WorldWideScience

Sample records for neural network controlled

  1. Neural networks for aircraft control

    Science.gov (United States)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  2. Neural Networks for Optimal Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1995-01-01

    Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....

  3. Neural Networks For Robot Control

    National Research Council Canada - National Science Library

    Nasr, Chaiban

    2001-01-01

    ...; and optimization of the architecture; (b) Application of artificial neural networks in controlling closed-loop 2D planar robot arm and comparison with the use of proportional-integral-differential (PID) controllers...

  4. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...

  5. Neural Networks for Flight Control

    Science.gov (United States)

    Jorgensen, Charles C.

    1996-01-01

    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  6. Simplified LQG Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...

  7. Adaptive optimization and control using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  8. Neural Networks in Nonlinear Aircraft Control

    Science.gov (United States)

    Linse, Dennis J.

    1990-01-01

    Recent research indicates that artificial neural networks offer interesting learning or adaptive capabilities. The current research focuses on the potential for application of neural networks in a nonlinear aircraft control law. The current work has been to determine which networks are suitable for such an application and how they will fit into a nonlinear control law.

  9. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    concerning canonical, observable state space forms (minimum realizable form) for SISO as wll as MIMO processes. The tests show that all models, after succeeeful training, which is judged by correlation analysis of the prediction errors, are able to perform non-linear system identification, prediction......, simulation and filtering of dynamic, non-linear, multi-variable and noisy processes in a very satisfactory manner. The further examinations mainly concentrate on two models, the Non-linear ARMAX (NARMAX) model representing input/output description, and the Non-linear Innovation state Space (NISS) model (a...... Kalmann filter) representing state space description. The potentials of neural networks for control of non-linear processes are also examined, focusing on three different groups of control concepts, all considered as generalizations of known linear control concepts to handle also non-linear processes...

  10. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  11. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...... concerning canonical, observable state space forms (minimum realizable form) for SISO as wll as MIMO processes. The tests show that all models, after succeeeful training, which is judged by correlation analysis of the prediction errors, are able to perform non-linear system identification, prediction...

  12. Control Augmentation Using Adaptive Fuzzy Neural Networks

    Science.gov (United States)

    Kato, Akio; Wada, Yoshihisa

    Control to improve control characteristics of aircraft, CA (Control Augmentation), is used to realize the desirable motion of aircraft corresponding to pilot's control action. When the control laws using fuzzy inference were designed, trial and error was repeated for optimization of the parameter. Here, in designing control laws using fuzzy neural networks, the systematic optimization of the parameter was possible using the learning algorithm usually used in neural networks, by expressing the fuzzy inference in the form of neural networks. Here, the control laws, which learned the characteristics of the aircraft for one flight condition only, were used in all flight conditions without changing any parameter. Evaluation of the designed control laws showed good performance in all flight conditions. This proves that fuzzy neural networks are an effective and flexible method when applied to control laws for control augmentation of aircraft.

  13. Flight control with adaptive critic neural network

    Science.gov (United States)

    Han, Dongchen

    2001-10-01

    In this dissertation, the adaptive critic neural network technique is applied to solve complex nonlinear system control problems. Based on dynamic programming, the adaptive critic neural network can embed the optimal solution into a neural network. Though trained off-line, the neural network forms a real-time feedback controller. Because of its general interpolation properties, the neurocontroller has inherit robustness. The problems solved here are an agile missile control for U.S. Air Force and a midcourse guidance law for U.S. Navy. In the first three papers, the neural network was used to control an air-to-air agile missile to implement a minimum-time heading-reverse in a vertical plane corresponding to following conditions: a system without constraint, a system with control inequality constraint, and a system with state inequality constraint. While the agile missile is a one-dimensional problem, the midcourse guidance law is the first test-bed for multiple-dimensional problem. In the fourth paper, the neurocontroller is synthesized to guide a surface-to-air missile to a fixed final condition, and to a flexible final condition from a variable initial condition. In order to evaluate the adaptive critic neural network approach, the numerical solutions for these cases are also obtained by solving two-point boundary value problem with a shooting method. All of the results showed that the adaptive critic neural network could solve complex nonlinear system control problems.

  14. Control of autonomous robot using neural networks

    Science.gov (United States)

    Barton, Adam; Volna, Eva

    2017-07-01

    The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.

  15. Neural networks and orbit control in accelerators

    International Nuclear Information System (INIS)

    Bozoki, E.; Friedman, A.

    1994-01-01

    An overview of the architecture, workings and training of Neural Networks is given. We stress the aspects which are important for the use of Neural Networks for orbit control in accelerators and storage rings, especially its ability to cope with the nonlinear behavior of the orbit response to 'kicks' and the slow drift in the orbit response during long-term operation. Results obtained for the two NSLS storage rings with several network architectures and various training methods for each architecture are given

  16. Additive Feed Forward Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1999-01-01

    . A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...

  17. Flexible body control using neural networks

    Science.gov (United States)

    Mccullough, Claire L.

    1992-01-01

    Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.

  18. Neural Networks Applied to Optimal Flight Control

    OpenAIRE

    McKelvey, Tomas

    1992-01-01

    This paper presents a method for developing control laws for nonlinear systems based on an optimal control formulation. Due to the nonlinearities of the system, no analytical solution exists. The method proposed here uses the 'black box' structure of a neural network to model a feedback control law. The network is trained with the back-propagation learning method by using examples of optimal control produced with a differential dynamic programming technique. Two different optimal control prob...

  19. Optimal control learning with artificial neural networks

    International Nuclear Information System (INIS)

    Martinez, J.M.; Parey, C.; Houkari, M.

    1993-01-01

    This paper shows neural networks capabilities in optimal control applications of non linear dynamic systems. Our method is issued of a classical method concerning the direct research of the optimal control using gradient techniques. We show that neural approach and backpropagation paradigm are able to solve efficiently equations relative to necessary conditions for an optimizing solution. We have taken into account the known capabilities of multi layered networks in approximation functions. And for dynamic systems, we have generalized the indirect learning of inverse model adaptive architecture that is capable to define an optimal control in relation to a temporal criterion. (orig.)

  20. A hyperstable neural network for the modelling and control of ...

    Indian Academy of Sciences (India)

    A hyperstable neural network for the modelling and control of nonlinear systems ... Computer control; neural networks; nonlinear systems; adaptive control. ... control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure.

  1. Neural networks as a control methodology

    Science.gov (United States)

    Mccullough, Claire L.

    1990-01-01

    While conventional computers must be programmed in a logical fashion by a person who thoroughly understands the task to be performed, the motivation behind neural networks is to develop machines which can train themselves to perform tasks, using available information about desired system behavior and learning from experience. There are three goals of this fellowship program: (1) to evaluate various neural net methods and generate computer software to implement those deemed most promising on a personal computer equipped with Matlab; (2) to evaluate methods currently in the professional literature for system control using neural nets to choose those most applicable to control of flexible structures; and (3) to apply the control strategies chosen in (2) to a computer simulation of a test article, the Control Structures Interaction Suitcase Demonstrator, which is a portable system consisting of a small flexible beam driven by a torque motor and mounted on springs tuned to the first flexible mode of the beam. Results of each are discussed.

  2. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    Science.gov (United States)

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  3. Hexacopter trajectory control using a neural network

    Science.gov (United States)

    Artale, V.; Collotta, M.; Pau, G.; Ricciardello, A.

    2013-10-01

    The modern flight control systems are complex due to their non-linear nature. In fact, modern aerospace vehicles are expected to have non-conventional flight envelopes and, then, they must guarantee a high level of robustness and adaptability in order to operate in uncertain environments. Neural Networks (NN), with real-time learning capability, for flight control can be used in applications with manned or unmanned aerial vehicles. Indeed, using proven lower level control algorithms with adaptive elements that exhibit long term learning could help in achieving better adaptation performance while performing aggressive maneuvers. In this paper we show a mathematical modeling and a Neural Network for a hexacopter dynamics in order to develop proper methods for stabilization and trajectory control.

  4. neural network based load frequency control for restructuring power

    African Journals Online (AJOL)

    2012-03-01

    Mar 1, 2012 ... Abstract. In this study, an artificial neural network (ANN) application of load frequency control. (LFC) of a Multi-Area power system by using a neural network controller is presented. The comparison between a conventional Proportional Integral (PI) controller and the proposed artificial neural networks ...

  5. Identification and Position Control of Marine Helm using Artificial Neural Network Neural Network

    Directory of Open Access Journals (Sweden)

    Hui ZHU

    2008-02-01

    Full Text Available If nonlinearities such as saturation of the amplifier gain and motor torque, gear backlash, and shaft compliances- just to name a few - are considered in the position control system of marine helm, traditional control methods are no longer sufficient to be used to improve the performance of the system. In this paper an alternative approach to traditional control methods - a neural network reference controller - is proposed to establish an adaptive control of the position of the marine helm to achieve the controlled variable at the command position. This neural network controller comprises of two neural networks. One is the plant model network used to identify the nonlinear system and the other the controller network used to control the output to follow the reference model. The experimental results demonstrate that this adaptive neural network reference controller has much better control performance than is obtained with traditional controllers.

  6. Neural Networks for Modeling and Control of Particle Accelerators

    CERN Document Server

    Edelen, A.L.; Chase, B.E.; Edstrom, D.; Milton, S.V.; Stabile, P.

    2016-01-01

    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  7. Robust Planning and Control Using Neural Networks

    Science.gov (United States)

    1990-06-30

    hyperspace . We have been investigating CMAC neural networks with tapered, rather than rectangular, receptive fields. Such networks promise better (continuous...CMOS Logic Cell Arrays.’ UNH Intelligent Structures Group Report ECE.IS.90.01, Feb. 6,1990. Miller, W. T., Box, B. A., Whitney, E. C., and Glynn, J...M., ’Design and Implementation of a High Speed CMAC Neural Network Using Logic Programmable CMOS Logic Cell Arrays." To be presented at the Naval

  8. Neural Network for Optimization of Existing Control Systems

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1995-01-01

    The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....

  9. Neural networks for function approximation in nonlinear control

    Science.gov (United States)

    Linse, Dennis J.; Stengel, Robert F.

    1990-01-01

    Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.

  10. IDENTIFICATION AND CONTROL OF AN ASYNCHRONOUS MACHINE USING NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    A ZERGAOUI

    2000-06-01

    Full Text Available In this work, we present the application of artificial neural networks to the identification and control of the asynchronous motor, which is a complex nonlinear system with variable internal dynamics.  We show that neural networks can be applied to control the stator currents of the induction motor.  The results of the different simulations are presented to evaluate the performance of the neural controller proposed.

  11. Large maneuverable flight control using neural networks dynamic inversion

    Science.gov (United States)

    Yang, Enquan; Gao, Jinyuan

    2003-09-01

    An adaptive dynamic-inversion-based neural network is applied to aircraft large maneuverable flight control. Neural network is used to cancel the inversion error which may arise from imperfect modeling or approximate inversion. Simulation results for an aircraft model are presented to illustrate the performance of the flight control system.

  12. Computation and control with neural networks

    Science.gov (United States)

    Corneliusen, A.; Terdal, P.; Knight, T.; Spencer, J.

    1990-08-01

    As energies have increased exponentially with time, so have the size and complexity of accelerators and control systems. Neural networks (NNs) may offer the kinds of improvements in computation and control that are needed to maintain acceptable functionality. For control, their associative characteristics could provide signal conversion or data translation. Because they can do any computation such as least-squares, they can close feedback loops autonomously to provide intelligent control at the point of action rather than at a central location that requires transfers, conversions, hand-shaking and other costly repetitions like input protection. Both computation and control can be integrated on a single chip, a printed circuit or an optical equivalent that is also inherently faster through full parallel operation. For such reasons one expects lower costs and better results. Such systems could be optimized by integrating sensor and signal-processing functions. Distributed nets of such hardware could communicate and provide global monitoring and multiprocessing in various ways, e.g. via token, slotted or parallel rings (or Steiner trees), for compatibility with existing systems. Problems and advantages of this approach, such as an optimal, real-time Turing machine, are discussed. Simple examples are simulated and hardware implemented using discrete elements that demonstrate some basic characteristics of learning and parallelism. Future "microprocessors" are predicted and requested on this basis.

  13. Application of Artificial Neural Networks for Process Identification and Control

    OpenAIRE

    Bolf, N.; Jerbić, I.

    2006-01-01

    During the development of intelligent systems inspired by biological neural system, in the last two decades the researchers from various scientific fields have created neural networks for solving a series of problems from pattern recognition, prediction, diagnostic, software sensor, modelling and identification, control and optimization. In this paper a review of neural network application in the field of chemical engineering with emphasis on identification and process control is given. T...

  14. Fusion Control of Flexible Logic Control and Neural Network

    Directory of Open Access Journals (Sweden)

    Lihua Fu

    2014-01-01

    Full Text Available Based on the basic physical meaning of error E and error variety EC, this paper analyzes the logical relationship between them and uses Universal Combinatorial Operation Model in Universal Logic to describe it. Accordingly, a flexible logic control method is put forward to realize effective control on multivariable nonlinear system. In order to implement fusion control with artificial neural network, this paper proposes a new neuron model of Zero-level Universal Combinatorial Operation in Universal Logic. And the artificial neural network of flexible logic control model is implemented based on the proposed neuron model. Finally, stability control, anti-interference control of double inverted-pendulum system, and free walking of cart pendulum system on a level track are realized, showing experimentally the feasibility and validity of this method.

  15. System Identification for Nonlinear Control Using Neural Networks

    Science.gov (United States)

    Stengel, Robert F.; Linse, Dennis J.

    1990-01-01

    An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.

  16. Active Engine Mounting Control Algorithm Using Neural Network

    Directory of Open Access Journals (Sweden)

    Fadly Jashi Darsivan

    2009-01-01

    Full Text Available This paper proposes the application of neural network as a controller to isolate engine vibration in an active engine mounting system. It has been shown that the NARMA-L2 neurocontroller has the ability to reject disturbances from a plant. The disturbance is assumed to be both impulse and sinusoidal disturbances that are induced by the engine. The performance of the neural network controller is compared with conventional PD and PID controllers tuned using Ziegler-Nichols. From the result simulated the neural network controller has shown better ability to isolate the engine vibration than the conventional controllers.

  17. A hyperstable neural network for the modelling and control of ...

    Indian Academy of Sciences (India)

    neural networks. IEEE Trans. Autom. Control 39: 1306±1310. Fortescue T, Kershenbaum L S, Ydstie B E 1981 Implementation of self-tuning regulators with variable forgetting factors. Automatica 17: 831±835. Garces F, Warwick K, Craddock C 1998 Multiple PID mapping using neural networks in a MIMO generator system.

  18. Neural network predictive control of a heat exchanger

    OpenAIRE

    2011-01-01

    Abstract The study attempts to show that using the neural network predictive control (NNPC) structure for control of thermal processes can lead to energy savings. The advantage of the NNPC is that it is not a linear-model-based strategy and the control input constraints are directly included into the synthesis. In the designed approach, the neural network is used as a nonlinear process model to predict the future behaviour of the controlled process with distributed parameters. The ...

  19. Neural Network Controller for the Pressurized Water Reactor Power Control

    International Nuclear Information System (INIS)

    Haggag, S.S.; Kotb, S.A.

    2017-01-01

    Although there have been some severe nuclear accidents such as Three Mile Island (USA), Chernobyl (Ukraine) and Fukushima (Japan), nuclear fission energy is still a source of clean energy that can substitute fossil fuels in a centralized way and in a great amount with commercial availability and economic competitiveness. Since the pressurized water reactor (PWR) is the most widely used nuclear fission reactor, it is safe, stable and efficient operation is meaningful to the current rebirth of the nuclear fission energy industry. Power-level regulation is an important technique which can deeply affect the operation stability and efficiency of PWRs (Pressurized Water Reactors ). This paper presents the effect of utilizing the Neural Network controller methodology in the power control model of the PWR. The Neural Network Controller was tested on a PWR model using the Matlab Simulink Interface. Two case studies were performed on the model using both the Neural Network method and the traditional rod speed program for controlling the nuclear power plant variables. The proposed controller presents a higher performance than that of the traditional rod speed program controller.

  20. System Identification, Prediction, Simulation and Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    a Gauss-Newton search direction is applied. 3) Amongst numerous model types, often met in control applications, only the Non-linear ARMAX (NARMAX) model, representing input/output description, is examined. A simulated example confirms that a neural network has the potential to perform excellent System...... Identification, Prediction, Simulation and Control of a dynamic, non-linear and noisy process. Further, the difficulties to control a practical non-linear laboratory process in a satisfactory way by using a traditional controller are overcomed by using a trained neural network to perform non-linear System......The intention of this paper is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...

  1. Neural-Network Control Of Prosthetic And Robotic Hands

    Science.gov (United States)

    Buckley, Theresa M.

    1991-01-01

    Electronic neural networks proposed for use in controlling robotic and prosthetic hands and exoskeletal or glovelike electromechanical devices aiding intact but nonfunctional hands. Specific to patient, who activates grasping motion by voice command, by mechanical switch, or by myoelectric impulse. Patient retains higher-level control, while lower-level control provided by neural network analogous to that of miniature brain. During training, patient teaches miniature brain to perform specialized, anthropomorphic movements unique to himself or herself.

  2. Neural Networks for Modeling and Control of Particle Accelerators

    Science.gov (United States)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  3. Adaptive Control for Robotic Manipulators Base on RBF Neural Network

    Directory of Open Access Journals (Sweden)

    MA Jing

    2013-09-01

    Full Text Available An adaptive neural network controller is brought forward by the paper to solve trajectory tracking problems of robotic manipulators with uncertainties. The first scheme consists of a PD feedback and a dynamic compensator which is composed by neural network controller and variable structure controller. Neutral network controller is designed to adaptive learn and compensate the unknown uncertainties, variable structure controller is designed to eliminate approach errors of neutral network. The adaptive weight learning algorithm of neural network is designed to ensure online real-time adjustment, offline learning phase is not need; Global asymptotic stability (GAS of system base on Lyapunov theory is analysised to ensure the convergence of the algorithm. The simulation result s show that the kind of the control scheme is effective and has good robustness.

  4. Adaptive artificial neural network for autonomous robot control

    Science.gov (United States)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    The topics are presented in viewgraph form and include: neural network controller for robot arm positioning with visual feedback; initial training of the arm; automatic recovery from cumulative fault scenarios; and error reduction by iterative fine movements.

  5. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    Science.gov (United States)

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  6. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    This paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems, including open-loop unstable and non-minimum phase systems, but has also been proposed to be extended for the control...... of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...

  7. Controlled neural network application in track-match problem

    International Nuclear Information System (INIS)

    Baginyan, S.A.; Ososkov, G.A.

    1993-01-01

    Track-match problem of high energy physics (HEP) data handling is formulated in terms of incidence matrices. The corresponding Hopfield neural network is developed to solve this type of constraint satisfaction problems (CSP). A special concept of the controlled neural network is proposed as a basis of an algorithm for the effective CSP solution. Results of comparable calculations show the very high performance of this algorithm against conventional search procedures. 8 refs.; 1 fig.; 1 tab

  8. Practical Application of Neural Networks in State Space Control

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon

    theoretic notions followed by a detailed description of the topology, neuron functions and learning rules of the two types of neural networks treated in the thesis, the multilayer perceptron and the neurofuzzy networks. In both cases, a Least Squares second-order gradient method is used to train......In the present thesis we address some problems in discrete-time state space control of nonlinear dynamical systems and attempt to solve them using generic nonlinear models based on artificial neural networks. The main aim of the work is to examine how well such control algorithms perform when...... applied to a realistic process. The thesis therefore strives to provide a thorough treatment of two classes of neural network-based controllers, and to make a rigorous comparison between them and a classical linear controller. Thus, the thesis starts out with a short review of some relevant system...

  9. Control of industrial robot using neural network compensator

    Directory of Open Access Journals (Sweden)

    Ranković Vesna

    2005-01-01

    Full Text Available In the paper is considered synthesis of the controller with tachometric feedback with feed forward compensation of disturbance torque, velocity and acceleration errors. It is difficult to obtain the desired control performance when the control algorithm is only based on the robot dynamic model. We use the neural network to generate auxiliary joint control torque to compensate these uncertainties. The two-layer neural network is used as the compensator. The main task of control system here is to track the required trajectory. Simulations are done in MATLAB for RzRyRy robot minimal configuration.

  10. Ideomotor feedback control in a recurrent neural network.

    Science.gov (United States)

    Galtier, Mathieu

    2015-06-01

    The architecture of a neural network controlling an unknown environment is presented. It is based on a randomly connected recurrent neural network from which both perception and action are simultaneously read and fed back. There are two concurrent learning rules implementing a sort of ideomotor control: (i) perception is learned along the principle that the network should predict reliably its incoming stimuli; (ii) action is learned along the principle that the prediction of the network should match a target time series. The coherent behavior of the neural network in its environment is a consequence of the interaction between the two principles. Numerical simulations show a promising performance of the approach, which can be turned into a local and better "biologically plausible" algorithm.

  11. Neural Network Based Load Frequency Control for Restructuring ...

    African Journals Online (AJOL)

    The comparison between a conventional Proportional Integral (PI) controller and the proposed artificial neural networks controller is showed that the proposed controller can generate an improved ... The same technique is then applied to control a system compose of two single units tied together though a power line.

  12. Accelerator and feedback control simulation using neural networks

    International Nuclear Information System (INIS)

    Nguyen, D.; Lee, M.; Sass, R.; Shoaee, H.

    1991-05-01

    Unlike present constant model feedback system, neural networks can adapt as the dynamics of the process changes with time. Using a process model, the ''Accelerator'' network is first trained to simulate the dynamics of the beam for a given beam line. This ''Accelerator'' network is then used to train a second ''Controller'' network which performs the control function. In simulation, the networks are used to adjust corrector magnetics to control the launch angle and position of the beam to keep it on the desired trajectory when the incoming beam is perturbed. 4 refs., 3 figs

  13. Stability and synchronization control of stochastic neural networks

    CERN Document Server

    Zhou, Wuneng; Zhou, Liuwei; Tong, Dongbing

    2016-01-01

    This book reports on the latest findings in the study of Stochastic Neural Networks (SNN). The book collects the novel model of the disturbance driven by Levy process, the research method of M-matrix, and the adaptive control method of the SNN in the context of stability and synchronization control. The book will be of interest to university researchers, graduate students in control science and engineering and neural networks who wish to learn the core principles, methods, algorithms and applications of SNN.

  14. Qualitative analysis and control of complex neural networks with delays

    CERN Document Server

    Wang, Zhanshan; Zheng, Chengde

    2016-01-01

    This book focuses on the stability of the dynamical neural system, synchronization of the coupling neural system and their applications in automation control and electrical engineering. The redefined concept of stability, synchronization and consensus are adopted to provide a better explanation of the complex neural network. Researchers in the fields of dynamical systems, computer science, electrical engineering and mathematics will benefit from the discussions on complex systems. The book will also help readers to better understand the theory behind the control technique and its design.

  15. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    Science.gov (United States)

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  16. Active Control of Sound based on Diagonal Recurrent Neural Network

    NARCIS (Netherlands)

    Jayawardhana, Bayu; Xie, Lihua; Yuan, Shuqing

    2002-01-01

    Recurrent neural network has been known for its dynamic mapping and better suited for nonlinear dynamical system. Nonlinear controller may be needed in cases where the actuators exhibit the nonlinear characteristics, or in cases when the structure to be controlled exhibits nonlinear behavior. The

  17. Neural networks for process control and optimization: two industrial applications.

    Science.gov (United States)

    Bloch, Gérard; Denoeux, Thierry

    2003-01-01

    The two most widely used neural models, multilayer perceptron (MLP) and radial basis function network (RBFN), are presented in the framework of system identification and control. The main steps for building such nonlinear black box models are regressor choice, selection of internal architecture, and parameter estimation. The advantages of neural network models are summarized: universal approximation capabilities, flexibility, and parsimony. Two applications are described in steel industry and water treatment, respectively, the control of alloying process in a hot dipped galvanizing line and the control of a coagulation process in a drinking water treatment plant. These examples highlight the interest of neural techniques, when complex nonlinear phenomena are involved, but the empirical knowledge of control operators can be learned.

  18. Application of neural networks to seismic active control

    International Nuclear Information System (INIS)

    Tang, Yu.

    1995-01-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads

  19. Spiking neural network-based control chart pattern recognition

    Directory of Open Access Journals (Sweden)

    Medhat H.A. Awadalla

    2012-03-01

    Full Text Available Due to an increasing competition in products, consumers have become more critical in choosing products. The quality of products has become more important. Statistical Process Control (SPC is usually used to improve the quality of products. Control charting plays the most important role in SPC. Control charts help to monitor the behavior of the process to determine whether it is stable or not. Unnatural patterns in control charts mean that there are some unnatural causes for variations in SPC. Spiking neural networks (SNNs are the third generation of artificial neural networks that consider time as an important feature for information representation and processing. In this paper, a spiking neural network architecture is proposed to be used for control charts pattern recognition (CCPR. Furthermore, enhancements to the SpikeProp learning algorithm are proposed. These enhancements provide additional learning rules for the synaptic delays, time constants and for the neurons thresholds. Simulated experiments have been conducted and the achieved results show a remarkable improvement in the overall performance compared with artificial neural networks.

  20. Active Noise Feedback Control Using a Neural Network

    OpenAIRE

    Qizhi, Zhang; Yongle, Jia

    2001-01-01

    The active noise control (ANC) is discussed. Many digital ANC systems often based on the filter-x algorithm for finite impulse response (FIR) filter use adaptive filtering techniques. But if the primary noise path is nonlinear, the control system based on adaptive filter technology will be invalid. In this paper, an adaptive active nonlinear noise feedback control approach using a neural network is derived. The feedback control system drives a secondary signal to destructively interfere with ...

  1. Four Degree Freedom Robot Arm with Fuzzy Neural Network Control

    Directory of Open Access Journals (Sweden)

    Şinasi Arslan

    2013-01-01

    Full Text Available In this study, the control of four degree freedom robot arm has been realized with the computed torque control method.. It is usually required that the four jointed robot arm has high precision capability and good maneuverability for using in industrial applications. Besides, high speed working and external applied loads have been acting as important roles. For those purposes, the computed torque control method has been developed in a good manner that the robot arm can track the given trajectory, which has been able to enhance the feedback control together with fuzzy neural network control. The simulation results have proved that the computed torque control with the neural network has been so successful in robot control.

  2. Dissipative rendering and neural network control system design

    Science.gov (United States)

    Gonzalez, Oscar R.

    1995-01-01

    Model-based control system designs are limited by the accuracy of the models of the plant, plant uncertainty, and exogenous signals. Although better models can be obtained with system identification, the models and control designs still have limitations. One approach to reduce the dependency on particular models is to design a set of compensators that will guarantee robust stability to a set of plants. Optimization over the compensator parameters can then be used to get the desired performance. Conservativeness of this approach can be reduced by integrating fundamental properties of the plant models. This is the approach of dissipative control design. Dissipative control designs are based on several variations of the Passivity Theorem, which have been proven for nonlinear/linear and continuous-time/discrete-time systems. These theorems depend not on a specific model of a plant, but on its general dissipative properties. Dissipative control design has found wide applicability in flexible space structures and robotic systems that can be configured to be dissipative. Currently, there is ongoing research to improve the performance of dissipative control designs. For aircraft systems that are not dissipative active control may be used to make them dissipative and then a dissipative control design technique can be used. It is also possible that rendering a system dissipative and dissipative control design may be combined into one step. Furthermore, the transformation of a non-dissipative system to dissipative can be done robustly. One sequential design procedure for finite dimensional linear time-invariant systems has been developed. For nonlinear plants that cannot be controlled adequately with a single linear controller, model-based techniques have additional problems. Nonlinear system identification is still a research topic. Lacking analytical models for model-based design, artificial neural network algorithms have recently received considerable attention. Using

  3. Methodology for neural networks prototyping. Application to traffic control

    Energy Technology Data Exchange (ETDEWEB)

    Belegan, I.C.

    1998-07-01

    The work described in this report was carried out in the context of the European project ASTORIA (Advanced Simulation Toolbox for Real-World Industrial Application in Passenger Management and Adaptive Control), and concerns the development of an advanced toolbox for complex transportation systems. Our work was focused on the methodology for prototyping a set of neural networks corresponding to specific strategies for traffic control and congestion management. The tool used for prototyping is SNNS (Stuggart Neural Network Simulator), developed at the University of Stuggart, Institute for Parallel and Distributed High Performance Systems, and the real data from the field were provided by ZELT. This report is structured into six parts. The introduction gives some insights about traffic control and its approaches. The second chapter discusses the various control strategies existing. The third chapter is an introduction to the field of neural networks. The data analysis and pre-processing is described in the fourth chapter. In the fifth chapter, the methodology for prototyping the neural networks is presented. Finally, conclusions and further work are presented. (author) 14 refs.

  4. DCS-Neural-Network Program for Aircraft Control and Testing

    Science.gov (United States)

    Jorgensen, Charles C.

    2006-01-01

    A computer program implements a dynamic-cell-structure (DCS) artificial neural network that can perform such tasks as learning selected aerodynamic characteristics of an airplane from wind-tunnel test data and computing real-time stability and control derivatives of the airplane for use in feedback linearized control. A DCS neural network is one of several types of neural networks that can incorporate additional nodes in order to rapidly learn increasingly complex relationships between inputs and outputs. In the DCS neural network implemented by the present program, the insertion of nodes is based on accumulated error. A competitive Hebbian learning rule (a supervised-learning rule in which connection weights are adjusted to minimize differences between actual and desired outputs for training examples) is used. A Kohonen-style learning rule (derived from a relatively simple training algorithm, implements a Delaunay triangulation layout of neurons) is used to adjust node positions during training. Neighborhood topology determines which nodes are used to estimate new values. The network learns, starting with two nodes, and adds new nodes sequentially in locations chosen to maximize reductions in global error. At any given time during learning, the error becomes homogeneously distributed over all nodes.

  5. Neural network application to aircraft control system design

    Science.gov (United States)

    Troudet, Terry; Garg, Sanjay; Merrill, Walter C.

    1991-01-01

    The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.

  6. Adaptive Control Using a Neural Network Estimator and Dynamic Inversion

    Science.gov (United States)

    Ninomiya, Tetsujiro; Miyazawa, Yoshikazu

    More and more UAVs are developed for various purposes and their flight controllers are required to have sufficient robustness and performance to realize their versatile missions. To design these sophisticated controller is pretty much time-consuming task by traditional design method. Neural network based adaptive control with dynamic inversion is applied to solve this problem. This method has two advantages. One is that the gain scheduling is not necessary because nonlinear dynamic inversion is applied to control nonlinear systems. The other is that neural network improves the controller performance by estimating parameters of the actual plant. Numerical examples show its effectiveness and its ability to adapt to modeling errors. This paper concludes that proposed method reduces the workload of controller design task and it has ability to adapt various errors of nonlinear systems.

  7. Active Noise Feedback Control Using a Neural Network

    Directory of Open Access Journals (Sweden)

    Zhang Qizhi

    2001-01-01

    Full Text Available The active noise control (ANC is discussed. Many digital ANC systems often based on the filter-x algorithm for finite impulse response (FIR filter use adaptive filtering techniques. But if the primary noise path is nonlinear, the control system based on adaptive filter technology will be invalid. In this paper, an adaptive active nonlinear noise feedback control approach using a neural network is derived. The feedback control system drives a secondary signal to destructively interfere with the original noise to cut down the noise power. An on-line learning algorithm based on the error gradient descent method was proposed, and the local stability of closed loop system is proved using the discrete Lyapunov function. A nonlinear simulation example shows that the adaptive active noise feedback control method based on a neural network is very effective to the nonlinear noise control.

  8. Adaptive model predictive process control using neural networks

    Science.gov (United States)

    Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.

    1997-01-01

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.

  9. Adaptive model predictive process control using neural networks

    Science.gov (United States)

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  10. Distributed synchronization of coupled neural networks via randomly occurring control.

    Science.gov (United States)

    Tang, Yang; Wong, Wai Keung

    2013-03-01

    In this paper, we study the distributed synchronization and pinning distributed synchronization of stochastic coupled neural networks via randomly occurring control. Two Bernoulli stochastic variables are used to describe the occurrences of distributed adaptive control and updating law according to certain probabilities. Both distributed adaptive control and updating law for each vertex in a network depend on state information on each vertex's neighborhood. By constructing appropriate Lyapunov functions and employing stochastic analysis techniques, we prove that the distributed synchronization and the distributed pinning synchronization of stochastic complex networks can be achieved in mean square. Additionally, randomly occurring distributed control is compared with periodically intermittent control. It is revealed that, although randomly occurring control is an intermediate method among the three types of control in terms of control costs and convergence rates, it has fewer restrictions to implement and can be more easily applied in practice than periodically intermittent control.

  11. An architecture for designing fuzzy logic controllers using neural networks

    Science.gov (United States)

    Berenji, Hamid R.

    1991-01-01

    Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

  12. PID Neural Network Based Speed Control of Asynchronous Motor Using Programmable Logic Controller

    Directory of Open Access Journals (Sweden)

    MARABA, V. A.

    2011-11-01

    Full Text Available This paper deals with the structure and characteristics of PID Neural Network controller for single input and single output systems. PID Neural Network is a new kind of controller that includes the advantages of artificial neural networks and classic PID controller. Functioning of this controller is based on the update of controller parameters according to the value extracted from system output pursuant to the rules of back propagation algorithm used in artificial neural networks. Parameters obtained from the application of PID Neural Network training algorithm on the speed model of the asynchronous motor exhibiting second order linear behavior were used in the real time speed control of the motor. Programmable logic controller (PLC was used as real time controller. The real time control results show that reference speed successfully maintained under various load conditions.

  13. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  14. Control Chart Pattern Recognition Using Artificial Neural Networks

    OpenAIRE

    SAĞIROĞLU, Şeref

    2000-01-01

    Precise and fast control chart pattern (CCP) recognition is important for monitoring process environments to achieve appropriate control and to produce high quality products. CCPs can exhibit six types of pattern: normal, cyclic, increasing trend, decreasing trend, upward shift and downward shift. Except for normal patterns, all other patterns indicate that the process being monitored is not functioning correctly and requires adjustment. This paper describes a new type of neural network for s...

  15. The Adaptive Neural Network Control of Quadrotor Helicopter

    Directory of Open Access Journals (Sweden)

    A. S. Yushenko

    2017-01-01

    Full Text Available The current steady-rising interest in using the unmanned multi-rotor aerial vehicles (UMAV designed to solve a wide range of tasks is, mainly, due to their simple design and high weight-carrying capacity as compared to classical helicopter options. Unfortunately, to solve a problem of multi-copter control is complicated because of essential nonlinearity and environmental perturbations. The most widely spread PID controllers and linear-quadratic regulators do not quite well cope with this task. The need arises for the prompt adjustment of PID controller coefficients in the course of operation or their complete re-tuning in cases of changing parameters of the control object.One of the control methods under changing conditions is the use of the sliding mode. This technology enables us to reach the stabilization and proper operation of the controlled system even under accidental external exposures and when there is a lack of the reasonably accurate mathematical model of the control object. The sliding principle is to ensure the system motion in the immediate vicinity of the sliding surface in the phase space. On the other hand, the sliding mode has some essential disadvantages. The most significant one is the high-frequency jitter of the system near the sliding surface. The sliding mode also implies the complete knowledge of the system dynamics. Various methods have been proposed to eliminate these drawbacks. For example, A.G. Aissaoui’s, H. Abid’s and M. Abid’s paper describes the application of fuzzy logic to control a drive and in Lon-Chen Hung’s and Hung-Yuan Chung’s paper an artificial neural network is used for the manipulator control.This paper presents a method of the quad-copter control with the aid of a neural network controller. This method enables us to control the system without a priori information on parameters of the dynamic model of the controlled object. The main neural network is a MIMO (“Multiple Input Multiple

  16. Neural networks

    International Nuclear Information System (INIS)

    Denby, Bruce; Lindsey, Clark; Lyons, Louis

    1992-01-01

    The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive

  17. Research in Neural Network Based Adaptive Control

    National Research Council Canada - National Science Library

    Calise, Anthony

    2000-01-01

    .... We regard this as a major step towards flight certification of adaptive controllers. The approach is more general in that it permits a broad class of input nonlinearities, including such effects as discrete and bang/bang control...

  18. The application of neural network PID controller to control the light gasoline etherification

    Science.gov (United States)

    Cheng, Huanxin; Zhang, Yimin; Kong, Lingling; Meng, Xiangyong

    2017-06-01

    Light gasoline etherification technology can effectively improve the quality of gasoline, which is environmental- friendly and economical. By combining BP neural network and PID control and using BP neural network self-learning ability for online parameter tuning, this method optimizes the parameters of PID controller and applies this to the Fcc gas flow control to achieve the control of the final product- heavy oil concentration. Finally, through MATLAB simulation, it is found that the PID control based on BP neural network has better controlling effect than traditional PID control.

  19. Control of beam halo-chaos using neural network self-adaptation method

    International Nuclear Information System (INIS)

    Fang Jinqing; Huang Guoxian; Luo Xiaoshu

    2004-11-01

    Taking the advantages of neural network control method for nonlinear complex systems, control of beam halo-chaos in the periodic focusing channels (network) of high intensity accelerators is studied by feed-forward back-propagating neural network self-adaptation method. The envelope radius of high-intensity proton beam is reached to the matching beam radius by suitably selecting the control structure of neural network and the linear feedback coefficient, adjusted the right-coefficient of neural network. The beam halo-chaos is obviously suppressed and shaking size is much largely reduced after the neural network self-adaptation control is applied. (authors)

  20. Adaptive Gain Scheduled Semiactive Vibration Control Using a Neural Network

    Directory of Open Access Journals (Sweden)

    Kazuhiko Hiramoto

    2018-01-01

    Full Text Available We propose an adaptive gain scheduled semiactive control method using an artificial neural network for structural systems subject to earthquake disturbance. In order to design a semiactive control system with high control performance against earthquakes with different time and/or frequency properties, multiple semiactive control laws with high performance for each of multiple earthquake disturbances are scheduled with an adaptive manner. Each semiactive control law to be scheduled is designed based on the output emulation approach that has been proposed by the authors. As the adaptive gain scheduling mechanism, we introduce an artificial neural network (ANN. Input signals of the ANN are the measured earthquake disturbance itself, for example, the acceleration, velocity, and displacement. The output of the ANN is the parameter for the scheduling of multiple semiactive control laws each of which has been optimized for a single disturbance. Parameters such as weight and bias in the ANN are optimized by the genetic algorithm (GA. The proposed design method is applied to semiactive control design of a base-isolated building with a semiactive damper. With simulation study, the proposed adaptive gain scheduling method realizes control performance exceeding single semiactive control optimizing the average of the control performance subject to various earthquake disturbances.

  1. Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks

    OpenAIRE

    Pallett, Tobias J.; Ahmad, Shaheen

    1991-01-01

    In this report we determine the dynamic model of a miniature helicopter in hovering flight. Identification procedures for the nonlinear terms are also described. The model is then used to design several linearized control laws and a neural network controller. The controllers were then flight tested on a miniature helicopter flight control test bed the details of which are also presented in this report. Experimental performance of the linearized and neural network controllers are discussed. It...

  2. Neural Network Analysis of Pilot Landing Control in Real Flight

    Science.gov (United States)

    Mori, Ryota; Suzuki, Shinji; Masui, Kazuya; Tomita, Hiroshi

    A methodology for analysis of a pilots' landing control at the visual approach has been developed using a neural network modeling. While our previous study analyzed flight simulator operations, this paper describes the analysis of a real flight landing case. An experimental method which utilizes image processing of recorded video data is developed to obtain necessary data such as time histories of visual cues and control inputs. The effectiveness of this proposed method is confirmed by comparing values and analysis results from the video data with results obtained using GPS/INS data. It is expected that these methods can be used to reveal the characteristic of pilot control in real flight operation.

  3. Adaptive neural network motion control for aircraft under uncertainty conditions

    Science.gov (United States)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  4. Neural Network Based Montioring and Control of Fluidized Bed.

    Energy Technology Data Exchange (ETDEWEB)

    Bodruzzaman, M.; Essawy, M.A.

    1996-04-01

    The goal of this project was to develop chaos analysis and neural network-based modeling techniques and apply them to the pressure-drop data obtained from the Fluid Bed Combustion (FBC) system (a small scale prototype model) located at the Federal Energy Technology Center (FETC)-Morgantown. The second goal was to develop neural network-based chaos control techniques and provide a suggestive prototype for possible real-time application to the FBC system. The experimental pressure data were collected from a cold FBC experimental set-up at the Morgantown Center. We have performed several analysis on these data in order to unveil their dynamical and chaotic characteristics. The phase-space attractors were constructed from the one dimensional time series data, using the time-delay embedding method, for both normal and abnormal conditions. Several identifying parameters were also computed from these attractors such as the correlation dimension, the Kolmogorov entropy, and the Lyapunov exponents. These chaotic attractor parameters can be used to discriminate between the normal and abnormal operating conditions of the FBC system. It was found that, the abnormal data has higher correlation dimension, larger Kolmogorov entropy and larger positive Lyapunov exponents as compared to the normal data. Chaotic system control using neural network based techniques were also investigated and compared to conventional chaotic system control techniques. Both types of chaotic system control techniques were applied to some typical chaotic systems such as the logistic, the Henon, and the Lorenz systems. A prototype model for real-time implementation of these techniques has been suggested to control the FBC system. These models can be implemented for real-time control in a next phase of the project after obtaining further measurements from the experimental model. After testing the control algorithms developed for the FBC model, the next step is to implement them on hardware and link them to

  5. Adaptive nonlinear neural network controller for rotorcraft vibration

    Science.gov (United States)

    Spencer, Michael G.; Sanner, Robert M.; Chopra, Inderjit

    1997-06-01

    This paper presents research into developing an adaptive nonlinear neural network control algorithm that can be used with smart structure actuators and sensors to control the vibrations of rotor blades. The dynamic equations of motion for a blade have the same form as a multilink manipulator (robot arm) and adaptive nonlinear control algorithms have proven successful in active control of these manipulators. The recent development of neural network control algorithms has provided the ability to adaptively learn in real time a set of parameters that will approximate external forces operating on the blades. The controller combines these two control techniques enabling the controller to adapt its parameters in response to changes in blade properties such as its mass or stiffness and to also learn the parameters necessary to account for the unknown but bounded, periodic disturbance forces such as those caused by the unsteady, periodic aerodynamic forces in the rotor system. Current efforts have been directed at testing the control algorithm on real beams with piezoceramic actuators and sensors. The initial test results have shown that vibration reduction and desired beam motion tracking can be achieved even under the influences of periodic disturbances.

  6. Neural Network Control for a Batch Distillation Column

    Directory of Open Access Journals (Sweden)

    Duraid Fadhil Ahmed

    2016-07-01

    Full Text Available The  present  work  deals  with  studying  the  dynamic  behavior  of  a  batch  distillation  column  and implemented  two  types  of  control  strategies  for  the  separation  different  types  of  binary  systems.  The model  was  derived  and  then  simulated  using  "MATLAB"  program.  The  experimental  data  of  dynamic behavior  were  to  tune  the  parameters  of  PID  controller  and  developed  the  training  of  neural  networks controller by using supervised  learning algorithms. The simulation results show a qualitatively acceptable behavior.  This  study  shows  also  that  the  response  of  PID  controller  was  oscillatory  behavior  with  high offset value while neural network controller gave less offset value and less  time to reach the steady state. In general, a good improvement is achieved when the  neural network controller  is used compared with PID control.

  7. Control of 12-Cylinder Camless Engine with Neural Networks

    Directory of Open Access Journals (Sweden)

    Ashhab Moh’d Sami

    2017-01-01

    Full Text Available The 12-cyliner camless engine breathing process is modeled with artificial neural networks (ANN’s. The inputs to the net are the intake valve lift (IVL and intake valve closing timing (IVC whereas the output of the net is the cylinder air charge (CAC. The ANN is trained with data collected from an engine simulation model which is based on thermodynamics principles and calibrated against real engine data. A method for adapting single-output feed-forward neural networks is proposed and applied to the camless engine ANN model. As a consequence the overall 12-cyliner camless engine feedback controller is upgraded and the necessary changes are implemented in order to contain the adaptive neural network with the objective of tracking the cylinder air charge (driver’s torque demand while minimizing the pumping losses (increasing engine efficiency. All the needed measurements are extracted only from the two conventional and inexpensive sensors, namely, the mass air flow through the throttle body (MAF and the intake manifold absolute pressure (MAP sensors. The feedback controller’s capability is demonstrated through computer simulation.

  8. SOFM Neural Network Based Hierarchical Topology Control for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2014-01-01

    Full Text Available Well-designed network topology provides vital support for routing, data fusion, and target tracking in wireless sensor networks (WSNs. Self-organization feature map (SOFM neural network is a major branch of artificial neural networks, which has self-organizing and self-learning features. In this paper, we propose a cluster-based topology control algorithm for WSNs, named SOFMHTC, which uses SOFM neural network to form a hierarchical network structure, completes cluster head selection by the competitive learning among nodes, and takes the node residual energy and the distance to the neighbor nodes into account in the clustering process. In addition, the approach of dynamically adjusting the transmitting power of the cluster head nodes is adopted to optimize the network topology. Simulation results show that SOFMHTC may get a better energy-efficient performance and make more balanced energy consumption compared with some existing algorithms in WSNs.

