Neural Networks: Implementations and Applications
Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.
1996-01-01
Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...
Neural networks and applications tutorial
Guyon, I.
1991-09-01
The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.
Neural Networks Methodology and Applications
Dreyfus, Gérard
2005-01-01
Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented...
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
are examined. The models are separated into three groups representing input/output descriptions as well as state space descriptions: - Models, where all in- and outputs are measurable (static networks). - Models, where some inputs are non-measurable (recurrent networks). - Models, where some in- and some...... outputs are non-measurable (recurrent networks with incomplete state information). The three groups are ordered in increasing complexity, and for each group it is shown how to solve the problems concerning training and application of the specific model type. Of particular interest are the model types...... Kalmann filter) representing state space description. The potentials of neural networks for control of non-linear processes are also examined, focusing on three different groups of control concepts, all considered as generalizations of known linear control concepts to handle also non-linear processes...
Fuzzy neural network theory and application
Liu, Puyin
2004-01-01
This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he
Applications of neural network to numerical analyses
International Nuclear Information System (INIS)
Takeda, Tatsuoki; Fukuhara, Makoto; Ma, Xiao-Feng; Liaqat, Ali
1999-01-01
Applications of a multi-layer neural network to numerical analyses are described. We are mainly concerned with the computed tomography and the solution of differential equations. In both cases as the objective functions for the training process of the neural network we employed residuals of the integral equation or the differential equations. This is different from the conventional neural network training where sum of the squared errors of the output values is adopted as the objective function. For model problems both the methods gave satisfactory results and the methods are considered promising for some kind of problems. (author)
Application of neural network to CT
International Nuclear Information System (INIS)
Ma, Xiao-Feng; Takeda, Tatsuoki
1999-01-01
This paper presents a new method for two-dimensional image reconstruction by using a multilayer neural network. Multilayer neural networks are extensively investigated and practically applied to solution of various problems such as inverse problems or time series prediction problems. From learning an input-output mapping from a set of examples, neural networks can be regarded as synthesizing an approximation of multidimensional function (that is, solving the problem of hypersurface reconstruction, including smoothing and interpolation). From this viewpoint, neural networks are well suited to the solution of CT image reconstruction. Though a conventionally used object function of a neural network is composed of a sum of squared errors of the output data, we can define an object function composed of a sum of residue of an integral equation. By employing an appropriate line integral for this integral equation, we can construct a neural network that can be used for CT. We applied this method to some model problems and obtained satisfactory results. As it is not necessary to discretized the integral equation using this reconstruction method, therefore it is application to the problem of complicated geometrical shapes is also feasible. Moreover, in neural networks, interpolation is performed quite smoothly, as a result, inverse mapping can be achieved smoothly even in case of including experimental and numerical errors, However, use of conventional back propagation technique for optimization leads to an expensive computation cost. To overcome this drawback, 2nd order optimization methods or parallel computing will be applied in future. (J.P.N.)
Application of neural networks in CRM systems
Directory of Open Access Journals (Sweden)
Bojanowska Agnieszka
2017-01-01
Full Text Available The central aim of this study is to investigate how to apply artificial neural networks in Customer Relationship Management (CRM. The paper presents several business applications of neural networks in software systems designed to aid CRM, e.g. in deciding on the profitability of building a relationship with a given customer. Furthermore, a framework for a neural-network based CRM software tool is developed. Building beneficial relationships with customers is generating considerable interest among various businesses, and is often mentioned as one of the crucial objectives of enterprises, next to their key aim: to bring satisfactory profit. There is a growing tendency among businesses to invest in CRM systems, which together with an organisational culture of a company aid managing customer relationships. It is the sheer amount of gathered data as well as the need for constant updating and analysis of this breadth of information that may imply the suitability of neural networks for the application in question. Neural networks exhibit considerably higher computational capabilities than sequential calculations because the solution to a problem is obtained without the need for developing a special algorithm. In the majority of presented CRM applications neural networks constitute and are presented as a managerial decision-taking optimisation tool.
Neural networks advances and applications 2
Gelenbe, E
1992-01-01
The present volume is a natural follow-up to Neural Networks: Advances and Applications which appeared one year previously. As the title indicates, it combines the presentation of recent methodological results concerning computational models and results inspired by neural networks, and of well-documented applications which illustrate the use of such models in the solution of difficult problems. The volume is balanced with respect to these two orientations: it contains six papers concerning methodological developments and five papers concerning applications and examples illustrating the theoret
Application of neural networks in experimental physics
International Nuclear Information System (INIS)
Kisel', I.V.; Neskromnyj, V.N.; Ososkov, G.A.
1993-01-01
The theoretical foundations of numerous models of artificial neural networks (ANN) and their applications to the actual problems of associative memory, optimization and pattern recognition are given. This review contains also numerous using of ANN in the experimental physics both as the hardware realization of fast triggering systems for even selection and for the following software implementation of the trajectory data recognition
Application of neural networks in coastal engineering
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
the neural network attractive. A neural network is an information processing system modeled on the structure of the dynamic process. It can solve the complex/nonlinear problems quickly once trained by operating on problems using an interconnected number...
Application of radial basis neural network for state estimation of ...
African Journals Online (AJOL)
An original application of radial basis function (RBF) neural network for power system state estimation is proposed in this paper. The property of massive parallelism of neural networks is employed for this. The application of RBF neural network for state estimation is investigated by testing its applicability on a IEEE 14 bus ...
Neural network application to diesel generator diagnostics
International Nuclear Information System (INIS)
Logan, K.P.
1990-01-01
Diagnostic problems typically begin with the observation of some system behavior which is recognized as a deviation from the expected. The fundamental underlying process is one involving pattern matching cf observed symptoms to a set of compiled symptoms belonging to a fault-symptom mapping. Pattern recognition is often relied upon for initial fault detection and diagnosis. Parallel distributed processing (PDP) models employing neural network paradigms are known to be good pattern recognition devices. This paper describes the application of neural network processing techniques to the malfunction diagnosis of subsystems within a typical diesel generator configuration. Neural network models employing backpropagation learning were developed to correctly recognize fault conditions from the input diagnostic symptom patterns pertaining to various engine subsystems. The resulting network models proved to be excellent pattern recognizers for malfunction examples within the training set. The motivation for employing network models in lieu of a rule-based expert system, however, is related to the network's potential for generalizing malfunctions outside of the training set, as in the case of noisy or partial symptom patterns
Application of neural networks to group technology
Caudell, Thomas P.; Smith, Scott D. G.; Johnson, G. C.; Wunsch, Donald C., II
1991-08-01
Adaptive resonance theory (ART) neural networks are being developed for application to the industrial engineering problem of group technology--the reuse of engineering designs. Two- and three-dimensional representations of engineering designs are input to ART-1 neural networks to produce groups or families of similar parts. These representations, in their basic form, amount to bit maps of the part, and can become very large when the part is represented in high resolution. This paper describes an enhancement to an algorithmic form of ART-1 that allows it to operate directly on compressed input representations and to generate compressed memory templates. The performance of this compressed algorithm is compared to that of the regular algorithm on real engineering designs and a significant savings in memory storage as well as a speed up in execution is observed. In additions, a `neural database'' system under development is described. This system demonstrates the feasibility of training an ART-1 network to first cluster designs into families, and then to recall the family when presented a similar design. This application is of large practical value to industry, making it possible to avoid duplication of design efforts.
Improved Extension Neural Network and Its Applications
Directory of Open Access Journals (Sweden)
Yu Zhou
2014-01-01
Full Text Available Extension neural network (ENN is a new neural network that is a combination of extension theory and artificial neural network (ANN. The learning algorithm of ENN is based on supervised learning algorithm. One of important issues in the field of classification and recognition of ENN is how to achieve the best possible classifier with a small number of labeled training data. Training data selection is an effective approach to solve this issue. In this work, in order to improve the supervised learning performance and expand the engineering application range of ENN, we use a novel data selection method based on shadowed sets to refine the training data set of ENN. Firstly, we use clustering algorithm to label the data and induce shadowed sets. Then, in the framework of shadowed sets, the samples located around each cluster centers (core data and the borders between clusters (boundary data are selected as training data. Lastly, we use selected data to train ENN. Compared with traditional ENN, the proposed improved ENN (IENN has a better performance. Moreover, IENN is independent of the supervised learning algorithms and initial labeled data. Experimental results verify the effectiveness and applicability of our proposed work.
Artificial neural network applications in ionospheric studies
Directory of Open Access Journals (Sweden)
L. R. Cander
1998-06-01
Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.
Advanced Applications of Neural Networks and Artificial Intelligence: A Review
Koushal Kumar; Gour Sundar Mitra Thakur
2012-01-01
Artificial Neural Network is a branch of Artificial intelligence and has been accepted as a new computing technology in computer science fields. This paper reviews the field of Artificial intelligence and focusing on recent applications which uses Artificial Neural Networks (ANN’s) and Artificial Intelligence (AI). It also considers the integration of neural networks with other computing methods Such as fuzzy logic to enhance the interpretation ability of data. Artificial Neural Networks is c...
Hidden neural networks: application to speech recognition
DEFF Research Database (Denmark)
Riis, Søren Kamaric
1998-01-01
We evaluate the hidden neural network HMM/NN hybrid on two speech recognition benchmark tasks; (1) task independent isolated word recognition on the Phonebook database, and (2) recognition of broad phoneme classes in continuous speech from the TIMIT database. It is shown how hidden neural networks...
Neural network application for illicit substances identification
International Nuclear Information System (INIS)
Nunes, Wallace V.; Silva, Ademir X. da; Crispim, Verginia R.; Schirru, Roberto
2000-01-01
Thermal neutron activation analysis is based on neutron capture prompt gamma-ray analysis and has been used in wide variety of fields, for examples, for inspection of checked airline baggage and for detection of buried land mines. In all of these applications, the detected γ-ray intensities from the elements present are used to estimate their concentrations. A study about application using a trained neutral network is presented to determine the presence of illicit substances, such as explosives and drugs, carried out in the luggages. The illicit substances emit characteristic detected γ-ray which are the fingerprint of each isotope. The fingerprint data-base of the gamma-ray spectrum of substances is obtained via Monte Carlo N-Particle Transport code, MCNP, version 4B. It was possible to train the neural network to determine the presence of explosives and narcotics even hidden by several materials. (author)
Applications of neural networks to mechanics
International Nuclear Information System (INIS)
1997-01-01
Neural networks have become powerful tools in engineer's techniques. The aim of this conference was to present their application to concrete cases in the domain of mechanics, including the preparation and use of materials. Artificial neurons are non-linear organs which provide an output signal that depends on several differently weighted input signals. Their connection into networks allows to solve problems for which the driving laws are not well known. The applications discussed during this conference deal with: the driving of machines or processes, the control of machines, materials or products, the simulation and forecasting, and the optimization. Three papers dealing with the control of spark ignition engines, the regulation of heating floors and the optimization of energy consumptions in industrial buildings were selected for ETDE and one paper dealing with the optimization of the management of a reprocessed plutonium stock was selected for INIS. (J.S.)
Fuzzy logic and neural networks basic concepts & application
Alavala, Chennakesava R
2008-01-01
About the Book: The primary purpose of this book is to provide the student with a comprehensive knowledge of basic concepts of fuzzy logic and neural networks. The hybridization of fuzzy logic and neural networks is also included. No previous knowledge of fuzzy logic and neural networks is required. Fuzzy logic and neural networks have been discussed in detail through illustrative examples, methods and generic applications. Extensive and carefully selected references is an invaluable resource for further study of fuzzy logic and neural networks. Each chapter is followed by a question bank
Neural networks and their application to nuclear power plant diagnosis
International Nuclear Information System (INIS)
Reifman, J.
1997-01-01
The authors present a survey of artificial neural network-based computer systems that have been proposed over the last decade for the detection and identification of component faults in thermal-hydraulic systems of nuclear power plants. The capabilities and advantages of applying neural networks as decision support systems for nuclear power plant operators and their inherent characteristics are discussed along with their limitations and drawbacks. The types of neural network structures used and their applications are described and the issues of process diagnosis and neural network-based diagnostic systems are identified. A total of thirty-four publications are reviewed
Advances in Artificial Neural Networks – Methodological Development and Application
Directory of Open Access Journals (Sweden)
Yanbo Huang
2009-08-01
Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological
Introduction to neural networks with electric power applications
International Nuclear Information System (INIS)
Wildberger, A.M.; Hickok, K.A.
1990-01-01
This is an introduction to the general field of neural networks with emphasis on prospects for their application in the power industry. It is intended to provide enough background information for its audience to begin to follow technical developments in neural networks and to recognize those which might impact on electric power engineering. Beginning with a brief discussion of natural and artificial neurons, the characteristics of neural networks in general and how they learn, neural networks are compared with other modeling tools such as simulation and expert systems in order to provide guidance in selecting appropriate applications. In the power industry, possible applications include plant control, dispatching, and maintenance scheduling. In particular, neural networks are currently being investigated for enhancements to the Thermal Performance Advisor (TPA) which General Physics Corporation (GP) has developed to improve the efficiency of electric power generation
Introduction to spiking neural networks: Information processing, learning and applications.
Ponulak, Filip; Kasinski, Andrzej
2011-01-01
The concept that neural information is encoded in the firing rate of neurons has been the dominant paradigm in neurobiology for many years. This paradigm has also been adopted by the theory of artificial neural networks. Recent physiological experiments demonstrate, however, that in many parts of the nervous system, neural code is founded on the timing of individual action potentials. This finding has given rise to the emergence of a new class of neural models, called spiking neural networks. In this paper we summarize basic properties of spiking neurons and spiking networks. Our focus is, specifically, on models of spike-based information coding, synaptic plasticity and learning. We also survey real-life applications of spiking models. The paper is meant to be an introduction to spiking neural networks for scientists from various disciplines interested in spike-based neural processing.
Neural networks: Application to medical imaging
Clarke, Laurence P.
1994-01-01
The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.
Neural networks and their potential application in nuclear power plants
International Nuclear Information System (INIS)
Uhrig, R.E.
1991-01-01
A neural network is a data processing system consisting of a number of simple, highly interconnected processing elements in an architecture inspired by the structure of the cerebral cortex portion of the brain. Hence, neural networks are often capable of doing things which humans or animals do well but which conventional computers often do poorly. Neural networks have emerged in the past few years as an area of unusual opportunity for research, development and application to a variety of real world problems. Indeed, neural networks exhibit characteristics and capabilities not provided by any other technology. Examples include reading Japanese Kanji characters and human handwriting, reading a typewritten manuscript aloud, compensating for alignment errors in robots, interpreting very noise signals (e.g., electroencephalograms), modeling complex systems that cannot be modeled mathematically, and predicting whether proposed loans will be good or fail. This paper presents a brief tutorial on neural networks and describes research on the potential applications to nuclear power plants
Neural Network Based Models for Fusion Applications
Meneghini, Orso; Tema Biwole, Arsene; Luda, Teobaldo; Zywicki, Bailey; Rea, Cristina; Smith, Sterling; Snyder, Phil; Belli, Emily; Staebler, Gary; Canty, Jeff
2017-10-01
Whole device modeling, engineering design, experimental planning and control applications demand models that are simultaneously physically accurate and fast. This poster reports on the ongoing effort towards the development and validation of a series of models that leverage neural-Ânetwork (NN) multidimensional regression techniques to accelerate some of the most mission critical first principle models for the fusion community, such as: the EPED workflow for prediction of the H-Mode and Super H-Mode pedestal structure the TGLF and NEO models for the prediction of the turbulent and neoclassical particle, energy and momentum fluxes; and the NEO model for the drift-kinetic solution of the bootstrap current. We also applied NNs on DIII-D experimental data for disruption prediction and quantifying the effect of RMPs on the pedestal and ELMs. All of these projects were supported by the infrastructure provided by the OMFIT integrated modeling framework. Work supported by US DOE under DE-SC0012656, DE-FG02-95ER54309, DE-FC02-04ER54698.
Applications of neural networks in training science.
Pfeiffer, Mark; Hohmann, Andreas
2012-04-01
Training science views itself as an integrated and applied science, developing practical measures founded on scientific method. Therefore, it demands consideration of a wide spectrum of approaches and methods. Especially in the field of competitive sports, research questions are usually located in complex environments, so that mainly field studies are drawn upon to obtain broad external validity. Here, the interrelations between different variables or variable sets are mostly of a nonlinear character. In these cases, methods like neural networks, e.g., the pattern recognizing methods of Self-Organizing Kohonen Feature Maps or similar instruments to identify interactions might be successfully applied to analyze data. Following on from a classification of data analysis methods in training-science research, the aim of the contribution is to give examples of varied sports in which network approaches can be effectually used in training science. First, two examples are given in which neural networks are employed for pattern recognition. While one investigation deals with the detection of sporting talent in swimming, the other is located in game sports research, identifying tactical patterns in team handball. The third and last example shows how an artificial neural network can be used to predict competitive performance in swimming. Copyright © 2011 Elsevier B.V. All rights reserved.
The application of artificial neural networks to TLD dose algorithm
International Nuclear Information System (INIS)
Moscovitch, M.
1997-01-01
We review the application of feed forward neural networks to multi element thermoluminescence dosimetry (TLD) dose algorithm development. A Neural Network is an information processing method inspired by the biological nervous system. A dose algorithm based on a neural network is a fundamentally different approach from conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with a given response of a multi-element dosimeter (input) many times.The algorithm, being trained that way, eventually is able to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personnel dosimetry, the output consists of the desired dose components: deep dose, shallow dose, and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. For this application, a neural network architecture was developed based on the concept of functional links network (FLN). The FLN concept allowed an increase in the dimensionality of the input space and construction of a neural network without any hidden layers. This simplifies the problem and results in a relatively simple and reliable dose calculation algorithm. Overall, the neural network dose algorithm approach has been shown to significantly improve the precision and accuracy of dose calculations. (authors)
Neural networks and their potential application to nuclear power plants
International Nuclear Information System (INIS)
Uhrig, R.E.
1991-01-01
A network of artificial neurons, usually called an artificial neural network is a data processing system consisting of a number of highly interconnected processing elements in an architecture inspired by the structure of the cerebral cortex portion of the brain. Hence, neural networks are often capable of doing things which humans or animals do well but which conventional computers often do poorly. Neural networks exhibit characteristics and capabilities not provided by any other technology. Neural networks may be designed so as to classify an input pattern as one of several predefined types or to create, as needed, categories or classes of system states which can be interpreted by a human operator. Neural networks have the ability to recognize patterns, even when the information comprising these patterns is noisy, sparse, or incomplete. Thus, systems of artificial neural networks show great promise for use in environments in which robust, fault-tolerant pattern recognition is necessary in a real-time mode, and in which the incoming data may be distorted or noisy. The application of neural networks, a rapidly evolving technology used extensively in defense applications, alone or in conjunction with other advanced technologies, to some of the problems of operating nuclear power plants has the potential to enhance the safety, reliability and operability of nuclear power plants. The potential applications of neural networking include, but are not limited to diagnosing specific abnormal conditions, identification of nonlinear dynamics and transients, detection of the change of mode of operation, control of temperature and pressure during start-up, signal validation, plant-wide monitoring using autoassociative neural networks, monitoring of check valves, modeling of the plant thermodynamics, emulation of core reload calculations, analysis of temporal sequences in NRC's ''licensee event reports,'' and monitoring of plant parameters
Robust neural network with applications to credit portfolio data analysis.
Feng, Yijia; Li, Runze; Sudjianto, Agus; Zhang, Yiyun
2010-01-01
In this article, we study nonparametric conditional quantile estimation via neural network structure. We proposed an estimation method that combines quantile regression and neural network (robust neural network, RNN). It provides good smoothing performance in the presence of outliers and can be used to construct prediction bands. A Majorization-Minimization (MM) algorithm was developed for optimization. Monte Carlo simulation study is conducted to assess the performance of RNN. Comparison with other nonparametric regression methods (e.g., local linear regression and regression splines) in real data application demonstrate the advantage of the newly proposed procedure.
Complex-valued neural networks advances and applications
Hirose, Akira
2013-01-01
Presents the latest advances in complex-valued neural networks by demonstrating the theory in a wide range of applications Complex-valued neural networks is a rapidly developing neural network framework that utilizes complex arithmetic, exhibiting specific characteristics in its learning, self-organizing, and processing dynamics. They are highly suitable for processing complex amplitude, composed of amplitude and phase, which is one of the core concepts in physical systems to deal with electromagnetic, light, sonic/ultrasonic waves as well as quantum waves, namely, electron and
Hybrid digital signal processing and neural networks applications in PWRs
International Nuclear Information System (INIS)
Eryurek, E.; Upadhyaya, B.R.; Kavaklioglu, K.
1991-01-01
Signal validation and plant subsystem tracking in power and process industries require the prediction of one or more state variables. Both heteroassociative and auotassociative neural networks were applied for characterizing relationships among sets of signals. A multi-layer neural network paradigm was applied for sensor and process monitoring in a Pressurized Water Reactor (PWR). This nonlinear interpolation technique was found to be very effective for these applications
Potential applications of neural networks to nuclear power plants
International Nuclear Information System (INIS)
Uhrig, R.E.
1991-01-01
Application of neural networks to the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: diagnosing specific abnormal conditions, detection of the change of mode of operation, signal validation, monitoring of check valves, plant-wide monitoring using autoassociative neural networks, modeling of the plant thermodynamics, emulation of core reload calculations, monitoring of plant parameters, and analysis of plant vibrations. Each of these projects and its status are described briefly in this article. The objective of each of these projects is to enhance the safety and performance of nuclear plants through the use of neural networks
Applications of neural networks in high energy physics
International Nuclear Information System (INIS)
Cutts, D.; Hoftun, J.S.; Nesic, D.; Sornborger, A.; Johnson, C.R.; Zeller, R.T.
1990-01-01
Neural network techniques provide promising solutions to pattern recognition problems in high energy physics. We discuss several applications of back propagation networks, and in particular describe the operation of an electron algorithm based on calorimeter energies. 5 refs., 5 figs., 1 tab
International Nuclear Information System (INIS)
Smith, Patrick I.
2003-01-01
Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing
Type-2 fuzzy neural networks and their applications
Aliev, Rafik Aziz
2014-01-01
This book deals with the theory, design principles, and application of hybrid intelligent systems using type-2 fuzzy sets in combination with other paradigms of Soft Computing technology such as Neuro-Computing and Evolutionary Computing. It provides a self-contained exposition of the foundation of type-2 fuzzy neural networks and presents a vast compendium of its applications to control, forecasting, decision making, system identification and other real problems. Type-2 Fuzzy Neural Networks and Their Applications is helpful for teachers and students of universities and colleges, for scientis
Neural networks. A new analytical tool, applicable also in nuclear technology
International Nuclear Information System (INIS)
Stritar, A.
1992-01-01
The basic concept of neural networks and back propagation learning algorithm are described. The behaviour of typical neural network is demonstrated on a simple graphical case. A short literature survey about the application of neural networks in nuclear science and engineering is made. The application of the neural network to the probability density calculation is shown. (author) [sl
Application of artificial neural networks in particle physics
International Nuclear Information System (INIS)
Kolanoski, H.
1995-04-01
The application of Artificial Neural Networks in Particle Physics is reviewed. Most common is the use of feed-forward nets for event classification and function approximation. This network type is best suited for a hardware implementation and special VLSI chips are available which are used in fast trigger processors. Also discussed are fully connected networks of the Hopfield type for pattern recognition in tracking detectors. (orig.)
Non-linear feedback neural networks VLSI implementations and applications
Ansari, Mohd Samar
2014-01-01
This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation.
Application of artificial neural networks to improve power transfer ...
African Journals Online (AJOL)
Application of artificial neural networks to improve power transfer capability through OLTC. ... International Journal of Engineering, Science and Technology ... Numerical results show that the setting of OLTC transformer in terms of the load model has a major effect on the maximum power transfer in power systems and the ...
An Artificial Neural Network Controller for Intelligent Transportation Systems Applications
1996-01-01
An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...
Review On Applications Of Neural Network To Computer Vision
Li, Wei; Nasrabadi, Nasser M.
1989-03-01
Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.
Application of neural networks to waste site screening
International Nuclear Information System (INIS)
Dabiri, A.E.; Garrett, M.; Kraft, T.; Hilton, J.; VanHammersveld, M.
1993-02-01
Waste site screening requires knowledge of the actual concentrations of hazardous materials and rates of flow around and below the site with time. The present approach consists primarily of drilling boreholes near contaminated sites and chemically analyzing the extracted physical samples and processing the data. This is expensive and time consuming. The feasibility of using neural network techniques to reduce the cost of waste site screening was investigated. Two neural network techniques, gradient descent back propagation and fully recurrent back propagation were utilized. The networks were trained with data received from Westinghouse Hanford Corporation. The results indicate that the network trained with the fully recurrent technique shows satisfactory generalization capability. The predicted results are close to the results obtained from a mathematical flow prediction model. It is possible to develop a new tool to predict the waste plume, thus substantially reducing the number of the bore sites and samplings. There are a variety of applications for this technique in environmental site screening and remediation. One of the obvious applications would be for optimum well siting. A neural network trained from the existing sampling data could be utilized to decide where would be the best position for the next bore site. Other applications are discussed in the report
Methodology for neural networks prototyping. Application to traffic control
Energy Technology Data Exchange (ETDEWEB)
Belegan, I.C.
1998-07-01
The work described in this report was carried out in the context of the European project ASTORIA (Advanced Simulation Toolbox for Real-World Industrial Application in Passenger Management and Adaptive Control), and concerns the development of an advanced toolbox for complex transportation systems. Our work was focused on the methodology for prototyping a set of neural networks corresponding to specific strategies for traffic control and congestion management. The tool used for prototyping is SNNS (Stuggart Neural Network Simulator), developed at the University of Stuggart, Institute for Parallel and Distributed High Performance Systems, and the real data from the field were provided by ZELT. This report is structured into six parts. The introduction gives some insights about traffic control and its approaches. The second chapter discusses the various control strategies existing. The third chapter is an introduction to the field of neural networks. The data analysis and pre-processing is described in the fourth chapter. In the fifth chapter, the methodology for prototyping the neural networks is presented. Finally, conclusions and further work are presented. (author) 14 refs.
Application of genetic neural network in steam generator fault diagnosing
International Nuclear Information System (INIS)
Lin Xiaogong; Jiang Xingwei; Liu Tao; Shi Xiaocheng
2005-01-01
In the paper, a new algorithm which neural network and genetic algorithm are mixed is adopted, aiming at the problems of slow convergence rate and easily falling into part minimums in network studying of traditional BP neural network, and used in the fault diagnosis of steam generator. The result shows that this algorithm can solve the convergence problem in the network trains effectively. (author)
Application of Artificial Neural Networks for estimating index floods
Šimor, Viliam; Hlavčová, Kamila; Kohnová, Silvia; Szolgay, Ján
2012-12-01
This article presents an application of Artificial Neural Networks (ANNs) and multiple regression models for estimating mean annual maximum discharge (index flood) at ungauged sites. Both approaches were tested for 145 small basins in Slovakia in areas ranging from 20 to 300 km2. Using the objective clustering method, the catchments were divided into ten homogeneous pooling groups; for each pooling group, mutually independent predictors (catchment characteristics) were selected for both models. The neural network was applied as a simple multilayer perceptron with one hidden layer and with a back propagation learning algorithm. Hyperbolic tangents were used as an activation function in the hidden layer. Estimating index floods by the multiple regression models were based on deriving relationships between the index floods and catchment predictors. The efficiencies of both approaches were tested by the Nash-Sutcliffe and a correlation coefficients. The results showed the comparative applicability of both models with slightly better results for the index floods achieved using the ANNs methodology.
Application of neural networks and cellular automata to calorimetric problems
Energy Technology Data Exchange (ETDEWEB)
Brenton, V; Fonvieille, H; Guicheney, C; Jousset, J; Roblin, Y; Tamin, F; Grenier, P
1994-09-01
Computing techniques based on parallel processing have been used to treat the information from the electromagnetic calorimeters in SLAC experiments E142/E143. Cluster finding and separation of overlapping showers are performed by a cellular automaton, pion and electron identification is done by using a multilayered neural network. Both applications are presented and their resulting performances are shown to be improved compared to more standard approaches. (author). 9 refs.; Submitted to Nuclear Instruments and Methods (NL).
Application of neural networks and cellular automata to calorimetric problems
International Nuclear Information System (INIS)
Brenton, V.; Fonvieille, H.; Guicheney, C.; Jousset, J.; Roblin, Y.; Tamin, F.; Grenier, P.
1994-09-01
Computing techniques based on parallel processing have been used to treat the information from the electromagnetic calorimeters in SLAC experiments E142/E143. Cluster finding and separation of overlapping showers are performed by a cellular automaton, pion and electron identification is done by using a multilayered neural network. Both applications are presented and their resulting performances are shown to be improved compared to more standard approaches. (author)
Workshop on environmental and energy applications of neural networks
Energy Technology Data Exchange (ETDEWEB)
Hashem, S.
1995-03-01
This report consists of the abstracts for the papers given at the conference. Applications of neural networks in the environmental, energy and biomedical fields are discussed. Some of the topics covered are: predicting atmospheric pollutant concentrations due to fossil-fired electric power generation; hazardous waste characterization; nondestructive TRU (transuranic) waste assay; risk analysis; load forecasting for electric utilities; design of a wind power storage and generation system; nuclear fuel management; etc.
Workshop on environmental and energy applications of neural networks
International Nuclear Information System (INIS)
Hashem, S.
1995-03-01
This report consists of the abstracts for the papers given at the conference. Applications of neural networks in the environmental, energy and biomedical fields are discussed. Some of the topics covered are: predicting atmospheric pollutant concentrations due to fossil-fired electric power generation; hazardous waste characterization; nondestructive TRU (transuranic) waste assay; risk analysis; load forecasting for electric utilities; design of a wind power storage and generation system; nuclear fuel management; etc
International Nuclear Information System (INIS)
Denby, Bruce; Lindsey, Clark; Lyons, Louis
1992-01-01
The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive
Advances in Artificial Neural Networks - Methodological Development and Application
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...
Neural network and its application to CT imaging
Energy Technology Data Exchange (ETDEWEB)
Nikravesh, M.; Kovscek, A.R.; Patzek, T.W. [Lawrence Berkeley National Lab., CA (United States)] [and others
1997-02-01
We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.
Neural network application to aircraft control system design
Troudet, Terry; Garg, Sanjay; Merrill, Walter C.
1991-01-01
The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.
Neural network application to aircraft control system design
Troudet, Terry; Garg, Sanjay; Merrill, Walter C.
1991-01-01
The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.
Recurrent Neural Network Based Boolean Factor Analysis and its Application to Word Clustering
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.
2009-01-01
Roč. 20, č. 7 (2009), s. 1073-1086 ISSN 1045-9227 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.889, year: 2009
Application of a neural network for reflectance spectrum classification
Yang, Gefei; Gartley, Michael
2017-05-01
Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.
An application of neural networks to process and materials control
International Nuclear Information System (INIS)
Howell, J.A.; Whiteson, R.
1991-01-01
Process control consists of two basic elements: a model of the process and knowledge of the desired control algorithm. In some cases the level of the control algorithm is merely supervisory, as in an alarm-reporting or anomaly-detection system. If the model of the process is known, then a set of equations may often be solved explicitly to provide the control algorithm. Otherwise, the model has to be discovered through empirical studies. Neural networks have properties that make them useful in this application. They can learn (make internal models from experience or observations). The problem of anomaly detection in materials control systems fits well into this general control framework. To successfully model a process with a neutral network, a good set of observables must be chosen. These observables must in some sense adequately span the space of representable events, so that a signature metric can be built for normal operation. In this way, a non-normal event, one that does not fit within the signature, can be detected. In this paper, we discuss the issues involved in applying a neural network model to anomaly detection in materials control systems. These issues include data selection and representation, network architecture, prediction of events, the use of simulated data, and software tools. 10 refs., 4 figs., 1 tab
Recurrent Neural Network Applications for Astronomical Time Series
Protopapas, Pavlos
2017-06-01
The benefits of good predictive models in astronomy lie in early event prediction systems and effective resource allocation. Current time series methods applicable to regular time series have not evolved to generalize for irregular time series. In this talk, I will describe two Recurrent Neural Network methods, Long Short-Term Memory (LSTM) and Echo State Networks (ESNs) for predicting irregular time series. Feature engineering along with a non-linear modeling proved to be an effective predictor. For noisy time series, the prediction is improved by training the network on error realizations using the error estimates from astronomical light curves. In addition to this, we propose a new neural network architecture to remove correlation from the residuals in order to improve prediction and compensate for the noisy data. Finally, I show how to set hyperparameters for a stable and performant solution correctly. In this work, we circumvent this obstacle by optimizing ESN hyperparameters using Bayesian optimization with Gaussian Process priors. This automates the tuning procedure, enabling users to employ the power of RNN without needing an in-depth understanding of the tuning procedure.
Research on artificial neural network applications for nuclear power plants
International Nuclear Information System (INIS)
Chang, Soon-Heung; Cheon, Se-Woo
1992-01-01
Artificial neural networks (ANNs) are an emerging computational technology which can significantly enhance a number of applications. These consist of many interconnected processing elements that exhibit human-like performance, i.e., learning, pattern recognition and associative memory skills. Several application studies on ANNs devoted to nuclear power plants have been carried out at the Korea Advanced Institute of Science and Technology since 1989. These studies include the feasibility of using ANNs for the following tasks: (1) thermal power prediction, (2) transient identification, (3) multiple alarm processing and diagnosis, (4) core thermal margin prediction, and (5) prediction of core parameters for fuel reloading. This paper introduces the back-propagation network (BPN) model which is the most commonly used algorithm, and summarizes each of the studies briefly. (author)
Neural networks for aircraft control
Linse, Dennis
1990-01-01
Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.
Application of the minimum fuel neural network to music signals
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2004-01-01
) for finding sparse representations of music signals. This method is a set of two ordinary differential equations. We argue that the most important parameter for optimal use of this method is the discretization step size, and we demonstrate that this can be a priori determined. This significantly speeds up......Finding an optimal representation of a signal in an over-complete dictionary is often quite difficult. Since general results in this field are not very application friendly it truly helps to specify the framework as much as possible. We investigate the method Minimum Fuel Neural Network (MFNN...
Chaotic Hopfield Neural Network Swarm Optimization and Its Application
Directory of Open Access Journals (Sweden)
Yanxia Sun
2013-01-01
Full Text Available A new neural network based optimization algorithm is proposed. The presented model is a discrete-time, continuous-state Hopfield neural network and the states of the model are updated synchronously. The proposed algorithm combines the advantages of traditional PSO, chaos and Hopfield neural networks: particles learn from their own experience and the experiences of surrounding particles, their search behavior is ergodic, and convergence of the swarm is guaranteed. The effectiveness of the proposed approach is demonstrated using simulations and typical optimization problems.
Application of artificial neural network in radiographic diagnosis
International Nuclear Information System (INIS)
Piraino, D.; Amartur, S.; Richmond, B.; Schils, J.; Belhobek, G.
1990-01-01
This paper reports on an artificial neural network trained to rate the likelihood of different bone neoplasms when given a standard description of a radiograph. A three-layer back propagation algorithm was trained with descriptions of examples of bone neoplasms obtained from standard radiographic textbooks. Fifteen bone neoplasms obtained from clinical material were used as unknowns to test the trained artificial neural network. The artificial neural network correctly rated the pathologic diagnosis as the most likely diagnosis in 10 of the 15 unknown cases
Applications of artificial neural networks in medical science.
Patel, Jigneshkumar L; Goyal, Ramesh K
2007-09-01
Computer technology has been advanced tremendously and the interest has been increased for the potential use of 'Artificial Intelligence (AI)' in medicine and biological research. One of the most interesting and extensively studied branches of AI is the 'Artificial Neural Networks (ANNs)'. Basically, ANNs are the mathematical algorithms, generated by computers. ANNs learn from standard data and capture the knowledge contained in the data. Trained ANNs approach the functionality of small biological neural cluster in a very fundamental manner. They are the digitized model of biological brain and can detect complex nonlinear relationships between dependent as well as independent variables in a data where human brain may fail to detect. Nowadays, ANNs are widely used for medical applications in various disciplines of medicine especially in cardiology. ANNs have been extensively applied in diagnosis, electronic signal analysis, medical image analysis and radiology. ANNs have been used by many authors for modeling in medicine and clinical research. Applications of ANNs are increasing in pharmacoepidemiology and medical data mining. In this paper, authors have summarized various applications of ANNs in medical science.
Controlled neural network application in track-match problem
International Nuclear Information System (INIS)
Baginyan, S.A.; Ososkov, G.A.
1993-01-01
Track-match problem of high energy physics (HEP) data handling is formulated in terms of incidence matrices. The corresponding Hopfield neural network is developed to solve this type of constraint satisfaction problems (CSP). A special concept of the controlled neural network is proposed as a basis of an algorithm for the effective CSP solution. Results of comparable calculations show the very high performance of this algorithm against conventional search procedures. 8 refs.; 1 fig.; 1 tab
Tutorial on neural network applications in high energy physics: A 1992 perspective
International Nuclear Information System (INIS)
Denby, B.
1992-04-01
Feed forward and recurrent neural networks are introduced and related to standard data analysis tools. Tips are given on applications of neural nets to various areas of high energy physics. A review of applications within high energy physics and a summary of neural net hardware status are given
Application of artificial neural network for NHR fault diagnosis
International Nuclear Information System (INIS)
Yu Haitao; Zhang Liangju; Xu Xiangdong
1999-01-01
The author makes researches on 200 MW nuclear heating reactor (NHR) fault diagnosis system using artificial neural network, and use the tendency value and real value of the data under the accidents to train and test two BP networks respectively. The final diagnostic result is the combination of the results of the two networks. The compound system can enhance the accuracy and adaptability of the diagnosis comparing to the single network system
Practical Application of Neural Networks in State Space Control
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon
the networks, although some modifications are needed for the method to apply to the multilayer perceptron network. In connection with the multilayer perceptron networks it is also pointed out how instantaneous, sample-by-sample linearized state space models can be extracted from a trained network, thus opening......In the present thesis we address some problems in discrete-time state space control of nonlinear dynamical systems and attempt to solve them using generic nonlinear models based on artificial neural networks. The main aim of the work is to examine how well such control algorithms perform when...... theoretic notions followed by a detailed description of the topology, neuron functions and learning rules of the two types of neural networks treated in the thesis, the multilayer perceptron and the neurofuzzy networks. In both cases, a Least Squares second-order gradient method is used to train...
Neural networks. A new analytical tool, applicable also in nuclear technology
Energy Technology Data Exchange (ETDEWEB)
Stritar, A [Inst. Jozef Stefan, Ljubljana (Slovenia)
1992-07-01
The basic concept of neural networks and back propagation learning algorithm are described. The behaviour of typical neural network is demonstrated on a simple graphical case. A short literature survey about the application of neural networks in nuclear science and engineering is made. The application of the neural network to the probability density calculation is shown. (author) [Slovenian] Opisana je osnova nevronskih mrez in back propagation nacina njihovega ucenja. Obnasanje enostavne nevronske mreze je prikazano na graficnem primeru. Podan je kratek pregled literaure o uporabi nevronskih mrez v jedrski znanosti in tehnologiji. Prikazana je tudi uporaba nevronske mreze pri izracunu verjetnostne porazdelitve. (author)
APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION
Energy Technology Data Exchange (ETDEWEB)
Musson, John C. [JLAB; Seaton, Chad [JLAB; Spata, Mike F. [JLAB; Yan, Jianxun [JLAB
2012-11-01
Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementation of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.
Application of a Shallow Neural Network to Short-Term Stock Trading
Madahar, Abhinav; Ma, Yuze; Patel, Kunal
2017-01-01
Machine learning is increasingly prevalent in stock market trading. Though neural networks have seen success in computer vision and natural language processing, they have not been as useful in stock market trading. To demonstrate the applicability of a neural network in stock trading, we made a single-layer neural network that recommends buying or selling shares of a stock by comparing the highest high of 10 consecutive days with that of the next 10 days, a process repeated for the stock's ye...
International Nuclear Information System (INIS)
Saini, K. K.; Saini, Sanju
2008-01-01
Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.
International Nuclear Information System (INIS)
Takeda, Tatsuoki
2006-01-01
The back ground of application of neutral networks to R and D of scientific field and increasing of application fields are stated. A definition of neural networks, the kinds of neural networks and functions, error back propagation, and generalization are explained. An application of multi-layer neural networks to nuclear fusion and plasma researches are described by inverse problem, interpolation, time series prediction, and computerized tomography. Some examples of researches such as MHD of plasma from magnetic probe data of fusion reactor systems, parameter prediction of distribution of the impurity spectra and the charge exchange neutral particle energy spectra, disruption prediction, and residual minimization training neural network are commented. (S.Y.)
Neural networks and its application in biomedical engineering
International Nuclear Information System (INIS)
Husnain, S.K.; Bhatti, M.I.
2002-01-01
Artificial network (ANNs) is an information processing system that has certain performance characteristics in common with biological neural networks. A neural network is characterized by connections between the neurons, method of determining the weights on the connections and its activation functions while a biological neuron has three types of components that are of particular interest in understanding an artificial neuron: its dendrites, soma, and axon. The actin of the chemical transmitter modifies the incoming signal. The study of neural networks is an extremely interdisciplinary field. Computer-based diagnosis is an increasingly used method that tries to improve the quality of health care. Systems on Neural Networks have been developed extensively in the last ten years with the hope that medical diagnosis and therefore medical care would improve dramatically. The addition of a symbolic processing layer enhances the ANNs in a number of ways. It is, for instance, possible to supplement a network that is purely diagnostic with a level that recommends or nodes in order to more closely simulate the nervous system. (author)
Applications of artificial neural networks in Nuclear Medicine
International Nuclear Information System (INIS)
Maddalena, D.J.
