; Johansen, F. S.
1990-01-01
A report is presented on the use of neural signal interpretation theory and techniques for the purpose of classifying the shapes of a set of instrumentation signals, in order to calibrate devices, diagnose anomalies, generate tuning/settings, and interpret the measurement results. Neural signal...... understanding research is surveyed, and the selected implementation and its performance in terms of correct classification rates and robustness to noise are described. Formal results on neural net training time and sensitivity to weights are given. A theory for neural control using functional link nets is given......, and an explanation facility designed to help neural signal understanding is described. The results are compared to those obtained with a knowledge-based signal interpretation system using the same instrument and data...
Computational capabilities of graph neural networks.
Scarselli, Franco; Gori, Marco; Tsoi, Ah Chung; Hagenbuchner, Markus; Monfardini, Gabriele
2009-01-01
In this paper, we will consider the approximation properties of a recently introduced neural network model called graph neural network (GNN), which can be used to process-structured data inputs, e.g., acyclic graphs, cyclic graphs, and directed or undirected graphs. This class of neural networks implements a function tau(G,n) is an element of IR(m) that maps a graph G and one of its nodes n onto an m-dimensional Euclidean space. We characterize the functions that can be approximated by GNNs, in probability, up to any prescribed degree of precision. This set contains the maps that satisfy a property called preservation of the unfolding equivalence, and includes most of the practically useful functions on graphs; the only known exception is when the input graph contains particular patterns of symmetries when unfolding equivalence may not be preserved. The result can be considered an extension of the universal approximation property established for the classic feedforward neural networks (FNNs). Some experimental examples are used to show the computational capabilities of the proposed model.
Parameter estimation using compensatory neural networks
Indian Academy of Sciences (India)
Proposed here is a new neuron model, a basis for Compensatory Neural Network Architecture (CNNA), which not only reduces the total number of interconnections among neurons but also reduces the total computing time for training. The suggested model has properties of the basic neuron model as well as the higher ...
Based on BP Neural Network Stock Prediction
Liu, Xiangwei; Ma, Xin
2012-01-01
The stock market has a high profit and high risk features, on the stock market analysis and prediction research has been paid attention to by people. Stock price trend is a complex nonlinear function, so the price has certain predictability. This article mainly with improved BP neural network (BPNN) to set up the stock market prediction model, and…
Epileptiform spike detection via convolutional neural networks
DEFF Research Database (Denmark)
Johansen, Alexander Rosenberg; Jin, Jing; Maszczyk, Tomasz
2016-01-01
The EEG of epileptic patients often contains sharp waveforms called "spikes", occurring between seizures. Detecting such spikes is crucial for diagnosing epilepsy. In this paper, we develop a convolutional neural network (CNN) for detecting spikes in EEG of epileptic patients in an automated...
Artificial neural networks and support vector mac
Indian Academy of Sciences (India)
Quantitative structure-property relationships of electroluminescent materials: Artificial neural networks and support vector machines to predict electroluminescence of organic molecules. ALANA FERNANDES GOLIN and RICARDO STEFANI. ∗. Laboratório de Estudos de Materiais (LEMAT), Instituto de Ciências Exatas e da ...
Neural Networks for protein Structure Prediction
DEFF Research Database (Denmark)
Bohr, Henrik
1998-01-01
This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...
Towards semen quality assessment using neural networks
DEFF Research Database (Denmark)
Linneberg, Christian; Salamon, P.; Svarer, C.
1994-01-01
The paper presents the methodology and results from a neural net based classification of human sperm head morphology. The methodology uses a preprocessing scheme in which invariant Fourier descriptors are lumped into “energy” bands. The resulting networks are pruned using optimal brain damage...
Convolutional Neural Networks for SAR Image Segmentation
DEFF Research Database (Denmark)
Malmgren-Hansen, David; Nobel-Jørgensen, Morten
2015-01-01
Segmentation of Synthetic Aperture Radar (SAR) images has several uses, but it is a difficult task due to a number of properties related to SAR images. In this article we show how Convolutional Neural Networks (CNNs) can easily be trained for SAR image segmentation with good results. Besides...
Convolutional Neural Networks - Generalizability and Interpretations
DEFF Research Database (Denmark)
Malmgren-Hansen, David
from data despite it being limited in amount or context representation. Within Machine Learning this thesis focuses on Convolutional Neural Networks for Computer Vision. The research aims to answer how to explore a model's generalizability to the whole population of data samples and how to interpret...
Visualization of neural networks using saliency maps
DEFF Research Database (Denmark)
Mørch, Niels J.S.; Kjems, Ulrik; Hansen, Lars Kai
1995-01-01
The saliency map is proposed as a new method for understanding and visualizing the nonlinearities embedded in feedforward neural networks, with emphasis on the ill-posed case, where the dimensionality of the input-field by far exceeds the number of examples. Several levels of approximations...
Separable explanations of neural network decisions
DEFF Research Database (Denmark)
Rieger, Laura
2017-01-01
Deep Taylor Decomposition is a method used to explain neural network decisions. When applying this method to non-dominant classifications, the resulting explanation does not reflect important features for the chosen classification. We propose that this is caused by the dense layers and propose...
Fast Fingerprint Classification with Deep Neural Network
DEFF Research Database (Denmark)
Michelsanti, Daniel; Guichi, Yanis; Ene, Andreea-Daniela
2017-01-01
. In this work we evaluate the performance of two pre-trained convolutional neural networks fine-tuned on the NIST SD4 benchmark database. The obtained results show that this approach is comparable with other results in the literature, with the advantage of a fast feature extraction stage....
Empirical generalization assessment of neural network models
DEFF Research Database (Denmark)
Larsen, Jan; Hansen, Lars Kai
1995-01-01
This paper addresses the assessment of generalization performance of neural network models by use of empirical techniques. We suggest to use the cross-validation scheme combined with a resampling technique to obtain an estimate of the generalization performance distribution of a specific model...
Localizing Tortoise Nests by Neural Networks.
Directory of Open Access Journals (Sweden)
Roberto Barbuti
Full Text Available The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating. Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN. We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours, the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.
Feature to prototype transition in neural networks
Krotov, Dmitry; Hopfield, John
Models of associative memory with higher order (higher than quadratic) interactions, and their relationship to neural networks used in deep learning are discussed. Associative memory is conventionally described by recurrent neural networks with dynamical convergence to stable points. Deep learning typically uses feedforward neural nets without dynamics. However, a simple duality relates these two different views when applied to problems of pattern classification. From the perspective of associative memory such models deserve attention because they make it possible to store a much larger number of memories, compared to the quadratic case. In the dual description, these models correspond to feedforward neural networks with one hidden layer and unusual activation functions transmitting the activities of the visible neurons to the hidden layer. These activation functions are rectified polynomials of a higher degree rather than the rectified linear functions used in deep learning. The network learns representations of the data in terms of features for rectified linear functions, but as the power in the activation function is increased there is a gradual shift to a prototype-based representation, the two extreme regimes of pattern recognition known in cognitive psychology. Simons Center for Systems Biology.
Applying Artificial Neural Networks for Face Recognition
Directory of Open Access Journals (Sweden)
Thai Hoang Le
2011-01-01
Full Text Available This paper introduces some novel models for all steps of a face recognition system. In the step of face detection, we propose a hybrid model combining AdaBoost and Artificial Neural Network (ABANN to solve the process efficiently. In the next step, labeled faces detected by ABANN will be aligned by Active Shape Model and Multi Layer Perceptron. In this alignment step, we propose a new 2D local texture model based on Multi Layer Perceptron. The classifier of the model significantly improves the accuracy and the robustness of local searching on faces with expression variation and ambiguous contours. In the feature extraction step, we describe a methodology for improving the efficiency by the association of two methods: geometric feature based method and Independent Component Analysis method. In the face matching step, we apply a model combining many Neural Networks for matching geometric features of human face. The model links many Neural Networks together, so we call it Multi Artificial Neural Network. MIT + CMU database is used for evaluating our proposed methods for face detection and alignment. Finally, the experimental results of all steps on CallTech database show the feasibility of our proposed model.
drinking water treatment using artificial neural network
African Journals Online (AJOL)
ogwueleka
synaptic weights are used to store the knowledge.” The neural network approach is a branch of artificial intelligence. The ANN is based on a model of the human neurological system that consists of basic computing elements (called neurons) interconnected together (Figure 1). The model used for all classification attempts.
Learning chaotic attractors by neural networks
Bakker, R; Schouten, JC; Giles, CL; Takens, F; van den Bleek, CM
2000-01-01
An algorithm is introduced that trains a neural network to identify chaotic dynamics from a single measured time series. During training, the algorithm learns to short-term predict the time series. At the same time a criterion, developed by Diks, van Zwet, Takens, and de Goede (1996) is monitored
Nonlinear Time Series Analysis via Neural Networks
Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin
This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.