  9. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  10. Neural network model to control an experimental chaotic pendulum

    NARCIS (Netherlands)

    Bakker, R; Schouten, JC; Takens, F; vandenBleek, CM

    1996-01-01

    A feedforward neural network was trained to predict the motion of an experimental, driven, and damped pendulum operating in a chaotic regime. The network learned the behavior of the pendulum from a time series of the pendulum's angle, the single measured variable. The validity of the neural

  11. Accurate Wavelet Neural Network for Efficient Controlling of an Active Magnetic Bearing System

    OpenAIRE

    Youssef Harkouss; Souhad Mcheik; Roger Achkar

    2010-01-01

    Problem statement: The synthesis of a command by the neural network has an excellent advantage over the classical one such as PID. This study presented a fast and accurate Wavelet Neural Network (WNN) approach for efficient controlling of an Active Magnetic Bearing (AMB) system. Approach: The proposed approach combined neural network with the wavelet theory. Wavelet theory may be exploited in deriving a good initialization for the neural network and thus improved conv...

  12. Spacecraft Neural Network Control System Design using FPGA

    OpenAIRE

    Hanaa T. El-Madany; Faten H. Fahmy; Ninet M. A. El-Rahman; Hassen T. Dorrah

    2011-01-01

    Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffer...

  13. Adaptive PID control based on orthogonal endocrine neural networks.

    Science.gov (United States)

    Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D

    2016-12-01

    A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A biologically inspired neural network controller for ballistic arm movements

    Directory of Open Access Journals (Sweden)

    Schmid Maurizio

    2007-09-01

    Full Text Available Abstract Background In humans, the implementation of multijoint tasks of the arm implies a highly complex integration of sensory information, sensorimotor transformations and motor planning. Computational models can be profitably used to better understand the mechanisms sub-serving motor control, thus providing useful perspectives and investigating different control hypotheses. To this purpose, the use of Artificial Neural Networks has been proposed to represent and interpret the movement of upper limb. In this paper, a neural network approach to the modelling of the motor control of a human arm during planar ballistic movements is presented. Methods The developed system is composed of three main computational blocks: 1 a parallel distributed learning scheme that aims at simulating the internal inverse model in the trajectory formation process; 2 a pulse generator, which is responsible for the creation of muscular synergies; and 3 a limb model based on two joints (two degrees of freedom and six muscle-like actuators, that can accommodate for the biomechanical parameters of the arm. The learning paradigm of the neural controller is based on a pure exploration of the working space with no feedback signal. Kinematics provided by the system have been compared with those obtained in literature from experimental data of humans. Results The model reproduces kinematics of arm movements, with bell-shaped wrist velocity profiles and approximately straight trajectories, and gives rise to the generation of synergies for the execution of movements. The model allows achieving amplitude and direction errors of respectively 0.52 cm and 0.2 radians. Curvature values are similar to those encountered in experimental measures with humans. The neural controller also manages environmental modifications such as the insertion of different force fields acting on the end-effector. Conclusion The proposed system has been shown to properly simulate the development of

  15. Radial basis function (RBF) neural network control for mechanical systems design, analysis and Matlab simulation

    CERN Document Server

    Liu, Jinkun

    2013-01-01

    Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...

  16. Neural feedback linearization adaptive control for affine nonlinear systems based on neural network estimator

    Directory of Open Access Journals (Sweden)

    Bahita Mohamed

    2011-01-01

    Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.

  17. Neural networks in front-end processing and control

    International Nuclear Information System (INIS)

    Lister, J.B.; Schnurrenberger, H.; Staeheli, N.; Stockhammer, N.; Duperrex, P.A.; Moret, J.M.

    1991-07-01

    Research into neural networks has gained a large following in recent years. In spite of the long term timescale of this Artificial Intelligence research, the tools which the community is developing can already find useful applications to real practical problems in experimental research. One of the main advantages of the parallel algorithms being developed in AI is the structural simplicity of the required hardware implementation, and the simple nature of the calculations involved. This makes these techniques ideal for problems in which both speed and data volume reduction are important, the case for most front-end processing tasks. In this paper we illustrate the use of a particular neural network known as the Multi-Layer Perceptron as a method for solving several different tasks, all drawn from the field of Tokamak research. We also briefly discuss the use of the Multi-Layer Perceptron as a non-linear controller in a feedback loop. We outline the type of problem which can be usefully addressed by these techniques, even before the large-scale parallel processing hardware currently under development becomes cheaply available. We also present some of the difficulties encountered in applying these networks. (author) 13 figs., 9 refs

  18. Neural networks in front-end processing and control

    International Nuclear Information System (INIS)

    Lister, J.B.; Schnurrenberger, H.; Staeheli, N.; Stockhammer, N.; Duperrex, P.A.; Moret, J.M.

    1992-01-01

    Research into neural networks has gained a large following in recent years. In spite of the long term timescale of this Artificial Intelligence research, the tools which the community is developing can already find useful applications to real practical problems in experimental research. One of the main advantages of the parallel algorithms being developed in AI is the structural simplicity of the required hardware implementation, and the simple nature of the calculations involved. This makes these techniques ideal for problems in which both speed and data volume reduction are important, the case for most front-end processing tasks. In this paper the authors illustrate the use of a particular neural network known as the Multi-Layer Perceptron as a method for solving several different tasks, all drawn from the field of Tokamak research. The authors also briefly discuss the use of the Multi-Layer Perceptron as a non-linear controller in a feedback loop. The authors outline the type of problem which can be usefully addressed by these techniques, even before the large-scale parallel processing hardware currently under development becomes cheaply available. The authors also present some of the difficulties encountered in applying these networks

  19. Reconfigurable Control Design with Neural Network Augmentation for a Modified F-15 Aircraft

    Science.gov (United States)

    Burken, John J.

    2007-01-01

    The viewgraphs present background information about reconfiguration control design, design methods used for paper, control failure survivability results, and results and time histories of tests. Topics examined include control reconfiguration, general information about adaptive controllers, model reference adaptive control (MRAC), the utility of neural networks, radial basis functions (RBF) neural network outputs, neurons, and results of investigations of failures.

  20. Development of a neural network heating controller for solar buildings.

    Science.gov (United States)

    Argiriou, A A; Bellas-Velidis, I; Balaras, C A

    2000-09-01

    Artificial neural networks (ANN's) are more and more widely used in energy management processes. ANN's can be very useful in optimizing the energy demand of buildings, especially of those of high thermal inertia. These include the so-called solar buildings. For those buildings, a controller able to forecast not only the energy demand but also the weather conditions can lead to energy savings while maintaining thermal comfort. In this paper, such an ANN controller is proposed. It consists of a meteorological module, forecasting the ambient temperature and solar irradiance, the heating energy switch predictor module and the indoor temperature-defining module. The performance of the controller has been tested both experimentally and in a building thermal simulation environment. The results showed that the use of the proposed controller can lead to 7.5% annual energy savings in the case of a highly insulated passive solar test cell.

  1. Drive reinforcement neural networks for reactor control. Final report

    International Nuclear Information System (INIS)

    Williams, J.G.; Jouse, W.C.

    1995-01-01

    In view of the loss of the third year funding, the scope of the project goals has been revised. The revision in project scope no longer allows for the detailed modeling of the EBR-11 start-up task that was originally envisaged. The authors are continuing, however, to model the control of the rapid power ascent of the University of Arizona TRIGA reactor using a model-based controller and using a drive reinforcement neural network. These will be combined during the concluding period of the project into a hierarchical control architecture. In addition, the modeling of a PWR feedwater heater has continued, and an autonomous fault-tolerant software architecture for its control has been proposed

  2. Robust backstepping control of induction motors using neural networks.

    Science.gov (United States)

    Kwan, C M; Lewis, F L

    2000-01-01

    In this paper, we present a new robust control technique for induction motors using neural networks (NNs). The method is systematic and robust to parameter variations. Motivated by the well-known backstepping design technique, we first treat certain signals in the system as fictitious control inputs to a simpler subsystem. A two-layer NN is used in this stage to design the fictitious controller. Then we apply a second two-layer NN to robustly realize the fictitious NN signals designed in the previous step. A new tuning scheme is proposed which can guarantee the boundedness of tracking error and weight updates. A main advantage of our method is that we do not require regression matrices, so that no preliminary dynamical analysis is needed. Another salient feature of our NN approach is that the off-line learning phase is not needed. Full state feedback is needed for implementation. Load torque and rotor resistance can be unknown but bounded.

  3. Optimization of patterns of control bars using neural networks

    International Nuclear Information System (INIS)

    Mejia S, D.M.; Ortiz S, J.J.

    2005-01-01

    In this work the RENOPBC system that is based on a recurrent multi state neural network, for the optimization of patterns of control bars in a cycle of balance of a boiling water reactor (BWR for their initials in English) is presented. The design of patterns of bars is based on the execution of operation thermal limits, to maintain criticizes the reactor and that the axial profile of power is adjusted to one predetermined along several steps of burnt. The patterns of control bars proposed by the system are comparable to those proposed by human experts with many hour-man of experience. These results are compared with those proposed by other techniques as genetic algorithms, colonies of ants and tabu search for the same operation cycle. As consequence it is appreciated that the proposed patterns of control bars, have bigger operation easiness that those proposed by the other techniques. (Author)

  4. Neural network output feedback control of robot formations.

    Science.gov (United States)

    Dierks, Travis; Jagannathan, Sarangapani

    2010-04-01

    In this paper, a combined kinematic/torque output feedback control law is developed for leader-follower-based formation control using backstepping to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers. A neural network (NN) is introduced to approximate the dynamics of the follower and its leader using online weight tuning. Furthermore, a novel NN observer is designed to estimate the linear and angular velocities of both the follower robot and its leader. It is shown, by using the Lyapunov theory, that the errors for the entire formation are uniformly ultimately bounded while relaxing the separation principle. In addition, the stability of the formation in the presence of obstacles, is examined using Lyapunov methods, and by treating other robots in the formation as obstacles, collisions within the formation are prevented. Numerical results are provided to verify the theoretical conjectures.

  5. Complex Dynamical Network Control for Trajectory Tracking Using Delayed Recurrent Neural Networks

    Directory of Open Access Journals (Sweden)

    Jose P. Perez

    2014-01-01

    Full Text Available In this paper, the problem of trajectory tracking is studied. Based on the V-stability and Lyapunov theory, a control law that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a complex dynamical network is obtained. To illustrate the analytic results, we present a tracking simulation of a dynamical network with each node being just one Lorenz’s dynamical system and three identical Chen’s dynamical systems.

  6. Identification-based chaos control via backstepping design using self-organizing fuzzy neural networks

    International Nuclear Information System (INIS)

    Peng Yafu; Hsu, C.-F.

    2009-01-01

    This paper proposes an identification-based adaptive backstepping control (IABC) for the chaotic systems. The IABC system is comprised of a neural backstepping controller and a robust compensation controller. The neural backstepping controller containing a self-organizing fuzzy neural network (SOFNN) identifier is the principal controller, and the robust compensation controller is designed to dispel the effect of minimum approximation error introduced by the SOFNN identifier. The SOFNN identifier is used to online estimate the chaotic dynamic function with structure and parameter learning phases of fuzzy neural network. The structure learning phase consists of the growing and pruning of fuzzy rules; thus the SOFNN identifier can avoid the time-consuming trial-and-error tuning procedure for determining the neural structure of fuzzy neural network. The parameter learning phase adjusts the interconnection weights of neural network to achieve favorable approximation performance. Finally, simulation results verify that the proposed IABC can achieve favorable tracking performance.

  7. Region stability analysis and tracking control of memristive recurrent neural network.

    Science.gov (United States)

    Bao, Gang; Zeng, Zhigang; Shen, Yanjun

    2018-02-01

    Memristor is firstly postulated by Leon Chua and realized by Hewlett-Packard (HP) laboratory. Research results show that memristor can be used to simulate the synapses of neurons. This paper presents a class of recurrent neural network with HP memristors. Firstly, it shows that memristive recurrent neural network has more compound dynamics than the traditional recurrent neural network by simulations. Then it derives that n dimensional memristive recurrent neural network is composed of [Formula: see text] sub neural networks which do not have a common equilibrium point. By designing the tracking controller, it can make memristive neural network being convergent to the desired sub neural network. At last, two numerical examples are given to verify the validity of our result. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A reflexive neural network for dynamic biped walking control.

    Science.gov (United States)

    Geng, Tao; Porr, Bernd; Wörgötter, Florentin

    2006-05-01

    Biped walking remains a difficult problem, and robot models can greatly facilitate our understanding of the underlying biomechanical principles as well as their neuronal control. The goal of this study is to specifically demonstrate that stable biped walking can be achieved by combining the physical properties of the walking robot with a small, reflex-based neuronal network governed mainly by local sensor signals. Building on earlier work (Taga, 1995; Cruse, Kindermann, Schumm, Dean, & Schmitz, 1998), this study shows that human-like gaits emerge without specific position or trajectory control and that the walker is able to compensate small disturbances through its own dynamical properties. The reflexive controller used here has the following characteristics, which are different from earlier approaches: (1) Control is mainly local. Hence, it uses only two signals (anterior extreme angle and ground contact), which operate at the interjoint level. All other signals operate only at single joints. (2) Neither position control nor trajectory tracking control is used. Instead, the approximate nature of the local reflexes on each joint allows the robot mechanics itself (e.g., its passive dynamics) to contribute substantially to the overall gait trajectory computation. (3) The motor control scheme used in the local reflexes of our robot is more straightforward and has more biological plausibility than that of other robots, because the outputs of the motor neurons in our reflexive controller are directly driving the motors of the joints rather than working as references for position or velocity control. As a consequence, the neural controller and the robot mechanics are closely coupled as a neuromechanical system, and this study emphasizes that dynamically stable biped walking gaits emerge from the coupling between neural computation and physical computation. This is demonstrated by different walking experiments using a real robot as well as by a Poincaré map analysis

  9. Web based educational tool for neural network robot control

    Directory of Open Access Journals (Sweden)

    Jure Čas

    2007-05-01

    Full Text Available Abstract— This paper describes the application for teleoperations of the SCARA robot via the internet. The SCARA robot is used by students of mehatronics at the University of Maribor as a remote educational tool. The developed software consists of two parts i.e. the continuous neural network sliding mode controller (CNNSMC and the graphical user interface (GUI. Application is based on two well-known commercially available software packages i.e. MATLAB/Simulink and LabVIEW. Matlab/Simulink and the DSP2 Library for Simulink are used for control algorithm development, simulation and executable code generation. While this code is executing on the DSP-2 Roby controller and through the analog and digital I/O lines drives the real process, LabVIEW virtual instrument (VI, running on the PC, is used as a user front end. LabVIEW VI provides the ability for on-line parameter tuning, signal monitoring, on-line analysis and via Remote Panels technology also teleoperation. The main advantage of a CNNSMC is the exploitation of its self-learning capability. When friction or an unexpected impediment occurs for example, the user of a remote application has no information about any changed robot dynamic and thus is unable to dispatch it manually. This is not a control problem anymore because, when a CNNSMC is used, any approximation of changed robot dynamic is estimated independently of the remote’s user. Index Terms—LabVIEW; Matlab/Simulink; Neural network control; remote educational tool; robotics

  10. Reconfigurable Flight Control Design using a Robust Servo LQR and Radial Basis Function Neural Networks

    Science.gov (United States)

    Burken, John J.

    2005-01-01

    This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.

  11. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  12. Output feedback control of a quadrotor UAV using neural networks.

    Science.gov (United States)

    Dierks, Travis; Jagannathan, Sarangapani

    2010-01-01

    In this paper, a new nonlinear controller for a quadrotor unmanned aerial vehicle (UAV) is proposed using neural networks (NNs) and output feedback. The assumption on the availability of UAV dynamics is not always practical, especially in an outdoor environment. Therefore, in this work, an NN is introduced to learn the complete dynamics of the UAV online, including uncertain nonlinear terms like aerodynamic friction and blade flapping. Although a quadrotor UAV is underactuated, a novel NN virtual control input scheme is proposed which allows all six degrees of freedom (DOF) of the UAV to be controlled using only four control inputs. Furthermore, an NN observer is introduced to estimate the translational and angular velocities of the UAV, and an output feedback control law is developed in which only the position and the attitude of the UAV are considered measurable. It is shown using Lyapunov theory that the position, orientation, and velocity tracking errors, the virtual control and observer estimation errors, and the NN weight estimation errors for each NN are all semiglobally uniformly ultimately bounded (SGUUB) in the presence of bounded disturbances and NN functional reconstruction errors while simultaneously relaxing the separation principle. The effectiveness of proposed output feedback control scheme is then demonstrated in the presence of unknown nonlinear dynamics and disturbances, and simulation results are included to demonstrate the theoretical conjecture.

  13. Application of neural network technology to setpoint control of a simulated reactor experiment loop

    International Nuclear Information System (INIS)

    Cordes, G.A.; Bryan, S.R.; Powell, R.H.; Chick, D.R.

    1991-01-01

    This paper describes the design, implementation, and application of artificial neural networks to achieve temperature and flow rate control for a simulation of a typical experiment loop in the Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory (INEL). The goal of the project was to research multivariate, nonlinear control using neural networks. A loop simulation code was adapted for the project and used to create a training set and test the neural network controller for comparison with the existing loop controllers. The results for the best neural network design are documented and compared with existing loop controller action. The neural network was shown to be as accurate at loop control as the classical controllers in the operating region represented by the training set. 5 refs., 8 figs., 3 tabs

  14. Communications and control for electric power systems: Power system stability applications of artificial neural networks

    Science.gov (United States)

    Toomarian, N.; Kirkham, Harold

    1994-01-01

    This report investigates the application of artificial neural networks to the problem of power system stability. The field of artificial intelligence, expert systems, and neural networks is reviewed. Power system operation is discussed with emphasis on stability considerations. Real-time system control has only recently been considered as applicable to stability, using conventional control methods. The report considers the use of artificial neural networks to improve the stability of the power system. The networks are considered as adjuncts and as replacements for existing controllers. The optimal kind of network to use as an adjunct to a generator exciter is discussed.

  15. Neural network based adaptive control for nonlinear dynamic regimes

    Science.gov (United States)

    Shin, Yoonghyun

    Adaptive control designs using neural networks (NNs) based on dynamic inversion are investigated for aerospace vehicles which are operated at highly nonlinear dynamic regimes. NNs play a key role as the principal element of adaptation to approximately cancel the effect of inversion error, which subsequently improves robustness to parametric uncertainty and unmodeled dynamics in nonlinear regimes. An adaptive control scheme previously named 'composite model reference adaptive control' is further developed so that it can be applied to multi-input multi-output output feedback dynamic inversion. It can have adaptive elements in both the dynamic compensator (linear controller) part and/or in the conventional adaptive controller part, also utilizing state estimation information for NN adaptation. This methodology has more flexibility and thus hopefully greater potential than conventional adaptive designs for adaptive flight control in highly nonlinear flight regimes. The stability of the control system is proved through Lyapunov theorems, and validated with simulations. The control designs in this thesis also include the use of 'pseudo-control hedging' techniques which are introduced to prevent the NNs from attempting to adapt to various actuation nonlinearities such as actuator position and rate saturations. Control allocation is introduced for the case of redundant control effectors including thrust vectoring nozzles. A thorough comparison study of conventional and NN-based adaptive designs for a system under a limit cycle, wing-rock, is included in this research, and the NN-based adaptive control designs demonstrate their performances for two highly maneuverable aerial vehicles, NASA F-15 ACTIVE and FQM-117B unmanned aerial vehicle (UAV), operated under various nonlinearities and uncertainties.

  16. NNSYSID and NNCTRL Tools for system identification and control with neural networks

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad

    2001-01-01

    choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview......Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can...

  17. Synchronization of Switched Neural Networks With Communication Delays via the Event-Triggered Control.

    Science.gov (United States)

    Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen

    2017-10-01

    This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.

  18. NNSYSID and NNCTRL Tools for system identification and control with neural networks

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Ravn, Ole; Poulsen, Niels Kjølstad

    2001-01-01

    Two toolsets for use with MATLAB have been developed: the neural network based system identification toolbox (NNSYSID) and the neural network based control system design toolkit (NNCTRL). The NNSYSID toolbox has been designed to assist identification of nonlinear dynamic systems. It contains...... a number of nonlinear model structures based on neural networks, effective training algorithms and tools for model validation and model structure selection. The NNCTRL toolkit is an add-on to NNSYSID and provides tools for design and simulation of control systems based on neural networks. The user can...... choose among several designs such as direct inverse control, internal model control, nonlinear feedforward, feedback linearisation, optimal control, gain scheduling based on instantaneous linearisation of neural network models and nonlinear model predictive control. This article gives an overview...

  19. Active Control of Wind-Tunnel Model Aeroelastic Response Using Neural Networks

    Science.gov (United States)

    Scott, Robert C.

    2000-01-01

    NASA Langley Research Center, Hampton, VA 23681 Under a joint research and development effort conducted by the National Aeronautics and Space Administration and The Boeing Company (formerly McDonnell Douglas) three neural-network based control systems were developed and tested. The control systems were experimentally evaluated using a transonic wind-tunnel model in the Langley Transonic Dynamics Tunnel. One system used a neural network to schedule flutter suppression control laws, another employed a neural network in a predictive control scheme, and the third employed a neural network in an inverse model control scheme. All three of these control schemes successfully suppressed flutter to or near the limits of the testing apparatus, and represent the first experimental applications of neural networks to flutter suppression. This paper will summarize the findings of this project.

  20. Control of 12-Cylinder Camless Engine with Neural Networks

    OpenAIRE

    Ashhab Moh’d Sami

    2017-01-01

    The 12-cyliner camless engine breathing process is modeled with artificial neural networks (ANN’s). The inputs to the net are the intake valve lift (IVL) and intake valve closing timing (IVC) whereas the output of the net is the cylinder air charge (CAC). The ANN is trained with data collected from an engine simulation model which is based on thermodynamics principles and calibrated against real engine data. A method for adapting single-output feed-forward neural networks is proposed and appl...

  1. Control of the Coagulation Process in a Paper-mill Wastewater Treatment Process Using a Fuzzy Neural Network

    OpenAIRE

    Wan, J.-Q.; Huang, M.-Z.; Ma, Y.-W.; Guo, W. J.; Wang, Y.; Zhang, H.-P.

    2010-01-01

    In this paper, an integrated neural-fuzzy process controller was developed to study the coagulation of wastewater treatment in a paper mill. In order to improve the fuzzy neural network performance, the self-learning ability embedded in the fuzzy neural network model was emphasized for improving the rule extraction performance. It proves the fuzzy neural network more effective in modeling the coagulation performance than artificial neural networks (ANN). For comparing between the fuzzy neural...

  2. Modeling of the height control system using artificial neural networks

    Directory of Open Access Journals (Sweden)

    A. R Tahavvor

    2016-09-01

    Full Text Available Introduction Automation of agricultural and machinery construction has generally been enhanced by intelligent control systems due to utility and efficiency rising, ease of use, profitability and upgrading according to market demand. A broad variety of industrial merchandise are now supplied with computerized control systems of earth moving processes to be performed by construction and agriculture field vehicle such as grader, backhoe, tractor and scraper machines. A height control machine which is used in measuring base thickness is consisted of two mechanical and electronic parts. The mechanical part is consisted of conveyor belt, main body, electrical engine and invertors while the electronic part is consisted of ultrasonic, wave transmitter and receiver sensor, electronic board, control set, and microcontroller. The main job of these controlling devices consists of the topographic surveying, cutting and filling of elevated and spotted low area, and these actions fundamentally dependent onthe machine's ability in elevation and thickness measurement and control. In this study, machine was first tested and then some experiments were conducted for data collection. Study of system modeling in artificial neural networks (ANN was done for measuring, controlling the height for bases by input variable input vectors such as sampling time, probe speed, conveyer speed, sound wave speed and speed sensor are finally the maximum and minimum probe output vector on various conditions. The result reveals the capability of this procedure for experimental recognition of sensors' behavior and improvement of field machine control systems. Inspection, calibration and response, diagnosis of the elevation control system in combination with machine function can also be evaluated by some extra development of this system. Materials and Methods Designing and manufacture of the planned apparatus classified in three dissimilar, mechanical and electronic module, courses of

  3. Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.

    Science.gov (United States)

    Wan, Ying; Cao, Jinde; Wen, Guanghui

    In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control

  4. A thesis on the application of neural network computing to the constrained flight control allocation problem

    OpenAIRE

    Grogan, Robert L.

    1994-01-01

    The feasibility of utilizing a neural network to solve the constrained flight control allocation problem is investigated for the purposes of developing guidelines for the selection of a neural network structure as a function of the control allocation problem parameters. The control allocation problem of finding the combination of several flight controls that generate a desired body axis moment without violating any control constraint is considered. Since the number of controls,...

  5. Neural network control of mobile robot formations using RISE feedback.

    Science.gov (United States)

    Dierks, Travis; Jagannathan, S

    2009-04-01

    In this paper, an asymptotically stable (AS) combined kinematic/torque control law is developed for leader-follower-based formation control using backstepping in order to accommodate the complete dynamics of the robots and the formation, and a neural network (NN) is introduced along with robust integral of the sign of the error feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are AS and that the NN weights are bounded as opposed to uniformly ultimately bounded stability which is typical with most NN controllers. Additionally, the stability of the formation in the presence of obstacles is examined using Lyapunov methods, and by treating other robots in the formation as obstacles, collisions within the formation do not occur. The asymptotic stability of the follower robots as well as the entire formation during an obstacle avoidance maneuver is demonstrated using Lyapunov methods, and numerical results are provided to verify the theoretical conjectures.

  6. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    Science.gov (United States)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  7. Use of artificial neural networks as estimators and controllers

    Science.gov (United States)

    Concilio, Antonio; Sorrentino, A.

    1996-04-01

    Active noise control is one among the most promising applications of the so-called Smart Structures, because it ensures, or promises, lower weight, lower cost, more effectiveness and all what is desirable in a vehicle design process, with respect to the current solutions. More and more attention in the research world has been devoting to this argument, pushed by both political, economical and environmental reasons, the one connected to the others. Piezoceramic actuators, integrated into the structure, seem to offer the most fashionable and practical solutions among all the proposed architectures, [1-2]. As sensors, microphones demonstrated to be the most performing, above all because they give the most suitable representation of the field that has to be cancelled, [3-4]. This approach is known as Acousto-Structural Active Control, ASAC, [5]. However, according to Fuller's definition, [6] , an intelligent controller is needed to ensure the development of an "Intelligent Structure" . Its main characteristic should be represented by the capability of learning by examples, of following the structure during its evolution, of being the system "brain" . This peculiarity may be offered by Artificial Neural Networks (ANN's), [7-8]. They present other important features, like the capability, in principle, of treating non-linear as well as linear problems, [9], of identifying dynamic systems, [10], of properly acting as a controller. Then, such a net could integrate in itself the function of "system estimator" or "observer" ,and of interpolator - extrapolator and controller, contemporarily. The authors have been working on such subjects for a long time, proposing for instance ANN's as time-domain structural parameters estimators on a simple 2D element ( a framed plate), [11], as noise and vibration controllers in a FF system, [12-13], as materials damping parameters extractors from experimental data, [14]. All these applications were aimed at noise reduction problems. The

  8. Adaptive Control Law Development for Failure Compensation Using Neural Networks on a NASA F-15 Aircraft

    Science.gov (United States)

    Burken, John J.

    2005-01-01

    This viewgraph presentation covers the following topics: 1) Brief explanation of Generation II Flight Program; 2) Motivation for Neural Network Adaptive Systems; 3) Past/ Current/ Future IFCS programs; 4) Dynamic Inverse Controller with Explicit Model; 5) Types of Neural Networks Investigated; and 6) Brief example

  9. Neural networks as a possible architecture for the distributed control of space systems

    Science.gov (United States)

    Fiesler, E.; Choudry, A.

    1987-01-01

    Researchers attempted to identify the features essential for large, complex, multi-modular multi-functional systems possessing a high level of interconnectivity. These features were studied in the context of neural networks with the aim of arriving at a possible architecture of the distributed control system-specific features of the neural networks and their applicability in space systems.

  10. Nonlinear Lateral Command Control Using Neural Network for F-16 Aircraft

    OpenAIRE

    Suresh, S; Kannan, N; Omkar, SN; Mani, V

    2005-01-01

    A discrete time neural network based lateral controller design for an F-16 nonlinear model is presented. The controller is designed using model reference indirect adaptive control and the input output representation and control law for nonlinear model are established using system theory. The input-output representation and control law are approximated using neural networks with linear filters. The design takes into account the multi input multi output nature of the lateral model. Roll rate an...

  11. Neural network based adaptive output feedback control: Applications and improvements

    Science.gov (United States)

    Kutay, Ali Turker

    Application of recently developed neural network based adaptive output feedback controllers to a diverse range of problems both in simulations and experiments is investigated in this thesis. The purpose is to evaluate the theory behind the development of these controllers numerically and experimentally, identify the needs for further development in practical applications, and to conduct further research in directions that are identified to ultimately enhance applicability of adaptive controllers to real world problems. We mainly focus our attention on adaptive controllers that augment existing fixed gain controllers. A recently developed approach holds great potential for successful implementations on real world applications due to its applicability to systems with minimal information concerning the plant model and the existing controller. In this thesis the formulation is extended to the multi-input multi-output case for distributed control of interconnected systems and successfully tested on a formation flight wind tunnel experiment. The command hedging method is formulated for the approach to further broaden the class of systems it can address by including systems with input nonlinearities. Also a formulation is adopted that allows the approach to be applied to non-minimum phase systems for which non-minimum phase characteristics are modeled with sufficient accuracy and treated properly in the design of the existing controller. It is shown that the approach can also be applied to augment nonlinear controllers under certain conditions and an example is presented where the nonlinear guidance law of a spinning projectile is augmented. Simulation results on a high fidelity 6 degrees-of-freedom nonlinear simulation code are presented. The thesis also presents a preliminary adaptive controller design for closed loop flight control with active flow actuators. Behavior of such actuators in dynamic flight conditions is not known. To test the adaptive controller design in

  12. Recurrent Neural Network Identification and Adaptive Neural Control of Hydrocarbon Biodegradation Processes

    OpenAIRE

    Baruch, Ieroham; Mariaca-Gaspar, Carlos; Barrera-Cortes, Josefina

    2008-01-01

    The chapter proposes a new Kalman filter closed loop topology of recurrent neural network for identification and modeling of an unknown hydrocarbon degradation process carried out in a biopile system and a rotating drum. The proposed KF RNN contained a recurrent neural plant model, a recurrent neural output plant filter and posses global and local feedbacks. The learning algorithm is a modified version of the dynamic Backpropagation one derived using the adjoint KF RNN topology by means of th...

  13. Electromyogram-based neural network control of transhumeral prostheses.

    Science.gov (United States)

    Pulliam, Christopher L; Lambrecht, Joris M; Kirsch, Robert F

    2011-01-01

    Upper-limb amputation can cause a great deal of functional impairment for patients, particularly for those with amputation at or above the elbow. Our long-term objective is to improve functional outcomes for patients with amputation by integrating a fully implanted electromyographic (EMG) recording system with a wireless telemetry system that communicates with the patient's prosthesis. We believe that this should generate a scheme that will allow patients to robustly control multiple degrees of freedom simultaneously. The goal of this study is to evaluate the feasibility of predicting dynamic arm movements (both flexion/extension and pronation/supination) based on EMG signals from a set of muscles that would likely be intact in patients with transhumeral amputation. We recorded movement kinematics and EMG signals from seven muscles during a variety of movements with different complexities. Time-delayed artificial neural networks were then trained offline to predict the measured arm trajectories based on features extracted from the measured EMG signals. We evaluated the relative effectiveness of various muscle subsets. Predicted movement trajectories had average root-mean-square errors of approximately 15.7° and 24.9° and average R(2) values of approximately 0.81 and 0.46 for elbow flexion/extension and forearm pronation/supination, respectively.

  14. Neural networks for predictive control of the mechanism of ...

    African Journals Online (AJOL)

    In this paper, we are interested in the study of the control of orientation of a wind turbine like means of optimization of his output/input ratio (efficiency). The approach suggested is based on the neural predictive control which is justified by the randomness of the wind on the one hand, and on the other hand by the capacity of ...

  15. Path optimisation of a mobile robot using an artificial neural network controller

    Science.gov (United States)

    Singh, M. K.; Parhi, D. R.

    2011-01-01

    This article proposed a novel approach for design of an intelligent controller for an autonomous mobile robot using a multilayer feed forward neural network, which enables the robot to navigate in a real world dynamic environment. The inputs to the proposed neural controller consist of left, right and front obstacle distance with respect to its position and target angle. The output of the neural network is steering angle. A four layer neural network has been designed to solve the path and time optimisation problem of mobile robots, which deals with the cognitive tasks such as learning, adaptation, generalisation and optimisation. A back propagation algorithm is used to train the network. This article also analyses the kinematic design of mobile robots for dynamic movements. The simulation results are compared with experimental results, which are satisfactory and show very good agreement. The training of the neural nets and the control performance analysis has been done in a real experimental setup.

  16. Extended Kalman Filter Based Neural Networks Controller For Hot Strip Rolling mill

    International Nuclear Information System (INIS)

    Moussaoui, A. K.; Abbassi, H. A.; Bouazza, S.

    2008-01-01

    The present paper deals with the application of an Extended Kalman filter based adaptive Neural-Network control scheme to improve the performance of a hot strip rolling mill. The suggested Neural Network model was implemented using Bayesian Evidence based training algorithm. The control input was estimated iteratively by an on-line extended Kalman filter updating scheme basing on the inversion of the learned neural networks model. The performance of the controller is evaluated using an accurate model estimated from real rolling mill input/output data, and the usefulness of the suggested method is proved

  17. Fuzzy and neural control

    Science.gov (United States)

    Berenji, Hamid R.

    1992-01-01

    Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.

  18. Neural network estimation of balance control during locomotion.

    Science.gov (United States)

    Hahn, Michael E; Farley, Arthur M; Lin, Victor; Chou, Li-Shan

    2005-04-01

    Gait patterns of the elderly are often adjusted to accommodate for reduced function in the balance control system and a general reduction in skeletal muscle strength. Recent studies have demonstrated that measures related to motion of whole body center of mass (COM) can distinguish elderly individuals with balance impairment from healthy peers. Accurate COM estimation requires a multiple-segment anthropometric model, which may restrict its broad application in assessment of dynamic instability. Although temporal-distance measures and electromyography have been used in evaluation of overall gait function and determination of gait dysfunction, no studies have examined the use of gait measurements in predicting COM motion during gait. The purpose of this study was to demonstrate the effectiveness of an artificial neural network (ANN) model in mapping gait measurements onto COM motion in the frontal plane. Data from 40 subjects of varied age and balance impairment were entered into a 3-layer feed-forward model with back-propagated error correction. Bootstrap re-sampling was used to enhance the generalization accuracy of the model, using 20 re-sampling trials. The ANN model required minimal processing time (5 epochs, with 20 hidden units) and accurately mapped COM motion (R-values up to 0.89). As training proportion and number of hidden units increased, so did model accuracy. Overall, this model appears to be effective as a mapping tool for estimating balance control during locomotion. With easily obtained gait measures as input and a simple, computationally efficient architecture, the model may prove useful in clinical scenarios where electromyography equipment exists.

  19. Robust Neural Network Control of Electrically Driven Robot Manipulator using Backstepping Approach

    Directory of Open Access Journals (Sweden)

    Seyed Ehsan Shafiei

    2010-02-01

    Full Text Available A novel approach to neural network based tracking-control of robot manipulator including actuator dynamics is proposed by using of backstepping method. A simple two-step backstepping is considered for an nlink robotic system, and a feedforward neural controller is designed at second step where structured and unstructured uncertainties in robot dynamics and actuator model are approximated by this neural controller. Bounds of network reconstruction error and other imprecisions are estimated adaptively and for compensating them, a robust control signal is added and modified. Stability analysis is performed by the Lyapunov direct method and performance efficiency of the proposed controller is justified by the simulations.

  20. SYSTEM DESIGN AND BEHAVIOR OF PATTERN RECOGNITION OF CONTROL CHART USING NEURAL NETWORK

    OpenAIRE

    Justin Yulius Halim

    2003-01-01

    Recognition of unnatural patterns in control charts is important to get more understanding about the process problem. Shewhart control chart can recognize shift pattern only, while the others cannot be detected by this chart. Neural networks were proposed by many researchers to achieve the better recognition of the patterns. A system of neural networks needs to be fitted to this problem by realizing the behaviors of control charts. Each behavior will affect the development of each part of the...

  1. Course Control of Underactuated Ship Based on Nonlinear Robust Neural Network Backstepping Method.

    Science.gov (United States)

    Yuan, Junjia; Meng, Hao; Zhu, Qidan; Zhou, Jiajia

    2016-01-01

    The problem of course control for underactuated surface ship is addressed in this paper. Firstly, neural networks are adopted to determine the parameters of the unknown part of ideal virtual backstepping control, even the weight values of neural network are updated by adaptive technique. Then uniform stability for the convergence of course tracking errors has been proven through Lyapunov stability theory. Finally, simulation experiments are carried out to illustrate the effectiveness of proposed control method.

  2. Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control.

    Science.gov (United States)

    Yang, Shiju; Li, Chuandong; Huang, Tingwen

    2016-03-01

    The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A Gain-Scheduling PI Control Based on Neural Networks

    Directory of Open Access Journals (Sweden)

    Stefania Tronci

    2017-01-01

    Full Text Available This paper presents a gain-scheduling design technique that relies upon neural models to approximate plant behaviour. The controller design is based on generic model control (GMC formalisms and linearization of the neural model of the process. As a result, a PI controller action is obtained, where the gain depends on the state of the system and is adapted instantaneously on-line. The algorithm is tested on a nonisothermal continuous stirred tank reactor (CSTR, considering both single-input single-output (SISO and multi-input multi-output (MIMO control problems. Simulation results show that the proposed controller provides satisfactory performance during set-point changes and disturbance rejection.

  4. Global exponential synchronization of inertial memristive neural networks with time-varying delay via nonlinear controller.

    Science.gov (United States)

    Gong, Shuqing; Yang, Shaofu; Guo, Zhenyuan; Huang, Tingwen

    2018-06-01

    The paper is concerned with the synchronization problem of inertial memristive neural networks with time-varying delay. First, by choosing a proper variable substitution, inertial memristive neural networks described by second-order differential equations can be transformed into first-order differential equations. Then, a novel controller with a linear diffusive term and discontinuous sign term is designed. By using the controller, the sufficient conditions for assuring the global exponential synchronization of the derive and response neural networks are derived based on Lyapunov stability theory and some inequality techniques. Finally, several numerical simulations are provided to substantiate the effectiveness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Introduction to neural networks

    CERN Document Server

    James, Frederick E

    1994-02-02

    1. Introduction and overview of Artificial Neural Networks. 2,3. The Feed-forward Network as an inverse Problem, and results on the computational complexity of network training. 4.Physics applications of neural networks.

  6. Identification and adaptive neural network control of a DC motor system with dead-zone characteristics.

    Science.gov (United States)

    Peng, Jinzhu; Dubay, Rickey

    2011-10-01

    In this paper, an adaptive control approach based on the neural networks is presented to control a DC motor system with dead-zone characteristics (DZC), where two neural networks are proposed to formulate the traditional identification and control approaches. First, a Wiener-type neural network (WNN) is proposed to identify the motor DZC, which formulates the Wiener model with a linear dynamic block in cascade with a nonlinear static gain. Second, a feedforward neural network is proposed to formulate the traditional PID controller, termed as PID-type neural network (PIDNN), which is then used to control and compensate for the DZC. In this way, the DC motor system with DZC is identified by the WNN identifier, which provides model information to the PIDNN controller in order to make it adaptive. Back-propagation algorithms are used to train both neural networks. Also, stability and convergence analysis are conducted using the Lyapunov theorem. Finally, experiments on the DC motor system demonstrated accurate identification and good compensation for dead-zone with improved control performance over the conventional PID control. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Earth Station Neural Network Control Methodology and Simulation

    OpenAIRE

    Hanaa T. El-Madany; Faten H. Fahmy; Ninet M. A. El-Rahman; Hassen T. Dorrah

    2012-01-01

    Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematic...

  8. Experiments in Neural-Network Control of a Free-Flying Space Robot

    National Research Council Canada - National Science Library

    Wilson, Edward

    1995-01-01

    Four important generic issues are identified and addressed in some depth in this thesis as part of the development of an adaptive neural network based control system for an experimental free flying space robot prototype...

  9. Adaptive RBF Neural Network Control for Three-Phase Active Power Filter

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2013-05-01

    Full Text Available Abstract An adaptive radial basis function (RBF neural network control system for three-phase active power filter (APF is proposed to eliminate harmonics. Compensation current is generated to track command current so as to eliminate the harmonic current of non-linear load and improve the quality of the power system. The asymptotical stability of the APF system can be guaranteed with the proposed adaptive neural network strategy. The parameters of the neural network can be adaptively updated to achieve the desired tracking task. The simulation results demonstrate good performance, for example showing small current tracking error, reduced total harmonic distortion (THD, improved accuracy and strong robustness in the presence of parameters variation and nonlinear load. It is shown that the adaptive RBF neural network control system for three-phase APF gives better control than hysteresis control.

  10. Control of continuous fed-batch fermentation process using neural network based model predictive controller.

    Science.gov (United States)

    Kiran, A Uma Maheshwar; Jana, Asim Kumar

    2009-10-01

    Cell growth and metabolite production greatly depend on the feeding of the nutrients in fed-batch fermentations. A strategy for controlling the glucose feed rate in fed-batch baker's yeast fermentation and a novel controller was studied. The difference between the specific carbon dioxide evolution rate and oxygen uptake rate (Qc - Qo) was used as controller variable. The controller evaluated was neural network based model predictive controller and optimizer. The performance of the controller was evaluated by the set point tracking. Results showed good performance of the controller.

  11. Visual control of a robot manipulator using neural networks

    International Nuclear Information System (INIS)

    Kurazume, Ryo; Sekiguchi, Minoru; Nagata, Shigemi

    1994-01-01

    This paper describes a vision-motor fusion system using neural networks, consisting of multiple vision sensors and a manipulator, for grasping an object placed in a desired position and attitude in a three-dimensional workspace. The system does not need complicated vision sensor calibration and calculation of a transformation matrix, and can thus be easily constructed for grasping tasks. An experimental system with two TV cameras and a manipulator with six degrees of freedom grasped a connector suspended in a three-dimensional workspace with high accuracy. (author)

  12. Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks

    Directory of Open Access Journals (Sweden)

    Xiao-Li Li

    2014-01-01

    Full Text Available As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine neural networks are studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by using OS-ELM (online sequential extreme learning machine neural networks. Based on data scope division, the problem that training process of ELM neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data corresponding to this range will be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive control will be used to improve the control performance. Simulation results are included to complement the theoretical results.

  13. Adaptive Neural Network Dynamic Inversion with Prescribed Performance for Aircraft Flight Control

    OpenAIRE

    Gai, Wendong; Wang, Honglun; Zhang, Jing; Li, Yuxia

    2013-01-01

    An adaptive neural network dynamic inversion with prescribed performance method is proposed for aircraft flight control. The aircraft nonlinear attitude angle model is analyzed. And we propose a new attitude angle controller design method based on prescribed performance which describes the convergence rate and overshoot of the tracking error. Then the model error is compensated by the adaptive neural network. Subsequently, the system stability is analyzed in detail. Finally, the proposed meth...

  14. Implementation of Neural Networks for Intelligent Sensors and Control Using MATLAB

    OpenAIRE

    NAW KHU SAY WAH

    2015-01-01

    This system is concerned with the design, sensing and intelligent control of robot that moves in synchronization with the movement of the natural eye. The system deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. Signal processing techniques used in sensor are studied using statistical methods and artificial neural network based techniques. Multilayer neural networks have been successfully applied as intel...

  15. Identification and control of non-linear time-varying dynamical systems using artificial neural networks

    OpenAIRE

    Dror, Shahar

    1992-01-01

    Approved for public release; distribution is unlimited Identification and control of non-linear dynamical systems is a very complex task which requires new methods of approaching. This research addresses the problem of emulation and control via the use of distributed parallel processing, namely artificial neural networks. Four models for describing non-linear MIMO dynamical systems are presented. Based on these models a combined feedforward and recurrent neural networks are structured t...

  16. Optimization of a neural network based direct inverse control for controlling a quadrotor unmanned aerial vehicle

    Directory of Open Access Journals (Sweden)

    Heryanto M Ary

    2015-01-01

    Full Text Available UAVs are mostly used for surveillance, inspection and data acquisition. We have developed a Quadrotor UAV that is constructed based on a four motors with a lift-generating propeller at each motors. In this paper, we discuss the development of a quadrotor and its neural networks direct inverse control model using the actual flight data. To obtain a better performance of the control system of the UAV, we proposed an Optimized Direct Inverse controller based on re-training the neural networks with the new data generated from optimal maneuvers of the quadrotor. Through simulation of the quadrotor using the developed DIC and Optimized DIC model, results show that both models have the ability to stabilize the quadrotor with a good tracking performance. The optimized DIC model, however, has shown a better performance, especially in the settling time parameter.

  17. Robust synchronization of delayed neural networks based on adaptive control and parameters identification

    International Nuclear Information System (INIS)

    Zhou Jin; Chen Tianping; Xiang Lan

    2006-01-01

    This paper investigates synchronization dynamics of delayed neural networks with all the parameters unknown. By combining the adaptive control and linear feedback with the updated law, some simple yet generic criteria for determining the robust synchronization based on the parameters identification of uncertain chaotic delayed neural networks are derived by using the invariance principle of functional differential equations. It is shown that the approaches developed here further extend the ideas and techniques presented in recent literature, and they are also simple to implement in practice. Furthermore, the theoretical results are applied to a typical chaotic delayed Hopfied neural networks, and numerical simulation also demonstrate the effectiveness and feasibility of the proposed technique

  18. Control of a loop polymerization reactor using neural networks

    Directory of Open Access Journals (Sweden)

    M.P. Vega

    2000-12-01

    Full Text Available or multivariable non linear predictive control implementations, a hybrid-neural model (lumped model was successfully used for modeling a loop-tubular polymerization reactor (a lumped or distributed model, depending on recycle ratio. Bifurcation diagrams were computed in order to investigate the agreement between process and model, of paramount importance for model based controller implementation purposes. Performance was evaluated considering the nonlinear model predictive control of both a loop tubular reactor (lumped SISO problem and a tubular reactor (distributed MIMO problem.