1993-01-01
Artificial neural networks (ANNs) are computer-based mathematical models developed to have analogous functions to idealized simple biological nervous systems. They consist of layers of processing elements, which are considered to be analogous to the nerve cells (neurons) and these are interconnected to form a network which is in essence a parallel computer even though they are most likely to be run on non-parallel computers such as personal computers or workstations. The parallel processing nature of the ANNs gives them the characteristics of speed, reliability and generalisation. The speed occurs because many bits of information can be input and analysed simultaneously. Reliability occurs because the networks can produce reasonable results even when some input data are missing or inaccurate. Generalisation is the ability of the network to estimate reasonable results when faced with new data outside its normal range of experience. There are two main classes of ANN - supervised and un-supervised. Supervised ANNs are trained to build internal algorithms relating patterns of inputs to outputs. After learning the relationship between the inputs and outputs they are able to classify patterns and make decisions of predictions based upon new patterns of inputs. The most frequently used ANN for biomedical applications is a supervised type called the back propagation ANN which has an excellent ability to predict and classify data and is becoming commonly used throughout the biomedical field. This article will discuss back propagation ANN structure. Its use for image analysis and diagnostic classification in various imaging modalities including Single Photon Emission Computed Tomography and Positron Emission Tomography 17 refs., 2 figs
International Nuclear Information System (INIS)
Cheon, Se Woo; Kim, Wan Joo; Chang, Soon Heung; Roh, Myung Sub
1991-01-01
The Back-propagation Neural Network (BPN) algorithm is applied to connectionist expert system for the identification of BWR transients. Several powerful features of neural network-based expert systems over traditional rule-based expert systems are described. The general mapping capability of the neural networks enables to identify transients easily. A number of case studies were performed with emphasis on the applicability of the neural networks to the diagnostic domain. It is revealed that the BPN algorithm can identify transients properly, even when incomplete or untrained symptoms are given. It is also shown that multiple transients are easily identified
The application of artificial neural networks in astronomy
Li, Li-Li; Zhang, Yan-Xia; Zhao, Yong-Heng; Yang, Da-Wei
2006-12-01
Artificial Neural Networks (ANNs) are computer algorithms inspired from simple models of human central nervous system activity. They can be roughly divided into two main kinds: supervised and unsupervised. The supervised approach lays the stress on "teaching" a machine to do the work of a mention human expert, usually by showing examples for which the true answer is supplied by the expert. The unsupervised one is aimed at learning new things from the data, and most useful when the data cannot easily be plotted in a two or three dimensional space. ANNs have been used widely and successfully in various fields, for instance, pattern recognition, financial analysis, biology, engineering and so on, because they have many merits such as self-learning, self-adapting, good robustness and dynamically rapid response as well as strong capability of dealing with non-linear problems. In the last few years there has been an increasing interest toward the astronomical applications of ANNs. In this paper, the authors firstly introduce the fundamental principle of ANNs together with the architecture of the network and outline various kinds of learning algorithms and network toplogies. The specific aspects of the applications of ANNs in astronomical problems are also listed, which contain the strong capabilities of approximating to arbitrary accuracy, any nonlinear functional mapping, parallel and distributed storage, tolerance of faulty and generalization of results. They summarize the advantages and disadvantages of main ANN models available to the astronomical community. Furthermore, the application cases of ANNs in astronomy are mainly described in detail. Here, the focus is on some of the most interesting fields of its application, for example: object detection, star/galaxy classification, spectral classification, galaxy morphology classification, the estimation of photometric redshifts of galaxies and time series analysis. In addition, other kinds of applications have been
Directory of Open Access Journals (Sweden)
Schwindling Jerome
2010-04-01
Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.
Statistical modelling of neural networks in γ-spectrometry applications
International Nuclear Information System (INIS)
Vigneron, V.; Martinez, J.M.; Morel, J.; Lepy, M.C.
1995-01-01
Layered Neural Networks, which are a class of models based on neural computation, are applied to the measurement of uranium enrichment, i.e. the isotope ratio 235 U/( 235 U + 236 U + 238 U). The usual method consider a limited number of Γ-ray and X-ray peaks, and require previously calibrated instrumentation for each sample. But, in practice, the source-detector ensemble geometry conditions are critically different, thus a means of improving the above convention methods is to reduce the region of interest: this is possible by focusing on the K α X region where the three elementary components are present. Real data are used to study the performance of neural networks. Training is done with a Maximum Likelihood method to measure uranium 235 U and 238 U quantities in infinitely thick samples. (authors). 18 refs., 6 figs., 3 tabs
Application of neural networks in coastal engineering - An overview
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Patil, S.G.; Manjunatha, Y.R.; Hegde, A.V.
Artificial Neural Network (ANN) is being applied to solve a wide variety of coastal/ocean engineering problems. In practical terms ANNs are non-linear modeling tools and they can be used to model complex relationship between the input and output...
Application of Neural Networks to Higgs Boson Search
Czech Academy of Sciences Publication Activity Database
Hakl, František; Hlaváček, M.; Kalous, R.
2003-01-01
Roč. 502, - (2003), s. 489-491 ISSN 0168-9002 R&D Projects: GA MPO RP-4210/69/97 Institutional research plan: AV0Z1030915 Keywords : neural network s * Higgs search * genetic optimization Subject RIV: BA - General Mathematics Impact factor: 1.166, year: 2003
Neural network application to the neutral meson recognition
International Nuclear Information System (INIS)
Lefevre, F.; Delagrange, H.; Merrouch, R.; Ostendorf, R.; Schutz, Y.; Matulewicz, T.
1991-01-01
The combinatorial background produced by high photon multiplicities expected in TAPS experiments causes problems in precise meson recognition. We use neural networks to reduce this background. First we give a description of this technique, hereafter the first results obtained by applying this method to simulated events and future perspective will be discussed [fr
Neural network based satellite tracking for deep space applications
Amoozegar, F.; Ruggier, C.
2003-01-01
The objective of this paper is to provide a survey of neural network trends as applied to the tracking of spacecrafts in deep space at Ka-band under various weather conditions and examine the trade-off between tracing accuracy and communication link performance.
Application of design of experiments and artificial neural networks ...
African Journals Online (AJOL)
This paper discusses the use of Distance based optimal designs in the design of experiments (DOE) and artificial neural networks (ANN) in optimizing the stacking sequence for simply supported laminated composite plate under uniformly distributed load (UDL) for minimizing the deflections and stresses. A number of finite ...
Application of neural networks to seismic active control
International Nuclear Information System (INIS)
Tang, Yu.
1995-01-01
An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads
International Nuclear Information System (INIS)
Asada, N.; Eiho, S.; Doi, K.; MacMahon, H.; Montner, S.M.; Giger, M.L.
1989-01-01
An artificial neural network has been applied for pattern recognition and used as a tool in an expert system. The purpose of this study is to examine the potential usefulness of the neural network approach in medical applications for image recognition and decision making. The authors designed multilayer feedforward neural networks with a back-propagation algorithm for our study. Using first-pass radionuclide ventriculograms, we attempted to identify the right and left ventricles of the heart and the lungs by training the neural network from patterns of time-activity curves. In a preliminary study, the neural network enabled identification of the lungs and heart chambers once the network was trained sufficiently by means of repeated entries of data from the same case
Artificial neural networks application for solid fuel slagging intensity predictions
Directory of Open Access Journals (Sweden)
Kakietek Sławomir
2017-01-01
Full Text Available Slagging issues present in pulverized steam boilers very often lead to heat transfer problems, corrosion and not planned outages of boilers which increase the cost of energy production and decrease the efficiency of energy production. Slagging especially occurs in regions with reductive atmospheres which nowadays are very common due to very strict limitations in NOx emissions. Moreover alternative fuels like biomass which are also used in combustion systems from two decades in order to decrease CO2 emissions also usually increase the risk of slagging. Thus the prediction of slagging properties of fuels is not the minor issue which can be neglected before purchasing or mixing of fuels. This however is rather difficult to estimate and even commonly known standard laboratory methods like fusion temperature determination or special indexers calculated on the basis of proximate and ultimate analyses, very often have no reasonable correlation to real boiler fuel behaviour. In this paper the method of determination of slagging properties of solid fuels based on laboratory investigation and artificial neural networks were presented. A fuel data base with over 40 fuels was created. Neural networks simulations were carried out in order to predict the beginning temperature and intensity of slagging. Reasonable results were obtained for some of tested neural networks, especially for hybrid feedforward networks with PCA technique. Consequently neural network model will be used in Common Intelligent Boiler Operation Platform (CIBOP being elaborated within CERUBIS research project for two BP-1150 and BB-1150 steam boilers. The model among others enables proper fuel selection in order to minimize slagging risk.
International Nuclear Information System (INIS)
1993-01-01
The Workshop cum Symposium on Application of Neural Networks in Nuclear Science and Industry was held at Bombay during November 24-26. 1993. The past decade has seen many important advances in the design and technology of artificial neural networks in research and industry. Neural networks is an interdisciplinary field covering a broad spectrum of applications in surveillance, diagnosis of nuclear power plants, nuclear spectroscopy, speech and written text recognition, robotic control, signal processing etc. The objective of the symposium was to promote awareness of advances in neural network research and applications. It was also aimed at conducting the review of the present status and giving direction for future technological developments. Contributed papers have been organized into the following groups: a) neural network architectures, learning algorithms and modelling, b) computer vision and image processing, c) signal processing, d) neural networks and fuzzy systems, e) nuclear applications and f) neural networks and allied applications. Papers relevant to INIS are indexed separately. (M.K.V.)
Inner and Outer Recursive Neural Networks for Chemoinformatics Applications.
Urban, Gregor; Subrahmanya, Niranjan; Baldi, Pierre
2018-02-26
Deep learning methods applied to problems in chemoinformatics often require the use of recursive neural networks to handle data with graphical structure and variable size. We present a useful classification of recursive neural network approaches into two classes, the inner and outer approach. The inner approach uses recursion inside the underlying graph, to essentially "crawl" the edges of the graph, while the outer approach uses recursion outside the underlying graph, to aggregate information over progressively longer distances in an orthogonal direction. We illustrate the inner and outer approaches on several examples. More importantly, we provide open-source implementations [available at www.github.com/Chemoinformatics/InnerOuterRNN and cdb.ics.uci.edu ] for both approaches in Tensorflow which can be used in combination with training data to produce efficient models for predicting the physical, chemical, and biological properties of small molecules.
Application of neural networks to waste site screening
Energy Technology Data Exchange (ETDEWEB)
Dabiri, A.E.; Kraft, T.; Hilton, J.M. [Science Applications International Corp., San Diego, CA (United States)
1993-03-01
Waste site screening requires knowledge of the actual concentrations of hazardous materials and rates of flow around and below the site with time. The present approach to site screening consists primarily of drilling, boreholes near contaminated site and chemically analyzing the extracted physical samples and processing the data. In addition, hydraulic and geochemical soil properties are obtained so that numerical simulation models can be used to interpret and extrapolate the field data. The objective of this work is to investigate the feasibility of using neural network techniques to reduce the cost of waste site screening. A successful technique may lead to an ability to reduce the number of boreholes and the number of samples analyzed from each borehole to properly screen the waste site. The analytic tool development described here is inexpensive because it makes use of neural network techniques that can interpolate rapidly and which can learn how to analyze data rather than having to be explicitly programmed. In the following sections, data collection and data analyses will be described, followed by a section on different neural network techniques used. The results will be presented and compared with mathematical model. Finally, the last section will summarize the research work performed and make several recommendations for future work.
Directory of Open Access Journals (Sweden)
Yi-Qing Wang
2015-09-01
Full Text Available Recent years have seen a surge of interest in multilayer neural networks fueled by their successful applications in numerous image processing and computer vision tasks. In this article, we describe a C++ implementation of the stochastic gradient descent to train a multilayer neural network, where a fast and accurate acceleration of tanh(· is achieved with linear interpolation. As an example of application, we present a neural network able to deliver state-of-the-art performance in image demosaicing.
Application of neural networks to multiple alarm processing and diagnosis in nuclear power plants
International Nuclear Information System (INIS)
Cheon, Se Woo; Chang Soon Heung; Chung, Hak Yeong
1992-01-01
This paper presents feasibility studies of multiple alarm processing and diagnosis using neural networks. The back-propagation neural network model is applied to the training of multiple alarm patterns for the identification of failure in a reactor coolant pump (RCP) system. The general mapping capability of the neural network enables to identify a fault easily. The case studies are performed with emphasis on the applicability of the neural network to pattern recognition problems. It is revealed that the neural network model can identify the cause of multiple alarms properly, even when untrained or sensor-failed alarm symptoms are given. It is also shown that multiple failures are easily identified using the symptoms of multiple alarms
Application of neural network technology to setpoint control of a simulated reactor experiment loop
International Nuclear Information System (INIS)
Cordes, G.A.; Bryan, S.R.; Powell, R.H.; Chick, D.R.
1991-01-01
This paper describes the design, implementation, and application of artificial neural networks to achieve temperature and flow rate control for a simulation of a typical experiment loop in the Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory (INEL). The goal of the project was to research multivariate, nonlinear control using neural networks. A loop simulation code was adapted for the project and used to create a training set and test the neural network controller for comparison with the existing loop controllers. The results for the best neural network design are documented and compared with existing loop controller action. The neural network was shown to be as accurate at loop control as the classical controllers in the operating region represented by the training set. 5 refs., 8 figs., 3 tabs
Neural attractor network for application in visual field data classification
International Nuclear Information System (INIS)
Fink, Wolfgang
2004-01-01
The purpose was to introduce a novel method for computer-based classification of visual field data derived from perimetric examination, that may act as a ' counsellor', providing an independent 'second opinion' to the diagnosing physician. The classification system consists of a Hopfield-type neural attractor network that obtains its input data from perimetric examination results. An iterative relaxation process determines the states of the neurons dynamically. Therefore, even 'noisy' perimetric output, e.g., early stages of a disease, may eventually be classified correctly according to the predefined idealized visual field defect (scotoma) patterns, stored as attractors of the network, that are found with diseases of the eye, optic nerve and the central nervous system. Preliminary tests of the classification system on real visual field data derived from perimetric examinations have shown a classification success of over 80%. Some of the main advantages of the Hopfield-attractor-network-based approach over feed-forward type neural networks are: (1) network architecture is defined by the classification problem; (2) no training is required to determine the neural coupling strengths; (3) assignment of an auto-diagnosis confidence level is possible by means of an overlap parameter and the Hamming distance. In conclusion, the novel method for computer-based classification of visual field data, presented here, furnishes a valuable first overview and an independent 'second opinion' in judging perimetric examination results, pointing towards a final diagnosis by a physician. It should not be considered a substitute for the diagnosing physician. Thanks to the worldwide accessibility of the Internet, the classification system offers a promising perspective towards modern computer-assisted diagnosis in both medicine and tele-medicine, for example and in particular, with respect to non-ophthalmic clinics or in communities where perimetric expertise is not readily available
Application of Artificial Neural Networks to Complex Groundwater Management Problems
International Nuclear Information System (INIS)
Coppola, Emery; Poulton, Mary; Charles, Emmanuel; Dustman, John; Szidarovszky, Ferenc
2003-01-01
As water quantity and quality problems become increasingly severe, accurate prediction and effective management of scarcer water resources will become critical. In this paper, the successful application of artificial neural network (ANN) technology is described for three types of groundwater prediction and management problems. In the first example, an ANN was trained with simulation data from a physically based numerical model to predict head (groundwater elevation) at locations of interest under variable pumping and climate conditions. The ANN achieved a high degree of predictive accuracy, and its derived state-transition equations were embedded into a multiobjective optimization formulation and solved to generate a trade-off curve depicting water supply in relation to contamination risk. In the second and third examples, ANNs were developed with real-world hydrologic and climate data for different hydrogeologic environments. For the second problem, an ANN was developed using data collected for a 5-year, 8-month period to predict heads in a multilayered surficial and limestone aquifer system under variable pumping, state, and climate conditions. Using weekly stress periods, the ANN substantially outperformed a well-calibrated numerical flow model for the 71-day validation period, and provided insights into the effects of climate and pumping on water levels. For the third problem, an ANN was developed with data collected automatically over a 6-week period to predict hourly heads in 11 high-capacity public supply wells tapping a semiconfined bedrock aquifer and subject to large well-interference effects. Using hourly stress periods, the ANN accurately predicted heads for 24-hour periods in all public supply wells. These test cases demonstrate that the ANN technology can solve a variety of complex groundwater management problems and overcome many of the problems and limitations associated with traditional physically based flow models
Synchronization of Switched Interval Networks and Applications to Chaotic Neural Networks
Directory of Open Access Journals (Sweden)
Jinde Cao
2013-01-01
Full Text Available This paper investigates synchronization problem of switched delay networks with interval parameters uncertainty, based on the theories of the switched systems and drive-response technique, a mathematical model of the switched interval drive-response error system is established. Without constructing Lyapunov-Krasovskii functions, introducing matrix measure method for the first time to switched time-varying delay networks, combining Halanay inequality technique, synchronization criteria are derived for switched interval networks under the arbitrary switching rule, which are easy to verify in practice. Moreover, as an application, the proposed scheme is then applied to chaotic neural networks. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical results.
Energy Technology Data Exchange (ETDEWEB)
Hashem, S.; Keller, P.E.; Kouzes, R.T.; Kangas, L.J.
1995-12-31
These proceedings contain edited versions of the technical presentations of the Workshop on Environmental and Energy Applications of Neural Networks, held on March 30--31, 1995, in Richland, Washington. The purpose of the workshop was to provide a forum for discussing environmental, energy, and biomedical applications of neural networks. Panels were held to discuss various research and development issues relating to real-world applications in each of the three areas. The applications covered in the workshop were: Environmental applications -- modeling and predicting soil, air and water pollution, environmental sensing, spectroscopy, hazardous waste handling and cleanup; Energy applications -- process monitoring and optimization of power systems, modeling and control of power plants, environmental monitoring for power systems, power load forecasting, fault location and diagnosis of power systems; and Biomedical applications -- medical image and signal analysis, medical diagnosis, analysis of environmental health effects, and modeling biological systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
Application of neural networks to quantitative spectrometry analysis
International Nuclear Information System (INIS)
Pilato, V.; Tola, F.; Martinez, J.M.; Huver, M.
1999-01-01
Accurate quantitative analysis of complex spectra (fission and activation products), relies upon experts' knowledge. In some cases several hours, even days of tedious calculations are needed. This is because current software is unable to solve deconvolution problems when several rays overlap. We have shown that such analysis can be correctly handled by a neural network, and the procedure can be automated with minimum laboratory measurements for networks training, as long as all the elements of the analysed solution figure in the training set and provided that adequate scaling of input data is performed. Once the network has been trained, analysis is carried out in a few seconds. On submitting to a test between several well-known laboratories, where unknown quantities of 57 Co, 58 Co, 85 Sr, 88 Y, 131 I, 139 Ce, 141 Ce present in a sample had to be determined, the results yielded by our network classed it amongst the best. The method is described, including experimental device and measures, training set designing, relevant input parameters definition, input data scaling and networks training. Main results are presented together with a statistical model allowing networks error prediction
Application of neural networks for the prediction of multidirectional magnetostriction
Baumgartinger, N; Pfützner, H; Krismanic, G
2000-01-01
This paper describes attempts to use artificial neural networks (ANNs) for the prediction of magnetostriction (MS) characteristics of transformer core materials. In this first approach, the ANNs were trained with data from a rotational single-sheet tester to predict MS in rolling direction (r.d.) as a function of material grade, amplitude and shape of multidirectional magnetisation as well as the level of additional mechanical stress. It is shown that ANNs are able to forecast the corresponding relative MS changes in an approximate way.
Disorder generated by interacting neural networks: application to econophysics and cryptography
International Nuclear Information System (INIS)
Kinzel, Wolfgang; Kanter, Ido
2003-01-01
When neural networks are trained on their own output signals they generate disordered time series. In particular, when two neural networks are trained on their mutual output they can synchronize; they relax to a time-dependent state with identical synaptic weights. Two applications of this phenomenon are discussed for (a) econophysics and (b) cryptography. (a) When agents competing in a closed market (minority game) are using neural networks to make their decisions, the total system relaxes to a state of good performance. (b) Two partners communicating over a public channel can find a common secret key
The application of neural networks for fault diagnosis in nuclear reactors
International Nuclear Information System (INIS)
Jalel, N.A.; Nicholson, H.
1990-11-01
In recent years considerable work have been done in the field of neural networks due to the recent development of effective learning algorithms, and the results of their applications have suggested that they can provide useful tools for solving practical problems. Artificial neural networks are mathematical models of theorized mind and brain activity. They are aimed to explore and reproduce human information processing tasks such as speech, vision, knowledge processing and control. The possibility of using artificial neural networks for fault and accident diagnosis in the Loss Of Fluid Test (LOFT) reactor, a small scale pressurised water reactor, is examined and explained in the paper. (author)
Development and application of deep convolutional neural network in target detection
Jiang, Xiaowei; Wang, Chunping; Fu, Qiang
2018-04-01
With the development of big data and algorithms, deep convolution neural networks with more hidden layers have more powerful feature learning and feature expression ability than traditional machine learning methods, making artificial intelligence surpass human level in many fields. This paper first reviews the development and application of deep convolutional neural networks in the field of object detection in recent years, then briefly summarizes and ponders some existing problems in the current research, and the future development of deep convolutional neural network is prospected.
Image Finder Mobile Application Based on Neural Networks
Directory of Open Access Journals (Sweden)
Nabil M. Hewahi
2017-04-01
Full Text Available Nowadays taking photos via mobile phone has become a very important part of everyone’s life. Almost each and every person who has a smart phone also has thousands of photos in their mobile device. At times it becomes very difficult to find a particular photo from thousands of photos, and it takes time. This research was done to come up with an innovative solution that could solve this problem. The solution will allow the user to find the required photo by simply drawing a sketch on the objects in the required picture, for example a tree or car, etc. Two types of supervised Artificial Neural Networks are used for this purpose; one is trained to identify the handmade sketches and other is trained to identify the images. The proposed approach introduces a mechanism to relate the sketches with the images by matching them after training. The experimentation results for testing the trained neural networks reached 100% for the sketches, and 84% for the images of two objects as a case study.
State-of-the-art of applications of neural networks in the nuclear industry
International Nuclear Information System (INIS)
Zwingelstein, G.; Masson, M.H.
1990-01-01
Artificial neural net models have been extensively studied for many years in various laboratories to try to simulate with computer programs the human brain performances. The first applications were developed in the fields of speech and image recognition. The aims of these studies were mainly to classify rapidly patterns corrupted by noises or partly missing. Neural networks with the development of new net topologies and algorithms and parallel computing hardwares and softwares are to-day very promising for applications in many industries. In the introduction, this paper presents the anticipated benefits of the uses of neural networks for industrial applications. Then a brief overview of the main neural networks is provided. Finally a short review of neural networks applications in the nuclear industry is given. It covers domains such as: predictive maintenance for vibratory surveillance of rotating machinery, signal processing, operator guidance and eddy current inspection. In conclusion recommendations are made to use with efficiency neural networks for practical applications. In particular the need for supercomputing will be pinpointed. (author)
A Bootstrap Neural Network Based Heterogeneous Panel Unit Root Test: Application to Exchange Rates
Christian de Peretti; Carole Siani; Mario Cerrato
2010-01-01
This paper proposes a bootstrap artificial neural network based panel unit root test in a dynamic heterogeneous panel context. An application to a panel of bilateral real exchange rate series with the US Dollar from the 20 major OECD countries is provided to investigate the Purchase Power Parity (PPP). The combination of neural network and bootstrapping significantly changes the findings of the economic study in favour of PPP.
Introduction to neural networks
International Nuclear Information System (INIS)
Pavlopoulos, P.
1996-01-01
This lecture is a presentation of today's research in neural computation. Neural computation is inspired by knowledge from neuro-science. It draws its methods in large degree from statistical physics and its potential applications lie mainly in computer science and engineering. Neural networks models are algorithms for cognitive tasks, such as learning and optimization, which are based on concepts derived from research into the nature of the brain. The lecture first gives an historical presentation of neural networks development and interest in performing complex tasks. Then, an exhaustive overview of data management and networks computation methods is given: the supervised learning and the associative memory problem, the capacity of networks, the Perceptron networks, the functional link networks, the Madaline (Multiple Adalines) networks, the back-propagation networks, the reduced coulomb energy (RCE) networks, the unsupervised learning and the competitive learning and vector quantization. An example of application in high energy physics is given with the trigger systems and track recognition system (track parametrization, event selection and particle identification) developed for the CPLEAR experiment detectors from the LEAR at CERN. (J.S.). 56 refs., 20 figs., 1 tab., 1 appendix
Ramamoorthy, P. A.; Huang, Song; Govind, Girish
1991-01-01
In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.
Wavelet neural networks with applications in financial engineering, chaos, and classification
Alexandridis, Antonios K
2014-01-01
Through extensive examples and case studies, Wavelet Neural Networks provides a step-by-step introduction to modeling, training, and forecasting using wavelet networks. The acclaimed authors present a statistical model identification framework to successfully apply wavelet networks in various applications, specifically, providing the mathematical and statistical framework needed for model selection, variable selection, wavelet network construction, initialization, training, forecasting and prediction, confidence intervals, prediction intervals, and model adequacy testing. The text is ideal for
Application of Artificial Neural Networks in Canola Crop Yield Prediction
Directory of Open Access Journals (Sweden)
S. J. Sajadi
2014-02-01
Full Text Available Crop yield prediction has an important role in agricultural policies such as specification of the crop price. Crop yield prediction researches have been based on regression analysis. In this research canola yield was predicted using Artificial Neural Networks (ANN using 11 crop year climate data (1998-2009 in Gonbad-e-Kavoos region of Golestan province. ANN inputs were mean weekly rainfall, mean weekly temperature, mean weekly relative humidity and mean weekly sun shine hours and ANN output was canola yield (kg/ha. Multi-Layer Perceptron networks (MLP with Levenberg-Marquardt backpropagation learning algorithm was used for crop yield prediction and Root Mean Square Error (RMSE and square of the Correlation Coefficient (R2 criterions were used to evaluate the performance of the ANN. The obtained results show that the 13-20-1 network has the lowest RMSE equal to 101.235 and maximum value of R2 equal to 0.997 and is suitable for predicting canola yield with climate factors.
Architecture and biological applications of artificial neural networks: a tuberculosis perspective.
Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran
2015-01-01
Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.
Neural networks at the Tevatron
International Nuclear Information System (INIS)
Badgett, W.; Burkett, K.; Campbell, M.K.; Wu, D.Y.; Bianchin, S.; DeNardi, M.; Pauletta, G.; Santi, L.; Caner, A.; Denby, B.; Haggerty, H.; Lindsey, C.S.; Wainer, N.; Dall'Agata, M.; Johns, K.; Dickson, M.; Stanco, L.; Wyss, J.L.
1992-10-01
This paper summarizes neural network applications at the Fermilab Tevatron, including the first online hardware application in high energy physics (muon tracking): the CDF and DO neural network triggers; offline quark/gluon discrimination at CDF; ND a new tool for top to multijets recognition at CDF
Application of neural network in τ→ρυτ polarization analysis
International Nuclear Information System (INIS)
Zhang Ziping; Wang Yifang; Innocente, V.
1994-01-01
An artificial neutral network was built to select events in the τ→ρυ τ polarization analysis at LEP/L3, much better selection efficiency has been achieved. Detailed studies show that no systematic errors or bias have been introduced by the application of neural network. A polarization of P τ = -0.129 +- 0.050 +- 0.050 for this channel was obtained by using a sample of 8977 τ + τ - pairs collected near the peak of Z 0 resonance. The neural network training method and some details are described
Artificial neural network applications in the calibration of spark-ignition engines: An overview
Directory of Open Access Journals (Sweden)
Richard Fiifi Turkson
2016-09-01
Full Text Available Emission legislation has become progressively tighter, making the development of new internal combustion engines very challenging. New engine technologies for complying with these regulations introduce an exponential dependency between the number of test combinations required for obtaining optimum results and the time and cost outlays. This makes the calibration task very expensive and virtually impossible to carry out. The potential use of trained neural networks in combination with Design of Experiments (DoE methods for engine calibration has been a subject of research activities in recent times. This is because artificial neural networks, compared with other data-driven modeling techniques, perform better in satisfying a majority of the modeling requirements for engine calibration including the curse of dimensionality; the use of DoE for obtaining few measurements as practicable, with the aim of reducing engine calibration costs; the required flexibility that allows model parameters to be optimized to avoid overfitting; and the facilitation of automated online optimization during the engine calibration process that eliminates the need for user intervention. The purpose of this review is to give an overview of the various applications of neural networks in the calibration of spark-ignition engines. The identified and discussed applications include system identification for rapid prototyping, virtual sensing, use of neural networks as look-up table surrogates, emerging control strategies and On-Board Diagnostic (OBD applications. The demerits of neural networks, future possibilities and alternatives were also discussed.
Application of recurrent neural networks for drought projections in California
Le, J. A.; El-Askary, H. M.; Allali, M.; Struppa, D. C.
2017-05-01
We use recurrent neural networks (RNNs) to investigate the complex interactions between the long-term trend in dryness and a projected, short but intense, period of wetness due to the 2015-2016 El Niño. Although it was forecasted that this El Niño season would bring significant rainfall to the region, our long-term projections of the Palmer Z Index (PZI) showed a continuing drought trend, contrasting with the 1998-1999 El Niño event. RNN training considered PZI data during 1896-2006 that was validated against the 2006-2015 period to evaluate the potential of extreme precipitation forecast. We achieved a statistically significant correlation of 0.610 between forecasted and observed PZI on the validation set for a lead time of 1 month. This gives strong confidence to the forecasted precipitation indicator. The 2015-2016 El Niño season proved to be relatively weak as compared with the 1997-1998, with a peak PZI anomaly of 0.242 standard deviations below historical averages, continuing drought conditions.
International Nuclear Information System (INIS)
Stefaniak, B.; Cholewinski, W.; Tarkowska, A.
2005-01-01
Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer application of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. In this paper practical aspects of scientific application of ANN in medicine using the Statistical Neural Networks Computer program, were presented. Several steps of data analysis with the above ANN software package were discussed shortly, from material selection and its dividing into groups to the types of obtained results. The typical problems connected with assessing scintigrams by ANN were also described. (author)
Artificial neural network modelling
Samarasinghe, Sandhya
2016-01-01
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .
Putra, J. C. P.; Safrilah
2017-06-01
Artificial neural network approaches are useful to solve many complicated problems. It solves a number of problems in various areas such as engineering, medicine, business, manufacturing, etc. This paper presents an application of artificial neural network to predict a runway capacity at Juanda International Airport. An artificial neural network model of backpropagation and multi-layer perceptron is adopted to this research to learning process of runway capacity at Juanda International Airport. The results indicate that the training data is successfully recognizing the certain pattern of runway use at Juanda International Airport. Whereas, testing data indicate vice versa. Finally, it can be concluded that the approach of uniformity data and network architecture is the critical part to determine the accuracy of prediction results.
Applications of self-organizing neural networks in virtual screening and diversity selection.
Selzer, Paul; Ertl, Peter
2006-01-01
Artificial neural networks provide a powerful technique for the analysis and modeling of nonlinear relationships between molecular structures and pharmacological activity. Many network types, including Kohonen and counterpropagation, also provide an intuitive method for the visual assessment of correspondence between the input and output data. This work shows how a combination of neural networks and radial distribution function molecular descriptors can be applied in various areas of industrial pharmaceutical research. These applications include the prediction of biological activity, the selection of screening candidates (cherry picking), and the extraction of representative subsets from large compound collections such as combinatorial libraries. The methods described have also been implemented as an easy-to-use Web tool, allowing chemists to perform interactive neural network experiments on the Novartis intranet.
The application of particle swarm optimization to identify gamma spectrum with neural network
International Nuclear Information System (INIS)
Shi Dongsheng; Di Yuming; Zhou Chunlin
2006-01-01
Aiming at the shortcomings that BP algorithm is usually trapped to a local optimum and it has a low speed of convergence in the application of neural network to identify gamma spectrum, according to the advantage of the globe optimal searching of particle swarm optimization, this paper put forward a new algorithm for neural network training by combining BP algorithm and Particle Swarm Optimization-mixed PSO-BP algorithm. In the application to identify gamma spectrum, the new algorithm overcomes the shortcoming that BP algorithm is usually trapped to a local optimum and the neural network trained by it has a high ability of generalization with identification result of one hundred percent correct. Practical example shows that the mixed PSO-BP algorithm can effectively and reliably be used to identify gamma spectrum. (authors)
Energy Technology Data Exchange (ETDEWEB)
Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)
1996-12-31
The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.
Neural network retrieval of soil moisture: application to SMOS
Rodriguez-Fernandez, Nemesio; Richaume, Philippe; Aires, Filipe; Prigent, Catherine; Kerr, Yann; Kolasssa, Jana; Jimenez, Carlos; Cabot, Francois; Mahmoodi, Ali
2014-05-01
We present an efficient statistical soil moisture (SM) retrieval method using SMOS brightness temperatures (BTs) complemented with MODIS NDVI and ASCAT backscattering data. The method is based on a feed-forward neural network (hereafter NN) trained with SM from ECMWF model predictions or from the SMOS operational algorithm. The best compromise to retrieve SM with NNs from SMOS brightness temperatures in a large fraction of the swath (~ 670 km) is to use incidence angles from 25 to 60 degrees (in 7 bins of 5 deg width) for both H and V polarizations. The correlation coefficient (R) of the SM retrieved by the NN and the reference SM dataset (ECMWF or SMOS L3) is 0.8. The correlation coefficient increases to 0.91 when adding as input MODIS NDVI, ECOCLIMAP sand and clay fractions and one of the following data: (i) active microwaves observations (ASCAT backscattering coefficient at 40 deg incidence angle), (ii) ECMWF soil temperature. Finally, the correlation coefficient increases to R=0.94 when using a normalization index computed locally for each latitude-longitude point with the maximum and minimum BTs and the associated SM values from the local time series. Global maps of SM obtained with NNs reproduce well the spatial structures present in the reference SM datasets, implying that the NN works well for a wide range of ecosystems and physical conditions. In addition, the results of the NNs have been evaluated at selected locations for which in situ measurements are available such as the USDA-ARS watersheds (USA), the OzNet network (AUS) and USDA-NRCS SCAN network (USA). The time series of SM obtained with NNs reproduce the temporal behavior measured with in situ sensors. For well known sites where the in situ measurement is representative of a 40 km scale like the Little Washita watershed, the NN models show a very high correlation of (R = 0.8-0.9) and a low standard deviation of 0.02-0.04 m3/m3 with respect to the in situ measurements. When comparing with all the in
Stability Analysis and Application for Delayed Neural Networks Driven by Fractional Brownian Noise.
Zhou, Wuneng; Zhou, Xianghui; Yang, Jun; Zhou, Jun; Tong, Dongbing
2018-05-01
This paper deals with two types of the stability problem for the delayed neural networks driven by fractional Brownian noise (FBN). The existence and the uniqueness of the solution to the main system with respect to FBN are proved via fixed point theory. Based on Hilbert-Schmidt operator theory and analytic semigroup principle, the mild solution of the stochastic neural networks is obtained. By applying the stochastic analytic technique and some well-known inequalities, the asymptotic stability criteria and the exponential stability condition are established. Both numerical example and practical application for synchronization control of multiagent system are provided to illustrate the effectiveness and potential of the proposed techniques.
Absolute stability of nonlinear systems with time delays and applications to neural networks
Directory of Open Access Journals (Sweden)
Xinzhi Liu
2001-01-01
Full Text Available In this paper, absolute stability of nonlinear systems with time delays is investigated. Sufficient conditions on absolute stability are derived by using the comparison principle and differential inequalities. These conditions are simple and easy to check. In addition, exponential stability conditions for some special cases of nonlinear delay systems are discussed. Applications of those results to cellular neural networks are presented.
Gonzalez, Julie M. Byers; DesJardins, Stephen L.
This paper examines how predictive modeling can be used to study application behavior. A relatively new technique, artificial neural networks (ANNs), was applied to help predict which students were likely to get into a large Research I university. Data were obtained from a university in Iowa. Two cohorts were used, each containing approximately…
International Nuclear Information System (INIS)
Uhrig, R.E.
1990-01-01
Application of neural networks to monitoring and decision making in the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (1) diagnosing specific abnormal conditions or problems in nuclear power plants, (2) detection of the change of mode of operation of the plant, (3) validating signals coming from detectors, (4) review of ''noise'' data from TVA's Sequoyah Nuclear Power Plant, and (5) examination of the NRC's database of ''Letter Event Reports'' for correlation of sequences of events in the reported incidents. Each of these projects and its status are described briefly in this paper. This broad based program has as its objective the definition of the state-of-the-art in using neural networks to enhance the performance of commercial nuclear power plants
Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.
2017-11-01
In order to select effective samples in the large number of data of PV power generation years and improve the accuracy of PV power generation forecasting model, this paper studies the application of clustering analysis in this field and establishes forecasting model based on neural network. Based on three different types of weather on sunny, cloudy and rainy days, this research screens samples of historical data by the clustering analysis method. After screening, it establishes BP neural network prediction models using screened data as training data. Then, compare the six types of photovoltaic power generation prediction models before and after the data screening. Results show that the prediction model combining with clustering analysis and BP neural networks is an effective method to improve the precision of photovoltaic power generation.
Application of General Regression Neural Network to the Prediction of LOD Change
Zhang, Xiao-Hong; Wang, Qi-Jie; Zhu, Jian-Jun; Zhang, Hao
2012-01-01
Traditional methods for predicting the change in length of day (LOD change) are mainly based on some linear models, such as the least square model and autoregression model, etc. However, the LOD change comprises complicated non-linear factors and the prediction effect of the linear models is always not so ideal. Thus, a kind of non-linear neural network — general regression neural network (GRNN) model is tried to make the prediction of the LOD change and the result is compared with the predicted results obtained by taking advantage of the BP (back propagation) neural network model and other models. The comparison result shows that the application of the GRNN to the prediction of the LOD change is highly effective and feasible.
Application of artificial neural networks to evaluate weld defects of nuclear components
International Nuclear Information System (INIS)
Amin, E.S.
2007-01-01
Artificial neural networks (ANNs) are computational representations based on the biological neural architecture of the brain. ANNs have been successfully applied to a wide range of engineering and scientific applications, such as signal, image processing and data analysis. Although Radiographic testing is widely used for welding defects, it is unsuccessful in identifying some welding defects because of the nature of image formation and quality. Neoteric algorithms have been used for the purpose of weld defects identifications in radiographic images to replace the expert knowledge. The application of artificial neural networks in noise detection of radiographic films is used. Radial Basis (RB) and learning vector quantization (LVQ) were applied. The method shows good performance in weld defects recognition and classification problems.
International Nuclear Information System (INIS)
Ramaiah, Gurumurthy B.; Chennaiah, Radhalakshmi Y.; Satyanarayanarao, Gurumurthy K.
2010-01-01
Kevlar 29 is a class of Kevlar fiber used for protective applications primarily by the military and law enforcement agencies for bullet resistant vests, hence for these reasons military has found that armors reinforced with Kevlar 29 multilayer fabrics which offer 25-40% better fragmentation resistance and provide better fit with greater comfort. The objective of this study is to investigate and develop an artificial neural network model for analyzing the performance of ballistic fabrics made from Kevlar 29 single layer fabrics using their material properties as inputs. Data from fragment simulation projectile (FSP) ballistic penetration measurements at 244 m/s has been used to demonstrate the modeling aspects of artificial neural networks. The neural network models demonstrated in this paper is based on back propagation (BP) algorithm which is inbuilt in MATLAB 7.1 software and is used for studies in science, technology and engineering. In the present research, comparisons are also made between the measured values of samples selected for building the neural network model and network predicted results. The analysis of the results for network predicted and experimental samples used in this study showed similarity.
Liu, Qingshan; Guo, Zhishan; Wang, Jun
2012-02-01
In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ding, Lei; Xiao, Lin; Liao, Bolin; Lu, Rongbo; Peng, Hua
2017-01-01
To obtain the online solution of complex-valued systems of linear equation in complex domain with higher precision and higher convergence rate, a new neural network based on Zhang neural network (ZNN) is investigated in this paper. First, this new neural network for complex-valued systems of linear equation in complex domain is proposed and theoretically proved to be convergent within finite time. Then, the illustrative results show that the new neural network model has the higher precision and the higher convergence rate, as compared with the gradient neural network (GNN) model and the ZNN model. Finally, the application for controlling the robot using the proposed method for the complex-valued systems of linear equation is realized, and the simulation results verify the effectiveness and superiorness of the new neural network for the complex-valued systems of linear equation.
International Nuclear Information System (INIS)
Khil'ko, O.S.; Kovalenko, V.I.; Kundas, S.P.