Neural networks, penalty logic and optimality theory
Blutner, R.; Benz, A.; Blutner, R.
2009-01-01
Ever since the discovery of neural networks, there has been a controversy between two modes of information processing. On the one hand, symbolic systems have proven indispensable for our understanding of higher intelligence, especially when cognitive domains like language and reasoning are examined.
Image inpainting using a neural network
Directory of Open Access Journals (Sweden)
Gapon Nikolay
2017-01-01
Full Text Available The paper describes a new method of two-dimensional signals reconstruction by restoring static images. A new method of spatial reconstruction of static images based on a geometric model using a neural network is proposed, it is based on the search for similar blocks and copying them into the region of distorted or missing pixel values.
Foetal ECG recovery using dynamic neural networks.
Camps-Valls, Gustavo; Martínez-Sober, Marcelino; Soria-Olivas, Emilio; Magdalena-Benedito, Rafael; Calpe-Maravilla, Javier; Guerrero-Martínez, Juan
2004-07-01
Non-invasive electrocardiography has proven to be a very interesting method for obtaining information about the foetus state and thus to assure its well-being during pregnancy. One of the main applications in this field is foetal electrocardiogram (ECG) recovery by means of automatic methods. Evident problems found in the literature are the limited number of available registers, the lack of performance indicators, and the limited use of non-linear adaptive methods. In order to circumvent these problems, we first introduce the generation of synthetic registers and discuss the influence of different kinds of noise to the modelling. Second, a method which is based on numerical (correlation coefficient) and statistical (analysis of variance, ANOVA) measures allows us to select the best recovery model. Finally, finite impulse response (FIR) and gamma neural networks are included in the adaptive noise cancellation (ANC) scheme in order to provide highly non-linear, dynamic capabilities to the recovery model. Neural networks are benchmarked with classical adaptive methods such as the least mean squares (LMS) and the normalized LMS (NLMS) algorithms in simulated and real registers and some conclusions are drawn. For synthetic registers, the most determinant factor in the identification of the models is the foetal-maternal signal-to-noise ratio (SNR). In addition, as the electromyogram contribution becomes more relevant, neural networks clearly outperform the LMS-based algorithm. From the ANOVA test, we found statistical differences between LMS-based models and neural models when complex situations (high foetal-maternal and foetal-noise SNRs) were present. These conclusions were confirmed after doing robustness tests on synthetic registers, visual inspection of the recovered signals and calculation of the recognition rates of foetal R-peaks for real situations. Finally, the best compromise between model complexity and outcomes was provided by the FIR neural network. Both
MBVCNN: Joint convolutional neural networks method for image recognition
Tong, Tong; Mu, Xiaodong; Zhang, Li; Yi, Zhaoxiang; Hu, Pei
2017-05-01
Aiming at the problem of objects in image recognition rectangle, but objects which are input into convolutional neural networks square, the object recognition model was put forward which was based on BING method to realize object estimate, used vectorization of convolutional neural networks to realize input square image in convolutional networks, therefore, built joint convolution neural networks, which achieve multiple size image input. Verified by experiments, the accuracy of multi-object image recognition was improved by 6.70% compared with single vectorization of convolutional neural networks. Therefore, image recognition method of joint convolutional neural networks can enhance the accuracy in image recognition, especially for target in rectangular shape.
Analysis of neural networks in terms of domain functions
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, Lambert
Despite their success-story, artificial neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more as a
Extracting knowledge from supervised neural networks in image processing
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, Lambert; Jain, R.; Abraham, A.; Faucher, C.; van der Zwaag, B.J.
Despite their success-story, artificial neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a “magic tool��? but possibly even more as a
neural network based load frequency control for restructuring power
African Journals Online (AJOL)
2012-03-01
Mar 1, 2012 ... Abstract. In this study, an artificial neural network (ANN) application of load frequency control. (LFC) of a Multi-Area power system by using a neural network controller is presented. The comparison between a conventional Proportional Integral (PI) controller and the proposed artificial neural networks ...
Artificial Neural Network Modeling of an Inverse Fluidized Bed ...
African Journals Online (AJOL)
The application of neural networks to model a laboratory scale inverse fluidized bed reactor has been studied. A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological ...
Time series prediction with simple recurrent neural networks ...
African Journals Online (AJOL)
Simple recurrent neural networks are widely used in time series prediction. Most researchers and application developers often choose arbitrarily between Elman or Jordan simple recurrent neural networks for their applications. A hybrid of the two called Elman-Jordan (or Multi-recurrent) neural network is also being used.
Application of radial basis neural network for state estimation of ...
African Journals Online (AJOL)
user
An original application of radial basis function (RBF) neural network for power system state estimation is proposed in this paper. The property of massive parallelism of neural networks is employed for this. The application of RBF neural network for state estimation is investigated by testing its applicability on a IEEE 14 bus ...
New Neural Network Methods for Forecasting Regional Employment
Patuelli, R.; Reggiani, A; Nijkamp, P.; Blien, U.
2006-01-01
In this paper, a set of neural network (NN) models is developed to compute short-term forecasts of regional employment patterns in Germany. Neural networks are modern statistical tools based on learning algorithms that are able to process large amounts of data. Neural networks are enjoying
The Artifical Neural Network as means for modeling Nonlinear Systems
Drábek Oldøich; Taufer Ivan
1998-01-01
The paper deals with nonlinear system identification based on neural network. The topic of this publication is simulation of training and testing a neural network. A contribution is assigned to technologists which are good at the clasical identification problems but their knowledges about identification based on neural network are only on the stage of theoretical bases.
The Artifical Neural Network as means for modeling Nonlinear Systems
Directory of Open Access Journals (Sweden)
Drábek Oldøich
1998-12-01
Full Text Available The paper deals with nonlinear system identification based on neural network. The topic of this publication is simulation of training and testing a neural network. A contribution is assigned to technologists which are good at the clasical identification problems but their knowledges about identification based on neural network are only on the stage of theoretical bases.
Algorithm For A Self-Growing Neural Network
Cios, Krzysztof J.
1996-01-01
CID3 algorithm simulates self-growing neural network. Constructs decision trees equivalent to hidden layers of neural network. Based on ID3 algorithm, which dynamically generates decision tree while minimizing entropy of information. CID3 algorithm generates feedforward neural network by use of either crisp or fuzzy measure of entropy.
Artificial Neural Network System for Thyroid Diagnosis
Directory of Open Access Journals (Sweden)
Mazin Abdulrasool Hameed
2017-05-01
Full Text Available Thyroid disease is one of major causes of severe medical problems for human beings. Therefore, proper diagnosis of thyroid disease is considered as an important issue to determine treatment for patients. This paper focuses on using Artificial Neural Network (ANN as a significant technique of artificial intelligence to diagnose thyroid diseases. The continuous values of three laboratory blood tests are used as input signals to the proposed system of ANN. All types of thyroid diseases that may occur in patients are taken into account in design of system, as well as the high accuracy of the detection and categorization of thyroid diseases are considered in the system. A multilayer feedforward architecture of ANN is adopted in the proposed design, and the back propagation is selected as learning algorithm to accomplish the training process. The result of this research shows that the proposed ANN system is able to precisely diagnose thyroid disease, and can be exploited in practical uses. The system is simulated via MATLAB software to evaluate its performance
2016-09-15
neural network using applications across varied industries . Alam et al. [2] showed the factorial design did not perform as well as other designs (mentioned...composite design with a neural network using applications across varied industries . Alam et al. [2] showed the central composite design did not perform as...ON IMPROVED LEAST SQUARES REGRESSION & ARTIFICIAL NEURAL NETWORK META-MODELS FOR SIMULATION VIA CONTROL VARIATES DISSERTATION Michael P. Gibb
DEFF Research Database (Denmark)
Thomadsen, Tommy
2005-01-01
design. The papers have all been submitted for journals, and except for two papers, are awaiting review. The papers are mostly concerned with optimal methods and, in a few cases, heuristics for designing hierarchical and ring networks. All papers develop bounds which are used in the optimal methods...... danne grundlag for et studie af design af hierarkiske netværk. Afhandlings vigtigste bidrag best ar af syv artikler, der er inkluderet i appendiks. Artiklerne handler om design af hierarkisk netværk og ring netværk. Artiklerne er alle indsendt til videnskablige journaler og afventer bedømmelse, bortset......Communication networks are immensely important today, since both companies and individuals use numerous services that rely on them. This thesis considers the design of hierarchical (communication) networks. Hierarchical networks consist of layers of networks and are well-suited for coping...
Identifying Jets Using Artifical Neural Networks
Rosand, Benjamin; Caines, Helen; Checa, Sofia
2017-09-01
We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.