  19. Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy

    Science.gov (United States)

    Sun, Ran; Wang, Jihe; Zhang, Dexin; Shao, Xiaowei

    2018-02-01

    This paper presents an adaptive neural networks-based control method for spacecraft formation with coupled translational and rotational dynamics using only aerodynamic forces. It is assumed that each spacecraft is equipped with several large flat plates. A coupled orbit-attitude dynamic model is considered based on the specific configuration of atmospheric-based actuators. For this model, a neural network-based adaptive sliding mode controller is implemented, accounting for system uncertainties and external perturbations. To avoid invalidation of the neural networks destroying stability of the system, a switching control strategy is proposed which combines an adaptive neural networks controller dominating in its active region and an adaptive sliding mode controller outside the neural active region. An optimal process is developed to determine the control commands for the plates system. The stability of the closed-loop system is proved by a Lyapunov-based method. Comparative results through numerical simulations illustrate the effectiveness of executing attitude control while maintaining the relative motion, and higher control accuracy can be achieved by using the proposed neural-based switching control scheme than using only adaptive sliding mode controller.

  20. Impulsive controller design for exponential synchronization of chaotic neural networks with mixed delays

    Science.gov (United States)

    Li, Xiaodi; Rakkiyappan, R.

    2013-06-01

    This paper considers the chaotic synchronization problem of neural networks with time-varying and distributed delays using impulsive control method. By utilizing the stability theory for impulsive functional differential equations, several impulsive control laws are derived to guarantee the exponential synchronization of neural networks with time-varying and distributed delays. It is shown that chaotic synchronization of the networks is heavily dependent on the designed impulsive controllers. Moreover, these conditions are expressed in terms of LMI and can be easily checked by MATLAB LMI toolbox. Finally, a numerical example and its simulation are given to show the effectiveness and advantage of the proposed control schemes.

  1. Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network

    Directory of Open Access Journals (Sweden)

    Yundi Chu

    2015-01-01

    Full Text Available An adaptive global sliding mode control (AGSMC using RBF neural network (RBFNN is proposed for the system identification and tracking control of micro-electro-mechanical system (MEMS gyroscope. Firstly, a new kind of adaptive identification method based on the global sliding mode controller is designed to update and estimate angular velocity and other system parameters of MEMS gyroscope online. Moreover, the output of adaptive neural network control is used to adjust the switch gain of sliding mode control dynamically to approach the upper bound of unknown disturbances. In this way, the switch item of sliding mode control can be converted to the output of continuous neural network which can weaken the chattering in the sliding mode control in contrast to the conventional fixed gain sliding mode control. Simulation results show that the designed control system can get satisfactory tracking performance and effective estimation of unknown parameters of MEMS gyroscope.

  2. Adaptive Sliding Mode Control of Chaos in Permanent Magnet Synchronous Motor via Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Tat-Bao-Thien Nguyen

    2014-01-01

    Full Text Available In this paper, based on fuzzy neural networks, we develop an adaptive sliding mode controller for chaos suppression and tracking control in a chaotic permanent magnet synchronous motor (PMSM drive system. The proposed controller consists of two parts. The first is an adaptive sliding mode controller which employs a fuzzy neural network to estimate the unknown nonlinear models for constructing the sliding mode controller. The second is a compensational controller which adaptively compensates estimation errors. For stability analysis, the Lyapunov synthesis approach is used to ensure the stability of controlled systems. Finally, simulation results are provided to verify the validity and superiority of the proposed method.

  3. Method for neural network control of motion using real-time environmental feedback

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    1997-01-01

    A method of motion control for robotics and other automatically controlled machinery using a neural network controller with real-time environmental feedback. The method is illustrated with a two-finger robotic hand having proximity sensors and force sensors that provide environmental feedback signals. The neural network controller is taught to control the robotic hand through training sets using back- propagation methods. The training sets are created by recording the control signals and the feedback signal as the robotic hand or a simulation of the robotic hand is moved through a representative grasping motion. The data recorded is divided into discrete increments of time and the feedback data is shifted out of phase with the control signal data so that the feedback signal data lag one time increment behind the control signal data. The modified data is presented to the neural network controller as a training set. The time lag introduced into the data allows the neural network controller to account for the temporal component of the robotic motion. Thus trained, the neural network controlled robotic hand is able to grasp a wide variety of different objects by generalizing from the training sets.

  4. Adaptive Neural Network Sliding Mode Control for Quad Tilt Rotor Aircraft

    Directory of Open Access Journals (Sweden)

    Yanchao Yin

    2017-01-01

    Full Text Available A novel neural network sliding mode control based on multicommunity bidirectional drive collaborative search algorithm (M-CBDCS is proposed to design a flight controller for performing the attitude tracking control of a quad tilt rotors aircraft (QTRA. Firstly, the attitude dynamic model of the QTRA concerning propeller tension, channel arm, and moment of inertia is formulated, and the equivalent sliding mode control law is stated. Secondly, an adaptive control algorithm is presented to eliminate the approximation error, where a radial basis function (RBF neural network is used to online regulate the equivalent sliding mode control law, and the novel M-CBDCS algorithm is developed to uniformly update the unknown neural network weights and essential model parameters adaptively. The nonlinear approximation error is obtained and serves as a novel leakage term in the adaptations to guarantee the sliding surface convergence and eliminate the chattering phenomenon, which benefit the overall attitude control performance for QTRA. Finally, the appropriate comparisons among the novel adaptive neural network sliding mode control, the classical neural network sliding mode control, and the dynamic inverse PID control are examined, and comparative simulations are included to verify the efficacy of the proposed control method.

  5. Adaptive Control Using Neural Network Augmentation for a Modified F-15 Aircraft

    Science.gov (United States)

    Burken, John J.; Williams-Hayes, Peggy; Karneshige, J. T.; Stachowiak, Susan J.

    2006-01-01

    Description of the performance of a simplified dynamic inversion controller with neural network augmentation follows. Simulation studies focus on the results with and without neural network adaptation through the use of an F-15 aircraft simulator that has been modified to include canards. Simulated control law performance with a surface failure, in addition to an aerodynamic failure, is presented. The aircraft, with adaptation, attempts to minimize the inertial cross-coupling effect of the failure (a control derivative anomaly associated with a jammed control surface). The dynamic inversion controller calculates necessary surface commands to achieve desired rates. The dynamic inversion controller uses approximate short period and roll axis dynamics. The yaw axis controller is a sideslip rate command system. Methods are described to reduce the cross-coupling effect and maintain adequate tracking errors for control surface failures. The aerodynamic failure destabilizes the pitching moment due to angle of attack. The results show that control of the aircraft with the neural networks is easier (more damped) than without the neural networks. Simulation results show neural network augmentation of the controller improves performance with aerodynamic and control surface failures in terms of tracking error and cross-coupling reduction.

  6. A Predictive Neural Network-Based Cascade Control for pH Reactors

    Directory of Open Access Journals (Sweden)

    Mujahed AlDhaifallah

    2016-01-01

    Full Text Available This paper is concerned with the development of predictive neural network-based cascade control for pH reactors. The cascade structure consists of a master control loop (fuzzy proportional-integral and a slave one (predictive neural network. The master loop is chosen to be more accurate but slower than the slave one. The strong features found in cascade structure have been added to the inherent features in model predictive neural network. The neural network is used to alleviate modeling difficulties found with pH reactor and to predict its behavior. The parameters of predictive algorithm are determined using an optimization algorithm. The effectiveness and feasibility of the proposed design have been demonstrated using MatLab.

  7. Optimization and control of a small angle ion source using an adaptive neural network controller

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.K.; Mead, W.C.; Bowling, P.S.; Jones, R.D.; Barnes, C.W.

    1993-09-01

    This project developed an automated controller based on an artificial neural network and evaluated its applicability in a real-time environment. This capability was developed within the context of a small angle negative ion source on the Discharge Test Stand at Los Alamos. The controller processes information obtained from the beam current waveform, developing a figure of merit (fom) to determine the ion source operating conditions. The fom is composed of the magnitude of the beam current, the stability of operation, and the quietness of the beam. Using no knowledge of operating conditions, the controller begins by making of rough scan of the four-dimensional operating surface. This surface uses as independent variables the anode and cathode temperatures, the hydrogen flow rate, and the arc voltage. `Me dependent variable is the fom described above. Once the rough approximation of the surface has been determined, the network formulates a model from which it determines the best operating point. The controller takes the ion source to that operating point for a reality check. As real data is fed in, the model of the operating surface is updated until the neural network`s model agrees with reality. The controller then uses a gradient ascent method to optimize the operation of the ion source. Initial tests of the controller indicate that it is remarkably capable. It has optimized the operation of the ion source on six different occasions bringing the beam to excellent quality and stability.

  8. Research on Environmental Adjustment of Cloud Ranch Based on BP Neural Network PID Control

    Science.gov (United States)

    Ren, Jinzhi; Xiang, Wei; Zhao, Lin; Wu, Jianbo; Huang, Lianzhen; Tu, Qinggang; Zhao, Heming

    2018-01-01

    In order to make the intelligent ranch management mode replace the traditional artificial one gradually, this paper proposes a pasture environment control system based on cloud server, and puts forward the PID control algorithm based on BP neural network to control temperature and humidity better in the pasture environment. First, to model the temperature and humidity (controlled object) of the pasture, we can get the transfer function. Then the traditional PID control algorithm and the PID one based on BP neural network are applied to the transfer function. The obtained step tracking curves can be seen that the PID controller based on BP neural network has obvious superiority in adjusting time and error, etc. This algorithm, calculating reasonable control parameters of the temperature and humidity to control environment, can be better used in the cloud service platform.

  9. Studies on neutron noise diagnostics of control rod vibrations by neural networks

    International Nuclear Information System (INIS)

    Roston, G.; Kozma, R.; Kitamura, M.; Garis, N.S.; Pazsit, I.

    1996-01-01

    This work is focussed on the study of a neutron noise based technique for the diagnostics of reactor core internal, in particular, excessively vibrating control rods. The use of a combination of physical models and neural networks offers an alternative way of performing the inversion procedure. The application of a neural network technique to determine the rod position from the detector spectra is much faster, more effective and simpler to use than the conventional method. (author). 5 refs., 1 fig., 1 tab

  10. Synchronization of chaotic recurrent neural networks with time-varying delays using nonlinear feedback control

    International Nuclear Information System (INIS)

    Cui Baotong; Lou Xuyang

    2009-01-01

    In this paper, a new method to synchronize two identical chaotic recurrent neural networks is proposed. Using the drive-response concept, a nonlinear feedback control law is derived to achieve the state synchronization of the two identical chaotic neural networks. Furthermore, based on the Lyapunov method, a delay independent sufficient synchronization condition in terms of linear matrix inequality (LMI) is obtained. A numerical example with graphical illustrations is given to illuminate the presented synchronization scheme

  11. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  12. Neural networks for control of NO{sub x} emissions in fossil plants

    Energy Technology Data Exchange (ETDEWEB)

    Reifman, J.; Feldman, E.E.

    1997-04-01

    We discuss the use of two classes of artificial neural networks, multilayer feedforward networks and fully-recurrent networks, in the development of a closed-loop controller for discrete-time dynamical systems. We apply the neural system to the control of oxides of nitrogen (NO{sub x}) emissions for a simplified representation of a furnace of a coal-fired fossil plant. Plant data from one of Commonwealth Edison`s fossil power plants were used to build a recurrent neural model of NO{sub x} formation which is then used in the training of the feedforward neural controller. Preliminary simulation results demonstrate the feasibility of the approach and additional tests with increasingly realistic models should be pursued.

  13. SYNTHESIS OF NEURAL NETWORK MODEL REFERENCE CONTROLLER FOR AIMING AND STABILIZING SYSTEM

    Directory of Open Access Journals (Sweden)

    B.I. Kuznetsov

    2015-11-01

    Full Text Available The aim of this work is the synthesis of neural network reference model controller. The synthesis is performed in MATLAB for the problem of control of the aiming and stabilization system for the special equipment of moving objects. This paper presents the synthesis of the neural network reference model controller to meet the given performance characteristics of operation for the aiming and stabilization system for the special equipment of moving objects. Simulink tool in MATLAB is used to build the block diagram of double-loop neural network system of aiming and stabilization, where the reference model controller is put in the velocity loop and P-regulator is put in the position loop, with feedforward velocity control. Presented the method of synthesis of the neural network reference model controller that is implemented in the Neural Network Toolbox in MATLAB. System tests with the broad range of parameter values determined the key parameters defining the control quality. Optimal values of the key parameters were found to provide the highest control performance. System simulation and analysis of the obtained results is given.

  14. Towards an Irritable Bowel Syndrome Control System Based on Artificial Neural Networks

    Science.gov (United States)

    Podolski, Ina; Rettberg, Achim

    To solve health problems with medical applications that use complex algorithms is a trend nowadays. It could also be a chance to help patients with critical problems caused from nerve irritations to overcome them and provide a better living situation. In this paper a system for monitoring and controlling the nerves from the intestine is described on a theoretical basis. The presented system could be applied to the irritable bowel syndrome. For control a neural network is used. The advantages for using a neural network for the control of irritable bowel syndrome are the adaptation and learning. These two aspects are important because the syndrome behavior varies from patient to patient and have also concerning the time a lot of variations with respect to each patient. The developed neural network is implemented and can be simulated. Therefore, it can be shown how the network monitor and control the nerves for individual input parameters.

  15. PID Control of Miniature Unmanned Helicopter Yaw System Based on RBF Neural Network

    Science.gov (United States)

    Pan, Yue; Song, Ping; Li, Kejie

    The yaw dynamics of a miniature unmanned helicopter exhibits a complex, nonlinear, time-varying and coupling dynamic behavior. In this paper, simplified yaw dynamics model of MUH in hovering or low-velocity flight mode is established. The SISO model of yaw dynamics is obtained by mechanism modeling and system identification modeling method. PID control based on RBF neural network method combines the advantages of traditional PID controller and neural network controller. It has fast response, good robustness and self-adapting ability. It is suitable to control the yaw system of MUH. Simulation results show that the control system works well with quick response, good robustness and self adaptation.

  16. Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Abbas Ajorkar

    2015-04-01

    Full Text Available In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control has been designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, a multilayer neural network with back-propagation law is designed. In this structure, the parameters of the moment of inertia matrix and external disturbances are estimated and used in feedback linearization control law. Finally, the performance of the designed attitude controller is investigated by several simulations.

  17. A simulation study on the intelligent active force control of a robot arm using neural network

    International Nuclear Information System (INIS)

    Musa Mailah

    1999-01-01

    The paper presents the use of neural network as an intelligent parameter estimator in conjunction with an active force control strategy to control a rigid robot arm. The estimated inertia matrix of the arm is computed automatically and continuously via neural network mechanism. The effectiveness of the proposed control scheme is demonstrated through a simulation study performed on a two link planar manipulator operating in a horizontal plane. The robustness of the proposed scheme is further investigated considering the trajectory tracking performance of the manipulator subject to various loading conditions and disturbances. Two types of neural network architectures - the error back propagation and radial basis function networks are individually experimented and applied in the study. (author)

  18. Adaptive online state-of-charge determination based on neuro-controller and neural network

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yanqing, E-mail: network_hawk@126.co [Department of Automation, Chongqing Industry Polytechnic College, Jiulongpo District, Chongqing 400050 (China)

    2010-05-15

    This paper presents a novel approach using adaptive artificial neural network based model and neuro-controller for online cell State of Charge (SOC) determination. Taking cell SOC as model's predictive control input unit, radial basis function neural network, which can adjust its structure to prediction error with recursive least square algorithm, is used to simulate battery system. Besides that, neuro-controller based on Back-Propagation Neural Network (BPNN) and modified PID controller is used to decide the control input of battery system, i.e., cell SOC. Finally this algorithm is applied for the SOC determination of lead-acid batteries, and results of lab tests on physical cells, compared with model prediction, are presented. Results show that the ANN based battery system model adaptively simulates battery system with great accuracy, and the predicted SOC simultaneously converges to the real value quickly within the error of +-1 as time goes on.

  19. SYSTEM DESIGN AND BEHAVIOR OF PATTERN RECOGNITION OF CONTROL CHART USING NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Justin Yulius Halim

    2003-01-01

    Full Text Available Recognition of unnatural patterns in control charts is important to get more understanding about the process problem. Shewhart control chart can recognize shift pattern only, while the others cannot be detected by this chart. Neural networks were proposed by many researchers to achieve the better recognition of the patterns. A system of neural networks needs to be fitted to this problem by realizing the behaviors of control charts. Each behavior will affect the development of each part of the system. Some problem need to be pointed also when dealing with the patterns of the control chart.

  20. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  1. Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.

    Science.gov (United States)

    Wang, Leimin; Shen, Yi; Zhang, Guodong

    Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.

  2. Reconfigurable Control with Neural Network Augmentation for a Modified F-15 Aircraft

    Science.gov (United States)

    Burken, John J.

    2007-01-01

    This paper describes the performance of a simplified dynamic inversion controller with neural network supplementation. This 6 DOF (Degree-of-Freedom) simulation study focuses on the results with and without adaptation of neural networks using a simulation of the NASA modified F-15 which has canards. One area of interest is the performance of a simulated surface failure while attempting to minimize the inertial cross coupling effect of a [B] matrix failure (a control derivative anomaly associated with a jammed or missing control surface). Another area of interest and presented is simulated aerodynamic failures ([A] matrix) such as a canard failure. The controller uses explicit models to produce desired angular rate commands. The dynamic inversion calculates the necessary surface commands to achieve the desired rates. The simplified dynamic inversion uses approximate short period and roll axis dynamics. Initial results indicated that the transient response for a [B] matrix failure using a Neural Network (NN) improved the control behavior when compared to not using a neural network for a given failure, However, further evaluation of the controller was comparable, with objections io the cross coupling effects (after changes were made to the controller). This paper describes the methods employed to reduce the cross coupling effect and maintain adequate tracking errors. The IA] matrix failure results show that control of the aircraft without adaptation is more difficult [leas damped) than with active neural networks, Simulation results show Neural Network augmentation of the controller improves performance in terms of backing error and cross coupling reduction and improved performance with aerodynamic-type failures.

  3. Position Control of a Pneumatic Muscle Actuator Using RBF Neural Network Tuned PID Controller

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2015-01-01

    Full Text Available Pneumatic Muscle Actuator (PMA has a broad application prospect in soft robotics. However, PMA has highly nonlinear and hysteretic properties among force, displacement, and pressure, which lead to difficulty in accurate position control. A phenomenological model is developed to portray the hysteretic behavior of PMA. This phenomenological model consists of linear component and hysteretic component force. The latter component is described by Duhem model. An experimental apparatus is built up and sets of experimental data are acquired. Based on the experimental data, parameters of the model are identified. Validation of the model is performed. Then a novel cascade position PID controller is devised for a 1-DOF manipulator actuated by PMA. The outer loop of the controller is to cope with position control whilst the inner loop deals with pressure dynamics within PMA. To enhance the adaptability of the PID algorithm to the high nonlinearities of the manipulator, PID parameters are tuned online using RBF Neural Network. Experiments are performed and comparison between position response of RBF Neural Network based PID controller and that of classic PID controller demonstrates the effectiveness of the novel adaptive controller on the manipulator.

  4. A novel controller based on robust backstepping and neural network for flight motion simulator

    Science.gov (United States)

    Liu, Zhenghua; Wu, Yunjie; Wang, Weihong

    2008-10-01

    The flight motion simulator is one kind of servo system with uncertainties and disturbances. To obtain high performance and good robustness for the flight simulator, we present a robust compound controller base on Backstepping controller and BP neural network. Firstly, the design procedure of the robust Backstepping controller is described and correlative problems are proposed. Secondly, the principle and the design process of BP neural network are analyzed and expatiated respectively. Finally, simulation results on the flight simulator show that the BP neural network can compensate external disturbances including system input and output disturbance and the system performance can be improved. Therefore both robustness and high performance of the flight simulator are achieved. It is an applied technology for the control of servo system, such as the flight motion simulator.

  5. NEURAL NETWORK INTERACTIONS AND INGESTIVE BEHAVIOR CONTROL DURING ANOREXIA

    Science.gov (United States)

    Watts, Alan G.; Salter, Dawna S.; Neuner, Christina M.

    2007-01-01

    Many models have been proposed over the years to explain how motivated feeding behavior is controlled. One of the most compelling is based on the original concepts of Eliot Stellar whereby sets of interosensory and exterosensory inputs converge on a hypothalamic control network that can either stimulate or inhibit feeding. These inputs arise from information originating in the blood, the viscera, and the telencephalon. In this manner the relative strengths of the hypothalamic stimulatory and inhibitory networks at a particular time dictates how an animal feeds. Anorexia occurs when the balance within the networks consistently favors the restraint of feeding. This article discusses experimental evidence supporting a model whereby the increases in plasma osmolality that result from drinking hypertonic saline activate pathways projecting to neurons in the paraventricular nucleus of the hypothalamus (PVH) and lateral hypothalamic area (LHA). These neurons constitute the hypothalamic controller for ingestive behavior, and receive a set of afferent inputs from regions of the brain that process sensory information that is critical for different aspects of feeding. Important sets of inputs arise in the arcuate nucleus, the hindbrain, and in the telencephalon. Anorexia is generated in dehydrated animals by way of osmosensitive projections to the behavior control neurons in the PVH and LHA, rather than by actions on their afferent inputs. PMID:17531275

  6. Artificial neural networks in variable process control: application in particleboard manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, L. G.; Garcia Fernandez, F.; Palacios, P. de; Conde, M.

    2009-07-01

    Artificial neural networks are an efficient tool for modelling production control processes using data from the actual production as well as simulated or design of experiments data. In this study two artificial neural networks were combined with the control process charts and it was checked whether the data obtained by the networks were valid for variable process control in particleboard manufacture. The networks made it possible to obtain the mean and standard deviation of the internal bond strength of the particleboard within acceptable margins using known data of thickness, density, moisture content, swelling and absorption. The networks obtained met the acceptance criteria for test values from non-standard test methods, as well as the criteria for using these values in statistical process control. (Author) 47 refs.

  7. Simulation, State Estimation and Control of Nonlinear Superheater Attemporator using Neural Networks

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Sørensen, O.

    2000-01-01

    This paper considers the use of neural networks for nonlinear state estimation, system identification and control. As a case study we use data taken from a nonlinear injection valve for a superheater attemporator at a power plant. One neural network is trained as a nonlinear simulation model...... of the process, then another network is trained to act as a combined state and parameter estimator for the process. The observer network incorporates smoothing of the parameter estimates in the form of regularization. A pole placement controller is designed which takes advantage of the sample......-by-sample linearizations and state estimates provided by the observer network. Simulation studies show that the nonlinear observer-based control loop performs better than a similar control loop based on a linear observer....

  8. Simulation, State Estimation and Control of Nonlinear Superheater Attemporator using Neural Networks

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Sørensen, O.

    1999-01-01

    This paper considers the use of neural networks for nonlinear state estimation, system identification and control. As a case study we use data taken from a nonlinear injection valve for a superheater attemporator at a power plant. One neural network is trained as a nonlinear simulation model...... of the process, then another network is trained to act as a combined state and parameter estimator for the process. The observer network incorporates smoothing of the parameter estimates in the form of regularization. A pole placement controller is designed which takes advantage of the sample......-by-sample linearizations and state estimates provided by the observer network. Simulation studies show that the nonlinear observer-based control loop performs better than a similar control loop based on a linear observer....

  9. Design of the automatic landing inversion flight control system based on neural network compensation for UAV

    Science.gov (United States)

    Chen, Yinchao; Yang, Wei

    2009-12-01

    A dynamic inversion control method based on neural network compensation for UAV automatic landing is introduced. Aimed at the nonlinear characteristic of automatic landing procedure, the dynamic inversion method is used for feedback linearization. The on-line neural network is introduced to compensation dynamic inversion error caused by the disturbance factors during automatic landing and improves the controller performance. Numerical simulation presents that the control method can make the UAV follow the expected trace properly and have good dynamic performance and robust performance.

  10. Adaptive Neural Network Dynamic Inversion with Prescribed Performance for Aircraft Flight Control

    Directory of Open Access Journals (Sweden)

    Wendong Gai

    2013-01-01

    Full Text Available An adaptive neural network dynamic inversion with prescribed performance method is proposed for aircraft flight control. The aircraft nonlinear attitude angle model is analyzed. And we propose a new attitude angle controller design method based on prescribed performance which describes the convergence rate and overshoot of the tracking error. Then the model error is compensated by the adaptive neural network. Subsequently, the system stability is analyzed in detail. Finally, the proposed method is applied to the aircraft attitude tracking control system. The nonlinear simulation demonstrates that this method can guarantee the stability and tracking performance in the transient and steady behavior.

  11. A Low-Cost Maximum Power Point Tracking System Based on Neural Network Inverse Model Controller

    Directory of Open Access Journals (Sweden)

    Carlos Robles Algarín

    2018-01-01

    Full Text Available This work presents the design, modeling, and implementation of a neural network inverse model controller for tracking the maximum power point of a photovoltaic (PV module. A nonlinear autoregressive network with exogenous inputs (NARX was implemented in a serial-parallel architecture. The PV module mathematical modeling was developed, a buck converter was designed to operate in the continuous conduction mode with a switching frequency of 20 KHz, and the dynamic neural controller was designed using the Neural Network Toolbox from Matlab/Simulink (MathWorks, Natick, MA, USA, and it was implemented on an open-hardware Arduino Mega board. To obtain the reference signals for the NARX and determine the 65 W PV module behavior, a system made of a 0.8 W PV cell, a temperature sensor, a voltage sensor and a static neural network, was used. To evaluate performance a comparison with the P&O traditional algorithm was done in terms of response time and oscillations around the operating point. Simulation results demonstrated the superiority of neural controller over the P&O. Implementation results showed that approximately the same power is obtained with both controllers, but the P&O controller presents oscillations between 7 W and 10 W, in contrast to the inverse controller, which had oscillations between 1 W and 2 W.

  12. D-FNN Based Modeling and BP Neural Network Decoupling Control of PVC Stripping Process

    Directory of Open Access Journals (Sweden)

    Shu-zhi Gao

    2014-01-01

    Full Text Available PVC stripping process is a kind of complicated industrial process with characteristics of highly nonlinear and time varying. Aiming at the problem of establishing the accurate mathematics model due to the multivariable coupling and big time delay, the dynamic fuzzy neural network (D-FNN is adopted to establish the PVC stripping process model based on the actual process operation datum. Then, the PVC stripping process is decoupled by the distributed neural network decoupling module to obtain two single-input-single-output (SISO subsystems (slurry flow to top tower temperature and steam flow to bottom tower temperature. Finally, the PID controller based on BP neural networks is used to control the decoupled PVC stripper system. Simulation results show the effectiveness of the proposed integrated intelligent control method.

  13. A neural network methodology for traffic congestion prediction and online traffic control

    Energy Technology Data Exchange (ETDEWEB)

    Demmou, H.; Hermitte, L.; Sahraoui, A. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Laboratoire d`Analyse et d`Architecture des Systemes; Olivero, P. [ZELT, 31 - Toulouse (France)

    1998-12-01

    The aim of this paper is to present an approach for traffic light signals control and traffic congestion prediction based on the neural network technique. We propose to define and implement a modular and integrated functional structure to realize these two very important tasks when facing traffic problems. A methodology for Neural Network approach is proposed. The approach is intended for transportation systems and mainly for urban traffic control. The main objectives of the work are two fold; the first is to develop a generic methodology for Neural Network approach; the second is to enhance such development for transportation issues mainly in urban traffic congestion detection, congestion prediction, supervision and control. (authors) 5 refs.

  14. artificial neural network (ann)

    African Journals Online (AJOL)

    2004-08-18

    Aug 18, 2004 ... forecasting models and artificial intelligence techniques and have become one of the major research fields (Kher and Joshin, 2003). (a) Artificial Neural Network and Electrical Load. Prediction. Neural network analysis is an Artificial Intelligence. (AI) approach to mathematical modeling. Neural. Networks ...

  15. Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays

    International Nuclear Information System (INIS)

    Balasubramaniam, P.; Kalpana, M.; Rakkiyappan, R.

    2012-01-01

    Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov—Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method. (interdisciplinary physics and related areas of science and technology)

  16. Remote control of respiratory neural network by spinal locomotor generators.

    Directory of Open Access Journals (Sweden)

    Jean-Patrick Le Gal

    Full Text Available During exercise and locomotion, breathing rate rapidly increases to meet the suddenly enhanced oxygen demand. The extent to which direct central interactions between the spinal networks controlling locomotion and the brainstem networks controlling breathing are involved in this rhythm modulation remains unknown. Here, we show that in isolated neonatal rat brainstem-spinal cord preparations, the increase in respiratory rate observed during fictive locomotion is associated with an increase in the excitability of pre-inspiratory neurons of the parafacial respiratory group (pFRG/Pre-I. In addition, this locomotion-induced respiratory rhythm modulation is prevented both by bilateral lesion of the pFRG region and by blockade of neurokinin 1 receptors in the brainstem. Thus, our results assign pFRG/Pre-I neurons a new role as elements of a previously undescribed pathway involved in the functional interaction between respiratory and locomotor networks, an interaction that also involves a substance P-dependent modulating mechanism requiring the activation of neurokinin 1 receptors. This neurogenic mechanism may take an active part in the increased respiratory rhythmicity produced at the onset and during episodes of locomotion in mammals.

  17. Neural network for quality control of submunitions produced by injection loading

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.E.; Parkinson, W.J.; Hinde, R.F. Jr.; Wantuck, P.J. [Los Alamos National Lab., NM (United States). Engineering Sciences and Applications Div.; Newman, K.E. [Naval Surface Warfare Center, Yorktown, VA (United States)

    1998-12-01

    Injection loading of submunitions for smart weapons is a novel automated processing technique that can benefit from adaptive process control. This paper describes how the quality of submunitions could be controlled by using a neural network code in real time. Future work is planned to demonstrate fewer rejects and pollution reduction during submunition manufacturing.

  18. Neural networks for control of nuclear reactors systems; Redes neurais para controle de sistemas de reatores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Baptista Filho, Benedito Dias

    1998-07-01

    A new architecture of artificial neural networks was developed with the development of new control systems for nuclear facilities and robotics. The new concepts introduced with this architecture were based in the design of task dedicated networks, in the use of multiple synaptic contacts with new transfer functions, and in the use of synaptic plasticity processes similar to that of biological organisms. These concepts take advantage of the evolutionary aspects of biological systems in their architecture, signal transmission, and memory and learning processes, given rise to a generalization capacity not obtained with classical feed-forward (F-F) neural networks. The new concepts were applied to the control of a planar two-link robotic manipulator and to the control of a natural circulation water loop. Its efficiency and generalization capacity were compared with a classic neural network in F-F, trained with the back propagation algorithm. The excellent performance obtained, mainly in the manipulator's problem, that characterizes a system of dynamic more complex, demonstrated that the use of the new task specialized network, produces much better results than the results obtained with use of generic F-F networks. The training task in the new proposed neural network was 150 times faster than the F-F neural network training with back-propagation. The results showed that the positioning errors with the new model were up to 60 times smaller than the errors found with the F-F network. (author)

  19. Neural Network with Local Memory for Nuclear Reactor Power Level Control

    International Nuclear Information System (INIS)

    Uluyol, Oender; Ragheb, Magdi; Tsoukalas, Lefteri

    2001-01-01

    A methodology is introduced for a neural network with local memory called a multilayered local output gamma feedback (LOGF) neural network within the paradigm of locally-recurrent globally-feedforward neural networks. It appears to be well-suited for the identification, prediction, and control tasks in highly dynamic systems; it allows for the presentation of different timescales through incorporation of a gamma memory. A learning algorithm based on the backpropagation-through-time approach is derived. The spatial and temporal weights of the network are iteratively optimized for a given problem using the derived learning algorithm. As a demonstration of the methodology, it is applied to the task of power level control of a nuclear reactor at different fuel cycle conditions. The results demonstrate that the LOGF neural network controller outperforms the classical as well as the state feedback-assisted classical controllers for reactor power level control by showing a better tracking of the demand power, improving the fuel and exit temperature responses, and by performing robustly in different fuel cycle and power level conditions

  20. TRIGA control rod position and reactivity transient Monitoring by Neural Networks

    International Nuclear Information System (INIS)

    Rosa, R.; Palomba, M.; Sepielli, M.

    2008-01-01

    Plant sensors drift or malfunction and operator actions in nuclear reactor control can be supported by sensor on-line monitoring, and data validation through soft-computing process. On-line recalibration can often avoid manual calibration or drifting component replacement. DSP requires prompt response to the modified conditions. Artificial Neural Network (ANN) and Fuzzy logic ensure: prompt response, link with field measurement and physical system behaviour, data incoming interpretation, and detection of discrepancy for mis-calibration or sensor faults. ANN (Artificial Neural Network) is a system based on the operation of biological neural networks. Although computing is day by day advancing, there are certain tasks that a program made for a common microprocessor is unable to perform. A software implementation of an ANN can be made with Pros and Cons. Pros: A neural network can perform tasks that a linear program can not; When an element of the neural network fails, it can continue without any problem by their parallel nature; A neural network learns and does not need to be reprogrammed; It can be implemented in any application; It can be implemented without any problem. Cons: The architecture of a neural network is different from the architecture of microprocessors therefore needs to be emulated; it requires high processing time for large neural networks; and the neural network needs training to operate. Three possibilities of training exist: Supervised learning: the network is trained providing input and matching output patterns; Unsupervised learning: input patterns are not a priori classified and the system must develop its own representation of the input stimuli; Reinforcement Learning: intermediate form of the above two types of learning, the learning machine does some action on the environment and gets a feedback response from the environment. Two TRIGAN ANN applications are considered: control rod position and fuel temperature. The outcome obtained in this

  1. Adaptive neural network controller for the molten steel level control of strip casting processes

    International Nuclear Information System (INIS)

    Chen, Hung Yi; Huang, Shiuh Jer

    2010-01-01

    The twin-roll strip casting process is a steel-strip production method which combines continuous casting and hot rolling processes. The production line from molten liquid steel to the final steel-strip is shortened and the production cost is reduced significantly as compared to conventional continuous casting. The quality of strip casting process depends on many process parameters, such as molten steel level in the pool, solidification position, and roll gap. Their relationships are complex and the strip casting process has the properties of nonlinear uncertainty and time-varying characteristics. It is difficult to establish an accurate process model for designing a model-based controller to monitor the strip quality. In this paper, a model-free adaptive neural network controller is developed to overcome this problem. The proposed control strategy is based on a neural network structure combined with a sliding-mode control scheme. An adaptive rule is employed to on-line adjust the weights of radial basis functions by using the reaching condition of a specified sliding surface. This surface has the on-line learning ability to respond to the system's nonlinear and time-varying behaviors. Since this model-free controller has a simple control structure and small number of control parameters, it is easy to implement. Simulation results, based on a semi experimental system dynamic model and parameters, are executed to show the control performance of the proposed intelligent controller. In addition, the control performance is compared with that of a traditional Pid controller

  2. An Inventory Controlled Supply Chain Model Based on Improved BP Neural Network

    Directory of Open Access Journals (Sweden)

    Wei He

    2013-01-01

    Full Text Available Inventory control is a key factor for reducing supply chain cost and increasing customer satisfaction. However, prediction of inventory level is a challenging task for managers. As one of the widely used techniques for inventory control, standard BP neural network has such problems as low convergence rate and poor prediction accuracy. Aiming at these problems, a new fast convergent BP neural network model for predicting inventory level is developed in this paper. By adding an error offset, this paper deduces the new chain propagation rule and the new weight formula. This paper also applies the improved BP neural network model to predict the inventory level of an automotive parts company. The results show that the improved algorithm not only significantly exceeds the standard algorithm but also outperforms some other improved BP algorithms both on convergence rate and prediction accuracy.

  3. Research on synchronization of chaotic delayed neural networks with stochastic perturbation using impulsive control method

    Science.gov (United States)

    Li, Xiaodi; Song, Shiji

    2014-10-01

    In this paper, an impulsive controller is designed to achieve the exponential synchronization of chaotic delayed neural networks with stochastic perturbation. By using the impulsive delay differential inequality technique that was established in recent publications, several sufficient conditions ensuring the exponential synchronization of chaotic delayed networks are derived, which can be easily checked by LMI Control Toolbox in Matlab. A numerical example and its simulation is given to demonstrate the effectiveness and advantage of the theory results.

  4. Adaptive Sliding Mode Control of MEMS Gyroscope Based on Neural Network Approximation

    Directory of Open Access Journals (Sweden)

    Yuzheng Yang

    2014-01-01

    Full Text Available An adaptive sliding controller using radial basis function (RBF network to approximate the unknown system dynamics microelectromechanical systems (MEMS gyroscope sensor is proposed. Neural controller is proposed to approximate the unknown system model and sliding controller is employed to eliminate the approximation error and attenuate the model uncertainties and external disturbances. Online neural network (NN weight tuning algorithms, including correction terms, are designed based on Lyapunov stability theory, which can guarantee bounded tracking errors as well as bounded NN weights. The tracking error bound can be made arbitrarily small by increasing a certain feedback gain. Numerical simulation for a MEMS angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive neural control scheme and demonstrate the satisfactory tracking performance and robustness.

  5. Adaptive Neural Network Sliding Mode Control for Quad Tilt Rotor Aircraft

    OpenAIRE

    Yanchao Yin; Hongwei Niu; Xiaobao Liu

    2017-01-01

    A novel neural network sliding mode control based on multicommunity bidirectional drive collaborative search algorithm (M-CBDCS) is proposed to design a flight controller for performing the attitude tracking control of a quad tilt rotors aircraft (QTRA). Firstly, the attitude dynamic model of the QTRA concerning propeller tension, channel arm, and moment of inertia is formulated, and the equivalent sliding mode control law is stated. Secondly, an adaptive control algorithm is presented to eli...

  6. A Neural Network Controller New Methodology for the ATR-42 Morphing Wing Actuation

    OpenAIRE

    Abdallah Ben MOSBAH; Ruxandra Mihaela BOTEZ; Thien My DAO; Mohamed Sadok GUEZGUEZ; Mahdi ZAAG

    2016-01-01

    A morphing wing model is used to improve aircraft performance. To obtain the desired airfoils, electrical actuators are used, which are installed inside of the wing to morph its upper surface in order to obtain its desired shape. In order to achieve this objective, a robust position controller is needed. In this research, a design and test validation of a controller based on neural networks is presented. This controller was composed by a position controller and a current controller to manage ...

  7. An Artificial Neural Network Based Robot Controller that Uses Rat’s Brain Signals

    Directory of Open Access Journals (Sweden)

    Marsel Mano

    2013-04-01

    Full Text Available Brain machine interface (BMI has been proposed as a novel technique to control prosthetic devices aimed at restoring motor functions in paralyzed patients. In this paper, we propose a neural network based controller that maps rat’s brain signals and transforms them into robot movement. First, the rat is trained to move the robot by pressing the right and left lever in order to get food. Next, we collect brain signals with four implanted electrodes, two in the motor cortex and two in the somatosensory cortex area. The collected data are used to train and evaluate different artificial neural controllers. Trained neural controllers are employed online to map brain signals and transform them into robot motion. Offline and online classification results of rat’s brain signals show that the Radial Basis Function Neural Networks (RBFNN outperforms other neural networks. In addition, online robot control results show that even with a limited number of electrodes, the robot motion generated by RBFNN matched the motion generated by the left and right lever position.

  8. A Novel Recurrent Neural Network for Manipulator Control With Improved Noise Tolerance.

    Science.gov (United States)

    Li, Shuai; Wang, Huanqing; Rafique, Muhammad Usman

    2017-04-12

    In this paper, we propose a novel recurrent neural network to resolve the redundancy of manipulators for efficient kinematic control in the presence of noises in a polynomial type. Leveraging the high-order derivative properties of polynomial noises, a deliberately devised neural network is proposed to eliminate the impact of noises and recover the accurate tracking of desired trajectories in workspace. Rigorous analysis shows that the proposed neural law stabilizes the system dynamics and the position tracking error converges to zero in the presence of noises. Extensive simulations verify the theoretical results. Numerical comparisons show that existing dual neural solutions lose stability when exposed to large constant noises or time-varying noises. In contrast, the proposed approach works well and has a low tracking error comparable to noise-free situations.

  9. Dynamic neural networking as a basis for plasticity in the control of heart rate.

    Science.gov (United States)

    Kember, G; Armour, J A; Zamir, M

    2013-01-21

    A model is proposed in which the relationship between individual neurons within a neural network is dynamically changing to the effect of providing a measure of "plasticity" in the control of heart rate. The neural network on which the model is based consists of three populations of neurons residing in the central nervous system, the intrathoracic extracardiac nervous system, and the intrinsic cardiac nervous system. This hierarchy of neural centers is used to challenge the classical view that the control of heart rate, a key clinical index, resides entirely in central neuronal command (spinal cord, medulla oblongata, and higher centers). Our results indicate that dynamic networking allows for the possibility of an interplay among the three populations of neurons to the effect of altering the order of control of heart rate among them. This interplay among the three levels of control allows for different neural pathways for the control of heart rate to emerge under different blood flow demands or disease conditions and, as such, it has significant clinical implications because current understanding and treatment of heart rate anomalies are based largely on a single level of control and on neurons acting in unison as a single entity rather than individually within a (plastically) interconnected network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Neural Network for Image-to-Image Control of Optical Tweezers

    Science.gov (United States)

    Decker, Arthur J.; Anderson, Robert C.; Weiland, Kenneth E.; Wrbanek, Susan Y.

    2004-01-01

    A method is discussed for using neural networks to control optical tweezers. Neural-net outputs are combined with scaling and tiling to generate 480 by 480-pixel control patterns for a spatial light modulator (SLM). The SLM can be combined in various ways with a microscope to create movable tweezers traps with controllable profiles. The neural nets are intended to respond to scattered light from carbon and silicon carbide nanotube sensors. The nanotube sensors are to be held by the traps for manipulation and calibration. Scaling and tiling allow the 100 by 100-pixel maximum resolution of the neural-net software to be applied in stages to exploit the full 480 by 480-pixel resolution of the SLM. One of these stages is intended to create sensitive null detectors for detecting variations in the scattered light from the nanotube sensors.

  11. Dynamic recurrent neural networks for stable adaptive control of wing rock motion

    Science.gov (United States)

    Kooi, Steven Boon-Lam

    Wing rock is a self-sustaining limit cycle oscillation (LCO) which occurs as the result of nonlinear coupling between the dynamic response of the aircraft and the unsteady aerodynamic forces. In this thesis, dynamic recurrent RBF (Radial Basis Function) network control methodology is proposed to control the wing rock motion. The concept based on the properties of the Presiach hysteresis model is used in the design of dynamic neural networks. The structure and memory mechanism in the Preisach model is analogous to the parallel connectivity and memory formation in the RBF neural networks. The proposed dynamic recurrent neural network has a feature for adding or pruning the neurons in the hidden layer according to the growth criteria based on the properties of ensemble average memory formation of the Preisach model. The recurrent feature of the RBF network deals with the dynamic nonlinearities and endowed temporal memories of the hysteresis model. The control of wing rock is a tracking problem, the trajectory starts from non-zero initial conditions and it tends to zero as time goes to infinity. In the proposed neural control structure, the recurrent dynamic RBF network performs identification process in order to approximate the unknown non-linearities of the physical system based on the input-output data obtained from the wing rock phenomenon. The design of the RBF networks together with the network controllers are carried out in discrete time domain. The recurrent RBF networks employ two separate adaptation schemes where the RBF's centre and width are adjusted by the Extended Kalman Filter in order to give a minimum networks size, while the outer networks layer weights are updated using the algorithm derived from Lyapunov stability analysis for the stable closed loop control. The issue of the robustness of the recurrent RBF networks is also addressed. The effectiveness of the proposed dynamic recurrent neural control methodology is demonstrated through simulations to

  12. Experimental Studies of Neural Network Control for One-Wheel Mobile Robot

    Directory of Open Access Journals (Sweden)

    P. K. Kim

    2012-01-01

    Full Text Available This paper presents development and control of a disc-typed one-wheel mobile robot, called GYROBO. Several models of the one-wheel mobile robot are designed, developed, and controlled. The current version of GYROBO is successfully balanced and controlled to follow the straight line. GYROBO has three actuators to balance and move. Two actuators are used for balancing control by virtue of gyro effect and one actuator for driving movements. Since the space is limited and weight balance is an important factor for the successful balancing control, careful mechanical design is considered. To compensate for uncertainties in robot dynamics, a neural network is added to the nonmodel-based PD-controlled system. The reference compensation technique (RCT is used for the neural network controller to help GYROBO to improve balancing and tracking performances. Experimental studies of a self-balancing task and a line tracking task are conducted to demonstrate the control performances of GYROBO.