2010-01-01
Artificial neural networks approach for horizontal and vertical radionuclide transport forecasting was proposed. Runoff factors analysis was considered. Additional artificial neural network structures for physical-chemical properties recognition were used. (authors)
Duan, Xiaoran; Yang, Yongli; Tan, Shanjuan; Wang, Sihua; Feng, Xiaolei; Cui, Liuxin; Feng, Feifei; Yu, Songcheng; Wang, Wei; Wu, Yongjun
2017-08-01
The purpose of the study was to explore the application of artificial neural network model in the auxiliary diagnosis of lung cancer and compare the effects of back-propagation (BP) neural network with Fisher discrimination model for lung cancer screening by the combined detections of four biomarkers of p16, RASSF1A and FHIT gene promoter methylation levels and the relative telomere length. Real-time quantitative methylation-specific PCR was used to detect the levels of three-gene promoter methylation, and real-time PCR method was applied to determine the relative telomere length. BP neural network and Fisher discrimination analysis were used to establish the discrimination diagnosis model. The levels of three-gene promoter methylation in patients with lung cancer were significantly higher than those of the normal controls. The values of Z(P) in two groups were 2.641 (0.008), 2.075 (0.038) and 3.044 (0.002), respectively. The relative telomere lengths of patients with lung cancer (0.93 ± 0.32) were significantly lower than those of the normal controls (1.16 ± 0.57), t = 4.072, P < 0.001. The areas under the ROC curve (AUC) and 95 % CI of prediction set from Fisher discrimination analysis and BP neural network were 0.670 (0.569-0.761) and 0.760 (0.664-0.840). The AUC of BP neural network was higher than that of Fisher discrimination analysis, and Z(P) was 0.76. Four biomarkers are associated with lung cancer. BP neural network model for the prediction of lung cancer is better than Fisher discrimination analysis, and it can provide an excellent and intelligent diagnosis tool for lung cancer.
Application of neural network to multi-dimensional design window search in reactor core design
International Nuclear Information System (INIS)
Kugo, Teruhiko; Nakagawa, Masayuki
1999-01-01
In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support design work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. The present method is applied to the neutronics and thermal hydraulics fields. The principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network without parametric study using analysis codes. To verify the applicability of the present method to the neutronics and the thermal hydraulics design, we have applied it to high conversion water reactors and examined effects of the structure of the neural network and the number of teaching patterns on the accuracy of the design window estimated by the neural network. From the results of the applications, a guideline to apply the present method is proposed and the present method can predict an appropriate design window in a reasonable computation time by following the guideline. (author)
Fragility in dynamic networks: application to neural networks in the epileptic cortex.
Sritharan, Duluxan; Sarma, Sridevi V
2014-10-01
Epilepsy is a network phenomenon characterized by atypical activity at the neuronal and population levels during seizures, including tonic spiking, increased heterogeneity in spiking rates, and synchronization. The etiology of epilepsy is unclear, but a common theme among proposed mechanisms is that structural connectivity between neurons is altered. It is hypothesized that epilepsy arises not from random changes in connectivity, but from specific structural changes to the most fragile nodes or neurons in the network. In this letter, the minimum energy perturbation on functional connectivity required to destabilize linear networks is derived. Perturbation results are then applied to a probabilistic nonlinear neural network model that operates at a stable fixed point. That is, if a small stimulus is applied to the network, the activation probabilities of each neuron respond transiently but eventually recover to their baseline values. When the perturbed network is destabilized, the activation probabilities shift to larger or smaller values or oscillate when a small stimulus is applied. Finally, the structural modifications to the neural network that achieve the functional perturbation are derived. Simulations of the unperturbed and perturbed networks qualitatively reflect neuronal activity observed in epilepsy patients, suggesting that the changes in network dynamics due to destabilizing perturbations, including the emergence of an unstable manifold or a stable limit cycle, may be indicative of neuronal or population dynamics during seizure. That is, the epileptic cortex is always on the brink of instability and minute changes in the synaptic weights associated with the most fragile node can suddenly destabilize the network to cause seizures. Finally, the theory developed here and its interpretation of epileptic networks enables the design of a straightforward feedback controller that first detects when the network has destabilized and then applies linear state
Application of artificial neural network to identify nuclear materials
International Nuclear Information System (INIS)
Xu Peng; Wang Zhe; Li Tiantuo
2005-01-01
Applying the neutral network, the article studied the technology of identifying the gamma spectra of the nuclear material in the nuclear components. In the article, theory of the network identifying the spectra is described, and the results of identification of gamma spectra are given.(authors)
Radial basis function neural networks with sequential learning MRAN and its applications
Sundararajan, N; Wei Lu Ying
1999-01-01
This book presents in detail the newly developed sequential learning algorithm for radial basis function neural networks, which realizes a minimal network. This algorithm, created by the authors, is referred to as Minimal Resource Allocation Networks (MRAN). The book describes the application of MRAN in different areas, including pattern recognition, time series prediction, system identification, control, communication and signal processing. Benchmark problems from these areas have been studied, and MRAN is compared with other algorithms. In order to make the book self-contained, a review of t
Chaotic diagonal recurrent neural network
International Nuclear Information System (INIS)
Wang Xing-Yuan; Zhang Yi
2012-01-01
We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)
Artificial neural networks in NDT
International Nuclear Information System (INIS)
Abdul Aziz Mohamed
2001-01-01
Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)
The applications of deep neural networks to sdBV classification
Boudreaux, Thomas M.
2017-12-01
With several new large-scale surveys on the horizon, including LSST, TESS, ZTF, and Evryscope, faster and more accurate analysis methods will be required to adequately process the enormous amount of data produced. Deep learning, used in industry for years now, allows for advanced feature detection in minimally prepared datasets at very high speeds; however, despite the advantages of this method, its application to astrophysics has not yet been extensively explored. This dearth may be due to a lack of training data available to researchers. Here we generate synthetic data loosely mimicking the properties of acoustic mode pulsating stars and we show that two separate paradigms of deep learning - the Artificial Neural Network And the Convolutional Neural Network - can both be used to classify this synthetic data effectively. And that additionally this classification can be performed at relatively high levels of accuracy with minimal time spent adjusting network hyperparameters.
Application of deep convolutional neural networks for ocean front recognition
Lima, Estanislau; Sun, Xin; Yang, Yuting; Dong, Junyu
2017-10-01
Ocean fronts have been a subject of study for many years, a variety of methods and algorithms have been proposed to address the problem of ocean fronts. However, all these existing ocean front recognition methods are built upon human expertise in defining the front based on subjective thresholds of relevant physical variables. This paper proposes a deep learning approach for ocean front recognition that is able to automatically recognize the front. We first investigated four existing deep architectures, i.e., AlexNet, CaffeNet, GoogLeNet, and VGGNet, for the ocean front recognition task using remote sensing (RS) data. We then propose a deep network with fewer layers compared to existing architecture for the front recognition task. This network has a total of five learnable layers. In addition, we extended the proposed network to recognize and classify the front into strong and weak ones. We evaluated and analyzed the proposed network with two strategies of exploiting the deep model: full-training and fine-tuning. Experiments are conducted on three different RS image datasets, which have different properties. Experimental results show that our model can produce accurate recognition results.
Directory of Open Access Journals (Sweden)
José Alonso Borba
2010-04-01
Full Text Available There are problems in Finance and Accounting that can not be easily solved by means of traditional techniques (e.g. bankruptcy prediction and strategies for investing in common stock. In these situations, it is possible to use methods of Artificial Intelligence. This paper analyzes empirical works published in international journals between 2000 and 2007 that present studies about the application of Neural Networks, Fuzzy Logic and Genetic Algorithms to problems in Finance and Accounting. The objective is to identify and quantify the relationships established between the available techniques and the problems studied by the researchers. Analyzing 258 papers, it was noticed that the most used technique is the Artificial Neural Network. The most researched applications are from the field of Finance, especially those related to stock exchanges (forecasting of common stock and indices prices.
International Nuclear Information System (INIS)
Ruzek, L.
2003-01-01
Quick and sufficiently precise determination of stresses and strains measured by I and C, TMDS a CHEMIS is very important for on-line assessment of continuous damage of material under operating conditions. The application of some of the artificial intelligence methods, viz. neural network, is convenient in this context. A practical example of the application of this method is presented and the advantages in comparison with the finite element method (FEM) are discussed. The approach to the selection of characteristic loading used for the preparation of training data is also shown. The paper presents the results of actual calculation and analyses the merits of the attained coincidence for the determination of the tensor of stresses by FEM and neural networks
Detecting phase synchronization by localized maps: Application to neural networks
Pereira, T.; Baptista, M. S.; Kurths, J.
2007-01-01
We present an approach which enables to state about the existence of phase synchronization in coupled chaotic oscillators without having to measure the phase. This is done by observing the oscillators at special times, and analyzing whether this set of points is localized. In particular, we show that this approach is fruitful to analyze the onset of phase synchronization in chaotic attractors whose phases are not well defined, as well as, in networks of non-identical spiking/bursting neurons ...
Artificial neural network application for predicting soil distribution coefficient of nickel
International Nuclear Information System (INIS)
Falamaki, Amin
2013-01-01
The distribution (or partition) coefficient (K d ) is an applicable parameter for modeling contaminant and radionuclide transport as well as risk analysis. Selection of this parameter may cause significant error in predicting the impacts of contaminant migration or site-remediation options. In this regards, various models were presented to predict K d values for different contaminants specially heavy metals and radionuclides. In this study, artificial neural network (ANN) is used to present simplified model for predicting K d of nickel. The main objective is to develop a more accurate model with a minimal number of parameters, which can be determined experimentally or select by review of different studies. In addition, the effects of training as well as the type of the network are considered. The K d values of Ni is strongly dependent on pH of the soil and mathematical relationships were presented between pH and K d of nickel recently. In this study, the same database of these presented models was used to verify that neural network may be more useful tools for predicting of K d . Two different types of ANN, multilayer perceptron and redial basis function, were used to investigate the effect of the network geometry on the results. In addition, each network was trained by 80 and 90% of the data and tested for 20 and 10% of the rest data. Then the results of the networks compared with the results of the mathematical models. Although the networks trained by 80 and 90% of the data the results show that all the networks predict with higher accuracy relative to mathematical models which were derived by 100% of data. More training of a network increases the accuracy of the network. Multilayer perceptron network used in this study predicts better than redial basis function network. - Highlights: ► Simplified models for predicting K d of nickel presented using artificial neural networks. ► Multilayer perceptron and redial basis function used to predict K d of nickel in
"Geo-statistics methods and neural networks in geophysical applications: A case study"
Rodriguez Sandoval, R.; Urrutia Fucugauchi, J.; Ramirez Cruz, L. C.
2008-12-01
The study is focus in the Ebano-Panuco basin of northeastern Mexico, which is being explored for hydrocarbon reservoirs. These reservoirs are in limestones and there is interest in determining porosity and permeability in the carbonate sequences. The porosity maps presented in this study are estimated from application of multiattribute and neural networks techniques, which combine geophysics logs and 3-D seismic data by means of statistical relationships. The multiattribute analysis is a process to predict a volume of any underground petrophysical measurement from well-log and seismic data. The data consist of a series of target logs from wells which tie a 3-D seismic volume. The target logs are neutron porosity logs. From the 3-D seismic volume a series of sample attributes is calculated. The objective of this study is to derive a set of attributes and the target log values. The selected set is determined by a process of forward stepwise regression. The analysis can be linear or nonlinear. In the linear mode the method consists of a series of weights derived by least-square minimization. In the nonlinear mode, a neural network is trained using the select attributes as inputs. In this case we used a probabilistic neural network PNN. The method is applied to a real data set from PEMEX. For better reservoir characterization the porosity distribution was estimated using both techniques. The case shown a continues improvement in the prediction of the porosity from the multiattribute to the neural network analysis. The improvement is in the training and the validation, which are important indicators of the reliability of the results. The neural network showed an improvement in resolution over the multiattribute analysis. The final maps provide more realistic results of the porosity distribution.
International Nuclear Information System (INIS)
Dominguez, Manuel
1998-01-01
In the frame of complex systems modelization, we describe in this report the contribution of neural networks to mechanical friction modelization. This thesis is divided in three parts, each one corresponding to every stage of the realized work. The first part takes stock of the properties of neural networks by replacing them in the statistic frame of learning theory (particularly: non-linear and non-parametric regression models) and by showing the existing links with other more 'classic' techniques from automatics. We show then how identification models can be integrated in the neural networks description as a larger nonlinear model class. A methodology of neural networks use have been developed. We focused on validation techniques using correlation functions for non-linear systems, and on the use of regularization methods. The second part deals with the problematic of friction in mechanical systems. Particularly, we present the main current identified physical phenomena, which are integrated in advanced friction modelization. Characterization of these phenomena allows us to state a priori knowledge to be used in the identification stage. We expose some of the most well-known friction models: Dahl's model, Reset Integrator and Canuda's dynamical model, which are then used in simulation studies. The last part links the former one by illustrating a real-world application: an electric jack from SFIM-Industries, used in the Very Large Telescope (VLT) control scheme. This part begins with physical system presentation. The results are compared with more 'classic' methods. We finish using neural networks compensation scheme in closed-loop control. (author) [fr
International Nuclear Information System (INIS)
Stegowski, Z.
2002-01-01
Scintillation detectors are commonly used for the gamma ray detection. Actually the small peak resolution and the significant Compton effect fraction limit their utilization in the gamma ray spectrometry analysis. This article presents the artificial neural networks (ANN) application to the analysis of the gamma ray spectra acquired from scintillation detectors. The obtained results validate the effectiveness of the ANN method to spectrometry analysis. (author)
Application of Artificial Neural Networks in the Heart Electrical Axis Position Conclusion Modeling
Bakanovskaya, L. N.
2016-08-01
The article touches upon building of a heart electrical axis position conclusion model using an artificial neural network. The input signals of the neural network are the values of deflections Q, R and S; and the output signal is the value of the heart electrical axis position. Training of the network is carried out by the error propagation method. The test results allow concluding that the created neural network makes a conclusion with a high degree of accuracy.
Fault tolerance of artificial neural networks with applications in critical systems
Protzel, Peter W.; Palumbo, Daniel L.; Arras, Michael K.
1992-01-01
This paper investigates the fault tolerance characteristics of time continuous recurrent artificial neural networks (ANN) that can be used to solve optimization problems. The principle of operations and performance of these networks are first illustrated by using well-known model problems like the traveling salesman problem and the assignment problem. The ANNs are then subjected to 13 simultaneous 'stuck at 1' or 'stuck at 0' faults for network sizes of up to 900 'neurons'. The effects of these faults is demonstrated and the cause for the observed fault tolerance is discussed. An application is presented in which a network performs a critical task for a real-time distributed processing system by generating new task allocations during the reconfiguration of the system. The performance degradation of the ANN under the presence of faults is investigated by large-scale simulations, and the potential benefits of delegating a critical task to a fault tolerant network are discussed.
International Nuclear Information System (INIS)
Otero, F
1998-01-01
This article presents the current status of the use of Artificial Neural Networks (ANNs) in process engineering applications where common mathematical methods do not completely represent the behavior shown by experimental observations, results, and plant operating data. Three examples of the use of ANNs in typical process engineering applications such as prediction of activity in solvent-polymer binary systems, prediction of a surfactant self-diffusion coefficient of micellar systems, and process control and simulation are shown. These examples are important for polymerization applications, enhanced-oil recovery, and automatic process control
Simplified LQG Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1997-01-01
A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...
Neural Network Based Load Frequency Control for Restructuring ...
African Journals Online (AJOL)
Neural Network Based Load Frequency Control for Restructuring Power Industry. ... an artificial neural network (ANN) application of load frequency control (LFC) of a Multi-Area power system by using a neural network controller is presented.
Application of neural network technology to nuclear plant thermal efficiency improvement
International Nuclear Information System (INIS)
Doremus, Rick; Allen Ho, S.; Bailey, James V.; Roman, Harry
2004-01-01
to determine which plant systems and components should be manipulated to increase electric output. Each parameter from the current data is replaced, one at a time, with an optimum value found among all the data used to train the neural networks. Each new data record, with one altered parameter, is then processed through the neural network, which calculates a predicted electric output These predictions are then ranked by order of increased electric output. Thermal Performance Engineers then review and perform selected recommendations An initial feasibility study was recently completed. The next phase of the project is the creation of a demonstration application to be tested at Salem Nuclear Generating Station. (author)
Study on application of adaptive fuzzy control and neural network in the automatic leveling system
Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng
2015-04-01
This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.
Levchenko, N. G.; Glushkov, S. V.; Sobolevskaya, E. Yu; Orlov, A. P.
2018-05-01
The method of modeling the transport and logistics process using fuzzy neural network technologies has been considered. The analysis of the implemented fuzzy neural network model of the information management system of transnational multimodal transportation of the process showed the expediency of applying this method to the management of transport and logistics processes in the Arctic and Subarctic conditions. The modular architecture of this model can be expanded by incorporating additional modules, since the working conditions in the Arctic and the subarctic themselves will present more and more realistic tasks. The architecture allows increasing the information management system, without affecting the system or the method itself. The model has a wide range of application possibilities, including: analysis of the situation and behavior of interacting elements; dynamic monitoring and diagnostics of management processes; simulation of real events and processes; prediction and prevention of critical situations.
Multiple Linear Regression Model Based on Neural Network and Its Application in the MBR Simulation
Directory of Open Access Journals (Sweden)
Chunqing Li
2012-01-01
Full Text Available The computer simulation of the membrane bioreactor MBR has become the research focus of the MBR simulation. In order to compensate for the defects, for example, long test period, high cost, invisible equipment seal, and so forth, on the basis of conducting in-depth study of the mathematical model of the MBR, combining with neural network theory, this paper proposed a three-dimensional simulation system for MBR wastewater treatment, with fast speed, high efficiency, and good visualization. The system is researched and developed with the hybrid programming of VC++ programming language and OpenGL, with a multifactor linear regression model of affecting MBR membrane fluxes based on neural network, applying modeling method of integer instead of float and quad tree recursion. The experiments show that the three-dimensional simulation system, using the above models and methods, has the inspiration and reference for the future research and application of the MBR simulation technology.
Comments on "The multisynapse neural network and its application to fuzzy clustering".
Yu, Jian; Hao, Pengwei
2005-05-01
In the above-mentioned paper, Wei and Fahn proposed a neural architecture, the multisynapse neural network, to solve constrained optimization problems including high-order, logarithmic, and sinusoidal forms, etc. As one of its main applications, a fuzzy bidirectional associative clustering network (FBACN) was proposed for fuzzy-partition clustering according to the objective-functional method. The connection between the objective-functional-based fuzzy c-partition algorithms and FBACN is the Lagrange multiplier approach. Unfortunately, the Lagrange multiplier approach was incorrectly applied so that FBACN does not equivalently minimize its corresponding constrained objective-function. Additionally, Wei and Fahn adopted traditional definition of fuzzy c-partition, which is not satisfied by FBACN. Therefore, FBACN can not solve constrained optimization problems, either.
The application of neural networks to flow regime identification
International Nuclear Information System (INIS)
Embrechts, M.; Yapo, T.C.; Lahey, R.T. Jr.
1993-01-01
This paper deals with the application of a Kohonen map for the identification of two-phase flow regimes where a mixture of gas and fluid flows through a horizontal tube. Depending on the relative flow velocities of the gas and the liquid phase, four distinct flow regimes can be identified: Wavy flow, plug flow, slug flow and annular flow. A schematic of these flow regimes is presented. The objective identification of two-phase flow regimes constitutes an important and challenging problem for the design of safe and reliable nuclear power plants. Previous attempts to classify these flow regimes are reviewed by Franca and Lahey. The authors describe how a Kohonen map can be applied to distinguish between flow regimes based on the Fourier power spectra and wavelet transforms of pressure drop fluctuations. The Fourier power spectra allowed the Kohonen map to identify the flow regimes successfully. In contrast, the Kohonen maps based on a wavelet transform could only distinguish between wavy and annular flows. An analysis of typical two-phase pressure drop data for an air/water mixture in a horizontal pipe is presented. Use of the wavelet transform and the Kohonen feature map are discussed
Application of artificial neural networks for decision support in medicine.
Larder, Brendan; Wang, Dechao; Revell, Andy
2008-01-01
The emergence of drug resistant pathogens can reduce the efficacy of drugs commonly used to treat infectious diseases. Human immunodeficiency virus (HIV) is particularly sensitive to drug selection pressure, rapidly evolving into drug resistant variants on exposure to anti-HIV drugs. Over 200 mutations within the genetic material of HIV have been shown to be associated with drug resistance to date, and complex mutational patterns have been found in HIV isolates from infected patients exposed to multiple antiretroviral drugs. Genotyping is commonly used in clinical practice as a tool to identify drug resistance mutations in HIV from individual patients. This information is then used to help guide the choice of future therapy for patients whose drug regimen is failing because of the development of drug resistant HIV. Many sets of rules and algorithms are available to predict loss of susceptibility to individual antiretroviral drugs from genotypic data. Although this approach has been helpful, the interpretation of genotypic data remains challenging. We describe here the development and application of ANN models as alternative tools for the interpretation of HIV genotypic drug resistance data. A large amount of clinical and virological data, from around 30,000 patients treated with antiretroviral drugs, has been collected by the HIV Resistance Response Database Initiative (RDI, www.hivrdi.org) in a centralized database. Treatment change episodes (TCEs) have been extracted from these data and used along with HIV drug resistance mutations as the basic input variables to train ANN models. We performed a series of analyses that have helped define the following: (1) the reliability of ANN predictions for HIV patients receiving routine clinical care; (2) the utility of ANN models to identify effective treatments for patients failing therapy; (3) strategies to increase the accuracy of ANN predictions; and (4) performance of ANN models in comparison to the rules-based methods
An Examination of Application of Artificial Neural Network in Cognitive Radios
Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.
2013-12-01
Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.
[Algorithms of artificial neural networks--practical application in medical science].
Stefaniak, Bogusław; Cholewiński, Witold; Tarkowska, Anna
2005-12-01
Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer applications of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. This paper presents practical aspects of scientific application of ANN in medicine using widely available algorithms. Several main steps of analysis with ANN were discussed starting from material selection and dividing it into groups, to the quality assessment of obtained results at the end. The most frequent, typical reasons for errors as well as the comparison of ANN method to the modeling by regression analysis were also described.
An Examination of Application of Artificial Neural Network in Cognitive Radios
International Nuclear Information System (INIS)
Salau, H Bello; Onwuka, E N; Aibinu, A M
2013-01-01
Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined
Neural Network Based Recognition of Signal Patterns in Application to Automatic Testing of Rails
Directory of Open Access Journals (Sweden)
Tomasz Ciszewski
2006-01-01
Full Text Available The paper describes the application of neural network for recognition of signal patterns in measuring data gathered by the railroad ultrasound testing car. Digital conversion of the measuring signal allows to store and process large quantities of data. The elaboration of smart, effective and automatic procedures recognizing the obtained patterns on the basisof measured signal amplitude has been presented. The test shows only two classes of pattern recognition. In authors’ opinion if we deliver big enough quantity of training data, presented method is applicable to a system that recognizes many classes.
Directory of Open Access Journals (Sweden)
Melike Bildirici
2014-01-01
Full Text Available The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100. Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray’s MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray’s MS-GARCH model. Therefore, the models are promising for various economic applications.
Directory of Open Access Journals (Sweden)
S. Rafajlović
2009-06-01
Full Text Available The goal of this study was to test the applicability of accelerometer as the sensor for assessment of the walking. We present here the comparison of gait phases detected from the data recorded by force sensing resistors mounted in the shoe insoles, non-processed acceleration and processed acceleration perpendicular to the direction of the foot. The gait phases in all three cases were detected by means of a neural network. The output from the neural network was the gait phase, while the inputs were data from the sensors. The results show that the errors were in the ranges: 30 ms (2.7% – force sensors; 150 ms (13.6% – nonprocessed acceleration, and 120 ms (11% – processed acceleration data. This result suggests that it is possible to use the accelerometer as the gait phase detector, however, with the knowledge that the gait phases are time shifted for about 100 ms with respect the neural network predicted times.
Simulation Study on the Application of the Generalized Entropy Concept in Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Krzysztof Gajowniczek
2018-04-01
Full Text Available Artificial neural networks are currently one of the most commonly used classifiers and over the recent years they have been successfully used in many practical applications, including banking and finance, health and medicine, engineering and manufacturing. A large number of error functions have been proposed in the literature to achieve a better predictive power. However, only a few works employ Tsallis statistics, although the method itself has been successfully applied in other machine learning techniques. This paper undertakes the effort to examine the q -generalized function based on Tsallis statistics as an alternative error measure in neural networks. In order to validate different performance aspects of the proposed function and to enable identification of its strengths and weaknesses the extensive simulation was prepared based on the artificial benchmarking dataset. The results indicate that Tsallis entropy error function can be successfully introduced in the neural networks yielding satisfactory results and handling with class imbalance, noise in data or use of non-informative predictors.
Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata
2015-04-01
The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.
International Nuclear Information System (INIS)
Sauget, M.
2007-12-01
This research is about the application of neural networks used in the external radiotherapy domain. The goal is to elaborate a new evaluating system for the radiation dose distributions in heterogeneous environments. The al objective of this work is to build a complete tool kit to evaluate the optimal treatment planning. My st research point is about the conception of an incremental learning algorithm. The interest of my work is to combine different optimizations specialized in the function interpolation and to propose a new algorithm allowing to change the neural network architecture during the learning phase. This algorithm allows to minimise the al size of the neural network while keeping a good accuracy. The second part of my research is to parallelize the previous incremental learning algorithm. The goal of that work is to increase the speed of the learning step as well as the size of the learned dataset needed in a clinical case. For that, our incremental learning algorithm presents an original data decomposition with overlapping, together with a fault tolerance mechanism. My last research point is about a fast and accurate algorithm computing the radiation dose deposit in any heterogeneous environment. At the present time, the existing solutions used are not optimal. The fast solution are not accurate and do not give an optimal treatment planning. On the other hand, the accurate solutions are far too slow to be used in a clinical context. Our algorithm answers to this problem by bringing rapidity and accuracy. The concept is to use a neural network adequately learned together with a mechanism taking into account the environment changes. The advantages of this algorithm is to avoid the use of a complex physical code while keeping a good accuracy and reasonable computation times. (author)
Application of neural network in market segmentation: A review on recent trends
Directory of Open Access Journals (Sweden)
Manojit Chattopadhyay
2012-04-01
Full Text Available Despite the significance of Artificial Neural Network (ANN algorithm to market segmentation, there is a need of a comprehensive literature review and a classification system for it towards identification of future trend of market segmentation research. The present work is the first identifiable academic literature review of the application of neural network based techniques to segmentation. Our study has provided an academic database of literature between the periods of 2000–2010 and proposed a classification scheme for the articles. One thousands (1000 articles have been identified, and around 100 relevant selected articles have been subsequently reviewed and classified based on the major focus of each paper. Findings of this study indicated that the research area of ANN based applications are receiving most research attention and self organizing map based applications are second in position to be used in segmentation. The commonly used models for market segmentation are data mining, intelligent system etc. Our analysis furnishes a roadmap to guide future research and aid knowledge accretion and establishment pertaining to the application of ANN based techniques in market segmentation. Thus the present work will significantly contribute to both the industry and academic research in business and marketing as a sustainable valuable knowledge source of market segmentation with the future trend of ANN application in segmentation.
International Nuclear Information System (INIS)
Nabeshima, Kunihiko; Suzuki, Katsuo; Shinohara, Yoshikuni; Tuerkcan, E.
1995-11-01
In this paper, the anomaly detection method for nuclear power plant monitoring and its program are described by using a neural network approach, which is based on the deviation between measured signals and output signals of neural network model. The neural network used in this study has three layered auto-associative network with 12 input/output, and backpropagation algorithm is adopted for learning. Furthermore, to obtain better dynamical model of the reactor plant, a new learning technique was developed in which the learning process of the present neural network is divided into initial and adaptive learning modes. The test results at the actual nuclear reactor shows that the neural network plant monitoring system is successfull in detecting in real-time the symptom of small anomaly over a wide power range including reactor start-up, shut-down and stationary operation. (author)
The application of neural network techniques to magnetic and optical inverse problems
International Nuclear Information System (INIS)
Jones, H.V.
2000-12-01
The processing power of the computer has increased at unimaginable rates over the last few decades. However, even today's fastest computer can take several hours to find solutions to some mathematical problems; and there are instances where a high powered supercomputer may be impractical, with the need for near instant solutions just as important (such as in an on-line testing system). This led us to believe that such complex problems could be solved using a novel approach, whereby the system would have prior knowledge about the expected solutions through a process of learning. One method of approaching this kind of problem is through the use of machine learning. Just as a human can be trained and is able to learn from past experiences, a machine is can do just the same. This is the concept of neural networks. The research which was conducted involves the investigation of various neural network techniques, and their applicability to solve some known complex inverse problems in the field of magnetic and optical recording. In some cases a comparison is also made to more conventional methods of solving the problems, from which it was possible to outline some key advantages of using a neural network approach. We initially investigated the application of neural networks to transverse susceptibility data in order to determine anisotropy distributions. This area of research is proving to be very important, as it gives us information about the switching field distribution, which then determines the minimum transition width achievable in a medium, and affects the overwrite characteristics of the media. Secondly, we investigated a similar situation, but applied to an optical problem. This involved the determination of important compact disc parameters from the diffraction pattern of a laser from a disc. This technique was then intended for use in an on-line testing system. Finally we investigated another area of neural networks with the analysis of magnetisation maps and
Song, Chen; Zhong-Cheng, Wu; Hong, Lv
2018-03-01
Building Energy forecasting plays an important role in energy management and plan. Using mind evolutionary algorithm to find the optimal network weights and threshold, to optimize the BP neural network, can overcome the problem of the BP neural network into a local minimum point. The optimized network is used for time series prediction, and the same month forecast, to get two predictive values. Then two kinds of predictive values are put into neural network, to get the final forecast value. The effectiveness of the method was verified by experiment with the energy value of three buildings in Hefei.
Neural networks in signal processing
International Nuclear Information System (INIS)
Govil, R.
2000-01-01
Nuclear Engineering has matured during the last decade. In research and design, control, supervision, maintenance and production, mathematical models and theories are used extensively. In all such applications signal processing is embedded in the process. Artificial Neural Networks (ANN), because of their nonlinear, adaptive nature are well suited to such applications where the classical assumptions of linearity and second order Gaussian noise statistics cannot be made. ANN's can be treated as nonparametric techniques, which can model an underlying process from example data. They can also adopt their model parameters to statistical change with time. Algorithms in the framework of Neural Networks in Signal processing have found new applications potentials in the field of Nuclear Engineering. This paper reviews the fundamentals of Neural Networks in signal processing and their applications in tasks such as recognition/identification and control. The topics covered include dynamic modeling, model based ANN's, statistical learning, eigen structure based processing and generalization structures. (orig.)
Directory of Open Access Journals (Sweden)
D. T. Yakupov
2017-01-01
Full Text Available The purpose of research – to identify the prospects for the use of neural network approach in relation to the tasks of economic forecasting of logistics performance, in particular of volume freight traffic in the transport system promiscuous regional freight traffic, as well as to substantiate the effectiveness of the use of artificial neural networks (ANN, as compared with the efficiency of traditional extrapolative methods of forecasting. The authors consider the possibility of forecasting to use ANN for these economic indicators not as an alternative to the traditional methods of statistical forecasting, but as one of the available simple means for solving complex problems.Materials and methods. When predicting the ANN, three methods of learning were used: 1 the Levenberg-Marquardt algorithm-network training stops when the generalization ceases to improve, which is shown by the increase in the mean square error of the output value; 2 Bayes regularization method - network training is stopped in accordance with the minimization of adaptive weights; 3 the method of scaled conjugate gradients, which is used to find the local extremum of a function on the basis of information about its values and gradient. The Neural Network Toolbox package is used for forecasting. The neural network model consists of a hidden layer of neurons with a sigmoidal activation function and an output neuron with a linear activation function, the input values of the dynamic time series, and the predicted value is removed from the output. For a more objective assessment of the prospects of the ANN application, the results of the forecast are presented in comparison with the results obtained in predicting the method of exponential smoothing.Results. When predicting the volumes of freight transportation by rail, satisfactory indicators of the verification of forecasting by both the method of exponential smoothing and ANN had been obtained, although the neural network
Wang, H. B.; Li, J. W.; Zhou, B.; Yuan, Z. Q.; Chen, Y. P.
2013-03-01
is 93.02%, whereas units without landslide occurrence are predicted with an accuracy of 81.13%. To sum up, the verification shows satisfactory agreement with an accuracy of 86.46% between the susceptibility map and the landslide locations. In the landslide susceptibility assessment, ten new slopes were predicted to show potential for failure, which can be confirmed by the engineering geological conditions of these slopes. It was also observed that some disadvantages could be overcome in the application of the neural networks with back propagation, for example, the low convergence rate and local minimum, after the network was optimized using genetic algorithms. To conclude, neural networks with back propagation that are optimized by genetic algorithms are an effective method to predict landslide susceptibility with high accuracy.
Zamora Ramos, Ernesto
Artificial Intelligence is a big part of automation and with today's technological advances, artificial intelligence has taken great strides towards positioning itself as the technology of the future to control, enhance and perfect automation. Computer vision includes pattern recognition and classification and machine learning. Computer vision is at the core of decision making and it is a vast and fruitful branch of artificial intelligence. In this work, we expose novel algorithms and techniques built upon existing technologies to improve pattern recognition and neural network training, initially motivated by a multidisciplinary effort to build a robot that helps maintain and optimize solar panel energy production. Our contributions detail an improved non-linear pre-processing technique to enhance poorly illuminated images based on modifications to the standard histogram equalization for an image. While the original motivation was to improve nocturnal navigation, the results have applications in surveillance, search and rescue, medical imaging enhancing, and many others. We created a vision system for precise camera distance positioning motivated to correctly locate the robot for capture of solar panel images for classification. The classification algorithm marks solar panels as clean or dirty for later processing. Our algorithm extends past image classification and, based on historical and experimental data, it identifies the optimal moment in which to perform maintenance on marked solar panels as to minimize the energy and profit loss. In order to improve upon the classification algorithm, we delved into feedforward neural networks because of their recent advancements, proven universal approximation and classification capabilities, and excellent recognition rates. We explore state-of-the-art neural network training techniques offering pointers and insights, culminating on the implementation of a complete library with support for modern deep learning architectures
Heiden, Uwe
1980-01-01
The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica ted throughout the text. However, they are not explored in de tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be havior of neurons or neuron pools. In this respect the essay is writt...
DEFF Research Database (Denmark)
Krogh, Anders Stærmose; Riis, Søren Kamaric
1999-01-01
A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...
International Nuclear Information System (INIS)
Guan, Xuemei; Zhu, Yuren; Song, Wenlong
2016-01-01
According to the characteristics of wood dyeing, we propose a predictive model of pigment formula for wood dyeing based on Radial Basis Function (RBF) neural network. In practical application, however, it is found that the number of neurons in the hidden layer of RBF neural network is difficult to determine. In general, we need to test several times according to experience and prior knowledge, which is lack of a strict design procedure on theoretical basis. And we also don’t know whether the RBF neural network is convergent. This paper proposes a peak density function to determine the number of neurons in the hidden layer. In contrast to existing approaches, the centers and the widths of the radial basis function are initialized by extracting the features of samples. So the uncertainty caused by random number when initializing the training parameters and the topology of RBF neural network is eliminated. The average relative error of the original RBF neural network is 1.55% in 158 epochs. However, the average relative error of the RBF neural network which is improved by peak density function is only 0.62% in 50 epochs. Therefore, the convergence rate and approximation precision of the RBF neural network are improved significantly.
Application and Simulation of Fuzzy Neural Network PID Controller in the Aircraft Cabin Temperature
Directory of Open Access Journals (Sweden)
Ding Fang
2013-06-01
Full Text Available Considering complex factors of affecting ambient temperature in Aircraft cabin, and some shortages of traditional PID control like the parameters difficult to be tuned and control ineffective, this paper puts forward the intelligent PID algorithm that makes fuzzy logic method and neural network together, scheming out the fuzzy neural net PID controller. After the correction of the fuzzy inference and dynamic learning of neural network, PID parameters of the controller get the optimal parameters. MATLAB simulation results of the cabin temperature control model show that the performance of the fuzzy neural network PID controller has been greatly improved, with faster response, smaller overshoot and better adaptability.
Applicability of neural networks to etalon fringe filtering in laser spectrometers
Nicely, J. M.; Hanisco, T. F.; Riris, H.
2018-05-01
We present a neural network algorithm for spectroscopic retrievals of concentrations of trace gases. Using synthetic data we demonstrate that a neural network is well suited for filtering etalon fringes and provides superior performance to conventional least squares minimization techniques. This novel method can improve the accuracy of atmospheric retrievals and minimize biases.
Application of Integrated Neural Network Method to Fault Diagnosis of Nuclear Steam Generator
International Nuclear Information System (INIS)
Zhou Gang; Yang Li
2009-01-01
A new fault diagnosis method based on integrated neural networks for nuclear steam generator (SG) was proposed in view of the shortcoming of the conventional fault monitoring and diagnosis method. In the method, two neural networks (ANNs) were employed for the fault diagnosis of steam generator. A neural network, which was used for predicting the values of steam generator operation parameters, was taken as the dynamics model of steam generator. The principle of fault monitoring method using the neural network model is to detect the deviations between process signals measured from an operating steam generator and corresponding output signals from the neural network model of steam generator. When the deviation exceeds the limit set in advance, the abnormal event is thought to occur. The other neural network as a fault classifier conducts the fault classification of steam generator. So, the fault types of steam generator are given by the fault classifier. The clear information on steam generator faults was obtained by fusing the monitoring and diagnosis results of two neural networks. The simulation results indicate that employing integrated neural networks can improve the capacity of fault monitoring and diagnosis for the steam generator. (authors)
Application of artificial neural networks in the analysis of multi-particle data
International Nuclear Information System (INIS)
Kunze, M.
1995-01-01
During the past years artificial neural networks (ANN) have gained increasing interest not only in the regime of financial forecast and data mining, but also in the field of particle physics. Up to now artificial neural networks have mostly been applied in high energy physics trigger studies. The use of ANNs in medium energy physics data analysis is summarized. (author). 21 refs., 9 figs
Applicability of Neural Networks to Etalon Fringe Filtering in Laser Spectrometers
Nicely, J. M.; Hanisco, T. F.; Riris, H.
2018-01-01
We present a neural network algorithm for spectroscopic retrievals of concentrations of trace gases. Using synthetic data we demonstrate that a neural network is well suited for filtering etalon fringes and provides superior performance to conventional least squares minimization techniques. This novel method can improve the accuracy of atmospheric retrievals and minimize biases.
A design philosophy for multi-layer neural networks with applications to robot control
Vadiee, Nader; Jamshidi, MO
1989-01-01
A system is proposed which receives input information from many sensors that may have diverse scaling, dimension, and data representations. The proposed system tolerates sensory information with faults. The proposed self-adaptive processing technique has great promise in integrating the techniques of artificial intelligence and neural networks in an attempt to build a more intelligent computing environment. The proposed architecture can provide a detailed decision tree based on the input information, information stored in a long-term memory, and the adapted rule-based knowledge. A mathematical model for analysis will be obtained to validate the cited hypotheses. An extensive software program will be developed to simulate a typical example of pattern recognition problem. It is shown that the proposed model displays attention, expectation, spatio-temporal, and predictory behavior which are specific to the human brain. The anticipated results of this research project are: (1) creation of a new dynamic neural network structure, and (2) applications to and comparison with conventional multi-layer neural network structures. The anticipated benefits from this research are vast. The model can be used in a neuro-computer architecture as a building block which can perform complicated, nonlinear, time-varying mapping from a multitude of input excitory classes to an output or decision environment. It can be used for coordinating different sensory inputs and past experience of a dynamic system and actuating signals. The commercial applications of this project can be the creation of a special-purpose neuro-computer hardware which can be used in spatio-temporal pattern recognitions in such areas as air defense systems, e.g., target tracking, and recognition. Potential robotics-related applications are trajectory planning, inverse dynamics computations, hierarchical control, task-oriented control, and collision avoidance.
DEFF Research Database (Denmark)
Hansen, Lars Kai; Salamon, Peter
1990-01-01
We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....
An application of neural networks and artificial intelligence for in-core fuel management
International Nuclear Information System (INIS)
Miller, L.F.; Algutifan, F.; Uhrig, R.E.
1992-01-01
This paper reports the feasibility of using expert systems in combination with neural networks and neutronics calculations to improve the efficiency for obtaining optimal candidate reload core designs. The general objectives of this research are as follows: (1) generate a suitable data base and ancillary software for training neural networks that duplicate neutronics calculations. (2) develop a graphical interface with neutronics software and neural networks for manual shuffling of reload cores. (3) construct an expert system for shuffling reload cores with specified rules. (4) develp neural networks that capture the nonlinear behavior of fuel depletion. (5) integrate the neural networks and neutronics software with an expert system to specify reload cores that obtain appropriate figure of merit
MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION
Directory of Open Access Journals (Sweden)
Artur Popko
2013-06-01
Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.
Parzen neural networks: Fundamentals, properties, and an application to forensic anthropology.
Trentin, Edmondo; Lusnig, Luca; Cavalli, Fabio
2018-01-01
A novel, unsupervised nonparametric model of multivariate probability density functions (pdf) is introduced, namely the Parzen neural network (PNN). The PNN is intended to overcome the major limitations of traditional (either statistical or neural) pdf estimation techniques. Besides being profitably simple, the PNN turns out to have nice properties in terms of unbiased modeling capability, asymptotic convergence, and efficiency at test time. Several matters pertaining the practical application of the PNN are faced in the paper, too. Experiments are reported, involving (i) synthetic datasets, and (ii) a challenging sex determination task from 1400 scout-view CT-scan images of human crania. Incidentally, the empirical evidence entails also some conclusions of high anthropological relevance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Milačić, Ljubiša; Jović, Srđan; Vujović, Tanja; Miljković, Jovica
2017-01-01
The purpose of this research is to develop and apply the artificial neural network (ANN) with extreme learning machine (ELM) to forecast gross domestic product (GDP) growth rate. The economic growth forecasting was analyzed based on agriculture, manufacturing, industry and services value added in GDP. The results were compared with ANN with back propagation (BP) learning approach since BP could be considered as conventional learning methodology. The reliability of the computational models was accessed based on simulation results and using several statistical indicators. Based on results, it was shown that ANN with ELM learning methodology can be applied effectively in applications of GDP forecasting.