Artificial neural networks as quantum associative memory
Hamilton, Kathleen; Schrock, Jonathan; Imam, Neena; Humble, Travis
We present results related to the recall accuracy and capacity of Hopfield networks implemented on commercially available quantum annealers. The use of Hopfield networks and artificial neural networks as content-addressable memories offer robust storage and retrieval of classical information, however, implementation of these models using currently available quantum annealers faces several challenges: the limits of precision when setting synaptic weights, the effects of spurious spin-glass states and minor embedding of densely connected graphs into fixed-connectivity hardware. We consider neural networks which are less than fully-connected, and also consider neural networks which contain multiple sparsely connected clusters. We discuss the effect of weak edge dilution on the accuracy of memory recall, and discuss how the multiple clique structure affects the storage capacity. Our work focuses on storage of patterns which can be embedded into physical hardware containing n States Department of Defense and used resources of the Computational Research and Development Programs as Oak Ridge National Laboratory under Contract No. DE-AC0500OR22725 with the U. S. Department of Energy.
Hybrid discrete-time neural networks.
Cao, Hongjun; Ibarz, Borja
2010-11-13
Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.
Directory of Open Access Journals (Sweden)
R.R. Siva Kiran
2017-03-01
Full Text Available The present study deals with the application of artificial intelligence techniques coupled with Box–Behnken (BB design to model the process parameters for biosorption of cadmium using live Spirulina (Arthrospira spp. as adsorbent in open race way pond with Zarrouk medium. The biomass concentration of Spirulina spp. decreased to half at 4 ppm Cd (II after 8 days. Based on the LCt50 values, 3.69 ppm (8th day, Spirulina (Arthospira maxima showed maximum tolerance. Considerable growth and bioaccumulation of Spirulina spp. is observed below 1 ppm and tolerant up to 3 ppm. The cadmium adsorption on Spirulina spp. showed good correlation (R2 = 0.99 when applied to Freundlich equation and data fit into pseudo second order kinetics. A four factorial, three blocks and three level Box–Behnken design with initial concentration (1 ppb to 5 ppb, biosorbant dosage (0.1 gdw to 0.2 gdw, agitation speed (12 rpm to 16 rpm and pH (6 to 8 as independent variables and percentage adsorption as dependent variable were selected for study. The data were further processed using artificial neural network model and DIRECT algorithm for better optimization. The final Cd (II concentration of <0.5 ppb was achieved with 1 ppb initial concentration under optimal conditions. A continuous desorption process was also developed for removal of cadmium from Spirulina (Arthrospira sp.
Computationally Efficient Neural Network Intrusion Security Awareness
Energy Technology Data Exchange (ETDEWEB)
Todd Vollmer; Milos Manic
2009-08-01
An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.
Matrix representation of a Neural Network
DEFF Research Database (Denmark)
Christensen, Bjørn Klint
Processing, by David Rummelhart (Rummelhart 1986) for an easy-to-read introduction. What the paper does explain is how a matrix representation of a neural net allows for a very simple implementation. The matrix representation is introduced in (Rummelhart 1986, chapter 9), but only for a two-layer linear...... network and the feedforward algorithm. This paper develops the idea further to three-layer non-linear networks and the backpropagation algorithm. Figure 1 shows the layout of a three-layer network. There are I input nodes, J hidden nodes and K output nodes all indexed from 0. Bias-node for the hidden...
Reconstruction of periodic signals using neural networks
Directory of Open Access Journals (Sweden)
José Danilo Rairán Antolines
2014-01-01
Full Text Available In this paper, we reconstruct a periodic signal by using two neural networks. The first network is trained to approximate the period of a signal, and the second network estimates the corresponding coefficients of the signal's Fourier expansion. The reconstruction strategy consists in minimizing the mean-square error via backpro-pagation algorithms over a single neuron with a sine transfer function. Additionally, this paper presents mathematical proof about the quality of the approximation as well as a first modification of the algorithm, which requires less data to reach the same estimation; thus making the algorithm suitable for real-time implementations.
Neural networks: Application to medical imaging
Clarke, Laurence P.
1994-01-01
The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.
Fuzzy logic and neural network technologies
Villarreal, James A.; Lea, Robert N.; Savely, Robert T.
1992-01-01
Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.
A Topological Perspective of Neural Network Structure
Sizemore, Ann; Giusti, Chad; Cieslak, Matthew; Grafton, Scott; Bassett, Danielle
The wiring patterns of white matter tracts between brain regions inform functional capabilities of the neural network. Indeed, densely connected and cyclically arranged cognitive systems may communicate and thus perform distinctly. However, previously employed graph theoretical statistics are local in nature and thus insensitive to such global structure. Here we present an investigation of the structural neural network in eight healthy individuals using persistent homology. An extension of homology to weighted networks, persistent homology records both circuits and cliques (all-to-all connected subgraphs) through a repetitive thresholding process, thus perceiving structural motifs. We report structural features found across patients and discuss brain regions responsible for these patterns, finally considering the implications of such motifs in relation to cognitive function.
Tuning Recurrent Neural Networks for Recognizing Handwritten Arabic Words
Qaralleh, Esam
2013-10-01
Artificial neural networks have the abilities to learn by example and are capable of solving problems that are hard to solve using ordinary rule-based programming. They have many design parameters that affect their performance such as the number and sizes of the hidden layers. Large sizes are slow and small sizes are generally not accurate. Tuning the neural network size is a hard task because the design space is often large and training is often a long process. We use design of experiments techniques to tune the recurrent neural network used in an Arabic handwriting recognition system. We show that best results are achieved with three hidden layers and two subsampling layers. To tune the sizes of these five layers, we use fractional factorial experiment design to limit the number of experiments to a feasible number. Moreover, we replicate the experiment configuration multiple times to overcome the randomness in the training process. The accuracy and time measurements are analyzed and modeled. The two models are then used to locate network sizes that are on the Pareto optimal frontier. The approach described in this paper reduces the label error from 26.2% to 19.8%.
DEFF Research Database (Denmark)
Brouer, Berit Dangaard
This thesis concerns design of liner shipping networks using operations research to optimize liner shipping networks at the strategic, tactical and operational level. Liner shipping networks are often compared to public transit networks as they consist of a set of scheduled sailings connecting....... The research field of liner shipping network design is relatively young and many open research questions exists. Among others, a unified and rich mathematical model formulating the main characteristics of the business domain has not been clearly described and exact methods for such mathematical models...... are still not able to solve significant instances of this complex optimization problem. In this thesis two research directions are explored within the field: The first research direction contributes to basic research on the liner shipping network design problem by describing the domain seen from...
Tumor Diagnosis Using Backpropagation Neural Network Method
Ma, Lixing; Looney, Carl; Sukuta, Sydney; Bruch, Reinhard; Afanasyeva, Natalia
1998-05-01
For characterization of skin cancer, an artificial neural network (ANN) method has been developed to diagnose normal tissue, benign tumor and melanoma. The pattern recognition is based on a three-layer neural network fuzzy learning system. In this study, the input neuron data set is the Fourier Transform infrared (FT-IR)spectrum obtained by a new Fiberoptic Evanescent Wave Fourier Transform Infrared (FEW-FTIR) spectroscopy method in the range of 1480 to 1850 cm-1. Ten input features are extracted from the absorbency values in this region. A single hidden layer of neural nodes with sigmoids activation functions clusters the feature space into small subclasses and the output nodes are separated in different nonconvex classes to permit nonlinear discrimination of disease states. The output is classified as three classes: normal tissue, benign tumor and melanoma. The results obtained from the neural network pattern recognition are shown to be consistent with traditional medical diagnosis. Input features have also been extracted from the absorbency spectra using chemical factor analysis. These abstract features or factors are also used in the classification.
Phase Diagram of Spiking Neural Networks
Directory of Open Access Journals (Sweden)
Hamed eSeyed-Allaei
2015-03-01
Full Text Available In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probablilty of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations. but here, I take a different perspective, inspired by evolution. I simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable by nature. Networks which are configured according to the common values, have the best dynamic range in response to an impulse and their dynamic range is more robust in respect to synaptic weights. In fact, evolution has favored networks of best dynamic range. I present a phase diagram that shows the dynamic ranges of different networks of different parameteres. This phase diagram gives an insight into the space of parameters -- excitatory to inhibitory ratio, sparseness of connections and synaptic weights. It may serve as a guideline to decide about the values of parameters in a simulation of spiking neural network.