  13. Force control of a magnetorheological damper using an elementary hysteresis model-based feedforward neural network

    International Nuclear Information System (INIS)

    Ekkachai, Kittipong; Nilkhamhang, Itthisek; Tungpimolrut, Kanokvate

    2013-01-01

    An inverse controller is proposed for a magnetorheological (MR) damper that consists of a hysteresis model and a voltage controller. The force characteristics of the MR damper caused by excitation signals are represented by a feedforward neural network (FNN) with an elementary hysteresis model (EHM). The voltage controller is constructed using another FNN to calculate a suitable input signal that will allow the MR damper to produce the desired damping force. The performance of the proposed EHM-based FNN controller is experimentally compared to existing control methodologies, such as clipped-optimal control, signum function control, conventional FNN, and recurrent neural network with displacement or velocity inputs. The results show that the proposed controller, which does not require force feedback to implement, provides excellent accuracy, fast response time, and lower energy consumption. (paper)

  14. Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control

    Science.gov (United States)

    Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan

    2003-01-01

    An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.

  15. Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.

    Science.gov (United States)

    Han, Hong-Gui; Zhang, Lu; Hou, Ying; Qiao, Jun-Fei

    2016-02-01

    A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.

  16. System Control Device Electronics Smart Home Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Safarul Ilham

    2017-06-01

    Full Text Available The use of information technology is very useful for today’s life and the next, where the human facilitated in doing a variety of activities in the life day to day. By the development of the existing allows people no longer do a job with difficulty. For that, it takes a system safety home using system technology Web-based and complete video streaming CCTV (video streaming a person can see the condition of his home whenever and wherever by using handphone, laptops and other tools are connected to the Internet network. This tool can facilitate someone in the monitor at home and control equipment the House as open and close and the lock the gate, turning on and off the lights so homeowners are no longer have to visit their home and fear the state of the House because fully security and control in the House was handled by the system. based on the above problems Writer try to design work system a tool that can control the simulation tools home using two Microcontroller is Attiny 2313 and Atmega16.

  17. Solving Harmonics Elimination Problem in Three-Phase Voltage controlled Inverter using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    O. BOUHALI

    2005-03-01

    Full Text Available A novel concept of application of Artificial Neural Networks (ANN for generating the optimum switching functions for the voltage and harmonic control of DC-to-AC bridge inverters is presented. In many research, the neural network is trained off line using the desired switching angles given by the classic harmonic elimination strategy to any value of the modulation index. This limits the utilisability and the precision in other modulation index values. In order to avoid this problem, a new training algorithm is developed without using the desired switching angles but it uses the desired solution of the elimination harmonic equation, i.e. first harmonics are equal to zero. Theoretical analysis of the proposed solving algorithm with neural networks is provided, and simulation results are given to show the high performance and technical advantages of the developed modulator.

  18. Use of neural networks to improve quality control of interpretations in myocardial perfusion imaging

    DEFF Research Database (Denmark)

    Tagil, K.; Marving, J.; Lomsky, M.

    2008-01-01

    BACKGROUND: The aim of this study was to explore the feasibility of using a technique based on artificial neural networks for quality assurance of image reporting. The networks were used to identify potentially suboptimal or erroneous interpretations of myocardial perfusion scintigrams (MPS......). METHODS: Reversible perfusion defects (ischaemia) in each of five myocardial regions, as interpreted by one experienced nuclear medicine physician during his daily routine of clinical reporting, were assessed by artificial neural networks in 316 consecutive patients undergoing stress/rest 99m......Tc-sestamibi myocardial perfusion scintigraphy. After a training process, the networks were used to select the 20 cases in each region that were more likely to have a false clinical interpretation. These cases, together with 20 control cases in which the networks detected no likelihood of false clinical interpretation...

  19. Use of neural networks to improve quality control of interpretations in myocardial perfusion imaging

    DEFF Research Database (Denmark)

    Tagil, K.; Marving, J.; Lomsky, M.

    2008-01-01

    BACKGROUND: The aim of this study was to explore the feasibility of using a technique based on artificial neural networks for quality assurance of image reporting. The networks were used to identify potentially suboptimal or erroneous interpretations of myocardial perfusion scintigrams (MPS......Tc-sestamibi myocardial perfusion scintigraphy. After a training process, the networks were used to select the 20 cases in each region that were more likely to have a false clinical interpretation. These cases, together with 20 control cases in which the networks detected no likelihood of false clinical interpretation......, were presented in random order to a group of three experienced physicians for a consensus re-interpretation; no information regarding clinical or neural network interpretations was provided to the re-evaluation panel. RESULTS: The clinical interpretation and the re-evaluation differed in 53 of the 200...

  20. Evolution of an artificial neural network based autonomous land vehicle controller.

    Science.gov (United States)

    Baluja, S

    1996-01-01

    This paper presents an evolutionary method for creating an artificial neural network based autonomous land vehicle controller. The evolved controllers perform better in unseen situations than those trained with an error backpropagation learning algorithm designed for this task. In this paper, an overview of the previous connectionist based approaches to this task is given, and the evolutionary algorithms used in this study are described in detail. Methods for reducing the high computational costs of training artificial neural networks with evolutionary algorithms are explored. Error metrics specific to the task of autonomous vehicle control are introduced; the evolutionary algorithms guided by these error metrics reveal improved performance over those guided by the standard sum-squared error metric. Finally, techniques for integrating evolutionary search and error backpropagation are presented. The evolved networks are designed to control Carnegie Mellon University's NAVLAB vehicles in road following tasks.

  1. Adaptive online inverse control of a shape memory alloy wire actuator using a dynamic neural network

    International Nuclear Information System (INIS)

    Mai, Huanhuan; Liao, Xiaofeng; Song, Gangbing

    2013-01-01

    Shape memory alloy (SMA) actuators exhibit severe hysteresis, a nonlinear behavior, which complicates control strategies and limits their applications. This paper presents a new approach to controlling an SMA actuator through an adaptive inverse model based controller that consists of a dynamic neural network (DNN) identifier, a copy dynamic neural network (CDNN) feedforward term and a proportional (P) feedback action. Unlike fixed hysteresis models used in most inverse controllers, the proposed one uses a DNN to identify online the relationship between the applied voltage to the actuator and the displacement (the inverse model). Even without a priori knowledge of the SMA hysteresis and without pre-training, the proposed controller can precisely control the SMA wire actuator in various tracking tasks by identifying online the inverse model of the SMA actuator. Experiments were conducted, and experimental results demonstrated real-time modeling capabilities of DNN and the performance of the adaptive inverse controller. (paper)

  2. Neural network-based control of an intelligent solar Stirling pump

    International Nuclear Information System (INIS)

    Tavakolpour-Saleh, A.R.; Jokar, H.

    2016-01-01

    In this paper, an ANN (artificial neural network) control system is applied to a novel solar-powered active LTD (low temperature differential) Stirling pump. First, a mathematical description of the proposed Stirling pump is presented. Then, optimum operating frequencies of the converter corresponding to different operating conditions (i.e. different sink and source temperatures and water heads) are investigated using the proposed mathematical framework. It is found that the proposed complex mathematical scheme has a very slow convergence and thus, is not appropriate for real-time implementation of the model-based controller. Consequently, a NN (neural network) model with a lower complexity is proposed to learn the simulation data obtained from the mathematical model. The designed neural network controller is thus applied to a digital processor to effectively tune the converter frequency so that a maximum output power is acquired. Finally, the performance of the proposed mechatronic system is evaluated experimentally. The experimental results clearly demonstrate the feasibility of pumping water at low temperature difference under variable operating conditions using the proposed intelligent Stirling converter. - Highlights: • A novel intelligent solar-powered active LTD Stirling pump was introduced. • A neural network controller was used to tune the converter speed. • The intelligent converter was able to adapt itself to different operating conditions. • It was possible to excite the water column with its resonance mode. • Experimental results showed the effectiveness of the proposed converter.

  3. Using a Neural Network Control Policy for Rapid Switching Between Beam Parameters in an FEL

    NARCIS (Netherlands)

    Edelen, A.L.; Biedron, S.G.; Edelen, J.P.; Milton, S.V.; van der Slot, P.J.M.

    2017-01-01

    FEL user facilities often must accommodate requests for a variety of beam parameters. This usually requires skilled operators to tune the machine, reducing the amount of available time for users. In principle, a neural network control policy that is trained on a broad range of operating states could

  4. Using the artificial neural network to control the steam turbine heating process

    International Nuclear Information System (INIS)

    Nowak, Grzegorz; Rusin, Andrzej

    2016-01-01

    Highlights: • Inverse Artificial Neural Network has a potential to control the start-up process of a steam turbine. • Two serial neural networks made it possible to model the rotor stress based of steam parameters. • An ANN with feedback enables transient stress modelling with good accuracy. - Abstract: Due to the significant share of renewable energy sources (RES) – wind farms in particular – in the power sector of many countries, power generation systems become sensitive to variable weather conditions. Under unfavourable changes in weather, ensuring required energy supplies involves hasty start-ups of conventional steam power units whose operation should be characterized by higher and higher flexibility. Controlling the process of power engineering machinery operation requires fast predictive models that will make it possible to analyse many parallel scenarios and select the most favourable one. This approach is employed by the algorithm for the inverse neural network control presented in this paper. Based on the current thermal state of the turbine casing, the algorithm controls the steam temperature at the turbine inlet to keep both the start-up rate and the safety of the machine at the allowable level. The method used herein is based on two artificial neural networks (ANN) working in series.

  5. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees.

    Science.gov (United States)

    Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica

    2012-05-30

    The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Self-generation of controller of an underwater robot with neural network

    International Nuclear Information System (INIS)

    Suto, T.; Ura, T.

    1994-01-01

    A self-organizing controller system is constructed based on artificial neural networks and applied to constant altitude swimming of the autonomous underwater robot PTEROA 150. The system consists of a controller and a forward model which calculates the values for evaluation as a result of control. Some methods are introduced for quick and appropriate adjustment of the controller network. Modification of the controller network is executed based on error-back-propagation method utilizing the forward model network. The forward model is divided into three sub-networks which represent dynamics of the vehicle, estimation of relative position to the seabed and calculation of the altitude. The proposed adaptive system is demonstrated in computer simulations where objective of a vehicle is keeping a constant altitude from seabed which is constituted of triangular ridges

  7. Chaotic diagonal recurrent neural network

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)

  8. Neural network based control of Doubly Fed Induction Generator in wind power generation

    Science.gov (United States)

    Barbade, Swati A.; Kasliwal, Prabha

    2012-07-01

    To complement the other types of pollution-free generation wind energy is a viable option. Previously wind turbines were operated at constant speed. The evolution of technology related to wind systems industry leaded to the development of a generation of variable speed wind turbines that present many advantages compared to the fixed speed wind turbines. In this paper the phasor model of DFIG is used. This paper presents a study of a doubly fed induction generator driven by a wind turbine connected to the grid, and controlled by artificial neural network ANN controller. The behaviour of the system is shown with PI control, and then as controlled by ANN. The effectiveness of the artificial neural network controller is compared to that of a PI controller. The SIMULINK/MATLAB simulation for Doubly Fed Induction Generator and corresponding results and waveforms are displayed.

  9. Robust Adaptive Control for Nonlinear Uncertain Systems Using Type-2 Fuzzy Neural Network System

    Directory of Open Access Journals (Sweden)

    Ching-Hung Lee

    2011-01-01

    Full Text Available This paper proposes a novel intelligent control scheme using type-2 fuzzy neural network (type-2 FNN system. The control scheme is developed using a type-2 FNN controller and an adaptive compensator. The type-2 FNN combines the type-2 fuzzy logic system (FLS, neural network, and its learning algorithm using the optimal learning algorithm. The properties of type-1 FNN system parallel computation scheme and parameter convergence are easily extended to type-2 FNN systems. In addition, a robust adaptive control scheme which combines the adaptive type-2 FNN controller and compensated controller is proposed for nonlinear uncertain systems. Simulation results are presented to illustrate the effectiveness of our approach.

  10. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    Science.gov (United States)

    Masri Husam Fayiz, Al

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.

  11. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Husam Fayiz, Al Masri

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms. (paper)

  12. Gas Turbine Engine Control Design Using Fuzzy Logic and Neural Networks

    Directory of Open Access Journals (Sweden)

    M. Bazazzadeh

    2011-01-01

    Full Text Available This paper presents a successful approach in designing a Fuzzy Logic Controller (FLC for a specific Jet Engine. At first, a suitable mathematical model for the jet engine is presented by the aid of SIMULINK. Then by applying different reasonable fuel flow functions via the engine model, some important engine-transient operation parameters (such as thrust, compressor surge margin, turbine inlet temperature, etc. are obtained. These parameters provide a precious database, which train a neural network. At the second step, by designing and training a feedforward multilayer perceptron neural network according to this available database; a number of different reasonable fuel flow functions for various engine acceleration operations are determined. These functions are used to define the desired fuzzy fuel functions. Indeed, the neural networks are used as an effective method to define the optimum fuzzy fuel functions. At the next step, we propose a FLC by using the engine simulation model and the neural network results. The proposed control scheme is proved by computer simulation using the designed engine model. The simulation results of engine model with FLC illustrate that the proposed controller achieves the desired performance and stability.

  13. Neural Network Course Changing and Track Keeping Controller for a Submarine

    Directory of Open Access Journals (Sweden)

    Dur Muhammad Pathan

    2012-10-01

    Full Text Available This paper presents the performance of ANN (Artificial Neural Networks technique for the development of controller for heading motions of submarine. A MLP (Multi-Layer Preceptron FFNN (Feed-Forward Neural Network is used for development of controller. Supervised type of learning is used for training of network by using back-propagation Algorithm. The training is performed by providing a nonlinear sliding mode controller as a supervisor. The development of controller is based on nonlinear decoupled heading model of a submarine without consideration of external environmental disturbances. To demonstrate the robustness of controller the performance of controller is tested in different operating conditions: course changing, track keeping and under the influence of sea currents. Simulations results show that in all cases, the heading error comes to zero, which indicates that the actual heading converges to the desired heading in finite time. The maximum error is observed 0.5o for 45o command angle, in presence of sea currents. The result demonstrates that the performance neural network controller has been robust.

  14. Neural Network course changing and track keeping controller for a submarine

    International Nuclear Information System (INIS)

    Pathan, D.M.; Abbasi, A.F.; Memon, Z.

    2012-01-01

    This paper present the performance of ANN (Artificial Neural Networks) technique for the development of controller for heading motions of submarine. AMLP (Multi-Layer Preceptron) FFNN (Feed-Forward Neural Network) is used for development of controller. Supervised type of learning is used for training of network by using back-propagation Algorithm. The training is performed by providing a nonlinear sliding mode controller as a supervisor. The development of controller is based on nonlinear decoupled heading model of a submarine without consideration of external environmental disturbances. To demonstrate the robustness of controller the performance of controller is tested in different operating conditions: course changing, track keeping and under the influence of sea currents. Simulations results show that in all cases, the heading error comes to zero, which indicates that the actual heading converges to the desired heading in finite time. The maximum error is observed 0.50 for 450 command angle, in presence of sea currents. The result demonstrates that the performance neural network controller has been robust. (author)

  15. Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks

    Science.gov (United States)

    Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.

    2016-02-01

    The study presented in this paper introduces a new intelligent methodology to mitigate the vibration response of flexible cantilever plates. The use of the piezoelectric sensor/actuator pairs for active control of plates is discussed. An intelligent neural network based controller is designed to control the optimal voltage applied on the piezoelectric patches. The control technique utilizes a neurocontroller along with a Kalman Filter to compute the appropriate actuator command. The neurocontroller is trained based on an algorithm that incorporates a set of emulator neural networks which are also trained to predict the future response of the cantilever plate. Then, the neurocontroller is evaluated by comparing the uncontrolled and controlled responses under several types of dynamic excitations. It is observed that the neurocontroller reduced the vibration response of the flexible cantilever plate significantly; the results demonstrated the success and robustness of the neurocontroller independent of the type and distribution of the excitation force.

  16. Neural Network Control-Based Drive Design of Servomotor and Its Application to Automatic Guided Vehicle

    Directory of Open Access Journals (Sweden)

    Ming-Shyan Wang

    2015-01-01

    Full Text Available An automatic guided vehicle (AGV is extensively used for productions in a flexible manufacture system with high efficiency and high flexibility. A servomotor-based AGV is designed and implemented in this paper. In order to steer the AGV to go along a predefined path with corner or arc, the conventional proportional-integral-derivative (PID control is used in the system. However, it is difficult to tune PID gains at various conditions. As a result, the neural network (NN control is considered to assist the PID control for gain tuning. The experimental results are first provided to verify the correctness of the neural network plus PID control for 400 W-motor control system. Secondly, the AGV includes two sets of the designed motor systems and CAN BUS transmission so that it can move along the straight line and curve paths shown in the taped videos.

  17. Partial state feedback control of chaotic neural network and its application

    International Nuclear Information System (INIS)

    He Guoguang; Shrimali, Manish Dev; Aihara, Kazuyuki

    2007-01-01

    The chaos control in the chaotic neural network is studied using the partial state feedback with a control signal from a few control neurons. The controlled CNN converges to one of the stored patterns with a period which depends on the initial conditions, i.e., the set of control neurons and other control parameters. We show that the controlled CNN can distinguish between two initial patterns even if they have a small difference. This implies that such a controlled CNN can be feasibly applied to information processing such as pattern recognition

  18. A study on neural network representation of reactor power control procedures

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Byung Soo; Park, J. C.; Kim, Y. T.; Yang, S. U.; Lee, H. C.; Hwang, I. A.; Hwang, H. S

    1997-12-01

    A neural algorithm to carry out the curve readings and arithmetic computations necessary for reactor power control is described in this report. The curve readings are for functions of the form z=f(x,y) and require fairly good interpolations. One of the functions is the total power defect as a function of reactor power and boron concentration. The second is the new position of control rod as a function of the current rod position and the increment of total power defect needed for the required power change. The curves involving xenon effect are also considered separately. We represented these curves by cubic spline interpolations first and then converted them to fuzzy systems so that they perform the identical interpolations as the splines. The resulting fuzzy systems are then converted to artificial neural networks similar to the RBF type neural network. These networks still carry the O(h`4) accuracy as the cubic spline interpolating functions. Also included is a description of an important result on how to find the spline interpolation coefficients without solving the matrix equation, when the function is a polynomial of the form f(t)=t`m. This result provides a systematic way of presenting continuous functions by fuzzy systems and hence by artificial neural networks without any training. (author). 10 refs., 2 tabs., 10 figs

  19. Toward Building Hybrid Biological/in silico Neural Networks for Motor Neuroprosthetic Control.

    Science.gov (United States)

    Kocaturk, Mehmet; Gulcur, Halil Ozcan; Canbeyli, Resit

    2015-01-01

    In this article, we introduce the Bioinspired Neuroprosthetic Design Environment (BNDE) as a practical platform for the development of novel brain-machine interface (BMI) controllers, which are based on spiking model neurons. We built the BNDE around a hard real-time system so that it is capable of creating simulated synapses from extracellularly recorded neurons to model neurons. In order to evaluate the practicality of the BNDE for neuroprosthetic control experiments, a novel, adaptive BMI controller was developed and tested using real-time closed-loop simulations. The present controller consists of two in silico medium spiny neurons, which receive simulated synaptic inputs from recorded motor cortical neurons. In the closed-loop simulations, the recordings from the cortical neurons were imitated using an external, hardware-based neural signal synthesizer. By implementing a reward-modulated spike timing-dependent plasticity rule, the controller achieved perfect target reach accuracy for a two-target reaching task in one-dimensional space. The BNDE combines the flexibility of software-based spiking neural network (SNN) simulations with powerful online data visualization tools and is a low-cost, PC-based, and all-in-one solution for developing neurally inspired BMI controllers. We believe that the BNDE is the first implementation, which is capable of creating hybrid biological/in silico neural networks for motor neuroprosthetic control and utilizes multiple CPU cores for computationally intensive real-time SNN simulations.

  20. RBF Neural Network Approach for Identification and Control of DC Motors

    Directory of Open Access Journals (Sweden)

    EA Feilat

    2012-12-01

    Full Text Available In this paper, a neural network approach for the identification and control of a separately excited direct (DC motor (SEDCM driving a centrifugal pump load is applied. In this application, two radial basis function neural networks (RBFNN are used: The first is a RBFNN identifier trained offline to emulate the dynamic performance of the DC motor-load system. The second is a RBFNN controller, which is trained to make the motor speed follow a selected reference signal. Two RBFNN control schemes are proposed using direct inverse and internal model control schemes. The performance of the RBFNN identifier and controller is investigated in terms of step response, sharp changes in speed trajectory, and sudden load change, as well as changes in motor parameters. The performance of RBFNN in system identification and control has been compared with the performance of the well-known back-propagation neural network (BPNN. The simulation results show that both of the BPNN and RBFNN controllers exhibit excellent dynamic response, adapt well to changes in speed trajectory and load connected to the motor, and adapt to the variations of motor parameters. Furthermore, the simulation results show that the step response of RBFNN internal model and direct inverse controllers are identical.

  1. A Lateral Control Method of Intelligent Vehicle Based on Fuzzy Neural Network

    Directory of Open Access Journals (Sweden)

    Linhui Li

    2015-01-01

    Full Text Available A lateral control method is proposed for intelligent vehicle to track the desired trajectory. Firstly, a lateral control model is established based on the visual preview and dynamic characteristics of intelligent vehicle. Then, the lateral error and orientation error are melded into an integrated error. Considering the system parameter perturbation and the external interference, a sliding model control is introduced in this paper. In order to design a sliding surface, the integrated error is chosen as the parameter of the sliding mode switching function. The sliding mode switching function and its derivative are selected as two inputs of the controller, and the front wheel angle is selected as the output. Next, a fuzzy neural network is established, and the self-learning functions of neural network is utilized to construct the fuzzy rules. Finally, the simulation results demonstrate the effectiveness and robustness of the proposed method.

  2. Command Filtered Adaptive Fuzzy Neural Network Backstepping Control for Marine Power System

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available In order to retrain chaotic oscillation of marine power system which is excited by periodic electromagnetism perturbation, a novel command-filtered adaptive fuzzy neural network backstepping control method is designed. First, the mathematical model of marine power system is established based on the two parallel nonlinear model. Then, main results of command-filtered adaptive fuzzy neural network backstepping control law are given. And the Lyapunov stability theory is applied to prove that the system can remain closed-loop asymptotically stable with this controller. Finally, simulation results indicate that the designed controller can suppress chaotic oscillation with fast convergence speed that makes the system return to the equilibrium point quickly; meanwhile, the parameter which induces chaotic oscillation can also be discriminated.

  3. Control of GMA Butt Joint Welding Based on Neural Networks

    DEFF Research Database (Denmark)

    Christensen, Kim Hardam; Sørensen, Torben

    2004-01-01

    variations from 0.5 mm to 2.3 mm - scanned 10 mm in front of the electrode location. In this research, the mapping from joint geometry and reference weld quality to significant welding parameters has been based on a static multi-layer feed-forward network. The Levenberg-Marquardt algorithm, for non......-linear least square error minimization, has been used with the back-propagation algorithm for training the network, while a Bayesian regularization technique has been successfully applied for minimizing the risk of inexpedient over-training....

  4. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    Science.gov (United States)

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. On-Line Tracking Controller for Brushless DC Motor Drives Using Artificial Neural Networks

    Science.gov (United States)

    Rubaai, Ahmed

    1996-01-01

    A real-time control architecture is developed for time-varying nonlinear brushless dc motors operating in a high performance drives environment. The developed control architecture possesses the capabilities of simultaneous on-line identification and control. The dynamics of the motor are modeled on-line and controlled using an artificial neural network, as the system runs. The control architecture combines the experience and dependability of adaptive tracking systems with potential and promise of the neural computing technology. The sensitivity of real-time controller to parametric changes that occur during training is investigated. Such changes are usually manifested by rapid changes in the load of the brushless motor drives. This sudden change in the external load is simulated for the sigmoidal and sinusoidal reference tracks. The ability of the neuro-controller to maintain reasonable tracking accuracy in the presence of external noise is also verified for a number of desired reference trajectories.

  6. Control Strategy Based on Wavelet Transform and Neural Network for Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Y. D. Song

    2013-01-01

    Full Text Available This paper deals with an energy management of a hybrid power generation system. The proposed control strategy for the energy management is based on the combination of wavelet transform and neural network arithmetic. The hybrid system in this paper consists of an emulated wind turbine generator, PV panels, DC and AC loads, lithium ion battery, and super capacitor, which are all connected on a DC bus with unified DC voltage. The control strategy is responsible for compensating the difference between the generated power from the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into smoothed component and fast fluctuated component. In consideration of battery protection, the neural network is introduced to calculate the reference power of battery. Super capacitor (SC is controlled to regulate the DC bus voltage. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.

  7. Robust sliding mode control for uncertain servo system using friction observer and recurrent fuzzy neural networks

    International Nuclear Information System (INIS)

    Han, Seong Ik; Jeong, Chan Se; Yang, Soon Yong

    2012-01-01

    A robust positioning control scheme has been developed using friction parameter observer and recurrent fuzzy neural networks based on the sliding mode control. As a dynamic friction model, the LuGre model is adopted for handling friction compensation because it has been known to capture sufficiently the properties of a nonlinear dynamic friction. A developed friction parameter observer has a simple structure and also well estimates friction parameters of the LuGre friction model. In addition, an approximation method for the system uncertainty is developed using recurrent fuzzy neural networks technology to improve the precision positioning degree. Some simulation and experiment provide the verification on the performance of a proposed robust control scheme

  8. Nonlinear identification and control a neural network approach

    CERN Document Server

    Liu, G P

    2001-01-01

    The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies . . . , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series otTers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. The time for nonlinear control to enter routine application seems to be approaching. Nonlinear control has had a long gestation period but much ofthe past has been concerned with methods that involve formal nonlinear functional model representations. It seems more likely that the breakthough will come through the use of other more flexible and ame...

  9. Identification and control of plasma vertical position using neural network in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, H. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of); Advanced Process Automation and Control (APAC) Research Group, Faculty of Electrical Engineering, K.N. Toosi University of Technology, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of); Rasouli, C.; Koohi, A. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2013-02-15

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  10. Identification and control of plasma vertical position using neural network in Damavand tokamak

    Science.gov (United States)

    Rasouli, H.; Rasouli, C.; Koohi, A.

    2013-02-01

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  11. Neural Networks: Implementations and Applications

    NARCIS (Netherlands)

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  12. Neural network robust tracking control with adaptive critic framework for uncertain nonlinear systems.

    Science.gov (United States)

    Wang, Ding; Liu, Derong; Zhang, Yun; Li, Hongyi

    2018-01-01

    In this paper, we aim to tackle the neural robust tracking control problem for a class of nonlinear systems using the adaptive critic technique. The main contribution is that a neural-network-based robust tracking control scheme is established for nonlinear systems involving matched uncertainties. The augmented system considering the tracking error and the reference trajectory is formulated and then addressed under adaptive critic optimal control formulation, where the initial stabilizing controller is not needed. The approximate control law is derived via solving the Hamilton-Jacobi-Bellman equation related to the nominal augmented system, followed by closed-loop stability analysis. The robust tracking control performance is guaranteed theoretically via Lyapunov approach and also verified through simulation illustration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. An adaptive control for a variable speed wind turbine using RBF neural network

    Directory of Open Access Journals (Sweden)

    El Mjabber E.

    2016-01-01

    Full Text Available In this work, a controller based on Radial Basis Functions (RBF for network adaptation is considered. The adaptive Neural Network (NN control approximates the nonlinear dynamics of the wind turbine based on input/output measurement and ensures smooth tracking of optimal tip speed-ratio at different wind speeds. The wind turbine system and this controller were modeled and a program to integrate the obtained coupled equations was developed under Matlab/Simulink software package. Then, performance of the controller was studied numerically. The proposed controller was found to effectively improve the control performance against large uncertainty of the wind turbine system. comparison with nonlinear dynamic State feedback control with Kalman filter controller was performed, and the obtained results have demonstrated the relevance of this RBFNN based controller.

  14. An alternative approach for adaptive real-time control using a nonparametric neural network

    Energy Technology Data Exchange (ETDEWEB)

    Alves da Silva, A.P.; Nascimento, P.C.; Lambert-Torres, G.; Borges da Silva, L.E. [Escola Federal de Engenharia de Itajuba, Minas Gerais (Brazil)

    1995-12-31

    This paper presents a nonparametric Artificial Neural Network (ANN) model for adaptive control of nonlinear systems. The proposed ANN, Functional Polynomial Network (FPN), mixes the concept of orthogonal basis functions with the idea of polynomial networks. A combination of orthogonal functions can be used to produce a desired mapping. However, there is no way besides trial and error to choose which orthogonal functions should be selected. Polynomial nets can be used for function approximation, but, it is not easy to set the order of the activation function. The combination of the two concepts produces a very powerful ANN model due to the automatic input selection capability of the polynomial networks. The proposed FPN has been tested for speed control of a DC motor. The results have been compared with the ones provided by an indirect adaptive control scheme based on multilayer perceptrons trained by backpropagation.

  15. Artificial neural networks and approximate reasoning for intelligent control in space

    Science.gov (United States)

    Berenji, Hamid R.

    1991-01-01

    A method is introduced for learning to refine the control rules of approximate reasoning-based controllers. A reinforcement-learning technique is used in conjunction with a multi-layer neural network model of an approximate reasoning-based controller. The model learns by updating its prediction of the physical system's behavior. The model can use the control knowledge of an experienced operator and fine-tune it through the process of learning. Some of the space domains suitable for applications of the model such as rendezvous and docking, camera tracking, and tethered systems control are discussed.

  16. Constrained adaptive neural network control of an MIMO aeroelastic system with input nonlinearities

    Directory of Open Access Journals (Sweden)

    Yiyong Gou

    2017-04-01

    Full Text Available A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output (MIMO aeroelastic system in the presence of wind gust, system uncertainties, and input nonlinearities consisting of input saturation and dead-zone. In regard to the input nonlinearities, the right inverse function block of the dead-zone is added before the input nonlinearities, which simplifies the input nonlinearities into an equivalent input saturation. To deal with the equivalent input saturation, an auxiliary error system is designed to compensate for the impact of the input saturation. Meanwhile, uncertainties in pitch stiffness, plunge stiffness, and pitch damping are all considered, and radial basis function neural networks (RBFNNs are applied to approximate the system uncertainties. In combination with the designed auxiliary error system and the backstepping control technique, a constrained adaptive neural network controller is designed, and it is proven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method. Finally, extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust, system uncertainties, and input nonlinearities.

  17. Rotor Resistance Online Identification of Vector Controlled Induction Motor Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Bo Fan

    2014-01-01

    Full Text Available Rotor resistance identification has been well recognized as one of the most critical factors affecting the theoretical study and applications of AC motor’s control for high performance variable frequency speed adjustment. This paper proposes a novel model for rotor resistance parameters identification based on Elman neural networks. Elman recurrent neural network is capable of performing nonlinear function approximation and possesses the ability of time-variable characteristic adaptation. Those influencing factors of specified parameter are analyzed, respectively, and various work states are covered to ensure the completeness of the training samples. Through signal preprocessing on samples and training dataset, different input parameters identifications with one network are compared and analyzed. The trained Elman neural network, applied in the identification model, is able to efficiently predict the rotor resistance in high accuracy. The simulation and experimental results show that the proposed method owns extensive adaptability and performs very well in its application to vector controlled induction motor. This identification method is able to enhance the performance of induction motor’s variable-frequency speed regulation.

  18. Neural Network Inverse Model Control Strategy: Discrete-Time Stability Analysis for Relative Order Two Systems

    Directory of Open Access Journals (Sweden)

    M. A. Hussain

    2014-01-01

    Full Text Available This paper discusses the discrete-time stability analysis of a neural network inverse model control strategy for a relative order two nonlinear system. The analysis is done by representing the closed loop system in state space format and then analyzing the time derivative of the state trajectory using Lyapunov’s direct method. The analysis shows that the tracking output error of the states is confined to a ball in the neighborhood of the equilibrium point where the size of the ball is partly dependent on the accuracy of the neural network model acting as the controller. Simulation studies on the two-tank-in-series system were done to complement the stability analysis and to demonstrate some salient results of the study.

  19. Manipulator inverse kinematics control based on particle swarm optimization neural network

    Science.gov (United States)

    Wen, Xiulan; Sheng, Danghong; Guo, Jing

    2008-10-01

    The inverse kinematics control of a robotic manipulator requires solving non-linear equations having transcendental functions and involving time-consuming calculations. Particle Swarm Optimization (PSO), which is based on the behaviour of insect swarms and exploits the solution space by taking into account the experience of the single particle as well as that of the entire swarm, is similar to the genetic algorithm (GA) in that it performs a structured randomized search of an unknown parameter space by manipulating a population of parameter estimates to converge on a suitable solution. In this paper, PSO is firstly proposed to optimize feed-forward neural network for manipulator inverse kinematics. Compared with the results of the fast back propagation learning algorithm (FBP), conventional GA genetic algorithm based elitist reservation (EGA), improved GA (IGA) and immune evolutionary computation (IEC), the simulation results verify the particle swarm optimization neural network (PSONN) is effective for manipulator inverse kinematics control.

  20. Solar Thermal Aquaculture System Controller Based on Artificial Neural Network

    OpenAIRE

    A. Doaa M. Atia; Faten H. Fahmy; Ninet M. Ahmed; Hassen T. Dorrah

    2011-01-01

    Temperature is one of the most principle factors affects aquaculture system. It can cause stress and mortality or superior environment for growth and reproduction. This paper presents the control of pond water temperature using artificial intelligence technique. The water temperature is very important parameter for shrimp growth. The required temperature for optimal growth is 34oC, if temperature increase up to 38oC it cause death of the shrimp, so it is important to control water temperature...

  1. Direct Inverse Control using an Artificial Neural Network for the Autonomous Hover of a Helicopter

    Science.gov (United States)

    2014-10-05

    MONITOR’S ACRONYM(S) ARO 8. PERFORMING ORGANIZATION REPORT NUMBER 19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Michael Frye Michael T... Frye , Robert S. Provence 206022 c. THIS PAGE The public reporting burden for this collection of information is estimated to average 1 hour per...October 05, 2014 2 Direct Inverse Control using an Artificial Neural Network for the Autonomous Hover of a Helicopter Michael T. Frye , Ph.D. Department

  2. Closed loop control of laser welding processes using cellular neural network cameras - experimental results

    OpenAIRE

    Abt, F.; Blug, A.; Nicolosi, L.; Dausinger, F.; Weber, R.; Tetzlaff, R.; Carl, D.; Höfler, H.

    2009-01-01

    Today, image processing using coaxial camera setups is used to monitor the quality of laser material processes such as laser welding, cutting or ablation. This article shows the potentials of a sensing system for the next step: A closed loop control of a full penetration keyhole welding process. With Cellular Neural Networks (CNN) it is possible to integrate processor elements in the electronic circuitry of CMOS cameras resulting in a Single-Instruction-Multiple-Data (SIMD)-architecture on th...

  3. A hyperstable neural network for the modelling and control of ...

    Indian Academy of Sciences (India)

    of nonlinear systems. K WARWICK1├, Q M ZHU2 and Z MA3. 1 Department of Cybernetics, University of Reading, PO Box 225, White- knights, Reading RG6 6AY, UK ... The algorithm which is described is now open to comparison with other ..... Harris C J, Billings S A 1985 Self-tuning control: Theory and applications rev.

  4. Stable neural-network-based adaptive control for sampled-data nonlinear systems.

    Science.gov (United States)

    Sun, F; Sun, Z; Woo, P Y

    1998-01-01

    For a class of multiinput-multioutput (MIMO) sampled-data nonlinear systems with unknown dynamic nonlinearities, a stable neural-network (NN)-based adaptive control approach which is an integration of an NN approach and the adaptive implementation of the variable structure control with a sector, is developed. The sampled-data nonlinear system is assumed to be controllable and its state vector is available for measurement. The variable structure control with a sector serves two purposes. One is to force the system state to be within the state region in which the NN's are used when the system goes out of neural control; and the other is to provide an additional control until the system tracking error metric is controlled inside the sector within the network approximation region. The proof of a complete stability and a tracking error convergence is given and the setting of the sector and the NN parameters is discussed. It is demonstrated that the asymptotic error of the system can be made dependent only on inherent network approximation errors and the frequency range of unmodeled dynamics. Simulation studies of a two-link manipulator show the effectiveness of the proposed control approach.

  5. A wavelet neural network based on genetic algorithm and its application to gain scheduling flight control

    Science.gov (United States)

    Sun, Xun; Zhang, Weiguo; Yin, Wei; Li, Aijun

    2006-11-01

    As enlarging of the flight envelop, the aerodynamic derivative of the airplane varies enormous. The gain scheduling method is usually used to deal with it. But the workload is enormously and the stability is difficulty to be assured. To solve the above problem, a large envelope wavelet neural network gain scheduling flight control law design method based on genetic algorithm is presented in this paper. Wavelet has good time accuracy in high frequency-domain and the good frequency accuracy in low frequency-domain. Neural network has the self-learning character. In this method, wavelet function instead of Sigmoid function as the excitation function. So the two merits are merged and the high nonlinear function approximation capability could be achieved. In order to obtain higher accuracy and faster speed, genetic algorithm is used to optimize the parameters of the wavelet neural network. This method is used in design the large envelope gain scheduling flight control law. This simulation results show that good control capability could be achieved in large envelope and the system is still stable when modeling error is 20%. In the situation of 20% modeling error, the maximum overshoot is only 12m and it is 35% of the maximum overshoot using normal method.

  6. Inverse simulation system for manual-controlled rendezvous and docking based on artificial neural network

    Science.gov (United States)

    Zhou, Wanmeng; Wang, Hua; Tang, Guojin; Guo, Shuai

    2016-09-01

    The time-consuming experimental method for handling qualities assessment cannot meet the increasing fast design requirements for the manned space flight. As a tool for the aircraft handling qualities research, the model-predictive-control structured inverse simulation (MPC-IS) has potential applications in the aerospace field to guide the astronauts' operations and evaluate the handling qualities more effectively. Therefore, this paper establishes MPC-IS for the manual-controlled rendezvous and docking (RVD) and proposes a novel artificial neural network inverse simulation system (ANN-IS) to further decrease the computational cost. The novel system was obtained by replacing the inverse model of MPC-IS with the artificial neural network. The optimal neural network was trained by the genetic Levenberg-Marquardt algorithm, and finally determined by the Levenberg-Marquardt algorithm. In order to validate MPC-IS and ANN-IS, the manual-controlled RVD experiments on the simulator were carried out. The comparisons between simulation results and experimental data demonstrated the validity of two systems and the high computational efficiency of ANN-IS.

  7. Adaptive neural networks control for camera stabilization with active suspension system

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2015-08-01

    Full Text Available The camera always suffers from image instability on the moving vehicle due to unintentional vibrations caused by road roughness. This article presents an adaptive neural network approach mixed with linear quadratic regulator control for a quarter-car active suspension system to stabilize the image captured area of the camera. An active suspension system provides extra force through the actuator which allows it to suppress vertical vibration of sprung mass. First, to deal with the road disturbance and the system uncertainties, radial basis function neural network is proposed to construct the map between the state error and the compensation component, which can correct the optimal state-feedback control law. The weights matrix of radial basis function neural network is adaptively tuned online. Then, the closed-loop stability and asymptotic convergence performance is guaranteed by Lyapunov analysis. Finally, the simulation results demonstrate that the proposed controller effectively suppresses the vibration of the camera and enhances the stabilization of the entire camera, where different excitations are considered to validate the system performance.

  8. Adaptive dynamic inversion robust control for BTT missile based on wavelet neural network

    Science.gov (United States)

    Li, Chuanfeng; Wang, Yongji; Deng, Zhixiang; Wu, Hao

    2009-10-01

    A new nonlinear control strategy incorporated the dynamic inversion method with wavelet neural networks is presented for the nonlinear coupling system of Bank-to-Turn(BTT) missile in reentry phase. The basic control law is designed by using the dynamic inversion feedback linearization method, and the online learning wavelet neural network is used to compensate the inversion error due to aerodynamic parameter errors, modeling imprecise and external disturbance in view of the time-frequency localization properties of wavelet transform. Weights adjusting laws are derived according to Lyapunov stability theory, which can guarantee the boundedness of all signals in the whole system. Furthermore, robust stability of the closed-loop system under this tracking law is proved. Finally, the six degree-of-freedom(6DOF) simulation results have shown that the attitude angles can track the anticipant command precisely under the circumstances of existing external disturbance and in the presence of parameter uncertainty. It means that the dependence on model by dynamic inversion method is reduced and the robustness of control system is enhanced by using wavelet neural network(WNN) to reconstruct inversion error on-line.

  9. Fault detection and diagnosis using statistical control charts and artificial neural networks

    International Nuclear Information System (INIS)

    Leger, R.P.; Garland, W.J.; Poehlman, W.F.S.

    1995-01-01

    In order to operate a successful plant or process, continuous improvement must be made in the areas of safety, quality and reliability. Central to this continuous improvement is the early or proactive detection and correct diagnosis of process faults. This research examines the feasibility of using Cumulative Summation (CUSUM) Control Charts and artificial neural networks together for fault detection and diagnosis (FDD). The proposed FDD strategy was tested on a model of the heat transport system of a CANDU nuclear reactor. The results of the investigation indicate that a FDD system using CUSUM Control Charts and a Radial Basis Function (RBF) neural network is not only feasible but also of promising potential. The control charts and neural network are linked together by using a characteristic fault signature pattern for each fault which is to be detected and diagnosed. When tested, the system was able to eliminate all false alarms at steady state, promptly detect 6 fault conditions and correctly diagnose 5 out of the 6 faults. The diagnosis for the sixth fault was inconclusive. (author). 9 refs., 6 tabs., 7 figs

  10. Neural Network Control of CSTR for Reversible Reaction Using Reverence Model Approach

    Directory of Open Access Journals (Sweden)

    Duncan ALOKO

    2007-01-01

    Full Text Available In this work, non-linear control of CSTR for reversible reaction is carried out using Neural Network as design tool. The Model Reverence approach in used to design ANN controller. The idea is to have a control system that will be able to achieve improvement in the level of conversion and to be able to track set point change and reject load disturbance. We use PID control scheme as benchmark to study the performance of the controller. The comparison shows that ANN controller out perform PID in the extreme range of non-linearity.This paper represents a preliminary effort to design a simplified neutral network control scheme for a class of non-linear process. Future works will involve further investigation of the effectiveness of thin approach for the real industrial chemical process

  11. A Pressure Control Method for Emulsion Pump Station Based on Elman Neural Network

    Directory of Open Access Journals (Sweden)

    Chao Tan

    2015-01-01

    Full Text Available In order to realize pressure control of emulsion pump station which is key equipment of coal mine in the safety production, the control requirements were analyzed and a pressure control method based on Elman neural network was proposed. The key techniques such as system framework, pressure prediction model, pressure control model, and the flowchart of proposed approach were presented. Finally, a simulation example was carried out and comparison results indicated that the proposed approach was feasible and efficient and outperformed others.

  12. A Brief Review of Neural Networks Based Learning and Control and Their Applications for Robots

    Directory of Open Access Journals (Sweden)

    Yiming Jiang

    2017-01-01

    Full Text Available As an imitation of the biological nervous systems, neural networks (NNs, which have been characterized as powerful learning tools, are employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification, and patterns recognition. This article aims to bring a brief review of the state-of-the-art NNs for the complex nonlinear systems by summarizing recent progress of NNs in both theory and practical applications. Specifically, this survey also reviews a number of NN based robot control algorithms, including NN based manipulator control, NN based human-robot interaction, and NN based cognitive control.

  13. Intelligent control a hybrid approach based on fuzzy logic, neural networks and genetic algorithms

    CERN Document Server

    Siddique, Nazmul

    2014-01-01

    Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller.  The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of t...

  14. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    Science.gov (United States)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  15. Determination of power peak factor using control rods, ex-core detectors and neural networks

    International Nuclear Information System (INIS)

    Souza, Rose Mary Gomes do Prado

    2005-01-01

    This work presents a methodology based on the artificial neural network technique to predict in real time the power peak factor in a form that can be implemented in reactor protection systems. The neural network inputs were those available in the reactor protection systems, namely, the axial and quadrant power differences obtained from measured ex-core detector signals, and the position of control rods. The response of ex core detector signals was measured in experiments especially performed in the IPEN/MB-01 zero-power reactor. Several reactor states with different power density distribution were obtained by positioning the control rods in different configurations. The power distribution and its peak factor were calculated for each of these reactor states using the Citation code. The obtained results show that the power peak factor correlates well with the control rod position and the quadrant power difference, and with a lesser degree with the axial power differences. The data presented an inherent organisation and could be classified into different classes of power peak factor behaviour as a function of position of control rods, axial power difference and quadrant power difference. The RBF networks were able to identify classes and interpolate the power peak factor values. The relative error for the power peak factor estimation ranged from 0.19 % to 0.67 %, less than the one that was obtained performing a power density distribution map with in-core detectors. It was observed that the positions of control rods bear the detailed and localised information about the power density distribution, and that the axial and the quadrant power difference describe its global variations in the axial and radial directions. The results showed that the RBF and MLP networks produced similar results, and that a neural network correlation can be implemented in power reactor protection systems. (author)

  16. Predictive Control of Hydronic Floor Heating Systems using Neural Networks and Genetic Algorithms

    DEFF Research Database (Denmark)

    Vinther, Kasper; Green, Torben; Østergaard, Søren

    2017-01-01

    This paper presents the use a neural network and a micro genetic algorithm to optimize future set-points in existing hydronic floor heating systems for improved energy efficiency. The neural network can be trained to predict the impact of changes in set-points on future room temperatures. Additio...... space is not guaranteed. Evaluation of the performance of multiple neural networks is performed, using different levels of information, and optimization results are presented on a detailed house simulation model....