International Nuclear Information System (INIS)
Sadighi, M.; Setayeshi, S.; Salehi, A.A.
2002-01-01
This paper presents a new method to solve the problem of finding the best configuration of fuel assemblies in a PWR (Pressurized Water Reactor) core. Finding an optimum solution requires a huge amount of calculations in classical methods. It has been shown that the application of continuous Hop field neural network accompanied by the Simulated Annealing method to this problem not only reduces the volume of the calculations, but also guarantees finding the best solution. In this study flattening of neutron flux inside the reactor core of Brusher NPP is considered as an objective function. The result shows the optimum core configuration which is in agreement with the pattern proposed by the designer
Fuzzy logic and artificial neural networks for nuclear power plant applications
International Nuclear Information System (INIS)
Berkan, R.C.; Eryurek, E.; Upadhyaya, B.R.
1992-01-01
This paper discusses the feasibility of applying fuzzy logic and neural networks to plant-wide monitoring, diagnostics, and control problems. Different data sets are gathered from several sources including two commercial Pressurized Water Reactors (PWR), the Experimental Breeder Reactor-II (EBR-II), and the conceptual design of Modular Liquid-Metal Reactor (PRISM). These data sets are used to illustrate applications to operating processes, and to PRISM design. The results show that the artificial intelligence approach to a number of operational tasks can considerably improve the safety and availability of nuclear power generation
Critical Branching Neural Networks
Kello, Christopher T.
2013-01-01
It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…
Cheng, Long; Hou, Zeng-Guang; Lin, Yingzi; Tan, Min; Zhang, Wenjun Chris; Wu, Fang-Xiang
2011-05-01
A recurrent neural network is proposed for solving the non-smooth convex optimization problem with the convex inequality and linear equality constraints. Since the objective function and inequality constraints may not be smooth, the Clarke's generalized gradients of the objective function and inequality constraints are employed to describe the dynamics of the proposed neural network. It is proved that the equilibrium point set of the proposed neural network is equivalent to the optimal solution of the original optimization problem by using the Lagrangian saddle-point theorem. Under weak conditions, the proposed neural network is proved to be stable, and the state of the neural network is convergent to one of its equilibrium points. Compared with the existing neural network models for non-smooth optimization problems, the proposed neural network can deal with a larger class of constraints and is not based on the penalty method. Finally, the proposed neural network is used to solve the identification problem of genetic regulatory networks, which can be transformed into a non-smooth convex optimization problem. The simulation results show the satisfactory identification accuracy, which demonstrates the effectiveness and efficiency of the proposed approach.
Energy Technology Data Exchange (ETDEWEB)
Silva, R M.C.F. da [PETROBRAS, Rio de Janeiro, RJ (Brazil); Chaves, C. [Fundacao Gorceix, Belo Horizonte, MG (Brazil)
2000-07-01
Neural Network technology is an approach for describing behavior from process data, using mathematical algorithms and statistical techniques. The use of Neural Network in industrial process modeling and property estimation of feedstocks or products, is increasing in several kinds of chemical industries. This paper comments about critical successful factors, advantages and disadvantages of this methodology. Moreover, it presents some applications in Hydrotreating Process of the petroleum refining industry. In Hydrotreating of feedstocks, knowledge about characteristics of process regarding product property estimation, hydrogen consumption and removal of contaminants (sulfur, nitrogen, aromatics), are very important to process optimization, product specification and environment protection. The Neural Network technique has been used to model the behaviour of the chemical hydrogen consumption, the conversions of the hydrogenation of aromatic hydrocarbons, hydrodesulfurization and hydro denitrogenation reactions and the physical properties of product with operational conditions and feedstock properties. In addition, Neural Networks have been built to predict the cetane number of feedstocks. (author)
International Nuclear Information System (INIS)
Gougam, L.A.; Taibi, H.; Chikhi, A.; Mekideche-Chafa, F.
2009-01-01
The problem of determining the analytical description for a set of data arises in numerous sciences and applications and can be referred to as data modeling or system identification. Neural networks are a convenient means of representation because they are known to be universal approximates that can learn data. The desired task is usually obtained by a learning procedure which consists in adjusting the s ynaptic weights . For this purpose, many learning algorithms have been proposed to update these weights. The convergence for these learning algorithms is a crucial criterion for neural networks to be useful in different applications. The aim of the present contribution is to use a training algorithm for feed forward wavelet networks used for function approximation. The training is based on the minimization of the least-square cost function. The minimization is performed by iterative second order gradient-based methods. We make use of the Levenberg-Marquardt algorithm to train the architecture of the chosen network and, then, the training procedure starts with a simple gradient method which is followed by a BFGS (Broyden, Fletcher, Glodfarb et Shanno) algorithm. The performances of the two algorithms are then compared. Our method is then applied to determine the energy of the ground state associated to a sextic potential. In fact, the Schrodinger equation does not always admit an exact solution and one has, generally, to solve it numerically. To this end, the sextic potential is, firstly, approximated with the above outlined wavelet network and, secondly, implemented into a numerical scheme. Our results are in good agreement with the ones found in the literature.
Application of two neural network paradigms to the study of voluntary employee turnover.
Somers, M J
1999-04-01
Two neural network paradigms--multilayer perceptron and learning vector quantization--were used to study voluntary employee turnover with a sample of 577 hospital employees. The objectives of the study were twofold. The 1st was to assess whether neural computing techniques offered greater predictive accuracy than did conventional turnover methodologies. The 2nd was to explore whether computer models of turnover based on neural network technologies offered new insights into turnover processes. When compared with logistic regression analysis, both neural network paradigms provided considerably more accurate predictions of turnover behavior, particularly with respect to the correct classification of leavers. In addition, these neural network paradigms captured nonlinear relationships that are relevant for theory development. Results are discussed in terms of their implications for future research.
Applications of autoassociative neural networks for signal validation in accident management
International Nuclear Information System (INIS)
Fantoni, P.; Mazzola, A.
1994-01-01
The OECD Halden Reactor Project has been working for several years with computer based systems for determination on plant status including early fault detection and signal validation. The method here presented explores the possibility to use a neural network approach to validate important process signals during normal and abnormal plant conditions. In BWR plants, signal validation has two important applications: reliable thermal limits calculation and reliable inputs to other computerized systems that support the operator during accident scenarious. This work shows how a properly trained autoassociative neural network can promptly detect faulty process signal measurements and produce a best estimate of the actual process value. Noise has been artificially added to the input to evaluate the network ability to respond in a very low signal to noise ratio environment. Training and test datasets have been simulated by the real time transient simulator code APROS. Future development addresses the validation of the model through the use of real data from the plant. (author). 5 refs, 17 figs
Directory of Open Access Journals (Sweden)
N. Sriraam
2011-01-01
Full Text Available A telemedicine system using communication and information technology to deliver medical signals such as ECG, EEG for long distance medical services has become reality. In either the urgent treatment or ordinary healthcare, it is necessary to compress these signals for the efficient use of bandwidth. This paper discusses a quality on demand compression of EEG signals using neural network predictors for telemedicine applications. The objective is to obtain a greater compression gains at a low bit rate while preserving the clinical information content. A two-stage compression scheme with a predictor and an entropy encoder is used. The residue signals obtained after prediction is first thresholded using various levels of thresholds and are further quantized and then encoded using an arithmetic encoder. Three neural network models, single-layer and multi-layer perceptrons and Elman network are used and the results are compared with linear predictors such as FIR filters and AR modeling. The fidelity of the reconstructed EEG signal is assessed quantitatively using parameters such as PRD, SNR, cross correlation and power spectral density. It is found from the results that the quality of the reconstructed signal is preserved at a low PRD thereby yielding better compression results compared to results obtained using lossless scheme.
Application of improved PSO-RBF neural network in the synthetic ammonia decarbonization
Directory of Open Access Journals (Sweden)
Yongwei LI
2017-12-01
Full Text Available The synthetic ammonia decarbonization is a typical complex industrial process, which has the characteristics of time variation, nonlinearity and uncertainty, and the on-line control model is difficult to be established. An improved PSO-RBF neural network control algorithm is proposed to solve the problems of low precision and poor robustness in the complex process of the synthetic ammonia decarbonization. The particle swarm optimization algorithm and RBF neural network are combined. The improved particle swarm algorithm is used to optimize the RBF neural network's hidden layer primary function center, width and the output layer's connection value to construct the RBF neural network model optimized by the improved PSO algorithm. The improved PSO-RBF neural network control model is applied to the key carbonization process and compared with the traditional fuzzy neural network. The simulation results show that the improved PSO-RBF neural network control method used in the synthetic ammonia decarbonization process has higher control accuracy and system robustness, which provides an effective way to solve the modeling and optimization control of a complex industrial process.
Parallel consensual neural networks.
Benediktsson, J A; Sveinsson, J R; Ersoy, O K; Swain, P H
1997-01-01
A new type of a neural-network architecture, the parallel consensual neural network (PCNN), is introduced and applied in classification/data fusion of multisource remote sensing and geographic data. The PCNN architecture is based on statistical consensus theory and involves using stage neural networks with transformed input data. The input data are transformed several times and the different transformed data are used as if they were independent inputs. The independent inputs are first classified using the stage neural networks. The output responses from the stage networks are then weighted and combined to make a consensual decision. In this paper, optimization methods are used in order to weight the outputs from the stage networks. Two approaches are proposed to compute the data transforms for the PCNN, one for binary data and another for analog data. The analog approach uses wavelet packets. The experimental results obtained with the proposed approach show that the PCNN outperforms both a conjugate-gradient backpropagation neural network and conventional statistical methods in terms of overall classification accuracy of test data.
Antenna analysis using neural networks
Smith, William T.
1992-01-01
Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern
Application of Artificial Neural Networks to Rainfall Forecasting in Queensland, Australia
Institute of Scientific and Technical Information of China (English)
John ABBOT; Jennifer MAROHASY
2012-01-01
In this study,the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland,Australia,was assessed by inputting recognized climate indices,monthly historical rainfall data,and atmospheric temperatures into a prototype stand-alone,dynamic,recurrent,time-delay,artificial neural network.Outputs,as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009,were compared with observed rainfall data using time-series plots,root mean squared error (RMSE),and Pearson correlation coefficients.A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology's Predictive Ocean Atmosphere Model for Australia (POAMA)-1.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared.The application of artificial neural networks to rainfall forecasting was reviewed.The prototype design is considered preliminary,with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes.
Directory of Open Access Journals (Sweden)
Santosh Kumar Nanda
2011-01-01
Full Text Available Functional link-based neural network models were applied to predict opencast mining machineries noise. The paper analyzes the prediction capabilities of functional link neural network based noise prediction models vis-à-vis existing statistical models. In order to find the actual noise status in opencast mines, some of the popular noise prediction models, for example, ISO-9613-2, CONCAWE, VDI, and ENM, have been applied in mining and allied industries to predict the machineries noise by considering various attenuation factors. Functional link artificial neural network (FLANN, polynomial perceptron network (PPN, and Legendre neural network (LeNN were used to predict the machinery noise in opencast mines. The case study is based on data collected from an opencast coal mine of Orissa, India. From the present investigations, it could be concluded that the FLANN model give better noise prediction than the PPN and LeNN model.
Application of artificial neural network for heat transfer in porous cone
Athani, Abdulgaphur; Ahamad, N. Ameer; Badruddin, Irfan Anjum
2018-05-01
Heat transfer in porous medium is one of the classical areas of research that has been active for many decades. The heat transfer in porous medium is generally studied by using numerical methods such as finite element method; finite difference method etc. that solves coupled partial differential equations by converting them into simpler forms. The current work utilizes an alternate method known as artificial neural network that mimics the learning characteristics of neurons. The heat transfer in porous medium fixed in a cone is predicted using backpropagation neural network. The artificial neural network is able to predict this behavior quite accurately.
An Application to the Prediction of LOD Change Based on General Regression Neural Network
Zhang, X. H.; Wang, Q. J.; Zhu, J. J.; Zhang, H.
2011-07-01
Traditional prediction of the LOD (length of day) change was based on linear models, such as the least square model and the autoregressive technique, etc. Due to the complex non-linear features of the LOD variation, the performances of the linear model predictors are not fully satisfactory. This paper applies a non-linear neural network - general regression neural network (GRNN) model to forecast the LOD change, and the results are analyzed and compared with those obtained with the back propagation neural network and other models. The comparison shows that the performance of the GRNN model in the prediction of the LOD change is efficient and feasible.
Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.
2007-01-01
To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.
Application of particle swarm optimization to identify gamma spectrum with neural network
International Nuclear Information System (INIS)
Shi Dongsheng; Di Yuming; Zhou Chunlin
2007-01-01
In applying neural network to identification of gamma spectra back propagation (BP) algorithm is usually trapped to a local optimum and has a low speed of convergence, whereas particle swarm optimization (PSO) is advantageous in terms of globe optimal searching. In this paper, we propose a new algorithm for neural network training, i.e. combined BP and PSO optimization, or PSO-BP algorithm. Practical example shows that the new algorithm can overcome shortcomings of BP algorithm and the neural network trained by it has a high ability of generalization with identification result of 100% correctness. It can be used effectively and reliably to identify gamma spectra. (authors)
Refining mass formulas for astrophysical applications: A Bayesian neural network approach
Utama, R.; Piekarewicz, J.
2017-10-01
Background: Exotic nuclei, particularly those near the drip lines, are at the core of one of the fundamental questions driving nuclear structure and astrophysics today: What are the limits of nuclear binding? Exotic nuclei play a critical role in both informing theoretical models as well as in our understanding of the origin of the heavy elements. Purpose: Our aim is to refine existing mass models through the training of an artificial neural network that will mitigate the large model discrepancies far away from stability. Methods: The basic paradigm of our two-pronged approach is an existing mass model that captures as much as possible of the underlying physics followed by the implementation of a Bayesian neural network (BNN) refinement to account for the missing physics. Bayesian inference is employed to determine the parameters of the neural network so that model predictions may be accompanied by theoretical uncertainties. Results: Despite the undeniable quality of the mass models adopted in this work, we observe a significant improvement (of about 40%) after the BNN refinement is implemented. Indeed, in the specific case of the Duflo-Zuker mass formula, we find that the rms deviation relative to experiment is reduced from σrms=0.503 MeV to σrms=0.286 MeV. These newly refined mass tables are used to map the neutron drip lines (or rather "drip bands") and to study a few critical r -process nuclei. Conclusions: The BNN approach is highly successful in refining the predictions of existing mass models. In particular, the large discrepancy displayed by the original "bare" models in regions where experimental data are unavailable is considerably quenched after the BNN refinement. This lends credence to our approach and has motivated us to publish refined mass tables that we trust will be helpful for future astrophysical applications.
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu
2017-10-01
This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.
Ferentinos, Konstantinos P
2005-09-01
Two neural network (NN) applications in the field of biological engineering are developed, designed and parameterized by an evolutionary method based on the evolutionary process of genetic algorithms. The developed systems are a fault detection NN model and a predictive modeling NN system. An indirect or 'weak specification' representation was used for the encoding of NN topologies and training parameters into genes of the genetic algorithm (GA). Some a priori knowledge of the demands in network topology for specific application cases is required by this approach, so that the infinite search space of the problem is limited to some reasonable degree. Both one-hidden-layer and two-hidden-layer network architectures were explored by the GA. Except for the network architecture, each gene of the GA also encoded the type of activation functions in both hidden and output nodes of the NN and the type of minimization algorithm that was used by the backpropagation algorithm for the training of the NN. Both models achieved satisfactory performance, while the GA system proved to be a powerful tool that can successfully replace the problematic trial-and-error approach that is usually used for these tasks.
Digital Repository Service at National Institute of Oceanography (India)
Chakraborty, B.; Mahale, V.; Navelkar, G.S.; Desai, R.G.P.
In this paper seafloor classifications system based on artificial neural network (ANN) has been designed. The ANN architecture employed here is a combination of Self Organizing Feature Map (SOFM) and Linear Vector Quantization (LVQ1). Currently...
Application of artificial neural networks in analysis of CHF experimental data in round tubes
International Nuclear Information System (INIS)
Huang Yanping; Chen Bingde; Lang Xuemei; Wang Xiaojun; Shan Jianqiang; Jia Dounan
2004-01-01
Artificial neural networks (ANNs) are applied successfully to analyze the critical heat flux (CHF) experimental data from some round tubes in this paper. A set of software adopting artificial neural network method for predicting CHF in round tube and a set of CHF database are gotten. Comparing with common CHF correlations and CHF look-up table, ANN method has stronger ability of allow-wrong and nice robustness. The CHF predicting software adopting artificial neural network technology can improve the predicting accuracy in a wider parameter range, and is easier to update and to use. The artificial neural network method used in this paper can be applied to some similar physical problems. (authors)
Prakash, M; Balasubramaniam, P; Lakshmanan, S
2016-11-01
This study is mainly concerned with the problem on synchronization criteria for Markovian jumping time delayed bidirectional associative memory neural networks and their applications in secure image communications. Based on the variable transformation method, the addressed second order differential equations are transformed into first order differential equations. Then, by constructing a suitable Lyapunov-Krasovskii functional and based on integral inequalities, the criteria which ensure the synchronization between the uncontrolled system and controlled system are established through designed feedback controllers and linear matrix inequalities. Further, the proposed results proved that the error system is globally asymptotically stable in the mean square. Moreover, numerical illustrations are provided to validate the effectiveness of the derived analytical results. Finally, the application of addressed system is explored via image encryption/decryption process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Applications of artificial neural networks for thermal analysis of heat exchangers - A review
International Nuclear Information System (INIS)
Mohanraj, M.; Jayaraj, S.; Muraleedharan, C.
2015-01-01
Artificial neural networks (ANN) have been widely used for thermal analysis of heat exchangers during the last two decades. In this paper, the applications of ANN for thermal analysis of heat exchangers are reviewed. The reported investigations on thermal analysis of heat exchangers are categorized into four major groups, namely (i) modeling of heat exchangers, (ii) estimation of heat exchanger parameters, (iii) estimation of phase change characteristics in heat exchangers and (iv) control of heat exchangers. Most of the papers related to the applications of ANN for thermal analysis of heat exchangers are discussed. The limitations of ANN for thermal analysis of heat exchangers and its further research needs in this field are highlighted. ANN is gaining popularity as a tool, which can be successfully used for the thermal analysis of heat exchangers with acceptable accuracy. (authors)
Tlelo-Cuautle, Esteban; de la Fraga, Luis Gerardo
2016-01-01
This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will b...
Vukotic , Vedran; Raymond , Christian; Gravier , Guillaume
2016-01-01
International audience; Common approaches to problems involving multiple modalities (classification, retrieval, hyperlinking, etc.) are early fusion of the initial modalities and crossmodal translation from one modality to the other. Recently, deep neural networks, especially deep autoencoders, have proven promising both for crossmodal translation and for early fusion via multimodal embedding. In this work, we propose a flexible cross-modal deep neural network architecture for multimodal and ...
An Exploratory Application of Neural Networks to the Sortie Generation Forecasting Problem
1991-09-01
research of Dr. David A. Diener, Major, USAF. As the initial research increment to be improved upon by future researchers, this study (1) provides a... David A. Diener, Major, USAF, who virtually transformed my dream of exploring neural network techniques into concrete reality. His talents in...New York: John Wiley & Sons, 1978. Barron R. L., Gilstrap, L. 0., and Shrier , S. "Polynomial al and Neural Networks: Analogies and Engineering
The application of expert systems and neural networks to gas turbine prognostics and diagnostics
Energy Technology Data Exchange (ETDEWEB)
DePold, H.R.; Gass, F.D.
1999-10-01
Condition monitoring of engine gas generators plays an essential role in airline fleet management. Adaptive diagnostic systems are becoming available that interpret measured data, furnish diagnosis of problems, provide a prognosis of engine health for planning purposes, and rank engines for scheduled maintenance. More than four hundred operations worldwide currently use versions of the first or second generation diagnostic tools. Development of a third generation system is underway which will provide additional system enhancements and combine the functions of the existing tools. Proposed enhancements include the use of artificial intelligence to automate, improve the quality of the analysis, provide timely alerts, and the use of an Internet link for collaboration. One objective of these enhancements is to have the intelligent system do more of the analysis and decision making, while continuing to support the depth of analysis currently available at experienced operations. This paper presents recent developments in technology and strategies in engine condition monitoring including: (1) application of statistical analysis and artificial neural network filters to improve data quality, (2) neural networks for trend change detection, and classification to diagnose performance change, and (3) expert systems to diagnose, provide alerts and to rank maintenance action recommendations.
An Inverse Neural Controller Based on the Applicability Domain of RBF Network Models
Directory of Open Access Journals (Sweden)
Alex Alexandridis
2018-01-01
Full Text Available This paper presents a novel methodology of generic nature for controlling nonlinear systems, using inverse radial basis function neural network models, which may combine diverse data originating from various sources. The algorithm starts by applying the particle swarm optimization-based non-symmetric variant of the fuzzy means (PSO-NSFM algorithm so that an approximation of the inverse system dynamics is obtained. PSO-NSFM offers models of high accuracy combined with small network structures. Next, the applicability domain concept is suitably tailored and embedded into the proposed control structure in order to ensure that extrapolation is avoided in the controller predictions. Finally, an error correction term, estimating the error produced by the unmodeled dynamics and/or unmeasured external disturbances, is included to the control scheme to increase robustness. The resulting controller guarantees bounded input-bounded state (BIBS stability for the closed loop system when the open loop system is BIBS stable. The proposed methodology is evaluated on two different control problems, namely, the control of an experimental armature-controlled direct current (DC motor and the stabilization of a highly nonlinear simulated inverted pendulum. For each one of these problems, appropriate case studies are tested, in which a conventional neural controller employing inverse models and a PID controller are also applied. The results reveal the ability of the proposed control scheme to handle and manipulate diverse data through a data fusion approach and illustrate the superiority of the method in terms of faster and less oscillatory responses.
Directory of Open Access Journals (Sweden)
Hossein Foroozand
2018-03-01
Full Text Available Recently, the Entropy Ensemble Filter (EEF method was proposed to mitigate the computational cost of the Bootstrap AGGregatING (bagging method. This method uses the most informative training data sets in the model ensemble rather than all ensemble members created by the conventional bagging. In this study, we evaluate, for the first time, the application of the EEF method in Neural Network (NN modeling of El Nino-southern oscillation. Specifically, we forecast the first five principal components (PCs of sea surface temperature monthly anomaly fields over tropical Pacific, at different lead times (from 3 to 15 months, with a three-month increment for the period 1979–2017. We apply the EEF method in a multiple-linear regression (MLR model and two NN models, one using Bayesian regularization and one Levenberg-Marquardt algorithm for training, and evaluate their performance and computational efficiency relative to the same models with conventional bagging. All models perform equally well at the lead time of 3 and 6 months, while at higher lead times, the MLR model’s skill deteriorates faster than the nonlinear models. The neural network models with both bagging methods produce equally successful forecasts with the same computational efficiency. It remains to be shown whether this finding is sensitive to the dataset size.
An Introduction to Neural Networks for Hearing Aid Noise Recognition.
Kim, Jun W.; Tyler, Richard S.
1995-01-01
This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the…
Hortos, William S.
1997-04-01
The use of artificial neural networks (NNs) to address the channel assignment problem (CAP) for cellular time-division multiple access and code-division multiple access networks has previously been investigated by this author and many others. The investigations to date have been based on a hexagonal cell structure established by omnidirectional antennas at the base stations. No account was taken of the use of spatial isolation enabled by directional antennas to reduce interference between mobiles. Any reduction in interference translates into increased capacity and consequently alters the performance of the NNs. Previous studies have sought to improve the performance of Hopfield- Tank network algorithms and self-organizing feature map algorithms applied primarily to static channel assignment (SCA) for cellular networks that handle uniformly distributed, stationary traffic in each cell for a single type of service. The resulting algorithms minimize energy functions representing interference constraint and ad hoc conditions that promote convergence to optimal solutions. While the structures of the derived neural network algorithms (NNAs) offer the potential advantages of inherent parallelism and adaptability to changing system conditions, this potential has yet to be fulfilled the CAP for emerging mobile networks. The next-generation communication infrastructures must accommodate dynamic operating conditions. Macrocell topologies are being refined to microcells and picocells that can be dynamically sectored by adaptively controlled, directional antennas and programmable transceivers. These networks must support the time-varying demands for personal communication services (PCS) that simultaneously carry voice, data and video and, thus, require new dynamic channel assignment (DCA) algorithms. This paper examines the impact of dynamic cell sectoring and geometric conditioning on NNAs developed for SCA in omnicell networks with stationary traffic to improve the metrics
The application of artificial neural network in radon disaster model of uranium mining
International Nuclear Information System (INIS)
Zhu Yufeng; Zhu Guogen; Zhou Shijian
2012-01-01
The structural features, data analysis and learning process of feed-forward neural network (BP ANN) were analyzed at first. Rodon sample from Fuzhou Jinan Uranium Industry Limited Company were used to training the network and make the forecast then, and a forecasting model was established for the radon disaster in uranium mines. The method and effectiveness of BP neural network in predicting radon disaster was discussed. The test of training samples showed that the BP network had gotten fairly satisfied result in predicting mine radon disaster. (authors)
Zhang, Shijun; Jing, Zhongliang; Li, Jianxun
2005-01-01
The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real-world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.
The Application of Artificial Neural Networks to Ore Reserve Estimation at Choghart Iron Ore Deposit
Directory of Open Access Journals (Sweden)
Seyyed Ali Nezamolhosseini
2017-01-01
Full Text Available Geo-statistical methods for reserve estimation are difficult to use when stationary conditions are not satisfied. Artificial Neural Networks (ANNs provide an alternative to geo-statistical techniques while considerably reducing the processing time required for development and application. In this paper the ANNs was applied to the Choghart iron ore deposit in Yazd province of Iran. Initially, an optimum Multi Layer Perceptron (MLP was constructed to estimate the Fe grade within orebody using the whole ore data of the deposit. Sensitivity analysis was applied for a number of hidden layers and neurons, different types of activation functions and learning rules. Optimal architectures for iron grade estimation were 3-20-10-1. In order to improve the network performance, the deposit was divided into four homogenous zones. Subsequently, all sensitivity analyses were carried out on each zone. Finally, a different optimum network was trained and Fe was estimated separately for each zone. Comparison of correlation coefficient (R and least mean squared error (MSE showed that the ANNs performed on four homogenous zones were far better than the nets applied to the overall ore body. Therefore, these optimized neural networks were used to estimate the distribution of iron grades and the iron resource in Choghart deposit. As a result of applying ANNs, the tonnage of ore for Choghart deposit is approximately estimated at 135.8 million tones with average grade of Fe at 56.14 percent. Results of reserve estimation using ANNs showed a good agreement with the geo-statistical methods applied to this ore body in another work.
Spin glasses and neural networks
International Nuclear Information System (INIS)
Parga, N.; Universidad Nacional de Cuyo, San Carlos de Bariloche
1989-01-01
The mean-field theory of spin glass models has been used as a prototype of systems with frustration and disorder. One of the most interesting related systems are models of associative memories. In these lectures we review the main concepts developed to solve the Sherrington-Kirkpatrick model and its application to neural networks. (orig.)
Witoonchart, Peerajak; Chongstitvatana, Prabhas
2017-08-01
In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic training algorithm for dynamic neural networks
International Nuclear Information System (INIS)
Tan, Y.; Van Cauwenberghe, A.; Liu, Z.
1996-01-01
The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper
Chao, Tien-Hsin; Stoner, William W.
1993-01-01
An optical neural network based on the neocognitron paradigm is introduced. A novel aspect of the architecture design is shift-invariant multichannel Fourier optical correlation within each processing layer. Multilayer processing is achieved by feeding back the ouput of the feature correlator interatively to the input spatial light modulator and by updating the Fourier filters. By training the neural net with characteristic features extracted from the target images, successful pattern recognition with intraclass fault tolerance and interclass discrimination is achieved. A detailed system description is provided. Experimental demonstrations of a two-layer neural network for space-object discrimination is also presented.
Aspects of artificial neural networks - with applications in high energy physics
International Nuclear Information System (INIS)
Roegnvaldsson, T.S.
1994-02-01
Different aspects of artificial neural networks are studied and discussed. They are demonstrated to be powerful general purpose algorithms, applicable to many different problem areas like pattern recognition, function fitting and prediction. Multi-layer perceptron (MPL) models are shown to out perform previous standard approaches on both off-line and on-line analysis tasks in high energy physics, like quark flavour tagging and mass reconstruction, as well as being powerful tools for prediction tasks. It is also demonstrated how a self-organizing network can be employed to extract information from data, for instance to track down origins of unexpected model discrepancies. Furthermore, it is proved that the MPL is more efficient than the learning vector quantization technique on classification problems, by producing smoother discrimination surfaces, and that an MPL network should be trained with a noisy updating schedule if the Hessian is ill-conditioned - A result that is especially important for MPL network with more than just one hidden layer. 81 refs, 6 figs
The application of neural network for the advancement of the eddy current testing
International Nuclear Information System (INIS)
Sakai, T.; Soneda, N.
1996-01-01
All the steam generator (SG) tubes of Japanese pressurized water reactors (PWRs) are inspected by the eddy current testing (ECT) method in every annual scheduled inspection. Here, a neural network system to estimate the class and size of defects from signals obtained by the eddy current testing (ECT) method has been developed. A trajectory of ECT signal is characterized by four representative parameters, and totally eight parameters obtained from two trajectories by different AC current frequencies are used as input parameters for neutral networks. A probabilistic descent method is employed to minimize the error at the learning process of neural networks. It is indicated that using multiple neutral networks which are separately responsible to each class of defects is effective to the improvement of their estimation accuracy. And, it is demonstrated that the neural network system which the authors developed can estimate the class and size of defects from unlearned trajectories with high accuracy
International Nuclear Information System (INIS)
Gaudier, F.
1999-01-01
The determination of the family of optimum core loading patterns for Pressurized Water Reactors (PWRs) involves the assessment of the core attributes, such as the power peaking factor for thousands of candidate loading patterns. Despite the rapid advances in computer architecture, the direct calculation of these attributes by a neutronic code needs a lot of of time and memory. With the goal of reducing the calculation time and optimizing the loading pattern, we propose in this thesis a method based on ideas of neural and statistical learning to provide a feed forward neural network capable of calculating the power peaking corresponding to an eighth core PWR. We use statistical methods to deduct judicious inputs (reduction of the input space dimension) and neural methods to train the model (learning capabilities). Indeed, on one hand, a principal component analysis allows us to characterize more efficiently the fuel assemblies (neural model inputs) and the other hand, the introduction of the a priori knowledge allows us to reducing the number of freedom parameters in the neural network. The model was built using a multi layered perceptron trained with the standard back propagation algorithm. We introduced our neural network in the automatic optimization code FORMOSA, and on EDF real problems we showed an important saving in time. Finally, we propose an hybrid method which combining the best characteristics of the linear local approximator GPT (Generalized Perturbation Theory) and the artificial neural network. (author)
Anghel, D.-C.; Ene, A.; Ştirbu, C.; Sicoe, G.
2017-10-01
This paper presents a study about the factors that influence the working performances of workers in the automotive industry. These factors regard mainly the transportations conditions, taking into account the fact that a large number of workers live in places that are far away of the enterprise. The quantitative data obtained from this study will be generalized by using a neural network, software simulated. The neural network is able to estimate the performance of workers even for the combinations of input factors that had been not recorded by the study. The experimental data obtained from the study will be divided in two classes. The first class that contains approximately 80% of data will be used by the Java software for the training of the neural network. The weights resulted from the training process will be saved in a text file. The other class that contains the rest of the 20% of experimental data will be used to validate the neural network. The training and the validation of the networks are performed in a Java software (TrainAndValidate java class). We designed another java class, Test.java that will be used with new input data, for new situations. The experimental data collected from the study. The software that simulated the neural network. The software that estimates the working performance, when new situations are met. This application is useful for human resources department of an enterprise. The output results are not quantitative. They are qualitative (from low performance to high performance, divided in five classes).
Machine and component residual life estimation through the application of neural networks
International Nuclear Information System (INIS)
Herzog, M.A.; Marwala, T.; Heyns, P.S.
2009-01-01
This paper concerns the use of neural networks for predicting the residual life of machines and components. In addition, the advantage of using condition-monitoring data to enhance the predictive capability of these neural networks was also investigated. A number of neural network variations were trained and tested with the data of two different reliability-related datasets. The first dataset represents the renewal case where the failed unit is repaired and restored to a good-as-new condition. Data were collected in the laboratory by subjecting a series of similar test pieces to fatigue loading with a hydraulic actuator. The average prediction error of the various neural networks being compared varied from 431 to 841 s on this dataset, where test pieces had a characteristic life of 8971 s. The second dataset were collected from a group of pumps used to circulate a water and magnetite solution within a plant. The data therefore originated from a repaired system affected by reliability degradation. When optimized, the multi-layer perceptron neural networks trained with the Levenberg-Marquardt algorithm and the general regression neural network produced a sum-of-squares error within 11.1% of each other for the renewal dataset. The small number of inputs and poorly mapped input space on the second dataset meant that much larger errors were recorded on some of the test data. The potential for using neural networks for residual life prediction and the advantage of incorporating condition-based data into the model was nevertheless proven for both examples
Application of Artificial Neural Networks to the Analysis of NORM Samples
International Nuclear Information System (INIS)
Moser, H.; Peyrés, V.; Mejuto, M.; García-Toraño, E.
2015-01-01
This work describes the application of artificial neural networks (ANNs) to analyze the raw data of gamma-ray spectra of NORM samples and decide if the activity content of a certain nuclide is above or below the exemption limit of 1 Bq/g. The main advantage of using an ANN for this purpose is that for the user no specialized knowledge in the field of gamma-ray spectrometry is necessary. In total a number of 635 spectra consisting of varying activity concentrations, seven different materials and three densities each have been generated by Monte Carlo simulation to provide training material to the ANN. These spectra have been created using the simulation code PENELOPE. Validation was carried out with a number of NORM samples previously characterized by conventional gamma-ray spectrometry with peak fitting
Natural gas demand forecast system based on the application of artificial neural networks
International Nuclear Information System (INIS)
Sanfeliu, J.M.; Doumanian, J.E.
1997-01-01
Gas Natural BAN, as a distribution gas company since 1993 in the north and west area of Buenos Aires Argentina, with 1,000,000 customers, had to develop a gas demand forecast system which should comply with the following basic requirements: Be able to do reliable forecasts with short historical information (2 years); Distinguish demands in areas of different characteristics, i.e. mainly residential, mainly industrial; Self-learning capability. To accomplish above goals, Gas Natural BAN chose in view of its own necessities, an artificial intelligence application (neural networks). 'SANDRA', the gas demand forecast system for gas distribution used by Gas Natural BAN, has the following features: Daily gas demand forecast, Hourly gas demand forecast and Breakdown of both forecast for each of the 3 basic zones in which the distribution area of Gas Natural BAN is divided. (au)
International Nuclear Information System (INIS)
Yang, In-Ho; Yeo, Myoung-Souk; Kim, Kwang-Woo
2003-01-01
The artificial neural network (ANN) approach is a generic technique for mapping non-linear relationships between inputs and outputs without knowing the details of these relationships. This paper presents an application of the ANN in a building control system. The objective of this study is to develop an optimized ANN model to determine the optimal start time for a heating system in a building. For this, programs for predicting the room air temperature and the learning of the ANN model based on back propagation learning were developed, and learning data for various building conditions were collected through program simulation for predicting the room air temperature using systems of experimental design. Then, the optimized ANN model was presented through learning of the ANN, and its performance to determine the optimal start time was evaluated
Directory of Open Access Journals (Sweden)
E. Pisoni
2008-02-01
Full Text Available Satellite data can be very useful in applications where extensive spatial information is needed, but sometimes missing data due to presence of clouds can affect data quality. In this study a methodology for pre-processing sea surface temperature (SST data is proposed. The methodology, that processes measures in the visible wavelength, is based on an Artificial Neural Network (ANN system. The effectiveness of the procedure has been also evaluated comparing results obtained using an interpolation method. After the methodology has been identified, a validation is performed on 3 different episodes representative of SST variability in the Mediterranean sea. The proposed technique can process SST NOAA/AVHRR data to simulate severe storm episodes by means of prognostic meteorological models.
A systematic FPGA acceleration design for applications based on convolutional neural networks
Dong, Hao; Jiang, Li; Li, Tianjian; Liang, Xiaoyao
2018-04-01
Most FPGA accelerators for convolutional neural network are designed to optimize the inner acceleration and are ignored of the optimization for the data path between the inner accelerator and the outer system. This could lead to poor performance in applications like real time video object detection. We propose a brand new systematic FPFA acceleration design to solve this problem. This design takes the data path optimization between the inner accelerator and the outer system into consideration and optimizes the data path using techniques like hardware format transformation, frame compression. It also takes fixed-point, new pipeline technique to optimize the inner accelerator. All these make the final system's performance very good, reaching about 10 times the performance comparing with the original system.
Applications of neural networks to the studies of phase transitions of two-dimensional Potts models
Li, C.-D.; Tan, D.-R.; Jiang, F.-J.
2018-04-01
We study the phase transitions of two-dimensional (2D) Q-states Potts models on the square lattice, using the first principles Monte Carlo (MC) simulations as well as the techniques of neural networks (NN). We demonstrate that the ideas from NN can be adopted to study these considered phase transitions efficiently. In particular, even with a simple NN constructed in this investigation, we are able to obtain the relevant information of the nature of these phase transitions, namely whether they are first order or second order. Our results strengthen the potential applicability of machine learning in studying various states of matters. Subtlety of applying NN techniques to investigate many-body systems is briefly discussed as well.
Neural Network for Principal Component Analysis with Applications in Image Compression
Directory of Open Access Journals (Sweden)
Luminita State
2007-04-01
Full Text Available Classical feature extraction and data projection methods have been extensively investigated in the pattern recognition and exploratory data analysis literature. Feature extraction and multivariate data projection allow avoiding the "curse of dimensionality", improve the generalization ability of classifiers and significantly reduce the computational requirements of pattern classifiers. During the past decade a large number of artificial neural networks and learning algorithms have been proposed for solving feature extraction problems, most of them being adaptive in nature and well-suited for many real environments where adaptive approach is required. Principal Component Analysis, also called Karhunen-Loeve transform is a well-known statistical method for feature extraction, data compression and multivariate data projection and so far it has been broadly used in a large series of signal and image processing, pattern recognition and data analysis applications.
Application of Artificial Neural Network into the Water Level Modeling and Forecast
Directory of Open Access Journals (Sweden)
Marzenna Sztobryn
2013-06-01
Full Text Available The dangerous sea and river water level increase does not only destroy the human lives, but also generate the severe flooding in coastal areas. The rapidly changes in the direction and velocity of wind and associated with them sea level changes could be the severe threat for navigation, especially on the fairways of small fishery harbors located in the river mouth. There is the area of activity of two external forcing: storm surges and flood wave. The aim of the work was the description of an application of Artificial Neural Network (ANN methodology into the water level forecast in the case study field in Swibno harbor located is located at 938.7 km of the Wisla River and at a distance of about 3 km up the mouth (Gulf of Gdansk - Baltic Sea.
Application of cellular neural network (CNN) method to the nuclear reactor dynamics equations
International Nuclear Information System (INIS)
Hadad, K.; Piroozmand, A.
2007-01-01
This paper describes the application of a multilayer cellular neural network (CNN) to model and solve the nuclear reactor dynamic equations. An equivalent electrical circuit is analyzed and the governing equations of a bare, homogeneous reactor core are modeled via CNN. The validity of the CNN result is compared with numerical solution of the system of nonlinear governing partial differential equations (PDE) using MATLAB. Steady state as well as transient simulations, show very good comparison between the two methods. We used our CNN model to simulate space-time response of different reactivity excursions in a typical nuclear reactor. On line solution of reactor dynamic equations is used as an aid to reactor operation decision making. The complete algorithm could also be implemented using very large scale integrated circuit (VLSI) circuitry. The efficiency of the calculation method makes it useful for small size nuclear reactors such as the ones used in space missions
International Nuclear Information System (INIS)
Onomi, T; Nakajima, K
2014-01-01
We have proposed a superconducting Hopfield-type neural network for solving the N-Queens problem which is one of combinatorial optimization problems. The sigmoid-shape function of a neuron output is represented by the output of coupled SQUIDs gate consisting of a single-junction and a double-junction SQUIDs. One of the important factors for an improvement of the network performance is an improvement of a threshold characteristic of a neuron circuit. In this paper, we report an improved design of coupled SQUID gates for a superconducting neural network. A step-like function with a steep threshold at a rising edge is desirable for a neuron circuit to solve a combinatorial optimization problem. A neuron circuit is composed of two coupled SQUIDs gates with a cascade connection in order to obtain such characteristics. The designed neuron circuit is fabricated by a 2.5 kA/cm 2 Nb/AlOx/Nb process. The operation of a fabricated neuron circuit is experimentally demonstrated. Moreover, we discuss about the performance of the neural network using the improved neuron circuits and delayed negative self-connections.