VoIP attacks detection engine based on neural network
Safarik, Jakub; Slachta, Jiri
2015-05-01
The security is crucial for any system nowadays, especially communications. One of the most successful protocols in the field of communication over IP networks is Session Initiation Protocol. It is an open-source project used by different kinds of applications, both open-source and proprietary. High penetration and text-based principle made SIP number one target in IP telephony infrastructure, so security of SIP server is essential. To keep up with hackers and to detect potential malicious attacks, security administrator needs to monitor and evaluate SIP traffic in the network. But monitoring and following evaluation could easily overwhelm the security administrator in networks, typically in networks with a number of SIP servers, users and logically or geographically separated networks. The proposed solution lies in automatic attack detection systems. The article covers detection of VoIP attacks through a distributed network of nodes. Then the gathered data analyze aggregation server with artificial neural network. Artificial neural network means multilayer perceptron network trained with a set of collected attacks. Attack data could also be preprocessed and verified with a self-organizing map. The source data is detected by distributed network of detection nodes. Each node contains a honeypot application and traffic monitoring mechanism. Aggregation of data from each node creates an input for neural networks. The automatic classification on a centralized server with low false positive detection reduce the cost of attack detection resources. The detection system uses modular design for easy deployment in final infrastructure. The centralized server collects and process detected traffic. It also maintains all detection nodes.
Fuzzy logic and neural networks basic concepts & application
Alavala, Chennakesava R
2008-01-01
About the Book: The primary purpose of this book is to provide the student with a comprehensive knowledge of basic concepts of fuzzy logic and neural networks. The hybridization of fuzzy logic and neural networks is also included. No previous knowledge of fuzzy logic and neural networks is required. Fuzzy logic and neural networks have been discussed in detail through illustrative examples, methods and generic applications. Extensive and carefully selected references is an invaluable resource for further study of fuzzy logic and neural networks. Each chapter is followed by a question bank
Adaptive nonlinear control of missiles using neural networks
McFarland, Michael Bryan
Research has shown that neural networks can be used to improve upon approximate dynamic inversion for control of uncertain nonlinear systems. In one architecture, the neural network adaptively cancels inversion errors through on-line learning. Such learning is accomplished by a simple weight update rule derived from Lyapunov theory, thus assuring stability of the closed-loop system. In this research, previous results using linear-in-parameters neural networks were reformulated in the context of a more general class of composite nonlinear systems, and the control scheme was shown to possess important similarities and major differences with established methods of adaptive control. The neural-adaptive nonlinear control methodology in question has been used to design an autopilot for an anti-air missile with enhanced agile maneuvering capability, and simulation results indicate that this approach is a feasible one. There are, however, certain difficulties associated with choosing the proper network architecture which make it difficult to achieve the rapid learning required in this application. Accordingly, this technique has been further extended to incorporate the important class of feedforward neural networks with a single hidden layer. These neural networks feature well-known approximation capabilities and provide an effective, although nonlinear, parameterization of the adaptive control problem. Numerical results from a six-degree-of-freedom nonlinear agile anti-air missile simulation demonstrate the effectiveness of the autopilot design based on multilayer networks. Previous work in this area has implicitly assumed precise knowledge of the plant order, and made no allowances for unmodeled dynamics. This thesis describes an approach to the problem of controlling a class of nonlinear systems in the face of both unknown nonlinearities and unmodeled dynamics. The proposed methodology is similar to robust adaptive control techniques derived for control of linear
Proceedings of the Neural Network Workshop for the Hanford Community
Energy Technology Data Exchange (ETDEWEB)
Keller, P.E.
1994-01-01
These proceedings were generated from a series of presentations made at the Neural Network Workshop for the Hanford Community. The abstracts and viewgraphs of each presentation are reproduced in these proceedings. This workshop was sponsored by the Computing and Information Sciences Department in the Molecular Science Research Center (MSRC) at the Pacific Northwest Laboratory (PNL). Artificial neural networks constitute a new information processing technology that is destined within the next few years, to provide the world with a vast array of new products. A major reason for this is that artificial neural networks are able to provide solutions to a wide variety of complex problems in a much simpler fashion than is possible using existing techniques. In recognition of these capabilities, many scientists and engineers are exploring the potential application of this new technology to their fields of study. An artificial neural network (ANN) can be a software simulation, an electronic circuit, optical system, or even an electro-chemical system designed to emulate some of the brain`s rudimentary structure as well as some of the learning processes that are believed to take place in the brain. For a very wide range of applications in science, engineering, and information technology, ANNs offer a complementary and potentially superior approach to that provided by conventional computing and conventional artificial intelligence. This is because, unlike conventional computers, which have to be programmed, ANNs essentially learn from experience and can be trained in a straightforward fashion to carry out tasks ranging from the simple to the highly complex.
Practical application of artificial neural networks in the neurosciences
Pinti, Antonio
1995-04-01
This article presents a practical application of artificial multi-layer perceptron (MLP) neural networks in neurosciences. The data that are processed are labeled data from the visual analysis of electrical signals of human sleep. The objective of this work is to automatically classify into sleep stages the electrophysiological signals recorded from electrodes placed on a sleeping patient. Two large data bases were designed by experts in order to realize this study. One data base was used to train the network and the other to test its generalization capacity. The classification results obtained with the MLP network were compared to a type K nearest neighbor Knn non-parametric classification method. The MLP network gave a better result in terms of classification than the Knn method. Both classification techniques were implemented on a transputer system. With both networks in their final configuration, the MLP network was 160 times faster than the Knn model in classifying a sleep period.
Neural network system for traffic flow management
Gilmore, John F.; Elibiary, Khalid J.; Petersson, L. E. Rickard
1992-09-01
Atlanta will be the home of several special events during the next five years ranging from the 1996 Olympics to the 1994 Super Bowl. When combined with the existing special events (Braves, Falcons, and Hawks games, concerts, festivals, etc.), the need to effectively manage traffic flow from surface streets to interstate highways is apparent. This paper describes a system for traffic event response and management for intelligent navigation utilizing signals (TERMINUS) developed at Georgia Tech for adaptively managing special event traffic flows in the Atlanta, Georgia area. TERMINUS (the original name given Atlanta, Georgia based upon its role as a rail line terminating center) is an intelligent surface street signal control system designed to manage traffic flow in Metro Atlanta. The system consists of three components. The first is a traffic simulation of the downtown Atlanta area around Fulton County Stadium that models the flow of traffic when a stadium event lets out. Parameters for the surrounding area include modeling for events during various times of day (such as rush hour). The second component is a computer graphics interface with the simulation that shows the traffic flows achieved based upon intelligent control system execution. The final component is the intelligent control system that manages surface street light signals based upon feedback from control sensors that dynamically adapt the intelligent controller's decision making process. The intelligent controller is a neural network model that allows TERMINUS to control the configuration of surface street signals to optimize the flow of traffic away from special events.
Deep Gate Recurrent Neural Network
2016-11-22
distribution, e.g. a particular book. In this experiment, we use a collection of writings by Nietzsche to train our network. In total, this corpus contains...sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics : Human Language Technologies, pages 142–150...Portland, Oregon, USA, June 2011. Association for Com- putational Linguistics . URL http://www.aclweb.org/anthology/P11-1015. Maja J Matari, Complex
Stoer, Mechthild
1992-01-01
The problem of designing a cost-efficient network that survives the failure of one or more nodes or edges of the network is critical to modern telecommunications engineering. The method developed in this book is designed to solve such problems to optimality. In particular, a cutting plane approach is described, based on polyhedral combinatorics, that is ableto solve real-world problems of this type in short computation time. These results are of interest for practitioners in the area of communication network design. The book is addressed especially to the combinatorial optimization community, but also to those who want to learn polyhedral methods. In addition, interesting new research problemsare formulated.
Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS
Directory of Open Access Journals (Sweden)
Christopher Bergmeir
2012-01-01
Full Text Available Neural networks are important standard machine learning procedures for classification and regression. We describe the R package RSNNS that provides a convenient interface to the popular Stuttgart Neural Network Simulator SNNS. The main features are (a encapsulation of the relevant SNNS parts in a C++ class, for sequential and parallel usage of different networks, (b accessibility of all of the SNNSalgorithmic functionality from R using a low-level interface, and (c a high-level interface for convenient, R-style usage of many standard neural network procedures. The package also includes functions for visualization and analysis of the models and the training procedures, as well as functions for data input/output from/to the original SNNSfile formats.
Investment Valuation Analysis with Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Hüseyin İNCE
2017-07-01
Full Text Available This paper shows that discounted cash flow and net present value, which are traditional investment valuation models, can be combined with artificial neural network model forecasting. The main inputs for the valuation models, such as revenue, costs, capital expenditure, and their growth rates, are heavily related to sector dynamics and macroeconomics. The growth rates of those inputs are related to inflation and exchange rates. Therefore, predicting inflation and exchange rates is a critical issue for the valuation output. In this paper, the Turkish economy’s inflation rate and the exchange rate of USD/TRY are forecast by artificial neural networks and implemented to the discounted cash flow model. Finally, the results are benchmarked with conventional practices.
Evaluating neural networks and artificial intelligence systems
Alberts, David S.
1994-02-01
Systems have no intrinsic value in and of themselves, but rather derive value from the contributions they make to the missions, decisions, and tasks they are intended to support. The estimation of the cost-effectiveness of systems is a prerequisite for rational planning, budgeting, and investment documents. Neural network and expert system applications, although similar in their incorporation of a significant amount of decision-making capability, differ from each other in ways that affect the manner in which they can be evaluated. Both these types of systems are, by definition, evolutionary systems, which also impacts their evaluation. This paper discusses key aspects of neural network and expert system applications and their impact on the evaluation process. A practical approach or methodology for evaluating a certain class of expert systems that are particularly difficult to measure using traditional evaluation approaches is presented.
Artificial Neural Network for Displacement Vectors Determination
Directory of Open Access Journals (Sweden)
P. Bohmann
1997-09-01
Full Text Available An artificial neural network (NN for displacement vectors (DV determination is presented in this paper. DV are computed in areas which are essential for image analysis and computer vision, in areas where are edges, lines, corners etc. These special features are found by edges operators with the following filtration. The filtration is performed by a threshold function. The next step is DV computation by 2D Hamming artificial neural network. A method of DV computation is based on the full search block matching algorithms. The pre-processing (edges finding is the reason why the correlation function is very simple, the process of DV determination needs less computation and the structure of the NN is simpler.
Neural Network Program Package for Prosody Modeling
Directory of Open Access Journals (Sweden)
J. Santarius
2004-04-01
Full Text Available This contribution describes the programme for one part of theautomatic Text-to-Speech (TTS synthesis. Some experiments (for example[14] documented the considerable improvement of the naturalness ofsynthetic speech, but this approach requires completing the inputfeature values by hand. This completing takes a lot of time for bigfiles. We need to improve the prosody by other approaches which useonly automatically classified features (input parameters. Theartificial neural network (ANN approach is used for the modeling ofprosody parameters. The program package contains all modules necessaryfor the text and speech signal pre-processing, neural network training,sensitivity analysis, result processing and a module for the creationof the input data protocol for Czech speech synthesizer ARTIC [1].
Supervised Sequence Labelling with Recurrent Neural Networks
Graves, Alex
2012-01-01
Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional...
Hierarchical Neural Network Structures for Phoneme Recognition
Vasquez, Daniel; Minker, Wolfgang
2013-01-01
In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are evaluated on the phoneme recognition task where a Hybrid Hidden Markov Model/Artificial Neural Network paradigm is used. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron. Additionally, the output of the first level serves as a second level input. The computational speed of the phoneme recognizer can be substantially increased by removing redundant information still contained at the first level output. Several techniques based on temporal and phonetic criteria have been investigated to remove this redundant information. The computational time could be reduced by 57% whilst keeping the system accuracy comparable to the baseline hierarchical approach.
Neural Network Solves "Traveling-Salesman" Problem
Thakoor, Anilkumar P.; Moopenn, Alexander W.
1990-01-01
Experimental electronic neural network solves "traveling-salesman" problem. Plans round trip of minimum distance among N cities, visiting every city once and only once (without backtracking). This problem is paradigm of many problems of global optimization (e.g., routing or allocation of resources) occuring in industry, business, and government. Applied to large number of cities (or resources), circuits of this kind expected to solve problem faster and more cheaply.
Learning in Neural Networks: VLSI Implementation Strategies
Duong, Tuan Anh
1995-01-01
Fully-parallel hardware neural network implementations may be applied to high-speed recognition, classification, and mapping tasks in areas such as vision, or can be used as low-cost self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning is required not only to satisfy application requirements, but also to overcome hardware-imposed limitations such as reduced dynamic range of connections.
Convolutional Neural Networks for Font Classification
Tensmeyer, Chris; Saunders, Daniel; Martinez, Tony
2017-01-01
Classifying pages or text lines into font categories aids transcription because single font Optical Character Recognition (OCR) is generally more accurate than omni-font OCR. We present a simple framework based on Convolutional Neural Networks (CNNs), where a CNN is trained to classify small patches of text into predefined font classes. To classify page or line images, we average the CNN predictions over densely extracted patches. We show that this method achieves state-of-the-art performance...
Deep Learning in Neural Networks: An Overview
Schmidhuber, Juergen
2014-01-01
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium. Shallow and deep learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpr...
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, Lars J.; Keller, Paul E.
1997-01-01
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.
Identifying Tracks Duplicates via Neural Network
Sunjerga, Antonio; CERN. Geneva. EP Department
2017-01-01
The goal of the project is to study feasibility of state of the art machine learning techniques in track reconstruction. Machine learning techniques provide promising ways to speed up the pattern recognition of tracks by adding more intelligence in the algorithms. Implementation of neural network to process of track duplicates identifying will be discussed. Different approaches are shown and results are compared to method that is currently in use.
Multilingual Text Detection with Nonlinear Neural Network
Directory of Open Access Journals (Sweden)
Lin Li
2015-01-01
Full Text Available Multilingual text detection in natural scenes is still a challenging task in computer vision. In this paper, we apply an unsupervised learning algorithm to learn language-independent stroke feature and combine unsupervised stroke feature learning and automatically multilayer feature extraction to improve the representational power of text feature. We also develop a novel nonlinear network based on traditional Convolutional Neural Network that is able to detect multilingual text regions in the images. The proposed method is evaluated on standard benchmarks and multilingual dataset and demonstrates improvement over the previous work.
Forecasting Energy Commodity Prices Using Neural Networks
Directory of Open Access Journals (Sweden)
Massimo Panella
2012-01-01
Full Text Available A new machine learning approach for price modeling is proposed. The use of neural networks as an advanced signal processing tool may be successfully used to model and forecast energy commodity prices, such as crude oil, coal, natural gas, and electricity prices. Energy commodities have shown explosive growth in the last decade. They have become a new asset class used also for investment purposes. This creates a huge demand for better modeling as what occurred in the stock markets in the 1970s. Their price behavior presents unique features causing complex dynamics whose prediction is regarded as a challenging task. The use of a Mixture of Gaussian neural network may provide significant improvements with respect to other well-known models. We propose a computationally efficient learning of this neural network using the maximum likelihood estimation approach to calibrate the parameters. The optimal model is identified using a hierarchical constructive procedure that progressively increases the model complexity. Extensive computer simulations validate the proposed approach and provide an accurate description of commodities prices dynamics.
Flood estimation: a neural network approach
Energy Technology Data Exchange (ETDEWEB)
Swain, P.C.; Seshachalam, C.; Umamahesh, N.V. [Regional Engineering Coll., Warangal (India). Water and Environment Div.
2000-07-01
The artificial neural network (ANN) approach described in this study aims at predicting the flood flow into a reservoir. This differs from the traditional methods of flow prediction in the sense that it belongs to a class of data driven approaches, where as the traditional methods are model driven. Physical processes influencing the occurrences of streamflow in a river are highly complex, and are very difficult to be modelled by available statistical or deterministic models. ANNs provide model free solutions and hence can be expected to be appropriate in these conditions. Non-linearity, adaptivity, evidential response and fault tolerance are additional properties and capabilities of the neural networks. This paper highlights the applicability of neural networks for predicting daily flood flow taking the Hirakud reservoir on river Mahanadi in Orissa, India as the case study. The correlation between the observed and predicted flows and the relative error are considered to measure the performance of the model. The correlation between the observed and the modelled flows are computed to be 0.9467 in testing phase of the model. (orig.)
Identifying Broadband Rotational Spectra with Neural Networks
Zaleski, Daniel P.; Prozument, Kirill
2017-06-01
A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.
Artificial Neural Network Model for Predicting Compressive
Directory of Open Access Journals (Sweden)
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Artificial neural network applications in ionospheric studies
Directory of Open Access Journals (Sweden)
L. R. Cander
1998-06-01
Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.
Improved Extension Neural Network and Its Applications
Directory of Open Access Journals (Sweden)
Yu Zhou
2014-01-01
Full Text Available Extension neural network (ENN is a new neural network that is a combination of extension theory and artificial neural network (ANN. The learning algorithm of ENN is based on supervised learning algorithm. One of important issues in the field of classification and recognition of ENN is how to achieve the best possible classifier with a small number of labeled training data. Training data selection is an effective approach to solve this issue. In this work, in order to improve the supervised learning performance and expand the engineering application range of ENN, we use a novel data selection method based on shadowed sets to refine the training data set of ENN. Firstly, we use clustering algorithm to label the data and induce shadowed sets. Then, in the framework of shadowed sets, the samples located around each cluster centers (core data and the borders between clusters (boundary data are selected as training data. Lastly, we use selected data to train ENN. Compared with traditional ENN, the proposed improved ENN (IENN has a better performance. Moreover, IENN is independent of the supervised learning algorithms and initial labeled data. Experimental results verify the effectiveness and applicability of our proposed work.
CALIBRATION OF ONLINE ANALYZERS USING NEURAL NETWORKS
Energy Technology Data Exchange (ETDEWEB)
Rajive Ganguli; Daniel E. Walsh; Shaohai Yu
2003-12-05
Neural networks were used to calibrate an online ash analyzer at the Usibelli Coal Mine, Healy, Alaska, by relating the Americium and Cesium counts to the ash content. A total of 104 samples were collected from the mine, with 47 being from screened coal, and the rest being from unscreened coal. Each sample corresponded to 20 seconds of coal on the running conveyor belt. Neural network modeling used the quick stop training procedure. Therefore, the samples were split into training, calibration and prediction subsets. Special techniques, using genetic algorithms, were developed to representatively split the sample into the three subsets. Two separate approaches were tried. In one approach, the screened and unscreened coal was modeled separately. In another, a single model was developed for the entire dataset. No advantage was seen from modeling the two subsets separately. The neural network method performed very well on average but not individually, i.e. though each prediction was unreliable, the average of a few predictions was close to the true average. Thus, the method demonstrated that the analyzers were accurate at 2-3 minutes intervals (average of 6-9 samples), but not at 20 seconds (each prediction).
UAV Trajectory Modeling Using Neural Networks
Xue, Min
2017-01-01
Massive small unmanned aerial vehicles are envisioned to operate in the near future. While there are lots of research problems need to be addressed before dense operations can happen, trajectory modeling remains as one of the keys to understand and develop policies, regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The fidelity requirement of a small unmanned vehicle trajectory model is high because these vehicles are sensitive to winds due to their small size and low operational altitude. Both vehicle control systems and dynamic models are needed for trajectory modeling, which makes the modeling a great challenge, especially considering the fact that manufactures are not willing to share their control systems. This work proposed to use a neural network approach for modelling small unmanned vehicle's trajectory without knowing its control system and bypassing exhaustive efforts for aerodynamic parameter identification. As a proof of concept, instead of collecting data from flight tests, this work used the trajectory data generated by a mathematical vehicle model for training and testing the neural network. The results showed great promise because the trained neural network can predict 4D trajectories accurately, and prediction errors were less than 2:0 meters in both temporal and spatial dimensions.
A neural network model for texture discrimination.
Xing, J; Gerstein, G L
1993-01-01
A model of texture discrimination in visual cortex was built using a feedforward network with lateral interactions among relatively realistic spiking neural elements. The elements have various membrane currents, equilibrium potentials and time constants, with action potentials and synapses. The model is derived from the modified programs of MacGregor (1987). Gabor-like filters are applied to overlapping regions in the original image; the neural network with lateral excitatory and inhibitory interactions then compares and adjusts the Gabor amplitudes in order to produce the actual texture discrimination. Finally, a combination layer selects and groups various representations in the output of the network to form the final transformed image material. We show that both texture segmentation and detection of texture boundaries can be represented in the firing activity of such a network for a wide variety of synthetic to natural images. Performance details depend most strongly on the global balance of strengths of the excitatory and inhibitory lateral interconnections. The spatial distribution of lateral connective strengths has relatively little effect. Detailed temporal firing activities of single elements in the lateral connected network were examined under various stimulus conditions. Results show (as in area 17 of cortex) that a single element's response to image features local to its receptive field can be altered by changes in the global context.
Categorization in neural networks and prosopagnosia
Virasoro, M. A.
1989-12-01
Prosopagnosia is a syndrome characterized by a generalized difficulty to visually recognize individual patterns among those that are similar, and can therefore be said to belong to the same category. I suggest that the existence of this disfunction may be an important clue for understanding the categorization process in the brain. In this direction the performance of neural networks under random destruction of synapses is analysed. It is found that in almost every network that stores correlated patterns the coding of the discriminating details between individuals inside a class is more sensitive to noise or to random destruction than the coding that distinguishes between classes. It follows that a process of death and/or deterioration at an intermediate level of intensity, even if it acts randomly on the network may lead to a malfunctioning of the network that resembles prosopagnosia.
Artificial Neural Network Analysis of Xinhui Pericarpium Citri ...
African Journals Online (AJOL)
Purpose: To develop an effective analytical method to distinguish old peels of Xinhui Pericarpium citri reticulatae (XPCR) stored for > 3 years from new peels stored for < 3 years. Methods: Artificial neural networks (ANN) models, including general regression neural network (GRNN) and multi-layer feedforward neural ...
A modular architecture for transparent computation in recurrent neural networks.
Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim
2017-01-01
Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Capacitive MEMS accelerometer wide range modeling using artificial neural network
A. Baharodimehr; A. Abolfazl Suratgar; H. Sadeghi
2009-01-01
This paper presents a nonlinear model for a capacitive microelectromechanical accelerometer (MEMA). System parameters ofthe accelerometer are developed using the effect of cubic term of the folded‐flexure spring. To solve this equation, we use theFEA method. The neural network (NN) uses the Levenberg‐Marquardt (LM) method for training the system to have a moreaccurate response. The designed NN can identify and predict the displacement of the movable mass of accelerometer. Thesimulation result...
Capacitive MEMS accelerometer wide range modeling using artificial neural network
Directory of Open Access Journals (Sweden)
A. Baharodimehr
2009-08-01
Full Text Available This paper presents a nonlinear model for a capacitive microelectromechanical accelerometer (MEMA. System parameters ofthe accelerometer are developed using the effect of cubic term of the folded‐flexure spring. To solve this equation, we use theFEA method. The neural network (NN uses the Levenberg‐Marquardt (LM method for training the system to have a moreaccurate response. The designed NN can identify and predict the displacement of the movable mass of accelerometer. Thesimulation results are very promising.
Workshop on environmental and energy applications of neural networks
Energy Technology Data Exchange (ETDEWEB)
Hashem, S.
1995-03-01
This report consists of the abstracts for the papers given at the conference. Applications of neural networks in the environmental, energy and biomedical fields are discussed. Some of the topics covered are: predicting atmospheric pollutant concentrations due to fossil-fired electric power generation; hazardous waste characterization; nondestructive TRU (transuranic) waste assay; risk analysis; load forecasting for electric utilities; design of a wind power storage and generation system; nuclear fuel management; etc.
Neural Network-Based Abstract Generation for Opinions and Arguments
Wang, Lu; Ling, Wang
2016-01-01
We study the problem of generating abstractive summaries for opinionated text. We propose an attention-based neural network model that is able to absorb information from multiple text units to construct informative, concise, and fluent summaries. An importance-based sampling method is designed to allow the encoder to integrate information from an important subset of input. Automatic evaluation indicates that our system outperforms state-of-the-art abstractive and extractive summarization syst...
Application of Artificial Neural Networks for Predicting Generated Wind Power
Vijendra Singh
2016-01-01
This paper addresses design and development of an artificial neural network based system for prediction of wind energy produced by wind turbines. Now in the last decade, renewable energy emerged as an additional alternative source for electrical power generation. We need to assess wind power generation capacity by wind turbines because of its non-exhaustible nature. The power generation by electric wind turbines depends on the speed of wind, flow direction, fluctuations, density of air, gener...
Artificial Neural Networks Application in Modal Analysis of Tires
Koštial, P.; Jančíková, Z.; Bakošová, D.; Valíček, J.; Harničárová, M.; Špička, I.
2013-10-01
The paper deals with the application of artificial neural networks (ANN) to tires' own frequency (OF) prediction depending on a tire construction. Experimental data of OF were obtained by electronic speckle pattern interferometry (ESPI). A very good conformity of both experimental and predicted data sets is presented here. The presented ANN method applied to ESPI experimental data can effectively help designers to optimize dimensions of tires from the point of view of their noise.
Detection of Phase Transition via Convolutional Neural Networks
Tanaka, Akinori; Tomiya, Akio
2017-06-01
A convolutional neural network (CNN) is designed to study correlation between the temperature and the spin configuration of the two-dimensional Ising model. Our CNN is able to find the characteristic feature of the phase transition without prior knowledge. Also a novel order parameter on the basis of the CNN is introduced to identify the location of the critical temperature; the result is found to be consistent with the exact value.
An artificial neural network for estimating haplotype frequencies
Baechle Daniel; Cartier Kevin C
2005-01-01
Abstract The problem of estimating haplotype frequencies from population data has been considered by numerous investigators, resulting in a wide variety of possible algorithmic and statistical solutions. We propose a relatively unique approach that employs an artificial neural network (ANN) to predict the most likely haplotype frequencies from a sample of population genotype data. Through an innovative ANN design for mapping genotype patterns to diplotypes, we have produced a prototype that d...
Peng, Wenjing; Zhong, Juan; Yang, Jie; Ren, Yanli; Xu, Tan; Xiao, Song; Zhou, Jinyan; Tan, Hong
2014-04-13
Iturin A is a potential lipopeptide antibiotic produced by Bacillus subtilis. Optimization of iturin A yield by adding various concentrations of asparagine (Asn), glutamic acid (Glu) and proline (Pro) during the fed-batch fermentation process was studied using an artificial neural network-genetic algorithm (ANN-GA) and uniform design (UD). Here, ANN-GA based on the UD data was used for the first time to analyze the fed-batch fermentation process. The ANN-GA and UD methodologies were compared based on their fitting ability, prediction and generalization capacity and sensitivity analysis. The ANN model based on the UD data performed well on minimal statistical designed experimental number and the optimum iturin A yield was 13364.5 ± 271.3 U/mL compared with a yield of 9929.0 ± 280.9 U/mL for the control (batch fermentation without adding the amino acids). The root-mean-square-error for the ANN model with the training set and test set was 4.84 and 273.58 respectively, which was more than two times better than that for the UD model (32.21 and 483.12). The correlation coefficient for the ANN model with training and test sets was 100% and 92.62%, respectively (compared with 99.86% and 78.58% for UD). The error% for ANN with the training and test sets was 0.093 and 2.19 respectively (compared with 0.26 and 4.15 for UD). The sensitivity analysis of both methods showed the comparable results. The predictive error of the optimal iturin A yield for ANN-GA and UD was 0.8% and 2.17%, respectively. The satisfactory fitting and predicting accuracy of ANN indicated that ANN worked well with the UD data. Through ANN-GA, the iturin A yield was significantly increased by 34.6%. The fitness, prediction, and generalization capacities of the ANN model were better than those of the UD model. Further, although UD could get the insight information between variables directly, ANN was also demonstrated to be efficient in the sensitivity analysis. The results of these comparisons indicated
UAV Trajectory Modeling Using Neural Networks
Xue, Min
2017-01-01
Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural
Evolutionary Algorithms For Neural Networks Binary And Real Data Classification
Directory of Open Access Journals (Sweden)
Dr. Hanan A.R. Akkar
2015-08-01
Full Text Available Artificial neural networks are complex networks emulating the way human rational neurons process data. They have been widely used generally in prediction clustering classification and association. The training algorithms that used to determine the network weights are almost the most important factor that influence the neural networks performance. Recently many meta-heuristic and Evolutionary algorithms are employed to optimize neural networks weights to achieve better neural performance. This paper aims to use recently proposed algorithms for optimizing neural networks weights comparing these algorithms performance with other classical meta-heuristic algorithms used for the same purpose. However to evaluate the performance of such algorithms for training neural networks we examine such algorithms to classify four opposite binary XOR clusters and classification of continuous real data sets such as Iris and Ecoli.
Runoff Modelling in Urban Storm Drainage by Neural Networks
DEFF Research Database (Denmark)
Rasmussen, Michael R.; Brorsen, Michael; Schaarup-Jensen, Kjeld
1995-01-01
A neural network is used to simulate folw and water levels in a sewer system. The calibration of th neural network is based on a few measured events and the network is validated against measureed events as well as flow simulated with the MOUSE model (Lindberg and Joergensen, 1986). The neural...... network is used to compute flow or water level at selected points in the sewer system, and to forecast the flow from a small residential area. The main advantages of the neural network are the build-in self calibration procedure and high speed performance, but the neural network cannot be used to extract...... knowledge of the runoff process. The neural network was found to simulate 150 times faster than e.g. the MOUSE model....
Neural Network Approach To Sensory Fusion
Pearson, John C.; Gelfand, Jack J.; Sullivan, W. E.; Peterson, Richard M.; Spence, Clay D.
1988-08-01
We present a neural network model for sensory fusion based on the design of the visual/acoustic target localiza-tion system of the barn owl. This system adaptively fuses its separate visual and acoustic representations of object position into a single joint representation used for head orientation. The building block in this system, as in much of the brain, is the neuronal map. Neuronal maps are large arrays of locally interconnected neurons that represent information in a map-like form, that is, parameter values are systematically encoded by the position of neural activation in the array. The computational load is distributed to a hierarchy of maps, and the computation is performed in stages by transforming the representation from map to map via the geometry of the projections between the maps and the local interactions within the maps. For example, azimuthal position is computed from the frequency and binaural phase information encoded in the signals of the acoustic sensors, while elevation is computed in a separate stream using binaural intensity information. These separate streams are merged in their joint projection onto the external nucleus of the inferior colliculus, a two dimensional array of cells which contains a map of acoustic space. This acoustic map, and the visual map of the retina, jointly project onto the optic tectum, creating a fused visual/acoustic representation of position in space that is used for object localization. In this paper we describe our mathematical model of the stage of visual/acoustic fusion in the optic tectum. The model assumes that the acoustic projection from the external nucleus onto the tectum is roughly topographic and one-to-many, while the visual projection from the retina onto the tectum is topographic and one-to-one. A simple process of self-organization alters the strengths of the acoustic connections, effectively forming a focused beam of strong acoustic connections whose inputs are coincident with the visual inputs
Network traffic anomaly prediction using Artificial Neural Network
Ciptaningtyas, Hening Titi; Fatichah, Chastine; Sabila, Altea
2017-03-01
As the excessive increase of internet usage, the malicious software (malware) has also increase significantly. Malware is software developed by hacker for illegal purpose(s), such as stealing data and identity, causing computer damage, or denying service to other user[1]. Malware which attack computer or server often triggers network traffic anomaly phenomena. Based on Sophos's report[2], Indonesia is the riskiest country of malware attack and it also has high network traffic anomaly. This research uses Artificial Neural Network (ANN) to predict network traffic anomaly based on malware attack in Indonesia which is recorded by Id-SIRTII/CC (Indonesia Security Incident Response Team on Internet Infrastructure/Coordination Center). The case study is the highest malware attack (SQL injection) which has happened in three consecutive years: 2012, 2013, and 2014[4]. The data series is preprocessed first, then the network traffic anomaly is predicted using Artificial Neural Network and using two weight update algorithms: Gradient Descent and Momentum. Error of prediction is calculated using Mean Squared Error (MSE) [7]. The experimental result shows that MSE for SQL Injection is 0.03856. So, this approach can be used to predict network traffic anomaly.
Artificial neural network modeling of p-cresol photodegradation.
Abdollahi, Yadollah; Zakaria, Azmi; Abbasiyannejad, Mina; Masoumi, Hamid Reza Fard; Moghaddam, Mansour Ghaffari; Matori, Khamirul Amin; Jahangirian, Hossein; Keshavarzi, Ashkan
2013-06-03
The complexity of reactions and kinetic is the current problem of photodegradation processes. Recently, artificial neural networks have been widely used to solve the problems because of their reliable, robust, and salient characteristics in capturing the non-linear relationships between variables in complex systems. In this study, an artificial neural network was applied for modeling p-cresol photodegradation. To optimize the network, the independent variables including irradiation time, pH, photocatalyst amount and concentration of p-cresol were used as the input parameters, while the photodegradation% was selected as output. The photodegradation% was obtained from the performance of the experimental design of the variables under UV irradiation. The network was trained by Quick propagation (QP) and the other three algorithms as a model. To determine the number of hidden layer nodes in the model, the root mean squared error of testing set was minimized. After minimizing the error, the topologies of the algorithms were compared by coefficient of determination and absolute average deviation. The comparison indicated that the Quick propagation algorithm had minimum root mean squared error, 1.3995, absolute average deviation, 3.0478, and maximum coefficient of determination, 0.9752, for the testing data set. The validation test results of the artificial neural network based on QP indicated that the root mean squared error was 4.11, absolute average deviation was 8.071 and the maximum coefficient of determination was 0.97. Artificial neural network based on Quick propagation algorithm with topology 4-10-1 gave the best performance in this study.
An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems
Ranganayaki, V.; Deepa, S. N.
2016-01-01
Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973
An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.
Ranganayaki, V; Deepa, S N
2016-01-01
Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.
Marginalization in Random Nonlinear Neural Networks
Vasudeva Raju, Rajkumar; Pitkow, Xaq
2015-03-01
Computations involved in tasks like causal reasoning in the brain require a type of probabilistic inference known as marginalization. Marginalization corresponds to averaging over irrelevant variables to obtain the probability of the variables of interest. This is a fundamental operation that arises whenever input stimuli depend on several variables, but only some are task-relevant. Animals often exhibit behavior consistent with marginalizing over some variables, but the neural substrate of this computation is unknown. It has been previously shown (Beck et al. 2011) that marginalization can be performed optimally by a deterministic nonlinear network that implements a quadratic interaction of neural activity with divisive normalization. We show that a simpler network can perform essentially the same computation. These Random Nonlinear Networks (RNN) are feedforward networks with one hidden layer, sigmoidal activation functions, and normally-distributed weights connecting the input and hidden layers. We train the output weights connecting the hidden units to an output population, such that the output model accurately represents a desired marginal probability distribution without significant information loss compared to optimal marginalization. Simulations for the case of linear coordinate transformations show that the RNN model has good marginalization performance, except for highly uncertain inputs that have low amplitude population responses. Behavioral experiments, based on these results, could then be used to identify if this model does indeed explain how the brain performs marginalization.
Neural Network Model of memory retrieval
Directory of Open Access Journals (Sweden)
Stefano eRecanatesi
2015-12-01
Full Text Available Human memory can store large amount of information. Nevertheless, recalling is often achallenging task. In a classical free recall paradigm, where participants are asked to repeat abriefly presented list of words, people make mistakes for lists as short as 5 words. We present amodel for memory retrieval based on a Hopfield neural network where transition between itemsare determined by similarities in their long-term memory representations. Meanfield analysis ofthe model reveals stable states of the network corresponding (1 to single memory representationsand (2 intersection between memory representations. We show that oscillating feedback inhibitionin the presence of noise induces transitions between these states triggering the retrieval ofdifferent memories. The network dynamics qualitatively predicts the distribution of time intervalsrequired to recall new memory items observed in experiments. It shows that items having largernumber of neurons in their representation are statistically easier to recall and reveals possiblebottlenecks in our ability of retrieving memories. Overall, we propose a neural network model ofinformation retrieval broadly compatible with experimental observations and is consistent with ourrecent graphical model (Romani et al., 2013.
Energy Technology Data Exchange (ETDEWEB)
Mjalli, F.S.; Al-Asheh, S. [Chemical Engineering Department, Qatar University, Doha (Qatar)
2005-10-01
In this work advanced nonlinear neural networks based control system design algorithms are adopted to control a mechanistic model for an ethanol fermentation process. The process model equations for such systems are highly nonlinear. A neural network strategy has been implemented in this work for capturing the dynamics of the mechanistic model for the fermentation process. The neural network achieved has been validated against the mechanistic model. Two neural network based nonlinear control strategies have also been adopted using the model identified. The performance of the feedback linearization technique was compared to neural network model predictive control in terms of stability and set point tracking capabilities. Under servo conditions, the feedback linearization algorithm gave comparable tracking and stability. The feedback linearization controller achieved the control target faster than the model predictive one but with vigorous and sudden controller moves. (Abstract Copyright [2005], Wiley Periodicals, Inc.)
Forecasting of Market Clearing Price by Using GA Based Neural Network
Yang, Bo; Chen, Yun-Ping; Zhao, Zun-Lian; Han, Qi-Ye
Forecasting of Market Clearing Price (MCP) is important to economic benefits of electricity market participants. To accurately forecast MCP, a novel two-stage GA-based neural network model (GA-NN) is proposed. In the first stage, GA chromosome is designed into two parts: boolean coding part for neural network topology and real coding part for connection weights. By hybrid genetic operation of selection, crossover and mutation under the criterion of error minimization between the actual output and the desired output, optimal architecture of neural network is obtained. In the second stage, gradient learning algorithm with momentum rate is imposed on neural network with optimal architecture. After learning process, optimal connection weights are obtained. The proposed model is tested on MCP forecasting in California electricity market. The test results show that GA-NN has self-adaptive ability in its topology and connection weights and can obtain more accurate MCP forecasting values than BP neural network.
Neural Network Control of Asymmetrical Multilevel Converters
Directory of Open Access Journals (Sweden)
Patrice WIRA
2009-12-01
Full Text Available This paper proposes a neural implementation of a harmonic eliminationstrategy (HES to control a Uniform Step Asymmetrical Multilevel Inverter(USAMI. The mapping between the modulation rate and the requiredswitching angles is learned and approximated with a Multi-Layer Perceptron(MLP neural network. After learning, appropriate switching angles can bedetermined with the neural network leading to a low-computational-costneural controller which is well suited for real-time applications. Thistechnique can be applied to multilevel inverters with any number of levels. Asan example, a nine-level inverter and an eleven-level inverter are consideredand the optimum switching angles are calculated on-line. Comparisons to thewell-known sinusoidal pulse-width modulation (SPWM have been carriedout in order to evaluate the performance of the proposed approach. Simulationresults demonstrate the technical advantages of the proposed neuralimplementation over the conventional method (SPWM in eliminatingharmonics while controlling a nine-level and eleven-level USAMI. Thisneural approach is applied for the supply of an asynchronous machine andresults show that it ensures a highest quality torque by efficiently cancelingthe harmonics generated by the inverters.
Takiyama, Ken
2017-12-01
How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.
Flood routing modelling with Artificial Neural Networks
Directory of Open Access Journals (Sweden)
R. Peters
2006-01-01
Full Text Available For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks. To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting. In order to solve this problem we tested the application of Artificial Neural Networks (ANN. First studies show the ability of adequately trained multilayer feedforward networks (MLFN to reproduce the model performance.
Granular neural networks, pattern recognition and bioinformatics
Pal, Sankar K; Ganivada, Avatharam
2017-01-01
This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinf...
Quantum generalisation of feedforward neural networks
Wan, Kwok Ho; Dahlsten, Oscar; Kristjánsson, Hlér; Gardner, Robert; Kim, M. S.
2017-09-01
We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding ancillary bits. Then they are generalised to being quantum reversible, i.e., unitary (the classical networks we generalise are called feedforward, and have step-function activation functions). The quantum network can be trained efficiently using gradient descent on a cost function to perform quantum generalisations of classical tasks. We demonstrate numerically that it can: (i) compress quantum states onto a minimal number of qubits, creating a quantum autoencoder, and (ii) discover quantum communication protocols such as teleportation. Our general recipe is theoretical and implementation-independent. The quantum neuron module can naturally be implemented photonically.
OPTIMAL NETWORK TOPOLOGY DESIGN
Yuen, J. H.
1994-01-01
This program was developed as part of a research study on the topology design and performance analysis for the Space Station Information System (SSIS) network. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. It is intended that this new design technique consider all important performance measures explicitly and take into account the constraints due to various technical feasibilities. In the current program, technical constraints are taken care of by the user properly forming the starting set of candidate components (e.g. nonfeasible links are not included). As subsets are generated, they are tested to see if they form an acceptable network by checking that all requirements are satisfied. Thus the first acceptable subset encountered gives the cost-optimal topology satisfying all given constraints. The user must sort the set of "feasible" link elements in increasing order of their costs. The program prompts the user for the following information for each link: 1) cost, 2) connectivity (number of stations connected by the link), and 3) the stations connected by that link. Unless instructed to stop, the program generates all possible acceptable networks in increasing order of their total costs. The program is written only to generate topologies that are simply connected. Tests on reliability, delay, and other performance measures are discussed in the documentation, but have not been incorporated into the program. This program is written in PASCAL for interactive execution and has been implemented on an IBM PC series computer operating under PC DOS. The disk contains source code only. This program was developed in 1985.
Prognosis of prostate gland morphology study using artificial neural network
Directory of Open Access Journals (Sweden)
Popkov V.M.
2014-06-01
Full Text Available The research goal is to optimize the management of patients with serum PSA level falling in the range of 4-10 ng/ ml by designing and educating of an artificial neural network, which may be used to predict prostate gland morphology basing on clinical, laboratory and imaging data. Material and methods. Data of 254 patients, who were admitted to the oncological Department of S. R. Mirotvortsev Clinical hospital for transrectal prostate biopsy, was collected to construct several artificial neural networks with different architecture. External validation was performed on 27 patients, who had prostate biopsy in January-February 2014. Results. One-layer network, consisting of 11 input, 9 hidden and 3 output neurons, was determined to be the most successful: in 92.6% cases it was correct in predicting prostate cancer or its absence. Input factors were evaluated according to their relative importance, from more important to less important: prostate volume, serum PSA, patient's age, prostate consistency, PSA velocity, prostate symmetry, previous negative biopsy, free serum PSA, intake of 5-alpha-reductase inhibitors. Conclusion. Artificial neural networks may be used to predict morphological findings in prostate biopsy. High PSA density and firm prostate consistency should cause suspicion of prostate cancer.
The Usage of Neural Networks for the Medical Diagnosis
Malyshevska, Kateryna
2009-01-01
The problem of cancer diagnosis from multi-channel images using the neural networks is investigated. The goal of this work is to classify the different tissue types which are used to determine the cancer risk. The radial basis function networks and backpropagation neural networks are used for classification. The results of experiments are presented.
Daily Nigerian peak load forecasting using artificial neural network ...
African Journals Online (AJOL)
A daily peak load forecasting technique that uses artificial neural network with seasonal indices is presented in this paper. A neural network of relatively smaller size than the main prediction network is used to predict the daily peak load for a period of one year over which the actual daily load data are available using one ...