  17. Learning control of inverted pendulum system by neural network driven fuzzy reasoning: The learning function of NN-driven fuzzy reasoning under changes of reasoning environment

    Science.gov (United States)

    Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru

    1991-01-01

    Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.

  18. An Inverse Neural Controller Based on the Applicability Domain of RBF Network Models

    Directory of Open Access Journals (Sweden)

    Alex Alexandridis

    2018-01-01

    Full Text Available This paper presents a novel methodology of generic nature for controlling nonlinear systems, using inverse radial basis function neural network models, which may combine diverse data originating from various sources. The algorithm starts by applying the particle swarm optimization-based non-symmetric variant of the fuzzy means (PSO-NSFM algorithm so that an approximation of the inverse system dynamics is obtained. PSO-NSFM offers models of high accuracy combined with small network structures. Next, the applicability domain concept is suitably tailored and embedded into the proposed control structure in order to ensure that extrapolation is avoided in the controller predictions. Finally, an error correction term, estimating the error produced by the unmodeled dynamics and/or unmeasured external disturbances, is included to the control scheme to increase robustness. The resulting controller guarantees bounded input-bounded state (BIBS stability for the closed loop system when the open loop system is BIBS stable. The proposed methodology is evaluated on two different control problems, namely, the control of an experimental armature-controlled direct current (DC motor and the stabilization of a highly nonlinear simulated inverted pendulum. For each one of these problems, appropriate case studies are tested, in which a conventional neural controller employing inverse models and a PID controller are also applied. The results reveal the ability of the proposed control scheme to handle and manipulate diverse data through a data fusion approach and illustrate the superiority of the method in terms of faster and less oscillatory responses.

  19. An Inverse Neural Controller Based on the Applicability Domain of RBF Network Models.

    Science.gov (United States)

    Alexandridis, Alex; Stogiannos, Marios; Papaioannou, Nikolaos; Zois, Elias; Sarimveis, Haralambos

    2018-01-22

    This paper presents a novel methodology of generic nature for controlling nonlinear systems, using inverse radial basis function neural network models, which may combine diverse data originating from various sources. The algorithm starts by applying the particle swarm optimization-based non-symmetric variant of the fuzzy means (PSO-NSFM) algorithm so that an approximation of the inverse system dynamics is obtained. PSO-NSFM offers models of high accuracy combined with small network structures. Next, the applicability domain concept is suitably tailored and embedded into the proposed control structure in order to ensure that extrapolation is avoided in the controller predictions. Finally, an error correction term, estimating the error produced by the unmodeled dynamics and/or unmeasured external disturbances, is included to the control scheme to increase robustness. The resulting controller guarantees bounded input-bounded state (BIBS) stability for the closed loop system when the open loop system is BIBS stable. The proposed methodology is evaluated on two different control problems, namely, the control of an experimental armature-controlled direct current (DC) motor and the stabilization of a highly nonlinear simulated inverted pendulum. For each one of these problems, appropriate case studies are tested, in which a conventional neural controller employing inverse models and a PID controller are also applied. The results reveal the ability of the proposed control scheme to handle and manipulate diverse data through a data fusion approach and illustrate the superiority of the method in terms of faster and less oscillatory responses.

  20. Statistical control chart and neural network classification for improving human fall detection

    KAUST Repository

    Harrou, Fouzi

    2017-01-05

    This paper proposes a statistical approach to detect and classify human falls based on both visual data from camera and accelerometric data captured by accelerometer. Specifically, we first use a Shewhart control chart to detect the presence of potential falls by using accelerometric data. Unfortunately, this chart cannot distinguish real falls from fall-like actions, such as lying down. To bypass this difficulty, a neural network classifier is then applied only on the detected cases through visual data. To assess the performance of the proposed method, experiments are conducted on the publicly available fall detection databases: the University of Rzeszow\\'s fall detection (URFD) dataset. Results demonstrate that the detection phase play a key role in reducing the number of sequences used as input into the neural network classifier for classification, significantly reducing computational burden and achieving better accuracy.

  1. Implementation of self-organizing neural networks for visuo-motor control of an industrial robot.

    Science.gov (United States)

    Walter, J A; Schulten, K I

    1993-01-01

    The implementation of two neural network algorithms for visuo-motor control of an industrial robot (Puma 562) is reported. The first algorithm uses a vector quantization technique, the ;neural-gas' network, together with an error correction scheme based on a Widrow-Hoff-type learning rule. The second algorithm employs an extended self-organizing feature map algorithm. Based on visual information provided by two cameras, the robot learns to position its end effector without an external teacher. Within only 3000 training steps, the robot-camera system is capable of reducing the positioning error of the robot's end effector to approximately 0.1% of the linear dimension of the work space. By employing adaptive feedback the robot succeeds in compensating not only slow calibration drifts, but also sudden changes in its geometry. Hardware aspects of the robot-camera system are discussed.

  2. Control chart pattern recognition using K-MICA clustering and neural networks.

    Science.gov (United States)

    Ebrahimzadeh, Ataollah; Addeh, Jalil; Rahmani, Zahra

    2012-01-01

    Automatic recognition of abnormal patterns in control charts has seen increasing demands nowadays in manufacturing processes. This paper presents a novel hybrid intelligent method (HIM) for recognition of the common types of control chart pattern (CCP). The proposed method includes two main modules: a clustering module and a classifier module. In the clustering module, the input data is first clustered by a new technique. This technique is a suitable combination of the modified imperialist competitive algorithm (MICA) and the K-means algorithm. Then the Euclidean distance of each pattern is computed from the determined clusters. The classifier module determines the membership of the patterns using the computed distance. In this module, several neural networks, such as the multilayer perceptron, probabilistic neural networks, and the radial basis function neural networks, are investigated. Using the experimental study, we choose the best classifier in order to recognize the CCPs. Simulation results show that a high recognition accuracy, about 99.65%, is achieved. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  4. Single neural adaptive controller and neural network identifier based on PSO algorithm for spherical actuators with 3D magnet array

    Science.gov (United States)

    Yan, Liang; Zhang, Lu; Zhu, Bo; Zhang, Jingying; Jiao, Zongxia

    2017-10-01

    Permanent magnet spherical actuator (PMSA) is a multi-variable featured and inter-axis coupled nonlinear system, which unavoidably compromises its motion control implementation. Uncertainties such as external load and friction torque of ball bearing and manufacturing errors also influence motion performance significantly. Therefore, the objective of this paper is to propose a controller based on a single neural adaptive (SNA) algorithm and a neural network (NN) identifier optimized with a particle swarm optimization (PSO) algorithm to improve the motion stability of PMSA with three-dimensional magnet arrays. The dynamic model and computed torque model are formulated for the spherical actuator, and a dynamic decoupling control algorithm is developed. By utilizing the global-optimization property of the PSO algorithm, the NN identifier is trained to avoid locally optimal solution and achieve high-precision compensations to uncertainties. The employment of the SNA controller helps to reduce the effect of compensation errors and convert the system to a stable one, even if there is difference between the compensations and uncertainties due to external disturbances. A simulation model is established, and experiments are conducted on the research prototype to validate the proposed control algorithm. The amplitude of the parameter perturbation is set to 5%, 10%, and 15%, respectively. The strong robustness of the proposed hybrid algorithm is validated by the abundant simulation data. It shows that the proposed algorithm can effectively compensate the influence of uncertainties and eliminate the effect of inter-axis couplings of the spherical actuator.

  5. Intelligent control of robotic arm/hand systems for the NASA EVA retriever using neural networks

    Science.gov (United States)

    Mclauchlan, Robert A.

    1989-01-01

    Adaptive/general learning algorithms using varying neural network models are considered for the intelligent control of robotic arm plus dextrous hand/manipulator systems. Results are summarized and discussed for the use of the Barto/Sutton/Anderson neuronlike, unsupervised learning controller as applied to the stabilization of an inverted pendulum on a cart system. Recommendations are made for the application of the controller and a kinematic analysis for trajectory planning to simple object retrieval (chase/approach and capture/grasp) scenarios in two dimensions.

  6. An artificial neural network estimation of gait balance control in the elderly using clinical evaluations.

    Science.gov (United States)

    Lugade, Vipul; Lin, Victor; Farley, Arthur; Chou, Li-Shan

    2014-01-01

    The use of motion analysis to assess balance is essential for determining the underlying mechanisms of falls during dynamic activities. Clinicians evaluate patients using clinical examinations of static balance control, gait performance, cognition, and neuromuscular ability. Mapping these data to measures of dynamic balance control, and the subsequent categorization and identification of community dwelling elderly fallers at risk of falls in a quick and inexpensive manner is needed. The purpose of this study was to demonstrate that given clinical measures, an artificial neural network (ANN) could determine dynamic balance control, as defined by the interaction of the center of mass (CoM) with the base of support (BoS), during gait. Fifty-six elderly adults were included in this study. Using a feed-forward neural network with back propagation, combinations of five functional domains, the number of hidden layers and error goals were evaluated to determine the best parameters to assess dynamic balance control. Functional domain input parameters included subject characteristics, clinical examinations, cognitive performance, muscle strength, and clinical balance performance. The use of these functional domains demonstrated the ability to quickly converge to a solution, with the network learning the mapping within 5 epochs, when using up to 30 hidden nodes and an error goal of 0.001. The ability to correctly identify the interaction of the CoM with BoS demonstrated correlation values up to 0.89 (Pgait balance control. A neural network could provide physicians and patients with a cost effective means to identify dynamic balance issues and possible risk of falls from routinely collected clinical examinations.

  7. Development of neural network driven fuzzy controller for outlet sodium temperature of DHX

    International Nuclear Information System (INIS)

    Okusa, Kyoichi; Endou, Akira; Yoshikawa, Shinji; Ozawa, Kenji

    1996-01-01

    Fuzzy controls are capable to exquisitely control non-linear dynamic systems in wide operating range, using linguistic description to define the control law. However the selection and the definition of the fuzzy rules and sets require a tedious trial and error process based on experience. As a method to overcome this limitation, a neural network driven fuzzy control (NDF), where the learning capability of the neural network (NN) is used to build the fuzzy rules and sets, is presented in this paper. In the NDF control the IF part of a fuzzy control is represented by a multilayer NN while the THEN part is represented by a series of multilayer NNs which calculate the desirable control action. In this work the usual stepwise variable reduction method, used for the selection of the input variable in the THEN part NN, is replaced with a learning algorithm with forgetting mechanism that realizes the automatic reduction of the variables and the tuning up of all the fuzzy control law i.e. the membership function. The NDF has been successfully applied to control the outlet sodium temperature of a dump heat exchanger (DHX) of a FBR plant

  8. Application of neural network technology to fly-by-light control systems

    Science.gov (United States)

    Urnes, James M., Sr.

    1995-05-01

    McDonnell Douglas Aerospace (MDA) is developing a Neural Network based Intelligent Flight Control System that utilizes fly-by-light data transmission combined with high capacity flight processors to implement control advancements and fault monitoring processes. In this control system design, high speed data transfer and electromagnetic interference protection obtained through fiber optic technology is linked with Neural Network based flight control hardware processors that are programmed with damage adaptive control capability, thus providing maximum survivability for fighter aircraft. This system also provides enhanced component fault diagnostics that can identify subsystem failures during flight, thus providing reduced life cycle cost through efficient maintenance action and less downtime of the aircraft. The Intelligent Flight Control products apply to fighter and transport aircraft. This program is Task 2C of the ARPA Fly-by-Light Advanced Systems Hardware (FLASH) Technology Reinvestment Program. The principal partner with MDA for the Task 2C Intelligent Flight Control development is Martin Marietta Control Systems. The program will mature the system hardware and software for laboratory demonstrations of component fault diagnostics and highly adaptive flight control performance.

  9. Crew exploration vehicle (CEV) attitude control using a neural-immunology/memory network

    Science.gov (United States)

    Weng, Liguo; Xia, Min; Wang, Wei; Liu, Qingshan

    2015-01-01

    This paper addresses the problem of the crew exploration vehicle (CEV) attitude control. CEVs are NASA's next-generation human spaceflight vehicles, and they use reaction control system (RCS) jet engines for attitude adjustment, which calls for control algorithms for firing the small propulsion engines mounted on vehicles. In this work, the resultant CEV dynamics combines both actuation and attitude dynamics. Therefore, it is highly nonlinear and even coupled with significant uncertainties. To cope with this situation, a neural-immunology/memory network is proposed. It is inspired by the human memory and immune systems. The control network does not rely on precise system dynamics information. Furthermore, the overall control scheme has a simple structure and demands much less computation as compared with most existing methods, making it attractive for real-time implementation. The effectiveness of this approach is also verified via simulation.

  10. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....

  11. Complex-Valued Neural Networks

    CERN Document Server

    Hirose, Akira

    2012-01-01

    This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...

  12. Adaptive nonlinear polynomial neural networks for control of boundary layer/structural interaction

    Science.gov (United States)

    Parker, B. Eugene, Jr.; Cellucci, Richard L.; Abbott, Dean W.; Barron, Roger L.; Jordan, Paul R., III; Poor, H. Vincent

    1993-01-01

    The acoustic pressures developed in a boundary layer can interact with an aircraft panel to induce significant vibration in the panel. Such vibration is undesirable due to the aerodynamic drag and structure-borne cabin noises that result. The overall objective of this work is to develop effective and practical feedback control strategies for actively reducing this flow-induced structural vibration. This report describes the results of initial evaluations using polynomial, neural network-based, feedback control to reduce flow induced vibration in aircraft panels due to turbulent boundary layer/structural interaction. Computer simulations are used to develop and analyze feedback control strategies to reduce vibration in a beam as a first step. The key differences between this work and that going on elsewhere are as follows: that turbulent and transitional boundary layers represent broadband excitation and thus present a more complex stochastic control scenario than that of narrow band (e.g., laminar boundary layer) excitation; and secondly, that the proposed controller structures are adaptive nonlinear infinite impulse response (IIR) polynomial neural network, as opposed to the traditional adaptive linear finite impulse response (FIR) filters used in most studies to date. The controllers implemented in this study achieved vibration attenuation of 27 to 60 dB depending on the type of boundary layer established by laminar, turbulent, and intermittent laminar-to-turbulent transitional flows. Application of multi-input, multi-output, adaptive, nonlinear feedback control of vibration in aircraft panels based on polynomial neural networks appears to be feasible today. Plans are outlined for Phase 2 of this study, which will include extending the theoretical investigation conducted in Phase 2 and verifying the results in a series of laboratory experiments involving both bum and plate models.

  13. Design of Course-Keeping Controller for a Ship Based on Backstepping and Neural Networks

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2017-06-01

    Full Text Available Due to the existence of uncertainties and the unknown time variant environmental disturbances for ship course nonlinear control system, the ship course adaptive neural network robust course-keeping controller is designed by combining the backstepping technique. The neural networks (NNs are employed for the compensating of the nonlinear term of the nonlinear ship course-keeping control system. The designed adaptive laws are designed to estimate the weights of NNs and the bounds of unknown environmental disturbances. The first order commander are introduced to solve the problem of repeating differential operations in the traditional backstepping design method, which let the designed controller easier to implement in navigation practice and structure simplicity. Theoretically, it indicates that the proposed controller can track the setting course in arbitrary expected accuracy, while keeping all control signals in the ship course control closed-loop system are uniformly ultimately bounded. Finally, the training ship of Dalian Maritime University is taken for example; simulation results illustrated the effectiveness and the robustness of the proposed controller.

  14. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  15. Neural-Network-Based Fuzzy Logic Navigation Control for Intelligent Vehicles

    Directory of Open Access Journals (Sweden)

    Ahcene Farah

    2002-06-01

    Full Text Available This paper proposes a Neural-Network-Based Fuzzy logic system for navigation control of intelligent vehicles. First, the use of Neural Networks and Fuzzy Logic to provide intelligent vehicles  with more autonomy and intelligence is discussed. Second, the system  for the obstacle avoidance behavior is developed. Fuzzy Logic improves Neural Networks (NN obstacle avoidance approach by handling imprecision and rule-based approximate reasoning. This system must make the vehicle able, after supervised learning, to achieve two tasks: 1- to make one’s way towards its target by a NN, and 2- to avoid static or dynamic obstacles by a Fuzzy NN capturing the behavior of a human expert. Afterwards, two association phases between each task and the appropriate actions are carried out by Trial and Error learning and their coordination allows to decide the appropriate action. Finally, the simulation results display the generalization and adaptation abilities of the system by testing it in new unexplored environments.

  16. Design of FPGA Based Neural Network Controller for Earth Station Power System

    OpenAIRE

    Hassen T. Dorrah; Ninet M. A. El-Rahman; Faten H. Fahmy; Hanaa T. El-Madany

    2012-01-01

    Automation of generating hardware description language code from neural networks models can highly decrease time of implementation those networks into a digital devices, thus significant money savings. To implement the neural network into hardware designer, it is required to translate generated model into device structure. VHDL language is used to describe those networks into hardware. VHDL code has been proposed to implement ANNs as well as to present simulation results with floating point a...

  17. An artificial neural network controller based on MPSO-BFGS hybrid optimization for spherical flying robot

    Science.gov (United States)

    Liu, Xiaolin; Li, Lanfei; Sun, Hanxu

    2017-12-01

    Spherical flying robot can perform various tasks in the complex and varied environment to reduce labor costs. However, it is difficult to guarantee the stability of the spherical flying robot in the case of strong coupling and time-varying disturbance. In this paper, an artificial neural network controller (ANNC) based on MPSO-BFGS hybrid optimization algorithm is proposed. The MPSO algorithm is used to optimize the initial weights of the controller to avoid the local optimal solution. The BFGS algorithm is introduced to improve the convergence ability of the network. We use Lyapunov method to analyze the stability of ANNC. The controller is simulated under the condition of nonlinear coupling disturbance. The experimental results show that the proposed controller can obtain the expected value in shoter time compared with the other considered methods.

  18. Tomography using neural networks

    International Nuclear Information System (INIS)

    Demeter, G.; Zoletnik, S.

    1997-01-01

    Neural networks have been used for fast measurement evaluation in plasma physics, including nonlinear curve fitting to experimental data. Such an approach for fast evaluation of tomographic measurements was utilized on the MT-1M tokamak, especially in the study of impurity injection using laser accelerated pellets and of the transport of these injected impurities. Neural networks were studied for fast processing of tomographic data and large numbers of tomographic data

  19. Neural network applications

    Science.gov (United States)

    Padgett, Mary L.; Desai, Utpal; Roppel, T.A.; White, Charles R.

    1993-01-01

    A design procedure is suggested for neural networks which accommodates the inclusion of such knowledge-based systems techniques as fuzzy logic and pairwise comparisons. The use of these procedures in the design of applications combines qualitative and quantitative factors with empirical data to yield a model with justifiable design and parameter selection procedures. The procedure is especially relevant to areas of back-propagation neural network design which are highly responsive to the use of precisely recorded expert knowledge.

  20. Neural Network Based Modeling and Analysis of LP Control Surface Allocation

    Science.gov (United States)

    Langari, Reza; Krishnakumar, Kalmanje; Gundy-Burlet, Karen

    2003-01-01

    This paper presents an approach to interpretive modeling of LP based control allocation in intelligent flight control. The emphasis is placed on a nonlinear interpretation of the LP allocation process as a static map to support analytical study of the resulting closed loop system, albeit in approximate form. The approach makes use of a bi-layer neural network to capture the essential functioning of the LP allocation process. It is further shown via Lyapunov based analysis that under certain relatively mild conditions the resulting closed loop system is stable. Some preliminary conclusions from a study at Ames are stated and directions for further research are given at the conclusion of the paper.

  1. Sliding Mode Control for NSVs with Input Constraint Using Neural Network and Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Yan-long Zhou

    2013-01-01

    Full Text Available The sliding mode control (SMC scheme is proposed for near space vehicles (NSVs with strong nonlinearity, high coupling, parameter uncertainty, and unknown time-varying disturbance based on radial basis function neural networks (RBFNNs and the nonlinear disturbance observer (NDO. Considering saturation characteristic of rudders, RBFNNs are constructed as a compensator to overcome the saturation nonlinearity. The stability of the closed-loop system is proved, and the tracking error as well as the disturbance observer error can converge to the origin through the Lyapunov analysis. Simulation results are presented to demonstrate the effectiveness of the proposed flight control scheme.

  2. Use of neural networks in process engineering. Thermodynamics, diffusion, and process control and simulation applications

    International Nuclear Information System (INIS)

    Otero, F

    1998-01-01

    This article presents the current status of the use of Artificial Neural Networks (ANNs) in process engineering applications where common mathematical methods do not completely represent the behavior shown by experimental observations, results, and plant operating data. Three examples of the use of ANNs in typical process engineering applications such as prediction of activity in solvent-polymer binary systems, prediction of a surfactant self-diffusion coefficient of micellar systems, and process control and simulation are shown. These examples are important for polymerization applications, enhanced-oil recovery, and automatic process control

  3. Parametric motion control of robotic arms: A biologically based approach using neural networks

    Science.gov (United States)

    Bock, O.; D'Eleuterio, G. M. T.; Lipitkas, J.; Grodski, J. J.

    1993-01-01

    A neural network based system is presented which is able to generate point-to-point movements of robotic manipulators. The foundation of this approach is the use of prototypical control torque signals which are defined by a set of parameters. The parameter set is used for scaling and shaping of these prototypical torque signals to effect a desired outcome of the system. This approach is based on neurophysiological findings that the central nervous system stores generalized cognitive representations of movements called synergies, schemas, or motor programs. It has been proposed that these motor programs may be stored as torque-time functions in central pattern generators which can be scaled with appropriate time and magnitude parameters. The central pattern generators use these parameters to generate stereotypical torque-time profiles, which are then sent to the joint actuators. Hence, only a small number of parameters need to be determined for each point-to-point movement instead of the entire torque-time trajectory. This same principle is implemented for controlling the joint torques of robotic manipulators where a neural network is used to identify the relationship between the task requirements and the torque parameters. Movements are specified by the initial robot position in joint coordinates and the desired final end-effector position in Cartesian coordinates. This information is provided to the neural network which calculates six torque parameters for a two-link system. The prototypical torque profiles (one per joint) are then scaled by those parameters. After appropriate training of the network, our parametric control design allowed the reproduction of a trained set of movements with relatively high accuracy, and the production of previously untrained movements with comparable accuracy. We conclude that our approach was successful in discriminating between trained movements and in generalizing to untrained movements.

  4. Neurale Netværk anvendt indenfor Proceskontrol. Neural Network for Process Control

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    Dette projekt omhandler anvendelsen af neurale netværksmodeller til proceskontrol. Neurale netværksmodeller er simple modeller af de processer, der forløber i det biologiske neurale netværk. Det biologiske neurale netværk er det netværk af nerveceller, der tilsammen danner centralnervesystemet hos...... at generere indlærings- og testdata. Af de tre valgte netværkstyper er der kun Multi-Layer Perceptron nette, der e ranvendeligt til prediction og simulering af dynamiske systemer ud fra de opstillede koncepter og metoder. I sidste kapitel, omhandlende regulering, er der således også anvendt Multi......-Layer Perceptron net. Der er opstillet koncepter/metoder til såvel feedforward regulering som feedback regulering. Multi-Layer Perceptronen er i stand til at regulere et ulineært, multivariabelt og dynamisk system, således at der opnås følgende: 1. Systemet lineariseres således, at der opnås ensartet steprespons i...

  5. Master-slave exponential synchronization of delayed complex-valued memristor-based neural networks via impulsive control.

    Science.gov (United States)

    Li, Xiaofan; Fang, Jian-An; Li, Huiyuan

    2017-09-01

    This paper investigates master-slave exponential synchronization for a class of complex-valued memristor-based neural networks with time-varying delays via discontinuous impulsive control. Firstly, the master and slave complex-valued memristor-based neural networks with time-varying delays are translated to two real-valued memristor-based neural networks. Secondly, an impulsive control law is constructed and utilized to guarantee master-slave exponential synchronization of the neural networks. Thirdly, the master-slave synchronization problems are transformed into the stability problems of the master-slave error system. By employing linear matrix inequality (LMI) technique and constructing an appropriate Lyapunov-Krasovskii functional, some sufficient synchronization criteria are derived. Finally, a numerical simulation is provided to illustrate the effectiveness of the obtained theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

    DEFF Research Database (Denmark)

    Yao, Wei; Fang, Jiakun; Zhao, Ping

    2013-01-01

    the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power......In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have...... system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency...

  7. Neural network-based optimal adaptive output feedback control of a helicopter UAV.

    Science.gov (United States)

    Nodland, David; Zargarzadeh, Hassan; Jagannathan, Sarangapani

    2013-07-01

    Helicopter unmanned aerial vehicles (UAVs) are widely used for both military and civilian operations. Because the helicopter UAVs are underactuated nonlinear mechanical systems, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via an output feedback for trajectory tracking of a helicopter UAV, using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic and dynamic controllers and an NN observer. The online approximator-based dynamic controller learns the infinite-horizon Hamilton-Jacobi-Bellman equation in continuous time and calculates the corresponding optimal control input by minimizing a cost function, forward-in-time, without using the value and policy iterations. Optimal tracking is accomplished by using a single NN utilized for the cost function approximation. The overall closed-loop system stability is demonstrated using Lyapunov analysis. Finally, simulation results are provided to demonstrate the effectiveness of the proposed control design for trajectory tracking.

  8. Learning to train neural networks for real-world control problems

    Science.gov (United States)

    Feldkamp, Lee A.; Puskorius, G. V.; Davis, L. I., Jr.; Yuan, F.

    1994-01-01

    Over the past three years, our group has concentrated on the application of neural network methods to the training of controllers for real-world systems. This presentation describes our approach, surveys what we have found to be important, mentions some contributions to the field, and shows some representative results. Topics discussed include: (1) executing model studies as rehearsal for experimental studies; (2) the importance of correct derivatives; (3) effective training with second-order (DEKF) methods; (4) the efficacy of time-lagged recurrent networks; (5) liberation from the tyranny of the control cycle using asynchronous truncated backpropagation through time; and (6) multistream training for robustness. Results from model studies of automotive idle speed control serve as examples for several of these topics.

  9. Introduction to neural networks

    International Nuclear Information System (INIS)

    Pavlopoulos, P.

    1996-01-01

    This lecture is a presentation of today's research in neural computation. Neural computation is inspired by knowledge from neuro-science. It draws its methods in large degree from statistical physics and its potential applications lie mainly in computer science and engineering. Neural networks models are algorithms for cognitive tasks, such as learning and optimization, which are based on concepts derived from research into the nature of the brain. The lecture first gives an historical presentation of neural networks development and interest in performing complex tasks. Then, an exhaustive overview of data management and networks computation methods is given: the supervised learning and the associative memory problem, the capacity of networks, the Perceptron networks, the functional link networks, the Madaline (Multiple Adalines) networks, the back-propagation networks, the reduced coulomb energy (RCE) networks, the unsupervised learning and the competitive learning and vector quantization. An example of application in high energy physics is given with the trigger systems and track recognition system (track parametrization, event selection and particle identification) developed for the CPLEAR experiment detectors from the LEAR at CERN. (J.S.). 56 refs., 20 figs., 1 tab., 1 appendix

  10. Design of a heart rate controller for treadmill exercise using a recurrent fuzzy neural network.

    Science.gov (United States)

    Lu, Chun-Hao; Wang, Wei-Cheng; Tai, Cheng-Chi; Chen, Tien-Chi

    2016-05-01

    In this study, we developed a computer controlled treadmill system using a recurrent fuzzy neural network heart rate controller (RFNNHRC). Treadmill speeds and inclines were controlled by corresponding control servo motors. The RFNNHRC was used to generate the control signals to automatically control treadmill speed and incline to minimize the user heart rate deviations from a preset profile. The RFNNHRC combines a fuzzy reasoning capability to accommodate uncertain information and an artificial recurrent neural network learning process that corrects for treadmill system nonlinearities and uncertainties. Treadmill speeds and inclines are controlled by the RFNNHRC to achieve minimal heart rate deviation from a pre-set profile using adjustable parameters and an on-line learning algorithm that provides robust performance against parameter variations. The on-line learning algorithm of RFNNHRC was developed and implemented using a dsPIC 30F4011 DSP. Application of the proposed control scheme to heart rate responses of runners resulted in smaller fluctuations than those produced by using proportional integra control, and treadmill speeds and inclines were smoother. The present experiments demonstrate improved heart rate tracking performance with the proposed control scheme. The RFNNHRC scheme with adjustable parameters and an on-line learning algorithm was applied to a computer controlled treadmill system with heart rate control during treadmill exercise. Novel RFNNHRC structure and controller stability analyses were introduced. The RFNNHRC were tuned using a Lyapunov function to ensure system stability. The superior heart rate control with the proposed RFNNHRC scheme was demonstrated with various pre-set heart rates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Neural Network Compensation Control for Output Power Optimization of Wind Energy Conversion System Based on Data-Driven Control

    Directory of Open Access Journals (Sweden)

    T. Li

    2012-01-01

    Full Text Available Due to the uncertainty of wind and because wind energy conversion systems (WECSs have strong nonlinear characteristics, accurate model of the WECS is difficult to be built. To solve this problem, data-driven control technology is selected and data-driven controller for the WECS is designed based on the Markov model. The neural networks are designed to optimize the output of the system based on the data-driven control system model. In order to improve the efficiency of the neural network training, three different learning rules are compared. Analysis results and SCADA data of the wind farm are compared, and it is shown that the method effectively reduces fluctuations of the generator speed, the safety of the wind turbines can be enhanced, the accuracy of the WECS output is improved, and more wind energy is captured.

  12. Safety control of nuclear power operations using self-programming neural networks

    International Nuclear Information System (INIS)

    Jouse, W.C.; Williams, J.G.

    1993-01-01

    In the design and operation of nuclear reactors, safety-related goals must be embedded in complex multivariate control strategies. It is often the case that the goals exist only as mental models in the mind of the designer or the operator. In order to effect control that is risk averse, the goals must be translated into an effective control strategy that can be both verified and validated. The relation that these safety goals have to a particular architecture of artificial neural network, the Barto-Sutton architecture, is examined and the capability of the network to embed safety goals in nontrivial control tasks is demonstrated. To realize these goals, the network was extended to encompass a multiple-input/multiple-output control structure. The network synthesizes a control schedule through the construction of artificial precursors to failure; these serve as an additional, virtual layer in the defenses against fission product release. The synthesized schedule can be visually inspected for anomalies and inconsistencies and is validated during training

  13. Variable Torque Control of Offshore Wind Turbine on Spar Floating Platform Using Advanced RBF Neural Network

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-01-01

    Full Text Available Offshore floating wind turbine (OFWT has been a challenging research spot because of the high-quality wind power and complex load environment. This paper focuses on the research of variable torque control of offshore wind turbine on Spar floating platform. The control objective in below-rated wind speed region is to optimize the output power by tracking the optimal tip-speed ratio and ideal power curve. Aiming at the external disturbances and nonlinear uncertain dynamic systems of OFWT because of the proximity to load centers and strong wave coupling, this paper proposes an advanced radial basis function (RBF neural network approach for torque control of OFWT system at speeds lower than rated wind speed. The robust RBF neural network weight adaptive rules are acquired based on the Lyapunov stability analysis. The proposed control approach is tested and compared with the NREL baseline controller using the “NREL offshore 5 MW wind turbine” model mounted on a Spar floating platform run on FAST and Matlab/Simulink, operating in the below-rated wind speed condition. The simulation results show a better performance in tracking the optimal output power curve, therefore, completing the maximum wind energy utilization.

  14. Vibration control of uncertain multiple launch rocket system using radial basis function neural network

    Science.gov (United States)

    Li, Bo; Rui, Xiaoting

    2018-01-01

    Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.

  15. Calculation of PID controller parameters by using a fuzzy neural network.

    Science.gov (United States)

    Lee, Ching-Hung; Teng, Ching-Cheng

    2003-07-01

    In this paper, we use the fuzzy neural network (FNN) to develop a formula for designing the proportional-integral-derivative (PID) controller. This PID controller satisfies the criteria of minimum integrated absolute error (IAE) and maximum of sensitivity (Ms). The FNN system is used to identify the relationship between plant model and controller parameters based on IAE and Ms. To derive the tuning rule, the dominant pole assignment method is applied to simplify our optimization processes. Therefore, the FNN system is used to automatically tune the PID controller for different system parameters so that neither theoretical methods nor numerical methods need be used. Moreover, the FNN-based formula can modify the controller to meet our specification when the system model changes. A simulation result for applying to the motor position control problem is given to demonstrate the effectiveness of our approach.

  16. A Neural Network Combined Inverse Controller for a Two-Rear-Wheel Independently Driven Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Duo Zhang

    2014-07-01

    Full Text Available Vehicle active safety control is attracting ever increasing attention in the attempt to improve the stability and the maneuverability of electric vehicles. In this paper, a neural network combined inverse (NNCI controller is proposed, incorporating the merits of left-inversion and right-inversion. As the left-inversion soft-sensor can estimate the sideslip angle, while the right-inversion is utilized to decouple control. Then, the proposed NNCI controller not only linearizes and decouples the original nonlinear system, but also directly obtains immeasurable state feedback in constructing the right-inversion. Hence, the proposed controller is very practical in engineering applications. The proposed system is co-simulated based on the vehicle simulation package CarSim in connection with Matlab/Simulink. The results verify the effectiveness of the proposed control strategy.

  17. Sequential Classification of Palm Gestures Based on A* Algorithm and MLP Neural Network for Quadrocopter Control

    Directory of Open Access Journals (Sweden)

    Wodziński Marek

    2017-06-01

    Full Text Available This paper presents an alternative approach to the sequential data classification, based on traditional machine learning algorithms (neural networks, principal component analysis, multivariate Gaussian anomaly detector and finding the shortest path in a directed acyclic graph, using A* algorithm with a regression-based heuristic. Palm gestures were used as an example of the sequential data and a quadrocopter was the controlled object. The study includes creation of a conceptual model and practical construction of a system using the GPU to ensure the realtime operation. The results present the classification accuracy of chosen gestures and comparison of the computation time between the CPU- and GPU-based solutions.

  18. Passivation and control of partially known SISO nonlinear systems via dynamic neural networks

    Directory of Open Access Journals (Sweden)

    Reyes-Reyes J.

    2000-01-01

    Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.

  19. Adaptive Neural Network Control of an Uncertain Robot With Full-State Constraints.

    Science.gov (United States)

    He, Wei; Chen, Yuhao; Yin, Zhao

    2016-03-01

    This paper studies the tracking control problem for an uncertain n -link robot with full-state constraints. The rigid robotic manipulator is described as a multiinput and multioutput system. Adaptive neural network (NN) control for the robotic system with full-state constraints is designed. In the control design, the adaptive NNs are adopted to handle system uncertainties and disturbances. The Moore-Penrose inverse term is employed in order to prevent the violation of the full-state constraints. A barrier Lyapunov function is used to guarantee the uniform ultimate boundedness of the closed-loop system. The control performance of the closed-loop system is guaranteed by appropriately choosing the design parameters. Simulation studies are performed to illustrate the effectiveness of the proposed control.

  20. BP neural network tuned PID controller for position tracking of a pneumatic artificial muscle.

    Science.gov (United States)

    Fan, Jizhuang; Zhong, Jun; Zhao, Jie; Zhu, Yanhe

    2015-01-01

    Although Pneumatic Artificial Muscle (PAM) has a promising future in rehabilitation robots, it's difficult to realize accurate position control due to its highly nonlinear properties. This paper deals with position control of PAM. To describe the hysteresis inside PAM, a polynomial based phenomenological function is developed. Based on the phenomenological model for PAM and analysis of pressure dynamics within PAM, an adaptive cascade controller is proposed. Both outer loop and inner loop employ BP Neural Network tuned PID algorithm. The outer loop is to handle high nonlinearities and unmodeled dynamics of PAM, while the inner loop is responsible for nonlinearities caused by pressure dynamics. Experimental results show high tracking accuracy as compared with a convention PID controller. The proposed controller is effective in improving performance of PAM and will be implemented in a rehabilitation robot.

  1. Recurrent fuzzy neural network backstepping control for the prescribed output tracking performance of nonlinear dynamic systems.

    Science.gov (United States)

    Han, Seong-Ik; Lee, Jang-Myung

    2014-01-01

    This paper proposes a backstepping control system that uses a tracking error constraint and recurrent fuzzy neural networks (RFNNs) to achieve a prescribed tracking performance for a strict-feedback nonlinear dynamic system. A new constraint variable was defined to generate the virtual control that forces the tracking error to fall within prescribed boundaries. An adaptive RFNN was also used to obtain the required improvement on the approximation performances in order to avoid calculating the explosive number of terms generated by the recursive steps of traditional backstepping control. The boundedness and convergence of the closed-loop system was confirmed based on the Lyapunov stability theory. The prescribed performance of the proposed control scheme was validated by using it to control the prescribed error of a nonlinear system and a robot manipulator. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Neural Network Control for the Linear Motion of a Spherical Mobile Robot

    Directory of Open Access Journals (Sweden)

    Yao Cai

    2011-09-01

    Full Text Available This paper discussed the stabilization and position tracking control of the linear motion of an underactuated spherical robot. By considering the actuator dynamics, a complete dynamic model of the robot is deduced, which is a complex third order, two variables nonlinear differential system and those two variables have strong coupling due to the mechanical structure of the robot. Different from traditional treatments, no linearization is applied to this system but a single‐input multiple‐output PID (SIMO_PID controller is designed by adopting a six‐input single‐ output CMAC_GBF (Cerebellar Model Articulation Controller with General Basis Function neural network to compensate the actuator nonlinearity and the credit assignment (CA learning method to obtain faster convergence of CMAC_GBF. The proposed controller is generalizable to other single‐input multiple‐output system with good real‐time capability. Simulations in Matlab are used to validate the control effects.

  3. Sensorless Speed Control of Permanent Magnet Synchronous Motors by Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Ming-Shyan Wang

    2014-01-01

    Full Text Available The sliding mode control has the merits with respect to the variation of the disturbance and robustness. In this paper, the sensorless sliding-mode observer with least mean squared error approach for permanent magnet synchronous motor (PMSM to detect the rotor position by counter electromotive force and then compute motor speed is designed and implemented. In addition, the neural network control is also used to compensate the PI gain tuning to increase the speed accuracy without regarding the errors of the current measurement and motor noise. In this paper, a digital signal processor TMS320F2812 utilizes its high-speed ADC module to get current feedback information and thus to estimate the rotor position and takes advantage of the built-in modules to achieve SVPWM current control so that the senseless speed control will be accomplished. The correctness and effectiveness of the proposed control system will be verified from the experimental results.

  4. A Novel Fractional-Order PID Controller for Integrated Pressurized Water Reactor Based on Wavelet Kernel Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Yu-xin Zhao

    2014-01-01

    Full Text Available This paper presents a novel wavelet kernel neural network (WKNN with wavelet kernel function. It is applicable in online learning with adaptive parameters and is applied on parameters tuning of fractional-order PID (FOPID controller, which could handle time delay problem of the complex control system. Combining the wavelet function and the kernel function, the wavelet kernel function is adopted and validated the availability for neural network. Compared to the conservative wavelet neural network, the most innovative character of the WKNN is its rapid convergence and high precision in parameters updating process. Furthermore, the integrated pressurized water reactor (IPWR system is established by RELAP5, and a novel control strategy combining WKNN and fuzzy logic rule is proposed for shortening controlling time and utilizing the experiential knowledge sufficiently. Finally, experiment results verify that the control strategy and controller proposed have the practicability and reliability in actual complicated system.

  5. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm.

    Science.gov (United States)

    Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour

    2012-09-01

    In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  6. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  7. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning. Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  8. A design philosophy for multi-layer neural networks with applications to robot control

    Science.gov (United States)

    Vadiee, Nader; Jamshidi, MO

    1989-01-01

    A system is proposed which receives input information from many sensors that may have diverse scaling, dimension, and data representations. The proposed system tolerates sensory information with faults. The proposed self-adaptive processing technique has great promise in integrating the techniques of artificial intelligence and neural networks in an attempt to build a more intelligent computing environment. The proposed architecture can provide a detailed decision tree based on the input information, information stored in a long-term memory, and the adapted rule-based knowledge. A mathematical model for analysis will be obtained to validate the cited hypotheses. An extensive software program will be developed to simulate a typical example of pattern recognition problem. It is shown that the proposed model displays attention, expectation, spatio-temporal, and predictory behavior which are specific to the human brain. The anticipated results of this research project are: (1) creation of a new dynamic neural network structure, and (2) applications to and comparison with conventional multi-layer neural network structures. The anticipated benefits from this research are vast. The model can be used in a neuro-computer architecture as a building block which can perform complicated, nonlinear, time-varying mapping from a multitude of input excitory classes to an output or decision environment. It can be used for coordinating different sensory inputs and past experience of a dynamic system and actuating signals. The commercial applications of this project can be the creation of a special-purpose neuro-computer hardware which can be used in spatio-temporal pattern recognitions in such areas as air defense systems, e.g., target tracking, and recognition. Potential robotics-related applications are trajectory planning, inverse dynamics computations, hierarchical control, task-oriented control, and collision avoidance.

  9. Neural networks in signal processing

    International Nuclear Information System (INIS)

    Govil, R.

    2000-01-01

    Nuclear Engineering has matured during the last decade. In research and design, control, supervision, maintenance and production, mathematical models and theories are used extensively. In all such applications signal processing is embedded in the process. Artificial Neural Networks (ANN), because of their nonlinear, adaptive nature are well suited to such applications where the classical assumptions of linearity and second order Gaussian noise statistics cannot be made. ANN's can be treated as nonparametric techniques, which can model an underlying process from example data. They can also adopt their model parameters to statistical change with time. Algorithms in the framework of Neural Networks in Signal processing have found new applications potentials in the field of Nuclear Engineering. This paper reviews the fundamentals of Neural Networks in signal processing and their applications in tasks such as recognition/identification and control. The topics covered include dynamic modeling, model based ANN's, statistical learning, eigen structure based processing and generalization structures. (orig.)

  10. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  11. A simplified adaptive neural network prescribed performance controller for uncertain MIMO feedback linearizable systems.

    Science.gov (United States)

    Theodorakopoulos, Achilles; Rovithakis, George A

    2015-03-01

    In this paper, the problem of deriving a continuous, state-feedback controller for a class of multiinput multioutput feedback linearizable systems is considered with special emphasis on controller simplification and reduction of the overall design complexity with respect to the current state of the art. The proposed scheme achieves prescribed bounds on the transient and steady-state performance of the output tracking errors despite the uncertainty in system nonlinearities. Contrary to the current state of the art, however, only a single neural network is utilized to approximate a scalar function that partly incorporates the system nonlinearities. Furthermore, the loss of model controllability problem, typically introduced owing to approximation model singularities, is avoided without attaching additional complexity to the control or adaptive law. Simulations are performed to verify and clarify the theoretical findings.

  12. Precision position control of servo systems using adaptive back-stepping and recurrent fuzzy neural networks

    International Nuclear Information System (INIS)

    Kim, Han Me; Kim, Jong Shik; Han, Seong Ik

    2009-01-01

    To improve position tracking performance of servo systems, a position tracking control using adaptive back-stepping control(ABSC) scheme and recurrent fuzzy neural networks(RFNN) is proposed. An adaptive rule of the ABSC based on system dynamics and dynamic friction model is also suggested to compensate nonlinear dynamic friction characteristics. However, it is difficult to reduce the position tracking error of servo systems by using only the ABSC scheme because of the system uncertainties which cannot be exactly identified during the modeling of servo systems. Therefore, in order to overcome system uncertainties and then to improve position tracking performance of servo systems, the RFNN technique is additionally applied to the servo system. The feasibility of the proposed control scheme for a servo system is validated through experiments. Experimental results show that the servo system with ABS controller based on the dual friction observer and RFNN including the reconstruction error estimator can achieve desired tracking performance and robustness

  13. Learning from neural control.

    Science.gov (United States)

    Wang, Cong; Hill, David J

    2006-01-01

    One of the amazing successes of biological systems is their ability to "learn by doing" and so adapt to their environment. In this paper, first, a deterministic learning mechanism is presented, by which an appropriately designed adaptive neural controller is capable of learning closed-loop system dynamics during tracking control to a periodic reference orbit. Among various neural network (NN) architectures, the localized radial basis function (RBF) network is employed. A property of persistence of excitation (PE) for RBF networks is established, and a partial PE condition of closed-loop signals, i.e., the PE condition of a regression subvector constructed out of the RBFs along a periodic state trajectory, is proven to be satisfied. Accurate NN approximation for closed-loop system dynamics is achieved in a local region along the periodic state trajectory, and a learning ability is implemented during a closed-loop feedback control process. Second, based on the deterministic learning mechanism, a neural learning control scheme is proposed which can effectively recall and reuse the learned knowledge to achieve closed-loop stability and improved control performance. The significance of this paper is that the presented deterministic learning mechanism and the neural learning control scheme provide elementary components toward the development of a biologically-plausible learning and control methodology. Simulation studies are included to demonstrate the effectiveness of the approach.

  14. A Novel Neural Network Vector Control for Single-Phase Grid-Connected Converters with L, LC and LCL Filters

    Directory of Open Access Journals (Sweden)

    Xingang Fu

    2016-04-01

    Full Text Available This paper investigates a novel recurrent neural network (NN-based vector control approach for single-phase grid-connected converters (GCCs with L (inductor, LC (inductor-capacitor and LCL (inductor-capacitor-inductor filters and provides their comparison study with the conventional standard vector control method. A single neural network controller replaces two current-loop PI controllers, and the NN training approximates the optimal control for the single-phase GCC system. The Levenberg–Marquardt (LM algorithm was used to train the NN controller based on the complete system equations without any decoupling policies. The proposed NN approach can solve the decoupling problem associated with the conventional vector control methods for L, LC and LCL-filter-based single-phase GCCs. Both simulation study and hardware experiments demonstrate that the neural network vector controller shows much more improved performance than that of conventional vector controllers, including faster response speed and lower overshoot. Especially, NN vector control could achieve very good performance using low switch frequency. More importantly, the neural network vector controller is a damping free controller, which is generally required by a conventional vector controller for an LCL-filter-based single-phase grid-connected converter and, therefore, can overcome the inefficiency problem caused by damping policies.