Directory of Open Access Journals (Sweden)
Małgorzata Pawul
2016-09-01
Full Text Available Recently, a lot of attention was paid to the improvement of methods which are used to air quality forecasting. Artificial neural networks can be applied to model these problems. Their advantage is that they can solve the problem in the conditions of incomplete information, without the knowledge of the analytical relationship between the input and output data. In this paper we applied artificial neural networks to predict the PM 10 concentrations as factors determining the occurrence of smog phenomena. To create these networks we used meteorological data and concentrations of PM 10. The data were recorded in 2014 and 2015 at three measuring stations operating in Krakow under the State Environmental Monitoring. The best results were obtained by three-layer perceptron with back-propagation algorithm. The neural networks received a good fit in all cases.
Application of neural networks to signal prediction in nuclear power plant
International Nuclear Information System (INIS)
Wan Joo Kim; Soon Heung Chang; Byung Ho Lee
1993-01-01
This paper describes the feasibility study of an artificial neural network for signal prediction. The purpose of signal prediction is to estimate the value of undetected next time step signal. As the prediction method, based on the idea of auto regression, a few previous signals are inputs to the artificial neural network and the signal value of next time step is estimated with the outputs of the network. The artificial neural network can be applied to the nonlinear system and answers in short time. The training algorithm is a modified backpropagation model, which can effectively reduce the training time. The target signal of the simulation is the steam generator water level, which is one of the important parameters in nuclear power plants. The simulation result shows that the predicted value follows the real trend well
Application of CMAC Neural Network to Solar Energy Heliostat Field Fault Diagnosis
Directory of Open Access Journals (Sweden)
Neng-Sheng Pai
2013-01-01
Full Text Available Solar energy heliostat fields comprise numerous sun tracking platforms. As a result, fault detection is a highly challenging problem. Accordingly, the present study proposes a cerebellar model arithmetic computer (CMAC neutral network for automatically diagnosing faults within the heliostat field in accordance with the rotational speed, vibration, and temperature characteristics of the individual heliostat transmission systems. As compared with radial basis function (RBF neural network and back propagation (BP neural network in the heliostat field fault diagnosis, the experimental results show that the proposed neural network has a low training time, good robustness, and a reliable diagnostic performance. As a result, it provides an ideal solution for fault diagnosis in modern, large-scale heliostat fields.
Deconvolution using a neural network
Energy Technology Data Exchange (ETDEWEB)
Lehman, S.K.
1990-11-15
Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.
Introduction to Artificial Neural Networks
DEFF Research Database (Denmark)
Larsen, Jan
1999-01-01
The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....
Boolean Factor Analysis by Attractor Neural Network
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.
2007-01-01
Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007
Rotation Invariance Neural Network
Li, Shiyuan
2017-01-01
Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...
Pasquier, C; Promponas, V J; Hamodrakas, S J
2001-08-15
A cascading system of hierarchical, artificial neural networks (named PRED-CLASS) is presented for the generalized classification of proteins into four distinct classes-transmembrane, fibrous, globular, and mixed-from information solely encoded in their amino acid sequences. The architecture of the individual component networks is kept very simple, reducing the number of free parameters (network synaptic weights) for faster training, improved generalization, and the avoidance of data overfitting. Capturing information from as few as 50 protein sequences spread among the four target classes (6 transmembrane, 10 fibrous, 13 globular, and 17 mixed), PRED-CLASS was able to obtain 371 correct predictions out of a set of 387 proteins (success rate approximately 96%) unambiguously assigned into one of the target classes. The application of PRED-CLASS to several test sets and complete proteomes of several organisms demonstrates that such a method could serve as a valuable tool in the annotation of genomic open reading frames with no functional assignment or as a preliminary step in fold recognition and ab initio structure prediction methods. Detailed results obtained for various data sets and completed genomes, along with a web sever running the PRED-CLASS algorithm, can be accessed over the World Wide Web at http://o2.biol.uoa.gr/PRED-CLASS.
Intelligent neural network diagnostic system
International Nuclear Information System (INIS)
Mohamed, A.H.
2010-01-01
Recently, artificial neural network (ANN) has made a significant mark in the domain of diagnostic applications. Neural networks are used to implement complex non-linear mappings (functions) using simple elementary units interrelated through connections with adaptive weights. The performance of the ANN is mainly depending on their topology structure and weights. Some systems have been developed using genetic algorithm (GA) to optimize the topology of the ANN. But, they suffer from some limitations. They are : (1) The computation time requires for training the ANN several time reaching for the average weight required, (2) Slowness of GA for optimization process and (3) Fitness noise appeared in the optimization of ANN. This research suggests new issues to overcome these limitations for finding optimal neural network architectures to learn particular problems. This proposed methodology is used to develop a diagnostic neural network system. It has been applied for a 600 MW turbo-generator as a case of real complex systems. The proposed system has proved its significant performance compared to two common methods used in the diagnostic applications.
Neural Networks and Micromechanics
Kussul, Ernst; Baidyk, Tatiana; Wunsch, Donald C.
The title of the book, "Neural Networks and Micromechanics," seems artificial. However, the scientific and technological developments in recent decades demonstrate a very close connection between the two different areas of neural networks and micromechanics. The purpose of this book is to demonstrate this connection. Some artificial intelligence (AI) methods, including neural networks, could be used to improve automation system performance in manufacturing processes. However, the implementation of these AI methods within industry is rather slow because of the high cost of conducting experiments using conventional manufacturing and AI systems. To lower the cost, we have developed special micromechanical equipment that is similar to conventional mechanical equipment but of much smaller size and therefore of lower cost. This equipment could be used to evaluate different AI methods in an easy and inexpensive way. The proved methods could be transferred to industry through appropriate scaling. In this book, we describe the prototypes of low cost microequipment for manufacturing processes and the implementation of some AI methods to increase precision, such as computer vision systems based on neural networks for microdevice assembly and genetic algorithms for microequipment characterization and the increase of microequipment precision.
Directory of Open Access Journals (Sweden)
Eyad K Almaita
2017-03-01
Keywords: Energy efficiency, Power quality, Radial basis function, neural networks, adaptive, harmonic. Article History: Received Dec 15, 2016; Received in revised form Feb 2nd 2017; Accepted 13rd 2017; Available online How to Cite This Article: Almaita, E.K and Shawawreh J.Al (2017 Improving Stability and Convergence for Adaptive Radial Basis Function Neural Networks Algorithm (On-Line Harmonics Estimation Application. International Journal of Renewable Energy Develeopment, 6(1, 9-17. http://dx.doi.org/10.14710/ijred.6.1.9-17
Khoshgoftaar, T M; Allen, E B; Hudepohl, J P; Aud, S J
1997-01-01
Society relies on telecommunications to such an extent that telecommunications software must have high reliability. Enhanced measurement for early risk assessment of latent defects (EMERALD) is a joint project of Nortel and Bell Canada for improving the reliability of telecommunications software products. This paper reports a case study of neural-network modeling techniques developed for the EMERALD system. The resulting neural network is currently in the prototype testing phase at Nortel. Neural-network models can be used to identify fault-prone modules for extra attention early in development, and thus reduce the risk of operational problems with those modules. We modeled a subset of modules representing over seven million lines of code from a very large telecommunications software system. The set consisted of those modules reused with changes from the previous release. The dependent variable was membership in the class of fault-prone modules. The independent variables were principal components of nine measures of software design attributes. We compared the neural-network model with a nonparametric discriminant model and found the neural-network model had better predictive accuracy.
Wit, P; Busscher, HJ
Artificial neural networks (ANNs) combined with automated image processing are bring used in a growing number of applications, ranging from car license plate identification to speech recognition. ANN analysis is capable of handling complicated images that cannot be dealt with using conventional
Pasquier, Claude; Promponas, Vasilis; Hamodrakas, Stavros
2009-01-01
International audience; A cascading system of hierarchical, artificial neural networks (named PRED-CLASS) is presented for the generalized classification of proteins into four distinct classes-transmembrane, fibrous, globular, and mixed-from information solely encoded in their amino acid sequences. The architecture of the individual component networks is kept very simple, reducing the number of free parameters (network synaptic weights) for faster training, improved generalization, and the av...
Neural networks with discontinuous/impact activations
Akhmet, Marat
2014-01-01
This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...
Lakshmanan, Shanmugam; Prakash, Mani; Lim, Chee Peng; Rakkiyappan, Rajan; Balasubramaniam, Pagavathigounder; Nahavandi, Saeid
2018-01-01
In this paper, synchronization of an inertial neural network with time-varying delays is investigated. Based on the variable transformation method, we transform the second-order differential equations into the first-order differential equations. Then, using suitable Lyapunov-Krasovskii functionals and Jensen's inequality, the synchronization criteria are established in terms of linear matrix inequalities. Moreover, a feedback controller is designed to attain synchronization between the master and slave models, and to ensure that the error model is globally asymptotically stable. Numerical examples and simulations are presented to indicate the effectiveness of the proposed method. Besides that, an image encryption algorithm is proposed based on the piecewise linear chaotic map and the chaotic inertial neural network. The chaotic signals obtained from the inertial neural network are utilized for the encryption process. Statistical analyses are provided to evaluate the effectiveness of the proposed encryption algorithm. The results ascertain that the proposed encryption algorithm is efficient and reliable for secure communication applications.
Energy Technology Data Exchange (ETDEWEB)
Kerr, John Patrick [Iowa State Univ., Ames, IA (United States)
1992-01-01
The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.
Application of Artificial Neural Networks for Efficient High-Resolution 2D DOA Estimation
Directory of Open Access Journals (Sweden)
M. Agatonović
2012-12-01
Full Text Available A novel method to provide high-resolution Two-Dimensional Direction of Arrival (2D DOA estimation employing Artificial Neural Networks (ANNs is presented in this paper. The observed space is divided into azimuth and elevation sectors. Multilayer Perceptron (MLP neural networks are employed to detect the presence of a source in a sector while Radial Basis Function (RBF neural networks are utilized for DOA estimation. It is shown that a number of appropriately trained neural networks can be successfully used for the high-resolution DOA estimation of narrowband sources in both azimuth and elevation. The training time of each smaller network is significantly re¬duced as different training sets are used for networks in detection and estimation stage. By avoiding the spectral search, the proposed method is suitable for real-time ap¬plications as it provides DOA estimates in a matter of seconds. At the same time, it demonstrates the accuracy comparable to that of the super-resolution 2D MUSIC algorithm.
Drift chamber tracking with neural networks
International Nuclear Information System (INIS)
Lindsey, C.S.; Denby, B.; Haggerty, H.
1992-10-01
We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed
Directory of Open Access Journals (Sweden)
Luis Gonzaga Baca Ruiz
2016-08-01
Full Text Available This paper addresses the problem of energy consumption prediction using neural networks over a set of public buildings. Since energy consumption in the public sector comprises a substantial share of overall consumption, the prediction of such consumption represents a decisive issue in the achievement of energy savings. In our experiments, we use the data provided by an energy consumption monitoring system in a compound of faculties and research centers at the University of Granada, and provide a methodology to predict future energy consumption using nonlinear autoregressive (NAR and the nonlinear autoregressive neural network with exogenous inputs (NARX, respectively. Results reveal that NAR and NARX neural networks are both suitable for performing energy consumption prediction, but also that exogenous data may help to improve the accuracy of predictions.
The fundamentals of fuzzy neural network and application in nuclear monitoring
International Nuclear Information System (INIS)
Feng Diqing; Lei Ming
1995-01-01
The authors presents a fuzzy modeling method using fuzzy neural network with the back-propagation algorithm. The new method can identify the fuzzy model of a nonlinear system automatically. Fuzzy neural network is used to generate fuzzy rules and membership functions. The feasibility and inferential statistic of the method is examined by using numerical data and XOR problem. The FNN improves accuracy and reliability, reduces design time and minimizes system cost of fuzzy design. The FNN can be used for estimation of human injury in nuclear explosions and can be simplified to a rule neural network (RNN), which is used for pole extraction of signal. Preliminary simulation show that FNN has vest vistas in nuclear monitoring
Application of neural networks and neutron noise for diagnostics of reactor internals vibration
International Nuclear Information System (INIS)
Garis, N.S.; Pazsit, I.; Gloeckler, O.
1995-01-01
It has long been known that vibration of reactor internals, in particular excessive vibrations of control rods, can be detected via the neutron noise they induce. Noise measurements are actually suitable to determine important diagnostic parameters such as the location of the vibrating rod and the vibration amplitude. An algorithm was earlier elaborated for this purpose, which is based on inversion of the expression describing the neutron noise as a function of vibration parameters. This inversion procedure is nevertheless complicated and not always unique. It was investigated whether a properly trained neural network can perform the inversion more effectively. It was found that artificial neural networks can be trained effectively to perform vibration diagnostics from neutron noise data fast, effectively and reliably. The present paper gives a description of the development and use of the neural networks for purposes of vibration diagnostics
Wang, C.; Hong, Y.
2017-12-01
Infrared (IR) information from Geostationary satellites can be used to retrieve precipitation at pretty high spatiotemporal resolutions. Traditional artificial intelligence (AI) methodologies, such as artificial neural networks (ANN), have been designed to build the relationship between near-surface precipitation and manually derived IR features in products including PERSIANN and PERSIANN-CCS. This study builds an automatic precipitation detection model based on IR data using Convolutional Neural Network (CNN) which is implemented by the newly developed deep learning framework, Caffe. The model judges whether there is rain or no rain at pixel level. Compared with traditional ANN methods, CNN can extract features inside the raw data automatically and thoroughly. In this study, IR data from GOES satellites and precipitation estimates from the next generation QPE (Q2) over the central United States are used as inputs and labels, respectively. The whole datasets during the study period (June to August in 2012) are randomly partitioned to three sub datasets (train, validation and test) to establish the model at the spatial resolution of 0.08°×0.08° and the temporal resolution of 1 hour. The experiments show great improvements of CNN in rain identification compared to the widely used IR-based precipitation product, i.e., PERSIANN-CCS. The overall gain in performance is about 30% for critical success index (CSI), 32% for probability of detection (POD) and 12% for false alarm ratio (FAR). Compared to other recent IR-based precipitation retrieval methods (e.g., PERSIANN-DL developed by University of California Irvine), our model is simpler with less parameters, but achieves equally or even better results. CNN has been applied in computer vision domain successfully, and our results prove the method is suitable for IR precipitation detection. Future studies can expand the application of CNN from precipitation occurrence decision to precipitation amount retrieval.
Artificial neural networks in variable process control: application in particleboard manufacture
Energy Technology Data Exchange (ETDEWEB)
Esteban, L. G.; Garcia Fernandez, F.; Palacios, P. de; Conde, M.
2009-07-01
Artificial neural networks are an efficient tool for modelling production control processes using data from the actual production as well as simulated or design of experiments data. In this study two artificial neural networks were combined with the control process charts and it was checked whether the data obtained by the networks were valid for variable process control in particleboard manufacture. The networks made it possible to obtain the mean and standard deviation of the internal bond strength of the particleboard within acceptable margins using known data of thickness, density, moisture content, swelling and absorption. The networks obtained met the acceptance criteria for test values from non-standard test methods, as well as the criteria for using these values in statistical process control. (Author) 47 refs.
Mass reconstruction with a neural network
International Nuclear Information System (INIS)
Loennblad, L.; Peterson, C.; Roegnvaldsson, T.
1992-01-01
A feed-forward neural network method is developed for reconstructing the invariant mass of hadronic jets appearing in a calorimeter. The approach is illustrated in W→qanti q, where W-bosons are produced in panti p reactions at SPS collider energies. The neural network method yields results that are superior to conventional methods. This neural network application differs from the classification ones in the sense that an analog number (the mass) is computed by the network, rather than a binary decision being made. As a by-product our application clearly demonstrates the need for using 'intelligent' variables in instances when the amount of training instances is limited. (orig.)
Application of artificial neural networks with backpropagation technique in the financial data
Jaiswal, Jitendra Kumar; Das, Raja
2017-11-01
The propensity of applying neural networks has been proliferated in multiple disciplines for research activities since the past recent decades because of its powerful control with regulatory parameters for pattern recognition and classification. It is also being widely applied for forecasting in the numerous divisions. Since financial data have been readily available due to the involvement of computers and computing systems in the stock market premises throughout the world, researchers have also developed numerous techniques and algorithms to analyze the data from this sector. In this paper we have applied neural network with backpropagation technique to find the data pattern from finance section and prediction for stock values as well.
Application of a neural network to control a pressurized water reactor
International Nuclear Information System (INIS)
Lin, C.; Ku, C.C.; Lee, C.S.
1993-01-01
A neural network has been trained to control a pressurized water reactor. The inputs of the training pattern are the plant signals, and the outputs are the control rod actions. The training patterns are some kind of lookup table of control action. The table is designed by the heuristic method, which is based on the designer's knowledge of the controlled system and the operation experience. This method has two advantages: The controller's performance does not depend on the mathematical model of the plant, and the controller could be a nonlinear one. The advantages of using neural networks to implement the controller are to save computing time and overcome partial hardware failure
Directory of Open Access Journals (Sweden)
Jin-Li Sun
2014-06-01
Full Text Available When detect the helicopter rotor beam with ultrasonic testing, it is difficult to realize the noise removing and quantitative testing. This paper used the wavelet analysis technique to remove the noise among the ultrasonic detection signal and highlight the signal feature of defect, then drew the curve of defect size and signal amplitude. Based on the relationship of defect size and signal amplitude, a BP neural network was built up and the corresponding estimated value of the simulate defect was obtained by repeating training. It was confirmed that the wavelet analysis and neural network technique met the requirements of practical testing.
Photon spectrometry utilizing neural networks
International Nuclear Information System (INIS)
Silveira, R.; Benevides, C.; Lima, F.; Vilela, E.
2015-01-01
Having in mind the time spent on the uneventful work of characterization of the radiation beams used in a ionizing radiation metrology laboratory, the Metrology Service of the Centro Regional de Ciencias Nucleares do Nordeste - CRCN-NE verified the applicability of artificial intelligence (artificial neural networks) to perform the spectrometry in photon fields. For this, was developed a multilayer neural network, as an application for the classification of patterns in energy, associated with a thermoluminescent dosimetric system (TLD-700 and TLD-600). A set of dosimeters was initially exposed to various well known medium energies, between 40 keV and 1.2 MeV, coinciding with the beams determined by ISO 4037 standard, for the dose of 10 mSv in the quantity Hp(10), on a chest phantom (ISO slab phantom) with the purpose of generating a set of training data for the neural network. Subsequently, a new set of dosimeters irradiated in unknown energies was presented to the network with the purpose to test the method. The methodology used in this work was suitable for application in the classification of energy beams, having obtained 100% of the classification performed. (authors)
Application of artificial neural networks in the CT study of solitary pulmonary nodule
International Nuclear Information System (INIS)
Wang Xiaohua; Ma Daqing; Chen Hui; Gao Peiyi; Zhou Xinhua
2006-01-01
Objective: To establish a new-type discriminative method in differentiating benign from malignant solitary pulmonary nodule (SPN) on high-resolution CT/thin-section CT by using artificial neural networks theory in the CT diagnostic study of SPN. Methods: Two hundred SPNs pathologically proved by operation or biopsy (primary pulmonary carcinoma 135 eases, benign nodules 65 cases) were collected, 3 clinical characteristics (age, sex, with or without bloody sputum) and 9 high-resolution CT/thin-section CT characteristics (location, long and short diameter, contour, spiculation, halo sign, air-space, relation with the adjacent blood vessels and pleura) were analyzed. 140 cases were randomly selected to form the training samples, on which artificial neural networks model (BP networks) was built and compared with Logistic model from Statistical Package for the Social Science (SPSS) software. Results: The total consistent rate of BP neural networks (98.0%, 196/200) was higher than that of Logistic model (86.0%, 172/200) (P<0.001). Areas under ROC curve were 0.996±0.004 and 0.936±0.017, respectively, and the difference between the two was significant (P<0.001). Conclusion: Using high-resolution CT and thin-section CT in combination with artificial neural networks theory is feasible, and it is expected to become a useful and reliable clinical tool in differentiating benign from malignant SPN. (authors)
Pastur-Romay, Lucas Antón; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana Belén
2016-01-01
Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS), Quantitative Structure–Activity Relationship (QSAR) research, protein structure prediction and genomics (and other omics) data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron–Astrocyte Networks (DANAN) could overcome the difficulties in architecture design, learning process and scalability of the current ML methods. PMID:27529225
Pastur-Romay, Lucas Antón; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana Belén
2016-08-11
Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS), Quantitative Structure-Activity Relationship (QSAR) research, protein structure prediction and genomics (and other omics) data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron-Astrocyte Networks (DANAN) could overcome the difficulties in architecture design, learning process and scalability of the current ML methods.
Directory of Open Access Journals (Sweden)
Lucas Antón Pastur-Romay
2016-08-01
Full Text Available Over the past decade, Deep Artificial Neural Networks (DNNs have become the state-of-the-art algorithms in Machine Learning (ML, speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs. All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS, Quantitative Structure–Activity Relationship (QSAR research, protein structure prediction and genomics (and other omics data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron–Astrocyte Networks (DANAN could overcome the difficulties in architecture design, learning process and scalability of the current ML methods.
Plagianakos, V P; Magoulas, G D; Vrahatis, M N
2006-03-01
Distributed computing is a process through which a set of computers connected by a network is used collectively to solve a single problem. In this paper, we propose a distributed computing methodology for training neural networks for the detection of lesions in colonoscopy. Our approach is based on partitioning the training set across multiple processors using a parallel virtual machine. In this way, interconnected computers of varied architectures can be used for the distributed evaluation of the error function and gradient values, and, thus, training neural networks utilizing various learning methods. The proposed methodology has large granularity and low synchronization, and has been implemented and tested. Our results indicate that the parallel virtual machine implementation of the training algorithms developed leads to considerable speedup, especially when large network architectures and training sets are used.
International Nuclear Information System (INIS)
Yang, A.-S.; Kuo, T.-C.; Ling, P.-H.
2003-01-01
The phase transport phenomenon of the high-pressure two-phase turbulent bubbly flow involves complicated interfacial interactions of the mass, momentum, and energy transfer processes between phases, revealing that an enormous effort is required in characterizing the liquid-gas flow behavior. Nonetheless, the instantaneous information of bubbly flow properties is often desired for many industrial applications. This investigation aims to demonstrate the successful use of neural networks in the real-time determination of two-phase flow properties at elevated pressures. Three back-propagation neural networks, trained with the simulation results of a comprehensive theoretical model, are established to predict the transport characteristics (specifically the distributions of void-fraction and axial liquid-gas velocities) of upward turbulent bubbly pipe flows at pressures covering 3.5-7.0 MPa. Comparisons of the predictions with the test target vectors indicate that the averaged root-mean-squared (RMS) error for each one of three back-propagation neural networks is within 4.59%. In addition, this study appraises the effects of different network parameters, including the number of hidden nodes, the type of transfer function, the number of training pairs, the learning rate-increasing ratio, the learning rate-decreasing ratio, and the momentum value, on the training quality of neural networks.
Erbas, B.C.; Stefanou, S.E.
2009-01-01
The use of the artificial neural networks in economics and business goes back to 1950s, while the major bulk of the applications have been developed in more recent years. Reviewing this literature indicates that the field of business benefits from the neural networks in a wide spectrum from
Improving Neural Network Approximations in Applications: Case Study in Materials Science
Czech Academy of Sciences Publication Activity Database
Holeňa, Martin; Steinfeldt, N.
2009-01-01
Roč. 19, č. 2 (2009), s. 165-190 ISSN 1210-0552 Institutional research plan: CEZ:AV0Z10300504 Keywords : artificial neural networks * approximation capability * crossvalidation Subject RIV: IN - Informatics, Computer Science Impact factor: 0.475, year: 2009
GPU implementation of Bayesian neural network construction for data-intensive applications
International Nuclear Information System (INIS)
Perry, Michelle; Meyer-Baese, Anke; Prosper, Harrison B
2014-01-01
We describe a graphical processing unit (GPU) implementation of the Hybrid Markov Chain Monte Carlo (HMC) method for training Bayesian Neural Networks (BNN). Our implementation uses NVIDIA's parallel computing architecture, CUDA. We briefly review BNNs and the HMC method and we describe our implementations and give preliminary results.
Energy Technology Data Exchange (ETDEWEB)
Taraglio, S. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione; Zanela, A. [Rome Univ. `La Sapienza` (Italy). Dipt. di Fisica
1997-03-01
An optimization method for some of the CNN`s (Cellular Neural Network) parameters, based on evolutionary strategies, is proposed. The new class of feedback template found is more effective in extracting features from the images that an autonomous vehicle acquires, than in the previous CNN`s literature.
Cho, Kyung Jin; Müller, Jacobus H; Erasmus, Pieter J; DeJour, David; Scheffer, Cornie
2014-01-01
Segmentation and computer assisted design tools have the potential to test the validity of simulated surgical procedures, e.g., trochleoplasty. A repeatable measurement method for three dimensional femur models that enables quantification of knee parameters of the distal femur is presented. Fifteen healthy knees are analysed using the method to provide a training set for an artificial neural network. The aim is to use this artificial neural network for the prediction of parameter values that describe the shape of a normal trochlear groove geometry. This is achieved by feeding the artificial neural network with the unaffected parameters of a dysplastic knee. Four dysplastic knees (Type A through D) are virtually redesigned by way of morphing the groove geometries based on the suggested shape from the artificial neural network. Each of the four resulting shapes is analysed and compared to its initial dysplastic shape in terms of three anteroposterior dimensions: lateral, central and medial. For the four knees the trochlear depth is increased, the ventral trochlear prominence reduced and the sulcus angle corrected to within published normal ranges. The results show a lateral facet elevation inadequate, with a sulcus deepening or a depression trochleoplasty more beneficial to correct trochlear dysplasia.
International Nuclear Information System (INIS)
Taraglio, S.; Zanela, A.
1997-03-01
An optimization method for some of the CNN's (Cellular Neural Network) parameters, based on evolutionary strategies, is proposed. The new class of feedback template found is more effective in extracting features from the images that an autonomous vehicle acquires, than in the previous CNN's literature
Sabour, Mohammad Reza; Moftakhari Anasori Movahed, Saman
2017-02-01
The soil sorption partition coefficient logK oc is an indispensable parameter that can be used in assessing the environmental risk of organic chemicals. In order to predict soil sorption partition coefficient for different and even unknown compounds in a fast and accurate manner, a radial basis function neural network (RBFNN) model was developed. Eight topological descriptors of 800 organic compounds were used as inputs of the model. These 800 organic compounds were chosen from a large and very diverse data set. Generalized Regression Neural Network (GRNN) was utilized as the function in this neural network model due to its capability to adapt very quickly. Hence, it can be used to predict logK oc for new chemicals, as well. Out of total data set, 560 organic compounds were used for training and 240 to test efficiency of the model. The obtained results indicate that the model performance is very well. The correlation coefficients (R2) for training and test sets were 0.995 and 0.933, respectively. The root-mean square errors (RMSE) were 0.2321 for training set and 0.413 for test set. As the results for both training and test set are extremely satisfactory, the proposed neural network model can be employed not only to predict logK oc of known compounds, but also to be adaptive for prediction of this value precisely for new products that enter the market each year. Copyright © 2016 Elsevier Ltd. All rights reserved.
Application of associative emulator neural network for power control of nuclear reactor
International Nuclear Information System (INIS)
Datta, A.K.; Bandyopadhyay, Somnath
1993-01-01
This paper addresses the question of how to perform on-line training of emulator neural network for power control in a nuclear reactor. The computation and convergence problem can be reduced by judicious choice of bidirectional associative recall. (author). 10 refs., 2 figs
International Nuclear Information System (INIS)
Bicer, Y.; Dincer, I.; Aydin, M.
2016-01-01
This paper presents an artificial neural network (ANN) approach of a smart grid integrated proton exchange membrane (PEM) fuel cell and proposes a neural network model of a 6 kW PEM fuel cell. The data required to train the neural network model are generated by a model of 6 kW PEM fuel cell. After the model is trained and validated, it is used to analyze the dynamic behavior of the PEM fuel cell. The study results demonstrate that the model based on neural network approach is appropriate for predicting the outlet parameters. Various types of training methods, sample numbers and sample distribution methods are utilized to compare the results. The fuel cell stack efficiency considerably varies between 20% and 60%, according to input variables and models. The rapid changes in the input variables can be recovered within a short time period, such as 10 s. The obtained response graphs point out the load tracking features of ANN model and the projected changes in the input variables are controlled quickly in the study. - Highlights: • An ANN approach of a proton exchange membrane (PEM) fuel cell is proposed. • Dynamic behavior of the PEM fuel cell is analyzed. • The effects of various variables on model accuracy are investigated. • Response curves indicate the load following characteristics of the model.
Neural networks for triggering
International Nuclear Information System (INIS)
Denby, B.; Campbell, M.; Bedeschi, F.; Chriss, N.; Bowers, C.; Nesti, F.
1990-01-01
Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab
Medarević, Djordje P; Kleinebudde, Peter; Djuriš, Jelena; Djurić, Zorica; Ibrić, Svetlana
2016-01-01
This study for the first time demonstrates combined application of mixture experimental design and artificial neural networks (ANNs) in the solid dispersions (SDs) development. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs were prepared by solvent casting method to improve carbamazepine dissolution rate. The influence of the composition of prepared SDs on carbamazepine dissolution rate was evaluated using d-optimal mixture experimental design and multilayer perceptron ANNs. Physicochemical characterization proved the presence of the most stable carbamazepine polymorph III within the SD matrix. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs significantly improved carbamazepine dissolution rate compared to pure drug. Models developed by ANNs and mixture experimental design well described the relationship between proportions of SD components and percentage of carbamazepine released after 10 (Q10) and 20 (Q20) min, wherein ANN model exhibit better predictability on test data set. Proportions of carbamazepine and poloxamer 188 exhibited the highest influence on carbamazepine release rate. The highest carbamazepine release rate was observed for SDs with the lowest proportions of carbamazepine and the highest proportions of poloxamer 188. ANNs and mixture experimental design can be used as powerful data modeling tools in the systematic development of SDs. Taking into account advantages and disadvantages of both techniques, their combined application should be encouraged.
International Nuclear Information System (INIS)
Wollschlaeger, U.
1992-07-01
The aim of this thesis consisted in the development of a procedure for the analysis of the data of the transition-radiation detector at ZEUS. For this a neural network was applied and first studied, which results concerning the separation power between electron an pions can be reached by this procedure. It was shown that neural nets yield within the error limits as well results as standard algorithms (total charge, cluster analysis). At an electron efficiency of 90% pion contaminations in the range 1%-2% were reached. Furthermore it could be confirmed that neural networks can be considered for the here present application field as robust in relatively insensitive against external perturbations. For the application in the experiment beside the separation power also the time-behaviour is of importance. The requirement to keep dead-times small didn't allow the application of standard method. By a simulation the time availabel for the signal analysis was estimated. For the testing of the processing time in a neural network subsequently the corresponding algorithm was implemented into an assembler code for the digital signal processor DSP56001. (orig./HSI) [de
Application of neural networks to measurement methods based on radiation interactions with matter
International Nuclear Information System (INIS)
Pilato, V.
1999-01-01
The possibility of improving by neuronal techniques the preparation and interpretation of nuclear measurements was investigated. A general methodology was developed and applied to various problems in this field. Whatever the problem to be treated, to solve it comes to determine the relation which binds the inputs to the outputs. Neural networks based on supervised training, like the multilayer Perceptron, have the capability to calculate any relation between a set of input and output data. On the other hand, the training phase is often a long and delicate operation whose difficulties grow with the size of the network: it is thus interesting to reduce it by introducing knowledge a priori and/or by reducing the number of inputs in order to extract the relevant information. If the correlations between the inputs are linear, the Principal Components Analysis (PCA) and its neuronal equivalents make it possible to obtain by orthogonal projection a reduced number of input components while preserving the maximum of initial information. If the correlations are nonlinear, the Curvilinear Components Analysis (CCA) allows, by a unsupervised training, to carry out a nonlinear projection of the inputs in a space of reduced size. Besides, it is noticed that when the dimension of the input space is equal to the intrinsic dimension of the problem, this last is practically solved by CCA. We propose a general method which consists in characterizing as well as possible the problem by its inputs and then to extract and classify the information contained in those by projection in a space of reduced size. Association between the projected data and the problem outputs is then carried out by a supervised training network. Certain results having to be provided with their associated uncertainty, a statistical method based on the bootstrap algorithm is proposed. Potential applications other that those treated are considered. (author)
Synchronization of Switched Interval Networks and Applications to Chaotic Neural Networks
Cao, Jinde; Alofi, Abdulaziz; Al-Mazrooei, Abdullah; Elaiw, Ahmed
2013-01-01
This paper investigates synchronization problem of switched delay networks with interval parameters uncertainty, based on the theories of the switched systems and drive-response technique, a mathematical model of the switched interval drive-response error system is established. Without constructing Lyapunov-Krasovskii functions, introducing matrix measure method for the first time to switched time-varying delay networks, combining Halanay inequality technique, synchroniza...
Neural electrical activity and neural network growth.
Gafarov, F M
2018-05-01
The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Applications of deep convolutional neural networks to digitized natural history collections
Directory of Open Access Journals (Sweden)
Eric Schuettpelz
2017-11-01
Full Text Available Natural history collections contain data that are critical for many scientific endeavors. Recent efforts in mass digitization are generating large datasets from these collections that can provide unprecedented insight. Here, we present examples of how deep convolutional neural networks can be applied in analyses of imaged herbarium specimens. We first demonstrate that a convolutional neural network can detect mercury-stained specimens across a collection with 90% accuracy. We then show that such a network can correctly distinguish two morphologically similar plant families 96% of the time. Discarding the most challenging specimen images increases accuracy to 94% and 99%, respectively. These results highlight the importance of mass digitization and deep learning approaches and reveal how they can together deliver powerful new investigative tools.
Application of artificial neural networks for response surface modelling in HPLC method development
Directory of Open Access Journals (Sweden)
Mohamed A. Korany
2012-01-01
Full Text Available This paper discusses the usefulness of artificial neural networks (ANNs for response surface modelling in HPLC method development. In this study, the combined effect of pH and mobile phase composition on the reversed-phase liquid chromatographic behaviour of a mixture of salbutamol (SAL and guaiphenesin (GUA, combination I, and a mixture of ascorbic acid (ASC, paracetamol (PAR and guaiphenesin (GUA, combination II, was investigated. The results were compared with those produced using multiple regression (REG analysis. To examine the respective predictive power of the regression model and the neural network model, experimental and predicted response factor values, mean of squares error (MSE, average error percentage (Er%, and coefficients of correlation (r were compared. It was clear that the best networks were able to predict the experimental responses more accurately than the multiple regression analysis.
Applications of deep convolutional neural networks to digitized natural history collections.
Schuettpelz, Eric; Frandsen, Paul B; Dikow, Rebecca B; Brown, Abel; Orli, Sylvia; Peters, Melinda; Metallo, Adam; Funk, Vicki A; Dorr, Laurence J
2017-01-01
Natural history collections contain data that are critical for many scientific endeavors. Recent efforts in mass digitization are generating large datasets from these collections that can provide unprecedented insight. Here, we present examples of how deep convolutional neural networks can be applied in analyses of imaged herbarium specimens. We first demonstrate that a convolutional neural network can detect mercury-stained specimens across a collection with 90% accuracy. We then show that such a network can correctly distinguish two morphologically similar plant families 96% of the time. Discarding the most challenging specimen images increases accuracy to 94% and 99%, respectively. These results highlight the importance of mass digitization and deep learning approaches and reveal how they can together deliver powerful new investigative tools.
A neural network approach to burst detection.
Mounce, S R; Day, A J; Wood, A S; Khan, A; Widdop, P D; Machell, J
2002-01-01
This paper describes how hydraulic and water quality data from a distribution network may be used to provide a more efficient leakage management capability for the water industry. The research presented concerns the application of artificial neural networks to the issue of detection and location of leakage in treated water distribution systems. An architecture for an Artificial Neural Network (ANN) based system is outlined. The neural network uses time series data produced by sensors to directly construct an empirical model for predication and classification of leaks. Results are presented using data from an experimental site in Yorkshire Water's Keighley distribution system.
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
Directory of Open Access Journals (Sweden)
Chernoded Andrey
2017-01-01
Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
International Conference on Artificial Neural Networks (ICANN)
Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics
2015-01-01
The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...
Directory of Open Access Journals (Sweden)
Musztyfaga-Staszuk M.
2015-09-01
Full Text Available This paper presents the application of artificial neural networks for prediction contact resistance of front metallization for silicon solar cells. The influence of the obtained front electrode features on electrical properties of solar cells was estimated. The front electrode of photovoltaic cells was deposited using screen printing (SP method and next to manufactured by two methods: convectional (1. co-fired in an infrared belt furnace and unconventional (2. Selective Laser Sintering. Resistance of front electrodes solar cells was investigated using Transmission Line Model (TLM. Artificial neural networks were obtained with the use of Statistica Neural Network by Statsoft. Created artificial neural networks makes possible the easy modelling of contact resistance of manufactured front metallization and allows the better selection of production parameters. The following technological recommendations for the screen printing connected with co-firing and selective laser sintering technology such as optimal paste composition, morphology of the silicon substrate, co-firing temperature and the power and scanning speed of the laser beam to manufacture the front electrode of silicon solar cells were experimentally selected in order to obtain uniformly melted structure well adhered to substrate, of a small front electrode substrate joint resistance value. The prediction possibility of contact resistance of manufactured front metallization is valuable for manufacturers and constructors. It allows preserving the customers’ quality requirements and bringing also measurable financial advantages.
The LILARTI neural network system
Energy Technology Data Exchange (ETDEWEB)
Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.
1992-10-01
The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.
Program Helps Simulate Neural Networks
Villarreal, James; Mcintire, Gary
1993-01-01
Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.
Directory of Open Access Journals (Sweden)
A. Yeşim Yayla
2011-02-01
Full Text Available In this study, a-three layered feed-forward backpropagation Artificial Neural Network (ANN model is developed for the supplier firms in ceramic sector on the bases of user effectiveness for using concurrent engineering method. The developed model is also questioned for its usability in the supplier evaluation process. The network's independent variables of the developed model are considered as input variables of the network and dependent variables are used as output variables. The values of these variables are determined with factor analysis. For obtaining the date set to be used in the analysis, a questionnaire form with 34 questions explaining the network's input and output variables are prepared and sent out to 52 firms active in related sector. For obtaining more accurate results from the network, the questions having factor load below 0,6 are eliminated from the analysis. With the elimination of the questions from the analysis, the answers given for 22 questions explaining 8 input variables are used for the evaluation the network's inputs, the answers given for 3 questions explaining output variables are used for the evaluation the network's outputs. The data set of the network's are divided into four equal groups with k-fold method in order to get four different alternative network structures. As a conclusion, the forecasted firm scores giving the minimum error from the network test simulation and real firm scores are found to be very close to each other, thus, it is concluded that the developed artificial neural network model can be used effectively in the supplier evaluation process.
Application of an artificial neural network to ready-mixed concretes mix design
Directory of Open Access Journals (Sweden)
Setién, J.
2003-06-01
Full Text Available This paper presents the practical application of cm artificial neural network (ANN to the problem of concrete mix in a factory. After a brief introduction to the complex problem of concrete mixes design and a quick review of the fundamental basis of neurocomputation, an optimal neural network model has been developed to cope with such a problem. For training the net, several control mixes have been fabricated recording in all cases both the characteristic 28 days compressive strength and the workability measured in terms of the slump of the Abrams' cone. After the training process of the net, the power of its predictive ability is checked by comparison of the results obtained with those corresponding to four reference mixes; in this way, it is shown that the considered approach can be used in multicriterial search for optimal concrete mixes.
En este trabajo se presenta la aplicación práctica de una red neuronal artificial (ANN al problema de la dosificación de hormigones en planta. Tras una breve introducción a la compleja problemática de la dosificación de hormigones y un repaso a los fundamentos de la neurocomputación, se diseña un modelo de red neuronal óptimo para abordar el problema. Para entrenar dicha red, se realizan varias amasadas de prueba, registrándose para cada una de ellas la trabajabilidad, mediante la medida del asiento del cono de Abrams, y ¡a resistencia característica a los 28 días. Una vez entrenada la red, se pone a prueba su carácter predictivo comparando los resultados que proporciona con los de cuatro amasadas de referencia, demostrándose que esta aproximación puede ser utilizada como método multicriterial para la obtención de mezclas óptimas de hormigón.
Directory of Open Access Journals (Sweden)
C. Yao
2017-09-01
Full Text Available With the rapid development of Precision Agriculture (PA promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN. For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.
Optimization of a hardware implementation for pulse coupled neural networks for image applications
Gimeno Sarciada, Jesús; Lamela Rivera, Horacio; Warde, Cardinal
2010-04-01
Pulse Coupled Neural Networks are a very useful tool for image processing and visual applications, since it has the advantages of being invariant to image changes as rotation, scale, or certain distortion. Among other characteristics, the PCNN changes a given image input into a temporal representation which can be easily later analyzed for pattern recognition. The structure of a PCNN though, makes it necessary to determine all of its parameters very carefully in order to function optimally, so that the responses to the kind of inputs it will be subjected are clearly discriminated allowing for an easy and fast post-processing yielding useful results. This tweaking of the system is a taxing process. In this paper we analyze and compare two methods for modeling PCNNs. A purely mathematical model is programmed and a similar circuital model is also designed. Both are then used to determine the optimal values of the several parameters of a PCNN: gain, threshold, time constants for feed-in and threshold and linking leading to an optimal design for image recognition. The results are compared for usefulness, accuracy and speed, as well as the performance and time requirements for fast and easy design, thus providing a tool for future ease of management of a PCNN for different tasks.
Application of Recurrent Neural Networks on El Nino Impact on California Climate
Le, J.; El-Askary, H. M.; Allai, M.
2017-12-01
Following our successful paper on the application for the El Nino season of 2015-2016 over Southern California, we use recurrent neural networks (RNNs) to investigate the complex interactions between the long-term trend in dryness and a projected, short but intense, period of wetness due to the 2015-2016 El Niño. Although it was forecasted that this El Niño season would bring significant rainfall to the region, our long-term projections of the Palmer Z Index (PZI) showed a continuing drought trend. We achieved a statistically significant correlation of 0.610 between forecasted and observed PZI on the validation set for a lead time of 1 month. This gives strong confidence to the forecasted precipitation indicator. These predictions were bourne out in the resulting data. This paper details the expansion of our system to the climate of the entire California climate as a whole, dealing with inter-relationships and spatial variations within the state.
Artificial neural network application in isotopic characterization of radioactive waste drums
International Nuclear Information System (INIS)
Potiens Junior, Ademar Jose
2005-01-01
One of the most important aspects to the development of the nuclear technology is the safe management of the radioactive waste arising from several stages of the nuclear fuel cycles, as well as from production and use of radioisotope in the medicine, industry and research centers. The accurate characterization of this waste is not a simple task, given to its diversity in isotopic composition and non homogeneity in the space distribution and mass density. In this work it was developed a methodology for quantification and localization of radionuclides not non homogeneously distributed in a 200 liters drum based in the Monte Carlo Method and Artificial Neural Network (RNA), for application in the isotopic characterization of the stored radioactive waste at IPEN. Theoretical arrangements had been constructed involving the division of the radioactive waste drum in some units or cells and some possible configurations of source intensities. Beyond the determination of the detection positions, the respective detection efficiencies for each position in function of each cell of the drum had been obtained. After the construction and the training of the RNA's for each developed theoretical arrangement, the validation of the method were carried out for the two arrangements that had presented the best performance. The results obtained show that the methodology developed in this study could be an effective tool for isotopic characterization of radioactive wastes contained in many kind of packages. (author)
Handling limited datasets with neural networks in medical applications: A small-data approach.
Shaikhina, Torgyn; Khovanova, Natalia A
2017-01-01
Single-centre studies in medical domain are often characterised by limited samples due to the complexity and high costs of patient data collection. Machine learning methods for regression modelling of small datasets (less than 10 observations per predictor variable) remain scarce. Our work bridges this gap by developing a novel framework for application of artificial neural networks (NNs) for regression tasks involving small medical datasets. In order to address the sporadic fluctuations and validation issues that appear in regression NNs trained on small datasets, the method of multiple runs and surrogate data analysis were proposed in this work. The approach was compared to the state-of-the-art ensemble NNs; the effect of dataset size on NN performance was also investigated. The proposed framework was applied for the prediction of compressive strength (CS) of femoral trabecular bone in patients suffering from severe osteoarthritis. The NN model was able to estimate the CS of osteoarthritic trabecular bone from its structural and biological properties with a standard error of 0.85MPa. When evaluated on independent test samples, the NN achieved accuracy of 98.3%, outperforming an ensemble NN model by 11%. We reproduce this result on CS data of another porous solid (concrete) and demonstrate that the proposed framework allows for an NN modelled with as few as 56 samples to generalise on 300 independent test samples with 86.5% accuracy, which is comparable to the performance of an NN developed with 18 times larger dataset (1030 samples). The significance of this work is two-fold: the practical application allows for non-destructive prediction of bone fracture risk, while the novel methodology extends beyond the task considered in this study and provides a general framework for application of regression NNs to medical problems characterised by limited dataset sizes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Reifman, J.; Vitela, J.E.
1994-01-01
The method of conjugate gradients is used to expedite the learning process of feedforward multilayer artificial neural networks and to systematically update both the learning parameter and the momentum parameter at each training cycle. The mechanism for the occurrence of premature saturation of the network nodes observed with the back propagation algorithm is described, suggestions are made to eliminate this undesirable phenomenon, and the reason by which this phenomenon is precluded in the method of conjugate gradients is presented. The proposed method is compared with the standard back propagation algorithm in the training of neural networks to classify transient events in neural power plants simulated by the Midland Nuclear Power Plant Unit 2 simulator. The comparison results indicate that the rate of convergence of the proposed method is much greater than the standard back propagation, that it reduces both the number of training cycles and the CPU time, and that it is less sensitive to the choice of initial weights. The advantages of the method are more noticeable and important for problems where the network architecture consists of a large number of nodes, the training database is large, and a tight convergence criterion is desired
Trimaran Resistance Artificial Neural Network
2011-01-01
11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to
Application of neural network to multi-dimensional design window search
International Nuclear Information System (INIS)
Kugo, T.; Nakagawa, M.
1996-01-01
In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support directly such a work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. A principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network as a substitute of an analysis code. We apply the present method to a fuel pin design of high conversion light water reactors for the neutronics and thermal hydraulics fields to demonstrate performances of the method. (author)
Applications of Deep Neural Networks in a Top Quark Mass Measurement at the LHC
Lange, Torben; Kasieczka, Gregor
2018-01-01
In this analysis the usage of deep neural networks for an improved event selection forthe top-quark-mass measurement in the t¯ muon+jets channel for events at the CMS ext√periment for the LHC run II with a center of mass energy s = 13 TeV was investigated.The composition of the event selection with respect to different jet-assignment permutationtypes was found to have a strong inﬂuence on the systematic uncertainty of the top-quarkmass measurement. A selection based on the output of neural network trained on classifyingevent permutations of the t¯ muon+jets ﬁnal state into these permutation types could thentbe used to improve the systematical uncertainty of the current mass measurement from asystematical uncertainty of around 630 MeV to 560 MeV.
Directory of Open Access Journals (Sweden)
Ming-Shyan Wang
2015-01-01
Full Text Available An automatic guided vehicle (AGV is extensively used for productions in a flexible manufacture system with high efficiency and high flexibility. A servomotor-based AGV is designed and implemented in this paper. In order to steer the AGV to go along a predefined path with corner or arc, the conventional proportional-integral-derivative (PID control is used in the system. However, it is difficult to tune PID gains at various conditions. As a result, the neural network (NN control is considered to assist the PID control for gain tuning. The experimental results are first provided to verify the correctness of the neural network plus PID control for 400 W-motor control system. Secondly, the AGV includes two sets of the designed motor systems and CAN BUS transmission so that it can move along the straight line and curve paths shown in the taped videos.
Application of BP neural network for LRAD-based alpha contamination monitoring inside pipes
International Nuclear Information System (INIS)
Wu Xuemei; Li Zhe; Zhang Jinzhao; Li Pingchuan; Su Jilong; Tuo Xianguo; Liu Mingzhe
2012-01-01
Factors of airspeed, flux, activity, source position, pipe length and pipe diameter affect nonlinearly source activity readout of the Long Range Alpha Detection (LRAD). In this paper, multiparameter influence experiment is carried out using variable-control method, aiming at studying relationships between the readout and each of the factors. The back propagation (BP) neural network model is established to overcome the nonlinear effects of the factors on the readout, with the readout and the multiparameters being the input, and the source activity being the output. Experiment data of 948 groups are used for BP neural network forecasting, with an average relative error of 3.4218×10 -4 . And in a 100-group test, an average relative error of 2.217×10 -2 is obtained. It shows that with this method source radioactivity in pipes can be simulated. (authors)
Directory of Open Access Journals (Sweden)
P.-Y. Chen
2009-01-01
Full Text Available This study proposes a neural network-family competition genetic algorithm (NN-FCGA for solving the electromagnetic (EM optimization and other general-purpose optimization problems. The NN-FCGA is a hybrid evolutionary-based algorithm, combining the good approximation performance of neural network (NN and the robust and effective optimum search ability of the family competition genetic algorithms (FCGA to accelerate the optimization process. In this study, the NN-FCGA is used to extract a set of optimal design parameters for two representative design examples: the multiple section low-pass filter and the polygonal electromagnetic absorber. Our results demonstrate that the optimal electromagnetic properties given by the NN-FCGA are comparable to those of the FCGA, but reducing a large amount of computation time and a well-trained NN model that can serve as a nonlinear approximator was developed during the optimization process of the NN-FCGA.
Application of BP Neural Network Algorithm in Traditional Hydrological Model for Flood Forecasting
Directory of Open Access Journals (Sweden)
Jianjin Wang
2017-01-01
Full Text Available Flooding contributes to tremendous hazards every year; more accurate forecasting may significantly mitigate the damages and loss caused by flood disasters. Current hydrological models are either purely knowledge-based or data-driven. A combination of data-driven method (artificial neural networks in this paper and knowledge-based method (traditional hydrological model may booster simulation accuracy. In this study, we proposed a new back-propagation (BP neural network algorithm and applied it in the semi-distributed Xinanjiang (XAJ model. The improved hydrological model is capable of updating the flow forecasting error without losing the leading time. The proposed method was tested in a real case study for both single period corrections and real-time corrections. The results reveal that the proposed method could significantly increase the accuracy of flood forecasting and indicate that the global correction effect is superior to the second-order autoregressive correction method in real-time correction.
International Nuclear Information System (INIS)
Oehmgen, T.; Knorr, J.
2004-01-01
Probabilistic safety analyses (PSA) are conducted to assess the balanced nature of plant design in terms of technical safety and the administrative management of plant operation in nuclear power plants. In the evaluation shown in this article of the operating experience accumulated in two nuclear power plants, all failures are traced back consistently to the plant media and component levels, respectively, for the calculation of reliability coefficients. Moreover, the use of neural networks for probabilistic calculations is examined. The results are verified on the basis of test examples. Calculations with neural networks are very easy to carry out in a kind of 'black box'. There is a possibility, for instance, to use the system in plant maintenance. (orig.) [de
Artificial neural networks a practical course
da Silva, Ivan Nunes; Andrade Flauzino, Rogerio; Liboni, Luisa Helena Bartocci; dos Reis Alves, Silas Franco
2017-01-01
This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.
Recurrent-neural-network-based Boolean factor analysis and its application to word clustering.
Frolov, Alexander A; Husek, Dusan; Polyakov, Pavel Yu
2009-07-01
The objective of this paper is to introduce a neural-network-based algorithm for word clustering as an extension of the neural-network-based Boolean factor analysis algorithm (Frolov , 2007). It is shown that this extended algorithm supports even the more complex model of signals that are supposed to be related to textual documents. It is hypothesized that every topic in textual data is characterized by a set of words which coherently appear in documents dedicated to a given topic. The appearance of each word in a document is coded by the activity of a particular neuron. In accordance with the Hebbian learning rule implemented in the network, sets of coherently appearing words (treated as factors) create tightly connected groups of neurons, hence, revealing them as attractors of the network dynamics. The found factors are eliminated from the network memory by the Hebbian unlearning rule facilitating the search of other factors. Topics related to the found sets of words can be identified based on the words' semantics. To make the method complete, a special technique based on a Bayesian procedure has been developed for the following purposes: first, to provide a complete description of factors in terms of component probability, and second, to enhance the accuracy of classification of signals to determine whether it contains the factor. Since it is assumed that every word may possibly contribute to several topics, the proposed method might be related to the method of fuzzy clustering. In this paper, we show that the results of Boolean factor analysis and fuzzy clustering are not contradictory, but complementary. To demonstrate the capabilities of this attempt, the method is applied to two types of textual data on neural networks in two different languages. The obtained topics and corresponding words are at a good level of agreement despite the fact that identical topics in Russian and English conferences contain different sets of keywords.
Definition of new 3D invariants. Applications to pattern recognition problems with neural networks
International Nuclear Information System (INIS)
Proriol, J.
1996-01-01
We propose a definition of new 3D invariants. Usual pattern recognition methods use 2D descriptions of 3D objects, we propose a 2D approximation of the defined 3D invariants which can be used with neural networks to solve pattern recognition problems. We describe some methods to use the 2 D approximants. This work is an extension of previous 3D invariants used to solve some high energy physics problems. (author)
Application of neural networks to validation of feedwater flow rate in a nuclear power plant
International Nuclear Information System (INIS)
Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.
1993-01-01
Feedwater flow rate measurement in nuclear power plants requires periodic calibration. This is due to the fact that the venturi surface condition of the feedwater flow rate sensor changes because of a chemical reaction between the surface coating material and the feedwater. Fouling of the venturi surface, due to this chemical reaction and the deposits of foreign materials, has been observed shortly after a clean venturi is put in operation. A fouled venturi causes an incorrect measurement of feedwater flow rate, which in turn results in an inaccurate calculation of the generated power. This paper presents two methods for verifying incipient and continuing fouling of the venturi of the feedwater flow rate sensors. Both methods are based on the use of a set of dissimilar process variables dynamically related to the feedwater flow rate variable. The first method uses a neural network to generate estimates of the feedwater flow rate readings. Agreement, within a given tolerance, of the feedwater flow rate instrument reading, and the corresponding neural network output establishes that the feedwater flow rate instrument is operating properly. The second method is similar to the first method except that the neural network predicts the core power which is calculated from measurements on the primary loop, rather than the feedwater flow rates. This core power is referred to the primary core power in this paper. A comparison of the power calculated from the feedwater flow measurements in the secondary loop, with the calculated and neural network predicted primary core power provides information from which it can be determined whether fouling is beginning to occur. The two methods were tested using data from the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant
International Nuclear Information System (INIS)
Kovalenko, V.I.; Khil'ko, O.S.; Kundas, S.P.
2009-01-01
The work is indicated to the use of artificial neural network (ANN) models in program complex SPS for radioactive substances' migration forecasting in soil. For the problem solution two ANN models are used. One of them forecasts radioactive substances' migration, another carries out forecasting of physical and chemical soil properties. Program complex SPS allows to achieve a low error of forecasting (no more than 5 %) and high training speed. (authors)
Directory of Open Access Journals (Sweden)
Agus Siswoyo
2017-07-01
Full Text Available The implementation of Artificial Neural Network in prediction the direction of electric wheelchair from brain signal input for physical mobility impairment.. The control of the wheelchair as an effort in improving disabled person life quality. The interaction from disabled person is helping in relation to social life with others. Because of the mobility impairment, the wheelchair with brain signal input is made. This wheel chair is purposed to help the disabled person and elderly for their daily activity. ANN helps to develop the mapping from input to target. ANN is developed in 3 level: input level, one hidden level, and output level (6-2-1. There are 6 signal from Neurosky Mindset sensor output, Alpha1, Alpha2, Raw signal, Total time signal, Attention Signal, and Meditation signal. The purpose of this research is to find out the output value from ANN: value in turning right, turning left, and forward. From those outputs, we can prove the relevance to the target. One of the main problem that interfering with success is the problem of proper neural network training. Arduino uno is chosen to implement the learning program algorithm because it is a popular microcontroller that is economic and efficient. The training of artificial neural network in this research uses 21 data package from raw data, Alpha1, Aplha2, Meditation data, Attention data, total time data. At the time of the test there is a value of Mean square Error(MSE at the end of training amounted to 0.92495 at epoch 9958, value a correlation coefficient of 0.92804 shows that accuracy the results of the training process good. Keywords: Navigation, Neural network, Real-time training, Arduino
White, H; Racine, J
2001-01-01
We propose tests for individual and joint irrelevance of network inputs. Such tests can be used to determine whether an input or group of inputs "belong" in a particular model, thus permitting valid statistical inference based on estimated feedforward neural-network models. The approaches employ well-known statistical resampling techniques. We conduct a small Monte Carlo experiment showing that our tests have reasonable level and power behavior, and we apply our methods to examine whether there are predictable regularities in foreign exchange rates. We find that exchange rates do appear to contain information that is exploitable for enhanced point prediction, but the nature of the predictive relations evolves through time.
Application of the GA-BP Neural Network in Earthwork Calculation
Fang, Peng; Cai, Zhixiong; Zhang, Ping
2018-01-01
The calculation of earthwork quantity is the key factor to determine the project cost estimate and the optimization of the scheme. It is of great significance and function in the excavation of earth and rock works. We use optimization principle of GA-BP intelligent algorithm running process, and on the basis of earthwork quantity and cost information database, the design of the GA-BP neural network intelligent computing model, through the network training and learning, the accuracy of the results meet the actual engineering construction of gauge fan requirements, it provides a new approach for other projects the calculation, and has good popularization value.
A novel application of artificial neural network for wind speed estimation
Fang, Da; Wang, Jianzhou
2017-05-01
Providing accurate multi-steps wind speed estimation models has increasing significance, because of the important technical and economic impacts of wind speed on power grid security and environment benefits. In this study, the combined strategies for wind speed forecasting are proposed based on an intelligent data processing system using artificial neural network (ANN). Generalized regression neural network and Elman neural network are employed to form two hybrid models. The approach employs one of ANN to model the samples achieving data denoising and assimilation and apply the other to predict wind speed using the pre-processed samples. The proposed method is demonstrated in terms of the predicting improvements of the hybrid models compared with single ANN and the typical forecasting method. To give sufficient cases for the study, four observation sites with monthly average wind speed of four given years in Western China were used to test the models. Multiple evaluation methods demonstrated that the proposed method provides a promising alternative technique in monthly average wind speed estimation.
Metzler, R.; Kinzel, W.; Kanter, I.
2000-08-01
Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random.
Genetic algorithm for neural networks optimization
Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta
2004-11-01
This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.
Estimation of Conditional Quantile using Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1999-01-01
The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....
Tensor Basis Neural Network v. 1.0 (beta)
Energy Technology Data Exchange (ETDEWEB)
2017-03-28
This software package can be used to build, train, and test a neural network machine learning model. The neural network architecture is specifically designed to embed tensor invariance properties by enforcing that the model predictions sit on an invariant tensor basis. This neural network architecture can be used in developing constitutive models for applications such as turbulence modeling, materials science, and electromagnetism.
International Nuclear Information System (INIS)
Vasconcelos, W.L.; Shigaki, Y.; Tolentino, E.
2009-01-01
In this work it was analyzed the residual performance of Portland cement concretes, when cold after heat-treated up to 600 deg C. Granite-gneiss was used in the three concrete mix proportions as the coarse aggregate, and river sand with finesses modulus of 2.7 as the fine aggregate. Ultrasonic pulse tests were performed on all the specimens and ultrasonic dynamic modulus were obtained. An artificial neural network of the backpropagation type was trained to evaluate and apply models in predicting residual properties of Portland cement concretes. The input layer for both models consists of an external layer input vector of the temperature. The hidden layer has two processing units with hyperbolic tangent sigmoid transfer functions (tansig for short), and the output layer contains one processing unit that represents the network's output (ultrasonic pulse velocity or modulus of elasticity) for each input vector. The training phase of the network converged for reasonable results after 5.000 epochs approximately, resulting in mean squared errors less than 0.02 for the normalized data. The neural network developed for modeling residual properties of Portland cement concretes was shown to be efficient in both the training phase and the test. From the results reasonable predictions could be made for the ultrasonic pulse velocity or dynamic modulus of elasticity by using temperature. (author)
Valdés, Julio J; Barton, Alan J
2007-05-01
A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.
Hirasawa, Toshiaki; Aoyama, Kazuharu; Tanimoto, Tetsuya; Ishihara, Soichiro; Shichijo, Satoki; Ozawa, Tsuyoshi; Ohnishi, Tatsuya; Fujishiro, Mitsuhiro; Matsuo, Keigo; Fujisaki, Junko; Tada, Tomohiro
2018-07-01
Image recognition using artificial intelligence with deep learning through convolutional neural networks (CNNs) has dramatically improved and been increasingly applied to medical fields for diagnostic imaging. We developed a CNN that can automatically detect gastric cancer in endoscopic images. A CNN-based diagnostic system was constructed based on Single Shot MultiBox Detector architecture and trained using 13,584 endoscopic images of gastric cancer. To evaluate the diagnostic accuracy, an independent test set of 2296 stomach images collected from 69 consecutive patients with 77 gastric cancer lesions was applied to the constructed CNN. The CNN required 47 s to analyze 2296 test images. The CNN correctly diagnosed 71 of 77 gastric cancer lesions with an overall sensitivity of 92.2%, and 161 non-cancerous lesions were detected as gastric cancer, resulting in a positive predictive value of 30.6%. Seventy of the 71 lesions (98.6%) with a diameter of 6 mm or more as well as all invasive cancers were correctly detected. All missed lesions were superficially depressed and differentiated-type intramucosal cancers that were difficult to distinguish from gastritis even for experienced endoscopists. Nearly half of the false-positive lesions were gastritis with changes in color tone or an irregular mucosal surface. The constructed CNN system for detecting gastric cancer could process numerous stored endoscopic images in a very short time with a clinically relevant diagnostic ability. It may be well applicable to daily clinical practice to reduce the burden of endoscopists.
Modular representation of layered neural networks.
Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio
2018-01-01
Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Application of artificial neural networks to identify equilibration in computer simulations
Leibowitz, Mitchell H.; Miller, Evan D.; Henry, Michael M.; Jankowski, Eric
2017-11-01
Determining which microstates generated by a thermodynamic simulation are representative of the ensemble for which sampling is desired is a ubiquitous, underspecified problem. Artificial neural networks are one type of machine learning algorithm that can provide a reproducible way to apply pattern recognition heuristics to underspecified problems. Here we use the open-source TensorFlow machine learning library and apply it to the problem of identifying which hypothetical observation sequences from a computer simulation are “equilibrated” and which are not. We generate training populations and test populations of observation sequences with embedded linear and exponential correlations. We train a two-neuron artificial network to distinguish the correlated and uncorrelated sequences. We find that this simple network is good enough for > 98% accuracy in identifying exponentially-decaying energy trajectories from molecular simulations.
Applications of Artificial Neural Network for the Prediction of Pool Boiling Curves
International Nuclear Information System (INIS)
Su, Guanghui; Fukuda, K.; Morita, K.
2002-01-01
Artificial neural network (ANN) has the advantage that the best-fit correlations of experimental data will no longer be necessary for predicting unknowns from the known parameters. The ANN was applied to predict the pool boiling curves in this paper. The database of experimental data presented by Berenson, Dhuga et al., and Bui and Dhir etc. were used in the analysis. The database is subdivided in two subsets. The first subset is used to train the network and the second one is used to test the network after the training process. The input parameters of the ANN are: wall superheat ΔT w , surface roughness, steady/transient heating/transient cooling, subcooling, Surface inclination and pressure. The output parameter is heat flux q. The proposed methodology allows us to achieve the accuracy that satisfies the user's convergence criterion and it is suitable for pool boiling curve data processing. (authors)
Neural networks, D0, and the SSC
International Nuclear Information System (INIS)
Barter, C.; Cutts, D.; Hoftun, J.S.; Partridge, R.A.; Sornborger, A.T.; Johnson, C.T.; Zeller, R.T.
1989-01-01
We outline several exploratory studies involving neural network simulations applied to pattern recognition in high energy physics. We describe the D0 data acquisition system and a natual means by which algorithms derived from neural networks techniques may be incorporated into recently developed hardware associated with the D0 MicroVAX farm nodes. Such applications to the event filtering needed by SSC detectors look interesting. 10 refs., 11 figs
Neural Networks for Optimal Control
DEFF Research Database (Denmark)
Sørensen, O.
1995-01-01
Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....
Neural Networks for the Beginner.
Snyder, Robin M.
Motivated by the brain, neural networks are a right-brained approach to artificial intelligence that is used to recognize patterns based on previous training. In practice, one would not program an expert system to recognize a pattern and one would not train a neural network to make decisions from rules; but one could combine the best features of…
Image processing using pulse-coupled neural networks applications in Python
Lindblad, Thomas
2013-01-01
Image processing algorithms based on the mammalian visual cortex are powerful tools for extraction information and manipulating images. This book reviews the neural theory and translates them into digital models. Applications are given in areas of image recognition, foveation, image fusion and information extraction. The third edition reflects renewed international interest in pulse image processing with updated sections presenting several newly developed applications. This edition also introduces a suite of Python scripts that assist readers in replicating results presented in the text and to further develop their own applications.
Directory of Open Access Journals (Sweden)
Karthik Kalyan
2014-01-01
Full Text Available The preliminary study presented within this paper shows a comparative study of various texture features extracted from liver ultrasonic images by employing Multilayer Perceptron (MLP, a type of artificial neural network, to study the presence of disease conditions. An ultrasound (US image shows echo-texture patterns, which defines the organ characteristics. Ultrasound images of liver disease conditions such as “fatty liver,” “cirrhosis,” and “hepatomegaly” produce distinctive echo patterns. However, various ultrasound imaging artifacts and speckle noise make these echo-texture patterns difficult to identify and often hard to distinguish visually. Here, based on the extracted features from the ultrasonic images, we employed an artificial neural network for the diagnosis of disease conditions in liver and finding of the best classifier that distinguishes between abnormal and normal conditions of the liver. Comparison of the overall performance of all the feature classifiers concluded that “mixed feature set” is the best feature set. It showed an excellent rate of accuracy for the training data set. The gray level run length matrix (GLRLM feature shows better results when the network was tested against unknown data.
A Sparse Auto Encoder Deep Process Neural Network Model and its Application
Directory of Open Access Journals (Sweden)
Xu Shaohua
2017-01-01
Full Text Available Aiming at the problem of time-varying signal pattern classification, a sparse auto-encoder deep process neural network (SAE-DPNN is proposed. The input of SAE-DPNN is time-varying process signal and the output is pattern category. It combines the time-varying signal classification method of process neural network (PNN and the data feature extraction and hierarchical sparse representation mechanism of sparse automatic encoder (SAE. Based on the feedforward PNN model, SAE-DPNN is constructed by stacking the process neurons, SAE network and softmax classifier. It can maintain the time-sequence and structure of the input signal, express and synthesize the process distribution characteristics of multidimensional time-varying signals and their combinations. SAE-DPNN improves the identification of complex features and distinguishes between different types of signals, realizes the direct classification of time-varying signals. In this paper, the feature extraction and representation mechanism of time-varying signal in SAE-DPNN are analyzed, and a specific learning algorithm is given. The experimental results verify the effectiveness of the model and algorithm.
Lele, Ramachandra Dattatraya; Joshi, Mukund; Chowdhary, Abhay
2014-01-01
The preliminary study presented within this paper shows a comparative study of various texture features extracted from liver ultrasonic images by employing Multilayer Perceptron (MLP), a type of artificial neural network, to study the presence of disease conditions. An ultrasound (US) image shows echo-texture patterns, which defines the organ characteristics. Ultrasound images of liver disease conditions such as “fatty liver,” “cirrhosis,” and “hepatomegaly” produce distinctive echo patterns. However, various ultrasound imaging artifacts and speckle noise make these echo-texture patterns difficult to identify and often hard to distinguish visually. Here, based on the extracted features from the ultrasonic images, we employed an artificial neural network for the diagnosis of disease conditions in liver and finding of the best classifier that distinguishes between abnormal and normal conditions of the liver. Comparison of the overall performance of all the feature classifiers concluded that “mixed feature set” is the best feature set. It showed an excellent rate of accuracy for the training data set. The gray level run length matrix (GLRLM) feature shows better results when the network was tested against unknown data. PMID:25332717
Directory of Open Access Journals (Sweden)
Alcinei Mistico Azevedo
2015-12-01
Full Text Available The efficiency of artificial neural networks (ANN to model complex problems may enable the prediction of characteristics that are hard to measure, providing better results than the traditional indirect selection. Thus, this study aimed to investigate the potential of using artificial neural networks (ANN for indirect selection against early flowering in lettuce, identify the influence of genotype by environment interaction in this strategy and compare your results with the traditional indirect selection. The number of days to anthesis were used as the desired output and the information of six characteristics (fresh weight of shoots, mass of marketable fresh matter of shoots, commercial dry matter of shoots, average diameter of the head, head circumference and leaf number as input file for the training of the ANN-MLP (Perceptron Multi-Layer. The use of ANN has great potential adjustment for indirect selection for genetic improvement of lettuce against early flowering. The selection based on the predicted values by network provided estimates of gain selection largest that traditional indirect selection. The ANN trained with data from an experiment have low power extrapolation to another experiment, due to effect of interaction genotype by environment. The ANNs trained simultaneously with data from different experiments presented greater predictive power and extrapolation.
Directory of Open Access Journals (Sweden)
M. Memarianfard
2017-09-01
Full Text Available Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consist of weather-related and air pollution-related data, i.e. wind speed, humidity, temperature, SO2, CO, NO2, and PM2.5 as target values. These factors have been considered in 19 measuring stations (zones over urban area across Tehran City during four years, from March 2011 to March 2015. The results indicate that the network with hidden layer including six neurons at training epoch 113, has the best performance with the lowest error value (MSE=0.049438 on considering PM2.5 concentrations across metropolitan areas in Tehran. Furthermore, the “R” value for regression analysis of training, validation, test, and all data are 0.65898, 0.6419, 0.54027, and 0.62331, respectively. This study also represents the artificial neural networks have satisfactory implemented for resolving complex patterns in the field of air pollution.
International Nuclear Information System (INIS)
Keller, P.E.; Kouzes, R.T.; Kangas, L.J.
1993-06-01
Detailed design of the Environmental and Molecular Sciences Laboratory (EMSL) at the Pacific Northwest Laboratory (PNL) is nearing completion and construction is scheduled to begin later this year. This facility will assist in the environmental restoration and waste management mission at the Hanford Site. This paper identifies several real-time data processing applications within the EMSL where neural networks can potentially be beneficial. These applications include real-time sensor data acquisition and analysis, spectral analysis, process control, theoretical modeling, and data compression
Synchronization of stochastic delayed neural networks with markovian switching and its application.
Tang, Yang; Fang, Jian-An; Miao, Qing-Ying
2009-02-01
In this paper, the problem of adaptive synchronization for a class of stochastic neural networks (SNNs) which involve both mixed delays and Markovian jumping parameters is investigated. The mixed delays comprise the time-varying delays and distributed delays, both of which are mode-dependent. The stochastic perturbations are described in terms of Browian motion. By the adaptive feedback technique, several sufficient criteria have been proposed to ensure the synchronization of SNNs in mean square. Moreover, the proposed adaptive feedback scheme is applied to the secure communication. Finally, the corresponding simulation results are given to demonstrate the usefulness of the main results obtained.
Method of image segmentation using a neural network. Application to MR imaging of brain tumors
International Nuclear Information System (INIS)
Engler, E.; Gautherie, M.
1992-01-01
An original method of numerical images segmentation has been developed. This method is based on pixel clustering using a formal neural network configurated by supervised learning of pre-classified examples. The method has been applied to series of MR images of brain tumors (gliomas) with a view to proceed with a 3D-extraction of the tumor volume. This study is part of a project on cancer thermotherapy including the development of a scan-focused ultrasound system of tumor heating and a 3D-numerical thermal model
Workplace injuries, safety climate and behaviors: application of an artificial neural network.
Abubakar, A Mohammed; Karadal, Himmet; Bayighomog, Steven W; Merdan, Ethem
2018-05-09
This article proposes and tests a model for the interaction effect of the organizational safety climate and behaviors on workplace injuries. Using artificial neural network and survey data from 306 metal casting industry employees in central Anatolia, we found that an organizational safety climate mitigates workplace injuries, and safety behaviors enforce the strength of the negative impact of the safety climate on workplace injuries. The results suggest a complex relationship between the organizational safety climate, safety behavior and workplace injuries. Theoretical and practical implications are discussed in light of decreasing workplace injuries in the Anatolian metal casting industry.
Modelling of hardness prediction of magnesium alloys using artificial neural networks applications
L.A. Dobrzański; T. Tański; J. Trzaska; L. Čížek
2008-01-01
Purpose: In the following paper there have been presented the optimisation of heat treatment condition and structure of the MCMgAl12Zn1, MCMgAl9Zn1, MCMgAl6Zn1, MCMgAl3Zn1 magnesium cast alloy as-cast state and after a heat treatment.Design/methodology/approach: Working out of a neural network model for simulation of influence of temperature, solution heat treatment and ageing time and aluminium content on hardness of the analyzed magnesium cast alloys.Findings: The different heat treatment k...
An L∞/L1-Constrained Quadratic Optimization Problem with Applications to Neural Networks
International Nuclear Information System (INIS)
Leizarowitz, Arie; Rubinstein, Jacob
2003-01-01
Pattern formation in associative neural networks is related to a quadratic optimization problem. Biological considerations imply that the functional is constrained in the L ∞ norm and in the L 1 norm. We consider such optimization problems. We derive the Euler-Lagrange equations, and construct basic properties of the maximizers. We study in some detail the case where the kernel of the quadratic functional is finite-dimensional. In this case the optimization problem can be fully characterized by the geometry of a certain convex and compact finite-dimensional set
Partial state feedback control of chaotic neural network and its application
International Nuclear Information System (INIS)
He Guoguang; Shrimali, Manish Dev; Aihara, Kazuyuki
2007-01-01
The chaos control in the chaotic neural network is studied using the partial state feedback with a control signal from a few control neurons. The controlled CNN converges to one of the stored patterns with a period which depends on the initial conditions, i.e., the set of control neurons and other control parameters. We show that the controlled CNN can distinguish between two initial patterns even if they have a small difference. This implies that such a controlled CNN can be feasibly applied to information processing such as pattern recognition
International Nuclear Information System (INIS)
Mieloszyk, Magdalena; Skarbek, Lukasz; Ostachowicz, Wieslaw; Krawczuk, Marek
2011-01-01
This paper presents an application of neural networks to determinate the level of activation of shape memory alloy actuators of an adaptive wing. In this concept the shape of the wing can be controlled and altered thanks to the wing design and the use of integrated shape memory alloy actuators. The wing is assumed as assembled from a number of wing sections that relative positions can be controlled independently by thermal activation of shape memory actuators. The investigated wing is employed with an array of Fibre Bragg Grating sensors. The Fibre Bragg Grating sensors with combination of a neural network have been used to Structural Health Monitoring of the wing condition. The FBG sensors are a great tool to control the condition of composite structures due to their immunity to electromagnetic fields as well as their small size and weight. They can be mounted onto the surface or embedded into the wing composite material without any significant influence on the wing strength. The paper concentrates on analysis of the determination of the twisting moment produced by an activated shape memory alloy actuator. This has been analysed both numerically using the finite element method by a commercial code ABAQUS (registered) and experimentally using Fibre Bragg Grating sensor measurements. The results of the analysis have been then used by a neural network to determine twisting moments produced by each shape memory alloy actuator.
Liang, B.; Iwnicki, S. D.; Zhao, Y.
2013-08-01
The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.
Energy Technology Data Exchange (ETDEWEB)
Flores, J.L. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain); Martel, I. [Dpto de Física Aplicada, Universidad de Huelva (Spain); CERN, ISOLDE, CH 1211 Geneva, 23 (Switzerland); Jiménez, R. [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Galán, J., E-mail: jgalan@diesia.uhu.es [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Salmerón, P. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain)
2016-09-11
The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from {sup 12}C up to {sup 84}Kr, yielding higher discrimination rates than any other previously reported.
Deformable image registration using convolutional neural networks
Eppenhof, Koen A.J.; Lafarge, Maxime W.; Moeskops, Pim; Veta, Mitko; Pluim, Josien P.W.
2018-01-01
Deformable image registration can be time-consuming and often needs extensive parameterization to perform well on a specific application. We present a step towards a registration framework based on a three-dimensional convolutional neural network. The network directly learns transformations between
Estimating Conditional Distributions by Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1998-01-01
Neural Networks for estimating conditionaldistributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency property is considered from a mild set of assumptions. A number of applications...
Real power transfer allocation method with the application of artificial neural network
Energy Technology Data Exchange (ETDEWEB)
Mustafa, M.W.; Khalid, S.N.; Shareef, H.; Khairuddin, A. [Technological Univ. of Malaysia, Skudai, Johor Bahru (Malaysia). Dept. of Electrical Power Enginering
2008-07-01
This paper presented a newly modified nodal equations method for identifying the real power transfer between generators and load. The objective was to represent each load current as a function of the generator's current and load voltages. The modified admittance matrix of a circuit was used to decompose the load voltage dependent term into components of generator dependent terms. By using these two decompositions of current and voltage terms, the real power transfer between loads and generators was obtained. The robustness of the proposed method was demonstrated on the modified IEEE 30-bus system. An appropriate Artificial Neural Network (ANN) was also created to solve the same problem in a simpler and faster manner with very good accuracy. For this purpose, supervised learning paradigm and feedforward architecture were chosen for the proposed ANN power transfer allocation technique. The method could be adapted to other larger systems by modifying the neural network structure. This technique can be used to solve some of the difficult real power pricing and costing issues and to ensure fairness and transparency in the deregulated environment of power system operation. 22 refs., 5 tabs., 8 figs.
The application of backpropagation neural network method to estimate the sediment loads
Directory of Open Access Journals (Sweden)
Ari Gunawan Taufik
2017-01-01
Full Text Available Nearly all formulations of conventional sediment load estimation method were developed based on a review of laboratory data or data field. This approach is generally limited by local so it is only suitable for a particular river typology. From previous studies, the amount of sediment load tends to be non-linear with respect to the hydraulic parameters and parameter that accompanies sediment. The dominant parameter is turbulence, whereas turbulence flow velocity vector direction of x, y and z. They were affected by water bodies in 3D morphology of the cross section of the vertical and horizontal. This study is conducted to address the non-linear nature of the hydraulic parameter data and sediment parameter against sediment load data by applying the artificial neural network (ANN method. The method used is the backpropagation neural network (BPNN schema. This scheme used for projecting the sediment load from the hydraulic parameter data and sediment parameters that used in the conventional estimation of sediment load. The results showed that the BPNN model performs reasonably well on the conventional calculation, indicated by the stability of correlation coefficient (R and the mean square error (MSE.
Su, Feng-Chun; Ho, Chung-Ru; Kuo, Nan-Jung
2005-01-01
The multilayer perceptron (MLP) neural network have been widely used to fit non-linear transfer function and performed well. In this study, we use MLP to estimate chlorophyll-a concentrations from marine reflectance measures. The optical data were assembled from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-optical Algorithm Mini-workshop (SeaBAM). Most bio-optical algorithms use simple ratios of reflectance in blue and green bands or combinations of ratios as parameters for regression analysis. Regression analysis has limitations for nonlinear function. Neural network, however, have been shown better performance for nonlinear problems. The result showed that accuracy of chlorophyll-a concentration using MLP is much higher than that of regression method. Nevertheless, using all of the five bands as input can derive the best performance. The results showed that each band could carry some useful messages for ocean color remote sensing. Only using band ratio (OC2) or band switch (OC4) might lose some available information. By preprocessing reflectance data with the principle component analysis (PCA), MLP could derive much better accuracy than traditional methods. The result showed that the reflectance of all bands should not be ignored for deriving the chlorophyll-a concentration because each band carries different useful ocean color information.
Directory of Open Access Journals (Sweden)
Oldřich Trenz
2010-01-01
Full Text Available The paper is focused on comparing the classification ability of the model with self-learning neutral network and methods from cluster analysis. The emphasis is particularly on the comparison of different approaches to a specific application example of the commitment, the classification of then financial situation. The aim is to critically evaluate different approaches at the level of application and deployment options.The verify the classification capability of the different approaches were used financial data from the database „Credit Info“, in particular data describing the financial situation of the two hundred eleven farms of homogeneous and uniform primary field.Input data were from the methods used, modified and evaluated by appropriate methodology. Found the final solution showed that the used approaches do not show significant differences, and they can say that they are equivalent. Based on this finding can formulate the conclusion that the approach of artificial intelligence (self-learning neural network is as effective as a partial methods in the field of cluster analysis. In both cases, these approaches can be an invaluable tool in decision making.When the financial situation is evaluated by the expert, the calculation of liquidity, profitability and other financial indicators are making some simplification. In this respect, neural networks perform better, since these simplifications in them selves are not natively included. They can better assess and somewhat ambiguous cases, including businesses with undefined financial situation, the so-called data in the border region. In this respect, support and representation of the graphical layout of the resulting situation sorted out objects using software implemented neural network model.
Energy Technology Data Exchange (ETDEWEB)
Chen, J; Xi, G [Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, 100080, Beijing (China); Wang, W [Beijing University of Chinese Medicine, 100029, Beijing (China)], E-mail: guangcheng.xi@ia.ac.cn
2008-02-15
Detecting phase transitions in neural networks (determined or random) presents a challenging subject for phase transitions play a key role in human brain activity. In this paper, we detect numerically phase transitions in two types of random neural network(RNN) under proper parameters.
Artificial Neural Network Analysis System
2001-02-27
Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis
Energy Technology Data Exchange (ETDEWEB)
Nunes, Wallace V.; Silva, Ademir X. da; Crispim, Verginia R.; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear
2000-07-01
Thermal neutron activation analysis is based on neutron capture prompt gamma-ray analysis and has been used in wide variety of fields, for examples, for inspection of checked airline baggage and for detection of buried land mines. In all of these applications, the detected {gamma}-ray intensities from the elements present are used to estimate their concentrations. A study about application using a trained neutral network is presented to determine the presence of illicit substances, such as explosives and drugs, carried out in the luggages. The illicit substances emit characteristic detected {gamma}-ray which are the fingerprint of each isotope. The fingerprint data-base of the gamma-ray spectrum of substances is obtained via Monte Carlo N-Particle Transport code, MCNP, version 4B. It was possible to train the neural network to determine the presence of explosives and narcotics even hidden by several materials. (author)
The principles of artificial neural network information processing
International Nuclear Information System (INIS)
Dai, Ru-Wei
1993-01-01
In this article, the basic structure of an artificial neuron is first introduced. In addition, principles of artificial neural network as well as several important artificial neural models such as perception, back propagation model, Hopfield net, and ART model are briefly discussed and analyzed. Finally the application of artificial neural network for Chinese character recognition is also given. (author)
The principles of artificial neural network information processing
International Nuclear Information System (INIS)
Dai, Ru-Wei
1993-01-01
In this article, the basic structure of an artificial neuron is first introduced. In addition, principles of artificial neural network as well as several important artificial neural models such as Perceptron, Back propagation model, Hopfield net, and ART model are briefly discussed and analyzed. Finally, the application of artificial neural network for Chinese Character Recognition is also given. (author)
Energy Technology Data Exchange (ETDEWEB)
Attisha, Michael J. [Brown U.
2006-01-01
The Cryogenic Dark Matter Search (CDMS) experiment is designed to search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs) via their elastic scattering interactions with nuclei. This dissertation presents the CDMS detector technology and the commissioning of two towers of detectors at the deep underground site in Soudan, Minnesota. CDMS detectors comprise crystals of Ge and Si at temperatures of 20 mK which provide ~keV energy resolution and the ability to perform particle identification on an event by event basis. Event identification is performed via a two-fold interaction signature; an ionization response and an athermal phonon response. Phonons and charged particles result in electron recoils in the crystal, while neutrons and WIMPs result in nuclear recoils. Since the ionization response is quenched by a factor ~ 3(2) in Ge(Si) for nuclear recoils compared to electron recoils, the relative amplitude of the two detector responses allows discrimination between recoil types. The primary source of background events in CDMS arises from electron recoils in the outer 50 µm of the detector surface which have a reduced ionization response. We develop a quantitative model of this ‘dead layer’ effect and successfully apply the model to Monte Carlo simulation of CDMS calibration data. Analysis of data from the two tower run March-August 2004 is performed, resulting in the world’s most sensitive limits on the spin-independent WIMP-nucleon cross-section, with a 90% C.L. upper limit of 1.6 × 10^{-43} cm^{2} on Ge for a 60 GeV WIMP. An approach to performing surface event discrimination using neural networks and wavelets is developed. A Bayesian methodology to classifying surface events using neural networks is found to provide an optimized method based on minimization of the expected dark matter limit. The discrete wavelet analysis of CDMS phonon pulses improves surface event discrimination in conjunction with the neural
Tang, S. Y.; Lee, J. S.; Loh, S. P.; Tham, H. J.
2017-06-01
The objectives of this study were to use Artificial Neural Network (ANN) to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of process variables such as concentration of osmotic solution, immersion temperature and immersion time on the above mentioned physical properties were studied. The colour of the samples was measured using a colorimeter and the net colour difference changes, ΔE were determined. The texture was measured in terms of hardness by using a Texture Analyzer. As for the shrinkage, displacement of volume method was applied and percentage of shrinkage was obtained in terms of volume changes. A feed-forward backpropagation network with sigmoidal function was developed and best network configuration was chosen based on the highest correlation coefficients between the experimental values versus predicted values. As a comparison, Response Surface Methodology (RSM) statistical analysis was also employed. The performances of both RSM and ANN modelling were evaluated based on absolute average deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability as compared to RSM. The relative importance of the variables on the physical properties were also determined by using connection weight approach in ANN. It was found that solution concentration showed the highest influence on all three physical properties.
Neural networks and statistical learning
Du, Ke-Lin
2014-01-01
Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...
Optical Neural Network Classifier Architectures
National Research Council Canada - National Science Library
Getbehead, Mark
1998-01-01
We present an adaptive opto-electronic neural network hardware architecture capable of exploiting parallel optics to realize real-time processing and classification of high-dimensional data for Air...
Memristor-based neural networks
International Nuclear Information System (INIS)
Thomas, Andy
2013-01-01
The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them. (topical review)
Application of NARX neural networks in thermal dynamics identification of a pulsating heat pipe
International Nuclear Information System (INIS)
Lee Yawei; Chang Tienli
2009-01-01
The pulsating heat pipe (PHP) receiving much attention in industries is a novel type of cooling device. The distinguishing feature of PHPs is the unsteady flow oscillations formed by the passing non-uniform distributions of vapour plugs and liquid slugs. This study introduces a methodology of a non-linear auto-regressive with exogenous (NARX) neural network to analyze the thermal dynamics of a PHP in both the time and frequency domains. Three heating powers: 30, 70, and 110 W are tested, and all the predicted results are presented in quite good agreement with the measured results. Herein, the harmonic analysis of the non-linear structure can be equivalently conducted with generalized frequency response functions (GFRFs). Based on the non-linear coupling between the various input spectral components, the interpretations of the higher order GFRFs have been extensively presented for demonstrating the non-linear effects on the heat transfer of a PHP at different operating conditions
Directory of Open Access Journals (Sweden)
Zhekang Dong
2014-01-01
Full Text Available In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.
Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan; Li, Hai
2014-01-01
In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.
Gapped sequence alignment using artificial neural networks: application to the MHC class I system
DEFF Research Database (Denmark)
Andreatta, Massimo; Nielsen, Morten
2016-01-01
. On this relatively simple system, we developed a sequence alignment method based on artificial neural networks that allows insertions and deletions in the alignment. Results: We show that prediction methods based on alignments that include insertions and deletions have significantly higher performance than methods...... trained on peptides of single lengths. Also, we illustrate how the location of deletions can aid the interpretation of the modes of binding of the peptide-MHC, as in the case of long peptides bulging out of the MHC groove or protruding at either terminus. Finally, we demonstrate that the method can learn...... the length profile of different MHC molecules, and quantified the reduction of the experimental effort required to identify potential epitopes using our prediction algorithm. Availability and implementation: The NetMHC-4.0 method for the prediction of peptide-MHC class I binding affinity using gapped...
A review on application of neural networks and fuzzy logic to solve hydrothermal scheduling problem
International Nuclear Information System (INIS)
Haroon, S.; Malik, T.N.; Zafar, S.
2014-01-01
Electrical power system is highly complicated having hydro and thermal mix with large number of machines. To reduce power production cost, hydro and thermal resources are mixed. Hydrothermal scheduling is the optimal coordination of hydro and thermal plants to meet the system load demand at minimum possible operational cost while satisfying the system constraints. Hydrothermal scheduling is dynamic, large scale, non-linear and non-convex optimization problem. The classical techniques have failed in solving such problem. Artificial Intelligence Tools based techniques are used now a day to solve this complex optimization problem because of their no requirements on the nature of the problem. The aim of this research paper is to provide a comprehensive survey of literature related to both Artificial Neural Network (ANN) and Fuzzy Logic (FL) as effective optimization algorithms for the hydrothermal scheduling problem. The outcomes along with the merits and demerits of individual techniques are also discussed. (author)
Pereira, Clayton R; Pereira, Danilo R; Rosa, Gustavo H; Albuquerque, Victor H C; Weber, Silke A T; Hook, Christian; Papa, João P
2018-04-16
Parkinson's disease (PD) is considered a degenerative disorder that affects the motor system, which may cause tremors, micrography, and the freezing of gait. Although PD is related to the lack of dopamine, the triggering process of its development is not fully understood yet. In this work, we introduce convolutional neural networks to learn features from images produced by handwritten dynamics, which capture different information during the individual's assessment. Additionally, we make available a dataset composed of images and signal-based data to foster the research related to computer-aided PD diagnosis. The proposed approach was compared against raw data and texture-based descriptors, showing suitable results, mainly in the context of early stage detection, with results nearly to 95%. The analysis of handwritten dynamics using deep learning techniques showed to be useful for automatic Parkinson's disease identification, as well as it can outperform handcrafted features. Copyright © 2018 Elsevier B.V. All rights reserved.
Application of artificial neural networks on the characterization of radioactive waste drums
International Nuclear Information System (INIS)
Potiens Junior, Ademar Jose; Hiromoto, Goro
2011-01-01
The methodology consist of system simulation of drum-detector by Monte Carlo for obtention of counting efficiency. The obtained data were treated and a neural artificial network (RNA) were constructed for evaluation of total activity of drum. For method evaluation measurements were performed in ten position parallel to the drum axis and the results submitted to the RNA. The developed methodology showed to be effective for isotopic characterization of gamma emitter radioactive wastes distributed in a heterogeneous way in a 200 litters drum. The objective of this work as to develop a methodology of analyse for quantification and localization of radionuclides not homogeneous distributed in a 200 liters drum based on the mathematical techniques
Calibration of neural networks using genetic algorithms, with application to optimal path planning
Smith, Terence R.; Pitney, Gilbert A.; Greenwood, Daniel
1987-01-01
Genetic algorithms (GA) are used to search the synaptic weight space of artificial neural systems (ANS) for weight vectors that optimize some network performance function. GAs do not suffer from some of the architectural constraints involved with other techniques and it is straightforward to incorporate terms into the performance function concerning the metastructure of the ANS. Hence GAs offer a remarkably general approach to calibrating ANS. GAs are applied to the problem of calibrating an ANS that finds optimal paths over a given surface. This problem involves training an ANS on a relatively small set of paths and then examining whether the calibrated ANS is able to find good paths between arbitrary start and end points on the surface.
Neural network application for thermal image recognition of low-resolution objects
Fang, Yi-Chin; Wu, Bo-Wen
2007-02-01
In the ever-changing situation on a battle field, accurate recognition of a distant object is critical to a commander's decision-making and the general public's safety. Efficiently distinguishing between an enemy's armoured vehicles and ordinary civilian houses under all weather conditions has become an important research topic. This study presents a system for recognizing an armoured vehicle by distinguishing marks and contours. The characteristics of 12 different shapes and 12 characters are used to explore thermal image recognition under the circumstance of long distance and low resolution. Although the recognition capability of human eyes is superior to that of artificial intelligence under normal conditions, it tends to deteriorate substantially under long-distance and low-resolution scenarios. This study presents an effective method for choosing features and processing images. The artificial neural network technique is applied to further improve the probability of accurate recognition well beyond the limit of the recognition capability of human eyes.
Neural Networks for protein Structure Prediction
DEFF Research Database (Denmark)
Bohr, Henrik
1998-01-01
This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...
International Nuclear Information System (INIS)
Szabo, Botond K.; Wiberg, Maria Kristoffersen; Bone, Beata; Aspelin, Peter
2004-01-01
The discriminative ability of established diagnostic criteria for MRI of the breast is assessed, and their relative relevance using artificial neural networks (ANNs) is determined. A total of 89 women with 105 histopathologically verified breast lesions (73 invasive cancers, 2 in situ cancers, and 30 benign lesions) were included in this study. A T1-weighted 3D FLASH sequence was acquired before and seven times after the intravenous administration of gadopentetate dimeglumine at a dose of 0.2 mmol/kg body weight. ANN models were built to test the discriminative ability of kinetic, morphologic, and combined MR features. The subjects were randomly divided into two parts: a training set of 59 lesions and a verification set of 46 lesions. The training set was used for learning, and the performance of each model was evaluated on the verification set by measuring the area under the ROC curve (A z ). An optimally minimized model was constructed using the most relevant input variables that were determined by the automatic relevance determination (ARD) method. ANN models were compared with the performance of a human reader. Margin type, time-to-peak enhancement, and washout ratio showed the highest discriminative ability among diagnostic criteria and comprised the minimized model. Compared with the expert radiologist (A z =0.799), using the same prediction scale, the minimized ANN model performed best (A z =0.771), followed by the best kinetic (A z =0.743), the maximized (A z =0.727), and the morphologic model (A z =0.678). The performance of a neural network prediction model is comparable to that of an expert radiologist. A neurostatistical approach is preferred for the analysis of diagnostic criteria when many parameters are involved and complex nonlinear relationships exist in the data set. (orig.)
What are artificial neural networks?
DEFF Research Database (Denmark)
Krogh, Anders
2008-01-01
Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...
Directory of Open Access Journals (Sweden)
Fogelman-Soulie F.
2006-11-01
Full Text Available Neural Networks can be used in many different areas of problems related to Petroleum Exploration and Production. There already exist well defined classes of applications, together with appropriate Neural Networks architectures. Detailed theoretical results allow to monitor and evaluate the results obtained by Neural Networks. Sophisticated applications will certainly require the use of multi-modular architectures. Les réseaux neuronaux peuvent être utilisés pour de nombreux problèmes dans les domaines de l'exploration et la production de pétrole. Il existe d'ores et déjà des classes d'applications bien définies, pour lesquelles on connaît les architectures neuronales les plus adaptées. Des résultats théoriques précis permettent de contrôler et d'évaluer les performances obtenues avec les réseaux neuronaux. Les applications complexes demanderont certainement la mise en oeuvre d'architectures multi-modulaires.
Directory of Open Access Journals (Sweden)
Somaye Yeylaghi
2017-06-01
Full Text Available In this paper, a novel hybrid method based on interval-valued fuzzy neural network for approximate of interval-valued fuzzy regression models, is presented. The work of this paper is an expansion of the research of real fuzzy regression models. In this paper interval-valued fuzzy neural network (IVFNN can be trained with crisp and interval-valued fuzzy data. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate parameters, a simple algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our approach by some numerical examples and compare this method with existing methods.
Avoiding object by robot using neural network
International Nuclear Information System (INIS)
Prasetijo, D.W.
1997-01-01
A Self controlling robot is necessary in the robot application in which operator control is difficult. Serial method such as process on the computer of van newman is difficult to be applied for self controlling robot. In this research, Neural network system for robotic control system was developed by performance expanding at the SCARA. In this research, it was shown that SCARA with application at Neural network system can avoid blocking objects without influence by number and density of the blocking objects, also departure and destination paint. robot developed by this study also can control its moving by self
Artificial Astrocytes Improve Neural Network Performance
Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-01-01
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157
Artificial astrocytes improve neural network performance.
Directory of Open Access Journals (Sweden)
Ana B Porto-Pazos
Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
Artificial astrocytes improve neural network performance.
Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-04-19
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
Feedforward Nonlinear Control Using Neural Gas Network
Machón-González, Iván; López-García, Hilario
2017-01-01
Nonlinear systems control is a main issue in control theory. Many developed applications suffer from a mathematical foundation not as general as the theory of linear systems. This paper proposes a control strategy of nonlinear systems with unknown dynamics by means of a set of local linear models obtained by a supervised neural gas network. The proposed approach takes advantage of the neural gas feature by which the algorithm yields a very robust clustering procedure. The direct model of the ...
Complex-Valued Neural Networks
Hirose, Akira
2012-01-01
This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...
Directory of Open Access Journals (Sweden)
Yongcheng Li
Full Text Available Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.
Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi
2015-01-01
Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.
International Nuclear Information System (INIS)
Koo, Bon Hyun
1994-02-01
conservative prediction for the wide range of core DNBR while the fine weight set can provide a more accurate yet conservative prediction of core DNBR over a specified DNBR range. With this scheme, the DNBR can be predicted more accurately when the core DNBR approaches the safety setpoint. The weighted system error backpropagation method has also been found to be very effective for the accuracy enhancement and can have a variety of applications if proper weighted function is chosen. For actual applications the uncertainty factor as a function of output was introduced to provide the conservative predictions. A sensitivity analysis was then peformed by taking the partial derivative of the DNBR with respect to the core power to secure a sensitivity coefficient. This coefficient was used to retrieve the available power margin which means how far the core power is away from the DNB occurrence. Based on this analysis, it can be concluded that the backpropagation network training algorithm can be used as a tool for the prediction of the core safety parameters and that the developed system models using the neural network can be used for the accurate yet conservative prediction of the core HCF and DNBR on a real-time basis
Lamb, Richard L.
Serious Educational Games (SEGs) have been a topic of increased popularity within the educational realm since the early millennia. SEGs are generalized form of Serious Games to mean games for purposes other than entertainment but, that also specifically include training, educational purpose and pedagogy within their design. This rise in popularity (for SEGs) has occurred at a time when school systems have increased the type, number, and presentations of student achievement tests for decision-making purposes. These tests often task the form of end of course (year) tests and periodic benchmark testing. As the use of these tests, has increased policymakers have suggested their use as a measure for teacher accountability. The change in testing resulted from a push by school districts and policy makers at various component levels for a data-driven decision-making (D3M) approach. With the data-driven decision making approaches by school districts, there has been an increased focus on the measurement and assessment of student content knowledge with little focus on the contributing factors and cognitive attributes within learning that cross multiple-content areas. One-way to increase the focus on these aspects of learning (factors and attributes) that are additional to content learning is through assessments based in cognitive diagnostics. Cognitive diagnostics are a family of methodological approaches in which tasks tie to specific cognitive attributes for analytical purposes. This study explores data derived from computer data logging (n=158,000) in an observational design, using traditional statistical techniques such as clustering (exploratory and confirmatory), item response theory and through data mining techniques such as artificial neural network analysis. From these analyses, a model of student learning emerges illustrating student thinking and learning while engaged in SEG Design. This study seeks to use cognitive diagnostic type approaches to measure student
With the advent of commercial software applications, it is now easy to develop neural network models for predictive microbiology applications. However, different versions of the model may be required to meet the divergent needs of model users. In the current study, the commercial software applicat...
Li, Su-Yi; Ji, Yan-Ju; Liu, Wei-Yu; Wang, Zhi-Hong
2013-04-01
In the present study, an innovative method is proposed, employing both wavelet transform and neural network, to analyze the near-infrared spectrum data in oil shale survey. The method entails using db8 wavelet at 3 levels decomposition to process raw data, using the transformed data as the input matrix, and creating the model through neural network. To verify the validity of the method, this study analyzes 30 synthesized oil shale samples, in which 20 samples are randomly selected for network training, the other 10 for model prediction, and uses the full spectrum and the wavelet transformed spectrum to carry out 10 network models, respectively. Results show that the mean speed of the full spectrum neural network modeling is 570.33 seconds, and the predicted residual sum of squares (PRESS) and correlation coefficient of prediction are 0.006 012 and 0.843 75, respectively. In contrast, the mean speed of the wavelet network modeling method is 3.15 seconds, and the mean PRESS and correlation coefficient of prediction are 0.002 048 and 0.953 19, respectively. These results demonstrate that the wavelet neural network modeling method is significantly superior to the full spectrum neural network modeling method. This study not only provides a new method for more efficient and accurate detection of the oil content of oil shale, but also indicates the potential for applying wavelet transform and neutral network in broad near-infrared spectrum analysis.
Digital Repository Service at National Institute of Oceanography (India)
Chakraborty, B.; Lourenco, E.; Kodagali, V.N.; Baracho, J.
In this paper, we have utilized Artificial Neural Networks (ANN) for seafloor topographic data segmentation and roughness classification using the multibeam- Hydrosweep system (installed onboard ocean research vessel Sagar Kanya) data. Bathymetric...
International Nuclear Information System (INIS)
Xu Jianguo; Xu Xianli; Wang Weiguo
2008-01-01
The article describes the model construction of self-organizing competition artificial neural network, its principle and automatic recognition process of borehole lithology in detail, and then proves the efficiency of the neural network model for automatically recognizing the borehole lithology with some cases. The self-organizing competition artificial neural network has the ability of self- organization, self-adjustment and high permitting errors. Compared with the BP algorithm, it takes less calculation quantity and more rapidly converges. Furthermore, it can automatically confirm the category without the known sample information. Trial results based on contrasting the identification results of the borehole lithology with geological documentations, indicate that self-organizing artificial neural network can be well applied to automatically performing the category of borehole lithology, during the logging data explanation of sandstone-hosted uranium deposits. (authors)
Foreign currency rate forecasting using neural networks
Pandya, Abhijit S.; Kondo, Tadashi; Talati, Amit; Jayadevappa, Suryaprasad
2000-03-01
Neural networks are increasingly being used as a forecasting tool in many forecasting problems. This paper discusses the application of neural networks in predicting daily foreign exchange rates between the USD, GBP as well as DEM. We approach the problem from a time-series analysis framework - where future exchange rates are forecasted solely using past exchange rates. This relies on the belief that the past prices and future prices are very close related, and interdependent. We present the result of training a neural network with historical USD-GBP data. The methodology used in explained, as well as the training process. We discuss the selection of inputs to the network, and present a comparison of using the actual exchange rates and the exchange rate differences as inputs. Price and rate differences are the preferred way of training neural network in financial applications. Results of both approaches are present together for comparison. We show that the network is able to learn the trends in the exchange rate movements correctly, and present the results of the prediction over several periods of time.
Application of artificial neural networks for the prediction of traction performance parameters
Directory of Open Access Journals (Sweden)
Hamid Taghavifar
2014-01-01
Full Text Available This study handles artificial neural networks (ANN modeling to predict tire contact area and rolling resistance due to the complex and nonlinear interactions between soil and wheel that mathematical, numerical and conventional models fail to investigate multivariate input and output relationships with nonlinear and complex characteristics. Experimental data acquisitioning was carried out using a soil bin facility with single-wheel tester at seven inflation pressures of tire (i.e. 100–700 kPa and seven different wheel loads (1–7 KN with two soil textures and two tire types. The experimental datasets were used to develop a feed-forward with back propagation ANN model. Four criteria (i.e. R-value, T value, mean squared error, and model simplicity were used to evaluate model’s performance. A well-trained optimum 4-6-2 ANN provided the best accuracy in modeling contact area and rolling resistance with regression coefficients of 0.998 and 0.999 and T value and MSE of 0.996 and 2.55 × 10−12, respectively. It was found that ANNs due to faster, more precise, and considerably reliable computation of multivariable, nonlinear, and complex computations are highly appropriate for soil–wheel interaction modeling.
Application of Artificial Neural Network for Damage Detection in Planetary Gearbox of Wind Turbine
Directory of Open Access Journals (Sweden)
Marcin Strączkiewicz
2016-01-01
Full Text Available In the monitoring process of wind turbines the utmost attention should be given to gearboxes. This conclusion is derived from numerous summary papers. They reveal that, on the one hand, gearboxes are one of the most fault susceptible elements in the drive-train and, on the other, the most expensive to replace. Although state-of-the-art CMS can usually provide advanced signal processing tools for extraction of diagnostic information, there are still many installations, where the diagnosis is based simply on the averaged wideband features like root-mean-square (RMS or peak-peak (PP. Furthermore, for machinery working in highly changing operational conditions, like wind turbines, those estimators are strongly fluctuating, and this fluctuation is not linearly correlated to operation parameters. Thus, the sudden increase of a particular feature does not necessarily have to indicate the development of fault. To overcome this obstacle, it is proposed to detect a fault development with Artificial Neural Network (ANN and further observation of linear regression parameters calculated on the estimation error between healthy and unknown condition. The proposed reasoning is presented on the real life example of ring gear fault in wind turbine’s planetary gearbox.
Application of different entropy formalisms in a neural network for novel word learning
Khordad, R.; Rastegar Sedehi, H. R.
2015-12-01
In this paper novel word learning in adults is studied. For this goal, four entropy formalisms are employed to include some degree of non-locality in a neural network. The entropy formalisms are Tsallis, Landsberg-Vedral, Kaniadakis, and Abe entropies. First, we have analytically obtained non-extensive cost functions for the all entropies. Then, we have used a generalization of the gradient descent dynamics as a learning rule in a simple perceptron. The Langevin equations are numerically solved and the error function (learning curve) is obtained versus time for different values of the parameters. The influence of index q and number of neuron N on learning is investigated for the all entropies. It is found that learning is a decreasing function of time for the all entropies. The rate of learning for the Landsberg-Vedral entropy is slower than other entropies. The variation of learning with time for the Landsberg-Vedral entropy is not appreciable when the number of neurons increases. It is said that entropy formalism can be used as a means for studying the learning.
The Application of Neural Networks in Balancing Production of Crude Sunflower Oil and Meal
Directory of Open Access Journals (Sweden)
Bojan Ivetic
2014-08-01
Full Text Available The aim of the research is to predict specific output characteristics of half finished goods (crude sunflower oil and meal on the basis of specific input variables (quality and composition of sunflower seeds, with the help of artificial neural networks. This is an attempt to predict the amount much more precisely than is the case with technological calculations commonly used in the oil industry. All input variables are representing the data received by the laboratory, and the output variables except category % of oil which is obtained by measuring the physical quantity of produced crude sunflower oil and sunflower consumed quantity of the processing quality. The correct prediction of the output variables contributes to better sales planning, production of sunflower oil, and better use of storage. Also, the correct prediction of technological results of the quality of crude oil and meal provides timely response and also preventing getting rancid and poor-quality oil, timely categorizing meal, which leads to proper planning and sales to the rational utilization of storage space, allows timely response technologists and prevents the growth of microorganisms in the meal.
Umehara, Kensuke; Ota, Junko; Ishida, Takayuki
2017-10-18
In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.
Chherawala, Youssouf; Roy, Partha Pratim; Cheriet, Mohamed
2016-12-01
The performance of handwriting recognition systems is dependent on the features extracted from the word image. A large body of features exists in the literature, but no method has yet been proposed to identify the most promising of these, other than a straightforward comparison based on the recognition rate. In this paper, we propose a framework for feature set evaluation based on a collaborative setting. We use a weighted vote combination of recurrent neural network (RNN) classifiers, each trained with a particular feature set. This combination is modeled in a probabilistic framework as a mixture model and two methods for weight estimation are described. The main contribution of this paper is to quantify the importance of feature sets through the combination weights, which reflect their strength and complementarity. We chose the RNN classifier because of its state-of-the-art performance. Also, we provide the first feature set benchmark for this classifier. We evaluated several feature sets on the IFN/ENIT and RIMES databases of Arabic and Latin script, respectively. The resulting combination model is competitive with state-of-the-art systems.
Hu, Z.; Xu, L.; Yu, B.
2018-04-01
A empirical model is established to analyse the daily retrieval of soil moisture from passive microwave remote sensing using convolutional neural networks (CNN). Soil moisture plays an important role in the water cycle. However, with the rapidly increasing of the acquiring technology for remotely sensed data, it's a hard task for remote sensing practitioners to find a fast and convenient model to deal with the massive data. In this paper, the AMSR-E brightness temperatures are used to train CNN for the prediction of the European centre for medium-range weather forecasts (ECMWF) model. Compared with the classical inversion methods, the deep learning-based method is more suitable for global soil moisture retrieval. It is very well supported by graphics processing unit (GPU) acceleration, which can meet the demand of massive data inversion. Once the model trained, a global soil moisture map can be predicted in less than 10 seconds. What's more, the method of soil moisture retrieval based on deep learning can learn the complex texture features from the big remote sensing data. In this experiment, the results demonstrates that the CNN deployed to retrieve global soil moisture can achieve a better performance than the support vector regression (SVR) for soil moisture retrieval.
International Nuclear Information System (INIS)
Hamzaoui, R.; Cherigui, M.; Guessasma, S.; ElKedim, O.; Fenineche, N.
2009-01-01
This paper is dedicated to the optimization of magnetic properties of iron based magnetic materials with regard to milling and coating process conditions using artificial neural network methodology. Fe-20 wt.% Ni and Fe-6.5 wt.% Si, alloys were obtained using two high-energy ball milling technologies, namely a planetary ball mill P4 vario ball mill from Fritsch and planetary ball mill from Retch. Further processing of Fe-Si powder allowed the spraying of the feedstock material using high-velocity oxy-fuel (HVOF) process to obtain a relatively dense coating. Input parameters were the disc Ω and vial ω speed rotations for the milling technique, and spray distance and oxygen flow rate in the case of coating process. Two main magnetic parameters are optimized namely the saturation magnetization and the coercivity. Predicted results depict clearly coupled effects of input parameters to vary magnetic parameters. In particular, the increase of saturation magnetization is correlated to the increase of the product Ωω (shock power) and the product of spray parameters. Largest coercivity values are correlated to the increase of the ratio Ω/ω (shock mode process) and the increase of the product of spray parameters.
Directory of Open Access Journals (Sweden)
Z. Hu
2018-04-01
Full Text Available A empirical model is established to analyse the daily retrieval of soil moisture from passive microwave remote sensing using convolutional neural networks (CNN. Soil moisture plays an important role in the water cycle. However, with the rapidly increasing of the acquiring technology for remotely sensed data, it's a hard task for remote sensing practitioners to find a fast and convenient model to deal with the massive data. In this paper, the AMSR-E brightness temperatures are used to train CNN for the prediction of the European centre for medium-range weather forecasts (ECMWF model. Compared with the classical inversion methods, the deep learning-based method is more suitable for global soil moisture retrieval. It is very well supported by graphics processing unit (GPU acceleration, which can meet the demand of massive data inversion. Once the model trained, a global soil moisture map can be predicted in less than 10 seconds. What's more, the method of soil moisture retrieval based on deep learning can learn the complex texture features from the big remote sensing data. In this experiment, the results demonstrates that the CNN deployed to retrieve global soil moisture can achieve a better performance than the support vector regression (SVR for soil moisture retrieval.
Mateo, J; Rieta, J J
2012-02-01
The electrocardiogram (ECG) is the most widely used method for diagnosis of heart diseases, where a good quality of recordings allows the proper interpretation and identification of physiological and pathological phenomena. However, ECG recordings often have interference from noises including thermal, muscle, baseline and powerline noises. These signals severely limit ECG recording utility and, hence, have to be removed. To deal with this problem, the present paper proposes an artificial neural network (ANN) as a filter to remove all kinds of noise in just one step. The method is based on a growing ANN which optimizes both the number of nodes in the hidden layer and the coefficient matrices, which are optimized by means of the Widrow-Hoff delta algorithm. The ANN has been trained with a database comprising all kinds of noise, both from synthesized and real ECG recordings, in order to handle any noise signal present in the ECG. The proposed system improves results yielded by conventional techniques of ECG filtering, such as FIR-based systems, adaptive filtering and wavelet filtering. Therefore, the algorithm could serve as an effective framework to substantially reduce noise in ECG recordings. In addition, the resulting ECG signal distortion is notably more reduced in comparison with conventional methodologies. In summary, the current contribution introduces a new method which is able to suppress all ECG interference signals in only one step with low ECG distortion and a high noise reduction.
Directory of Open Access Journals (Sweden)
Bertin Dominique
2016-01-01
Full Text Available The Liane River is a small costal river, famous for its floods, which can affect the city of Boulogne-sur-Mer. Due to the complexity of land cover and hydrologic processes, a black-box non-linear modelling was chosen using neural networks. The multilayer perceptron model, known for its property of universal approximation is thus chosen. Four models were designed, each one for one forecasting horizon using rainfall forecasts: 24h, 12h, 6h, 3h. The desired output of the model is original: it represents the maximal value of the water level respectively 24h, 12h, 6h, 3h ahead. Working with best forecasts of rain (the observed ones during the event in the past, on the major flood of the database in test set, the model provides excellent forecasts. Nash criteria calculated for the four lead times are 0.98 (3h, 0.97 (6h, 0.91 (12h, 0.89 (24h. Designed models were thus estimated as efficient enough to be implemented in a specific tool devoted to real time operational use. The software tool is described hereafter: designed in Java, it presents a friendly interface allowing applying various scenarios of future rainfalls, and a graphical visualization of the predicted maximum water levels and their associated real time observed values.
Semantic segmentation of bioimages using convolutional neural networks
CSIR Research Space (South Africa)
Wiehman, S
2016-07-01
Full Text Available Convolutional neural networks have shown great promise in both general image segmentation problems as well as bioimage segmentation. In this paper, the application of different convolutional network architectures is explored on the C. elegans live...
Neural networks prove effective at NOx reduction
Energy Technology Data Exchange (ETDEWEB)
Radl, B.J. [Pegasus Technologies, Mentor, OH (USA)
2000-05-01
The availability of low cost computer hardware and software is opening up possibilities for the use of artificial intelligence concepts, notably neural networks, in power plant control applications, delivering lower costs, greater efficiencies and reduced emissions. One example of a neural network system is the NeuSIGHT combustion optimisation system, developed by Pegasus Technologies, a subsidiary of KFx Inc. It can help reduce NOx emissions, improve heat rate and enable either deferral or elimination of capital expenditures. on other NOx control technologies, such as low NOx burners, SNCR and SCR. This paper illustrates these benefits using three recent case studies. 4 figs.
Kim, Jihun; Kim, Jonghong; Jang, Gil-Jin; Lee, Minho
2017-03-01
Deep learning has received significant attention recently as a promising solution to many problems in the area of artificial intelligence. Among several deep learning architectures, convolutional neural networks (CNNs) demonstrate superior performance when compared to other machine learning methods in the applications of object detection and recognition. We use a CNN for image enhancement and the detection of driving lanes on motorways. In general, the process of lane detection consists of edge extraction and line detection. A CNN can be used to enhance the input images before lane detection by excluding noise and obstacles that are irrelevant to the edge detection result. However, training conventional CNNs requires considerable computation and a big dataset. Therefore, we suggest a new learning algorithm for CNNs using an extreme learning machine (ELM). The ELM is a fast learning method used to calculate network weights between output and hidden layers in a single iteration and thus, can dramatically reduce learning time while producing accurate results with minimal training data. A conventional ELM can be applied to networks with a single hidden layer; as such, we propose a stacked ELM architecture in the CNN framework. Further, we modify the backpropagation algorithm to find the targets of hidden layers and effectively learn network weights while maintaining performance. Experimental results confirm that the proposed method is effective in reducing learning time and improving performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Li Hui; Wang Ruipian; Hu Shouyin
2003-01-01
This paper makes researches on 10 MW High-Temperature Gas-Cooled Reactor fault diagnosis system using Artificial Neural Network, and uses the tendency value and real value of the data under the accidents to train and test two BP networks respectively. The final diagnostic result is the combination of the results of the two networks. The compound system can enhance the accuracy and adaptability of the diagnosis compared to the single network system
Recurrent Neural Network for Computing Outer Inverse.
Živković, Ivan S; Stanimirović, Predrag S; Wei, Yimin
2016-05-01
Two linear recurrent neural networks for generating outer inverses with prescribed range and null space are defined. Each of the proposed recurrent neural networks is based on the matrix-valued differential equation, a generalization of dynamic equations proposed earlier for the nonsingular matrix inversion, the Moore-Penrose inversion, as well as the Drazin inversion, under the condition of zero initial state. The application of the first approach is conditioned by the properties of the spectrum of a certain matrix; the second approach eliminates this drawback, though at the cost of increasing the number of matrix operations. The cases corresponding to the most common generalized inverses are defined. The conditions that ensure stability of the proposed neural network are presented. Illustrative examples present the results of numerical simulations.
Accident scenario diagnostics with neural networks
International Nuclear Information System (INIS)
Guo, Z.
1992-01-01
Nuclear power plants are very complex systems. The diagnoses of transients or accident conditions is very difficult because a large amount of information, which is often noisy, or intermittent, or even incomplete, need to be processed in real time. To demonstrate their potential application to nuclear power plants, neural networks axe used to monitor the accident scenarios simulated by the training simulator of TVA's Watts Bar Nuclear Power Plant. A self-organization network is used to compress original data to reduce the total number of training patterns. Different accident scenarios are closely related to different key parameters which distinguish one accident scenario from another. Therefore, the accident scenarios can be monitored by a set of small size neural networks, called modular networks, each one of which monitors only one assigned accident scenario, to obtain fast training and recall. Sensitivity analysis is applied to select proper input variables for modular networks
Optimum Neural Network Architecture for Precipitation Prediction of Myanmar
Khaing Win Mar; Thinn Thu Naing
2008-01-01
Nowadays, precipitation prediction is required for proper planning and management of water resources. Prediction with neural network models has received increasing interest in various research and application domains. However, it is difficult to determine the best neural network architecture for prediction since it is not immediately obvious how many input or hidden nodes are used in the model. In this paper, neural network model is used as a forecasting tool. The major aim is to evaluate a s...
Classification of behavior using unsupervised temporal neural networks
International Nuclear Information System (INIS)
Adair, K.L.
1998-03-01
Adding recurrent connections to unsupervised neural networks used for clustering creates a temporal neural network which clusters a sequence of inputs as they appear over time. The model presented combines the Jordan architecture with the unsupervised learning technique Adaptive Resonance Theory, Fuzzy ART. The combination yields a neural network capable of quickly clustering sequential pattern sequences as the sequences are generated. The applicability of the architecture is illustrated through a facility monitoring problem
Entropy Learning in Neural Network
Directory of Open Access Journals (Sweden)
Geok See Ng
2017-12-01
Full Text Available In this paper, entropy term is used in the learning phase of a neural network. As learning progresses, more hidden nodes get into saturation. The early creation of such hidden nodes may impair generalisation. Hence entropy approach is proposed to dampen the early creation of such nodes. The entropy learning also helps to increase the importance of relevant nodes while dampening the less important nodes. At the end of learning, the less important nodes can then be eliminated to reduce the memory requirements of the neural network.
Application of Artificial Neural Networks to Ship Detection from X-Band Kompsat-5 Imagery
Directory of Open Access Journals (Sweden)
Jeong-In Hwang
2017-09-01
Full Text Available For ship detection, X-band synthetic aperture radar (SAR imagery provides very useful data, in that ship targets look much brighter than surrounding sea clutter due to the corner-reflection effect. However, there are many phenomena which bring out false detection in the SAR image, such as noise of background, ghost phenomena, side-lobe effects and so on. Therefore, when ship-detection algorithms are carried out, we should consider these effects and mitigate them to acquire a better result. In this paper, we propose an efficient method to detect ship targets from X-band Kompsat-5 SAR imagery using the artificial neural network (ANN. The method produces the ship-probability map using ANN, and then detects ships from the ship-probability map by using a threshold value. For the purpose of getting an improved ship detection, we strived to produce optimal input layers used for ANN. In order to reduce phenomena related to the false detections, the non-local (NL-means filter and median filter were utilized. The NL-means filter effectively reduced noise on SAR imagery without smoothing edges of the objects, and the median filter was used to remove ship targets in SAR imagery. Through the filtering approaches, we generated two input layers from a Kompsat-5 SAR image, and created a ship-probability map via ANN from the two input layers. When the threshold value of 0.67 was imposed on the ship-probability map, the result of ship detection from the ship-probability map was a 93.9% recall, 98.7% precision and 6.1% false alarm rate. Therefore, the proposed method was successfully applied to the ship detection from the Kompsat-5 SAR image.
Directory of Open Access Journals (Sweden)
Abdullahi Abubakar Mas’ud
2016-07-01
Full Text Available In order to investigate how artificial neural networks (ANNs have been applied for partial discharge (PD pattern recognition, this paper reviews recent progress made on ANN development for PD classification by a literature survey. Contributions from several authors have been presented and discussed. High recognition rate has been recorded for several PD faults, but there are still many factors that hinder correct recognition of PD by the ANN, such as high-amplitude noise or wide spectral content typical from industrial environments, trial and error approaches in determining an optimum ANN, multiple PD sources acting simultaneously, lack of comprehensive and up to date databank of PD faults, and the appropriate selection of the characteristics that allow a correct recognition of the type of source which are currently being addressed by researchers. Several suggestions for improvement are proposed by the authors include: (1 determining the optimum weights in training the ANN; (2 using PD data captured over long stressing period in training the ANN; (3 ANN recognizing different PD degradation levels; (4 using the same resolution sizes of the PD patterns when training and testing the ANN with different PD dataset; (5 understanding the characteristics of multiple concurrent PD faults and effectively recognizing them; and (6 developing techniques in order to shorten the training time for the ANN as applied for PD recognition Finally, this paper critically assesses the suitability of ANNs for both online and offline PD detections outlining the advantages to the practitioners in the field. It is possible for the ANNs to determine the stage of degradation of the PD, thereby giving an indication of the seriousness of the fault.
Application of artificial neural network in 3D imaging with lanthanum bromide calorimeter
Gostojic, A.; Tatischeff, V.; Kiener, J.; Hamadache, C.; Karkour, N.; Linget, D.; Grave, X.; Gibelin, L.; Travers, B.; Blin, S.; Barrillon, P.
2015-07-01
Gamma-ray astronomy in the energy range from 0.1 up to 100 MeV holds many understudied questions connected with e.g. stellar nucleosynthesis, the active Sun, neutron stars and black holes. To access the physics behind, a significant improvement in detection sensitivity is needed compared to previous missions, e.g. CGRO and INTEGRAL. One of the promising concepts for a future gamma-ray mission is an Advanced Compton Telescope. Under the project of creating a prototype of such instrument, we study the perspectives of using a novel inorganic scintillator as a calorimeter part. Modern inorganic crystal or ceramics scintillators are constantly improving on qualities such as energy resolution and radiation hardness, and this makes them a smart choice for a new space-borne telescope. At CSNSM Orsay, we have assembled a detection module from a 5 × 5cm2 area and 1 cm thick, cerium-doped lanthanum (III) bromide (LaBr3:Ce) inorganic scintillator coupled to a 64 channel multi-anode photomultiplier. The readout of the PMT signals is carried out with the ASIC MAROC, used previously for the luminometer of the ATLAS detector (CERN). Characterization, thorough measurements with various radioactive sources, as well as, single photoelectron detection have been done. Furthermore, we made a comparison of measurements with a detailed GEANT4-based simulation which includes tracking of the optical photons. Finally, we have studied the 3D reconstruction of the first interaction point of incident gamma rays, utilizing a neural network algorithm. This spatial position resolution plays a crucial part in the future implementations and, together with the other measured properties, it makes our detector module very interesting for the next generation of space telescopes operating in the MeV range.
Artificial neural network application for space station power system fault diagnosis
Momoh, James A.; Oliver, Walter E.; Dias, Lakshman G.
1995-01-01
This study presents a methodology for fault diagnosis using a Two-Stage Artificial Neural Network Clustering Algorithm. Previously, SPICE models of a 5-bus DC power distribution system with assumed constant output power during contingencies from the DDCU were used to evaluate the ANN's fault diagnosis capabilities. This on-going study uses EMTP models of the components (distribution lines, SPDU, TPDU, loads) and power sources (DDCU) of Space Station Alpha's electrical Power Distribution System as a basis for the ANN fault diagnostic tool. The results from the two studies are contrasted. In the event of a major fault, ground controllers need the ability to identify the type of fault, isolate the fault to the orbital replaceable unit level and provide the necessary information for the power management expert system to optimally determine a degraded-mode load schedule. To accomplish these goals, the electrical power distribution system's architecture can be subdivided into three major classes: DC-DC converter to loads, DC Switching Unit (DCSU) to Main bus Switching Unit (MBSU), and Power Sources to DCSU. Each class which has its own electrical characteristics and operations, requires a unique fault analysis philosophy. This study identifies these philosophies as Riddles 1, 2 and 3 respectively. The results of the on-going study addresses Riddle-1. It is concluded in this study that the combination of the EMTP models of the DDCU, distribution cables and electrical loads yields a more accurate model of the behavior and in addition yielded more accurate fault diagnosis using ANN versus the results obtained with the SPICE models.
Image Encryption and Chaotic Cellular Neural Network
Peng, Jun; Zhang, Du
Machine learning has been playing an increasingly important role in information security and assurance. One of the areas of new applications is to design cryptographic systems by using chaotic neural network due to the fact that chaotic systems have several appealing features for information security applications. In this chapter, we describe a novel image encryption algorithm that is based on a chaotic cellular neural network. We start by giving an introduction to the concept of image encryption and its main technologies, and an overview of the chaotic cellular neural network. We then discuss the proposed image encryption algorithm in details, which is followed by a number of security analyses (key space analysis, sensitivity analysis, information entropy analysis and statistical analysis). The comparison with the most recently reported chaos-based image encryption algorithms indicates that the algorithm proposed in this chapter has a better security performance. Finally, we conclude the chapter with possible future work and application prospects of the chaotic cellular neural network in other information assurance and security areas.
Energy Technology Data Exchange (ETDEWEB)
Sauget, M
2007-12-15
This research is about the application of neural networks used in the external radiotherapy domain. The goal is to elaborate a new evaluating system for the radiation dose distributions in heterogeneous environments. The al objective of this work is to build a complete tool kit to evaluate the optimal treatment planning. My st research point is about the conception of an incremental learning algorithm. The interest of my work is to combine different optimizations specialized in the function interpolation and to propose a new algorithm allowing to change the neural network architecture during the learning phase. This algorithm allows to minimise the al size of the neural network while keeping a good accuracy. The second part of my research is to parallelize the previous incremental learning algorithm. The goal of that work is to increase the speed of the learning step as well as the size of the learned dataset needed in a clinical case. For that, our incremental learning algorithm presents an original data decomposition with overlapping, together with a fault tolerance mechanism. My last research point is about a fast and accurate algorithm computing the radiation dose deposit in any heterogeneous environment. At the present time, the existing solutions used are not optimal. The fast solution are not accurate and do not give an optimal treatment planning. On the other hand, the accurate solutions are far too slow to be used in a clinical context. Our algorithm answers to this problem by bringing rapidity and accuracy. The concept is to use a neural network adequately learned together with a mechanism taking into account the environment changes. The advantages of this algorithm is to avoid the use of a complex physical code while keeping a good accuracy and reasonable computation times. (author)
Directory of Open Access Journals (Sweden)
R.A.T.M. Ranasinghe
2017-04-01
Full Text Available Rolling dynamic compaction (RDC, which involves the towing of a noncircular module, is now widespread and accepted among many other soil compaction methods. However, to date, there is no accurate method for reliable prediction of the densification of soil and the extent of ground improvement by means of RDC. This study presents the application of artificial neural networks (ANNs for a priori prediction of the effectiveness of RDC. The models are trained with in situ dynamic cone penetration (DCP test data obtained from previous civil projects associated with the 4-sided impact roller. The predictions from the ANN models are in good agreement with the measured field data, as indicated by the model correlation coefficient of approximately 0.8. It is concluded that the ANN models developed in this study can be successfully employed to provide more accurate prediction of the performance of the RDC on a range of soil types.
Peck, Charles C.; Dhawan, Atam P.; Meyer, Claudia M.
1991-01-01
A genetic algorithm is used to select the inputs to a neural network function approximator. In the application considered, modeling critical parameters of the space shuttle main engine (SSME), the functional relationship between measured parameters is unknown and complex. Furthermore, the number of possible input parameters is quite large. Many approaches have been used for input selection, but they are either subjective or do not consider the complex multivariate relationships between parameters. Due to the optimization and space searching capabilities of genetic algorithms they were employed to systematize the input selection process. The results suggest that the genetic algorithm can generate parameter lists of high quality without the explicit use of problem domain knowledge. Suggestions for improving the performance of the input selection process are also provided.
Genetic optimization of neural network architecture
International Nuclear Information System (INIS)
Harp, S.A.; Samad, T.
1994-03-01
Neural networks are now a popular technology for a broad variety of application domains, including the electric utility industry. Yet, as the technology continues to gain increasing acceptance, it is also increasingly apparent that the power that neural networks provide is not an unconditional blessing. Considerable care must be exercised during application development if the full benefit of the technology is to be realized. At present, no fully general theory or methodology for neural network design is available, and application development is a trial-and-error process that is time-consuming and expertise-intensive. Each application demands appropriate selections of the network input space, the network structure, and values of learning algorithm parameters-design choices that are closely coupled in ways that largely remain a mystery. This EPRI-funded exploratory research project was initiated to take the key next step in this research program: the validation of the approach on a realistic problem. We focused on the problem of modeling the thermal performance of the TVA Sequoyah nuclear power plant (units 1 and 2)
A fuzzy neural network for sensor signal estimation
International Nuclear Information System (INIS)
Na, Man Gyun
2000-01-01
In this work, a fuzzy neural network is used to estimate the relevant sensor signal using other sensor signals. Noise components in input signals into the fuzzy neural network are removed through the wavelet denoising technique. Principal component analysis (PCA) is used to reduce the dimension of an input space without losing a significant amount of information. A lower dimensional input space will also usually reduce the time necessary to train a fuzzy-neural network. Also, the principal component analysis makes easy the selection of the input signals into the fuzzy neural network. The fuzzy neural network parameters are optimized by two learning methods. A genetic algorithm is used to optimize the antecedent parameters of the fuzzy neural network and a least-squares algorithm is used to solve the consequent parameters. The proposed algorithm was verified through the application to the pressurizer water level and the hot-leg flowrate measurements in pressurized water reactors
An introduction to neural network methods for differential equations
Yadav, Neha; Kumar, Manoj
2015-01-01
This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks, and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications. The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed...
Neural Network for Sparse Reconstruction
Directory of Open Access Journals (Sweden)
Qingfa Li
2014-01-01
Full Text Available We construct a neural network based on smoothing approximation techniques and projected gradient method to solve a kind of sparse reconstruction problems. Neural network can be implemented by circuits and can be seen as an important method for solving optimization problems, especially large scale problems. Smoothing approximation is an efficient technique for solving nonsmooth optimization problems. We combine these two techniques to overcome the difficulties of the choices of the step size in discrete algorithms and the item in the set-valued map of differential inclusion. In theory, the proposed network can converge to the optimal solution set of the given problem. Furthermore, some numerical experiments show the effectiveness of the proposed network in this paper.
Arabic Handwriting Recognition Using Neural Network Classifier
African Journals Online (AJOL)
pc
2018-03-05
Mar 5, 2018 ... an OCR using Neural Network classifier preceded by a set of preprocessing .... Artificial Neural Networks (ANNs), which we adopt in this research, consist of ... advantage and disadvantages of each technique. In [9],. Khemiri ...
Ocean wave forecasting using recurrent neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
, merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper describes an artificial neural network, namely recurrent neural network with rprop update algorithm and is applied for wave forecasting. Measured ocean waves off...
Deep Learning Neural Networks in Cybersecurity - Managing Malware with AI
Rayle, Keith
2017-01-01
There’s a lot of talk about the benefits of deep learning (neural networks) and how it’s the new electricity that will power us into the future. Medical diagnosis, computer vision and speech recognition are all examples of use-cases where neural networks are being applied in our everyday business environment. This begs the question…what are the uses of neural-network applications for cyber security? How does the AI process work when applying neural networks to detect malicious software bombar...
Artificial Neural Networks For Hadron Hadron Cross-sections
International Nuclear Information System (INIS)
ELMashad, M.; ELBakry, M.Y.; Tantawy, M.; Habashy, D.M.
2011-01-01
In recent years artificial neural networks (ANN ) have emerged as a mature and viable framework with many applications in various areas. Artificial neural networks theory is sometimes used to refer to a branch of computational science that uses neural networks as models to either simulate or analyze complex phenomena and/or study the principles of operation of neural networks analytically. In this work a model of hadron- hadron collision using the ANN technique is present, the hadron- hadron based ANN model calculates the cross sections of hadron- hadron collision. The results amply demonstrate the feasibility of such new technique in extracting the collision features and prove its effectiveness
Implementing Signature Neural Networks with Spiking Neurons.
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence
Cotton genotypes selection through artificial neural networks.
Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B
2017-09-27
Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.
Adaptive Graph Convolutional Neural Networks
Li, Ruoyu; Wang, Sheng; Zhu, Feiyun; Huang, Junzhou
2018-01-01
Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for eac...
DEFF Research Database (Denmark)
Dengel, S.; Zona, D.; Sachs, T.
2013-01-01
included representing the seasonal change and time of day. High Pearson correlation coefficients (r) of up to 0.97 achieved in the final analysis are indicative for the high performance of neural networks and their applicability as a gap-filling method for CH4 flux data time series. This novel approach...
Generating Seismograms with Deep Neural Networks
Krischer, L.; Fichtner, A.
2017-12-01
The recent surge of successful uses of deep neural networks in computer vision, speech recognition, and natural language processing, mainly enabled by the availability of fast GPUs and extremely large data sets, is starting to see many applications across all natural sciences. In seismology these are largely confined to classification and discrimination tasks. In this contribution we explore the use of deep neural networks for another class of problems: so called generative models.Generative modelling is a branch of statistics concerned with generating new observed data samples, usually by drawing from some underlying probability distribution. Samples with specific attributes can be generated by conditioning on input variables. In this work we condition on seismic source (mechanism and location) and receiver (location) parameters to generate multi-component seismograms.The deep neural networks are trained on synthetic data calculated with Instaseis (http://instaseis.net, van Driel et al. (2015)) and waveforms from the global ShakeMovie project (http://global.shakemovie.princeton.edu, Tromp et al. (2010)). The underlying radially symmetric or smoothly three dimensional Earth structures result in comparatively small waveform differences from similar events or at close receivers and the networks learn to interpolate between training data samples.Of particular importance is the chosen misfit functional. Generative adversarial networks (Goodfellow et al. (2014)) implement a system in which two networks compete: the generator network creates samples and the discriminator network distinguishes these from the true training examples. Both are trained in an adversarial fashion until the discriminator can no longer distinguish between generated and real samples. We show how this can be applied to seismograms and in particular how it compares to networks trained with more conventional misfit metrics. Last but not least we attempt to shed some light on the black-box nature of
Neural network to diagnose lining condition
Yemelyanov, V. A.; Yemelyanova, N. Y.; Nedelkin, A. A.; Zarudnaya, M. V.
2018-03-01
The paper presents data on the problem of diagnosing the lining condition at the iron and steel works. The authors describe the neural network structure and software that are designed and developed to determine the lining burnout zones. The simulation results of the proposed neural networks are presented. The authors note the low learning and classification errors of the proposed neural networks. To realize the proposed neural network, the specialized software has been developed.
Medical Imaging with Neural Networks
International Nuclear Information System (INIS)
Pattichis, C.; Cnstantinides, A.
1994-01-01
The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors)
Optoelectronic Implementation of Neural Networks
Indian Academy of Sciences (India)
neural networks, such as learning, adapting and copying by means of parallel ... to provide robust recognition of hand-printed English text. Engine idle and misfiring .... and s represents the bounded activation function of a neuron. It is typically ...
Aphasia Classification Using Neural Networks
DEFF Research Database (Denmark)
Axer, H.; Jantzen, Jan; Berks, G.
2000-01-01
A web-based software model (http://fuzzy.iau.dtu.dk/aphasia.nsf) was developed as an example for classification of aphasia using neural networks. Two multilayer perceptrons were used to classify the type of aphasia (Broca, Wernicke, anomic, global) according to the results in some subtests...
Medical Imaging with Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Pattichis, C [Department of Computer Science, University of Cyprus, Kallipoleos 75, P.O.Box 537, Nicosia (Cyprus); Cnstantinides, A [Department of Electrical Engineering, Imperial College of Science, Technology and Medicine, London SW7 2BT (United Kingdom)
1994-12-31
The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors). 61 refs, 4 tabs.
Numerical experiments with neural networks
International Nuclear Information System (INIS)
Miranda, Enrique.
1990-01-01
Neural networks are highly idealized models which, in spite of their simplicity, reproduce some key features of the real brain. In this paper, they are introduced at a level adequate for an undergraduate computational physics course. Some relevant magnitudes are defined and evaluated numerically for the Hopfield model and a short term memory model. (Author)
Analysis of neural networks through base functions
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.
Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more
Genetic Algorithm Optimized Neural Networks Ensemble as ...
African Journals Online (AJOL)
NJD
Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) for the simultaneous ... process by training a number of neural networks. .... Matlab® version 6.1 was employed for building principal component ... provide a fair simulation of calibration data set with some degree.
Valizadeh, Maryam; Sohrabi, Mahmoud Reza
2018-03-01
In the present study, artificial neural networks (ANNs) and support vector regression (SVR) as intelligent methods coupled with UV spectroscopy for simultaneous quantitative determination of Dorzolamide (DOR) and Timolol (TIM) in eye drop. Several synthetic mixtures were analyzed for validating the proposed methods. At first, neural network time series, which one type of network from the artificial neural network was employed and its efficiency was evaluated. Afterwards, the radial basis network was applied as another neural network. Results showed that the performance of this method is suitable for predicting. Finally, support vector regression was proposed to construct the Zilomole prediction model. Also, root mean square error (RMSE) and mean recovery (%) were calculated for SVR method. Moreover, the proposed methods were compared to the high-performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them. Also, the effect of interferences was investigated in spike solutions.
Directory of Open Access Journals (Sweden)
Mohammad Taghi Dastorani
2012-01-01
Full Text Available During recent few decades, due to the importance of the availability of water, and therefore the necesity of predicting run off resulted from rain fall there has been an increase in developing and implementation of new suitable method for prediction of run off using precipitation data. One of these approaches that have been developed in several areas of sciences including water related fields, is soft computing techniques such as artificial neural networks and fuzzy logic systems. This research was designed to evaluate the applicability of artificial neural network and adaptive neuro –fuzzy inference system to model rainfall-runoff process in Zayandeh_rood dam basin. It must be mentioned that, data have been analysed using Wingamma software, to select appropriate type and number of training input data before they can be used in the models. Then, it has been tried to evaluated applicability of artificial neural networks and neuro-fuzzy techniques to predict runoff generated from daily rainfall. Finally, the accuracy of the results produced by these methods has been compared using statistical criterion. Results taken from this research show that artificial neural networks and neuro-fuzzy technique presented different outputs in different conditions in terms of type and number of inputs variables, but both method have been able to produce acceptable results when suitable input variables and network structures are used.
DEFF Research Database (Denmark)
Bohr, Henrik; Røgen, Peter; Jalkanen, Karl J.
2001-01-01
but already at this stage they could be compared with reasonable agreements to experiments. The neural networks are shown to be good in distinguishing the different conformers of the small alanine peptides. especially when in the gas phase. Also the task of predicting protein fold-classes, defined from line...... to construct vibrational spectra for each of the conformational states with low energy. From the spectra, neural networks could be trained to distinguish between the various states and thus be able to generate a larger set of relevant structures and their relation to secondary structures of the peptides....... The calculations were done both with solvent atoms (up to ten water molecules) and without, and hence the neural networks could be used to monitor the influence of the solvent on hydrogen bond formation. The calculations at this stage only involved very short peptide fragments of a few alanine amino acids...
Directory of Open Access Journals (Sweden)
Lijun Song
2018-01-01
Full Text Available The centralized Kalman filter is always applied in the velocity and attitude matching of Transfer Alignment (TA. But the centralized Kalman has many disadvantages, such as large amount of calculation, poor real-time performance, and low reliability. In the paper, the federal Kalman filter (FKF based on neural networks is used in the velocity and attitude matching of TA, the Kalman filter is adjusted by the neural networks in the two subfilters, the federal filter is used to fuse the information of the two subfilters, and the global suboptimal state estimation is obtained. The result of simulation shows that the federal Kalman filter based on neural networks is better in estimating the initial attitude misalignment angle of inertial navigation system (INS when the system dynamic model and noise statistics characteristics of inertial navigation system are unclear, and the estimation error is smaller and the accuracy is higher.
Adaptive competitive learning neural networks
Directory of Open Access Journals (Sweden)
Ahmed R. Abas
2013-11-01
Full Text Available In this paper, the adaptive competitive learning (ACL neural network algorithm is proposed. This neural network not only groups similar input feature vectors together but also determines the appropriate number of groups of these vectors. This algorithm uses a new proposed criterion referred to as the ACL criterion. This criterion evaluates different clustering structures produced by the ACL neural network for an input data set. Then, it selects the best clustering structure and the corresponding network architecture for this data set. The selected structure is composed of the minimum number of clusters that are compact and balanced in their sizes. The selected network architecture is efficient, in terms of its complexity, as it contains the minimum number of neurons. Synaptic weight vectors of these neurons represent well-separated, compact and balanced clusters in the input data set. The performance of the ACL algorithm is evaluated and compared with the performance of a recently proposed algorithm in the literature in clustering an input data set and determining its number of clusters. Results show that the ACL algorithm is more accurate and robust in both determining the number of clusters and allocating input feature vectors into these clusters than the other algorithm especially with data sets that are sparsely distributed.
Optical resonators and neural networks
Anderson, Dana Z.
1986-08-01
It may be possible to implement neural network models using continuous field optical architectures. These devices offer the inherent parallelism of propagating waves and an information density in principle dictated by the wavelength of light and the quality of the bulk optical elements. Few components are needed to construct a relatively large equivalent network. Various associative memories based on optical resonators have been demonstrated in the literature, a ring resonator design is discussed in detail here. Information is stored in a holographic medium and recalled through a competitive processes in the gain medium supplying energy to the ring rsonator. The resonator memory is the first realized example of a neural network function implemented with this kind of architecture.
Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Cha, Kenny H.; Richter, Caleb D.
2017-12-01
Transfer learning in deep convolutional neural networks (DCNNs) is an important step in its application to medical imaging tasks. We propose a multi-task transfer learning DCNN with the aim of translating the ‘knowledge’ learned from non-medical images to medical diagnostic tasks through supervised training and increasing the generalization capabilities of DCNNs by simultaneously learning auxiliary tasks. We studied this approach in an important application: classification of malignant and benign breast masses. With Institutional Review Board (IRB) approval, digitized screen-film mammograms (SFMs) and digital mammograms (DMs) were collected from our patient files and additional SFMs were obtained from the Digital Database for Screening Mammography. The data set consisted of 2242 views with 2454 masses (1057 malignant, 1397 benign). In single-task transfer learning, the DCNN was trained and tested on SFMs. In multi-task transfer learning, SFMs and DMs were used to train the DCNN, which was then tested on SFMs. N-fold cross-validation with the training set was used for training and parameter optimization. On the independent test set, the multi-task transfer learning DCNN was found to have significantly (p = 0.007) higher performance compared to the single-task transfer learning DCNN. This study demonstrates that multi-task transfer learning may be an effective approach for training DCNN in medical imaging applications when training samples from a single modality are limited.
International Nuclear Information System (INIS)
Kim, Kyungmin; Lee, Hyun Kyu; Harry, Ian W; Hodge, Kari A; Kim, Young-Min; Lee, Chang-Hwan; Oh, John J; Oh, Sang Hoon; Son, Edwin J
2015-01-01
We apply a machine learning algorithm, the artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts (GRBs). The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability (FAP) is improved by the artificial neural network in comparison to the conventional detection statistic. Specifically, the distance at 50% detection probability at a fixed false positive rate is increased about 8%–14% for the considered waveform models. We also evaluate a few seconds of the gravitational-wave data segment using the trained networks and obtain the FAP. We suggest that the artificial neural network can be a complementary method to the conventional detection statistic for identifying gravitational-wave signals related to the short GRBs. (paper)
Application of neural networks to obtain the site response in Mexico City
Directory of Open Access Journals (Sweden)
Vargas J. Carlos A.
2003-08-01
Full Text Available
We have implemented a neural network of three hidden layers with 40 neurons each layer to be used as soil/rock transfer functions for two stations in Mexico City. The net was trained with supervised learning through input and output vectors of accelerations (twelve records, from five seismic events from Guerrero and Puebla, 5.8 M 7.3, and tested with three records not taken in account in the training. The results in the frequency domain are good, finding a seismic amplification between 0.2 to 5 Hz for the Lake zone. In the time domain we obtain results that are not coincident. Due to the data and the complex of the phenomena, it is necessary to apply this tool using more records for the training net, so the phenomena can be learned better through reliable database.
Hemos implementado una red neuronal de tres capas escondidas con 40 neuronas por capa para ser usada como funciones de trasferencia suelo/roca en dos estaciones acelerométricas en Ciudad de México. La red fue entrenada con entrenamiento supervisado por medio de vectores de aceleración de entrada y salida (doce registros de cinco eventos sísmicos localizados en la costa de Guerrero y uno al sur de Puebla, 5, 8 M 7, 3, y probada con tres registros no tornados en cuenta en el entrenamiento de la red. Los resultados obtenidos en el dominio de la frecuencia son bastante buenos, encontrándose una amplificación sísmica entre 0,2 a 5 Hz para la zona de Lago (estación RMCS. En el dominio del tiempo obtuvimos resultados que no son coincidentes.
The Application and Research of the GA-BP Neural Network Algorithm in the MBR Membrane Fouling
Directory of Open Access Journals (Sweden)
Chunqing Li
2014-01-01
Full Text Available It is one of the important issues in the field of today's sewage treatment of researching the MBR membrane flux prediction for membrane fouling. Firstly this paper used the principal component analysis method to achieve dimensionality and correlation of input variables and obtained the three major factors affecting membrane fouling most obvious: MLSS, total resistance, and operating pressure. Then it used the BP neural network to establish the system model of the MBR intelligent simulation, the relationship between three parameters, and membrane flux characterization of the degree of membrane fouling, because the BP neural network has slow training speed, is sensitive to the initial weights and the threshold, is easy to fall into local minimum points, and so on. So this paper used genetic algorithm to optimize the initial weights and the threshold of BP neural network and established the membrane fouling prediction model based on GA-BP network. As this research had shown, under the same conditions, the BP network model optimized by GA of MBR membrane fouling is better than that not optimized for prediction effect of membrane flux. It demonstrates that the GA-BP network model of MBR membrane fouling is more suitable for simulation of MBR membrane fouling process, comparing with the BP network.
Integrating neural network technology and noise analysis
International Nuclear Information System (INIS)
Uhrig, R.E.; Oak Ridge National Lab., TN
1995-01-01
The integrated use of neural network and noise analysis technologies offers advantages not available by the use of either technology alone. The application of neural network technology to noise analysis offers an opportunity to expand the scope of problems where noise analysis is useful and unique ways in which the integration of these technologies can be used productively. The two-sensor technique, in which the responses of two sensors to an unknown driving source are related, is used to demonstration such integration. The relationship between power spectral densities (PSDs) of accelerometer signals is derived theoretically using noise analysis to demonstrate its uniqueness. This relationship is modeled from experimental data using a neural network when the system is working properly, and the actual PSD of one sensor is compared with the PSD of that sensor predicted by the neural network using the PSD of the other sensor as an input. A significant deviation between the actual and predicted PSDs indicate that system is changing (i.e., failing). Experiments carried out on check values and bearings illustrate the usefulness of the methodology developed. (Author)
Localizing Tortoise Nests by Neural Networks.
Directory of Open Access Journals (Sweden)
Roberto Barbuti
Full Text Available The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating. Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN. We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours, the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.
International Nuclear Information System (INIS)
Iloghalu, E.M.
2002-01-01
Artificial neural network is a virtual intelligence tool, which mimics the human brain to do analysis and come out with results. Its application in petroleum engineering is very recent and is gradually evolving and is set to dominate or take over other analytical tools used in the Exploration and Production industry.There are two types of neural network namely, unsupervised and supervised neural networks. A proper combination of these two types of neural networks produces high-resolution results.In this work, interpreted core data was depth matched to well logs and 5 genetic units were calibrated to define the combined log responses for each genetic unit. These combined log responses were then used to train the supervised neural networks to recognise and interpret these units elsewhere in the field. Thereafter, the unsupervised neural network was run to generate classes within the cored interval. The results were then compared with the supervised network output and were then extrapolated vertically and laterally to other parts of the field.This technique having been used successfully to perform automatic interpretation of genetic units and lithofacies associations in reservoir scale is also very useful and applicable in exploration. Specific reservoirs or stratigraphic units can be automatically interpreted across a wide area using well data controlled by one or a combination of lithostratigraphy, allostratigraphy, sequence stratigraphy and biostratigraphy.Using this technique, well data cost and time are saved tremendously. It is the key to achieving computerised Basin-Scale Reservoir characterisation for the Niger Delta
Zhang, Bin; Wang, Yuechao; Li, Hongyi
2015-01-01
Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including ‘random’ and ‘4Q’ (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the ‘4Q’ cultures presented absolutely different activities, and the robot controlled by the ‘4Q’ network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems. PMID:25992579
Role of graph architecture in controlling dynamical networks with applications to neural systems
Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.
2018-01-01
Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.
Artificial Neural Networks and the Mass Appraisal of Real Estate
Directory of Open Access Journals (Sweden)
Gang Zhou
2018-03-01
Full Text Available With the rapid development of computer, artificial intelligence and big data technology, artificial neural networks have become one of the most powerful machine learning algorithms. In the practice, most of the applications of artificial neural networks use back propagation neural network and its variation. Besides the back propagation neural network, various neural networks have been developing in order to improve the performance of standard models. Though neural networks are well known method in the research of real estate, there is enormous space for future research in order to enhance their function. Some scholars combine genetic algorithm, geospatial information, support vector machine model, particle swarm optimization with artificial neural networks to appraise the real estate, which is helpful for the existing appraisal technology. The mass appraisal of real estate in this paper includes the real estate valuation in the transaction and the tax base valuation in the real estate holding. In this study we focus on the theoretical development of artificial neural networks and mass appraisal of real estate, artificial neural networks model evolution and algorithm improvement, artificial neural networks practice and application, and review the existing literature about artificial neural networks and mass appraisal of real estate. Finally, we provide some suggestions for the mass appraisal of China's real estate.
Energy Technology Data Exchange (ETDEWEB)
Silva Rodrigues, F da [PETROBRAS, Rio de Janeiro, RJ (Brazil); Queiroz Neto, I.A. de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas
1992-07-01
Electro-facies are identified by neural network trained with well log and core data. Differences between neural network and expert system are discussed. According the author, the combination of neural network computing and traditional computing methods, like discriminant analysis, can help in the solution of many problems in electro-facies identification. 5 figs., 1 tab., 11 refs.
Czech Academy of Sciences Publication Activity Database
Rodemerck, U.; Baerns, M.; Holeňa, Martin; Wolf, D.
2004-01-01
Roč. 223, - (2004), s. 168-174 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z1030915 Keywords : genetic algorithm * neural network * catalytic materials Subject RIV: BA - General Mathematics Impact factor: 1.497, year: 2004
Chen, Chau-Kuang
2010-01-01
Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…
Evaluating neural networks and artificial intelligence systems
Alberts, David S.
1994-02-01
Systems have no intrinsic value in and of themselves, but rather derive value from the contributions they make to the missions, decisions, and tasks they are intended to support. The estimation of the cost-effectiveness of systems is a prerequisite for rational planning, budgeting, and investment documents. Neural network and expert system applications, although similar in their incorporation of a significant amount of decision-making capability, differ from each other in ways that affect the manner in which they can be evaluated. Both these types of systems are, by definition, evolutionary systems, which also impacts their evaluation. This paper discusses key aspects of neural network and expert system applications and their impact on the evaluation process. A practical approach or methodology for evaluating a certain class of expert systems that are particularly difficult to measure using traditional evaluation approaches is presented.
IMNN: Information Maximizing Neural Networks
Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.
2018-04-01
This software trains artificial neural networks to find non-linear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). As compressing large data sets vastly simplifies both frequentist and Bayesian inference, important information may be inadvertently missed. Likelihood-free inference based on automatically derived IMNN summaries produces summaries that are good approximations to sufficient statistics. IMNNs are robustly capable of automatically finding optimal, non-linear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima.
Scheduling with artificial neural networks
Gürgün, Burçkaan
1993-01-01
Ankara : Department of Industrial Engineering and The Institute of Engineering and Sciences of Bilkent Univ., 1993. Thesis (Master's) -- Bilkent University, 1993. Includes bibliographical references leaves 59-65. Artificial Neural Networks (ANNs) attempt to emulate the massively parallel and distributed processing of the human brain. They are being examined for a variety of problems that have been very difficult to solve. The objective of this thesis is to review the curren...
Learning in Neural Networks: VLSI Implementation Strategies
Duong, Tuan Anh
1995-01-01
Fully-parallel hardware neural network implementations may be applied to high-speed recognition, classification, and mapping tasks in areas such as vision, or can be used as low-cost self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning is required not only to satisfy application requirements, but also to overcome hardware-imposed limitations such as reduced dynamic range of connections.
Polarized DIS Structure Functions from Neural Networks
International Nuclear Information System (INIS)
Del Debbio, L.; Guffanti, A.; Piccione, A.
2007-01-01
We present a parametrization of polarized Deep-Inelastic-Scattering (DIS) structure functions based on Neural Networks. The parametrization provides a bias-free determination of the probability measure in the space of structure functions, which retains information on experimental errors and correlations. As an example we discuss the application of this method to the study of the structure function g 1 p (x,Q 2 )
Parameterization Of Solar Radiation Using Neural Network
International Nuclear Information System (INIS)
Jiya, J. D.; Alfa, B.
2002-01-01
This paper presents a neural network technique for parameterization of global solar radiation. The available data from twenty-one stations is used for training the neural network and the data from other ten stations is used to validate the neural model. The neural network utilizes latitude, longitude, altitude, sunshine duration and period number to parameterize solar radiation values. The testing data was not used in the training to demonstrate the performance of the neural network in unknown stations to parameterize solar radiation. The results indicate a good agreement between the parameterized solar radiation values and actual measured values
Parfenov, D. I.; Bolodurina, I. P.
2018-05-01
The article presents the results of developing an approach to detecting and protecting against network attacks on the corporate infrastructure deployed on the multi-cloud platform. The proposed approach is based on the combination of two technologies: a softwareconfigurable network and virtualization of network functions. The approach for searching for anomalous traffic is to use a hybrid neural network consisting of a self-organizing Kohonen network and a multilayer perceptron. The study of the work of the prototype of the system for detecting attacks, the method of forming a learning sample, and the course of experiments are described. The study showed that using the proposed approach makes it possible to increase the effectiveness of the obfuscation of various types of attacks and at the same time does not reduce the performance of the network
Deformable image registration using convolutional neural networks
Eppenhof, Koen A. J.; Lafarge, Maxime W.; Moeskops, Pim; Veta, Mitko; Pluim, Josien P. W.
2018-03-01
Deformable image registration can be time-consuming and often needs extensive parameterization to perform well on a specific application. We present a step towards a registration framework based on a three-dimensional convolutional neural network. The network directly learns transformations between pairs of three-dimensional images. The outputs of the network are three maps for the x, y, and z components of a thin plate spline transformation grid. The network is trained on synthetic random transformations, which are applied to a small set of representative images for the desired application. Training therefore does not require manually annotated ground truth deformation information. The methodology is demonstrated on public data sets of inspiration-expiration lung CT image pairs, which come with annotated corresponding landmarks for evaluation of the registration accuracy. Advantages of this methodology are its fast registration times and its minimal parameterization.
International Nuclear Information System (INIS)
Dmitrievskij, S.G.; Gornushkin, Yu.A.; Ososkov, G.A.
2005-01-01
A neural-network (NN) approach for neutrino interaction vertex reconstruction in the OPERA experiment with the help of the Target Tracker (TT) detector is described. A feed-forward NN with the standard back propagation option is used. The energy functional minimization of the network is performed by the method of conjugate gradients. Data preprocessing by means of cellular automaton algorithm is performed. The Hough transform is applied for muon track determination and the robust fitting method is used for shower axis reconstruction. A comparison of the proposed approach with earlier studies, based on the use of the neural network package SNNS, shows their similar performance. The further development of the approach is underway
Directory of Open Access Journals (Sweden)
Palukuru NAGENDRA
2010-12-01
Full Text Available In this study, the use of artificial neural network (ANN based model, multi-layer perceptron (MLP network, to compute the transfer capabilities in a multi-area power system was explored. The input for the ANN is load status and the outputs are the transfer capability among the system areas, voltage magnitudes and voltage angles at concerned buses of the areas under consideration. The repeated power flow (RPF method is used in this paper for calculating the power transfer capability, voltage magnitudes and voltage angles necessary for the generation of input-output patterns for training the proposed MLP neural network. Preliminary investigations on a three area 30-bus system reveal that the proposed model is computationally faster than the conventional method.
System Identification, Prediction, Simulation and Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1997-01-01
a Gauss-Newton search direction is applied. 3) Amongst numerous model types, often met in control applications, only the Non-linear ARMAX (NARMAX) model, representing input/output description, is examined. A simulated example confirms that a neural network has the potential to perform excellent System......The intention of this paper is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: 1) Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. 2) Amongst numerous training algorithms, only the Recursive Prediction Error Method using...
Character Recognition Using Genetically Trained Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.
1998-10-01
Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the
Jimeno-Saez, Patricia; Pegalajar-Cuellar, Manuel; Pulido-Velazquez, David
2017-04-01
This study explores techniques of modeling water inflow series, focusing on techniques of short-term steamflow prediction. An appropriate estimation of streamflow in advance is necessary to anticipate measures to mitigate the impacts and risks related to drought conditions. This study analyzes the prediction of future streamflow of nineteen subbasins in the Alto-Genil basin in Granada (Southeast of Spain). Some of these basin streamflow have an important component of snowmelt due to part of the system is located in Sierra Nevada Mountain Range, the highest mountain of continental Spain. Streamflow prediction models have been calibrated using time series of historical natural streamflows. The available streamflow measurements have been downloaded from several public data sources. These original data have been preprocessed to turn them to the original natural regime, removing the anthropic effects. The missing values in the adopted horizon period to calibrate the prediction models have been estimated by using a Temez hydrological balance model, approaching the snowmelt processes with a hybrid degree day method. In the experimentation, ARIMA models are used as baseline method, and recurrent neural networks ELMAN and nonlinear autoregressive neural network (NAR) to test if the prediction accuracy can be improved. After performing the multiple experiments with these models, non-parametric statistical tests are applied to select the best of these techniques. In the experiments carried out with ARIMA, it is concluded that ARIMA models are not adequate in this case study due to the existence of a nonlinear component that cannot be modeled. Secondly, ELMAN and NAR neural networks with multi-start training is performed with each network structure to deal with the local optimum problem, since in neural network training there is a very strong dependence on the initial weights of the network. The obtained results suggest that both neural networks are efficient for the short
International Nuclear Information System (INIS)
El Haddad, J.; Bruyère, D.; Ismaël, A.; Gallou, G.; Laperche, V.; Michel, K.; Canioni, L.; Bousquet, B.
2014-01-01
Artificial neural networks were applied to process data from on-site LIBS analysis of soil samples. A first artificial neural network allowed retrieving the relative amounts of silicate, calcareous and ores matrices into soils. As a consequence, each soil sample was correctly located inside the ternary diagram characterized by these three matrices, as verified by ICP-AES. Then a series of artificial neural networks were applied to quantify lead into soil samples. More precisely, two models were designed for classification purpose according to both the type of matrix and the range of lead concentrations. Then, three quantitative models were locally applied to three data subsets. This complete approach allowed reaching a relative error of prediction close to 20%, considered as satisfying in the case of on-site analysis. - Highlights: • Application of a series of artificial neural networks (ANN) to quantitative LIBS • Matrix-based classification of the soil samples by ANN • Concentration-based classification of the soil samples by ANN • Series of quantitative ANN models dedicated to the analysis of data subsets • Relative error of prediction lower than 20% for LIBS analysis of soil samples
Bijjani, Richard
1990-01-01
The introduction of neural network models has created new algorithms and application opportunities in parallel signal processing. Here, an M-ary extension of the Hopfield model is presented and is shown to have a substantially higher error correction capability, when compared to the Hopfield model. A digital image processing experiment is successfully conducted to illustrate the new model, and a holographic implementation is proposed. The use of neural networks and of linear combination filters are investigated in connection with the problem of user identification in code division multiple access systems. A multi-layer back-propagation perceptron model is then presented as a means of detecting a wideband signal in the presence of narrowband jammers and additive white Gaussian noise. The performance of the neural network is compared to that of the estimation type filter that uses a least mean squared adaptive filter, in terms of the interference rejection capability, the bit error rate and the overall robustness of the system. The nonlinear neural network filter is found to offer a faster convergence rate and an overall better performance over the LMS Widrow-Hoff filter.
Decentralized neural control application to robotics
Garcia-Hernandez, Ramon; Sanchez, Edgar N; Alanis, Alma y; Ruz-Hernandez, Jose A
2017-01-01
This book provides a decentralized approach for the identification and control of robotics systems. It also presents recent research in decentralized neural control and includes applications to robotics. Decentralized control is free from difficulties due to complexity in design, debugging, data gathering and storage requirements, making it preferable for interconnected systems. Furthermore, as opposed to the centralized approach, it can be implemented with parallel processors. This approach deals with four decentralized control schemes, which are able to identify the robot dynamics. The training of each neural network is performed on-line using an extended Kalman filter (EKF). The first indirect decentralized control scheme applies the discrete-time block control approach, to formulate a nonlinear sliding manifold. The second direct decentralized neural control scheme is based on the backstepping technique, approximated by a high order neural network. The third control scheme applies a decentralized neural i...
Phase dynamics of complex-valued neural networks and its application to traffic signal control.
Nishikawa, Ikuko; Iritani, Takeshi; Sakakibara, Kazutoshi; Kuroe, Yasuaki
2005-01-01
Complex-valued Hopfield networks which possess the energy function are analyzed. The dynamics of the network with certain forms of an activation function is de-composable into the dynamics of the amplitude and phase of each neuron. Then the phase dynamics is described as a coupled system of phase oscillators with a pair-wise sinusoidal interaction. Therefore its phase synchronization mechanism is useful for the area-wide offset control of the traffic signals. The computer simulations show the effectiveness under the various traffic conditions.
A comparative study of two neural networks for document retrieval
International Nuclear Information System (INIS)
Hui, S.C.; Goh, A.
1997-01-01
In recent years there has been specific interest in adopting advanced computer techniques in the field of document retrieval. This interest is generated by the fact that classical methods such as the Boolean search, the vector space model or even probabilistic retrieval cannot handle the increasing demands of end-users in satisfying their needs. The most recent attempt is the application of the neural network paradigm as a means of providing end-users with a more powerful retrieval mechanism. Neural networks are not only good pattern matchers but also highly versatile and adaptable. In this paper, we demonstrate how to apply two neural networks, namely Adaptive Resonance Theory and Fuzzy Kohonen Neural Network, for document retrieval. In addition, a comparison of these two neural networks based on performance is also given
Thermoelastic steam turbine rotor control based on neural network
Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.
2015-12-01
Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.
23rd Workshop of the Italian Neural Networks Society (SIREN)
Esposito, Anna; Morabito, Francesco
2014-01-01
This volume collects a selection of contributions which has been presented at the 23rd Italian Workshop on Neural Networks, the yearly meeting of the Italian Society for Neural Networks (SIREN). The conference was held in Vietri sul Mare, Salerno, Italy during May 23-24, 2013. The annual meeting of SIREN is sponsored by International Neural Network Society (INNS), European Neural Network Society (ENNS) and IEEE Computational Intelligence Society (CIS). The book – as well as the workshop- is organized in two main components, a special session and a group of regular sessions featuring different aspects and point of views of artificial neural networks, artificial and natural intelligence, as well as psychological and cognitive theories for modeling human behaviors and human machine interactions, including Information Communication applications of compelling interest. .
Practical neural network recipies in C++
Masters
2014-01-01
This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assum
Prediction of tides using back-propagation neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
Prediction of tides is very much essential for human activities and to reduce the construction cost in marine environment. This paper presents an application of the artificial neural network with back-propagation procedures for accurate prediction...
Wave forecasting in near real time basis by neural network
Digital Repository Service at National Institute of Oceanography (India)
Rao, S.; Mandal, S.; Prabaharan, N.
., forecasting of waves become an important aspect of marine environment. This paper presents application of the neural network (NN) with better update algorithms, namely rprop, quickprop and superSAB for wave forecasting. Measured waves off Marmagoa, Goa, India...
Comparative performance of some popular artificial neural network ...
Indian Academy of Sciences (India)
tificial neural network domain (viz., local search algorithms, global search ... branches of astronomy for automated data analysis and other applications like ...... such as standard backpropagation, fuzzy logic, genetic algorithms, fractals etc.,.