  15. Thermal stress management of a solid oxide fuel cell using neural network predictive control

    International Nuclear Information System (INIS)

    Hajimolana, S.A.; Tonekabonimoghadam, S.M.; Hussain, M.A.; Chakrabarti, M.H.; Jayakumar, N.S.; Hashim, M.A.

    2013-01-01

    In SOFC (solid oxide fuel cell) systems operating at high temperatures, temperature fluctuation induces a thermal stress in the electrodes and electrolyte ceramics; therefore, the cell temperature distribution is recommended to be kept as constant as possible. In the present work, a mathematical model based on first principles is presented to avert such temperature fluctuations. The fuel cell running on ammonia is divided into five subsystems and factors such as mass/energy/momentum transfer, diffusion through porous media, electrochemical reactions, and polarization losses inside the subsystems are presented. Dynamic cell-tube temperature responses of the cell to step changes in conditions of the feed streams is investigated. The results of simulation indicate that the transient response of the SOFC is mainly influenced by the temperature dynamics. It is also shown that the inlet stream temperatures are associated with the highest long term start-up time (467 s) among other parameters in terms of step changes. In contrast the step change in fuel velocity has the lowest influence on the start-up time (about 190 s from initial steady state to the new steady state) among other parameters. A NNPC (neural network predictive controller) is then implemented for thermal stress management by controlling the cell tube temperature to avoid performance degradation by manipulating the temperature of the inlet air stream. The regulatory performance of the NNPC is compared with a PI (proportional–integral) controller. The performance of the control system confirms that NNPC is a non-linear-model-based strategy which can assure less oscillating control responses with shorter settling times in comparison to the PI controller. - Highlights: • Effect of the operating parameters on the fuel cell temperature is analysed. • A neural network predictive controller (NNPC) is implemented. • The performance of NNPC is compared with the PI controller. • A detailed model is used for

  16. Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics.

    Science.gov (United States)

    Wai, Rong-Jong; Muthusamy, Rajkumar

    2013-02-01

    This paper presents the design and analysis of an intelligent control system that inherits the robust properties of sliding-mode control (SMC) for an n-link robot manipulator, including actuator dynamics in order to achieve a high-precision position tracking with a firm robustness. First, the coupled higher order dynamic model of an n-link robot manipulator is briefy introduced. Then, a conventional SMC scheme is developed for the joint position tracking of robot manipulators. Moreover, a fuzzy-neural-network inherited SMC (FNNISMC) scheme is proposed to relax the requirement of detailed system information and deal with chattering control efforts in the SMC system. In the FNNISMC strategy, the FNN framework is designed to mimic the SMC law, and adaptive tuning algorithms for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. Numerical simulations and experimental results of a two-link robot manipulator actuated by DC servo motors are provided to justify the claims of the proposed FNNISMC system, and the superiority of the proposed FNNISMC scheme is also evaluated by quantitative comparison with previous intelligent control schemes.

  17. Posture control with a neural network of a diagnostic robot manipulator; Neural network ni yoru haikan shindan robot manipulator no shisei seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Y. [Shinryo Corp., Tokyo (Japan); Hara, F.; Hosokai, H.; Kojima, T. [Science University of Tokyo, Tokyo (Japan)

    1997-09-25

    A robot manipulator has been investigated, by which non-destructive diagnostic tests of a pipe-line can be automatically conducted. This robot manipulator has five degrees of freedom, and can set up an ultrasonic probe for diagnosis attached at the surface of pipe at various angles and with various forces. The manipulator is controlled through the feedback of variation of reflected ultrasonic wave with the contact force of probe. Using a neural network, the manipulator can smoothly shift its posture in the optimum sensing state from the initial posture. For the measuring experiment using a pipe, the posture control and the force control were evaluated. The posture control error was around 0.4 degree. The target allowable error 0.5 degree was achieved. For the force control, it was demonstrated that the follow-up property of contact force to the target value can be enhanced by increasing the intermediate posture number. 3 refs., 13 figs.

  18. A Tool for Verification and Validation of Neural Network Based Adaptive Controllers for High Assurance Systems

    Science.gov (United States)

    Gupta, Pramod; Schumann, Johann

    2004-01-01

    High reliability of mission- and safety-critical software systems has been identified by NASA as a high-priority technology challenge. We present an approach for the performance analysis of a neural network (NN) in an advanced adaptive control system. This problem is important in the context of safety-critical applications that require certification, such as flight software in aircraft. We have developed a tool to measure the performance of the NN during operation by calculating a confidence interval (error bar) around the NN's output. Our tool can be used during pre-deployment verification as well as monitoring the network performance during operation. The tool has been implemented in Simulink and simulation results on a F-15 aircraft are presented.

  19. Architecture and performance of neural networks for efficient A/C control in buildings

    International Nuclear Information System (INIS)

    Mahmoud, Mohamed A.; Ben-Nakhi, Abdullatif E.

    2003-01-01

    The feasibility of using neural networks (NNs) for optimizing air conditioning (AC) setback scheduling in public buildings was investigated. The main focus is on optimizing the network architecture in order to achieve best performance. To save energy, the temperature inside public buildings is allowed to rise after business hours by setting back the thermostat. The objective is to predict the time of the end of thermostat setback (EoS) such that the design temperature inside the building is restored in time for the start of business hours. State of the art building simulation software, ESP-r, was used to generate a database that covered the years 1995-1999. The software was used to calculate the EoS for two office buildings using the climate records in Kuwait. The EoS data for 1995 and 1996 were used for training and testing the NNs. The robustness of the trained NN was tested by applying them to a 'production' data set (1997-1999), which the networks have never 'seen' before. For each of the six different NN architectures evaluated, parametric studies were performed to determine the network parameters that best predict the EoS. External hourly temperature readings were used as network inputs, and the thermostat end of setback (EoS) is the output. The NN predictions were improved by developing a neural control scheme (NC). This scheme is based on using the temperature readings as they become available. For each NN architecture considered, six NNs were designed and trained for this purpose. The performance of the NN analysis was evaluated using a statistical indicator (the coefficient of multiple determination) and by statistical analysis of the error patterns, including ANOVA (analysis of variance). The results show that the NC, when used with a properly designed NN, is a powerful instrument for optimizing AC setback scheduling based only on external temperature records

  20. SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot.

    Science.gov (United States)

    Ferreira, João P; Crisóstomo, Manuel M; Coimbra, A Paulo

    2009-12-01

    The real-time balance control of an eight-link biped robot using a zero moment point (ZMP) dynamic model is difficult due to the processing time of the corresponding equations. To overcome this limitation, two alternative intelligent computing control techniques were compared: one based on support vector regression (SVR) and another based on a first-order Takagi-Sugeno-Kang (TSK)-type neural-fuzzy (NF) network. Both methods use the ZMP error and its variation as inputs and the output is the correction of the robot's torso necessary for its sagittal balance. The SVR and the NF were trained based on simulation data and their performance was verified with a real biped robot. Two performance indexes are proposed to evaluate and compare the online performance of the two control methods. The ZMP is calculated by reading four force sensors placed under each robot's foot. The gait implemented in this biped is similar to a human gait that was acquired and adapted to the robot's size. Some experiments are presented and the results show that the implemented gait combined either with the SVR controller or with the TSK NF network controller can be used to control this biped robot. The SVR and the NF controllers exhibit similar stability, but the SVR controller runs about 50 times faster.

  1. Synchronization of Hierarchical Time-Varying Neural Networks Based on Asynchronous and Intermittent Sampled-Data Control.

    Science.gov (United States)

    Xiong, Wenjun; Patel, Ragini; Cao, Jinde; Zheng, Wei Xing

    In this brief, our purpose is to apply asynchronous and intermittent sampled-data control methods to achieve the synchronization of hierarchical time-varying neural networks. The asynchronous and intermittent sampled-data controllers are proposed for two reasons: 1) the controllers may not transmit the control information simultaneously and 2) the controllers cannot always exist at any time . The synchronization is then discussed for a kind of hierarchical time-varying neural networks based on the asynchronous and intermittent sampled-data controllers. Finally, the simulation results are given to illustrate the usefulness of the developed criteria.In this brief, our purpose is to apply asynchronous and intermittent sampled-data control methods to achieve the synchronization of hierarchical time-varying neural networks. The asynchronous and intermittent sampled-data controllers are proposed for two reasons: 1) the controllers may not transmit the control information simultaneously and 2) the controllers cannot always exist at any time . The synchronization is then discussed for a kind of hierarchical time-varying neural networks based on the asynchronous and intermittent sampled-data controllers. Finally, the simulation results are given to illustrate the usefulness of the developed criteria.

  2. Artificial neural network implementation of a near-ideal error prediction controller

    Science.gov (United States)

    Mcvey, Eugene S.; Taylor, Lynore Denise

    1992-01-01

    A theory has been developed at the University of Virginia which explains the effects of including an ideal predictor in the forward loop of a linear error-sampled system. It has been shown that the presence of this ideal predictor tends to stabilize the class of systems considered. A prediction controller is merely a system which anticipates a signal or part of a signal before it actually occurs. It is understood that an exact prediction controller is physically unrealizable. However, in systems where the input tends to be repetitive or limited, (i.e., not random) near ideal prediction is possible. In order for the controller to act as a stability compensator, the predictor must be designed in a way that allows it to learn the expected error response of the system. In this way, an unstable system will become stable by including the predicted error in the system transfer function. Previous and current prediction controller include pattern recognition developments and fast-time simulation which are applicable to the analysis of linear sampled data type systems. The use of pattern recognition techniques, along with a template matching scheme, has been proposed as one realizable type of near-ideal prediction. Since many, if not most, systems are repeatedly subjected to similar inputs, it was proposed that an adaptive mechanism be used to 'learn' the correct predicted error response. Once the system has learned the response of all the expected inputs, it is necessary only to recognize the type of input with a template matching mechanism and then to use the correct predicted error to drive the system. Suggested here is an alternate approach to the realization of a near-ideal error prediction controller, one designed using Neural Networks. Neural Networks are good at recognizing patterns such as system responses, and the back-propagation architecture makes use of a template matching scheme. In using this type of error prediction, it is assumed that the system error

  3. Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete-time.

    Science.gov (United States)

    Ge, Shuzhi Sam; Zhang, Jin; Lee, Tong Heng

    2004-08-01

    In this paper, adaptive neural network (NN) control is investigated for a class of multiinput and multioutput (MIMO) nonlinear systems with unknown bounded disturbances in discrete-time domain. The MIMO system under study consists of several subsystems with each subsystem in strict feedback form. The inputs of the MIMO system are in triangular form. First, through a coordinate transformation, the MIMO system is transformed into a sequential decrease cascade form (SDCF). Then, by using high-order neural networks (HONN) as emulators of the desired controls, an effective neural network control scheme with adaptation laws is developed. Through embedded backstepping, stability of the closed-loop system is proved based on Lyapunov synthesis. The output tracking errors are guaranteed to converge to a residue whose size is adjustable. Simulation results show the effectiveness of the proposed control scheme.

  4. Dynamic neural networks based on-line identification and control of high performance motor drives

    Science.gov (United States)

    Rubaai, Ahmed; Kotaru, Raj

    1995-01-01

    In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.

  5. Delay-dependent robust stabilization and H∞ control for neural networks with various activation functions

    Science.gov (United States)

    Sakthivel, R.; Mathiyalagan, K.; Anthoni, S. Marshal

    2012-04-01

    This paper considers the problem of robust stabilization for a class of uncertain neural networks with various activation functions and mixed time delays. The aim is to derive a H∞ control law to ensure the robust stability of the closed-loop system about its equilibrium with parameter uncertainties. By employing the Lyapunov stability theory and the matrix inequality technique, a new set of sufficient conditions is presented for the existence of the H∞ control problem. The stability criteria are derived in terms of linear matrix inequalities (LMIs) which can be solved easily by the Matlab LMI toolbox. In addition to the requirement of global robust stabilization, for a prescribed H∞ performance level the stabilizing controller gain matrices for all delays to satisfy the upper bound of the time-varying delay are required to be obtained. Numerical examples are presented to illustrate the effectiveness of the proposed method.

  6. Control of uncertain systems by feedback linearization with neural networks augmentation. Part II. Controller validation by numerical simulation

    Directory of Open Access Journals (Sweden)

    Adrian TOADER

    2010-09-01

    Full Text Available The paper was conceived in two parts. Part I, previously published in this journal, highlighted the main steps of adaptive output feedback control for non-affine uncertain systems, having a known relative degree. The main paradigm of this approach was the feedback linearization (dynamic inversion with neural network augmentation. Meanwhile, based on new contributions of the authors, a new paradigm, that of robust servomechanism problem solution, has been added to the controller architecture. The current Part II of the paper presents the validation of the controller hereby obtained by using the longitudinal channel of a hovering VTOL-type aircraft as mathematical model.

  7. A Programmer-Interpreter Neural Network Architecture for Prefrontal Cognitive Control.

    Science.gov (United States)

    Donnarumma, Francesco; Prevete, Roberto; Chersi, Fabian; Pezzulo, Giovanni

    2015-09-01

    There is wide consensus that the prefrontal cortex (PFC) is able to exert cognitive control on behavior by biasing processing toward task-relevant information and by modulating response selection. This idea is typically framed in terms of top-down influences within a cortical control hierarchy, where prefrontal-basal ganglia loops gate multiple input-output channels, which in turn can activate or sequence motor primitives expressed in (pre-)motor cortices. Here we advance a new hypothesis, based on the notion of programmability and an interpreter-programmer computational scheme, on how the PFC can flexibly bias the selection of sensorimotor patterns depending on internal goal and task contexts. In this approach, multiple elementary behaviors representing motor primitives are expressed by a single multi-purpose neural network, which is seen as a reusable area of "recycled" neurons (interpreter). The PFC thus acts as a "programmer" that, without modifying the network connectivity, feeds the interpreter networks with specific input parameters encoding the programs (corresponding to network structures) to be interpreted by the (pre-)motor areas. Our architecture is validated in a standard test for executive function: the 1-2-AX task. Our results show that this computational framework provides a robust, scalable and flexible scheme that can be iterated at different hierarchical layers, supporting the realization of multiple goals. We discuss the plausibility of the "programmer-interpreter" scheme to explain the functioning of prefrontal-(pre)motor cortical hierarchies.

  8. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems

    Directory of Open Access Journals (Sweden)

    Vandana Sakhre

    2015-01-01

    Full Text Available Fuzzy Counter Propagation Neural Network (FCPN controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL. FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN and Back Propagation Network (BPN on the basis of Mean Absolute Error (MAE, Mean Square Error (MSE, Best Fit Rate (BFR, and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO and a single input and single output (SISO gas furnace Box-Jenkins time series data.

  9. Artificial Neural Networks·

    Indian Academy of Sciences (India)

    works. They have the ability to learn from empirical datal information. They find use in computer science and control engineering fields. In recent years artificial ... However there are vast differences between biological neural networks (BNNs) of the brain and ANN s. A thorough understanding of biologically derived NNs ...

  10. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  11. Deconvolution using a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S.K.

    1990-11-15

    Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.

  12. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.

    Science.gov (United States)

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-05-30

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.

  13. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    Directory of Open Access Journals (Sweden)

    Y.-M. Chiang

    2011-01-01

    Full Text Available Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  14. An Effective and Novel Neural Network Ensemble for Shift Pattern Detection in Control Charts

    Directory of Open Access Journals (Sweden)

    Mahmoud Barghash

    2015-01-01

    Full Text Available Pattern recognition in control charts is critical to make a balance between discovering faults as early as possible and reducing the number of false alarms. This work is devoted to designing a multistage neural network ensemble that achieves this balance which reduces rework and scrape without reducing productivity. The ensemble under focus is composed of a series of neural network stages and a series of decision points. Initially, this work compared using multidecision points and single-decision point on the performance of the ANN which showed that multidecision points are highly preferable to single-decision points. This work also tested the effect of population percentages on the ANN and used this to optimize the ANN’s performance. Also this work used optimized and nonoptimized ANNs in an ensemble and proved that using nonoptimized ANN may reduce the performance of the ensemble. The ensemble that used only optimized ANNs has improved performance over individual ANNs and three-sigma level rule. In that respect using the designed ensemble can help in reducing the number of false stops and increasing productivity. It also can be used to discover even small shifts in the mean as early as possible.

  15. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  16. Neural Networks and Micromechanics

    Science.gov (United States)

    Kussul, Ernst; Baidyk, Tatiana; Wunsch, Donald C.

    The title of the book, "Neural Networks and Micromechanics," seems artificial. However, the scientific and technological developments in recent decades demonstrate a very close connection between the two different areas of neural networks and micromechanics. The purpose of this book is to demonstrate this connection. Some artificial intelligence (AI) methods, including neural networks, could be used to improve automation system performance in manufacturing processes. However, the implementation of these AI methods within industry is rather slow because of the high cost of conducting experiments using conventional manufacturing and AI systems. To lower the cost, we have developed special micromechanical equipment that is similar to conventional mechanical equipment but of much smaller size and therefore of lower cost. This equipment could be used to evaluate different AI methods in an easy and inexpensive way. The proved methods could be transferred to industry through appropriate scaling. In this book, we describe the prototypes of low cost microequipment for manufacturing processes and the implementation of some AI methods to increase precision, such as computer vision systems based on neural networks for microdevice assembly and genetic algorithms for microequipment characterization and the increase of microequipment precision.

  17. Neural Network Studies

    Science.gov (United States)

    1993-07-01

    simpler linearly separable majority function (Ahmad, Tesauro , 1988), the former has limited applicability to realistic problems and the latter has been...anwered. 6. References Ahmad, S., G. Tesauro , "Scaling and Generalization in Neural Networks: A Case Study", Proceedings of the 1988 Connectionist

  18. Brain-machine interface control of a manipulator using small-world neural network and shared control strategy.

    Science.gov (United States)

    Li, Ting; Hong, Jun; Zhang, Jinhua; Guo, Feng

    2014-03-15

    The improvement of the resolution of brain signal and the ability to control external device has been the most important goal in BMI research field. This paper describes a non-invasive brain-actuated manipulator experiment, which defined a paradigm for the motion control of a serial manipulator based on motor imagery and shared control. The techniques of component selection, spatial filtering and classification of motor imagery were involved. Small-world neural network (SWNN) was used to classify five brain states. To verify the effectiveness of the proposed classifier, we replace the SWNN classifier by a radial basis function (RBF) networks neural network, a standard multi-layered feed-forward backpropagation network (SMN) and a multi-SVM classifier, with the same features for the classification. The results also indicate that the proposed classifier achieves a 3.83% improvement over the best results of other classifiers. We proposed a shared control method consisting of two control patterns to expand the control of BMI from the software angle. The job of path building for reaching the 'end' point was designated as an assessment task. We recorded all paths contributed by subjects and picked up relevant parameters as evaluation coefficients. With the assistance of two control patterns and series of machine learning algorithms, the proposed BMI originally achieved the motion control of a manipulator in the whole workspace. According to experimental results, we confirmed the feasibility of the proposed BMI method for 3D motion control of a manipulator using EEG during motor imagery. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Novel neural networks-based fault tolerant control scheme with fault alarm.

    Science.gov (United States)

    Shen, Qikun; Jiang, Bin; Shi, Peng; Lim, Cheng-Chew

    2014-11-01

    In this paper, the problem of adaptive active fault-tolerant control for a class of nonlinear systems with unknown actuator fault is investigated. The actuator fault is assumed to have no traditional affine appearance of the system state variables and control input. The useful property of the basis function of the radial basis function neural network (NN), which will be used in the design of the fault tolerant controller, is explored. Based on the analysis of the design of normal and passive fault tolerant controllers, by using the implicit function theorem, a novel NN-based active fault-tolerant control scheme with fault alarm is proposed. Comparing with results in the literature, the fault-tolerant control scheme can minimize the time delay between fault occurrence and accommodation that is called the time delay due to fault diagnosis, and reduce the adverse effect on system performance. In addition, the FTC scheme has the advantages of a passive fault-tolerant control scheme as well as the traditional active fault-tolerant control scheme's properties. Furthermore, the fault-tolerant control scheme requires no additional fault detection and isolation model which is necessary in the traditional active fault-tolerant control scheme. Finally, simulation results are presented to demonstrate the efficiency of the developed techniques.

  20. Adaptive lyapunov control and artificial neural networks for spacecraft relative maneuvering using atmospheric differential drag

    Science.gov (United States)

    Perez Chaparro, David Andres

    At low Earth orbits, a differential in the drag acceleration between spacecraft can be used to control their relative motion. This drag differential allows for a propellant-free alternative to thrusters for performing relative maneuvers in these orbits. The interest in autonomous propellant-less maneuvering comes from the desire to reduce the costs of spacecraft formations. Formation maneuvering opens up a wide variety of new applications for spacecraft missions, such as on-orbit maintenance and refueling. In this work atmospheric differential drag based nonlinear controllers are presented that can be used for virtually any planar relative maneuver of two spacecraft, provided that there is enough atmospheric density and that the spacecraft can change their ballistic coefficients by sufficient amounts to generate the necessary differential accelerations. The control techniques are successfully tested using high fidelity Satellite Tool Kit simulations for re-phase, fly-around, and rendezvous maneuvers, proving the feasibility of the proposed approach for a real flight. Furthermore, the atmospheric density varies in time and in space as the spacecraft travel along their orbits. The ability to accurately forecast the density allows for accurate onboard orbit propagation and for creating realistic guidance trajectories for maneuvers that rely on the differential drag. In this work a localized density predictor based on artificial neural networks is also presented. The predictor uses density measurements or estimates along the past orbits and can use a set of proxies for solar and geomagnetic activities to predict the value of the density along the future orbits of the spacecraft. The performance of the localized predictor is studied for different neural network structures, testing periods of high and low solar and geomagnetic activities and different prediction windows. Comparison with previously developed methods show substantial benefits in using neural networks, both

  1. Control chart pattern recognition using an optimized neural network and efficient features.

    Science.gov (United States)

    Ebrahimzadeh, Ata; Ranaee, Vahid

    2010-07-01

    Automatic recognition of abnormal patterns in control charts has seen increasing demands nowadays in manufacturing processes. This study investigates the design of an accurate system for control chart pattern (CCP) recognition from two aspects. First, an efficient system is introduced that includes two main modules: the feature extraction module and the classifier module. The feature extraction module uses the entropies of the wavelet packets. These are applied for the first time in this area. In the classifier module several neural networks, such as the multilayer perceptron and radial basis function, are investigated. Using an experimental study, we choose the best classifier in order to recognize the CCPs. Second, we propose a hybrid heuristic recognition system based on particle swarm optimization to improve the generalization performance of the classifier. The results obtained clearly confirm that further improvements in terms of recognition accuracy can be achieved by the proposed recognition system. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  2. A novel memristive multilayer feedforward small-world neural network with its applications in PID control.

    Science.gov (United States)

    Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan; Li, Hai

    2014-01-01

    In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.

  3. First Steps Toward Incorporating Image Based Diagnostics Into Particle Accelerator Control Systems Using Convolutional Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, A. L.; Biedron, S. G.; Milton, S. V.; Edelen, J. P.

    2016-12-16

    At present, a variety of image-based diagnostics are used in particle accelerator systems. Often times, these are viewed by a human operator who then makes appropriate adjustments to the machine. Given recent advances in using convolutional neural networks (CNNs) for image processing, it should be possible to use image diagnostics directly in control routines (NN-based or otherwise). This is especially appealing for non-intercepting diagnostics that could run continuously during beam operation. Here, we show results of a first step toward implementing such a controller: our trained CNN can predict multiple simulated downstream beam parameters at the Fermilab Accelerator Science and Technology (FAST) facility's low energy beamline using simulated virtual cathode laser images, gun phases, and solenoid strengths.

  4. Neural Network Observer-Based Finite-Time Formation Control of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Caihong Zhang

    2014-01-01

    Full Text Available This paper addresses the leader-following formation problem of nonholonomic mobile robots. In the formation, only the pose (i.e., the position and direction angle of the leader robot can be obtained by the follower. First, the leader-following formation is transformed into special trajectory tracking. And then, a neural network (NN finite-time observer of the follower robot is designed to estimate the dynamics of the leader robot. Finally, finite-time formation control laws are developed for the follower robot to track the leader robot in the desired separation and bearing in finite time. The effectiveness of the proposed NN finite-time observer and the formation control laws are illustrated by both qualitative analysis and simulation results.

  5. A Novel Memristive Multilayer Feedforward Small-World Neural Network with Its Applications in PID Control

    Science.gov (United States)

    Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan

    2014-01-01

    In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme. PMID:25202723

  6. Using Weightless Neural Networks for Vergence Control in an Artificial Vision System

    Directory of Open Access Journals (Sweden)

    Karin S. Komati

    2003-01-01

    Full Text Available This paper presents a methodology we have developed and used to implement an artificial binocular vision system capable of emulating the vergence of eye movements. This methodology involves using weightless neural networks (WNNs as building blocks of artificial vision systems. Using the proposed methodology, we have designed several architectures of WNN-based artificial vision systems, in which images captured by virtual cameras are used for controlling the position of the ‘foveae’ of these cameras (high-resolution region of the images captured. Our best architecture is able to control the foveae vergence movements with average error of only 3.58 image pixels, which is equivalent to an angular error of approximately 0.629°.

  7. Synergistic control of forearm based on accelerometer data and artificial neural networks

    Directory of Open Access Journals (Sweden)

    B. Mijovic

    2008-05-01

    Full Text Available In the present study, we modeled a reaching task as a two-link mechanism. The upper arm and forearm motion trajectories during vertical arm movements were estimated from the measured angular accelerations with dual-axis accelerometers. A data set of reaching synergies from able-bodied individuals was used to train a radial basis function artificial neural network with upper arm/forearm tangential angular accelerations. The trained radial basis function artificial neural network for the specific movements predicted forearm motion from new upper arm trajectories with high correlation (mean, 0.9149-0.941. For all other movements, prediction was low (range, 0.0316-0.8302. Results suggest that the proposed algorithm is successful in generalization over similar motions and subjects. Such networks may be used as a high-level controller that could predict forearm kinematics from voluntary movements of the upper arm. This methodology is suitable for restoring the upper limb functions of individuals with motor disabilities of the forearm, but not of the upper arm. The developed control paradigm is applicable to upper-limb orthotic systems employing functional electrical stimulation. The proposed approach is of great significance particularly for humans with spinal cord injuries in a free-living environment. The implication of a measurement system with dual-axis accelerometers, developed for this study, is further seen in the evaluation of movement during the course of rehabilitation. For this purpose, training-related changes in synergies apparent from movement kinematics during rehabilitation would characterize the extent and the course of recovery. As such, a simple system using this methodology is of particular importance for stroke patients. The results underlie the important issue of upper-limb coordination.

  8. Robust/optimal temperature profile control of a high-speed aerospace vehicle using neural networks.

    Science.gov (United States)

    Yadav, Vivek; Padhi, Radhakant; Balakrishnan, S N

    2007-07-01

    An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A 1-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.

  9. Artificial neural networks based controller for glucose monitoring during clamp test.

    Directory of Open Access Journals (Sweden)

    Merav Catalogna

    Full Text Available Insulin resistance (IR is one of the most widespread health problems in modern times. The gold standard for quantification of IR is the hyperinsulinemic-euglycemic glucose clamp technique. During the test, a regulated glucose infusion is delivered intravenously to maintain a constant blood glucose concentration. Current control algorithms for regulating this glucose infusion are based on feedback control. These models require frequent sampling of blood, and can only partly capture the complexity associated with regulation of glucose. Here we present an improved clamp control algorithm which is motivated by the stochastic nature of glucose kinetics, while using the minimal need in blood samples required for evaluation of IR. A glucose pump control algorithm, based on artificial neural networks model was developed. The system was trained with a data base collected from 62 rat model experiments, using a back-propagation Levenberg-Marquardt optimization. Genetic algorithm was used to optimize network topology and learning features. The predictive value of the proposed algorithm during the temporal period of interest was significantly improved relative to a feedback control applied at an equivalent low sampling interval. Robustness to noise analysis demonstrates the applicability of the algorithm in realistic situations.

  10. Classifying Algorithm Based on a Fuzzy Neural network for the control of a Network Attached Optical Jukebox

    Science.gov (United States)

    Liu, Xuan; Jia, Hui-Bo; Cheng, Ming

    2006-11-01

    A new analytical method for improving the performance of a network attached optical jukebox is presented by means of artificial neural networks. Through analyzing operation (request) process in this system, the mathematics model and algorithm are built for this storage system, and then a classified method based on artificial neural networks for this system is proposed. Simulation results testified the feasibility and validity of the proposed method that it could overcome the drawbacks of the frequent I/O operation and provide an effective way for using the Network Attached Optical Jukebox.

  11. Oscillatory neural networks.

    Science.gov (United States)

    Selverston, A I; Moulins, M

    1985-01-01

    Despite the fact that a large number of neuronal oscillators have been described, there are only a few good examples that illustrate how they operate at the cellular level. For most, there is some isolated information about different aspects of the oscillator network, but too little to explain the whole mechanism. Two quite remarkable features do seem to be emerging from ongoing studies, however. One is that there are very few generalizable features common to neural oscillators. Many utilize reciprocal inhibitory circuits and endogenous burst-generating currents to some extent. All that have been well worked out utilize a combination of both cellular and network properties, but little else in the way of common mechanism is noteworthy. Perhaps the most interesting aspect of recent work is the ability of a particular oscillator to produce a large repertoire of different outputs. This is separate and in addition to changes occurring via phasic sensory feedback. It is in fact a radical functional "rewiring" of the network in response to neuromodulators. The CPG circuits represent only the most basic form of a given pattern. Finally, concerning the role of sensory feedback in generating oscillatory patterns, the concept of the CPG as a group of neurons able to produce oscillatory patterns without any sensory feedback is, in our opinion, still valid. There is no doubt that some oscillators may be quite weak when isolated, but they can still produce bursts with firing sequences similar to those seen in vivo. The fact that sensory feedback can both control and enhance the oscillations has never been in doubt. Similarly, entrainment of the pattern by sensory feedback does not mean that the receptor is part of the generator, only that it has access to it (as do command and coordinating fibers). The real question remains: Can a group of cells produce an oscillatory pattern without phasic sensory input? We must answer this affirmatively even for the insect-flight motor CPG

  12. Neural network monitoring of resistance welding processes

    OpenAIRE

    Quero Reboul, José Manuel; Millán Vázquez de la Torre, Rafael Luis; García Franquelo, Leopoldo; Cañas, J.

    1994-01-01

    Control of weld quality is one of the most important and complex processes to be carried out on production lines. Neural networks have shown good results in fields such as modelling and control of physical processes. It is suggested in this article that a neural classifier should be used to carry out non‐destructive on‐line analysis. This system has been developed and installed at resistance welding stations. Results confirm the validity of neural networks used for this type of application.

  13. Neural-network-based navigation and control of unmanned aerial vehicles for detecting unintended emissions

    Science.gov (United States)

    Zargarzadeh, H.; Nodland, David; Thotla, V.; Jagannathan, S.; Agarwal, S.

    2012-06-01

    Unmanned Aerial Vehicles (UAVs) are versatile aircraft with many applications, including the potential for use to detect unintended electromagnetic emissions from electronic devices. A particular area of recent interest has been helicopter unmanned aerial vehicles. Because of the nature of these helicopters' dynamics, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via output feedback control for trajectory tracking of a helicopter UAV using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic, virtual, and dynamic controllers and an observer. Optimal tracking is accomplished with a single NN utilized for cost function approximation. The controller positions the helicopter, which is equipped with an antenna, such that the antenna can detect unintended emissions. The overall closed-loop system stability with the proposed controller is demonstrated by using Lyapunov analysis. Finally, results are provided to demonstrate the effectiveness of the proposed control design for positioning the helicopter for unintended emissions detection.

  14. Learning Control of Fixed-Wing Unmanned Aerial Vehicles Using Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Erdal Kayacan

    2017-01-01

    Full Text Available A learning control strategy is preferred for the control and guidance of a fixed-wing unmanned aerial vehicle to deal with lack of modeling and flight uncertainties. For learning the plant model as well as changing working conditions online, a fuzzy neural network (FNN is used in parallel with a conventional P (proportional controller. Among the learning algorithms in the literature, a derivative-free one, sliding mode control (SMC theory-based learning algorithm, is preferred as it has been proved to be computationally efficient in real-time applications. Its proven robustness and finite time converging nature make the learning algorithm appropriate for controlling an unmanned aerial vehicle as the computational power is always limited in unmanned aerial vehicles (UAVs. The parameter update rules and stability conditions of the learning are derived, and the proof of the stability of the learning algorithm is shown by using a candidate Lyapunov function. Intensive simulations are performed to illustrate the applicability of the proposed controller which includes the tracking of a three-dimensional trajectory by the UAV subject to time-varying wind conditions. The simulation results show the efficiency of the proposed control algorithm, especially in real-time control systems because of its computational efficiency.

  15. Stabilization of Neural-Network-Based Control Systems via Event-Triggered Control With Nonperiodic Sampled Data.

    Science.gov (United States)

    Hu, Songlin; Yue, Dong; Xie, Xiangpeng; Ma, Yong; Yin, Xiuxia

    2018-03-01

    This paper focuses on a problem of event-triggered stabilization for a class of nonuniformly sampled neural-network-based control systems (NNBCSs). First, a new event-triggered data transmission mechanism is designed based on the nonperiodic sampled data. Different from the previous works, the proposed triggering scheme enables the NNBCSs design to enjoy the advantages of both nonuniform and event-triggered sampling schemes. Second, under the nonperiodic event-triggered data transmission scheme, the nonperiodic sampled-data three-layer fully connected feedforward neural-network (TLFCFFNN)-based event-triggered controller is constructed, and the resulting closed-loop TLFCFFNN-based event-triggered control system is modeled as a state delay system based on time-delay system modeling approach. Then, the stability criteria for the closed-loop system is formulated using Lyapunov-Krasovskii functional approach. Third, the sufficient conditions for the codesign of the TLFCFFNN-based controller and triggering parameters are given in terms of solvability of matrix inequalities to guarantee the asymptotical stability of the closed-loop system and an upper bound on the given cost function while reducing the updates of the controller. Finally, three numerical examples are provided to illustrate the effectiveness and benefits of the proposed results.

  16. Computation within cultured neural networks.

    Science.gov (United States)

    DeMarse, T; Cadotte, A; Douglas, P; He, P; Trinh, V

    2004-01-01

    In this paper we present three related areas of research we are pursuing to study neural computation in vitro. Rat cortical neurons cultured on 60 channel multielectrode array (MEA) allow the researcher to measure from and stimulate sixty different sites across a small population of neurons grown in vitro. Using this system we can send stimulation patterns into the network and study how these living neural networks compute by measuring its outputs. Our first series of studies uses chaotic control techniques to study the dynamics and potentially control the behavior of cortical network. At the same time, we are beginning to apply a model of computation called the liquid state machine or LSM model developed by Wolfgang Maass to provide a firm mathematical framework from which to proceed with our investigations. Each of these components is integrated into a third area investigating the role of computation and feedback using a real-time sensory-motor feedback robotic flight system.

  17. Evaluation of Artificial Neural Network-Based Temperature Control for Optimum Operation of Building Envelopes

    Directory of Open Access Journals (Sweden)

    Jin Woo Moon

    2014-11-01

    Full Text Available This study aims at developing an indoor temperature control method that could provide comfortable thermal conditions by integrating heating system control and the opening conditions of building envelopes. Artificial neural network (ANN-based temperature control logic was developed for the control of heating systems and openings at the building envelopes in a predictive and adaptive manner. Numerical comparative performance tests for the ANN-based temperature control logic and conventional non-ANN-based counterpart were conducted for single skin enveloped and double skin enveloped buildings after the simulation program was validated by comparing the simulation and the field measurement results. Analysis results revealed that the ANN-based control logic improved the indoor temperature environment with an increased comfortable temperature period and decreased overshoot and undershoot of temperatures outside of the operating range. The proposed logic did not show significant superiority in energy efficiency over the conventional logic. The ANN-based temperature control logic was able to maintain the indoor temperature more comfortably and with more stability within the operating range due to the predictive and adaptive features of ANN models.

  18. A new method for the control of discrete nonlinear dynamic systems using neural networks.

    Science.gov (United States)

    Adetona, O; Garcia, E; Keel, L H

    2000-01-01

    A new controller design method for nonaffine nonlinear dynamic systems is presented in this paper. An identified neural network model of the nonlinear plant is used in the proposed method. The method is based on a new control law that is developed for any discrete deterministic time-invariant nonlinear dynamic system in a subregion Phi(x) of an asymptotically stable equilibrium point of the plant. The performance of the control law is not necessarily dependent on the distance between the current state of the plant and the equilibrium state if the nonlinear dynamic system satisfies some mild requirements in Phi(x). The control law is simple to implement and is based on a novel linearization of the input-output model of the plant at each instant in time. It can be used to control both minimum phase and nonminimum phase nonaffine nonlinear plants. Extensive empirical studies have confirmed that the control law can be used to control a relatively general class of highly nonlinear multiinput-multioutput (MIMO) plants.

  19. A Neural Network Controller New Methodology for the ATR-42 Morphing Wing Actuation

    Directory of Open Access Journals (Sweden)

    Abdallah Ben MOSBAH

    2016-06-01

    Full Text Available A morphing wing model is used to improve aircraft performance. To obtain the desired airfoils, electrical actuators are used, which are installed inside of the wing to morph its upper surface in order to obtain its desired shape. In order to achieve this objective, a robust position controller is needed. In this research, a design and test validation of a controller based on neural networks is presented. This controller was composed by a position controller and a current controller to manage the current consumed by the electrical actuators to obtain its desired displacement. The model was tested and validated using simulation and experimental tests. The results obtained with the proposed controller were compared to the results given by the PID controller. Wind tunnel tests were conducted in the Price-Païdoussis Wind Tunnel at the LARCASE laboratory in order to calculate the pressure coefficient distribution on an ATR-42 morphing wing model for different flow conditions. The pressure coefficients obtained experimentally were compared with their numerical values given by XFoil software.

  20. A parallel neural network training algorithm for control of discrete dynamical systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, J. L.; Hanebutte, U. R.; Vitela, J. E.

    1998-01-20

    In this work we present a parallel neural network controller training code, that uses MPI, a portable message passing environment. A comprehensive performance analysis is reported which compares results of a performance model with actual measurements. The analysis is made for three different load assignment schemes: block distribution, strip mining and a sliding average bin packing (best-fit) algorithm. Such analysis is crucial since optimal load balance can not be achieved because the work load information is not available a priori. The speedup results obtained with the above schemes are compared with those corresponding to the bin packing load balance scheme with perfect load prediction based on a priori knowledge of the computing effort. Two multiprocessor platforms: a SGI/Cray Origin 2000 and a IBM SP have been utilized for this study. It is shown that for the best load balance scheme a parallel efficiency of over 50% for the entire computation is achieved by 17 processors of either parallel computers.

  1. Applying a Cerebellar Model Articulation Controller Neural Network to a Photovoltaic Power Generation System Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Kuei-Hsiang Chao

    2013-01-01

    Full Text Available This study employed a cerebellar model articulation controller (CMAC neural network to conduct fault diagnoses on photovoltaic power generation systems. We composed a module array using 9 series and 2 parallel connections of SHARP NT-R5E3E 175 W photovoltaic modules. In addition, we used data that were outputted under various fault conditions as the training samples for the CMAC and used this model to conduct the module array fault diagnosis after completing the training. The results of the training process and simulations indicate that the method proposed in this study requires fewer number of training times compared to other methods. In addition to significantly increasing the accuracy rate of the fault diagnosis, this model features a short training duration because the training process only tunes the weights of the exited memory addresses. Therefore, the fault diagnosis is rapid, and the detection tolerance of the diagnosis system is enhanced.

  2. Development of a sensor coordinated kinematic model for neural network controller training

    Science.gov (United States)

    Jorgensen, Charles C.

    1990-01-01

    A robotic benchmark problem useful for evaluating alternative neural network controllers is presented. Specifically, it derives two camera models and the kinematic equations of a multiple degree of freedom manipulator whose end effector is under observation. The mapping developed include forward and inverse translations from binocular images to 3-D target position and the inverse kinematics of mapping point positions into manipulator commands in joint space. Implementation is detailed for a three degree of freedom manipulator with one revolute joint at the base and two prismatic joints on the arms. The example is restricted to operate within a unit cube with arm links of 0.6 and 0.4 units respectively. The development is presented in the context of more complex simulations and a logical path for extension of the benchmark to higher degree of freedom manipulators is presented.

  3. Robust Integral of Neural Network and Error Sign Control of MIMO Nonlinear Systems.

    Science.gov (United States)

    Yang, Qinmin; Jagannathan, Sarangapani; Sun, Youxian

    2015-12-01

    This paper presents a novel state-feedback control scheme for the tracking control of a class of multi-input multioutput continuous-time nonlinear systems with unknown dynamics and bounded disturbances. First, the control law consisting of the robust integral of a neural network (NN) output plus sign of the tracking error feedback multiplied with an adaptive gain is introduced. The NN in the control law learns the system dynamics in an online manner, while the NN residual reconstruction errors and the bounded disturbances are overcome by the error sign signal. Since both of the NN output and the error sign signal are included in the integral, the continuity of the control input is ensured. The controller structure and the NN weight update law are novel in contrast with the previous effort, and the semiglobal asymptotic tracking performance is still guaranteed by using the Lyapunov analysis. In addition, the NN weights and all other signals are proved to be bounded simultaneously. The proposed approach also relaxes the need for the upper bounds of certain terms, which are usually required in the previous designs. Finally, the theoretical results are substantiated with simulations.

  4. Observer-Based Adaptive Neural Network Trajectory Tracking Control for Remotely Operated Vehicle.

    Science.gov (United States)

    Chu, Zhenzhong; Zhu, Daqi; Yang, Simon X

    2017-07-01

    This paper focuses on the adaptive trajectory tracking control for a remotely operated vehicle (ROV) with an unknown dynamic model and the unmeasured states. Unlike most previous trajectory tracking control approaches, in this paper, the velocity states and the angular velocity states in the body-fixed frame are unmeasured, and the thrust model is inaccurate. Obviously, it is more in line with the actual ROV systems. Since the dynamic model is unknown, a new local recurrent neural network (local RNN) structure with fast learning speed is proposed for online identification. To estimate the unmeasured states, an adaptive terminal sliding-mode state observer based on the local RNN is proposed, so that the finite-time convergence of the trajectory tracking error can be guaranteed. Considering the problem of inaccurate thrust model, an adaptive scale factor is introduced into thrust model, and the thruster control signal is considered as the input of the trajectory tracking system directly. Based on the local RNN output, the adaptive scale factor, and the state estimation values, an adaptive trajectory tracking control law is constructed. The stability of the trajectory tracking control system is analyzed by the Lyapunov theorem. The effectiveness of the proposed control scheme is illustrated by simulations.

  5. Neural networks and applications tutorial

    Science.gov (United States)

    Guyon, I.

    1991-09-01

    The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.

  6. A design of fault tolerant flight control systems for sensor and actuator failures using on-line learning neural networks

    Science.gov (United States)

    An, Younghwan

    The research in this document focuses on the performance of a neural network-based fault tolerant system within a flight control system. This fault tolerant flight control system integrates sensor and actuator failure detection, identification, and accommodation (SFDIA and AFDIA). The SFDIA task is achieved by incorporating a main neural network (MNN) and a set of n decentralized neural networks (DNNs) for a system with n sensors assumed to be without physical redundancy. Particularly, the purpose of the MNN is to detect a wide variety of sensor failures while the purpose of the DNNs is to identify the particular sensor that has failed and accommodate for the failure. The AFDIA scheme also implements a MNN with three neural network controllers (NNCs). The function of NNCs is to regain equilibrium and to compensate for the pitching, rolling, and yawing moments induced by the failure. The NNs are trained on-line using the Extended Back-Propagation Algorithm (EBPA). Because of the on-line learning, neural estimators and controllers have the capability of adapting to changes in the aircraft dynamics and/or modeling discrepancies between the actual aircraft and its mathematical model. This factor makes neural estimators and controllers an attractive option for fault tolerant flight control system. Particular emphasis is placed in this study toward improving the performance of the SFDIA scheme in the presence of ramp-type soft failures which are hard to detect as well as achieving an efficient integration between SFDIA and AFDIA without degradation of performance in terms of false alarm rates and incorrect failure identification.

  7. Neural networks for triggering

    International Nuclear Information System (INIS)

    Denby, B.; Campbell, M.; Bedeschi, F.; Chriss, N.; Bowers, C.; Nesti, F.

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab

  8. Adaptive Neural Networks Prescribed Performance Control Design for Switched Interconnected Uncertain Nonlinear Systems.

    Science.gov (United States)

    Li, Yongming; Tong, Shaocheng

    2017-06-28

    In this paper, an adaptive neural networks (NNs)-based decentralized control scheme with the prescribed performance is proposed for uncertain switched nonstrict-feedback interconnected nonlinear systems. It is assumed that nonlinear interconnected terms and nonlinear functions of the concerned systems are unknown, and also the switching signals are unknown and arbitrary. A linear state estimator is constructed to solve the problem of unmeasured states. The NNs are employed to approximate unknown interconnected terms and nonlinear functions. A new output feedback decentralized control scheme is developed by using the adaptive backstepping design technique. The control design problem of nonlinear interconnected switched systems with unknown switching signals can be solved by the proposed scheme, and only a tuning parameter is needed for each subsystem. The proposed scheme can ensure that all variables of the control systems are semi-globally uniformly ultimately bounded and the tracking errors converge to a small residual set with the prescribed performance bound. The effectiveness of the proposed control approach is verified by some simulation results.

  9. Adaptive control of uncertain nonaffine nonlinear systems with input saturation using neural networks.

    Science.gov (United States)

    Esfandiari, Kasra; Abdollahi, Farzaneh; Talebi, Heidar Ali

    2015-10-01

    This paper presents a tracking control methodology for a class of uncertain nonlinear systems subject to input saturation constraint and external disturbances. Unlike most previous approaches on saturated systems, which assumed affine nonlinear systems, in this paper, tracking control problem is solved for uncertain nonaffine nonlinear systems with input saturation. To deal with the saturation constraint, an auxiliary system is constructed and a modified tracking error is defined. Then, by employing implicit function theorem, mean value theorem, and modified tracking error, updating rules are derived based on the well-known back-propagation (BP) algorithm, which has been proven to be the most relevant updating rule to control problems. However, most of the previous approaches on BP algorithm suffer from lack of stability analysis. By injecting a damping term to the standard BP algorithm, uniformly ultimately boundedness of all the signals of the closed-loop system is ensured via Lyapunov's direct method. Furthermore, the presented approach employs nonlinear in parameter neural networks. Hence, the proposed scheme is applicable to systems with higher degrees of nonlinearity. Using a high-gain observer to reconstruct the states of the system, an output feedback controller is also presented. Finally, the simulation results performed on a Duffing-Holmes chaotic system, a generalized pendulum-type system, and a numerical system are presented to demonstrate the effectiveness of the suggested state and output feedback control schemes.

  10. Active Noise Control Using a Functional Link Artificial Neural Network with the Simultaneous Perturbation Learning Rule

    Directory of Open Access Journals (Sweden)

    Ya-li Zhou

    2009-01-01

    Full Text Available In practical active noise control (ANC systems, the primary path and the secondary path may be nonlinear and time-varying. It has been reported that the linear techniques used to control such ANC systems exhibit degradation in performance. In addition, the actuators of an ANC system very often have nonminimum-phase response. A linear controller under such situations yields poor performance. A novel functional link artificial neural network (FLANN-based simultaneous perturbation stochastic approximation (SPSA algorithm, which functions as a nonlinear mode-free (MF controller, is proposed in this paper. Computer simulations have been carried out to demonstrate that the proposed algorithm outperforms the standard filtered-x least mean square (FXLMS algorithm, and performs better than the recently proposed filtered-s least mean square (FSLMS algorithm when the secondary path is time-varying. This observation implies that the SPSA-based MF controller can eliminate the need of the modeling of the secondary path for the ANC system.

  11. Adaptive Sliding Mode Control of Dynamic Systems Using Double Loop Recurrent Neural Network Structure.

    Science.gov (United States)

    Fei, Juntao; Lu, Cheng

    2018-04-01

    In this paper, an adaptive sliding mode control system using a double loop recurrent neural network (DLRNN) structure is proposed for a class of nonlinear dynamic systems. A new three-layer RNN is proposed to approximate unknown dynamics with two different kinds of feedback loops where the firing weights and output signal calculated in the last step are stored and used as the feedback signals in each feedback loop. Since the new structure has combined the advantages of internal feedback NN and external feedback NN, it can acquire the internal state information while the output signal is also captured, thus the new designed DLRNN can achieve better approximation performance compared with the regular NNs without feedback loops or the regular RNNs with a single feedback loop. The new proposed DLRNN structure is employed in an equivalent controller to approximate the unknown nonlinear system dynamics, and the parameters of the DLRNN are updated online by adaptive laws to get favorable approximation performance. To investigate the effectiveness of the proposed controller, the designed adaptive sliding mode controller with the DLRNN is applied to a -axis microelectromechanical system gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed methodology can achieve good tracking property, and the comparisons of the approximation performance between radial basis function NN, RNN, and DLRNN show that the DLRNN can accurately estimate the unknown dynamics with a fast speed while the internal states of DLRNN are more stable.

  12. Mobile robot nonlinear feedback control based on Elman neural network observer

    Directory of Open Access Journals (Sweden)

    Khaled Al-Mutib

    2015-12-01

    Full Text Available This article presents a new approach to control a wheeled mobile robot without velocity measurement. The controller developed is based on kinematic model as well as dynamics model to take into account parameters of dynamics. These parameters related to dynamic equations are identified using a proposed methodology. Input–output feedback linearization is considered with a slight modification in the mathematical expressions to implement the dynamic controller and analyze the nonlinear internal behavior. The developed controllers require sensors to obtain the states needed for the closed-loop system. However, some states may not be available due to the absence of the sensors because of the cost, the weight limitation, reliability, induction of errors, failure, and so on. Particularly, for the velocity measurements, the required accuracy may not be achieved in practical applications due to the existence of significant errors induced by stochastic or cyclical noise. In this article, Elman neural network is proposed to work as an observer to estimate the velocity needed to complete the full state required for the closed-loop control and account for all the disturbances and model parameter uncertainties. Different simulations are carried out to demonstrate the feasibility of the approach in tracking different reference trajectories in comparison with other paradigms.

  13. Design of a robust controller on stabilization of stochastic neural networks with time varying delays

    Science.gov (United States)

    Sakthivel, R.; Karthik Raja, U.; Mathiyalagan, K.; Leelamani, A.

    2012-03-01

    This paper is concerned with the problem of robust stabilization and H∞ control for a class of uncertain stochastic neural networks with time-varying delays and time-varying norm-bounded parameter uncertainties. The delay is of a time-varying nature, and the activation functions are assumed to be neither differentiable nor strictly monotonic. Moreover, the description of the activation functions is more general than the commonly used Lipschitz conditions. By using the Lyapunov function approach together with the linear matrix inequality (LMI) technique, for the robust stabilization we propose a state feedback controller to ensure that the closed loop system is robustly asymptotically stable in the mean square for all admissible parameter uncertainties. For the robust H∞ control problem, a state feedback controller is designed such that in addition to the requirement of robust stability, a prescribed H∞ performance level is to be satisfied. The results obtained are formulated in terms of LMIs which can be easily checked by the MATLAB LMI control toolbox. Numerical examples are presented to illustrate the effectiveness of the obtained method and the improvement over some existing results.

  14. Nonlinear Control of an Active Magnetic Bearing System Achieved Using a Fuzzy Control with Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Seng-Chi Chen

    2014-01-01

    Full Text Available Studies on active magnetic bearing (AMB systems are increasing in popularity and practical applications. Magnetic bearings cause less noise, friction, and vibration than the conventional mechanical bearings; however, the control of AMB systems requires further investigation. The magnetic force has a highly nonlinear relation to the control current and the air gap. This paper proposes an intelligent control method for positioning an AMB system that uses a neural fuzzy controller (NFC. The mathematical model of an AMB system comprises identification followed by collection of information from this system. A fuzzy logic controller (FLC, the parameters of which are adjusted using a radial basis function neural network (RBFNN, is applied to the unbalanced vibration in an AMB system. The AMB system exhibited a satisfactory control performance, with low overshoot, and produced improved transient and steady-state responses under various operating conditions. The NFC has been verified on a prototype AMB system. The proposed controller can be feasibly applied to AMB systems exposed to various external disturbances; demonstrating the effectiveness of the NFC with self-learning and self-improving capacities is proven.

  15. Neural Network Based Maximum Power Point Tracking Control with Quadratic Boost Converter for PMSG—Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Ramji Tiwari

    2018-02-01

    Full Text Available This paper proposes an artificial neural network (ANN based maximum power point tracking (MPPT control strategy for wind energy conversion system (WECS implemented with a DC/DC converter. The proposed topology utilizes a radial basis function network (RBFN based neural network control strategy to extract the maximum available power from the wind velocity. The results are compared with a classical Perturb and Observe (P&O method and Back propagation network (BPN method. In order to achieve a high voltage rating, the system is implemented with a quadratic boost converter and the performance of the converter is validated with a boost and single ended primary inductance converter (SEPIC. The performance of the MPPT technique along with a DC/DC converter is demonstrated using MATLAB/Simulink.

  16. Structured Pyramidal Neural Networks.

    Science.gov (United States)

    Soares, Alessandra M; Fernandes, Bruno J T; Bastos-Filho, Carmelo J A

    2017-02-09

    The Pyramidal Neural Networks (PNN) are an example of a successful recently proposed model inspired by the human visual system and deep learning theory. PNNs are applied to computer vision and based on the concept of receptive fields. This paper proposes a variation of PNN, named here as Structured Pyramidal Neural Network (SPNN). SPNN has self-adaptive variable receptive fields, while the original PNNs rely on the same size for the fields of all neurons, which limits the model since it is not possible to put more computing resources in a particular region of the image. Another limitation of the original approach is the need to define values for a reasonable number of parameters, which can turn difficult the application of PNNs in contexts in which the user does not have experience. On the other hand, SPNN has a fewer number of parameters. Its structure is determined using a novel method with Delaunay Triangulation and k-means clustering. SPNN achieved better results than PNNs and similar performance when compared to Convolutional Neural Network (CNN) and Support Vector Machine (SVM), but using lower memory capacity and processing time.

  17. Artificial neural/chemical networks

    Science.gov (United States)

    Caulfield, H. John

    2001-11-01

    What strikes the attention of a neural network designer is that the chemicals seem to work not so much on individual neural circuits as on neural cell assemblies. These are large blocks of neural networks that carry out high level tasks using their constituent networks as needed. It follows to us that we might seek ways of achieving that same sort of behavior in an artificial neural network. In what follows, we provide two examples of how that might be done in an artificial system.

  18. Neural network controller development and implementation for spark ignition engines with high EGR levels.

    Science.gov (United States)

    Vance, Jonathan Blake; Singh, Atmika; Kaul, Brian C; Jagannathan, Sarangapani; Drallmeier, James A

    2007-07-01

    Past research has shown substantial reductions in the oxides of nitrogen (NOx) concentrations by using 10%-25% exhaust gas recirculation (EGR) in spark ignition (SI) engines (see Dudek and Sain, 1989). However, under high EGR levels, the engine exhibits strong cyclic dispersion in heat release which may lead to instability and unsatisfactory performance preventing commercial engines to operate with high EGR levels. A neural network (NN)-based output feedback controller is developed to reduce cyclic variation in the heat release under high levels of EGR even when the engine dynamics are unknown by using fuel as the control input. A separate control loop was designed for controlling EGR levels. The stability analysis of the closed-loop system is given and the boundedness of the control input is demonstrated by relaxing separation principle, persistency of excitation condition, certainty equivalence principle, and linear in the unknown parameter assumptions. Online training is used for the adaptive NN and no offline training phase is needed. This online learning feature and model-free approach is used to demonstrate the applicability of the controller on a different engine with minimal effort. Simulation results demonstrate that the cyclic dispersion is reduced significantly using the proposed controller when implemented on an engine model that has been validated experimentally. For a single cylinder research engine fitted with a modern four-valve head (Ricardo engine), experimental results at 15% EGR indicate that cyclic dispersion was reduced 33% by the controller, an improvement of fuel efficiency by 2%, and a 90% drop in NOx from stoichiometric operation without EGR was observed. Moreover, unburned hydrocarbons (uHC) drop by 6% due to NN control as compared to the uncontrolled scenario due to the drop in cyclic dispersion. Similar performance was observed with the controller on a different engine.

  19. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-02-09

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The design and optimization for light-algae bioreactor controller based on Artificial Neural Network-Model Predictive Control

    Science.gov (United States)

    Hu, Dawei; Liu, Hong; Yang, Chenliang; Hu, Enzhu

    As a subsystem of the bioregenerative life support system (BLSS), light-algae bioreactor (LABR) has properties of high reaction rate, efficiently synthesizing microalgal biomass, absorbing CO2 and releasing O2, so it is significant for BLSS to provide food and maintain gas balance. In order to manipulate the LABR properly, it has been designed as a closed-loop control system, and technology of Artificial Neural Network-Model Predictive Control (ANN-MPC) is applied to design the controller for LABR in which green microalgae, Spirulina platensis is cultivated continuously. The conclusion is drawn by computer simulation that ANN-MPC controller can intelligently learn the complicated dynamic performances of LABR, and automatically, robustly and self-adaptively regulate the light intensity illuminating on the LABR, hence make the growth of microalgae in the LABR be changed in line with the references, meanwhile provide appropriate damping to improve markedly the transient response performance of LABR.

  1. Neural networks-based adaptive control for nonlinear time-varying delays systems with unknown control direction.

    Science.gov (United States)

    Wen, Yuntong; Ren, Xuemei

    2011-10-01

    This paper investigates a neural network (NN) state observer-based adaptive control for a class of time-varying delays nonlinear systems with unknown control direction. An adaptive neural memoryless observer, in which the knowledge of time-delay is not used, is designed to estimate the system states. Furthermore, by applying the property of the function tanh(2)(ϑ/ε)/ϑ (the function can be defined at ϑ = 0) and introducing a novel type appropriate Lyapunov-Krasovskii functional, an adaptive output feedback controller is constructed via backstepping method which can efficiently avoid the problem of controller singularity and compensate for the time-delay. It is highly proven that the closed-loop systems controller designed by the NN-basis function property, new kind parameter adaptive law and Nussbaum function in detecting the control direction is able to guarantee the semi-global uniform ultimate boundedness of all signals and the tracking error can converge to a small neighborhood of zero. The characteristic of the proposed approach is that it relaxes any restrictive assumptions of Lipschitz condition for the unknown nonlinear continuous functions. And the proposed scheme is suitable for the systems with mismatching conditions and unmeasurable states. Finally, two simulation examples are given to illustrate the effectiveness and applicability of the proposed approach. © 2011 IEEE

  2. Optimization of Prosody Control in Text-to-Speech Processing by Neural Networks

    Czech Academy of Sciences Publication Activity Database

    Šebesta, Václav; Tučková, J.

    1999-01-01

    Roč. 9, č. 5 (1999), s. 413-424 ISSN 1210-0552 R&D Projects: GA AV ČR IAA2030801; GA ČR GV102/96/K087 Institutional research plan: AV0Z1030915 Keywords : neural network training * medical informatics * decision suppoort system Subject RIV: BA - General Mathematics

  3. Program Helps Simulate Neural Networks

    Science.gov (United States)

    Villarreal, James; Mcintire, Gary

    1993-01-01

    Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.

  4. Indirect predictive type-2 fuzzy neural network controller for a class of nonlinear input - delay systems.

    Science.gov (United States)

    Sabahi, Kamel; Ghaemi, Sehraneh; Liu, Jianxing; Badamchizadeh, Mohammad Ali

    2017-11-01

    In this paper a new indirect type-2 fuzzy neural network predictive (T2FNNP) controller has been proposed for a class of nonlinear systems with input-delay in presence of unknown disturbance and uncertainties. In this method, the predictor has been utilized to estimate the future state variables of the controlled system to compensate for the time-varying delay. The T2FNN is used to estimate some unknown nonlinear functions to construct the controller. By introducing a new adaptive compensator for the predictor and controller, the effects of the external disturbance, estimation errors of the unknown nonlinear functions, and future sate estimation errors have been eliminated. In the proposed method, using an appropriate Lyapunov function, the stability analysis as well as the adaptation laws is carried out for the T2FNN parameters in a way that all the signals in the closed-loop system remain bounded and the tracking error converges to zero asymptotically. Moreover, compared to the related existence predictive controllers, as the number of T2FNN estimators are reduced, the computation time in the online applications decreases. In the proposed method, T2FNN is used due to its ability to effectively model uncertainties, which may exist in the rules and data measured by the sensors. The proposed T2FNNP controller is applied to a nonlinear inverted pendulum and single link robot manipulator systems with input time-varying delay and compared with a type-1 fuzzy sliding predictive (T1FSP) controller. Simulation results indicate the efficiency of the proposed T2FNNP controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Sensorless Speed/Torque Control of DC Machine Using Artificial Neural Network Technique

    Directory of Open Access Journals (Sweden)

    Rakan Kh. Antar

    2017-12-01

    Full Text Available In this paper, Artificial Neural Network (ANN technique is implemented to improve speed and torque control of a separately excited DC machine drive. The speed and torque sensorless scheme based on ANN is estimated adaptively. The proposed controller is designed to estimate rotor speed and mechanical load torque as a Model Reference Adaptive System (MRAS method for DC machine. The DC drive system consists of four quadrant DC/DC chopper with MOSFET transistors, ANN, logic gates and routing circuits. The DC drive circuit is designed, evaluated and modeled by Matlab/Simulink in the forward and reverse operation modes as a motor and generator, respectively. The DC drive system is simulated at different speed values (±1200 rpm and mechanical torque (±7 N.m in steady state and dynamic conditions. The simulation results illustratethe effectiveness of the proposed controller without speed or torque sensors.

  6. Control system of hexacopter using color histogram footprint and convolutional neural network

    Science.gov (United States)

    Ruliputra, R. N.; Darma, S.

    2017-07-01

    The development of unmanned aerial vehicles (UAV) has been growing rapidly in recent years. The use of logic thinking which is implemented into the program algorithms is needed to make a smart system. By using visual input from a camera, UAV is able to fly autonomously by detecting a target. However, some weaknesses arose as usage in the outdoor environment might change the target's color intensity. Color histogram footprint overcomes the problem because it divides color intensity into separate bins that make the detection tolerant to the slight change of color intensity. Template matching compare its detection result with a template of the reference image to determine the target position and use it to position the vehicle in the middle of the target with visual feedback control based on Proportional-Integral-Derivative (PID) controller. Color histogram footprint method localizes the target by calculating the back projection of its histogram. It has an average success rate of 77 % from a distance of 1 meter. It can position itself in the middle of the target by using visual feedback control with an average positioning time of 73 seconds. After the hexacopter is in the middle of the target, Convolutional Neural Networks (CNN) classifies a number contained in the target image to determine a task depending on the classified number, either landing, yawing, or return to launch. The recognition result shows an optimum success rate of 99.2 %.

  7. Optimization of patterns of control bars using neural networks; Optimizacion de patrones de barras de control usando redes neuronales

    Energy Technology Data Exchange (ETDEWEB)

    Mejia S, D.M. [IPN, ESFM, Depto. de Ingenieria Nuclear, 07738 Mexico D.F. (Mexico); Ortiz S, J.J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: dulcema6715@hotmail.com

    2005-07-01

    In this work the RENOPBC system that is based on a recurrent multi state neural network, for the optimization of patterns of control bars in a cycle of balance of a boiling water reactor (BWR for their initials in English) is presented. The design of patterns of bars is based on the execution of operation thermal limits, to maintain criticizes the reactor and that the axial profile of power is adjusted to one predetermined along several steps of burnt. The patterns of control bars proposed by the system are comparable to those proposed by human experts with many hour-man of experience. These results are compared with those proposed by other techniques as genetic algorithms, colonies of ants and tabu search for the same operation cycle. As consequence it is appreciated that the proposed patterns of control bars, have bigger operation easiness that those proposed by the other techniques. (Author)

  8. Adaptive neural network control of fes-induced cyclical lower leg movements

    NARCIS (Netherlands)

    Stroeve, S.H.; Franken, H.M.; Veltink, Petrus H.; van Luenen, W.T.C.

    1992-01-01

    As a first step to the control of paraplegic gait by functional electrical stimulation (FES), the control of the swinging lower leg is being studied. This paper deals with a neural control system, that has been developed for this case. The control system has been tested for a model of the swinging

  9. A Dynamic Fuzzy Controller to Meet Thermal Comfort by Using Neural Network Forecasted Parameters as the Input

    Directory of Open Access Journals (Sweden)

    Mario Collotta

    2014-07-01

    Full Text Available Heating, ventilating and air-conditioning (HVAC systems are typical non-linear time-variable multivariate systems with disturbances and uncertainties. In this paper, an approach based on a combined neuro-fuzzy model for dynamic and automatic regulation of indoor temperature is proposed. The proposed artificial neural network performs indoor temperatures forecasts that are used to feed a fuzzy logic control unit in order to manage the on/off switching of the HVAC system and the regulation of the inlet air speed. Moreover, the used neural network is optimized by the analytical calculation of the embedding parameters, and the goodness of this approach is tested through MATLAB. The fuzzy controller is driven by the indoor temperature forecasted by the neural network module and is able to adjust the membership functions dynamically, since thermal comfort is a very subjective factor and may vary even in the same subject. The paper shows some experimental results, through a real implementation in an embedded prototyping board, of the proposed approach in terms of the evolution of the inlet air speed injected by the fan coils, the indoor air temperature forecasted by the neural network model and the adjusting of the membership functions after receiving user feedback.

  10. Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shaohua [School of Automation, Chongqing University, Chongqing 400044 (China); Department of Mechanical Engineering, Chongqing Aerospace Polytechnic, Chongqing, 400021 (China); Wu, Songli [Department of Mechanical Engineering, Chongqing Aerospace Polytechnic, Chongqing, 400021 (China); Gao, Ruizhen [School of Automation, Chongqing University, Chongqing 400044 (China)

    2015-07-15

    This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.

  11. Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights

    Science.gov (United States)

    Luo, Shaohua; Wu, Songli; Gao, Ruizhen

    2015-07-01

    This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.

  12. International Conference on Artificial Neural Networks (ICANN)

    CERN Document Server

    Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics

    2015-01-01

    The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...

  13. Application of CMAC Neural Network Coupled with Active Disturbance Rejection Control Strategy on Three-motor Synchronization Control System

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-04-01

    Full Text Available Three-motor synchronous coordination system is a MI-MO nonlinear and complex control system. And it often works in poor working condition. Advanced control strategies are required to improve the control performance of the system and to achieve the decoupling between main motor speed and tension. Cerebellar Model Articulation Controller coupled with Active Disturbance Rejection Control (CMAC-ADRC control strategy is proposed. The speed of the main motor and tensions between two motors is decoupled by extended state observer (ESO in ADRC. ESO in ADRC is used to compensate internal and external disturbances of the system online. And the anti interference of the system is improved by ESO. And the same time the control model is optimized. Feedforward control is implemented by the adoption of CMAC neural network controller. And control precision of the system is improved in reason of CMAC. The overshoot of the system can be reduced without affecting the dynamic response of the system by the use of CMAC-ADRC. The simulation results show that: the CMAC- ADRC control strategy is better than the traditional PID control strategy. And CMAC-ADRC control strategy can achieve the decoupling between speed and tension. The control system using CMAC-ADRC have strong anti-interference ability and small regulate time and small overshoot. The magnitude of the system response incited by the interference using CMAC-ADRC is smaller than the system using conventional PID control 6.43 %. And the recovery time of the system with CMAC-ADRC is shorter than the system with traditional PID control 0.18 seconds. And the triangular wave tracking error of the system with CMAC-ADRC is smaller than the system with conventional PID control 0.24 rad/min. Thus the CMAC-ADRC control strategy is a good control strategy and is able to fit three-motor synchronous coordinated control.

  14. [Artificial neural networks in Neurosciences].

    Science.gov (United States)

    Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María

    2011-11-01

    This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.

  15. Accelerating Learning By Neural Networks

    Science.gov (United States)

    Toomarian, Nikzad; Barhen, Jacob

    1992-01-01

    Electronic neural networks made to learn faster by use of terminal teacher forcing. Method of supervised learning involves addition of teacher forcing functions to excitations fed as inputs to output neurons. Initially, teacher forcing functions are strong enough to force outputs to desired values; subsequently, these functions decay with time. When learning successfully completed, terminal teacher forcing vanishes, and dynamics or neural network become equivalent to those of conventional neural network. Simulated neural network with terminal teacher forcing learned to produce close approximation of circular trajectory in 400 iterations.

  16. Developing an Intelligent Reservoir Flood Control Decision Support System through Integrating Artificial Neural Networks

    Science.gov (United States)

    Chang, L. C.; Kao, I. F.; Tsai, F. H.; Hsu, H. C.; Yang, S. N.; Shen, H. Y.; Chang, F. J.

    2015-12-01

    Typhoons and storms hit Taiwan several times every year and cause serious flood disasters. Because the mountainous terrain and steep landform rapidly accelerate the speed of flood flow, rivers cannot be a stable source of water supply. Reservoirs become one of the most important and effective floodwater storage facilities. However, real-time operation for reservoir flood control is a continuous and instant decision-making process based on rules, laws, meteorological nowcast, in addition to the immediate rainfall and hydrological data. The achievement of reservoir flood control can effectively mitigate flood disasters and store floodwaters for future uses. In this study, we construct an intelligent decision support system for reservoir flood control through integrating different types of neural networks and the above information to solve this problem. This intelligent reservoir flood control decision support system includes three parts: typhoon track classification, flood forecast and adaptive water release models. This study used the self-organizing map (SOM) for typhoon track clustering, nonlinear autoregressive with exogenous inputs (NARX) for multi-step-ahead reservoir inflow prediction, and adaptive neuro-fuzzy inference system (ANFIS) for reservoir flood control. Before typhoons landfall, we can estimate the entire flood hydrogragh of reservoir inflow by using SOM and make a pre-release strategy and real-time reservoir flood operating by using ANFIS. In the meanwhile, NARX can be constantly used real-time five-hour-ahead inflow prediction for providing the newest flood information. The system has been successfully implemented Typhoons Trami (2013), Fitow (2013) and Matmo (2014) in Shihmen Reservoir.

  17. Neural Flight Control System

    Science.gov (United States)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  18. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    Science.gov (United States)

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control

  19. Neural network disturbance observer-based distributed finite-time formation tracking control for multiple unmanned helicopters.

    Science.gov (United States)

    Wang, Dandan; Zong, Qun; Tian, Bailing; Shao, Shikai; Zhang, Xiuyun; Zhao, Xinyi

    2018-02-01

    The distributed finite-time formation tracking control problem for multiple unmanned helicopters is investigated in this paper. The control object is to maintain the positions of follower helicopters in formation with external interferences. The helicopter model is divided into a second order outer-loop subsystem and a second order inner-loop subsystem based on multiple-time scale features. Using radial basis function neural network (RBFNN) technique, we first propose a novel finite-time multivariable neural network disturbance observer (FMNNDO) to estimate the external disturbance and model uncertainty, where the neural network (NN) approximation errors can be dynamically compensated by adaptive law. Next, based on FMNNDO, a distributed finite-time formation tracking controller and a finite-time attitude tracking controller are designed using the nonsingular fast terminal sliding mode (NFTSM) method. In order to estimate the second derivative of the virtual desired attitude signal, a novel finite-time sliding mode integral filter is designed. Finally, Lyapunov analysis and multiple-time scale principle ensure the realization of control goal in finite-time. The effectiveness of the proposed FMNNDO and controllers are then verified by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Neural network based control of an absorption column in the process of bioethanol production

    Directory of Open Access Journals (Sweden)

    Eduardo Eyng

    2009-08-01

    Full Text Available Gaseous ethanol may be recovered from the effluent gas mixture of the sugar cane fermentation process using a staged absorption column. In the present work, the development of a nonlinear controller, based on a neural network inverse model (ANN controller, was proposed and tested to manipulate the absorbent flow rate in order to control the residual ethanol concentration in the effluent gas phase. Simulation studies were carried out, in which a noise was applied to the ethanol concentration signals from the rigorous model. The ANN controller outperformed the dynamic matrix control (DMC when step disturbances were imposed to the gas mixture composition. A security device, based on a conventional feedback algorithm, and a digital filter were added to the proposed strategy to improve the system robustness when unforeseen operating and environmental conditions occured. The results demonstrated that ANN controller was a robust and reliable tool to control the absorption column.Deseja-se recuperar o etanol perdido por evaporação durante o processo de fermentação da cana-de-açúcar. Para tanto, faz-se uso de uma coluna de absorção. O controle da concentração de etanol no efluente gasoso da coluna é realizado pela manipulação da vazão de solvente, sendo esta determinada pelo controlador não linear proposto, baseado em um modelo inverso de redes neurais (controlador ANN. Foram feitas simulações adicionando-se um sinal de ruído a medida de concentração de etanol na fase gasosa. Quando perturbações degrau foram inseridas na mistura gasosa afluente, o controlador ANN demonstrou desempenho superior ao controle por matriz dinâmica (DMC. Um dispositivo de segurança, baseado em um controlador feedback convencional, e um filtro digital foram implementados à estratégia de controle proposta para agregar robustez no tratamento de distúrbios ocorridos no ambiente operacional. Os resultados demonstraram que o controlador ANN é uma

  1. Integrated control of wind farms, FACTS devices and the power network using neural networks and adaptive critic designs

    Science.gov (United States)

    Qiao, Wei

    Worldwide concern about the environmental problems and a possible energy crisis has led to increasing interest in clean and renewable energy generation. Among various renewable energy sources, wind power is the most rapidly growing one. Therefore, how to provide efficient, reliable, and high-performance wind power generation and distribution has become an important and practical issue in the power industry. In addition, because of the new constraints placed by the environmental and economical factors, the trend of power system planning and operation is toward maximum utilization of the existing infrastructure with tight system operating and stability margins. This trend, together with the increased penetration of renewable energy sources, will bring new challenges to power system operation, control, stability and reliability which require innovative solutions. Flexible ac transmission system (FACTS) devices, through their fast, flexible, and effective control capability, provide one possible solution to these challenges. To fully utilize the capability of individual power system components, e.g., wind turbine generators (WTGs) and FACTS devices, their control systems must be suitably designed with high reliability. Moreover, in order to optimize local as well as system-wide performance and stability of the power system, real-time local and wide-area coordinated control is becoming an important issue. Power systems containing conventional synchronous generators, WTGs, and FACTS devices are large-scale, nonlinear, nonstationary, stochastic and complex systems distributed over large geographic areas. Traditional mathematical tools and system control techniques have limitations to control such complex systems to achieve an optimal performance. Intelligent and bio-inspired techniques, such as swarm intelligence, neural networks, and adaptive critic designs, are emerging as promising alternative technologies for power system control and performance optimization. This

  2. Neural Network-Based Self-Tuning PID Control for Underwater Vehicles.

    Science.gov (United States)

    Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando

    2016-09-05

    For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme.

  3. Neural Network-Based Self-Tuning PID Control for Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Rodrigo Hernández-Alvarado

    2016-09-01

    Full Text Available For decades, PID (Proportional + Integral + Derivative-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles where parameters (weight, buoyancy, added mass, among others change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme.

  4. Neural Network-Based Self-Tuning PID Control for Underwater Vehicles

    Science.gov (United States)

    Hernández-Alvarado, Rodrigo; García-Valdovinos, Luis Govinda; Salgado-Jiménez, Tomás; Gómez-Espinosa, Alfonso; Fonseca-Navarro, Fernando

    2016-01-01

    For decades, PID (Proportional + Integral + Derivative)-like controllers have been successfully used in academia and industry for many kinds of plants. This is thanks to its simplicity and suitable performance in linear or linearized plants, and under certain conditions, in nonlinear ones. A number of PID controller gains tuning approaches have been proposed in the literature in the last decades; most of them off-line techniques. However, in those cases wherein plants are subject to continuous parametric changes or external disturbances, online gains tuning is a desirable choice. This is the case of modular underwater ROVs (Remotely Operated Vehicles) where parameters (weight, buoyancy, added mass, among others) change according to the tool it is fitted with. In practice, some amount of time is dedicated to tune the PID gains of a ROV. Once the best set of gains has been achieved the ROV is ready to work. However, when the vehicle changes its tool or it is subject to ocean currents, its performance deteriorates since the fixed set of gains is no longer valid for the new conditions. Thus, an online PID gains tuning algorithm should be implemented to overcome this problem. In this paper, an auto-tune PID-like controller based on Neural Networks (NN) is proposed. The NN plays the role of automatically estimating the suitable set of PID gains that achieves stability of the system. The NN adjusts online the controller gains that attain the smaller position tracking error. Simulation results are given considering an underactuated 6 DOF (degrees of freedom) underwater ROV. Real time experiments on an underactuated mini ROV are conducted to show the effectiveness of the proposed scheme. PMID:27608018

  5. Petri neural network model for the effect of controlled thermomechanical process parameters on the mechanical properties of HSLA steels

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.

    1999-10-01

    The effect of composition and controlled thermomechanical process parameters on the mechanical properties of HSLA steels is modelled using the Widrow-Hoff's concept of training a neural net with feed-forward topology by applying Rumelhart's back propagation type algorithm for supervised learning, using a Petri like net structure. The data used are from laboratory experiments as well as from the published literature. The results from the neural network are found to be consistent and in good agreement with the experimented results. (author)

  6. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  7. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Xiaolong Zhai

    2017-07-01

    Full Text Available Hand movement classification based on surface electromyography (sEMG pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types and ~2.99% (amputee, 10 movement types increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

  8. Intelligent Control for USV Based on Improved Elman Neural Network with TSK Fuzzy

    Directory of Open Access Journals (Sweden)

    Shang-Jen Chuang

    2014-01-01

    Full Text Available In recent years, based on the rising of global personal safety demand and human resource cost considerations, development of unmanned vehicles to replace manpower requirement to perform high-risk operations is increasing. In order to acquire useful resources under the marine environment, a large boat as an unmanned surface vehicle (USV was implemented. The USV is equipped with automatic navigation features and a complete substitute artificial manipulation. This USV system for exploring the marine environment has more carrying capacity and that measurement system can also be self-designed through a modular approach in accordance with the needs for various types of environmental conditions. The investigation work becomes more flexible. A catamaran hull is adopted as automatic navigation test with CompactRIO embedded system. Through GPS and direction sensor we not only can know the current location of the boat, but also can calculate the distance with a predetermined position and the angle difference immediately. In this paper, the design of automatic navigation is calculated in accordance with improved Elman neural network (ENN algorithms. Takagi-Sugeno-Kang (TSK fuzzy and improved ENN control are applied to adjust required power and steering, which allows the hull to move straight forward to a predetermined target position. The route will be free from outside influence and realize automatic navigation purpose.

  9. Predictive fault-tolerant control of an all-thruster satellite in 6-DOF motion via neural network model updating

    Science.gov (United States)

    Tavakoli, M. M.; Assadian, N.

    2018-03-01

    The problem of controlling an all-thruster spacecraft in the coupled translational-rotational motion in presence of actuators fault and/or failure is investigated in this paper. The nonlinear model predictive control approach is used because of its ability to predict the future behavior of the system. The fault/failure of the thrusters changes the mapping between the commanded forces to the thrusters and actual force/torque generated by the thruster system. Thus, the basic six degree-of-freedom kinetic equations are separated from this mapping and a set of neural networks are trained off-line to learn the kinetic equations. Then, two neural networks are attached to these trained networks in order to learn the thruster commands to force/torque mappings on-line. Different off-nominal conditions are modeled so that neural networks can detect any failure and fault, including scale factor and misalignment of thrusters. A simple model of the spacecraft relative motion is used in MPC to decrease the computational burden. However, a precise model by the means of orbit propagation including different types of perturbation is utilized to evaluate the usefulness of the proposed approach in actual conditions. The numerical simulation shows that this method can successfully control the all-thruster spacecraft with ON-OFF thrusters in different combinations of thruster fault and/or failure.

  10. Closed loop control of laser welding processes using cellular neural network cameras: Measurement technology

    OpenAIRE

    Blug, A.; Abt, F.; Nicolosi, L.; Carl, D.; Dausinger, F.; Höfler, H.; Tetzlaff, R.; Weber, R.

    2009-01-01

    Today, image processing using coaxial camera setups is used to monitor the quality of laser material processes such as laser welding, cutting or ablation. This article proposes a sensing system for the next step: Using image based quality features to form an instant feedback signal in order to maintain the process in the desired state. The key component of the system is a camera based on Cellular Neural Networks (CNN). This technology enables real time image processing which is necessary for ...

  11. Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping

    Science.gov (United States)

    Xu, Bin; Sun, Fuchun; Yang, Chenguang; Gao, Daoxiang; Ren, Jianxin

    2011-09-01

    In this article, the adaptive neural controller in discrete time is investigated for the longitudinal dynamics of a generic hypersonic flight vehicle. The dynamics are decomposed into the altitude subsystem and the velocity subsystem. The altitude subsystem is transformed into the strict-feedback form from which the discrete-time model is derived by the first-order Taylor expansion. The virtual control is designed with nominal feedback and neural network (NN) approximation via back-stepping. Meanwhile, one adaptive NN controller is designed for the velocity subsystem. To avoid the circular construction problem in the practical control, the design of coefficients adopts the upper bound instead of the nominal value. Under the proposed controller, the semiglobal uniform ultimate boundedness stability is guaranteed. The square and step responses are presented in the simulation studies to show the effectiveness of the proposed control approach.

  12. Neural-activity mapping of memory-based dominance in the crow: neural networks integrating individual discrimination and social behaviour control.

    Science.gov (United States)

    Nishizawa, K; Izawa, E-I; Watanabe, S

    2011-12-01

    Large-billed crows (Corvus macrorhynchos), highly social birds, form stable dominance relationships based on the memory of win/loss outcomes of first encounters and on individual discrimination. This socio-cognitive behaviour predicts the existence of neural mechanisms for integration of social behaviour control and individual discrimination. This study aimed to elucidate the neural substrates of memory-based dominance in crows. First, the formation of dominance relationships was confirmed between males in a dyadic encounter paradigm. Next, we examined whether neural activities in 22 focal nuclei of pallium and subpallium were correlated with social behaviour and stimulus familiarity after exposure to dominant/subordinate familiar individuals and unfamiliar conspecifics. Neural activity was determined by measuring expression level of the immediate-early-gene (IEG) protein Zenk. Crows displayed aggressive and/or submissive behaviour to opponents less frequently but more discriminatively in subsequent encounters, suggesting stable dominance based on memory, including win/loss outcomes of the first encounters and individual discrimination. Neural correlates of aggressive and submissive behaviour were found in limbic subpallium including septum, bed nucleus of the striae terminalis (BST), and nucleus taeniae of amygdala (TnA), but also those to familiarity factor in BST and TnA. Contrastingly, correlates of social behaviour were little in pallium and those of familiarity with exposed individuals were identified in hippocampus, medial meso-/nidopallium, and ventro-caudal nidopallium. Given the anatomical connection and neural response patterns of the focal nuclei, neural networks connecting pallium and limbic subpallium via hippocampus could be involved in the integration of individual discrimination and social behaviour control in memory-based dominance in the crow. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. A study on neural network representation of reactor power control procedures 2

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Byung Soo; Park, Jea Chang; Kim, Young Taek; Lee, Hee Cho; Yang, Sung Uoon; Hwang, Hee Sun; Hwang, In Ah

    1998-12-01

    The major results of this study are as follows; the first is the algorithm developed through this study for computing the spline interpolation coefficients without solving the matrix equation involved. This is expected to be used in various numerical analysis problems. If this algorithm can be extended to functions of two independent variables in the future, then it could be a big help for the finite element method used in solving various boundary value problems. The second is the method developed to reduce systematically the number of output fuzzy sets for fuzzy systems representing functions of two variables. this may be considered as an indication that the neural network representation of functions has advantages over other conventional methods. The third result is an artificial neural network system developed for automating the manual procedures being used to change the reactor power level by adding boric acid or water to the reactor coolant. This along with the neural networks developed earlier can be used in nuclear power plants as an operator aid after a verification process. (author). 8 refs., 13 tabs., 5 figs.

  14. Neural networks at the Tevatron

    International Nuclear Information System (INIS)

    Badgett, W.; Burkett, K.; Campbell, M.K.; Wu, D.Y.; Bianchin, S.; DeNardi, M.; Pauletta, G.; Santi, L.; Caner, A.; Denby, B.; Haggerty, H.; Lindsey, C.S.; Wainer, N.; Dall'Agata, M.; Johns, K.; Dickson, M.; Stanco, L.; Wyss, J.L.

    1992-10-01

    This paper summarizes neural network applications at the Fermilab Tevatron, including the first online hardware application in high energy physics (muon tracking): the CDF and DO neural network triggers; offline quark/gluon discrimination at CDF; ND a new tool for top to multijets recognition at CDF

  15. Optoelectronic Implementation of Neural Networks

    Indian Academy of Sciences (India)

    optical neural network using photo refractive crystals and realized interconnection density of 10 8 to. 1010 per cm3. • B Javidi and others designed a correlato.,. based two-layer neural network associated with a supervised perceptron learning algorithm for r~al-time face recognition. electronic wiring altogether and replace it ...

  16. An adaptive PID like controller using mix locally recurrent neural network for robotic manipulator with variable payload.

    Science.gov (United States)

    Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P

    2016-05-01

    Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Design of FPGA Based Neural Network Controller for Earth Station Power System

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available Automation of generating hardware description language code from neural networks models can highly decrease time of implementation those networks into a digital devices, thus significant money savings. To implement the neural network into hardware designer, it is required to translate generated model into device structure. VHDL language is used to describe those networks into hardware. VHDL code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic of the earth station and the satellite power systems using ModelSim PE 6.6 simulator tool. Integration between MATLAB and VHDL is used to save execution time of computation. The results shows that a good agreement between MATLAB and VHDL and a fast/flexible feed forward NN which is capable of dealing with floating point arithmetic operations; minimum number of CLB slices; and good speed of performance. FPGA synthesis results are obtained with view RTL schematic and technology schematic from Xilinix tool. Minimum number of utilized resources is obtained by using Xilinix VERTIX5.

  18. Neural Network-Based Adaptive Backstepping Control for Hypersonic Flight Vehicles with Prescribed Tracking Performance

    OpenAIRE

    Zhu Guoqiang; Liu Jinkun

    2015-01-01

    An adaptive neural control scheme is proposed for a class of generic hypersonic flight vehicles. The main advantages of the proposed scheme include the following: (1) a new constraint variable is defined to generate the virtual control that forces the tracking error to fall within prescribed boundaries; (2) RBF NNs are employed to compensate for complex and uncertain terms to solve the problem of controller complexity; (3) only one parameter needs to be updated online at each design step, whi...

  19. Neural networks in astronomy.

    Science.gov (United States)

    Tagliaferri, Roberto; Longo, Giuseppe; Milano, Leopoldo; Acernese, Fausto; Barone, Fabrizio; Ciaramella, Angelo; De Rosa, Rosario; Donalek, Ciro; Eleuteri, Antonio; Raiconi, Giancarlo; Sessa, Salvatore; Staiano, Antonino; Volpicelli, Alfredo

    2003-01-01

    In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).

  20. Application of a Self-recurrent Wavelet Neural Network in the Modeling and Control of an AC Servo System

    Directory of Open Access Journals (Sweden)

    Run Min HOU

    2014-05-01

    Full Text Available To control the nonlinearity, widespread variations in loads and time varying characteristic of the high power ac servo system, the modeling and control techniques are studied here. A self-recurrent wavelet neural network (SRWNN modeling scheme is proposed, which successfully addresses the issue of the traditional wavelet neural network easily falling into local optimum, and significantly improves the network approximation capability and convergence rate. The control scheme of a SRWNN based on fuzzy compensation is expected. Gradient information is provided in real time for the controller by using a SRWNN identifier, so as to ensure that the learning and adjusting function of the controller of the SRWNN operate well, and fuzzy compensation control is applied to improve rapidity and accuracy of the entire system. Then the Lyapunov function is utilized to judge the stability of the system. The experimental analysis and comparisons with other modeling and control methods, it is clearly shown that the validities of the proposed modeling scheme and control scheme are effective.

  1. Electric load simulator system control based on adaptive particle swarm optimization wavelet neural network with double sliding modes

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2016-08-01

    Full Text Available In this article, an adaptive particle swarm optimization wavelet neural network with double sliding modes controller is proposed to address the complex nonlinearities and uncertainties in the electric load simulator. The adaptive double sliding modes–particle swarm optimization wavelet neural network algorithm with the self-learning structures and parameters is designed as a torque tracking controller, in which a number of hidden nodes are added and pruned by the structure learning algorithm, and the parameters are online adjusted by the adaptive particle swarm optimization at the same time. Moreover, one conventional sliding mode is introduced to track the time-varying reference command, and the other complementary sliding mode is adopted to attenuate the effect of the approximation error. Furthermore, the relative parameters should comply with some estimation laws on the basis of the Lyapunov theory used to guarantee the system stability. Finally, the simulation experiments are carried out on the hardware-in-the-loop platform for the electric load simulator, the performance of the adaptive double sliding modes–particle swarm optimization wavelet neural network with structure learning is verified compared with some similar control methods. In addition, different amplitudes and frequencies of the reference commands are introduced to further evaluate the effectiveness and robustness of the proposed algorithms.

  2. Indirect intelligent sliding mode control of a shape memory alloy actuated flexible beam using hysteretic recurrent neural networks

    International Nuclear Information System (INIS)

    Hannen, Jennifer C; Buckner, Gregory D; Crews, John H

    2012-01-01

    This paper introduces an indirect intelligent sliding mode controller (IISMC) for shape memory alloy (SMA) actuators, specifically a flexible beam deflected by a single offset SMA tendon. The controller manipulates applied voltage, which alters SMA tendon temperature to track reference bending angles. A hysteretic recurrent neural network (HRNN) captures the nonlinear, hysteretic relationship between SMA temperature and bending angle. The variable structure control strategy provides robustness to model uncertainties and parameter variations, while effectively compensating for system nonlinearities, achieving superior tracking compared to an optimized PI controller. (paper)

  3. Robust tracking control of a unicycle-type wheeled mobile manipulator using a hybrid sliding mode fuzzy neural network

    Science.gov (United States)

    Cheng, Meng-Bi; Su, Wu-Chung; Tsai, Ching-Chih

    2012-03-01

    This article presents a robust tracking controller for an uncertain mobile manipulator system. A rigid robotic arm is mounted on a wheeled mobile platform whose motion is subject to nonholonomic constraints. The sliding mode control (SMC) method is associated with the fuzzy neural network (FNN) to constitute a robust control scheme to cope with three types of system uncertainties; namely, external disturbances, modelling errors, and strong couplings in between the mobile platform and the onboard arm subsystems. All parameter adjustment rules for the proposed controller are derived from the Lyapunov theory such that the tracking error dynamics and the FNN weighting updates are ensured to be stable with uniform ultimate boundedness (UUB).

  4. FEM-based neural-network approach to nonlinear modeling with application to longitudinal vehicle dynamics control.

    Science.gov (United States)

    Kalkkuhl, J; Hunt, K J; Fritz, H

    1999-01-01

    An finite-element methods (FEM)-based neural-network approach to Nonlinear AutoRegressive with eXogenous input (NARX) modeling is presented. The method uses multilinear interpolation functions on C0 rectangular elements. The local and global structure of the resulting model is analyzed. It is shown that the model can be interpreted both as a local model network and a single layer feedforward neural network. The main aim is to use the model for nonlinear control design. The proposed FEM NARX description is easily accessible to feedback linearizing control techniques. Its use with a two-degrees of freedom nonlinear internal model controller is discussed. The approach is applied to modeling of the nonlinear longitudinal dynamics of an experimental lorry, using measured data. The modeling results are compared with local model network and multilayer perceptron approaches. A nonlinear speed controller was designed based on the identified FEM model. The controller was implemented in a test vehicle, and several experimental results are presented.

  5. Deep learning with convolutional neural networks: a resource for the control of robotic prosthetic hands via electromyography

    Directory of Open Access Journals (Sweden)

    Manfredo Atzori

    2016-09-01

    Full Text Available Motivation: Natural control methods based on surface electromyography and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications and commercial prostheses are in the best case capable to offer natural control for only a few movements. Objective: In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its capabilities for the natural control of robotic hands via surface electromyography by providing a baseline on a large number of intact and amputated subjects. Methods: We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 hand amputated subjects. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets.Results: The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods but lower than the results obtained with the best reference methods in our tests. Significance: The results show that convolutional neural networks with a very simple architecture can produce accuracy comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters can be fundamental for the analysis of surface electromyography data. Finally, the results suggest that deeper and more complex networks may increase dexterous control robustness, thus contributing to bridge the gap between the market and scientific research

  6. Neural Networks in Mobile Robot Motion

    Directory of Open Access Journals (Sweden)

    Danica Janglova

    2008-11-01

    Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the "free" space using ultrasound range finder data. The second neural network "finds" a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.

  7. Neural Networks in Mobile Robot Motion

    Directory of Open Access Journals (Sweden)

    Danica Janglová

    2004-03-01

    Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the “free” space using ultrasound range finder data. The second neural network “finds” a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.

  8. Implementation of a model reference adaptive control system using neural network to control a fast breeder reactor evaporator

    International Nuclear Information System (INIS)

    Ugolini, D.; Yoshikawa, S.; Endou, A.

    1994-01-01

    Artificial intelligence is foreseen as the base for new control systems aimed to replace traditional controllers and to assist and eventually advise plant operators. This paper discusses the development of an indirect model reference adaptive control (MRAC) system, using the artificial neural network (ANN) technique, and its implementation to control the outlet steam temperature of a sodium to water evaporator. The ANN technique is applied in the identification and in the control process of the indirect MRAC system. The emphasis is placed on demonstrating the efficacy of the indirect MRAC system in controlling the outlet steam temperature of the evaporator, and on showing the important function covered by the ANN technique. An important characteristic of this control system is that it relays only on some selected input variables and output variables of the evaporator model. These are the variables that can be actually measured or calculated in a real environment. The results obtained applying the indirect MRAC system to control the evaporator model are quite remarkable. The outlet temperature of the steam is almost perfectly kept close to its desired set point, when the evaporator is forced to depart from steady state conditions, either due to the variation of some input variables or due to the alteration of some of its internal parameters. The results also show the importance of the role played by the ANN technique in the overall control action. The connecting weights of the ANN nodes self adjust to follow the modifications which may occur in the characteristic of the evaporator model during a transient. The efficiency and the accuracy of the control action highly depends on the on-line identification process of the ANN, which is responsible for upgrading the connecting weights of the ANN nodes. (J.P.N.)

  9. Role of graph architecture in controlling dynamical networks with applications to neural systems

    Science.gov (United States)

    Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  10. Silicon microgyroscope temperature prediction and control system based on BP neural network and Fuzzy-PID control method

    International Nuclear Information System (INIS)

    Xia, Dunzhu; Kong, Lun; Hu, Yiwei; Ni, Peizhen

    2015-01-01

    We present a novel silicon microgyroscope (SMG) temperature prediction and control system in a narrow space. As the temperature of SMG is closely related to its drive mode frequency and driving voltage, a temperature prediction model can be established based on the BP neural network. The simulation results demonstrate that the established temperature prediction model can estimate the temperature in the range of −40 to 60 °C with an error of less than ±0.05 °C. Then, a temperature control system based on the combination of fuzzy logic controller and the increment PID control method is proposed. The simulation results prove that the Fuzzy-PID controller has a smaller steady state error, less rise time and better robustness than the PID controller. This is validated by experimental results that show the Fuzzy-PID control method can achieve high precision in keeping the SMG temperature stable at 55 °C with an error of less than 0.2 °C. The scale factor can be stabilized at 8.7 mV/°/s with a temperature coefficient of 33 ppm °C −1 . ZRO (zero rate output) instability is decreased from 1.10°/s (9.5 mV) to 0.08°/s (0.7 mV) when the temperature control system is implemented over an ambient temperature range of −40 to 60 °C. (paper)

  11. A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm.

    Science.gov (United States)

    Dethier, Julie; Nuyujukian, Paul; Eliasmith, Chris; Stewart, Terry; Elassaad, Shauki A; Shenoy, Krishna V; Boahen, Kwabena

    2011-01-01

    Motor prostheses aim to restore function to disabled patients. Despite compelling proof of concept systems, barriers to clinical translation remain. One challenge is to develop a low-power, fully-implantable system that dissipates only minimal power so as not to damage tissue. To this end, we implemented a Kalman-filter based decoder via a spiking neural network (SNN) and tested it in brain-machine interface (BMI) experiments with a rhesus monkey. The Kalman filter was trained to predict the arm's velocity and mapped on to the SNN using the Neural Engineering Framework (NEF). A 2,000-neuron embedded Matlab SNN implementation runs in real-time and its closed-loop performance is quite comparable to that of the standard Kalman filter. The success of this closed-loop decoder holds promise for hardware SNN implementations of statistical signal processing algorithms on neuromorphic chips, which may offer power savings necessary to overcome a major obstacle to the successful clinical translation of neural motor prostheses.

  12. Real-time neural network-based self-tuning control of a nonlinear electro-hydraulic servomotor

    Energy Technology Data Exchange (ETDEWEB)

    Canelon, J.I.; Ortega, A.G. [Univ. del Zulia, Maracaibo, Zulia (Venezuela, Bolivarian Republic of). School of Electrical Engineering; Shieh, L.S. [Houston Univ., Houston, TX (United States). Dept. of Electrical and Computer Engineering; Bastidas, J.I. [Univ. del Zulia, Maracaibo, Zulia (Venezuela, Bolivarian Republic of). School of Mechanical Engineering; Zhang, Y.; Akujuobi, C.M. [Prairie View A and M Univ., Prairie View, TX (United States). Center of Excellence for Communication Systems Technology Research and Dept. of Engineering Technology

    2010-08-13

    For high power applications, hydraulic actuators offer many advantages over electromagnetic actuators, including higher torque/mass ratios; smaller control gains; excellent torque capability; filtered high frequency noise; better heat transfer characteristics; smaller size; higher speed of response of the servomechanism; cheaper hardware; and higher reliability. Therefore, any application that requires a large force applied smoothly by an actuator is a candidate for hydraulic power. Examples of such applications include vehicle steering and braking systems; roll mills; drilling rigs; heavy duty crane and presses; and industrial robots and actuators for aircraft control surfaces such as ailerons and flaps. It is extremely important to create effective control strategies for hydraulic systems. This paper outlined the real-time implementation of a neural network-based approach, for self-tuning control of the angular position of a nonlinear electro-hydraulic servomotor. Using an online training algorithm, a neural network autoregressive moving-average model with exogenous input (ARMAX) model of the system was identified and continuously updated and an optimal linear ARMAX model was determined. The paper briefly depicted the neural network-based self-tuning control approach and a description of the experimental equipment (hardware and software) was presented including the implementation details. The experimental results were discussed and conclusions were summarized. It was found that the approach proved to be very effective in the control of this fast dynamics system, outperforming a fine tuned PI controller. Therefore, although the self-tuning approach was computationally demanding, it was feasible for real-time implementation. 22 refs., 6 figs.

  13. Nonlinear adaptive neural controller for unstable aircraft

    OpenAIRE

    Suresh, S; Omkar, SN; Mani, V; Sundararajan, N

    2005-01-01

    A model reference indirect adaptive neural control scheme that uses both off-line and online learning strategies is proposed for an,unstable nonlinear aircraft controller design. The bounded-input-bounded-output stability requirement for the controller design is circumvented using an off-line, finite interval of time training scheme. The aircraft model is first identified using a neural network with linear filter (also known as time-delayed neural network) with the available input-output data...

  14. Neural networks and statistical learning

    CERN Document Server

    Du, Ke-Lin

    2014-01-01

    Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...

  15. A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadia Adnan Shiltagh

    2015-11-01

    Full Text Available Wireless Multimedia Sensor Networks (WMSNs are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC. The Modify Spike Neural Network controller (MSNC can calculate the appropriate traffic load parameter μ for each parent node and then use in the EWPBRC algorithm to estimate the transmission rate of parent nodes and then assign a suitable transmission rate for each child node. A comparative study between (MSNTLP with EWBPRC and fuzzy logic controller for traffic load parameter with Exponential Weight of Priority Based Rate Control algorithm (FTLP with EWBPRC algorithm shows that the (MSNTLP with EWBPRC is more efficient than (FTLP with EWBPRC algorithm in terms of packet loss, queue delay and throughput. Another comparative study between (MSNTLP with EWBPRC and EWBPRC with fixed traffic load parameter (µ shows that the MSNTLP with EWBPRC is more efficient than EWBPRC with fixed traffic load parameter (µ in terms of packet loss ratio and queue delay. A simulation process is developed and tested using the network simulator _2 (NS2 in a computer having the following properties: windows 7 (64-bit, core i7, RAM 8GB, hard 1TB.

  16. What are artificial neural networks?

    DEFF Research Database (Denmark)

    Krogh, Anders

    2008-01-01

    Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...

  17. Backpropagation neural networks: pattern recognition

    OpenAIRE

    Studenikin, Oleg

    2005-01-01

    In this Master’s degree work artificial neural networks and back propagation learning algorithm for human faces and pattern recognition are analyzed. In the second part of work artificial neural networks and their architecture and structures models are analyzed. In the third part of article the backpropagation procedure and procedures theoretical learning principle are analyzed. In the fourth part different kinds of ANN methods and patterns extracting methods in recognition, learning and ...

  18. A neural network with central pattern generators entrained by sensory feedback controls walking of a bipedal model.

    Science.gov (United States)

    Li, Wei; Szczecinski, Nicholas S; Quinn, Roger D

    2017-10-16

    A neuromechanical simulation of a planar, bipedal walking robot has been developed. It is constructed as a simplified, planar musculoskeletal model of the biomechanics of the human lower body. The controller consists of a dynamic neural network with central pattern generators (CPGs) entrained by force and movement sensory feedback to generate appropriate muscle forces for walking. The CPG model is a two-level architecture, which consists of separate rhythm generator and pattern formation networks. The biped model walks stably in the sagittal plane without inertial sensors or a centralized posture controller or a 'baby walker' to help overcome gravity. Its gait is similar to humans' and it walks at speeds from 0.850 m s -1 up to 1.289 m s -1 with leg length of 0.84 m. The model walks over small unknown steps (6% of leg length) and up and down 5° slopes without any additional higher level control actions.

  19. Neurometaplasticity: Glucoallostasis control of plasticity of the neural networks of error commission, detection, and correction modulates neuroplasticity to influence task precision

    Science.gov (United States)

    Welcome, Menizibeya O.; Dane, Şenol; Mastorakis, Nikos E.; Pereverzev, Vladimir A.

    2017-12-01

    The term "metaplasticity" is a recent one, which means plasticity of synaptic plasticity. Correspondingly, neurometaplasticity simply means plasticity of neuroplasticity, indicating that a previous plastic event determines the current plasticity of neurons. Emerging studies suggest that neurometaplasticity underlie many neural activities and neurobehavioral disorders. In our previous work, we indicated that glucoallostasis is essential for the control of plasticity of the neural network that control error commission, detection and correction. Here we review recent works, which suggest that task precision depends on the modulatory effects of neuroplasticity on the neural networks of error commission, detection, and correction. Furthermore, we discuss neurometaplasticity and its role in error commission, detection, and correction.

  20. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    Science.gov (United States)

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  1. Fuzzy neural network quadratic stabilization output feedback control for biped robots via H/sub /spl infin// approach.

    Science.gov (United States)

    Liu, Zhi; Li, Chunwen

    2003-01-01

    A novel fuzzy neural network (FNN) quadratic stabilization output feedback control scheme is proposed for the trajectory tracking problems of biped robots with an FNN nonlinear observer. First, a robust quadratic stabilization FNN nonlinear observer is presented to estimate the joint velocities of a biped robot, in which an H/sub /spl infin// approach and variable structure control (VSC) are embedded to attenuate the effect of external disturbances and parametric uncertainties. After the construction of the FNN nonlinear observer, a quadratic stabilization FNN controller is developed with a robust hybrid control scheme. As the employment of a quadratic stability approach, not only does it afford the possibility of trading off the design between FNN, H/sub /spl infin// optimal control, and VSC, but conservative estimation of the FNN reconstruction error bound is also avoided by considering the system matrix uncertainty separately. It is shown that all signals in the closed-loop control system are bounded.

  2. Control of an Power Series Compensator in Distribution Systems Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    DEHINI Rachid

    2013-05-01

    Full Text Available Because of the bad effect exercised on electrical customers, the term “power quality” has gained significant attention. The main purpose ofSeries Active Power Filter (SAPF is to protect the sensitive loads from the voltage harmonics only, while Dynamic Voltage Restored (DVR can protect the consumer from supply voltage sag, voltage swell,voltage unbalance, and even voltage interruption. This paper is concerned with the novel active voltage compensator (AVC which can compensate all voltage disturbances. To identify voltage disturbances, many techniques are used, this work is an attempt to provide a AVC with identification method based on The Multilayer Feed Forward Neural Network (MLFFN. The simulation results during several cases confirmed that the AVC is able to eliminate all voltagedisturbances from utility grid.

  3. Adaptive output feedback control based on neural networks: application to flexible aircraft control

    OpenAIRE

    Bordeneuve-Guibé, Joël; Bako, Laurent; Jeanneau, Matthieu

    2009-01-01

    One of the major challenges in aeronautical flexible structures control is the uncertain for the non stationary feature of the systems. Transport aircrafts are of unceasingly growing size but are made from increasingly light materials so that their motion dynamics present some flexible low frequency modes coupled to rigid modes. For reasons that range from fuel transfer to random flying conditions, the parameters of these planes may be subject to significative variations during a flight. A...

  4. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.

    Science.gov (United States)

    Wai, Rong-Jong; Yang, Zhi-Wei

    2008-10-01

    This paper focuses on the development of adaptive fuzzy neural network control (AFNNC), including indirect and direct frameworks for an n-link robot manipulator, to achieve high-precision position tracking. In general, it is difficult to adopt a model-based design to achieve this control objective due to the uncertainties in practical applications, such as friction forces, external disturbances, and parameter variations. In order to cope with this problem, an indirect AFNNC (IAFNNC) scheme and a direct AFNNC (DAFNNC) strategy are investigated without the requirement of prior system information. In these model-free control topologies, a continuous-time Takagi-Sugeno (T-S) dynamic fuzzy model with online learning ability is constructed to represent the system dynamics of an n-link robot manipulator. In the IAFNNC, an FNN estimator is designed to tune the nonlinear dynamic function vector in fuzzy local models, and then, the estimative vector is used to indirectly develop a stable IAFNNC law. In the DAFNNC, an FNN controller is directly designed to imitate a predetermined model-based stabilizing control law, and then, the stable control performance can be achieved by only using joint position information. All the IAFNNC and DAFNNC laws and the corresponding adaptive tuning algorithms for FNN weights are established in the sense of Lyapunov stability analyses to ensure the stable control performance. Numerical simulations and experimental results of a two-link robot manipulator actuated by dc servomotors are given to verify the effectiveness and robustness of the proposed methodologies. In addition, the superiority of the proposed control schemes is indicated in comparison with proportional-differential control, fuzzy-model-based control, T-S-type FNN control, and robust neural fuzzy network control systems.

  5. A neural network based implementation of an MPC algorithm applied in the control systems of electromechanical plants

    Science.gov (United States)

    Marusak, Piotr M.; Kuntanapreeda, Suwat

    2018-01-01

    The paper considers application of a neural network based implementation of a model predictive control (MPC) control algorithm to electromechanical plants. Properties of such control plants implicate that a relatively short sampling time should be used. However, in such a case, finding the control value numerically may be too time-consuming. Therefore, the current paper tests the solution based on transforming the MPC optimization problem into a set of differential equations whose solution is the same as that of the original optimization problem. This set of differential equations can be interpreted as a dynamic neural network. In such an approach, the constraints can be introduced into the optimization problem with relative ease. Moreover, the solution of the optimization problem can be obtained faster than when the standard numerical quadratic programming routine is used. However, a very careful tuning of the algorithm is needed to achieve this. A DC motor and an electrohydraulic actuator are taken as illustrative examples. The feasibility and effectiveness of the proposed approach are demonstrated through numerical simulations.

  6. Energy, economic and environmental performance simulation of a hybrid renewable microgeneration system with neural network predictive control

    Directory of Open Access Journals (Sweden)

    Evgueniy Entchev

    2018-03-01

    Full Text Available The use of artificial neural networks (ANNs in various applications has grown significantly over the years. This paper compares an ANN based approach with a conventional on-off control applied to the operation of a ground source heat pump/photovoltaic thermal system serving a single house located in Ottawa (Canada for heating and cooling purposes. The hybrid renewable microgeneration system was investigated using the dynamic simulation software TRNSYS. A controller for predicting the future room temperature was developed in the MATLAB environment and six ANN control logics were analyzed.The comparison was performed in terms of ability to maintain the desired indoor comfort levels, primary energy consumption, operating costs and carbon dioxide equivalent emissions during a week of the heating period and a week of the cooling period. The results showed that the ANN approach is potentially able to alleviate the intensity of thermal discomfort associated with overheating/overcooling phenomena, but it could cause an increase in unmet comfort hours. The analysis also highlighted that the ANNs based strategies could reduce the primary energy consumption (up to around 36%, the operating costs (up to around 81% as well as the carbon dioxide equivalent emissions (up to around 36%. Keywords: Hybrid microgeneration system, Ground source heat pump, Photovoltaic thermal, Artificial neural network, Predictive control, Energy saving

  7. Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator

    Directory of Open Access Journals (Sweden)

    Khaoula Ghefiri

    2018-04-01

    Full Text Available Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances.

  8. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    Science.gov (United States)

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2017-10-01

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  9. Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study

    International Nuclear Information System (INIS)

    Benedetti, Miriam; Cesarotti, Vittorio; Introna, Vito; Serranti, Jacopo

    2016-01-01

    Highlights: • A methodology to enable energy consumption control automation is proposed. • The methodology is based on the use of Artificial Neural Networks. • A method to control the accuracy of the model over time is proposed. • Two methods to enable automatic retraining of the network are proposed. • Retraining methods are evaluated on their accuracy over time. - Abstract: Energy consumption control in energy intensive companies is always more considered as a critical activity to continuously improve energy performance. It undoubtedly requires a huge effort in data gathering and analysis, and the amount of these data together with the scarceness of human resources devoted to Energy Management activities who could maintain and update the analyses’ output are often the main barriers to its diffusion in companies. Advanced tools such as software based on machine learning techniques are therefore the key to overcome these barriers and allow an easy but accurate control. This type of systems is able to solve complex problems obtaining reliable results over time, but not to understand when the reliability of the results is declining (a common situation considering energy using systems, often undergoing structural changes) and to automatically adapt itself using a limited amount of training data, so that a completely automatic application is not yet available and the automatic energy consumption control using intelligent systems is still a challenge. This paper presents a whole new approach to energy consumption control, proposing a methodology based on Artificial Neural Networks (ANNs) and aimed at creating an automatic energy consumption control system. First of all, three different structures of neural networks are proposed and trained using a huge amount of data. Three different performance indicators are then used to identify the most suitable structure, which is implemented to create an energy consumption control tool. In addition, considering that

  10. Decoupling control of a five-phase fault-tolerant permanent magnet motor by radial basis function neural network inverse

    Science.gov (United States)

    Chen, Qian; Liu, Guohai; Xu, Dezhi; Xu, Liang; Xu, Gaohong; Aamir, Nazir

    2018-05-01

    This paper proposes a new decoupled control for a five-phase in-wheel fault-tolerant permanent magnet (IW-FTPM) motor drive, in which radial basis function neural network inverse (RBF-NNI) and internal model control (IMC) are combined. The RBF-NNI system is introduced into original system to construct a pseudo-linear system, and IMC is used as a robust controller. Hence, the newly proposed control system incorporates the merits of the IMC and RBF-NNI methods. In order to verify the proposed strategy, an IW-FTPM motor drive is designed based on dSPACE real-time control platform. Then, the experimental results are offered to verify that the d-axis current and the rotor speed are successfully decoupled. Besides, the proposed motor drive exhibits strong robustness even under load torque disturbance.

  11. Neural Network-Based Adaptive Backstepping Control for Hypersonic Flight Vehicles with Prescribed Tracking Performance

    Directory of Open Access Journals (Sweden)

    Zhu Guoqiang

    2015-01-01

    Full Text Available An adaptive neural control scheme is proposed for a class of generic hypersonic flight vehicles. The main advantages of the proposed scheme include the following: (1 a new constraint variable is defined to generate the virtual control that forces the tracking error to fall within prescribed boundaries; (2 RBF NNs are employed to compensate for complex and uncertain terms to solve the problem of controller complexity; (3 only one parameter needs to be updated online at each design step, which significantly reduces the computational burden. It is proved that all signals of the closed-loop system are uniformly ultimately bounded. Simulation results are presented to illustrate the effectiveness of the proposed scheme.

  12. Neural Networks Approximator Based Robust Adaptive Controller Design of Hypersonic Flight Vehicles Systems Coupled with Stochastic Disturbance and Dynamic Uncertainties

    Directory of Open Access Journals (Sweden)

    Guoqiang Zhu

    2017-01-01

    Full Text Available A neural network robust control is proposed for a class of generic hypersonic flight vehicles with uncertain dynamics and stochastic disturbance. Compared with the present schemes of dealing with dynamic uncertainties and stochastic disturbance, the outstanding feature of the proposed scheme is that only one parameter needs to be estimated at each design step, so that the computational burden can be greatly reduced and the designed controller is much simpler. Moreover, by introducing a performance function in controller design, the prespecified transient and performance of tracking error can be guaranteed. It is proved that all signals of closed-loop system are uniformly ultimately bounded. The simulation results are carried out to illustrate effectiveness of the proposed control algorithm.

  13. Part 2: Prediktion, Simulering og Regulering med Neurale Netværk. Prediction, Simulation and Control using Neural Network

    DEFF Research Database (Denmark)

    Schiøler, Henrik

    til Del 1, idet de to rapporter kan opfattes som en enhed. Herefter introduceres de grundlæggende begreber inden for prediktion, samt for mål og integralteorien. Det beskrives, hvorledes neurale net kan fungere som ulinære prediktionsmodeller og den nødvendige teori for Multi Lags Perceptronen (MLP...

  14. neural control system

    International Nuclear Information System (INIS)

    Elshazly, A.A.E.

    2002-01-01

    Automatic power stabilization control is the desired objective for any reactor operation , especially, nuclear power plants. A major problem in this area is inevitable gap between a real plant ant the theory of conventional analysis and the synthesis of linear time invariant systems. in particular, the trajectory tracking control of a nonlinear plant is a class of problems in which the classical linear transfer function methods break down because no transfer function can represent the system over the entire operating region . there is a considerable amount of research on the model-inverse approach using feedback linearization technique. however, this method requires a prices plant model to implement the exact linearizing feedback, for nuclear reactor systems, this approach is not an easy task because of the uncertainty in the plant parameters and un-measurable state variables . therefore, artificial neural network (ANN) is used either in self-tuning control or in improving the conventional rule-based exper system.the main objective of this thesis is to suggest an ANN, based self-learning controller structure . this method is capable of on-line reinforcement learning and control for a nuclear reactor with a totally unknown dynamics model. previously, researches are based on back- propagation algorithm . back -propagation (BP), fast back -propagation (FBP), and levenberg-marquardt (LM), algorithms are discussed and compared for reinforcement learning. it is found that, LM algorithm is quite superior

  15. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller.

    Science.gov (United States)

    Lopez-Franco, Carlos; Gomez-Avila, Javier; Alanis, Alma Y; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-08-12

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results.

  16. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller

    Science.gov (United States)

    Lopez-Franco, Carlos; Alanis, Alma Y.; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-01-01

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results. PMID:28805689

  17. Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics.

    Science.gov (United States)

    Tong, Shaocheng; Wang, Tong; Li, Yongming; Zhang, Huaguang

    2014-06-01

    This paper discusses the problem of adaptive neural network output feedback control for a class of stochastic nonlinear strict-feedback systems. The concerned systems have certain characteristics, such as unknown nonlinear uncertainties, unknown dead-zones, unmodeled dynamics and without the direct measurements of state variables. In this paper, the neural networks (NNs) are employed to approximate the unknown nonlinear uncertainties, and then by representing the dead-zone as a time-varying system with a bounded disturbance. An NN state observer is designed to estimate the unmeasured states. Based on both backstepping design technique and a stochastic small-gain theorem, a robust adaptive NN output feedback control scheme is developed. It is proved that all the variables involved in the closed-loop system are input-state-practically stable in probability, and also have robustness to the unmodeled dynamics. Meanwhile, the observer errors and the output of the system can be regulated to a small neighborhood of the origin by selecting appropriate design parameters. Simulation examples are also provided to illustrate the effectiveness of the proposed approach.

  18. Multigradient for Neural Networks for Equalizers

    Directory of Open Access Journals (Sweden)

    Chulhee Lee

    2003-06-01

    Full Text Available Recently, a new training algorithm, multigradient, has been published for neural networks and it is reported that the multigradient outperforms the backpropagation when neural networks are used as a classifier. When neural networks are used as an equalizer in communications, they can be viewed as a classifier. In this paper, we apply the multigradient algorithm to train the neural networks that are used as equalizers. Experiments show that the neural networks trained using the multigradient noticeably outperforms the neural networks trained by the backpropagation.

  19. Adolescents' risky decision-making activates neural networks related to social cognition and cognitive control processes.

    Science.gov (United States)

    Rodrigo, María José; Padrón, Iván; de Vega, Manuel; Ferstl, Evelyn C

    2014-01-01

    This study examines by means of functional magnetic resonance imaging the neural mechanisms underlying adolescents' risk decision-making in social contexts. We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected. Sixty participants (adolescents: 17-18, and young adults: 21-22 years old) read narratives describing typical situations of decision-making in the presence of peers. They were asked to make choices in risky situations (e.g., taking or refusing a drug) or ambiguous situations (e.g., eating a hamburger or a hotdog). Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ), bilateral middle temporal gyrus (MTG), right medial prefrontal cortex, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind (ToM). In addition, brain structures related to cognitive control were active [right anterior cingulate cortex (ACC), bilateral dorsolateral prefrontal cortex (DLPFC), bilateral orbitofrontal cortex], whereas no significant clusters were obtained in the reward system (ventral striatum). Choosing the dangerous option involved a further activation of control areas (ACC) and emotional and social cognition areas (temporal pole). Adolescents employed more neural resources than young adults in the right DLPFC and the right TPJ in risk situations. When choosing the dangerous option, young adults showed a further engagement in ToM related regions (bilateral MTG) and in motor control regions related to the planning of actions (pre-supplementary motor area). Finally, the right insula and the right superior temporal gyrus were more activated in women than in men, suggesting more emotional involvement and more intensive modeling of the others' perspective in the risky conditions. These findings call for more comprehensive developmental accounts of decision-making in

  20. Automatic Optimization of Focal Point Position in CO2 Laser Welding with Neural Network in A Focus Control System

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    CO2 lasers are increasingly being utilized for quality welding in production. Considering the high cost of equipment, the start-up time and the set-up time should be minimized. Ideally the parameters should be set up and optimized more or less automatically. In this paper a control system...... is designed and built to automatically optimize the focal point position, one of the most important parameters in CO2 laser welding, in order to perform a desired deep/full penetration welding. The control system mainly consists of a multi-axis motion controller - PMAC, a light sensor - Photo Diode, a data...... acquisition card - DAQCard-700, and a self-learning mechanism - Neural Network. The optimization procedure starts with the welding process being carried out by continuously moving the focal point position from above a welding plate to below the plate, thus the process is ensured to be shifted from initially...

  1. Adaptive Output Neural Network Control for a Class of Stochastic Nonlinear Systems With Dead-Zone Nonlinearities.

    Science.gov (United States)

    Wu, Li-Bing; Yang, Guang-Hong

    2017-03-01

    This paper investigates the problem of adaptive output neural network (NN) control for a class of stochastic nonaffine and nonlinear systems with actuator dead-zone inputs. First, based on the intermediate value theorem, a novel design scheme that converts the nonaffine system into the corresponding affine system is developed. In particular, the priori knowledge of the bound of the derivative of the nonaffine and nonlinear functions is removed; then, by employing NNs to approximate the appropriate nonlinear functions, the corresponding adaptive NN tracking controller with the adjustable parameter updated laws is designed through a backstepping technique. Furthermore, it is shown that all the closed-loop signals are bounded in probability, and the system output tracking error can converge to a small neighborhood in the sense of a mean quartic value. Finally, experimental simulations are provided to demonstrate the efficiency of the proposed adaptive NN tracking control method.

  2. Exponential lag function projective synchronization of memristor-based multidirectional associative memory neural networks via hybrid control

    Science.gov (United States)

    Yuan, Manman; Wang, Weiping; Luo, Xiong; Li, Lixiang; Kurths, Jürgen; Wang, Xiao

    2018-03-01

    This paper is concerned with the exponential lag function projective synchronization of memristive multidirectional associative memory neural networks (MMAMNNs). First, we propose a new model of MMAMNNs with mixed time-varying delays. In the proposed approach, the mixed delays include time-varying discrete delays and distributed time delays. Second, we design two kinds of hybrid controllers. Traditional control methods lack the capability of reflecting variable synaptic weights. In this paper, the controllers are carefully designed to confirm the process of different types of synchronization in the MMAMNNs. Third, sufficient criteria guaranteeing the synchronization of system are derived based on the derive-response concept. Finally, the effectiveness of the proposed mechanism is validated with numerical experiments.

  3. Neural Network based Control of SG based Standalone Generating System with Energy Storage for Power Quality Enhancement

    Science.gov (United States)

    Nayar, Priya; Singh, Bhim; Mishra, Sukumar

    2017-08-01

    An artificial intelligence based control algorithm is used in solving power quality problems of a diesel engine driven synchronous generator with automatic voltage regulator and governor based standalone system. A voltage source converter integrated with a battery energy storage system is employed to mitigate the power quality problems. An adaptive neural network based signed regressor control algorithm is used for the estimation of the fundamental component of load currents for control of a standalone system with load leveling as an integral feature. The developed model of the system performs accurately under varying load conditions and provides good dynamic response to the step changes in loads. The real time performance is achieved using MATLAB along with simulink/simpower system toolboxes and results adhere to an IEEE-519 standard for power quality enhancement.

  4. PREDICTIVE CONTROL OF A BATCH POLYMERIZATION SYSTEM USING A FEEDFORWARD NEURAL NETWORK WITH ONLINE ADAPTATION BY GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    A. Cancelier

    Full Text Available Abstract This study used a predictive controller based on an empirical nonlinear model comprising a three-layer feedforward neural network for temperature control of the suspension polymerization process. In addition to the offline training technique, an algorithm was also analyzed for online adaptation of its parameters. For the offline training, the network was statically trained and the genetic algorithm technique was used in combination with the least squares method. For online training, the network was trained on a recurring basis and only the technique of genetic algorithms was used. In this case, only the weights and bias of the output layer neuron were modified, starting from the parameters obtained from the offline training. From the experimental results obtained in a pilot plant, a good performance was observed for the proposed control system, with superior performance for the control algorithm with online adaptation of the model, particularly with respect to the presence of off-set for the case of the fixed parameters model.

  5. Neural Network Computed Bootstrap Current for Real Time Control in DIII-D

    Science.gov (United States)

    Tema Biwole, Arsene; Smith, Sterling P.; Meneghini, Orso; Belli, Emily; Candy, Jeff

    2017-10-01

    In an effort to provide a fast and accurate calculation of the bootstrap current density for use as a constraint in real-time equilibrium reconstructions, we have developed a neural network (NN) non-linear regression of the NEO code calculated bootstrap current jBS. A new formulation for jBS in NEO allows for a determination of the coefficients on the density and temperature scale lengths. The new formulation reduces the number of inputs to the NN, and the number of output coefficients is 2 times the number of species (including electrons). The NN can reproduce the NEO and Sauter coefficients to a high degree of accuracy (bootstrap current density calculated in NEO has been used as a constraint in an offline equilibrium reconstruction for comparison to the NN calculation. The computational time of this method (μs) makes it ideal for real time calculation in DIII-D. Work supported by US DOE under DE-FC02-04ER54698, DE-FG2-95ER-54309, DE-SC 0012656, DE-FC02-06ER54873.

  6. Water mass control system based on artificial neural networks for the steam generator in a pressurized water reactor

    Science.gov (United States)

    Dong, Wei

    The control of water mass inventory and water level in the steam generator is important for nuclear power plant. Conventional control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, the water level measured in the downcomer can temporarily react in a manner opposite to water mass inventory changes, which is known as shrink and swell effects. As a result, automatic or manual control of water level can be difficult under these conditions and can lead to reactor trips. This research introduces a new feedwater control strategy for nuclear steam generators. By estimating the water mass inventory with neural networks, the new method directly controls water mass inventory by conventional PI controller. Since shrink and swell are eliminated in water mass control, theoretical analysis and simulation results show the new control strategy improves the operation of nuclear steam generators significantly. In the water mass control system design, the safety function of the system is still based on the Steam Generator Water Level. Thus, the conventional water level trips will protect the plant when the new control strategy fails to maintain the water level within the safety range. The water mass estimator can be embedded in the Instrumentation and Control System of a Nuclear Power Plant to open loop observe the Steam Generator water mass inventory, improving the safety of nuclear power plant operation. Closed loop water mass control for a Steam Generator can be implemented after the observed water mass shows good agreement with theoretical calculations and plant operation experiences.

  7. Neural systems for control

    National Research Council Canada - National Science Library

    Omidvar, Omid; Elliott, David L

    1997-01-01

    ... is reprinted with permission from A. Barto, "Reinforcement Learning," Handbook of Brain Theory and Neural Networks, M.A. Arbib, ed.. The MIT Press, Cambridge, MA, pp. 804-809, 1995. Chapter 4, Figures 4-5 and 7-9 and Tables 2-5, are reprinted with permission, from S. Cho, "Map Formation in Proprioceptive Cortex," International Jour...

  8. Fault Diagnosis Using Artificial Neural Network

    International Nuclear Information System (INIS)

    Maayof, R.M.A.; Abdelwahed, S.M.; Ayad, N.M.A.; Elmeniawy, N.M.H.

    2004-01-01

    This paper represents a special diagnostic system for handling and curing the possible failures of the Cairo Fourier Diffractometer Facility (CFDF). Two intelligent techniques, the neural network system (back propagation method) and the rule-based expert system are discussed. Both systems are integrated together as a pre-processor loosely coupled in order to build the proposed hybrid expert system. The inputs to the neural network level are the indicators conditions (symptoms), from the CFDF control panel. The outputs correspond to the status of the main parts of the CFDF. The rule-based expert system takes the inputs and outputs of the neural networks and also information from the user, to isolate and define precisely the possible faults of the CFDF. It has been found that the developed diagnostic system is both adequate and flexible for the CFDF

  9. New Smith Internal Model Control of Two-Motor Drive System Based on Neural Network Generalized Inverse

    Directory of Open Access Journals (Sweden)

    Guohai Liu

    2016-01-01

    Full Text Available Multimotor drive system is widely applied in industrial control system. Considering the characteristics of multi-input multioutput, nonlinear, strong-coupling, and time-varying delay in two-motor drive systems, this paper proposes a new Smith internal model (SIM control method, which is based on neural network generalized inverse (NNGI. This control strategy adopts the NNGI system to settle the decoupling issue and utilizes the SIM control structure to solve the delay problem. The NNGI method can decouple the original system into several composite pseudolinear subsystems and also complete the pole-zero allocation of subsystems. Furthermore, based on the precise model of pseudolinear system, the proposed SIM control structure is used to compensate the network delay and enhance the interference resisting the ability of the whole system. Both simulation and experimental results are given, verifying that the proposed control strategy can effectively solve the decoupling problem and exhibits the strong robustness to load impact disturbance at various operations.

  10. Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form.

    Science.gov (United States)

    Jagannathan, Sarangapani; He, Pingan

    2008-12-01

    In this paper, a suite of adaptive neural network (NN) controllers is designed to deliver a desired tracking performance for the control of an unknown, second-order, nonlinear discrete-time system expressed in nonstrict feedback form. In the first approach, two feedforward NNs are employed in the controller with tracking error as the feedback variable whereas in the adaptive critic NN architecture, three feedforward NNs are used. In the adaptive critic architecture, two action NNs produce virtual and actual control inputs, respectively, whereas the third critic NN approximates certain strategic utility function and its output is employed for tuning action NN weights in order to attain the near-optimal control action. Both the NN control methods present a well-defined controller design and the noncausal problem in discrete-time backstepping design is avoided via NN approximation. A comparison between the controller methodologies is highlighted. The stability analysis of the closed-loop control schemes is demonstrated. The NN controller schemes do not require an offline learning phase and the NN weights can be initialized at zero or random. Results show that the performance of the proposed controller schemes is highly satisfactory while meeting the closed-loop stability.

  11. An intelligent nuclear reactor core controller for load following operations, using recurrent neural networks and fuzzy systems

    International Nuclear Information System (INIS)

    Boroushaki, M.; Ghofrani, M.B.; Lucas, C.; Yazdanpanah, M.J.

    2003-01-01

    In the last decade, the intelligent control community has paid great attention to the topic of intelligent control systems for nuclear plants (core, steam generator...). Papers mostly used approximate and simple mathematical SISO (single-input-single-output) model of nuclear plants for testing and/or tuning of the control systems. They also tried to generalize theses models to a real MIMO (multi-input-multi-output) plant, while nuclear plants are typically of complex nonlinear and multivariable nature with high interactions between their state variables and therefore, many of these proposed intelligent control systems are not appropriate for real cases. In this paper, we designed an on-line intelligent core controller for load following operations, based on a heuristic control algorithm, using a valid and updatable recurrent neural network (RNN). We have used an accurate 3-dimensional core calculation code to represent the real plant and to train the RNN. The results of simulation show that this intelligent controller can control the reactor core during load following operations, using optimum control rod groups manoeuvre and variable overlapping strategy. This methodology represents a simple and reliable procedure for controlling other complex nonlinear MIMO plants, and may improve the responses, comparing to other control systems

  12. On-board fault diagnostics for fly-by-light flight control systems using neural network flight processors

    Science.gov (United States)

    Urnes, James M., Sr.; Cushing, John; Bond, William E.; Nunes, Steve

    1996-10-01

    Fly-by-Light control systems offer higher performance for fighter and transport aircraft, with efficient fiber optic data transmission, electric control surface actuation, and multi-channel high capacity centralized processing combining to provide maximum aircraft flight control system handling qualities and safety. The key to efficient support for these vehicles is timely and accurate fault diagnostics of all control system components. These diagnostic tests are best conducted during flight when all facts relating to the failure are present. The resulting data can be used by the ground crew for efficient repair and turnaround of the aircraft, saving time and money in support costs. These difficult to diagnose (Cannot Duplicate) fault indications average 40 - 50% of maintenance activities on today's fighter and transport aircraft, adding significantly to fleet support cost. Fiber optic data transmission can support a wealth of data for fault monitoring; the most efficient method of fault diagnostics is accurate modeling of the component response under normal and failed conditions for use in comparison with the actual component flight data. Neural Network hardware processors offer an efficient and cost-effective method to install fault diagnostics in flight systems, permitting on-board diagnostic modeling of very complex subsystems. Task 2C of the ARPA FLASH program is a design demonstration of this diagnostics approach, using the very high speed computation of the Adaptive Solutions Neural Network processor to monitor an advanced Electrohydrostatic control surface actuator linked through a AS-1773A fiber optic bus. This paper describes the design approach and projected performance of this on-line diagnostics system.

  13. Generalization performance of regularized neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1994-01-01

    Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...

  14. Decentralized neural control application to robotics

    CERN Document Server

    Garcia-Hernandez, Ramon; Sanchez, Edgar N; Alanis, Alma y; Ruz-Hernandez, Jose A

    2017-01-01

    This book provides a decentralized approach for the identification and control of robotics systems. It also presents recent research in decentralized neural control and includes applications to robotics. Decentralized control is free from difficulties due to complexity in design, debugging, data gathering and storage requirements, making it preferable for interconnected systems. Furthermore, as opposed to the centralized approach, it can be implemented with parallel processors. This approach deals with four decentralized control schemes, which are able to identify the robot dynamics. The training of each neural network is performed on-line using an extended Kalman filter (EKF). The first indirect decentralized control scheme applies the discrete-time block control approach, to formulate a nonlinear sliding manifold. The second direct decentralized neural control scheme is based on the backstepping technique, approximated by a high order neural network. The third control scheme applies a decentralized neural i...

  15. Artificial Neural Networks for Beginners

    OpenAIRE

    Gershenson, Carlos

    2003-01-01

    The scope of this teaching package is to make a brief induction to Artificial Neural Networks (ANNs) for people who have no previous knowledge of them. We first make a brief introduction to models of networks, for then describing in general terms ANNs. As an application, we explain the backpropagation algorithm, since it is widely used and many other algorithms are derived from it. The user should know algebra and the handling of functions and vectors. Differential calculus is recommendable, ...

  16. Weight Constraints in Neural Networks

    Directory of Open Access Journals (Sweden)

    Subha Fernando

    2012-01-01

    Full Text Available Hebbian plasticity precisely describes how synapses increase their synaptic strengths according to the correlated activities between two neurons; however, it fails to explain how these activities dilute the strength of the same synapses. Recent literature has proposed spike-timing-dependent plasticity and short-term plasticity on multiple dynamic stochastic synapses that can control synaptic excitation and remove many user-defined constraints. Under this hypothesis, a network model was implemented giving more computational power to receptors, and the behavior at a synapse was defined by the collective dynamic activities of stochastic receptors. An experiment was conducted to analyze can spike-timing-dependent plasticity interplay with short-term plasticity to balance the excitation of the Hebbian neurons without weight constraints? If so what underline mechanisms help neurons to maintain such excitation in computational environment? According to our results both plasticity mechanisms work together to balance the excitation of the neural network as our neurons stabilized its weights for Poisson inputs with mean firing rates from 10 Hz to 40 Hz. The behavior generated by the two neurons was similar to the behavior discussed under synaptic redistribution, so that synaptic weights were stabilized while there was a continuous increase of presynaptic probability of release and higher turnover rate of postsynaptic receptors.

  17. Interest Rate Forecasting with Neural Networks

    OpenAIRE

    Jan Täppinen

    1998-01-01

    This paper compares neural networks and linear regression models in interest rate forecasting using US term structure data. The expectations hypothesis gets some extra support from the neural network model as compared to the regression model. A neural network with the whole yield curve spectre from the difference between 1 and 3-month rates to the difference between 5 and 10-year rates predicts changes in interest rates quite well. However, during 1994?1995 the neural networks (as well as the...

  18. Neural network to diagnose lining condition

    Science.gov (United States)

    Yemelyanov, V. A.; Yemelyanova, N. Y.; Nedelkin, A. A.; Zarudnaya, M. V.

    2018-03-01

    The paper presents data on the problem of diagnosing the lining condition at the iron and steel works. The authors describe the neural network structure and software that are designed and developed to determine the lining burnout zones. The simulation results of the proposed neural networks are presented. The authors note the low learning and classification errors of the proposed neural networks. To realize the proposed neural network, the specialized software has been developed.

  19. Numerical experiments with neural networks

    International Nuclear Information System (INIS)

    Miranda, Enrique.

    1990-01-01

    Neural networks are highly idealized models which, in spite of their simplicity, reproduce some key features of the real brain. In this paper, they are introduced at a level adequate for an undergraduate computational physics course. Some relevant magnitudes are defined and evaluated numerically for the Hopfield model and a short term memory model. (Author)

  20. Artificial Neural Networks·

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Artificial Neural Networks A Brief Introduction. Jitendra R Raol Sunilkumar S Mankame. General Article Volume 1 Issue 2 February 1996 pp 47-54. Fulltext. Click here to view fulltext PDF. Permanent link: