WorldWideScience

Sample records for neural net representation

  1. Matrix representation of a Neural Network

    DEFF Research Database (Denmark)

    Christensen, Bjørn Klint

    Processing, by David Rummelhart (Rummelhart 1986) for an easy-to-read introduction. What the paper does explain is how a matrix representation of a neural net allows for a very simple implementation. The matrix representation is introduced in (Rummelhart 1986, chapter 9), but only for a two-layer linear...

  2. Predictions models with neural nets

    Directory of Open Access Journals (Sweden)

    Vladimír Konečný

    2008-01-01

    Full Text Available The contribution is oriented to basic problem trends solution of economic pointers, using neural networks. Problems include choice of the suitable model and consequently configuration of neural nets, choice computational function of neurons and the way prediction learning. The contribution contains two basic models that use structure of multilayer neural nets and way of determination their configuration. It is postulate a simple rule for teaching period of neural net, to get most credible prediction.Experiments are executed with really data evolution of exchange rate Kč/Euro. The main reason of choice this time series is their availability for sufficient long period. In carry out of experiments the both given basic kind of prediction models with most frequent use functions of neurons are verified. Achieve prediction results are presented as in numerical and so in graphical forms.

  3. Refractory neural nets and vision

    Science.gov (United States)

    Fall, Thomas C.

    2014-02-01

    Biological understandings have served as the basis for new computational approaches. A prime example is artificial neural nets which are based on the biological understanding of the trainability of neural synapses. In this paper, we will investigate features of the biological vision system to see if they can also be exploited. These features are 1) the neuron's refractory period - the period of time after the neuron fires before it can fire again and 2) the ocular microtremor which moves the retinal neural array relative to the image. The short term memory due to the refractory period allows the before and after movement views to be compared. This paper will discuss the investigation of the implications of these two features.

  4. Representations of Nets of C*-Algebras over S 1

    Science.gov (United States)

    Ruzzi, Giuseppe; Vasselli, Ezio

    2012-11-01

    In recent times a new kind of representations has been used to describe superselection sectors of the observable net over a curved spacetime, taking into account the effects of the fundamental group of the spacetime. Using this notion of representation, we prove that any net of C*-algebras over S 1 admits faithful representations, and when the net is covariant under Diff( S 1), it admits representations covariant under any amenable subgroup of Diff( S 1).

  5. Semantic Networks and Neural Nets.

    Science.gov (United States)

    1984-06-01

    and memory retrieval [Anderson 83]. Most other work using semantic network models assumes that the network is passive and is interpreted by a control...representation also permits representation of sufficient conditions. Imagine that being blue is a sufficient property of blueberries i.e. "if something...B BALL .LB 25 3. Inference in memory networks Section 2 described a notation for representing knowledge and also provided a partial specification of

  6. Classification using Bayesian neural nets

    NARCIS (Netherlands)

    J.C. Bioch (Cor); O. van der Meer; R. Potharst (Rob)

    1995-01-01

    textabstractRecently, Bayesian methods have been proposed for neural networks to solve regression and classification problems. These methods claim to overcome some difficulties encountered in the standard approach such as overfitting. However, an implementation of the full Bayesian approach to

  7. A mixture neural net for multispectral imaging spectrometer processing

    Science.gov (United States)

    Casasent, David; Slagle, Timothy

    1990-01-01

    Each spatial region viewed by an imaging spectrometer contains various elements in a mixture. The elements present and the amount of each are to be determined. A neural net solution is considered. Initial optical neural net hardware is described. The first simulations on the component requirements of a neural net are considered. The pseudoinverse solution is shown to not suffice, i.e. a neural net solution is required.

  8. Musical Audio Synthesis Using Autoencoding Neural Nets

    OpenAIRE

    Sarroff, Andy; Casey, Michael A.

    2014-01-01

    With an optimal network topology and tuning of hyperpa-\\ud rameters, artificial neural networks (ANNs) may be trained\\ud to learn a mapping from low level audio features to one\\ud or more higher-level representations. Such artificial neu-\\ud ral networks are commonly used in classification and re-\\ud gression settings to perform arbitrary tasks. In this work\\ud we suggest repurposing autoencoding neural networks as\\ud musical audio synthesizers. We offer an interactive musi-\\ud cal audio synt...

  9. Differential Protection of Generator by Using Neural Network, Fuzzy Neural and Fuzzy Neural Petri Net

    OpenAIRE

    Prof. Dr. Abduladhem A. Ali; Prof. Dr. Abduladhem A. Ali; Ahmed Thamer Radhi

    2012-01-01

    This paper deals with the applications of Artificial Intelligence techniques for detecting internalfaults in Power generators. Three techniques are used which are Neural Net (NN), FuzzyNeural Net (FNN) and Fuzzy Neural Petri Net (FNPN) to implement differential protection ofgenerator. MATLAB toolbox has been used for simulations and generation of faults data fortraining the programs for different faults cases and to implement the relays. Results ofdifferent fault cases are presented and these...

  10. QED representation for the net of causal loops

    Science.gov (United States)

    Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2015-06-01

    The present work tackles the existence of local gauge symmetries in the setting of Algebraic Quantum Field Theory (AQFT). The net of causal loops, previously introduced by the authors, is a model independent construction of a covariant net of local C*-algebras on any 4-dimensional globally hyperbolic space-time, aimed to capture structural properties of any reasonable quantum gauge theory. Representations of this net can be described by causal and covariant connection systems, and local gauge transformations arise as maps between equivalent connection systems. The present paper completes these abstract results, realizing QED as a representation of the net of causal loops in Minkowski space-time. More precisely, we map the quantum electromagnetic field Fμν, not free in general, into a representation of the net of causal loops and show that the corresponding connection system and the local gauge transformations find a counterpart in terms of Fμν.

  11. Knowledge Representation and WordNets

    OpenAIRE

    Alexandra Gabriela Tudorache

    2007-01-01

    Knowledge itself is a representation of “real facts”. Knowledge is a logical model that presents facts from “the real world” witch can be expressed in a formal language. Representation means the construction of a model of some part of reality. Knowledge representation is contingent to both cognitive science and artificial intelligence. In cognitive science it expresses the way people store and process the information. In the AI field the goal is to store knowledge in such way that permits int...

  12. Document analysis with neural net circuits

    Science.gov (United States)

    Graf, Hans Peter

    1994-01-01

    Document analysis is one of the main applications of machine vision today and offers great opportunities for neural net circuits. Despite more and more data processing with computers, the number of paper documents is still increasing rapidly. A fast translation of data from paper into electronic format is needed almost everywhere, and when done manually, this is a time consuming process. Markets range from small scanners for personal use to high-volume document analysis systems, such as address readers for the postal service or check processing systems for banks. A major concern with present systems is the accuracy of the automatic interpretation. Today's algorithms fail miserably when noise is present, when print quality is poor, or when the layout is complex. A common approach to circumvent these problems is to restrict the variations of the documents handled by a system. In our laboratory, we had the best luck with circuits implementing basic functions, such as convolutions, that can be used in many different algorithms. To illustrate the flexibility of this approach, three applications of the NET32K circuit are described in this short viewgraph presentation: locating address blocks, cleaning document images by removing noise, and locating areas of interest in personal checks to improve image compression. Several of the ideas realized in this circuit that were inspired by neural nets, such as analog computation with a low resolution, resulted in a chip that is well suited for real-world document analysis applications and that compares favorably with alternative, 'conventional' circuits.

  13. Atypical Neural Self-Representation in Autism

    Science.gov (United States)

    Lombardo, Michael V.; Chakrabarti, Bhismadev; Bullmore, Edward T.; Sadek, Susan A.; Pasco, Greg; Wheelwright, Sally J.; Suckling, John; Baron-Cohen, Simon

    2010-01-01

    The "self" is a complex multidimensional construct deeply embedded and in many ways defined by our relations with the social world. Individuals with autism are impaired in both self-referential and other-referential social cognitive processing. Atypical neural representation of the self may be a key to understanding the nature of such impairments.…

  14. Moral transgressions corrupt neural representations of value.

    Science.gov (United States)

    Crockett, Molly J; Siegel, Jenifer Z; Kurth-Nelson, Zeb; Dayan, Peter; Dolan, Raymond J

    2017-06-01

    Moral systems universally prohibit harming others for personal gain. However, we know little about how such principles guide moral behavior. Using a task that assesses the financial cost participants ascribe to harming others versus themselves, we probed the relationship between moral behavior and neural representations of profit and pain. Most participants displayed moral preferences, placing a higher cost on harming others than themselves. Moral preferences correlated with neural responses to profit, where participants with stronger moral preferences had lower dorsal striatal responses to profit gained from harming others. Lateral prefrontal cortex encoded profit gained from harming others, but not self, and tracked the blameworthiness of harmful choices. Moral decisions also modulated functional connectivity between lateral prefrontal cortex and the profit-sensitive region of dorsal striatum. The findings suggest moral behavior in our task is linked to a neural devaluation of reward realized by a prefrontal modulation of striatal value representations.

  15. Neural net prediction of tokamak plasma disruptions

    International Nuclear Information System (INIS)

    Hernandez, J.V.; Lin, Z.; Horton, W.; McCool, S.C.

    1994-10-01

    The computation based on neural net algorithms in predicting minor and major disruptions in TEXT tokamak discharges has been performed. Future values of the fluctuating magnetic signal are predicted based on L past values of the magnetic fluctuation signal, measured by a single Mirnov coil. The time step used (= 0.04ms) corresponds to the experimental data sampling rate. Two kinds of approaches are adopted for the task, the contiguous future prediction and the multi-timescale prediction. Results are shown for comparison. Both networks are trained through the back-propagation algorithm with inertial terms. The degree of this success indicates that the magnetic fluctuations associated with tokamak disruptions may be characterized by a relatively low-dimensional dynamical system

  16. Modular representation of layered neural networks.

    Science.gov (United States)

    Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio

    2018-01-01

    Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Real-time applications of neural nets

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs

  18. Accelerator diagnosis and control by Neural Nets

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1989-01-01

    Neural Nets (NN) have been described as a solution looking for a problem. In the last conference, Artificial Intelligence (AI) was considered in the accelerator context. While good for local surveillance and control, its use for large complex systems (LCS) was much more restricted. By contrast, NN provide a good metaphor for LCS. It can be argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems, and therefore provide an ideal adaptive control system. Thus, where AI may be good for maintaining a 'golden orbit,' NN should be good for obtaining it via a quantitative approach to 'look and adjust' methods like operator tweaking which use pattern recognition to deal with hardware and software limitations, inaccuracies or errors as well as imprecise knowledge or understanding of effects like annealing and hysteresis. Further, insights from NN allow one to define feasibility conditions for LCS in terms of design constraints and tolerances. Hardware and software implications are discussed and several LCS of current interest are compared and contrasted. 15 refs., 5 figs

  19. Accelerator diagnosis and control by Neural Nets

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.E.

    1989-01-01

    Neural Nets (NN) have been described as a solution looking for a problem. In the last conference, Artificial Intelligence (AI) was considered in the accelerator context. While good for local surveillance and control, its use for large complex systems (LCS) was much more restricted. By contrast, NN provide a good metaphor for LCS. It can be argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems, and therefore provide an ideal adaptive control system. Thus, where AI may be good for maintaining a 'golden orbit,' NN should be good for obtaining it via a quantitative approach to 'look and adjust' methods like operator tweaking which use pattern recognition to deal with hardware and software limitations, inaccuracies or errors as well as imprecise knowledge or understanding of effects like annealing and hysteresis. Further, insights from NN allow one to define feasibility conditions for LCS in terms of design constraints and tolerances. Hardware and software implications are discussed and several LCS of current interest are compared and contrasted. 15 refs., 5 figs.

  20. Real-time applications of neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs.

  1. Computing with scale-invariant neural representations

    Science.gov (United States)

    Howard, Marc; Shankar, Karthik

    The Weber-Fechner law is perhaps the oldest quantitative relationship in psychology. Consider the problem of the brain representing a function f (x) . Different neurons have receptive fields that support different parts of the range, such that the ith neuron has a receptive field at xi. Weber-Fechner scaling refers to the finding that the width of the receptive field scales with xi as does the difference between the centers of adjacent receptive fields. Weber-Fechner scaling is exponentially resource-conserving. Neurophysiological evidence suggests that neural representations obey Weber-Fechner scaling in the visual system and perhaps other systems as well. We describe an optimality constraint that is solved by Weber-Fechner scaling, providing an information-theoretic rationale for this principle of neural coding. Weber-Fechner scaling can be generated within a mathematical framework using the Laplace transform. Within this framework, simple computations such as translation, correlation and cross-correlation can be accomplished. This framework can in principle be extended to provide a general computational language for brain-inspired cognitive computation on scale-invariant representations. Supported by NSF PHY 1444389 and the BU Initiative for the Physics and Mathematics of Neural Systems,.

  2. Linking neural and symbolic representation and processing of conceptual structures

    NARCIS (Netherlands)

    van der Velde, Frank; Forth, Jamie; Nazareth, Deniece S.; Wiggins, Geraint A.

    2017-01-01

    We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like) structures. First is the Neural Blackboard Architecture (NBA), which aims to account for representation and processing of complex and combinatorial conceptual

  3. 22nd Italian Workshop on Neural Nets

    CERN Document Server

    Bassis, Simone; Esposito, Anna; Morabito, Francesco

    2013-01-01

    This volume collects a selection of contributions which has been presented at the 22nd Italian Workshop on Neural Networks, the yearly meeting of the Italian Society for Neural Networks (SIREN). The conference was held in Italy, Vietri sul Mare (Salerno), during May 17-19, 2012. The annual meeting of SIREN is sponsored by International Neural Network Society (INNS), European Neural Network Society (ENNS) and IEEE Computational Intelligence Society (CIS). The book – as well as the workshop-  is organized in three main components, two special sessions and a group of regular sessions featuring different aspects and point of views of artificial neural networks and natural intelligence, also including applications of present compelling interest.

  4. A new neural net approach to robot 3D perception and visuo-motor coordination

    Science.gov (United States)

    Lee, Sukhan

    1992-01-01

    A novel neural network approach to robot hand-eye coordination is presented. The approach provides a true sense of visual error servoing, redundant arm configuration control for collision avoidance, and invariant visuo-motor learning under gazing control. A 3-D perception network is introduced to represent the robot internal 3-D metric space in which visual error servoing and arm configuration control are performed. The arm kinematic network performs the bidirectional association between 3-D space arm configurations and joint angles, and enforces the legitimate arm configurations. The arm kinematic net is structured by a radial-based competitive and cooperative network with hierarchical self-organizing learning. The main goal of the present work is to demonstrate that the neural net representation of the robot 3-D perception net serves as an important intermediate functional block connecting robot eyes and arms.

  5. Toward Real Time Neural Net Flight Controllers

    Science.gov (United States)

    Jorgensen, C. C.; Mah, R. W.; Ross, J.; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    NASA Ames Research Center has an ongoing program in neural network control technology targeted toward real time flight demonstrations using a modified F-15 which permits direct inner loop control of actuators, rapid switching between alternative control designs, and substitutable processors. An important part of this program is the ACTIVE flight project which is examining the feasibility of using neural networks in the design, control, and system identification of new aircraft prototypes. This paper discusses two research applications initiated with this objective in mind: utilization of neural networks for wind tunnel aircraft model identification and rapid learning algorithms for on line reconfiguration and control. The first application involves the identification of aerodynamic flight characteristics from analysis of wind tunnel test data. This identification is important in the early stages of aircraft design because complete specification of control architecture's may not be possible even though concept models at varying scales are available for aerodynamic wind tunnel testing. Testing of this type is often a long and expensive process involving measurement of aircraft lift, drag, and moment of inertia at varying angles of attack and control surface configurations. This information in turn can be used in the design of the flight control systems by applying the derived lookup tables to generate piece wise linearized controllers. Thus, reduced costs in tunnel test times and the rapid transfer of wind tunnel insights into prototype controllers becomes an important factor in more efficient generation and testing of new flight systems. NASA Ames Research Center is successfully applying modular neural networks as one way of anticipating small scale aircraft model performances prior to testing, thus reducing the number of in tunnel test hours and potentially, the number of intermediate scaled models required for estimation of surface flow effects.

  6. ChemNet: A Transferable and Generalizable Deep Neural Network for Small-Molecule Property Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Garrett B.; Siegel, Charles M.; Vishnu, Abhinav; Hodas, Nathan O.

    2017-12-08

    With access to large datasets, deep neural networks through representation learning have been able to identify patterns from raw data, achieving human-level accuracy in image and speech recognition tasks. However, in chemistry, availability of large standardized and labelled datasets is scarce, and with a multitude of chemical properties of interest, chemical data is inherently small and fragmented. In this work, we explore transfer learning techniques in conjunction with the existing Chemception CNN model, to create a transferable and generalizable deep neural network for small-molecule property prediction. Our latest model, ChemNet learns in a semi-supervised manner from inexpensive labels computed from the ChEMBL database. When fine-tuned to the Tox21, HIV and FreeSolv dataset, which are 3 separate chemical tasks that ChemNet was not originally trained on, we demonstrate that ChemNet exceeds the performance of existing Chemception models, contemporary MLP models that trains on molecular fingerprints, and it matches the performance of the ConvGraph algorithm, the current state-of-the-art. Furthermore, as ChemNet has been pre-trained on a large diverse chemical database, it can be used as a universal “plug-and-play” deep neural network, which accelerates the deployment of deep neural networks for the prediction of novel small-molecule chemical properties.

  7. Classification of handwritten digits using a RAM neural net architecture

    DEFF Research Database (Denmark)

    Jørgensen, T.M.

    1997-01-01

    Results are reported on the task of recognizing handwritten digits without any advanced pre-processing. The result are obtained using a RAM-based neural network, making use of small receptive fields. Furthermore, a technique that introduces negative weights into the RAM net is reported. The results...

  8. Neural nets for radio Morse code recognizing

    Science.gov (United States)

    Fu, Hsin-Chia; Lin, Y. Y.; Pao, Hsiao-Tien

    1993-09-01

    This paper proposes a neural network recognition system for hand keying Radio Morse codes. The system has been trained and tested on real world data recorded from amateur radio Morse codes. The overall recognizing process can be partitioned into 3 major parts, the preprocessing, the feature extracting, and the character decoding. The whole operation is able to be performed in real-time on a PC/486 system. Self-Organizing Maps are used intensively in the recognition system to adaptively learn the variation of the Morse code signal. The average performance of the recognition system has been achieved about 96.4% with a rejection rate of 6.5%. It is hoped that many of the techniques would be applicable to a wide range of DSP and recognition tasks.

  9. Computation and control with neural nets

    International Nuclear Information System (INIS)

    Corneliusen, A.; Terdal, P.; Knight, T.; Spencer, J.

    1989-01-01

    As energies have increased exponentially with time so have the size and complexity of accelerators and control systems. NN may offer the kinds of improvements in computation and control that are needed to maintain acceptable functionality. For control their associative characteristics could provide signal conversion or data translation. Because they can do any computation such as least squares, they can close feedback loops autonomously to provide intelligent control at the point of action rather than at a central location that requires transfers, conversions, hand-shaking and other costly repetitions like input protection. Both computation and control can be integrated on a single chip, printed circuit or an optical equivalent that is also inherently faster through full parallel operation. For such reasons one expects lower costs and better results. Such systems could be optimized by integrating sensor and signal processing functions. Distributed nets of such hardware could communicate and provide global monitoring and multiprocessing in various ways e.g. via token, slotted or parallel rings (or Steiner trees) for compatibility with existing systems. Problems and advantages of this approach such as an optimal, real-time Turing machine are discussed. Simple examples are simulated and hardware implemented using discrete elements that demonstrate some basic characteristics of learning and parallelism. Future 'microprocessors' are predicted and requested on this basis. 19 refs., 18 figs

  10. Computation and control with neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Corneliusen, A.; Terdal, P.; Knight, T.; Spencer, J.

    1989-10-04

    As energies have increased exponentially with time so have the size and complexity of accelerators and control systems. NN may offer the kinds of improvements in computation and control that are needed to maintain acceptable functionality. For control their associative characteristics could provide signal conversion or data translation. Because they can do any computation such as least squares, they can close feedback loops autonomously to provide intelligent control at the point of action rather than at a central location that requires transfers, conversions, hand-shaking and other costly repetitions like input protection. Both computation and control can be integrated on a single chip, printed circuit or an optical equivalent that is also inherently faster through full parallel operation. For such reasons one expects lower costs and better results. Such systems could be optimized by integrating sensor and signal processing functions. Distributed nets of such hardware could communicate and provide global monitoring and multiprocessing in various ways e.g. via token, slotted or parallel rings (or Steiner trees) for compatibility with existing systems. Problems and advantages of this approach such as an optimal, real-time Turing machine are discussed. Simple examples are simulated and hardware implemented using discrete elements that demonstrate some basic characteristics of learning and parallelism. Future microprocessors' are predicted and requested on this basis. 19 refs., 18 figs.

  11. Artificial neural nets application in the cotton yarn industry

    Directory of Open Access Journals (Sweden)

    Gilberto Clóvis Antoneli

    2016-06-01

    Full Text Available The competitiveness in the yarn production sector has led companies to search for solutions to attain quality yarn at a low cost. Today, the difference between them, and thus the sector, is in the raw material, meaning processed cotton and its characteristics. There are many types of cotton with different characteristics due to its production region, harvest, storage and transportation. Yarn industries work with cotton mixtures, which makes it difficult to determine the quality of the yarn produced from the characteristics of the processed fibers. This study uses data from a conventional spinning, from a raw material made of 100% cotton, and presents a solution with artificial neural nets that determine the thread quality information, using the fibers’ characteristics values and settings of some process adjustments. In this solution a neural net of the type MultiLayer Perceptron with 11 entry neurons (8 characteristics of the fiber and 3 process adjustments, 7 output neurons (yarn quality and two types of training, Back propagation and Conjugate gradient descent. The selection and organization of the production data of the yarn industry of the cocamar® indústria de fios company are described, to apply the artificial neural nets developed. In the application of neural nets to determine yarn quality, one concludes that, although the ideal precision of absolute values is lacking, the presented solution represents an excellent tool to define yarn quality variations when modifying the raw material composition. The developed system enables a simulation to define the raw material percentage mixture to be processed in the plant using the information from the stocked cotton packs, thus obtaining a mixture that maintains the stability of the entire productive process.

  12. PatterNet: a system to learn compact physical design pattern representations for pattern-based analytics

    Science.gov (United States)

    Lutich, Andrey

    2017-07-01

    This research considers the problem of generating compact vector representations of physical design patterns for analytics purposes in semiconductor patterning domain. PatterNet uses a deep artificial neural network to learn mapping of physical design patterns to a compact Euclidean hyperspace. Distances among mapped patterns in this space correspond to dissimilarities among patterns defined at the time of the network training. Once the mapping network has been trained, PatterNet embeddings can be used as feature vectors with standard machine learning algorithms, and pattern search, comparison, and clustering become trivial problems. PatterNet is inspired by the concepts developed within the framework of generative adversarial networks as well as the FaceNet. Our method facilitates a deep neural network (DNN) to learn directly the compact representation by supplying it with pairs of design patterns and dissimilarity among these patterns defined by a user. In the simplest case, the dissimilarity is represented by an area of the XOR of two patterns. Important to realize that our PatterNet approach is very different to the methods developed for deep learning on image data. In contrast to "conventional" pictures, the patterns in the CAD world are the lists of polygon vertex coordinates. The method solely relies on the promise of deep learning to discover internal structure of the incoming data and learn its hierarchical representations. Artificial intelligence arising from the combination of PatterNet and clustering analysis very precisely follows intuition of patterning/optical proximity correction experts paving the way toward human-like and human-friendly engineering tools.

  13. Learning Sparse Feature Representations using Probabilistic Quadtrees and Deep Belief Nets

    Science.gov (United States)

    2015-04-24

    Feature Representations usingProbabilistic Quadtrees and Deep Belief Nets Learning sparse feature representations is a useful instru- ment for solving an...novel framework for the classifi cation of handwritten digits that learns sparse representations using probabilistic quadtrees and Deep Belief Nets...S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Deep Belief Networks; MNIST REPORT

  14. Linking Neural and Symbolic Representation and Processing of Conceptual Structures

    Directory of Open Access Journals (Sweden)

    Frank van der Velde

    2017-08-01

    Full Text Available We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like structures. First is the Neural Blackboard Architecture (NBA, which aims to account for representation and processing of complex and combinatorial conceptual structures in the brain. Second is IDyOT (Information Dynamics of Thinking, which derives sentence-like structures by learning statistical sequential regularities over a suitable corpus. Although IDyOT is designed at a level more abstract than the neural, so it is a model of cognitive function, rather than neural processing, there are strong similarities between the composite structures developed in IDyOT and the NBA. We hypothesize that these similarities form the basis of a combined architecture in which the individual strengths of each architecture are integrated. We outline and discuss the characteristics of this combined architecture, emphasizing the representation and processing of conceptual structures.

  15. Invariant recognition drives neural representations of action sequences.

    Directory of Open Access Journals (Sweden)

    Andrea Tacchetti

    2017-12-01

    Full Text Available Recognizing the actions of others from visual stimuli is a crucial aspect of human perception that allows individuals to respond to social cues. Humans are able to discriminate between similar actions despite transformations, like changes in viewpoint or actor, that substantially alter the visual appearance of a scene. This ability to generalize across complex transformations is a hallmark of human visual intelligence. Advances in understanding action recognition at the neural level have not always translated into precise accounts of the computational principles underlying what representations of action sequences are constructed by human visual cortex. Here we test the hypothesis that invariant action discrimination might fill this gap. Recently, the study of artificial systems for static object perception has produced models, Convolutional Neural Networks (CNNs, that achieve human level performance in complex discriminative tasks. Within this class, architectures that better support invariant object recognition also produce image representations that better match those implied by human and primate neural data. However, whether these models produce representations of action sequences that support recognition across complex transformations and closely follow neural representations of actions remains unknown. Here we show that spatiotemporal CNNs accurately categorize video stimuli into action classes, and that deliberate model modifications that improve performance on an invariant action recognition task lead to data representations that better match human neural recordings. Our results support our hypothesis that performance on invariant discrimination dictates the neural representations of actions computed in the brain. These results broaden the scope of the invariant recognition framework for understanding visual intelligence from perception of inanimate objects and faces in static images to the study of human perception of action sequences.

  16. Invariant recognition drives neural representations of action sequences.

    Science.gov (United States)

    Tacchetti, Andrea; Isik, Leyla; Poggio, Tomaso

    2017-12-01

    Recognizing the actions of others from visual stimuli is a crucial aspect of human perception that allows individuals to respond to social cues. Humans are able to discriminate between similar actions despite transformations, like changes in viewpoint or actor, that substantially alter the visual appearance of a scene. This ability to generalize across complex transformations is a hallmark of human visual intelligence. Advances in understanding action recognition at the neural level have not always translated into precise accounts of the computational principles underlying what representations of action sequences are constructed by human visual cortex. Here we test the hypothesis that invariant action discrimination might fill this gap. Recently, the study of artificial systems for static object perception has produced models, Convolutional Neural Networks (CNNs), that achieve human level performance in complex discriminative tasks. Within this class, architectures that better support invariant object recognition also produce image representations that better match those implied by human and primate neural data. However, whether these models produce representations of action sequences that support recognition across complex transformations and closely follow neural representations of actions remains unknown. Here we show that spatiotemporal CNNs accurately categorize video stimuli into action classes, and that deliberate model modifications that improve performance on an invariant action recognition task lead to data representations that better match human neural recordings. Our results support our hypothesis that performance on invariant discrimination dictates the neural representations of actions computed in the brain. These results broaden the scope of the invariant recognition framework for understanding visual intelligence from perception of inanimate objects and faces in static images to the study of human perception of action sequences.

  17. Human aging alters the neural computation and representation of space.

    Science.gov (United States)

    Schuck, Nicolas W; Doeller, Christian F; Polk, Thad A; Lindenberger, Ulman; Li, Shu-Chen

    2015-08-15

    The hippocampus and striatum are core neural circuits involved in spatial learning and memory. Although both neural systems support spatial navigation, experimental and theoretical evidence indicate that they play different roles. In particular, whereas hippocampal place cells generate allocentric neural representations of space that are sensitive to geometric information, striatum-dependent learning is influenced by local landmarks. How human aging affects these different neural representations, however, is still not well understood. In this paper, we combined virtual reality, computational modeling, and neuroimaging to investigate the effects of age upon the neural computation and representation of space in humans. We manipulated the geometry and local landmarks of a virtual environment and examined the effects on memory performance and brain activity during spatial learning. In younger adults, both behavior and brain activity in the medial-temporal lobe were consistent with predictions of a computational model of hippocampus-dependent boundary processing. In contrast, older adults' behavior and medial-temporal lobe activity were primarily influenced by local cue information, and spatial learning was more associated with activity in the caudate nucleus rather than the hippocampus. Together these results point to altered spatial representations and information processing in the hippocampal-striatal circuitry with advancing adult age, which may contribute to spatial learning and memory deficits associated with normal and pathological aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Unfolding code for neutron spectrometry based on neural nets technology

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Vega C, H. R.

    2012-10-01

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Neural Networks have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This unfolding code called Neutron Spectrometry and Dosimetry by means of Artificial Neural Networks was designed in a graphical interface under LabVIEW programming environment. The core of the code is an embedded neural network architecture, previously optimized by the R obust Design of Artificial Neural Networks Methodology . The main features of the code are: is easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6 Lil(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, only seven rate counts measurement with a Bonner spheres spectrometer are required for simultaneously unfold the 60 energy bins of the neutron spectrum and to calculate 15 dosimetric quantities, for radiation protection porpoises. This code generates a full report in html format with all relevant information. (Author)

  19. Perineuronal net, CSPG receptor and their regulation of neural plasticity.

    Science.gov (United States)

    Miao, Qing-Long; Ye, Qian; Zhang, Xiao-Hui

    2014-08-25

    Perineuronal nets (PNNs) are reticular structures resulting from the aggregation of extracellular matrix (ECM) molecules around the cell body and proximal neurite of specific population of neurons in the central nervous system (CNS). Since the first description of PNNs by Camillo Golgi in 1883, the molecular composition, developmental formation and potential functions of these specialized extracellular matrix structures have only been intensively studied over the last few decades. The main components of PNNs are hyaluronan (HA), chondroitin sulfate proteoglycans (CSPGs) of the lectican family, link proteins and tenascin-R. PNNs appear late in neural development, inversely correlating with the level of neural plasticity. PNNs have long been hypothesized to play a role in stabilizing the extracellular milieu, which secures the characteristic features of enveloped neurons and protects them from the influence of malicious agents. Aberrant PNN signaling can lead to CNS dysfunctions like epilepsy, stroke and Alzheimer's disease. On the other hand, PNNs create a barrier which constrains the neural plasticity and counteracts the regeneration after nerve injury. Digestion of PNNs with chondroitinase ABC accelerates functional recovery from the spinal cord injury and restores activity-dependent mechanisms for modifying neuronal connections in the adult animals, indicating that PNN is an important regulator of neural plasticity. Here, we review recent progress in the studies on the formation of PNNs during early development and the identification of CSPG receptor - an essential molecular component of PNN signaling, along with a discussion on their unique regulatory roles in neural plasticity.

  20. Face recognition: Eigenface, elastic matching, and neural nets

    International Nuclear Information System (INIS)

    Zhang, J.; Lades, M.

    1997-01-01

    This paper is a comparative study of three recently proposed algorithms for face recognition: eigenface, autoassociation and classification neural nets, and elastic matching. After these algorithms were analyzed under a common statistical decision framework, they were evaluated experimentally on four individual data bases, each with a moderate subject size, and a combined data base with more than a hundred different subjects. Analysis and experimental results indicate that the eigenface algorithm, which is essentially a minimum distance classifier, works well when lighting variation is small. Its performance deteriorates significantly as lighting variation increases. The elastic matching algorithm, on the other hand, is insensitive to lighting, face position, and expression variations and therefore is more versatile. The performance of the autoassociation and classification nets is upper bounded by that of the eigenface but is more difficult to implement in practice

  1. Neural representations of the sense of self

    Science.gov (United States)

    Klemm, William R.

    2011-01-01

    The brain constructs representations of what is sensed and thought about in the form of nerve impulses that propagate in circuits and network assemblies (Circuit Impulse Patterns, CIPs). CIP representations of which humans are consciously aware occur in the context of a sense of self. Thus, research on mechanisms of consciousness might benefit from a focus on how a conscious sense of self is represented in brain. Like all senses, the sense of self must be contained in patterns of nerve impulses. Unlike the traditional senses that are registered by impulse flow in relatively simple, pauci-synaptic projection pathways, the sense of self is a system- level phenomenon that may be generated by impulse patterns in widely distributed complex and interacting circuits. The problem for researchers then is to identify the CIPs that are unique to conscious experience. Also likely to be of great relevance to constructing the representation of self are the coherence shifts in activity timing relations among the circuits. Consider that an embodied sense of self is generated and contained as unique combinatorial temporal patterns across multiple neurons in each circuit that contributes to constructing the sense of self. As with other kinds of CIPs, those representing the sense of self can be learned from experience, stored in memory, modified by subsequent experiences, and expressed in the form of decisions, choices, and commands. These CIPs are proposed here to be the actual physical basis for conscious thought and the sense of self. When active in wakefulness or dream states, the CIP representations of self act as an agent of the brain, metaphorically as an avatar. Because the selfhood CIP patterns may only have to represent the self and not directly represent the inner and outer worlds of embodied brain, the self representation should have more degrees of freedom than subconscious mind and may therefore have some capacity for a free-will mind of its own. S everal lines of

  2. A New Light on Nets of C*-Algebras and Their Representations

    Science.gov (United States)

    Ruzzi, Giuseppe; Vasselli, Ezio

    2012-06-01

    The present paper deals with the question of representability of nets of C*-algebras whose underlying poset, indexing the net, is not upward directed. A particular class of nets, called C*-net bundles, is classified in terms of C*-dynamical systems having as group the fundamental group of the poset. Any net of C*-algebras has a canonical morphism into a C*-net bundle, the enveloping net bundle, which generalizes the notion of universal C*-algebra given by Fredenhagen to nonsimply connected posets. This allows a classification of nets; in particular, we call injective those nets such that the canonical morphism is faithful. Injectivity turns out to be equivalent to the existence of faithful representations. We further relate injectivity to a generalized Čech cocycle of the net, and this allows us to give examples of nets exhausting the above classification. Using these results we have shown, in another paper, that any conformal net over S 1 is injective.

  3. Decoding the neural representation of affective states.

    Science.gov (United States)

    Baucom, Laura B; Wedell, Douglas H; Wang, Jing; Blitzer, David N; Shinkareva, Svetlana V

    2012-01-02

    Brain activity was monitored while participants viewed picture sets that reflected high or low levels of arousal and positive, neutral, or negative valence. Pictures within a set were presented rapidly in an incidental viewing task while fMRI data were collected. The primary purpose of the study was to determine if multi-voxel pattern analysis could be used within and between participants to predict valence, arousal and combined affective states elicited by pictures based on distributed patterns of whole brain activity. A secondary purpose was to determine if distributed patterns of whole brain activity can be used to derive a lower dimensional representation of affective states consistent with behavioral data. Results demonstrated above chance prediction of valence, arousal and affective states that was robust across a wide range of number of voxels used in prediction. Additionally, individual differences multidimensional scaling based on fMRI data clearly separated valence and arousal levels and was consistent with a circumplex model of affective states. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Efficient object recognition using boundary representation and wavelet neural network.

    Science.gov (United States)

    Pan, Hong; Xia, Liang-Zheng

    2008-12-01

    Wavelet neural networks combine the functions of time-frequency localization from the wavelet transform and of self-studying from the neural network, which make them particularly suitable for the classification of complex patterns. In this paper, an efficient object recognition method using boundary representation and the wavelet neural network is proposed. The method employs a wavelet neural network (WNN) to characterize the singularities of the object curvature representation and to perform the object classification at the same time and in an automatic way. The local time-frequency attributes of the singularities on the object boundary are detected by making a preliminary wavelet analysis of the curvature representation. Then, the discriminative scale-translation features of the singularities are stored as the initial scale-translation parameters of the wavelet nodes in the WNN. These parameters are trained to their optimum status during the learning stage. With our approach, as opposed to matching features by convolving the signal with wavelet functions at a large number of scales, the computational burden is significantly reduced. Only a few convolutions are performed at the optimum scale-translation grids during the classification, which makes it suitable for real-time recognition tasks. Compared with the artificial-neural-network-based approaches preceded by wavelet filter banks with fixed scale-translation parameters, the support vector machine (SVM) using traditional Fourier descriptors and K-nearest-neighbor ( K-NN) classifier based on the state-of-the-art shape descriptors, our scheme demonstrates superior and stable discrimination performance under various noisy and affine conditions.

  5. Decoding the neural representation of story meanings across languages.

    Science.gov (United States)

    Dehghani, Morteza; Boghrati, Reihane; Man, Kingson; Hoover, Joe; Gimbel, Sarah I; Vaswani, Ashish; Zevin, Jason D; Immordino-Yang, Mary Helen; Gordon, Andrew S; Damasio, Antonio; Kaplan, Jonas T

    2017-12-01

    Drawing from a common lexicon of semantic units, humans fashion narratives whose meaning transcends that of their individual utterances. However, while brain regions that represent lower-level semantic units, such as words and sentences, have been identified, questions remain about the neural representation of narrative comprehension, which involves inferring cumulative meaning. To address these questions, we exposed English, Mandarin, and Farsi native speakers to native language translations of the same stories during fMRI scanning. Using a new technique in natural language processing, we calculated the distributed representations of these stories (capturing the meaning of the stories in high-dimensional semantic space), and demonstrate that using these representations we can identify the specific story a participant was reading from the neural data. Notably, this was possible even when the distributed representations were calculated using stories in a different language than the participant was reading. Our results reveal that identification relied on a collection of brain regions most prominently located in the default mode network. These results demonstrate that neuro-semantic encoding of narratives happens at levels higher than individual semantic units and that this encoding is systematic across both individuals and languages. Hum Brain Mapp 38:6096-6106, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Marketing actions can modulate neural representations of experienced pleasantness.

    Science.gov (United States)

    Plassmann, Hilke; O'Doherty, John; Shiv, Baba; Rangel, Antonio

    2008-01-22

    Despite the importance and pervasiveness of marketing, almost nothing is known about the neural mechanisms through which it affects decisions made by individuals. We propose that marketing actions, such as changes in the price of a product, can affect neural representations of experienced pleasantness. We tested this hypothesis by scanning human subjects using functional MRI while they tasted wines that, contrary to reality, they believed to be different and sold at different prices. Our results show that increasing the price of a wine increases subjective reports of flavor pleasantness as well as blood-oxygen-level-dependent activity in medial orbitofrontal cortex, an area that is widely thought to encode for experienced pleasantness during experiential tasks. The paper provides evidence for the ability of marketing actions to modulate neural correlates of experienced pleasantness and for the mechanisms through which the effect operates.

  7. [Neural representations of facial identity and its associative meaning].

    Science.gov (United States)

    Eifuku, Satoshi

    2012-07-01

    Since the discovery of "face cells" in the early 1980s, single-cell recording experiments in non-human primates have made significant contributions toward the elucidation of neural mechanisms underlying face perception and recognition. In this paper, we review the recent progress in face cell studies, including the recent remarkable findings of the face patches that are scattered around the anterior temporal cortical areas of monkeys. In particular, we focus on the neural representations of facial identity within these areas. The identification of faces requires both discrimination of facial identities and generalization across facial views. It has been indicated by some laboratories that the population of face cells found in the anterior ventral inferior temporal cortex of monkeys represent facial identity in a manner which is facial view-invariant. These findings suggest a relatively distributed representation that operates for facial identification. It has also been shown that certain individual neurons in the medial temporal lobe of humans represent view-invariant facial identity. This finding suggests a relatively sparse representation that may be employed for memory formation. Finally, we summarize our recent study, showing that the population of face cells in the anterior ventral inferior temporal cortex of monkeys that represent view-invariant facial identity, can also represent learned paired associations between an abstract picture and a particular facial identity, extending our understanding of the function of the anterior ventral inferior temporal cortex in the recognition of associative meanings of faces.

  8. Neural Schematics as a unified formal graphical representation of large-scale Neural Network Structures

    Directory of Open Access Journals (Sweden)

    Matthias eEhrlich

    2013-10-01

    Full Text Available One of the major outcomes of neuroscientific research are models of Neural Network Structures. Descriptions of these models usually consist of a non-standardized mixture of text, figures, and other means of visual information communication in print media. However, as neuroscience is an interdisciplinary domain by nature, a standardized way of consistently representing models of Neural Network Structures is required. While generic descriptions of such models in textual form have recently been developed, a formalized way of schematically expressing them does not exist to date. Hence, in this paper we present Neural Schematics as a concept inspired by similar approaches from other disciplines for a generic two dimensional representation of said structures. After introducing Neural Network Structures in general, a set of current visualizations of models of Neural Network Structures is reviewed and analyzed for what information they convey and how their elements are rendered. This analysis then allows for the definition of general items and symbols to consistently represent these models as Neural Schematics on a two dimensional plane. We will illustrate the possibilities an agreed upon standard can yield on sampled diagrams transformed into Neural Schematics and an example application for the design and modeling of large-scale Neural Network Structures.

  9. Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex

    Science.gov (United States)

    Remedios, Ryan; Kennedy, Ann; Zelikowsky, Moriel; Grewe, Benjamin F.; Schnitzer, Mark J.; Anderson, David J.

    2017-10-01

    All animals possess a repertoire of innate (or instinctive) behaviours, which can be performed without training. Whether such behaviours are mediated by anatomically distinct and/or genetically specified neural pathways remains unknown. Here we report that neural representations within the mouse hypothalamus, that underlie innate social behaviours, are shaped by social experience. Oestrogen receptor 1-expressing (Esr1+) neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) control mating and fighting in rodents. We used microendoscopy to image Esr1+ neuronal activity in the VMHvl of male mice engaged in these social behaviours. In sexually and socially experienced adult males, divergent and characteristic neural ensembles represented male versus female conspecifics. However, in inexperienced adult males, male and female intruders activated overlapping neuronal populations. Sex-specific neuronal ensembles gradually separated as the mice acquired social and sexual experience. In mice permitted to investigate but not to mount or attack conspecifics, ensemble divergence did not occur. However, 30 minutes of sexual experience with a female was sufficient to promote the separation of male and female ensembles and to induce an attack response 24 h later. These observations uncover an unexpected social experience-dependent component to the formation of hypothalamic neural assemblies controlling innate social behaviours. More generally, they reveal plasticity and dynamic coding in an evolutionarily ancient deep subcortical structure that is traditionally viewed as a ‘hard-wired’ system.

  10. Algorithm/Architecture Study for Artificial Neural Nets

    Science.gov (United States)

    1993-11-30

    structure, so they are termed HiPer Nets. Two HiPer net structures are proposed: hidden-node and subcluster structures. We shall explore several variants of... HiPer nets based on the different hierarchical structures and basis functions and then examine the relationships between HiPer nets and other DBNNs...e.g. Perceptron and LVQ. Based on the simu- lation performance comparison, the HiPer nets appear to be very effective for many signal/image

  11. TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions.

    Directory of Open Access Journals (Sweden)

    Zixuan Cang

    2017-07-01

    Full Text Available Although deep learning approaches have had tremendous success in image, video and audio processing, computer vision, and speech recognition, their applications to three-dimensional (3D biomolecular structural data sets have been hindered by the geometric and biological complexity. To address this problem we introduce the element-specific persistent homology (ESPH method. ESPH represents 3D complex geometry by one-dimensional (1D topological invariants and retains important biological information via a multichannel image-like representation. This representation reveals hidden structure-function relationships in biomolecules. We further integrate ESPH and deep convolutional neural networks to construct a multichannel topological neural network (TopologyNet for the predictions of protein-ligand binding affinities and protein stability changes upon mutation. To overcome the deep learning limitations from small and noisy training sets, we propose a multi-task multichannel topological convolutional neural network (MM-TCNN. We demonstrate that TopologyNet outperforms the latest methods in the prediction of protein-ligand binding affinities, mutation induced globular protein folding free energy changes, and mutation induced membrane protein folding free energy changes.weilab.math.msu.edu/TDL/.

  12. DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection.

    Science.gov (United States)

    Ouyang, Wanli; Zeng, Xingyu; Wang, Xiaogang; Qiu, Shi; Luo, Ping; Tian, Yonglong; Li, Hongsheng; Yang, Shuo; Wang, Zhe; Li, Hongyang; Loy, Chen Change; Wang, Kun; Yan, Junjie; Tang, Xiaoou

    2016-07-07

    In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach improves the mean averaged precision obtained by RCNN [16], which was the state-of-the-art, from 31% to 50.3% on the ILSVRC2014 detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1%. Detailed component-wise analysis is also provided through extensive experimental evaluation, which provides a global view for people to understand the deep learning object detection pipeline.

  13. Molecular dynamics simulation of nanomaterials using an artificial neural net

    Science.gov (United States)

    Benedict, Mark; Maguire, John F.

    2004-11-01

    We report a method of conducting molecular dynamics (MD) simulations that uses an artificial neural net (ANN) to significantly increase computational speed. The technique enables dynamical simulation of hard objects with essentially arbitrarily complex geometry and is well suited to the simulation of granular matter over a wide range of densities. In hard systems, binary collisions are well defined and the ANN approach enables an efficient algorithm to determine the time to next collision with high accuracy. The method has been used to enable an MD study of an ensemble of 1800 hard, smooth, impenetrable equilateral triangles in a two-dimensional periodic space. At high packing fraction (0.6translational order but in which there is nearly perfect long-range orientational order. As the packing fraction decreases, the LCP undergoes a transition to a fluid state in which the long-range orientational correlation vanishes but short-range order is retained. Long-lived clusters, notably hexamers, are clearly apparent in the liquid phase and appear to be stabilized by a sort of internal “orientational” osmotic pressure. Insofar as can be inferred from our machine calculations, the transition between the LCP and the liquid occurs around ρ˜0.57 and appears to be second order. At low density, the hard-triangle system undergoes “chattering” collisions in which pairs of triangles collide and become associated, undergoing multiple collisions with each other before colliding with a third particle. The radial distribution function obtained from both molecular dynamics and Monte Carlo calculations shows a weak peak at low packing fraction.

  14. Catheter-manometer system damped blood pressures detected by neural nets.

    Science.gov (United States)

    Prentza, A; Wesseling, K H

    1995-07-01

    Degraded catheter-manometer systems cause distortion of blood pressure waveforms, often leading to erroneously resonant or damped waveforms, requiring waveforms quality control. We have tried multilayer perceptron back-propagation trained neural nets of varying architecture to detect damping on sets of normal and artificially damped brachial arterial pressure waves. A second-order digital simulation of a catheter-manometer system is used to cause waveform distortion. Each beat in the waveforms is represented by an 11 parameter input vector. From a group of normotensive or (borderline) hypertensive subjects, pressure waves are used to statistically test and train the neural nets. For each patient and category 5-10 waves are available. The best neural nets correctly classify about 75-85% of the individual beats as either adequate or damped. Using a single majority vote classification per subject per damped or adequate situation, the best neural nets correctly classify at least 16 of the 18 situations in nine test subjects (binomial P = 0.001). More importantly, these neural nets can always detect damping before clinically relevant parameters such as systolic pressure and computed stroke volume are reduced by more than 2%. Neural nets seem remarkably well adapted to solving such subtle problems as detecting a slight damping of arterial pressure waves before it affects waveforms to a clinically relevant degree.

  15. Neural representation of face familiarity in an awake chimpanzee

    Directory of Open Access Journals (Sweden)

    Hirokata Fukushima

    2013-12-01

    Full Text Available Evaluating the familiarity of faces is critical for social animals as it is the basis of individual recognition. In the present study, we examined how face familiarity is reflected in neural activities in our closest living relative, the chimpanzee. Skin-surface event-related brain potentials (ERPs were measured while a fully awake chimpanzee observed photographs of familiar and unfamiliar chimpanzee faces (Experiment 1 and human faces (Experiment 2. The ERPs evoked by chimpanzee faces differentiated unfamiliar individuals from familiar ones around midline areas centered on vertex sites at approximately 200 ms after the stimulus onset. In addition, the ERP response to the image of the subject’s own face did not significantly diverge from those evoked by familiar chimpanzees, suggesting that the subject’s brain at a minimum remembered the image of her own face. The ERPs evoked by human faces were not influenced by the familiarity of target individuals. These results indicate that chimpanzee neural representations are more sensitive to the familiarity of conspecific than allospecific faces.

  16. A bat's ear view of neural nets in physics

    International Nuclear Information System (INIS)

    Denby, B.

    1997-01-01

    The use of neural networks in high energy physics has become a field of its own which now has been in existence for ten years. This paper attempts to draw some conclusions on the utility of neural networks for physics applications, and also to make some projections for the future of this line of research. (orig.)

  17. Do neural nets learn statistical laws behind natural language?

    Directory of Open Access Journals (Sweden)

    Shuntaro Takahashi

    Full Text Available The performance of deep learning in natural language processing has been spectacular, but the reasons for this success remain unclear because of the inherent complexity of deep learning. This paper provides empirical evidence of its effectiveness and of a limitation of neural networks for language engineering. Precisely, we demonstrate that a neural language model based on long short-term memory (LSTM effectively reproduces Zipf's law and Heaps' law, two representative statistical properties underlying natural language. We discuss the quality of reproducibility and the emergence of Zipf's law and Heaps' law as training progresses. We also point out that the neural language model has a limitation in reproducing long-range correlation, another statistical property of natural language. This understanding could provide a direction for improving the architectures of neural networks.

  18. The EB factory project. I. A fast, neural-net-based, general purpose light curve classifier optimized for eclipsing binaries

    International Nuclear Information System (INIS)

    Paegert, Martin; Stassun, Keivan G.; Burger, Dan M.

    2014-01-01

    We describe a new neural-net-based light curve classifier and provide it with documentation as a ready-to-use tool for the community. While optimized for identification and classification of eclipsing binary stars, the classifier is general purpose, and has been developed for speed in the context of upcoming massive surveys such as the Large Synoptic Survey Telescope. A challenge for classifiers in the context of neural-net training and massive data sets is to minimize the number of parameters required to describe each light curve. We show that a simple and fast geometric representation that encodes the overall light curve shape, together with a chi-square parameter to capture higher-order morphology information results in efficient yet robust light curve classification, especially for eclipsing binaries. Testing the classifier on the ASAS light curve database, we achieve a retrieval rate of 98% and a false-positive rate of 2% for eclipsing binaries. We achieve similarly high retrieval rates for most other periodic variable-star classes, including RR Lyrae, Mira, and delta Scuti. However, the classifier currently has difficulty discriminating between different sub-classes of eclipsing binaries, and suffers a relatively low (∼60%) retrieval rate for multi-mode delta Cepheid stars. We find that it is imperative to train the classifier's neural network with exemplars that include the full range of light curve quality to which the classifier will be expected to perform; the classifier performs well on noisy light curves only when trained with noisy exemplars. The classifier source code, ancillary programs, a trained neural net, and a guide for use, are provided.

  19. Neural Representations of Belief Concepts: A Representational Similarity Approach to Social Semantics.

    Science.gov (United States)

    Leshinskaya, Anna; Contreras, Juan Manuel; Caramazza, Alfonso; Mitchell, Jason P

    2017-01-01

    The present experiment identified neural regions that represent a class of concepts that are independent of perceptual or sensory attributes. During functional magnetic resonance imaging scanning, participants viewed names of social groups (e.g. Atheists, Evangelicals, and Economists) and performed a one-back similarity judgment according to 1 of 2 dimensions of belief attributes: political orientation (Liberal to Conservative) or spiritualism (Spiritualist to Materialist). By generalizing across a wide variety of social groups that possess these beliefs, these attribute concepts did not coincide with any specific sensory quality, allowing us to target conceptual, rather than perceptual, representations. Multi-voxel pattern searchlight analysis was used to identify regions in which activation patterns distinguished the 2 ends of both dimensions: Conservative from Liberal social groups when participants focused on the political orientation dimension, and spiritual from Materialist groups when participants focused on the spiritualism dimension. A cluster in right precuneus exhibited such a pattern, indicating that it carries information about belief-attribute concepts and forms part of semantic memory-perhaps a component particularly concerned with psychological traits. This region did not overlap with the theory of mind network, which engaged nearby, but distinct, parts of precuneus. These findings have implications for the neural organization of conceptual knowledge, especially the understanding of social groups. © The Author 2017. Published by Oxford University Press.

  20. Neural representations of novel objects associated with olfactory experience.

    Science.gov (United States)

    Ghio, Marta; Schulze, Patrick; Suchan, Boris; Bellebaum, Christian

    2016-07-15

    Object conceptual knowledge comprises information related to several motor and sensory modalities (e.g. for tools, how they look like, how to manipulate them). Whether and to which extent conceptual object knowledge is represented in the same sensory and motor systems recruited during object-specific learning experience is still a controversial question. A direct approach to assess the experience-dependence of conceptual object representations is based on training with novel objects. The present study extended previous research, which focused mainly on the role of manipulation experience for tool-like stimuli, by considering sensory experience only. Specifically, we examined the impact of experience in the non-dominant olfactory modality on the neural representation of novel objects. Sixteen healthy participants visually explored a set of novel objects during the training phase while for each object an odor (e.g., peppermint) was presented (olfactory-visual training). As control conditions, a second set of objects was only visually explored (visual-only training), and a third set was not part of the training. In a post-training fMRI session, participants performed an old/new task with pictures of objects associated with olfactory-visual and visual-only training (old) and no training objects (new). Although we did not find any evidence of activations in primary olfactory areas, the processing of olfactory-visual versus visual-only training objects elicited greater activation in the right anterior hippocampus, a region included in the extended olfactory network. This finding is discussed in terms of different functional roles of the hippocampus in olfactory processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Neural Dynamics and Information Representation in Microcircuits of Motor Cortex

    Directory of Open Access Journals (Sweden)

    Yasuhiro eTsubo

    2013-05-01

    Full Text Available The brain has to analyze and respond to external events that can change rapidly from time to time, suggesting that information processing by the brain may be essentially dynamic rather than static. The dynamical features of neural computation are of significant importance in motor cortex that governs the process of movement generation and learning. In this paper, we discuss these features based primarily on our recent findings on neural dynamics and information coding in the microcircuit of rat motor cortex. In fact, cortical neurons show a variety of dynamical behavior from rhythmic activity in various frequency bands to highly irregular spike firing. Of particular interest are the similarity and dissimilarity of the neuronal response properties in different layers of motor cortex. By conducting electrophysiological recordings in slice preparation, we report the phase response curves of neurons in different cortical layers to demonstrate their layer-dependent synchronization properties. We then study how motor cortex recruits task-related neurons in different layers for voluntary arm movements by simultaneous juxtacellular and multiunit recordings from behaving rats. The results suggest an interesting difference in the spectrum of functional activity between the superficial and deep layers. Furthermore, the task-related activities recorded from various layers exhibited power law distributions of inter-spike intervals (ISIs, in contrast to a general belief that ISIs obey Poisson or Gamma distributions in cortical neurons. We present a theoretical argument that this power law of in vivo neurons may represent the maximization of the entropy of firing rate with limited energy consumption of spike generation. Though further studies are required to fully clarify the functional implications of this coding principle, it may shed new light on information representations by neurons and circuits in motor cortex.

  2. Examples of Current and Future Uses of Neural-Net Image Processing for Aerospace Applications

    Science.gov (United States)

    Decker, Arthur J.

    2004-01-01

    Feed forward artificial neural networks are very convenient for performing correlated interpolation of pairs of complex noisy data sets as well as detecting small changes in image data. Image-to-image, image-to-variable and image-to-index applications have been tested at Glenn. Early demonstration applications are summarized including image-directed alignment of optics, tomography, flow-visualization control of wind-tunnel operations and structural-model-trained neural networks. A practical application is reviewed that employs neural-net detection of structural damage from interference fringe patterns. Both sensor-based and optics-only calibration procedures are available for this technique. These accomplishments have generated the knowledge necessary to suggest some other applications for NASA and Government programs. A tomography application is discussed to support Glenn's Icing Research tomography effort. The self-regularizing capability of a neural net is shown to predict the expected performance of the tomography geometry and to augment fast data processing. Other potential applications involve the quantum technologies. It may be possible to use a neural net as an image-to-image controller of an optical tweezers being used for diagnostics of isolated nano structures. The image-to-image transformation properties also offer the potential for simulating quantum computing. Computer resources are detailed for implementing the black box calibration features of the neural nets.

  3. Snagging the top quark with a neural net

    Energy Technology Data Exchange (ETDEWEB)

    Baer, H. (Physics Department, Florida State University, Tallahasse, Florida 32306 (United States)); Karatas, D.D. (Center for Particle Physics, The University of Texas, Austin, Texas 78712 (United States)); Giudice, G.F. (Theory Group, Department of Physics, The University of Texas, Austin, Texas 78712 (United States))

    1992-12-01

    The search for the top quark at {ital p{bar p}} colliders in the one-lepton-plus-jets channel is plagued by an irremovable background from {ital W}-boson-plus-multijet production. In this paper, we show how the top quark signal can be distinguished from background in the distribution of neural network output. By making a cut on the network output, we maximize the ratio of signal to background in a final event sample, and compare our results with those obtained by making kinematical cuts on the data sample. We also demonstrate the robustness of the neural network method by training the neural network on signal events of one top mass and testing upon another.

  4. The neural representation of abstract words: the role of emotion.

    Science.gov (United States)

    Vigliocco, Gabriella; Kousta, Stavroula-Thaleia; Della Rosa, Pasquale Anthony; Vinson, David P; Tettamanti, Marco; Devlin, Joseph T; Cappa, Stefano F

    2014-07-01

    It is generally assumed that abstract concepts are linguistically coded, in line with imaging evidence of greater engagement of the left perisylvian language network for abstract than concrete words (Binder JR, Desai RH, Graves WW, Conant LL. 2009. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex. 19:2767-2796; Wang J, Conder JA, Blitzer DN, Shinkareva SV. 2010. Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Hum Brain Map. 31:1459-1468). Recent behavioral work, which used tighter matching of items than previous studies, however, suggests that abstract concepts also entail affective processing to a greater extent than concrete concepts (Kousta S-T, Vigliocco G, Vinson DP, Andrews M, Del Campo E. The representation of abstract words: Why emotion matters. J Exp Psychol Gen. 140:14-34). Here we report a functional magnetic resonance imaging experiment that shows greater engagement of the rostral anterior cingulate cortex, an area associated with emotion processing (e.g., Etkin A, Egner T, Peraza DM, Kandel ER, Hirsch J. 2006. Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron. 52:871), in abstract processing. For abstract words, activation in this area was modulated by the hedonic valence (degree of positive or negative affective association) of our items. A correlation analysis of more than 1,400 English words further showed that abstract words, in general, receive higher ratings for affective associations (both valence and arousal) than concrete words, supporting the view that engagement of emotional processing is generally required for processing abstract words. We argue that these results support embodiment views of semantic representation, according to which, whereas concrete concepts are grounded in our sensory-motor experience, affective experience is crucial in the

  5. Typical neural representations of action verbs develop without vision.

    Science.gov (United States)

    Bedny, M; Caramazza, A; Pascual-Leone, A; Saxe, R

    2012-02-01

    Many empiricist theories hold that concepts are composed of sensory-motor primitives. For example, the meaning of the word "run" is in part a visual image of running. If action concepts are partly visual, then the concepts of congenitally blind individuals should be altered in that they lack these visual features. We compared semantic judgments and neural activity during action verb comprehension in congenitally blind and sighted individuals. Participants made similarity judgments about pairs of nouns and verbs that varied in the visual motion they conveyed. Blind adults showed the same pattern of similarity judgments as sighted adults. We identified the left middle temporal gyrus (lMTG) brain region that putatively stores visual-motion features relevant to action verbs. The functional profile and location of this region was identical in sighted and congenitally blind individuals. Furthermore, the lMTG was more active for all verbs than nouns, irrespective of visual-motion features. We conclude that the lMTG contains abstract representations of verb meanings rather than visual-motion images. Our data suggest that conceptual brain regions are not altered by the sensory modality of learning.

  6. ER fluid applications to vibration control devices and an adaptive neural-net controller

    Science.gov (United States)

    Morishita, Shin; Ura, Tamaki

    1993-07-01

    Four applications of electrorheological (ER) fluid to vibration control actuators and an adaptive neural-net control system suitable for the controller of ER actuators are described: a shock absorber system for automobiles, a squeeze film damper bearing for rotational machines, a dynamic damper for multidegree-of-freedom structures, and a vibration isolator. An adaptive neural-net control system composed of a forward model network for structural identification and a controller network is introduced for the control system of these ER actuators. As an example study of intelligent vibration control systems, an experiment was performed in which the ER dynamic damper was attached to a beam structure and controlled by the present neural-net controller so that the vibration in several modes of the beam was reduced with a single dynamic damper.

  7. Neural-net based real-time economic dispatch for thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.; Milosevic, B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-12-01

    This paper proposes the application of artificial neural networks to real-time optimal generation dispatch of thermal units. The approach can take into account the operational requirements and network losses. The proposed economic dispatch uses an artificial neural network (ANN) for generation of penalty factors, depending on the input generator powers and identified system load change. Then, a few additional iterations are performed within an iterative computation procedure for the solution of coordination equations, by using reference-bus penalty-factors derived from the Newton-Raphson load flow. A coordination technique for environmental and economic dispatch of pure thermal systems, based on the neural-net theory for simplified solution algorithms and improved man-machine interface is introduced. Numerical results on two test examples show that the proposed algorithm can efficiently and accurately develop optimal and feasible generator output trajectories, by applying neural-net forecasts of system load patterns.

  8. Application of artificial neural nets to Shashlik calorimetry

    International Nuclear Information System (INIS)

    Bonesini, M.; Paganoni, M.; Terranova, F.

    1997-01-01

    Artificial neural networks (ANN) are powerful tools widely used in high-energy physics to solve track finding and particle identification problems. An entirely new class of application is related to the problem of recovering the information lost during data taking or signal transmission. Good performances can be reached by ANN when the events are described by quite regular patterns. Such a method was used for the DELPHI luminosity monitor (STIC) to recover calorimeter dead channels. A comparison with more traditional techniques is also given. (orig.)

  9. Calibration of a portable cost-effective chemical residue detection system with adaptive neural net control

    Science.gov (United States)

    Tripp, Alan C.; Walker, James C.

    2003-07-01

    The Sensory Research Institute at the Florida State University has quantitatively characterized a chemical residue detection system with adaptive neural net data processing. Two separate configurations, "Stormy" and "Gaea", were trained by exposure to decreasing amounts of n-amyl acetate from chemical emitters randomly distributed among a collection of non-emitters. The concentration of chemical in the sampled air stream was controlled precisely. The detection threshold for "Stormy" was 1.14 ppt; that for "Gaea" was 1.9 ppt. Cycle time for sampling and chemical analysis of each sample port was on the order of seconds. Possible effects on the sensors of environmental factors such as ambient humidity, temperature, and air velocity were not considered. Besides processing individual air sample data, the neural nets can sense concentration gradients and track to chemical source. The adaptive neural nets are accessed by a voice recognition system and are capable of point testing or free-ranging search. The service life of the detectors, the neural net processors, and auxiliary packaging is approximately 8 years under normal field use. Maintenance requires a good quality kibble and an occasional romp in the park.

  10. Intelligent control based on fuzzy logic and neural net theory

    Science.gov (United States)

    Lee, Chuen-Chien

    1991-01-01

    In the conception and design of intelligent systems, one promising direction involves the use of fuzzy logic and neural network theory to enhance such systems' capability to learn from experience and adapt to changes in an environment of uncertainty and imprecision. Here, an intelligent control scheme is explored by integrating these multidisciplinary techniques. A self-learning system is proposed as an intelligent controller for dynamical processes, employing a control policy which evolves and improves automatically. One key component of the intelligent system is a fuzzy logic-based system which emulates human decision making behavior. It is shown that the system can solve a fairly difficult control learning problem. Simulation results demonstrate that improved learning performance can be achieved in relation to previously described systems employing bang-bang control. The proposed system is relatively insensitive to variations in the parameters of the system environment.

  11. Development of a neural net paradigm that predicts simulator sickness

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.

    1993-03-01

    A disease exists that affects pilots and aircrew members who use Navy Operational Flight Training Systems. This malady, commonly referred to as simulator sickness and whose symptomatology closely aligns with that of motion sickness, can compromise the use of these systems because of a reduced utilization factor, negative transfer of training, and reduction in combat readiness. A report is submitted that develops an artificial neural network (ANN) and behavioral model that predicts the onset and level of simulator sickness in the pilots and aircrews who sue these systems. It is proposed that the paradigm could be implemented in real time as a biofeedback monitor to reduce the risk to users of these systems. The model captures the neurophysiological impact of use (human-machine interaction) by developing a structure that maps the associative and nonassociative behavioral patterns (learned expectations) and vestibular (otolith and semicircular canals of the inner ear) and tactile interaction, derived from system acceleration profiles, onto an abstract space that predicts simulator sickness for a given training flight.

  12. NIRFaceNet: A Convolutional Neural Network for Near-Infrared Face Identification

    Directory of Open Access Journals (Sweden)

    Min Peng

    2016-10-01

    Full Text Available Near-infrared (NIR face recognition has attracted increasing attention because of its advantage of illumination invariance. However, traditional face recognition methods based on NIR are designed for and tested in cooperative-user applications. In this paper, we present a convolutional neural network (CNN for NIR face recognition (specifically face identification in non-cooperative-user applications. The proposed NIRFaceNet is modified from GoogLeNet, but has a more compact structure designed specifically for the Chinese Academy of Sciences Institute of Automation (CASIA NIR database and can achieve higher identification rates with less training time and less processing time. The experimental results demonstrate that NIRFaceNet has an overall advantage compared to other methods in the NIR face recognition domain when image blur and noise are present. The performance suggests that the proposed NIRFaceNet method may be more suitable for non-cooperative-user applications.

  13. Discriminating neural representations of physical and social pains: how multivariate statistics challenge the "shared representation" theory of pain.

    Science.gov (United States)

    Rogachov, A; Cheng, J C; DeSouza, D D

    2015-11-01

    Overlapping functional magnetic resonance imaging (fMRI) activity elicited by physical pain and social rejection has posited a common neural representation between the two experiences. However, Woo and colleagues (Nat Commun 5: 5380, 2014) recently used multivariate statistics to challenge the "shared representation" theory of pain. This study has implications in the way results from fMRI studies are interpreted and has the potential of broadening our understanding of different pain states and future development of personalized medicine. Copyright © 2015 the American Physiological Society.

  14. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images.

    Science.gov (United States)

    Eo, Taejoon; Jun, Yohan; Kim, Taeseong; Jang, Jinseong; Lee, Ho-Joon; Hwang, Dosik

    2018-04-06

    To demonstrate accurate MR image reconstruction from undersampled k-space data using cross-domain convolutional neural networks (CNNs) METHODS: Cross-domain CNNs consist of 3 components: (1) a deep CNN operating on the k-space (KCNN), (2) a deep CNN operating on an image domain (ICNN), and (3) an interleaved data consistency operations. These components are alternately applied, and each CNN is trained to minimize the loss between the reconstructed and corresponding fully sampled k-spaces. The final reconstructed image is obtained by forward-propagating the undersampled k-space data through the entire network. Performances of K-net (KCNN with inverse Fourier transform), I-net (ICNN with interleaved data consistency), and various combinations of the 2 different networks were tested. The test results indicated that K-net and I-net have different advantages/disadvantages in terms of tissue-structure restoration. Consequently, the combination of K-net and I-net is superior to single-domain CNNs. Three MR data sets, the T 2 fluid-attenuated inversion recovery (T 2 FLAIR) set from the Alzheimer's Disease Neuroimaging Initiative and 2 data sets acquired at our local institute (T 2 FLAIR and T 1 weighted), were used to evaluate the performance of 7 conventional reconstruction algorithms and the proposed cross-domain CNNs, which hereafter is referred to as KIKI-net. KIKI-net outperforms conventional algorithms with mean improvements of 2.29 dB in peak SNR and 0.031 in structure similarity. KIKI-net exhibits superior performance over state-of-the-art conventional algorithms in terms of restoring tissue structures and removing aliasing artifacts. The results demonstrate that KIKI-net is applicable up to a reduction factor of 3 to 4 based on variable-density Cartesian undersampling. © 2018 International Society for Magnetic Resonance in Medicine.

  15. tf_unet: Generic convolutional neural network U-Net implementation in Tensorflow

    Science.gov (United States)

    Akeret, Joel; Chang, Chihway; Lucchi, Aurelien; Refregier, Alexandre

    2016-11-01

    tf_unet mitigates radio frequency interference (RFI) signals in radio data using a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. The code is not tied to a specific segmentation and can be used, for example, to detect radio frequency interference (RFI) in radio astronomy or galaxies and stars in widefield imaging data. This U-Net implementation can outperform classical RFI mitigation algorithms.

  16. Representation of neutron noise data using neural networks

    International Nuclear Information System (INIS)

    Korsah, K.; Damiano, B.; Wood, R.T.

    1992-01-01

    This paper describes a neural network-based method of representing neutron noise spectra using a model developed at the Oak Ridge National Laboratory (ORNL). The backpropagation neural network learned to represent neutron noise data in terms of four descriptors, and the network response matched calculated values to within 3.5 percent. These preliminary results are encouraging, and further research is directed towards the application of neural networks in a diagnostics system for the identification of the causes of changes in structural spectral resonances. This work is part of our current investigation of advanced technologies such as expert systems and neural networks for neutron noise data reduction, analysis, and interpretation. The objective is to improve the state-of-the-art of noise analysis as a diagnostic tool for nuclear power plants and other mechanical systems

  17. [A method of recognizing biology surface spectrum using cascade-connection artificial neural nets].

    Science.gov (United States)

    Shi, Wei-Jie; Yao, Yong; Zhang, Tie-Qiang; Meng, Xian-Jiang

    2008-05-01

    A method of recognizing the visible spectrum of micro-areas on the biological surface with cascade-connection artificial neural nets is presented in the present paper. The visible spectra of spots on apples' pericarp, ranging from 500 to 730 nm, were obtained with a fiber-probe spectrometer, and a new spectrum recognition system consisting of three-level cascade-connection neural nets was set up. The experiments show that the spectra of rotten, scar and bumped spot on an apple's pericarp can be recognized by the spectrum recognition system, and the recognition accuracy is higher than 85% even when noise level is 15%. The new recognition system overcomes the disadvantages of poor accuracy and poor anti-noise with the traditional system based on single cascade neural nets. Finally, a new method of expression of recognition results was proved. The method is based on the conception of degree of membership in fuzzing mathematics, and through it the recognition results can be expressed exactly and objectively.

  18. Load distribution of articular cartilage from MR-images by neural nets

    International Nuclear Information System (INIS)

    Seidel, P.; Hanke, G.; Gruender, W.

    2005-01-01

    Artificial neural nets were used to determine the Young's modulus and spatial load distribution in articular cartilage by means of T2-weighted MR imaging. MR images were obtained in vitro (ex vivo?) from the joints of sheep of different ages (3 months, 9 months, 15 months, 1.5 years, 5 years, 5.5 years) and pigs (4 and 6 months) with a Bruker AMX 300 (7 T) spectrometer equipped with a micro-imaging unit. The knee of a 29-year-old male volunteer was studied in vivo under mechanical load using a clinical Siemens Vision MRT (1.5 T). The load of the cartilage is understood as a non-linear image transformation of loaded versus unloaded images. The artificial neural net was used to recognize given reference pixels of the unloaded cartilage within the image of the loaded cartilage. The Young's modulus was calculated from the local strain and the external pressure using the Hooke's law. With this method, the average Young's modulus was obtained in relationship to the biological age of the cartilage. The investigated age interval showed a progressive increase of 0.5 ± 0.3 MPa per year. These results are consistent with published results. As shown in this pilot study, the method of neural nets allows the visualization of the spatial load distribution within the articular cartilage. (orig.)

  19. Distributed neural representation of saliency controlled value and category during anticipation of rewards and punishments.

    Science.gov (United States)

    Zhang, Zhihao; Fanning, Jennifer; Ehrlich, Daniel B; Chen, Wenting; Lee, Daeyeol; Levy, Ifat

    2017-12-04

    An extensive literature from cognitive neuroscience examines the neural representation of value, but interpretations of these existing results are often complicated by the potential confound of saliency. At the same time, recent attempts to dissociate neural signals of value and saliency have not addressed their relationship with category information. Using a multi-category valuation task that incorporates rewards and punishments of different nature, we identify distributed neural representation of value, saliency, and category during outcome anticipation. Moreover, we reveal category encoding in multi-voxel blood-oxygen-level-dependent activity patterns of the vmPFC and the striatum that coexist with value signals. These results help clarify ambiguities regarding value and saliency encoding in the human brain and their category independence, lending strong support to the neural "common currency" hypothesis. Our results also point to potential novel mechanisms of integrating multiple aspects of decision-related information.

  20. Invariant visual object and face recognition: neural and computational bases, and a model, VisNet

    Directory of Open Access Journals (Sweden)

    Edmund T eRolls

    2012-06-01

    Full Text Available Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy modelin which invariant representations can be built by self-organizing learning based on the temporal and spatialstatistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associativesynaptic learning rule with a short term memory trace, and/or it can use spatialcontinuity in Continuous Spatial Transformation learning which does not require a temporal trace. The model of visual processing in theventral cortical stream can build representations of objects that are invariant withrespect to translation, view, size, and also lighting. The modelhas been extended to provide an account of invariant representations in the dorsal visualsystem of the global motion produced by objects such as looming, rotation, and objectbased movement. The model has been extended to incorporate top-down feedback connectionsto model the control of attention by biased competition in for example spatial and objectsearch tasks. The model has also been extended to account for how the visual system canselect single objects in complex visual scenes, and how multiple objects can berepresented in a scene. The model has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  1. Physics instruction induces changes in neural knowledge representation during successive stages of learning.

    Science.gov (United States)

    Mason, Robert A; Just, Marcel Adam

    2015-05-01

    Incremental instruction on the workings of a set of mechanical systems induced a progression of changes in the neural representations of the systems. The neural representations of four mechanical systems were assessed before, during, and after three phases of incremental instruction (which first provided information about the system components, then provided partial causal information, and finally provided full functional information). In 14 participants, the neural representations of four systems (a bathroom scale, a fire extinguisher, an automobile braking system, and a trumpet) were assessed using three recently developed techniques: (1) machine learning and classification of multi-voxel patterns; (2) localization of consistently responding voxels; and (3) representational similarity analysis (RSA). The neural representations of the systems progressed through four stages, or states, involving spatially and temporally distinct multi-voxel patterns: (1) initially, the representation was primarily visual (occipital cortex); (2) it subsequently included a large parietal component; (3) it eventually became cortically diverse (frontal, parietal, temporal, and medial frontal regions); and (4) at the end, it demonstrated a strong frontal cortex weighting (frontal and motor regions). At each stage of knowledge, it was possible for a classifier to identify which one of four mechanical systems a participant was thinking about, based on their brain activation patterns. The progression of representational states was suggestive of progressive stages of learning: (1) encoding information from the display; (2) mental animation, possibly involving imagining the components moving; (3) generating causal hypotheses associated with mental animation; and finally (4) determining how a person (probably oneself) would interact with the system. This interpretation yields an initial, cortically-grounded, theory of learning of physical systems that potentially can be related to cognitive

  2. Representation of linguistic form and function in recurrent neural networks

    NARCIS (Netherlands)

    Kadar, Akos; Chrupala, Grzegorz; Alishahi, Afra

    2017-01-01

    We present novel methods for analyzing the activation patterns of recurrent neural networks from a linguistic point of view and explore the types of linguistic structure they learn. As a case study, we use a standard standalone language model, and a multi-task gated recurrent network architecture

  3. Interpreting the dimensions of neural feature representations revealed by dimensionality reduction.

    Science.gov (United States)

    Goddard, Erin; Klein, Colin; Solomon, Samuel G; Hogendoorn, Hinze; Carlson, Thomas A

    2017-06-27

    Recent progress in understanding the structure of neural representations in the cerebral cortex has centred around the application of multivariate classification analyses to measurements of brain activity. These analyses have proved a sensitive test of whether given brain regions provide information about specific perceptual or cognitive processes. An exciting extension of this approach is to infer the structure of this information, thereby drawing conclusions about the underlying neural representational space. These approaches rely on exploratory data-driven dimensionality reduction to extract the natural dimensions of neural spaces, including natural visual object and scene representations, semantic and conceptual knowledge, and working memory. However, the efficacy of these exploratory methods is unknown, because they have only been applied to representations in brain areas for which we have little or no secondary knowledge. One of the best-understood areas of the cerebral cortex is area MT of primate visual cortex, which is known to be important in motion analysis. To assess the effectiveness of dimensionality reduction for recovering neural representational space we applied several dimensionality reduction methods to multielectrode measurements of spiking activity obtained from area MT of marmoset monkeys, made while systematically varying the motion direction and speed of moving stimuli. Despite robust tuning at individual electrodes, and high classifier performance, dimensionality reduction rarely revealed dimensions for direction and speed. We use this example to illustrate important limitations of these analyses, and suggest a framework for how to best apply such methods to data where the structure of the neural representation is unknown. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A View of the Neural Representation of Second Language Syntax through Artificial Language Learning under Implicit Contexts of Exposure

    Science.gov (United States)

    Morgan-Short, Kara; Deng, ZhiZhou; Brill-Schuetz, Katherine A.; Faretta- Stutenberg, Mandy; Wong, Patrick C. M.; Wong, Francis C. K.

    2015-01-01

    The current study aims to make an initial neuroimaging contribution to central implicit-explicit issues in second language (L2) acquisition by considering how implicit and explicit contexts mediate the neural representation of L2. Focusing on implicit contexts, the study employs a longitudinal design to examine the neural representation of L2…

  5. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lundegaard, Claus; Worning, Peder

    2003-01-01

    calculations we show that peptides that bind to the HLA A*0204 complex display signal of higher order sequence correlations. Neural networks are ideally suited to integrate such higher order correlations when predicting the binding affinity. It is this feature combined with the use of several neural networks......In this paper we describe an improved neural network method to predict T-cell class I epitopes. A novel input representation has been developed consisting of a combination of sparse encoding, Blosum encoding, and input derived from hidden Markov models. We demonstrate that the combination...... of several neural networks derived using different sequence-encoding schemes has a performance superior to neural networks derived using a single sequence-encoding scheme. The new method is shown to have a performance that is substantially higher than that of other methods. By use of mutual information...

  6. Neural network representation and learning of mappings and their derivatives

    Science.gov (United States)

    White, Halbert; Hornik, Kurt; Stinchcombe, Maxwell; Gallant, A. Ronald

    1991-01-01

    Discussed here are recent theorems proving that artificial neural networks are capable of approximating an arbitrary mapping and its derivatives as accurately as desired. This fact forms the basis for further results establishing the learnability of the desired approximations, using results from non-parametric statistics. These results have potential applications in robotics, chaotic dynamics, control, and sensitivity analysis. An example involving learning the transfer function and its derivatives for a chaotic map is discussed.

  7. Selective attention on representations in working memory: cognitive and neural mechanisms

    Directory of Open Access Journals (Sweden)

    Yixuan Ku

    2018-04-01

    Full Text Available Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.

  8. Neural Semantic Parsing by Character-based Translation: Experiments with Abstract Meaning Representations

    NARCIS (Netherlands)

    van Noord, Rik; Bos, Johannes

    2017-01-01

    We evaluate the character-level translation method for neural semantic parsing on a large corpus of sentences annotated with Abstract Meaning Representations (AMRs). Using a sequence-to-sequence model, and some trivial preprocessing and postprocessing of AMRs, we obtain a baseline accuracy of 53.1

  9. LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices.

    Science.gov (United States)

    He, Ziyang; Zhang, Xiaoqing; Cao, Yangjie; Liu, Zhi; Zhang, Bo; Wang, Xiaoyan

    2018-04-17

    By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG) arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices.

  10. Discovering Neural Nets with Low Kolmogorov Complexity and High Generalization Capability.

    Science.gov (United States)

    Schmidhuber, Jurgen

    1997-07-01

    Many neural net learning algorithms aim at finding "simple" nets to explain training data. The expectation is that the "simpler" the networks, the better the generalization on test data (--> Occam's razor). Previous implementations, however, use measures for "simplicity" that lack the power, universality and elegance of those based on Kolmogorov complexity and Solomonoff's algorithmic probability. Likewise, most previous approaches (especially those of the "Bayesian" kind) suffer from the problem of choosing appropriate priors. This paper addresses both issues. It first reviews some basic concepts of algorithmic complexity theory relevant to machine learing, and how the Solomonoff-Levin distribution (or universal prior) deals with the prior problem. The universal prior leads to a probabilistic method for finding "algorithmically simple" problem solutions with high generalization capability. The method is based on Levin complexity (a time-bounded generalization of Kolmogorov complexity) and inspired by Levin's optimal universal search algorithm. For a given problem, solution candidates are computed by efficient "self-sizing" programs that influence their own runtime and storage size. The probabilistic search algorithm finds the "good" programs (the ones quickly computing algorithmically probable solutions fitting the training data). Simulations focus on the task of discovering "algorithmically simple" neural networks with low Kolmogorov complexity and high generalization capability. It is demonstrated that the method, at least with certain toy problems where it is computationally feasible, can lead to generalization results unmatchable by previous neural network algorithms. Much remains to be done, however, to make large scale applications and "incremental learning" feasible. Copyright 1997 Elsevier Science Ltd.

  11. Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth.

    Science.gov (United States)

    Just, Marcel Adam; Pan, Lisa; Cherkassky, Vladimir L; McMakin, Dana; Cha, Christine; Nock, Matthew K; Brent, David

    2017-01-01

    The clinical assessment of suicidal risk would be significantly complemented by a biologically-based measure that assesses alterations in the neural representations of concepts related to death and life in people who engage in suicidal ideation. This study used machine-learning algorithms (Gaussian Naïve Bayes) to identify such individuals (17 suicidal ideators vs 17 controls) with high (91%) accuracy, based on their altered fMRI neural signatures of death and life-related concepts. The most discriminating concepts were death, cruelty, trouble, carefree, good, and praise . A similar classification accurately (94%) discriminated 9 suicidal ideators who had made a suicide attempt from 8 who had not. Moreover, a major facet of the concept alterations was the evoked emotion, whose neural signature served as an alternative basis for accurate (85%) group classification. The study establishes a biological, neurocognitive basis for altered concept representations in participants with suicidal ideation, which enables highly accurate group membership classification.

  12. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system

    Science.gov (United States)

    Born, Jannis; Stringer, Simon M.

    2017-01-01

    A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning

  13. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system.

    Directory of Open Access Journals (Sweden)

    Jannis Born

    Full Text Available A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior

  14. Predicting behavior change from persuasive messages using neural representational similarity and social network analyses.

    Science.gov (United States)

    Pegors, Teresa K; Tompson, Steven; O'Donnell, Matthew Brook; Falk, Emily B

    2017-08-15

    Neural activity in medial prefrontal cortex (MPFC), identified as engaging in self-related processing, predicts later health behavior change. However, it is unknown to what extent individual differences in neural representation of content and lived experience influence this brain-behavior relationship. We examined whether the strength of content-specific representations during persuasive messaging relates to later behavior change, and whether these relationships change as a function of individuals' social network composition. In our study, smokers viewed anti-smoking messages while undergoing fMRI and we measured changes in their smoking behavior one month later. Using representational similarity analyses, we found that the degree to which message content (i.e. health, social, or valence information) was represented in a self-related processing MPFC region was associated with later smoking behavior, with increased representations of negatively valenced (risk) information corresponding to greater message-consistent behavior change. Furthermore, the relationship between representations and behavior change depended on social network composition: smokers who had proportionally fewer smokers in their network showed increases in smoking behavior when social or health content was strongly represented in MPFC, whereas message-consistent behavior (i.e., less smoking) was more likely for those with proportionally more smokers in their social network who represented social or health consequences more strongly. These results highlight the dynamic relationship between representations in MPFC and key outcomes such as health behavior change; a complete understanding of the role of MPFC in motivation and action should take into account individual differences in neural representation of stimulus attributes and social context variables such as social network composition. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Bayesian Inference using Neural Net Likelihood Models for Protein Secondary Structure Prediction

    Directory of Open Access Journals (Sweden)

    Seong-Gon Kim

    2011-06-01

    Full Text Available Several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods have been used to approach the complex non-linear task of predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure in the past. This project introduces a new machine learning method by using an offline trained Multilayered Perceptrons (MLP as the likelihood models within a Bayesian Inference framework to predict secondary structures proteins. Varying window sizes are used to extract neighboring amino acid information and passed back and forth between the Neural Net models and the Bayesian Inference process until there is a convergence of the posterior secondary structure probability.

  16. Three-dimensional neural net for learning visuomotor coordination of a robot arm.

    Science.gov (United States)

    Martinetz, T M; Ritter, H J; Schulten, K J

    1990-01-01

    An extension of T. Kohonen's (1982) self-organizing mapping algorithm together with an error-correction scheme based on the Widrow-Hoff learning rule is applied to develop a learning algorithm for the visuomotor coordination of a simulated robot arm. Learning occurs by a sequence of trial movements without the need for an external teacher. Using input signals from a pair of cameras, the closed robot arm system is able to reduce its positioning error to about 0.3% of the linear dimensions of its work space. This is achieved by choosing the connectivity of a three-dimensional lattice consisting of the units of the neural net.

  17. Neural overlap of L1 and L2 semantic representations in speech: A decoding approach.

    Science.gov (United States)

    Van de Putte, Eowyn; De Baene, Wouter; Brass, Marcel; Duyck, Wouter

    2017-11-15

    Although research has now converged towards a consensus that both languages of a bilingual are represented in at least partly shared systems for language comprehension, it remains unclear whether both languages are represented in the same neural populations for production. We investigated the neural overlap between L1 and L2 semantic representations of translation equivalents using a production task in which the participants had to name pictures in L1 and L2. Using a decoding approach, we tested whether brain activity during the production of individual nouns in one language allowed predicting the production of the same concepts in the other language. Because both languages only share the underlying semantic representation (sensory and lexical overlap was maximally avoided), this would offer very strong evidence for neural overlap in semantic representations of bilinguals. Based on the brain activation for the individual concepts in one language in the bilateral occipito-temporal cortex and the inferior and the middle temporal gyrus, we could accurately predict the equivalent individual concepts in the other language. This indicates that these regions share semantic representations across L1 and L2 word production. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Social Categories Shape the Neural Representation of Emotion: Evidence from a Visual Face Adaptation Task.

    Directory of Open Access Journals (Sweden)

    Marte eOtten

    2012-02-01

    Full Text Available A number of recent behavioral studies have shown that emotional expressions are differently perceived depending on the race of a face, and that that perception of race cues is influenced by emotional expressions. However, neural processes related to the perception of invariant cues that indicate the identity of a face (such as race are often described to proceed independently of processes related to the perception of cues that can vary over time (such as emotion. Using a visual face adaptation paradigm, we tested whether these behavioral interactions between emotion and race also reflect interdependent neural representation of emotion and race. We compared visual emotion aftereffects when the adapting face and ambiguous test face differed in race or not. Emotion aftereffects were much smaller in different race trials than same race trials, indicating that the neural representation of a facial expression is significantly different depending on whether the emotional face is black or white. It thus seems that invariable cues such as race interact with variable face cues such as emotion not just at a response level, but also at the level of perception and neural representation.

  19. Social categories shape the neural representation of emotion: evidence from a visual face adaptation task.

    Science.gov (United States)

    Otten, Marte; Banaji, Mahzarin R

    2012-01-01

    A number of recent behavioral studies have shown that emotional expressions are differently perceived depending on the race of a face, and that perception of race cues is influenced by emotional expressions. However, neural processes related to the perception of invariant cues that indicate the identity of a face (such as race) are often described to proceed independently of processes related to the perception of cues that can vary over time (such as emotion). Using a visual face adaptation paradigm, we tested whether these behavioral interactions between emotion and race also reflect interdependent neural representation of emotion and race. We compared visual emotion aftereffects when the adapting face and ambiguous test face differed in race or not. Emotion aftereffects were much smaller in different race (DR) trials than same race (SR) trials, indicating that the neural representation of a facial expression is significantly different depending on whether the emotional face is black or white. It thus seems that invariable cues such as race interact with variable face cues such as emotion not just at a response level, but also at the level of perception and neural representation.

  20. Reduced Fidelity of Neural Representation Underlies Episodic Memory Decline in Normal Aging.

    Science.gov (United States)

    Zheng, Li; Gao, Zhiyao; Xiao, Xiaoqian; Ye, Zhifang; Chen, Chuansheng; Xue, Gui

    2017-06-07

    Emerging studies have emphasized the importance of the fidelity of cortical representation in forming enduring episodic memory. No study, however, has examined whether there are age-related reductions in representation fidelity that can explain memory declines in normal aging. Using functional MRI and multivariate pattern analysis, we found that older adults showed reduced representation fidelity in the visual cortex, which accounted for their decreased memory performance even after controlling for the contribution of reduced activation level. This reduced fidelity was specifically due to older adults' poorer item-specific representation, not due to their lower activation level and variance, greater variability in neuro-vascular coupling, or decreased selectivity of categorical representation (i.e., dedifferentiation). Older adults also showed an enhanced subsequent memory effect in the prefrontal cortex based on activation level, and their prefrontal activation was associated with greater fidelity of representation in the visual cortex and better memory performance. The fidelity of cortical representation thus may serve as a promising neural index for better mechanistic understanding of the memory declines and its compensation in normal aging. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Assessment of the expected construction company’s net profit using neural network and multiple regression models

    Directory of Open Access Journals (Sweden)

    H.H. Mohamad

    2013-09-01

    This research aims to develop a mathematical model for assessing the expected net profit of any construction company. To achieve the research objective, four steps were performed. First, the main factors affecting firms’ net profit were identified. Second, pertinent data regarding the net profit factors were collected. Third, two different net profit models were developed using the Multiple Regression (MR and the Neural Network (NN techniques. The validity of the proposed models was also investigated. Finally, the results of both MR and NN models were compared to investigate the predictive capabilities of the two models.

  2. Neural speech recognition: continuous phoneme decoding using spatiotemporal representations of human cortical activity

    Science.gov (United States)

    Moses, David A.; Mesgarani, Nima; Leonard, Matthew K.; Chang, Edward F.

    2016-10-01

    Objective. The superior temporal gyrus (STG) and neighboring brain regions play a key role in human language processing. Previous studies have attempted to reconstruct speech information from brain activity in the STG, but few of them incorporate the probabilistic framework and engineering methodology used in modern speech recognition systems. In this work, we describe the initial efforts toward the design of a neural speech recognition (NSR) system that performs continuous phoneme recognition on English stimuli with arbitrary vocabulary sizes using the high gamma band power of local field potentials in the STG and neighboring cortical areas obtained via electrocorticography. Approach. The system implements a Viterbi decoder that incorporates phoneme likelihood estimates from a linear discriminant analysis model and transition probabilities from an n-gram phonemic language model. Grid searches were used in an attempt to determine optimal parameterizations of the feature vectors and Viterbi decoder. Main results. The performance of the system was significantly improved by using spatiotemporal representations of the neural activity (as opposed to purely spatial representations) and by including language modeling and Viterbi decoding in the NSR system. Significance. These results emphasize the importance of modeling the temporal dynamics of neural responses when analyzing their variations with respect to varying stimuli and demonstrate that speech recognition techniques can be successfully leveraged when decoding speech from neural signals. Guided by the results detailed in this work, further development of the NSR system could have applications in the fields of automatic speech recognition and neural prosthetics.

  3. A new approach to the spatial analysis of temporal change using todes and neural nets.

    Directory of Open Access Journals (Sweden)

    Peter J Halls

    2000-10-01

    Full Text Available The term 'temporal' in spatial analysis has a number of potential meanings, each of which requires an alternative approach for the provision of analytic support. Much present work in spatio-temporal information is concerned with transaction versioning. Object based representations often demand a high level of initial understanding of object relationships. Many GIS users are seeking to understand the object relationships over time, past, present and future ; their research focus is how real-world features interact in time and space. Despite this requirement, little present work will support this requirement to understand the drivers of change, rather than simply to report what changed. A number of workers have / are attempting to formalise a theory of spatio-temporal reasoning (eg Hermosilla, 1994, Qian, et al, 1997, Claramunt et al, 1997, in the most part working from a theoretical abstraction. Worboys, 1998, uses a problem oriented approach, as does Halls and Miller (1995, 1996. Representation of change over time by means of spline curves offers possibilities for this type of work, Neural Networks are explored as an implementation solution. We show that the AURA neural network architecture offers particular hope and that the proposals of Yeh & de Cambray and Halls & Miller need to be recast in terms of the AURA architecture.

  4. Neural Representation of Subjective Sexual Arousal in Men and Women.

    Science.gov (United States)

    Parada, Mayte; Gérard, Marina; Larcher, Kevin; Dagher, Alain; Binik, Yitzchak M

    2016-10-01

    Studies investigating brain indices of sexual arousal have begun to elucidate the brain's role in processing subjective arousal; however, most research has focused on men, used discrete ratings of subjective arousal, and used stimuli too short to induce significant arousal in women. To examine brain regions modulated by changes in subjective sexual arousal (SSA) rating intensity in men and women. Two groups (20 men, 20 women) viewed movie clips (erotic or humorous) while continuously evaluating changes in their SSA using a Likert-like scale (0 = not aroused, 10 = most aroused) and answering discrete questions about liking the movies and wanting sexual stimulation. Brain activity was measured using functional magnetic resonance imaging. Blood oxygen level-dependent responses and continuous and discrete measurements of sexual arousal. Erotic movies induced significant SSA in men and women. No sex difference in mean SSA was found in response to the erotic movies on continuous or discrete measurements. Several brain regions were correlated with changes in SSA. Parametric modulation with rating intensity showed a specific group of regions within the parietal lobe that showed significant differences in activity among low, medium, and high SSA. Multiple regions were concordant with changes in SSA; however, a subset of regions in men and women was modulated by SSA intensity, a subset previously linked to attentional processes, monitoring of internal body representation, and processing of sensory information from the genitals. This study highlights that similar brain regions are activated during subjective assessment of sexual arousal in men and women. The data further highlight the fact that SSA is a complex phenomenon made up of multiple interoceptive and attentional processes. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  5. Neural representation of the sensorimotor speech-action-repository

    Directory of Open Access Journals (Sweden)

    Cornelia eEckers

    2013-04-01

    Full Text Available A speech-action-repository (SAR or mental syllabary has been proposed as a central module for sensorimotor processing of syllables. In this approach, syllables occurring frequently within language are assumed to be stored as holistic sensorimotor patterns, while non-frequent syllables need to be assembled from sub-syllabic units. Thus, frequent syllables are processed efficiently and quickly during production or perception by a direct activation of their sensorimotor patterns. Whereas several behavioral psycholinguistic studies provided evidence in support of the existence of a syllabary, fMRI studies have failed to demonstrate its neural reality. In the present fMRI study a reaction paradigm using homogeneous vs. heterogeneous syllable blocks are used during overt vs. covert speech production and auditory vs. visual presentation modes. Two complementary data analyses were performed: (1 in a logical conjunction, activation for syllable processing independent of input modality and response mode was assessed, in order to support the assumption of existence of a supramodal hub within a SAR. (2 In addition priming effects in the BOLD response in homogeneous vs. heterogeneous blocks were measured in order to identify brain regions, which indicate reduced activity during multiple production/perception repetitions of a specific syllable in order to determine state maps. Auditory-visual conjunction analysis revealed an activation network comprising bilateral precentral gyrus and left inferior frontal gyrus (area 44. These results are compatible with the notion of a supramodal hub within the SAR. The main effect of homogeneity priming revealed an activation pattern of areas within frontal, temporal, and parietal lobe. These findings are taken to represent sensorimotor state maps of the SAR. In conclusion, the present study provided preliminary evidence for a SAR.

  6. Deep neural networks rival the representation of primate IT cortex for core visual object recognition.

    Directory of Open Access Journals (Sweden)

    Charles F Cadieu

    2014-12-01

    Full Text Available The primate visual system achieves remarkable visual object recognition performance even in brief presentations, and under changes to object exemplar, geometric transformations, and background variation (a.k.a. core visual object recognition. This remarkable performance is mediated by the representation formed in inferior temporal (IT cortex. In parallel, recent advances in machine learning have led to ever higher performing models of object recognition using artificial deep neural networks (DNNs. It remains unclear, however, whether the representational performance of DNNs rivals that of the brain. To accurately produce such a comparison, a major difficulty has been a unifying metric that accounts for experimental limitations, such as the amount of noise, the number of neural recording sites, and the number of trials, and computational limitations, such as the complexity of the decoding classifier and the number of classifier training examples. In this work, we perform a direct comparison that corrects for these experimental limitations and computational considerations. As part of our methodology, we propose an extension of "kernel analysis" that measures the generalization accuracy as a function of representational complexity. Our evaluations show that, unlike previous bio-inspired models, the latest DNNs rival the representational performance of IT cortex on this visual object recognition task. Furthermore, we show that models that perform well on measures of representational performance also perform well on measures of representational similarity to IT, and on measures of predicting individual IT multi-unit responses. Whether these DNNs rely on computational mechanisms similar to the primate visual system is yet to be determined, but, unlike all previous bio-inspired models, that possibility cannot be ruled out merely on representational performance grounds.

  7. Identifying Autism from Neural Representations of Social Interactions: Neurocognitive Markers of Autism

    OpenAIRE

    Just, Marcel Adam; Cherkassky, Vladimir L.; Buchweitz, Augusto; Keller, Timothy A.; Mitchell, Tom M.

    2014-01-01

    Autism is a psychiatric/neurological condition in which alterations in social interaction (among other symptoms) are diagnosed by behavioral psychiatric methods. The main goal of this study was to determine how the neural representations and meanings of social concepts (such as to insult) are altered in autism. A second goal was to determine whether these alterations can serve as neurocognitive markers of autism. The approach is based on previous advances in fMRI analysis methods that permit ...

  8. k-Same-Net: k-Anonymity with Generative Deep Neural Networks for Face Deidentification

    Directory of Open Access Journals (Sweden)

    Blaž Meden

    2018-01-01

    Full Text Available Image and video data are today being shared between government entities and other relevant stakeholders on a regular basis and require careful handling of the personal information contained therein. A popular approach to ensure privacy protection in such data is the use of deidentification techniques, which aim at concealing the identity of individuals in the imagery while still preserving certain aspects of the data after deidentification. In this work, we propose a novel approach towards face deidentification, called k-Same-Net, which combines recent Generative Neural Networks (GNNs with the well-known k-Anonymitymechanism and provides formal guarantees regarding privacy protection on a closed set of identities. Our GNN is able to generate synthetic surrogate face images for deidentification by seamlessly combining features of identities used to train the GNN model. Furthermore, it allows us to control the image-generation process with a small set of appearance-related parameters that can be used to alter specific aspects (e.g., facial expressions, age, gender of the synthesized surrogate images. We demonstrate the feasibility of k-Same-Net in comprehensive experiments on the XM2VTS and CK+ datasets. We evaluate the efficacy of the proposed approach through reidentification experiments with recent recognition models and compare our results with competing deidentification techniques from the literature. We also present facial expression recognition experiments to demonstrate the utility-preservation capabilities of k-Same-Net. Our experimental results suggest that k-Same-Net is a viable option for facial deidentification that exhibits several desirable characteristics when compared to existing solutions in this area.

  9. Multiresolution stroke sketch adaptive representation and neural network processing system for gray-level image recognition

    Science.gov (United States)

    Meystel, Alexander M.; Rybak, Ilya A.; Bhasin, Sanjay

    1992-11-01

    This paper describes a method for multiresolutional representation of gray-level images as hierarchial sets of strokes characterizing forms of objects with different degrees of generalization depending on the context of the image. This method transforms the original image into a hierarchical graph which allows for efficient coding in order to store, retrieve, and recognize the image. The method which is described is based upon finding the resolution levels for each image which minimizes the computations required. This becomes possible because of the use of a special image representation technique called Multiresolutional Attentional Representation for Recognition, based upon a feature which the authors call a stroke. This feature turns out to be efficient in the process of finding the appropriate system of resolutions and construction of the relational graph. Multiresolutional Attentional Representation for Recognition (MARR) is formed by a multi-layer neural network with recurrent inhibitory connections between neurons, the receptive fields of which are selectively tuned to detect the orientation of local contrasts in parts of the image with appropriate degree of generalization. This method simulates the 'coarse-to-fine' algorithm which an artist usually uses, making at attentional sketch of real images. The method, algorithms, and neural network architecture in this system can be used in many machine-vision systems with AI properties; in particular, robotic vision. We expect that systems with MARR can become a component of intelligent control systems for autonomous robots. Their architectures are mostly multiresolutional and match well with the multiple resolutions of the MARR structure.

  10. Meaning in the avian auditory cortex: neural representation of communication calls.

    Science.gov (United States)

    Elie, Julie E; Theunissen, Frédéric E

    2015-03-01

    Understanding how the brain extracts the behavioral meaning carried by specific vocalization types that can be emitted by various vocalizers and in different conditions is a central question in auditory research. This semantic categorization is a fundamental process required for acoustic communication, and presupposes discriminative and invariance properties of the auditory system for conspecific vocalizations. Songbirds have been used extensively to study vocal learning, but the communicative function of all their vocalizations and their neural representation has yet to be examined. In this study, we first generated a library containing almost the entire zebra finch vocal repertoire, and organised communication calls along nine different categories according to their behavioral meaning. We then investigated the neural representations of these semantic categories in the primary and secondary auditory areas of six anesthetised zebra finches. To analyse how single units encode these call categories, we described neural responses in terms of their discrimination, selectivity and invariance properties. Quantitative measures for these neural properties were obtained with an optimal decoder using both spike counts and spike patterns. Information theoretic metrics show that almost half of the single units encode semantic information. Neurons achieve higher discrimination of these semantic categories by being more selective and more invariant. These results demonstrate that computations necessary for semantic categorization of meaningful vocalizations are already present in the auditory cortex, and emphasise the value of a neuro-ethological approach to understand vocal communication. 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Standard representation and unified stability analysis for dynamic artificial neural network models.

    Science.gov (United States)

    Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D

    2018-02-01

    An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.

  12. Image decomposition fusion method based on sparse representation and neural network.

    Science.gov (United States)

    Chang, Lihong; Feng, Xiangchu; Zhang, Rui; Huang, Hua; Wang, Weiwei; Xu, Chen

    2017-10-01

    For noisy images, in most existing sparse representation-based models, fusion and denoising proceed simultaneously using the coefficients of a universal dictionary. This paper proposes an image fusion method based on a cartoon + texture dictionary pair combined with a deep neural network combination (DNNC). In our model, denoising and fusion are carried out alternately. The proposed method is divided into three main steps: denoising + fusion + network denoising. More specifically, (1) denoise the source images using external/internal methods separately; (2) fuse these preliminary denoised results with external/internal cartoon and texture dictionary pair to obtain the external cartoon + texture sparse representation result (E-CTSR) and internal cartoon + texture sparse representation result (I-CTSR); and (3) combine E-CTSR and I-CTSR using DNNC (EI-CTSR) to obtain the final result. Experimental results demonstrate that EI-CTSR outperforms not only the stand-alone E-CTSR and I-CTSR methods but also state-of-the-art methods such as sparse representation (SR) and adaptive sparse representation (ASR) for isomorphic images, and E-CTSR outperforms SR and ASR for heterogeneous multi-mode images.

  13. Detecting Source Code Plagiarism on .NET Programming Languages using Low-level Representation and Adaptive Local Alignment

    Directory of Open Access Journals (Sweden)

    Oscar Karnalim

    2017-01-01

    Full Text Available Even though there are various source code plagiarism detection approaches, only a few works which are focused on low-level representation for deducting similarity. Most of them are only focused on lexical token sequence extracted from source code. In our point of view, low-level representation is more beneficial than lexical token since its form is more compact than the source code itself. It only considers semantic-preserving instructions and ignores many source code delimiter tokens. This paper proposes a source code plagiarism detection which rely on low-level representation. For a case study, we focus our work on .NET programming languages with Common Intermediate Language as its low-level representation. In addition, we also incorporate Adaptive Local Alignment for detecting similarity. According to Lim et al, this algorithm outperforms code similarity state-of-the-art algorithm (i.e. Greedy String Tiling in term of effectiveness. According to our evaluation which involves various plagiarism attacks, our approach is more effective and efficient when compared with standard lexical-token approach.

  14. Identifying autism from neural representations of social interactions: neurocognitive markers of autism.

    Directory of Open Access Journals (Sweden)

    Marcel Adam Just

    Full Text Available Autism is a psychiatric/neurological condition in which alterations in social interaction (among other symptoms are diagnosed by behavioral psychiatric methods. The main goal of this study was to determine how the neural representations and meanings of social concepts (such as to insult are altered in autism. A second goal was to determine whether these alterations can serve as neurocognitive markers of autism. The approach is based on previous advances in fMRI analysis methods that permit (a the identification of a concept, such as the thought of a physical object, from its fMRI pattern, and (b the ability to assess the semantic content of a concept from its fMRI pattern. These factor analysis and machine learning methods were applied to the fMRI activation patterns of 17 adults with high-functioning autism and matched controls, scanned while thinking about 16 social interactions. One prominent neural representation factor that emerged (manifested mainly in posterior midline regions was related to self-representation, but this factor was present only for the control participants, and was near-absent in the autism group. Moreover, machine learning algorithms classified individuals as autistic or control with 97% accuracy from their fMRI neurocognitive markers. The findings suggest that psychiatric alterations of thought can begin to be biologically understood by assessing the form and content of the altered thought's underlying brain activation patterns.

  15. Identifying autism from neural representations of social interactions: neurocognitive markers of autism.

    Science.gov (United States)

    Just, Marcel Adam; Cherkassky, Vladimir L; Buchweitz, Augusto; Keller, Timothy A; Mitchell, Tom M

    2014-01-01

    Autism is a psychiatric/neurological condition in which alterations in social interaction (among other symptoms) are diagnosed by behavioral psychiatric methods. The main goal of this study was to determine how the neural representations and meanings of social concepts (such as to insult) are altered in autism. A second goal was to determine whether these alterations can serve as neurocognitive markers of autism. The approach is based on previous advances in fMRI analysis methods that permit (a) the identification of a concept, such as the thought of a physical object, from its fMRI pattern, and (b) the ability to assess the semantic content of a concept from its fMRI pattern. These factor analysis and machine learning methods were applied to the fMRI activation patterns of 17 adults with high-functioning autism and matched controls, scanned while thinking about 16 social interactions. One prominent neural representation factor that emerged (manifested mainly in posterior midline regions) was related to self-representation, but this factor was present only for the control participants, and was near-absent in the autism group. Moreover, machine learning algorithms classified individuals as autistic or control with 97% accuracy from their fMRI neurocognitive markers. The findings suggest that psychiatric alterations of thought can begin to be biologically understood by assessing the form and content of the altered thought's underlying brain activation patterns.

  16. Vocal Tract Images Reveal Neural Representations of Sensorimotor Transformation During Speech Imitation.

    Science.gov (United States)

    Carey, Daniel; Miquel, Marc E; Evans, Bronwen G; Adank, Patti; McGettigan, Carolyn

    2017-05-01

    Imitating speech necessitates the transformation from sensory targets to vocal tract motor output, yet little is known about the representational basis of this process in the human brain. Here, we address this question by using real-time MR imaging (rtMRI) of the vocal tract and functional MRI (fMRI) of the brain in a speech imitation paradigm. Participants trained on imitating a native vowel and a similar nonnative vowel that required lip rounding. Later, participants imitated these vowels and an untrained vowel pair during separate fMRI and rtMRI runs. Univariate fMRI analyses revealed that regions including left inferior frontal gyrus were more active during sensorimotor transformation (ST) and production of nonnative vowels, compared with native vowels; further, ST for nonnative vowels activated somatomotor cortex bilaterally, compared with ST of native vowels. Using test representational similarity analysis (RSA) models constructed from participants' vocal tract images and from stimulus formant distances, we found that RSA searchlight analyses of fMRI data showed either type of model could be represented in somatomotor, temporal, cerebellar, and hippocampal neural activation patterns during ST. We thus provide the first evidence of widespread and robust cortical and subcortical neural representation of vocal tract and/or formant parameters, during prearticulatory ST. © The Author 2017. Published by Oxford University Press.

  17. Predicting Neural Activity Patterns Associated with Sentences Using a Neurobiologically Motivated Model of Semantic Representation.

    Science.gov (United States)

    Anderson, Andrew James; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Aguilar, Mario; Wang, Xixi; Doko, Donias; Raizada, Rajeev D S

    2017-09-01

    We introduce an approach that predicts neural representations of word meanings contained in sentences then superposes these to predict neural representations of new sentences. A neurobiological semantic model based on sensory, motor, social, emotional, and cognitive attributes was used as a foundation to define semantic content. Previous studies have predominantly predicted neural patterns for isolated words, using models that lack neurobiological interpretation. Fourteen participants read 240 sentences describing everyday situations while undergoing fMRI. To connect sentence-level fMRI activation patterns to the word-level semantic model, we devised methods to decompose the fMRI data into individual words. Activation patterns associated with each attribute in the model were then estimated using multiple-regression. This enabled synthesis of activation patterns for trained and new words, which were subsequently averaged to predict new sentences. Region-of-interest analyses revealed that prediction accuracy was highest using voxels in the left temporal and inferior parietal cortex, although a broad range of regions returned statistically significant results, showing that semantic information is widely distributed across the brain. The results show how a neurobiologically motivated semantic model can decompose sentence-level fMRI data into activation features for component words, which can be recombined to predict activation patterns for new sentences. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Prediction of Disease Causing Non-Synonymous SNPs by the Artificial Neural Network Predictor NetDiseaseSNP

    DEFF Research Database (Denmark)

    Johansen, Morten Bo; Gonzalez-Izarzugaza, Jose Maria; Brunak, Søren

    2013-01-01

    We have developed a sequence conservation-based artificial neural network predictor called NetDiseaseSNP which classifies nsSNPs as disease-causing or neutral. Our method uses the excellent alignment generation algorithm of SIFT to identify related sequences and a combination of 31 features...

  19. Neural evidence that three dimensions organize mental state representation: Rationality, social impact, and valence.

    Science.gov (United States)

    Tamir, Diana I; Thornton, Mark A; Contreras, Juan Manuel; Mitchell, Jason P

    2016-01-05

    How do people understand the minds of others? Existing psychological theories have suggested a number of dimensions that perceivers could use to make sense of others' internal mental states. However, it remains unclear which of these dimensions, if any, the brain spontaneously uses when we think about others. The present study used multivoxel pattern analysis (MVPA) of neuroimaging data to identify the primary organizing principles of social cognition. We derived four unique dimensions of mental state representation from existing psychological theories and used functional magnetic resonance imaging to test whether these dimensions organize the neural encoding of others' mental states. MVPA revealed that three such dimensions could predict neural patterns within the medial prefrontal and parietal cortices, temporoparietal junction, and anterior temporal lobes during social thought: rationality, social impact, and valence. These results suggest that these dimensions serve as organizing principles for our understanding of other people.

  20. Improving Feature Representation Based on a Neural Network for Author Profiling in Social Media Texts.

    Science.gov (United States)

    Gómez-Adorno, Helena; Markov, Ilia; Sidorov, Grigori; Posadas-Durán, Juan-Pablo; Sanchez-Perez, Miguel A; Chanona-Hernandez, Liliana

    2016-01-01

    We introduce a lexical resource for preprocessing social media data. We show that a neural network-based feature representation is enhanced by using this resource. We conducted experiments on the PAN 2015 and PAN 2016 author profiling corpora and obtained better results when performing the data preprocessing using the developed lexical resource. The resource includes dictionaries of slang words, contractions, abbreviations, and emoticons commonly used in social media. Each of the dictionaries was built for the English, Spanish, Dutch, and Italian languages. The resource is freely available.

  1. Multivariate Cross-Classification: Applying machine learning techniques to characterize abstraction in neural representations

    Directory of Open Access Journals (Sweden)

    Jonas eKaplan

    2015-03-01

    Full Text Available Here we highlight an emerging trend in the use of machine learning classifiers to test for abstraction across patterns of neural activity. When a classifier algorithm is trained on data from one cognitive context, and tested on data from another, conclusions can be drawn about the role of a given brain region in representing information that abstracts across those cognitive contexts. We call this kind of analysis Multivariate Cross-Classification (MVCC, and review several domains where it has recently made an impact. MVCC has been important in establishing correspondences among neural patterns across cognitive domains, including motor-perception matching and cross-sensory matching. It has been used to test for similarity between neural patterns evoked by perception and those generated from memory. Other work has used MVCC to investigate the similarity of representations for semantic categories across different kinds of stimulus presentation, and in the presence of different cognitive demands. We use these examples to demonstrate the power of MVCC as a tool for investigating neural abstraction and discuss some important methodological issues related to its application.

  2. MosquitoNet: investigating the use of UAV and artificial neural networks for integrated mosquito management

    Science.gov (United States)

    Case, E.; Ren, Y.; Shragai, T.; Erickson, D.

    2017-12-01

    Integrated mosquito control is expensive and resource intensive, and changing climatic factors are predicted to expand the habitable range of disease-carrying mosquitoes into new regions in the United States. Of particular concern in the northeastern United States are aedes albopictus, an aggressive, invasive species of mosquito that can transmit both native and exotic disease. Ae. albopictus prefer to live near human populations and breed in artificial containers with as little as two millimeters of standing water, exponentially increasing the difficulty of source control in suburban and urban areas. However, low-cost unmanned aerial vehicles (UAVs) can be used to photograph large regions at centimeter-resolution, and can image containers of interest in suburban neighborhoods. While proofs-of-concepts have been shown using UAVs to identify naturally occurring bodies of water, they have not been used to identify mosquito habitat in more populated areas. One of the primary challenges is that post-processing high-resolution aerial imagery is still time intensive, often labelled by hand or with programs built for satellite imagery. Artificial neural networks have been highly successful at image recognition tasks; in the past five years, convolutional neural networks (CNN) have surpassed or aided trained humans in identification of skin cancer, agricultural crops, and poverty levels from satellite imagery. MosquitoNet, a dual classifier built from the Single Shot Multibox Detector and VGG16 architectures, was trained on UAV­­­­­ aerial imagery taken during a larval study in Westchester County in southern New York State in July and August 2017. MosquitoNet was designed to assess the habitat risk of suburban properties by automating the identification and counting of containers like tires, toys, garbage bins, flower pots, etc. The SSD-based architecture marked small containers and other habitat indicators while the VGG16-based architecture classified the type of

  3. Neural-net based coordinated stabilizing control for the exciter and governor loops of low head hydropower plants

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.; Novicevic, M.; Dobrijevic, D.; Babic, B. [Electrical Engineering Inst. Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States); Pao, Y.H. [Case Western Reserve Univ., Cleveland, OH (United States)]|[AI WARE, Inc., Cleveland, OH (United States)

    1995-12-01

    This paper presents a design technique of a new adaptive optimal controller of the low head hydropower plant using artificial neural networks (ANN). The adaptive controller is to operate in real time to improve the generating unit transients through the exciter input, the guide vane position and the runner blade position. The new design procedure is based on self-organization and the predictive estimation capabilities of neural-nets implemented through the cluster-wise segmented associative memory scheme. The developed neural-net based controller (NNC) whose control signals are adjusted using the on-line measurements, can offer better damping effects for generator oscillations over a wide range of operating conditions than conventional controllers. Digital simulations of hydropower plant equipped with low head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-space optimal control and neural-net based control are presented. Results obtained on the non-linear mathematical model demonstrate that the effects of the NNC closely agree with those obtained using the state-space multivariable discrete-time optimal controllers.

  4. Neural dynamics underlying attentional orienting to auditory representations in short-term memory.

    Science.gov (United States)

    Backer, Kristina C; Binns, Malcolm A; Alain, Claude

    2015-01-21

    Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.

  5. Comparison of polynomial approximations and artificial neural nets for response surfaces in engineering optimization

    Science.gov (United States)

    Carpenter, William C.

    1991-01-01

    Engineering optimization problems involve minimizing some function subject to constraints. In areas such as aircraft optimization, the constraint equations may be from numerous disciplines such as transfer of information between these disciplines and the optimization algorithm. They are also suited to problems which may require numerous re-optimizations such as in multi-objective function optimization or to problems where the design space contains numerous local minima, thus requiring repeated optimizations from different initial designs. Their use has been limited, however, by the fact that development of response surfaces randomly selected or preselected points in the design space. Thus, they have been thought to be inefficient compared to algorithms to the optimum solution. A development has taken place in the last several years which may effect the desirability of using response surfaces. It may be possible that artificial neural nets are more efficient in developing response surfaces than polynomial approximations which have been used in the past. This development is the concern of the work.

  6. Neural representations and mechanisms for the performance of simple speech sequences.

    Science.gov (United States)

    Bohland, Jason W; Bullock, Daniel; Guenther, Frank H

    2010-07-01

    Speakers plan the phonological content of their utterances before their release as speech motor acts. Using a finite alphabet of learned phonemes and a relatively small number of syllable structures, speakers are able to rapidly plan and produce arbitrary syllable sequences that fall within the rules of their language. The class of computational models of sequence planning and performance termed competitive queuing models have followed K. S. Lashley [The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior (pp. 112-136). New York: Wiley, 1951] in assuming that inherently parallel neural representations underlie serial action, and this idea is increasingly supported by experimental evidence. In this article, we developed a neural model that extends the existing DIVA model of speech production in two complementary ways. The new model includes paired structure and content subsystems [cf. MacNeilage, P. F. The frame/content theory of evolution of speech production. Behavioral and Brain Sciences, 21, 499-511, 1998 ] that provide parallel representations of a forthcoming speech plan as well as mechanisms for interfacing these phonological planning representations with learned sensorimotor programs to enable stepping through multisyllabic speech plans. On the basis of previous reports, the model's components are hypothesized to be localized to specific cortical and subcortical structures, including the left inferior frontal sulcus, the medial premotor cortex, the basal ganglia, and the thalamus. The new model, called gradient order DIVA, thus fills a void in current speech research by providing formal mechanistic hypotheses about both phonological and phonetic processes that are grounded by neuroanatomy and physiology. This framework also generates predictions that can be tested in future neuroimaging and clinical case studies.

  7. Effects of task-switching on neural representations of ambiguous sound input.

    Science.gov (United States)

    Sussman, Elyse S; Bregman, Albert S; Lee, Wei-Wei

    2014-11-01

    The ability to perceive discrete sound streams in the presence of competing sound sources relies on multiple mechanisms that organize the mixture of the auditory input entering the ears. Many studies have focused on mechanisms that contribute to integrating sounds that belong together into one perceptual stream (integration) and segregating those that come from different sound sources (segregation). However, little is known about mechanisms that allow us to perceive individual sound sources within a dynamically changing auditory scene, when the input may be ambiguous, and heard as either integrated or segregated. This study tested the question of whether focusing on one of two possible sound organizations suppressed representation of the alternative organization. We presented listeners with ambiguous input and cued them to switch between tasks that used either the integrated or the segregated percept. Electrophysiological measures indicated which organization was currently maintained in memory. If mutual exclusivity at the neural level was the rule, attention to one of two possible organizations would preclude neural representation of the other. However, significant MMNs were elicited to both the target organization and the unattended, alternative organization, along with the target-related P3b component elicited only to the designated target organization. Results thus indicate that both organizations (integrated and segregated) were simultaneously maintained in memory regardless of which task was performed. Focusing attention to one aspect of the sounds did not abolish the alternative, unattended organization when the stimulus input was ambiguous. In noisy environments, such as walking on a city street, rapid and flexible adaptive processes are needed to help facilitate rapid switching to different sound sources in the environment. Having multiple representations available to the attentive system would allow for such flexibility, needed in everyday situations to

  8. Unaware Processing of Tools in the Neural System for Object-Directed Action Representation.

    Science.gov (United States)

    Tettamanti, Marco; Conca, Francesca; Falini, Andrea; Perani, Daniela

    2017-11-01

    The hypothesis that the brain constitutively encodes observed manipulable objects for the actions they afford is still debated. Yet, crucial evidence demonstrating that, even in the absence of perceptual awareness, the mere visual appearance of a manipulable object triggers a visuomotor coding in the action representation system including the premotor cortex, has hitherto not been provided. In this fMRI study, we instantiated reliable unaware visual perception conditions by means of continuous flash suppression, and we tested in 24 healthy human participants (13 females) whether the visuomotor object-directed action representation system that includes left-hemispheric premotor, parietal, and posterior temporal cortices is activated even under subliminal perceptual conditions. We found consistent activation in the target visuomotor cortices, both with and without perceptual awareness, specifically for pictures of manipulable versus non-manipulable objects. By means of a multivariate searchlight analysis, we also found that the brain activation patterns in this visuomotor network enabled the decoding of manipulable versus non-manipulable object picture processing, both with and without awareness. These findings demonstrate the intimate neural coupling between visual perception and motor representation that underlies manipulable object processing: manipulable object stimuli specifically engage the visuomotor object-directed action representation system, in a constitutive manner that is independent from perceptual awareness. This perceptuo-motor coupling endows the brain with an efficient mechanism for monitoring and planning reactions to external stimuli in the absence of awareness. SIGNIFICANCE STATEMENT Our brain constantly encodes the visual information that hits the retina, leading to a stimulus-specific activation of sensory and semantic representations, even for objects that we do not consciously perceive. Do these unconscious representations encompass the motor

  9. A study on neural network representation of reactor power control procedures 2

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Byung Soo; Park, Jea Chang; Kim, Young Taek; Lee, Hee Cho; Yang, Sung Uoon; Hwang, Hee Sun; Hwang, In Ah

    1998-12-01

    The major results of this study are as follows; the first is the algorithm developed through this study for computing the spline interpolation coefficients without solving the matrix equation involved. This is expected to be used in various numerical analysis problems. If this algorithm can be extended to functions of two independent variables in the future, then it could be a big help for the finite element method used in solving various boundary value problems. The second is the method developed to reduce systematically the number of output fuzzy sets for fuzzy systems representing functions of two variables. this may be considered as an indication that the neural network representation of functions has advantages over other conventional methods. The third result is an artificial neural network system developed for automating the manual procedures being used to change the reactor power level by adding boric acid or water to the reactor coolant. This along with the neural networks developed earlier can be used in nuclear power plants as an operator aid after a verification process. (author). 8 refs., 13 tabs., 5 figs.

  10. Neural competition for conscious representation across time: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Heleen A Slagter

    2010-05-01

    Full Text Available The information processing capacity of the human mind is limited, as is evidenced by the attentional blink (AB--a deficit in identifying the second of two temporally-close targets (T1 and T2 embedded in a rapid stream of distracters. Theories of the AB generally agree that it results from competition between stimuli for conscious representation. However, they disagree in the specific mechanisms, in particular about how attentional processing of T1 determines the AB to T2.The present study used the high spatial resolution of functional magnetic resonance imaging (fMRI to examine the neural mechanisms underlying the AB. Our research approach was to design T1 and T2 stimuli that activate distinguishable brain areas involved in visual categorization and representation. ROI and functional connectivity analyses were then used to examine how attentional processing of T1, as indexed by activity in the T1 representation area, affected T2 processing. Our main finding was that attentional processing of T1 at the level of the visual cortex predicted T2 detection rates Those individuals who activated the T1 encoding area more strongly in blink versus no-blink trials generally detected T2 on a lower percentage of trials. The coupling of activity between T1 and T2 representation areas did not vary as a function of conscious T2 perception.These data are consistent with the notion that the AB is related to attentional demands of T1 for selection, and indicate that these demands are reflected at the level of visual cortex. They also highlight the importance of individual differences in attentional settings in explaining AB task performance.

  11. Modularity and Sparsity: Evolution of Neural Net Controllers in Physically Embodied Robots

    Directory of Open Access Journals (Sweden)

    Nicholas Livingston

    2016-12-01

    Full Text Available While modularity is thought to be central for the evolution of complexity and evolvability, it remains unclear how systems boot-strap themselves into modularity from random or fully integrated starting conditions. Clune et al. (2013 suggested that a positive correlation between sparsity and modularity is the prime cause of this transition. We sought to test the generality of this modularity-sparsity hypothesis by testing it for the first time in physically embodied robots. A population of ten Tadros — autonomous, surface-swimming robots propelled by a flapping tail — was used. Individuals varied only in the structure of their neural net control, a 2 x 6 x 2 network with recurrence in the hidden layer. Each of the 60 possible connections was coded in the genome, and could achieve one of three states: -1, 0, 1. Inputs were two light-dependent resistors and outputs were two motor control variables to the flapping tail, one for the frequency of the flapping and the other for the turning offset. Each Tadro was tested separately in a circular tank lit by a single overhead light source. Fitness was the amount of light gathered by a vertically oriented sensor that was disconnected from the controller net. Reproduction was asexual, with the top performer cloned and then all individuals entered into a roulette wheel selection process, with genomes mutated to create the offspring. The starting population of networks was randomly generated. Over ten generations, the population’s mean fitness increased two-fold. This evolution occurred in spite of an unintentional integer overflow problem in recurrent nodes in the hidden layer that caused outputs to oscillate. Our investigation of the oscillatory behavior showed that the mutual information of inputs and outputs was sufficient for the reactive behaviors observed. While we had predicted that both modularity and sparsity would follow the same trend as fitness, neither did so. Instead, selection gradients

  12. Neural representations of kinematic laws of motion: evidence for action-perception coupling.

    Science.gov (United States)

    Dayan, Eran; Casile, Antonino; Levit-Binnun, Nava; Giese, Martin A; Hendler, Talma; Flash, Tamar

    2007-12-18

    Behavioral and modeling studies have established that curved and drawing human hand movements obey the 2/3 power law, which dictates a strong coupling between movement curvature and velocity. Human motion perception seems to reflect this constraint. The functional MRI study reported here demonstrates that the brain's response to this law of motion is much stronger and more widespread than to other types of motion. Compliance with this law is reflected in the activation of a large network of brain areas subserving motor production, visual motion processing, and action observation functions. Hence, these results strongly support the notion of similar neural coding for motion perception and production. These findings suggest that cortical motion representations are optimally tuned to the kinematic and geometrical invariants characterizing biological actions.

  13. Distributed representations of action sequences in anterior cingulate cortex: A recurrent neural network approach.

    Science.gov (United States)

    Shahnazian, Danesh; Holroyd, Clay B

    2018-02-01

    Anterior cingulate cortex (ACC) has been the subject of intense debate over the past 2 decades, but its specific computational function remains controversial. Here we present a simple computational model of ACC that incorporates distributed representations across a network of interconnected processing units. Based on the proposal that ACC is concerned with the execution of extended, goal-directed action sequences, we trained a recurrent neural network to predict each successive step of several sequences associated with multiple tasks. In keeping with neurophysiological observations from nonhuman animals, the network yields distributed patterns of activity across ACC neurons that track the progression of each sequence, and in keeping with human neuroimaging data, the network produces discrepancy signals when any step of the sequence deviates from the predicted step. These simulations illustrate a novel approach for investigating ACC function.

  14. Aging affects hemispheric asymmetry in the neural representation of speech sounds.

    Science.gov (United States)

    Bellis, T J; Nicol, T; Kraus, N

    2000-01-15

    Hemispheric asymmetries in the processing of elemental speech sounds appear to be critical for normal speech perception. This study investigated the effects of age on hemispheric asymmetry observed in the neurophysiological responses to speech stimuli in three groups of normal hearing, right-handed subjects: children (ages, 8-11 years), young adults (ages, 20-25 years), and older adults (ages > 55 years). Peak-to-peak response amplitudes of the auditory cortical P1-N1 complex obtained over right and left temporal lobes were examined to determine the degree of left/right asymmetry in the neurophysiological responses elicited by synthetic speech syllables in each of the three subject groups. In addition, mismatch negativity (MMN) responses, which are elicited by acoustic change, were obtained. Whereas children and young adults demonstrated larger P1-N1-evoked response amplitudes over the left temporal lobe than over the right, responses from elderly subjects were symmetrical. In contrast, MMN responses, which reflect an echoic memory process, were symmetrical in all subject groups. The differences observed in the neurophysiological responses were accompanied by a finding of significantly poorer ability to discriminate speech syllables involving rapid spectrotemporal changes in the older adult group. This study demonstrates a biological, age-related change in the neural representation of basic speech sounds and suggests one possible underlying mechanism for the speech perception difficulties exhibited by aging adults. Furthermore, results of this study support previous findings suggesting a dissociation between neural mechanisms underlying those processes that reflect the basic representation of sound structure and those that represent auditory echoic memory and stimulus change.

  15. Neural representations and the cortical body matrix: implications for sports medicine and future directions.

    Science.gov (United States)

    Wallwork, Sarah B; Bellan, Valeria; Catley, Mark J; Moseley, G Lorimer

    2016-08-01

    Neural representations, or neurotags, refer to the idea that networks of brain cells, distributed across multiple brain areas, work in synergy to produce outputs. The brain can be considered then, a complex array of neurotags, each influencing and being influenced by each other. The output of some neurotags act on other systems, for example, movement, or on consciousness, for example, pain. This concept of neurotags has sparked a new body of research into pain and rehabilitation. We draw on this research and the concept of a cortical body matrix-a network of representations that subserves the regulation and protection of the body and the space around it-to suggest important implications for rehabilitation of sports injury and for sports performance. Protective behaviours associated with pain have been reinterpreted in light of these conceptual models. With a particular focus on rehabilitation of the injured athlete, this review presents the theoretical underpinnings of the cortical body matrix and its application within the sporting context. Therapeutic approaches based on these ideas are discussed and the efficacy of the most tested approaches is addressed. By integrating current thought in pain and cognitive neuroscience related to sports rehabilitation, recommendations for clinical practice and future research are suggested. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Impact of the virtual reality on the neural representation of an environment.

    Science.gov (United States)

    Mellet, Emmanuel; Laou, Laetitia; Petit, Laurent; Zago, Laure; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie

    2010-07-01

    Despite the increasing use of virtual reality, the impact on cerebral representation of topographical knowledge of learning by virtual reality rather than by actual locomotion has never been investigated. To tackle this challenging issue, we conducted an experiment wherein participants learned an immersive virtual environment using a joystick. The following day, participants' brain activity was monitored by functional magnetic resonance imaging while they mentally estimated distances in this environment. Results were compared with that of participants performing the same task but having learned the real version of the environment by actual walking. We detected a large set of areas shared by both groups including the parieto-frontal areas and the parahippocampal gyrus. More importantly, although participants of both groups performed the same mental task and exhibited similar behavioral performances, they differed at the brain activity level. Unlike real learners, virtual learners activated a left-lateralized network associated with tool manipulation and action semantics. This demonstrated that a neural fingerprint distinguishing virtual from real learning persists when subjects use a mental representation of the learnt environment with equivalent performances. (c) 2009 Wiley-Liss, Inc.

  17. The impact of cultural differences in self-representation on the neural substrates of posttraumatic stress disorder

    Science.gov (United States)

    Liddell, Belinda J.; Jobson, Laura

    2016-01-01

    A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD). However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1) fear dysregulation; (2) attentional biases to threat; (3) emotion and autobiographical memory; (4) self-referential processing; and (5) attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD. Highlights of the article Cultural variations in individualistic-collectivistic self-representation modulate many of the same neural and psychological processes disrupted in PTSD. These commonly affected processes include fear perception and regulation mechanisms, attentional biases (to threat), emotional and autobiographical memory systems, self-referential processing and attachment systems. A conceptual model is proposed whereby culture is considered integral to the development and maintenance of PTSD and its neural substrates. PMID:27302635

  18. Representation learning for mammography mass lesion classification with convolutional neural networks.

    Science.gov (United States)

    Arevalo, John; González, Fabio A; Ramos-Pollán, Raúl; Oliveira, Jose L; Guevara Lopez, Miguel Angel

    2016-04-01

    The automatic classification of breast imaging lesions is currently an unsolved problem. This paper describes an innovative representation learning framework for breast cancer diagnosis in mammography that integrates deep learning techniques to automatically learn discriminative features avoiding the design of specific hand-crafted image-based feature detectors. A new biopsy proven benchmarking dataset was built from 344 breast cancer patients' cases containing a total of 736 film mammography (mediolateral oblique and craniocaudal) views, representative of manually segmented lesions associated with masses: 426 benign lesions and 310 malignant lesions. The developed method comprises two main stages: (i) preprocessing to enhance image details and (ii) supervised training for learning both the features and the breast imaging lesions classifier. In contrast to previous works, we adopt a hybrid approach where convolutional neural networks are used to learn the representation in a supervised way instead of designing particular descriptors to explain the content of mammography images. Experimental results using the developed benchmarking breast cancer dataset demonstrated that our method exhibits significant improved performance when compared to state-of-the-art image descriptors, such as histogram of oriented gradients (HOG) and histogram of the gradient divergence (HGD), increasing the performance from 0.787 to 0.822 in terms of the area under the ROC curve (AUC). Interestingly, this model also outperforms a set of hand-crafted features that take advantage of additional information from segmentation by the radiologist. Finally, the combination of both representations, learned and hand-crafted, resulted in the best descriptor for mass lesion classification, obtaining 0.826 in the AUC score. A novel deep learning based framework to automatically address classification of breast mass lesions in mammography was developed. Copyright © 2015 Elsevier Ireland Ltd. All rights

  19. Neural representations for newly learned words are modulated by overnight consolidation, reading skill, and age.

    Science.gov (United States)

    Landi, Nicole; Malins, Jeffrey G; Frost, Stephen J; Magnuson, James S; Molfese, Peter; Ryherd, Kayleigh; Rueckl, Jay G; Mencl, William E; Pugh, Kenneth R

    2018-03-01

    Word learning depends not only on efficient online binding of phonological, orthographic and lexical information, but also on consolidation of new word representations into permanent lexical memory. Work on word learning under a variety of contexts indicates that reading and language skill impact facility of word learning in both print and speech. In addition, recent research finds that individuals with language impairments show deficits in both initial word form learning and in maintaining newly learned representations over time, implicating mechanisms associated with maintenance that may be driven by deficits in overnight consolidation. Although several recent studies have explored the neural bases of overnight consolidation of newly learned words, no extant work has examined individual differences in overnight consolidation at the neural level. The current study addresses this gap in the literature by investigating how individual differences in reading and language skills modulate patterns of neural activation associated with newly learned words following a period of overnight consolidation. Specifically, a community sample of adolescents and young adults with significant variability in reading and oral language (vocabulary) ability were trained on two spoken artificial lexicons, one in the evening on the day before fMRI scanning and one in the morning just prior to scanning. Comparisons of activation between words that were trained and consolidated vs. those that were trained but not consolidated revealed increased cortical activation in a number of language associated and memory associated regions. In addition, individual differences in age, reading skill and vocabulary modulated learning rate in our artificial lexicon learning task and the size of the cortical consolidation effect in the precuneus/posterior cingulate, such that older readers and more skilled readers had larger cortical consolidation effects in this learning-critical region. These findings

  20. Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging.

    Science.gov (United States)

    Mohseni Salehi, Seyed Sadegh; Erdogmus, Deniz; Gholipour, Ali

    2017-11-01

    Brain extraction or whole brain segmentation is an important first step in many of the neuroimage analysis pipelines. The accuracy and the robustness of brain extraction, therefore, are crucial for the accuracy of the entire brain analysis process. The state-of-the-art brain extraction techniques rely heavily on the accuracy of alignment or registration between brain atlases and query brain anatomy, and/or make assumptions about the image geometry, and therefore have limited success when these assumptions do not hold or image registration fails. With the aim of designing an accurate, learning-based, geometry-independent, and registration-free brain extraction tool, in this paper, we present a technique based on an auto-context convolutional neural network (CNN), in which intrinsic local and global image features are learned through 2-D patches of different window sizes. We consider two different architectures: 1) a voxelwise approach based on three parallel 2-D convolutional pathways for three different directions (axial, coronal, and sagittal) that implicitly learn 3-D image information without the need for computationally expensive 3-D convolutions and 2) a fully convolutional network based on the U-net architecture. Posterior probability maps generated by the networks are used iteratively as context information along with the original image patches to learn the local shape and connectedness of the brain to extract it from non-brain tissue. The brain extraction results we have obtained from our CNNs are superior to the recently reported results in the literature on two publicly available benchmark data sets, namely, LPBA40 and OASIS, in which we obtained the Dice overlap coefficients of 97.73% and 97.62%, respectively. Significant improvement was achieved via our auto-context algorithm. Furthermore, we evaluated the performance of our algorithm in the challenging problem of extracting arbitrarily oriented fetal brains in reconstructed fetal brain magnetic

  1. The impact of cultural differences in self-representation on the neural substrates of posttraumatic stress disorder.

    Science.gov (United States)

    Liddell, Belinda J; Jobson, Laura

    2016-01-01

    A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD). However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1) fear dysregulation; (2) attentional biases to threat; (3) emotion and autobiographical memory; (4) self-referential processing; and (5) attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD.

  2. The impact of cultural differences in self-representation on the neural substrates of posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Belinda J. Liddell

    2016-06-01

    Full Text Available A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD. However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1 fear dysregulation; (2 attentional biases to threat; (3 emotion and autobiographical memory; (4 self-referential processing; and (5 attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD. Highlights of the article:

  3. Door and cabinet recognition using convolutional neural nets and real-time method fusion for handle detection and grasping

    DEFF Research Database (Denmark)

    Maurin, Adrian Llopart; Ravn, Ole; Andersen, Nils Axel

    2017-01-01

    In this paper we present a new method that robustly identifies doors, cabinets and their respective handles, with special emphasis on extracting useful features from handles to be then manipulated. The novelty of this system relies on the combination of a Convolutional Neural Net (CNN), as a form...... of reducing the search space, several methods to extract point cloud data and a mobile robot to interact with the objects. The framework consists of the following components: The implementation of a CNN to extract a Region of Interest (ROI) from an image corresponding to a door or cabinet. Several vision...

  4. Competition and Cooperation in Neural Nets : U.S.-Japan Joint Seminar

    CERN Document Server

    Arbib, Michael

    1982-01-01

    The human brain, wi th its hundred billion or more neurons, is both one of the most complex systems known to man and one of the most important. The last decade has seen an explosion of experimental research on the brain, but little theory of neural networks beyond the study of electrical properties of membranes and small neural circuits. Nonetheless, a number of workers in Japan, the United States and elsewhere have begun to contribute to a theory which provides techniques of mathematical analysis and computer simulation to explore properties of neural systems containing immense numbers of neurons. Recently, it has been gradually recognized that rather independent studies of the dynamics of pattern recognition, pattern format::ion, motor control, self-organization, etc. , in neural systems do in fact make use of common methods. We find that a "competition and cooperation" type of interaction plays a fundamental role in parallel information processing in the brain. The present volume brings together 23 papers ...

  5. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

    OpenAIRE

    Milletari, Fausto; Navab, Nassir; Ahmadi, Seyed-Ahmad

    2016-01-01

    Convolutional Neural Networks (CNNs) have been recently employed to solve problems from both the computer vision and medical image analysis fields. Despite their popularity, most approaches are only able to process 2D images while most medical data used in clinical practice consists of 3D volumes. In this work we propose an approach to 3D image segmentation based on a volumetric, fully convolutional, neural network. Our CNN is trained end-to-end on MRI volumes depicting prostate, and learns t...

  6. Two-dimensional shape classification using generalized Fourier representation and neural networks

    Science.gov (United States)

    Chodorowski, Artur; Gustavsson, Tomas; Mattsson, Ulf

    2000-04-01

    A shape-based classification method is developed based upon the Generalized Fourier Representation (GFR). GFR can be regarded as an extension of traditional polar Fourier descriptors, suitable for description of closed objects, both convex and concave, with or without holes. Explicit relations of GFR coefficients to regular moments, moment invariants and affine moment invariants are given in the paper. The dual linear relation between GFR coefficients and regular moments was used to compare shape features derive from GFR descriptors and Hu's moment invariants. the GFR was then applied to a clinical problem within oral medicine and used to represent the contours of the lesions in the oral cavity. The lesions studied were leukoplakia and different forms of lichenoid reactions. Shape features were extracted from GFR coefficients in order to classify potentially cancerous oral lesions. Alternative classifiers were investigated based on a multilayer perceptron with different architectures and extensions. The overall classification accuracy for recognition of potentially cancerous oral lesions when using neural network classifier was 85%, while the classification between leukoplakia and reticular lichenoid reactions gave 96% (5-fold cross-validated) recognition rate.

  7. The neural representation of social status in the extended face-processing network.

    Science.gov (United States)

    Koski, Jessica E; Collins, Jessica A; Olson, Ingrid R

    2017-12-01

    Social status is a salient cue that shapes our perceptions of other people and ultimately guides our social interactions. Despite the pervasive influence of status on social behavior, how information about the status of others is represented in the brain remains unclear. Here, we tested the hypothesis that social status information is embedded in our neural representations of other individuals. Participants learned to associate faces with names, job titles that varied in associated status, and explicit markers of reputational status (star ratings). Trained stimuli were presented in an functional magnetic resonance imaging experiment where participants performed a target detection task orthogonal to the variable of interest. A network of face-selective brain regions extending from the occipital lobe to the orbitofrontal cortex was localized and served as regions of interest. Using multivoxel pattern analysis, we found that face-selective voxels in the lateral orbitofrontal cortex - a region involved in social and nonsocial valuation, could decode faces based on their status. Similar effects were observed with two different status manipulations - one based on stored semantic knowledge (e.g., different careers) and one based on learned reputation (e.g., star ranking). These data suggest that a face-selective region of the lateral orbitofrontal cortex may contribute to the perception of social status, potentially underlying the preferential attention and favorable biases humans display toward high-status individuals. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Neural representation of form-contingent color filling-in in the early visual cortex.

    Science.gov (United States)

    Hong, Sang Wook; Tong, Frank

    2017-11-01

    Perceptual filling-in exemplifies the constructive nature of visual processing. Color, a prominent surface property of visual objects, can appear to spread to neighboring areas that lack any color. We investigated cortical responses to a color filling-in illusion that effectively dissociates perceived color from the retinal input (van Lier, Vergeer, & Anstis, 2009). Observers adapted to a star-shaped stimulus with alternating red- and cyan-colored points to elicit a complementary afterimage. By presenting an achromatic outline that enclosed one of the two afterimage colors, perceptual filling-in of that color was induced in the unadapted central region. Visual cortical activity was monitored with fMRI, and analyzed using multivariate pattern analysis. Activity patterns in early visual areas (V1-V4) reliably distinguished between the two color-induced filled-in conditions, but only higher extrastriate visual areas showed the predicted correspondence with color perception. Activity patterns allowed for reliable generalization between filled-in colors and physical presentations of perceptually matched colors in areas V3 and V4, but not in earlier visual areas. These findings suggest that the perception of filled-in surface color likely requires more extensive processing by extrastriate visual areas, in order for the neural representation of surface color to become aligned with perceptually matched real colors.

  9. Neural nets with varying topology for high energy particle recognition. Theory and applications

    International Nuclear Information System (INIS)

    Perrone, A.L.; Basti, G.; Messi, R.; Paoluzi, L.; Picozza, P.

    1995-01-01

    In this paper we propose a strategy to solve the problem of parallel compuation based on a dynamic definition of the net topology showing its effectiveness for problems of particle track recognition in high-energy physics. In this way, we can maintain the linear architecture like in the geometric perceptron, but with a partial and dynamic connectivity so to overcome the intrinsic limiations of the geometric perceptron. Namely, the computation is truly parallel because of the partial connectivity but the net topology is always the optimal one because of its dynamic redefinition on the single input pattern. For these properties, we call this new architecture dynamic perceptron

  10. Bootstrapped neural nets versus regression kriging in the digital mapping of pedological attributes: the automatic and time-consuming perspectives

    Science.gov (United States)

    Langella, Giuliano; Basile, Angelo; Bonfante, Antonello; Manna, Piero; Terribile, Fabio

    2013-04-01

    Digital soil mapping procedures are widespread used to build two-dimensional continuous maps about several pedological attributes. Our work addressed a regression kriging (RK) technique and a bootstrapped artificial neural network approach in order to evaluate and compare (i) the accuracy of prediction, (ii) the susceptibility of being included in automatic engines (e.g. to constitute web processing services), and (iii) the time cost needed for calibrating models and for making predictions. Regression kriging is maybe the most widely used geostatistical technique in the digital soil mapping literature. Here we tried to apply the EBLUP regression kriging as it is deemed to be the most statistically sound RK flavor by pedometricians. An unusual multi-parametric and nonlinear machine learning approach was accomplished, called BAGAP (Bootstrap aggregating Artificial neural networks with Genetic Algorithms and Principal component regression). BAGAP combines a selected set of weighted neural nets having specified characteristics to yield an ensemble response. The purpose of applying these two particular models is to ascertain whether and how much a more cumbersome machine learning method could be much promising in making more accurate/precise predictions. Being aware of the difficulty to handle objects based on EBLUP-RK as well as BAGAP when they are embedded in environmental applications, we explore the susceptibility of them in being wrapped within Web Processing Services. Two further kinds of aspects are faced for an exhaustive evaluation and comparison: automaticity and time of calculation with/without high performance computing leverage.

  11. Cross-linguistic differences in the neural representation of human language: evidence from users of signed languages.

    Science.gov (United States)

    Corina, David P; Lawyer, Laurel A; Cates, Deborah

    2012-01-01

    Studies of deaf individuals who are users of signed languages have provided profound insight into the neural representation of human language. Case studies of deaf signers who have incurred left- and right-hemisphere damage have shown that left-hemisphere resources are a necessary component of sign language processing. These data suggest that, despite frank differences in the input and output modality of language, core left perisylvian regions universally serve linguistic function. Neuroimaging studies of deaf signers have generally provided support for this claim. However, more fine-tuned studies of linguistic processing in deaf signers are beginning to show evidence of important differences in the representation of signed and spoken languages. In this paper, we provide a critical review of this literature and present compelling evidence for language-specific cortical representations in deaf signers. These data lend support to the claim that the neural representation of language may show substantive cross-linguistic differences. We discuss the theoretical implications of these findings with respect to an emerging understanding of the neurobiology of language.

  12. Cross-linguistic differences in the neural representation of human language: evidence from users of signed languages.

    Directory of Open Access Journals (Sweden)

    David eCorina

    2013-01-01

    Full Text Available Studies of deaf individuals who are users of signed languages have provided profound insight into the neural representation of human language. Case studies of deaf signers who have incurred left- and right-hemisphere damage have shown that left-hemisphere resources are a necessary component of sign language processing. These data suggest that, despite frank differences in the input and output modality of language,; core left perisylvian regions universally serve linguistic function. Neuroimaging studies of deaf signers have generally provided support for this claim. However, more fine-tuned studies of linguistic processing in deaf signers are beginning to show evidence of important differences in the representation of signed and spoken languages. In this paper, we provide a critical review of this literature and present compelling evidence for language-specific cortical representations in deaf signers. These data lend support to the claim that the neural representation of language may show substantive cross-linguistic differences. We discuss the theoretical implications of these findings with respect to an emerging understanding of the neurobiology of language.

  13. Multiple neural states of representation in short-term memory? It's a matter of attention

    Directory of Open Access Journals (Sweden)

    Joshua J Larocque

    2014-01-01

    Full Text Available Short-term memory (STM refers to the capacity-limited retention of information over a brief period of time, and working memory (WM refers to the manipulation and use of that information to guide behavior. In recent years it has become apparent that STM and WM interact and overlap with other cognitive processes, including attention (the selection of a subset of information for further processing and long-term memory (LTM – the encoding and retention of an effectively unlimited amount of information for a much longer period of time. Broadly speaking, there have been two classes of memory models: systems models, which posit distinct stores for STM and LTM (Atkinson & Shiffrin, 1968; Baddeley & Hitch, 1974; and state-based models, which posit a common store with different activation states corresponding to STM and LTM (Cowan, 1995; McElree, 1996; Oberauer, 2002. In this paper, we will focus on state-based accounts of STM. First, we will consider several theoretical models that postulate, based on considerable behavioral evidence, that information in STM can exist in multiple representational states. We will then consider how neural data from recent studies of STM can inform and constrain these theoretical models. In the process we will highlight the inferential advantage of multivariate, information-based analyses of neuroimaging data (fMRI and EEG over conventional activation-based analysis approaches (Postle, in press. We will conclude by addressing lingering questions regarding the fractionation of STM, highlighting differences between the attention to information vs. the retention of information during brief memory delays.

  14. The ART of representation: Memory reduction and noise tolerance in a neural network vision system

    Science.gov (United States)

    Langley, Christopher S.

    The Feature Cerebellar Model Arithmetic Computer (FCMAC) is a multiple-input-single-output neural network that can provide three-degree-of-freedom (3-DOF) pose estimation for a robotic vision system. The FCMAC provides sufficient accuracy to enable a manipulator to grasp an object from an arbitrary pose within its workspace. The network learns an appearance-based representation of an object by storing coarsely quantized feature patterns. As all unique patterns are encoded, the network size grows uncontrollably. A new architecture is introduced herein, which combines the FCMAC with an Adaptive Resonance Theory (ART) network. The ART module categorizes patterns observed during training into a set of prototypes that are used to build the FCMAC. As a result, the network no longer grows without bound, but constrains itself to a user-specified size. Pose estimates remain accurate since the ART layer tends to discard the least relevant information first. The smaller network performs recall faster, and in some cases is better for generalization, resulting in a reduction of error at recall time. The ART-Under-Constraint (ART-C) algorithm is extended to include initial filling with randomly selected patterns (referred to as ART-F). In experiments using a real-world data set, the new network performed equally well using less than one tenth the number of coarse patterns as a regular FCMAC. The FCMAC is also extended to include real-valued input activations. As a result, the network can be tuned to reject a variety of types of noise in the image feature detection. A quantitative analysis of noise tolerance was performed using four synthetic noise algorithms, and a qualitative investigation was made using noisy real-world image data. In validation experiments, the FCMAC system outperformed Radial Basis Function (RBF) networks for the 3-DOF problem, and had accuracy comparable to that of Principal Component Analysis (PCA) and superior to that of Shape Context Matching (SCM), both

  15. Probabilistic and Other Neural Nets in Multi-Hole Probe Calibration and Flow Angularity Pattern Recognition

    Science.gov (United States)

    Baskaran, Subbiah; Ramachandran, Narayanan; Noever, David

    1998-01-01

    The use of probabilistic (PNN) and multilayer feed forward (MLFNN) neural networks are investigated for calibration of multi-hole pressure probes and the prediction of associated flow angularity patterns in test flow fields. Both types of networks are studied in detail for their calibration and prediction characteristics. The current formalism can be applied to any multi-hole probe, however the test results for the most commonly used five-hole Cone and Prism probe types alone are reported in this article.

  16. An Artificial Neural Net Approach to Photon - Pi-zero Discrimination using the CMS Endcap Preshower

    CERN Document Server

    Kyriakis, Aristotelis; Loukas, Demetrios; Mousa, Jehad

    1999-01-01

    Using a general Artificial Neural Network approach, we have obtained a neutral pion rejection varying between 45% and 75% depending on the energy and the incidence angle of the pion. The single photon efficiency was set to 91%. These results represent a significant improvement over previous analyses in reducing the neutral pion background to the two-photon decay of the intermediate mass Higgs boson.

  17. Detection and location of pipe damage by artificial-neural-net-processed moire error maps

    Science.gov (United States)

    Grossman, Barry G.; Gonzalez, Frank S.; Blatt, Joel H.; Cahall, Scott C.

    1993-05-01

    A novel automated inspection technique to recognize, locate, and quantify damage is developed. This technique is based on two already existing technologies: video moire metrology and artificial neural networks. Contour maps generated by video moire techniques provide an accurate description of surface structure that can then be automated by means of neutral networks. Artificial neural networks offer an attractive solution to the automated interpretation problem because they can generalize from the learned samples and provide an intelligent response for similar patterns having missing or noisy data. Two dimensional video moire images of pipes with dents of different depths, at several rotations, were used to train a multilayer feedforward neural network by the backpropagation algorithm. The backpropagation network is trained to recognize and classify the video moire images according to the dent's depth. Once trained, the network outputs give an indication of the probability that a dent has been found, a depth estimate, and the axial location of the center of the dent. This inspection technique has been demonstrated to be a powerful tool for the automatic location and quantification of structural damage, as illustrated using dented pipes.

  18. Parental Socioeconomic Status and the Neural Basis of Arithmetic: Differential Relations to Verbal and Visuo-spatial Representations

    Science.gov (United States)

    Demir, Özlem Ece; Prado, Jérôme; Booth, James R.

    2015-01-01

    We examined the relation of parental socioeconomic status (SES) to the neural bases of subtraction in school-age children (9- to 12-year-olds). We independently localized brain regions subserving verbal versus visuo-spatial representations to determine whether the parental SES-related differences in children’s reliance on these neural representations vary as a function of math skill. At higher SES levels, higher skill was associated with greater recruitment of the left temporal cortex, identified by the verbal localizer. At lower SES levels, higher skill was associated with greater recruitment of right parietal cortex, identified by the visuo-spatial localizer. This suggests that depending on parental SES, children engage different neural systems to solve subtraction problems. Furthermore, SES was related to the activation in the left temporal and frontal cortex during the independent verbal localizer task, but it was not related to activation during the independent visuo-spatial localizer task. Differences in activation during the verbal localizer task in turn were related to differences in activation during the subtraction task in right parietal cortex. The relation was stronger at lower SES levels. This result suggests that SES-related differences in the visuo-spatial regions during subtraction might be based in SES-related verbal differences. PMID:25664675

  19. Quasi-discreted dynamics of a neural net: The lighthouse model

    Directory of Open Access Journals (Sweden)

    Hermann Haken

    2000-01-01

    Full Text Available This paper studies the features of a net of pulse-coupled model neurons, taking into account the dynamics of dendrites and axons. The axonal pulses are modelled by δ-functions. In the case of small damping of dendritic currents, the model can be treated exactly and explicitly. Because of the δ-functions, the phase-equations can be converted into algebraic equations at discrete times. We first exemplify our procedure by two neurons, and then present the results for N neurons. We admit a general dependence of input and coupling strengths on the neuronal indices. In detail, the results are

  20. Fast neural-net based fake track rejection in the LHCb reconstruction

    CERN Document Server

    De Cian, Michel; Seyfert, Paul; Stahl, Sascha

    2017-01-01

    A neural-network based algorithm to identify fake tracks in the LHCb pattern recognition is presented. This algorithm, called ghost probability, retains more than 99 % of well reconstructed tracks while reducing the number of fake tracks by 60 %. It is fast enough to fit into the CPU time budget of the software trigger farm and thus reduces the combinatorics of the decay reconstructions, as well as the number of tracks that need to be processed by the particle identification algorithms. As a result, it strongly contributes to the achievement of having the same reconstruction online and offline in the LHCb experiment in Run II of the LHC.

  1. Development of the neural net technique for particle physics. Study of the e+e- → Z0 → γH reaction

    International Nuclear Information System (INIS)

    Guicheney, C.

    1992-01-01

    This study is concerned with the application of pattern recognition methods through neural networks to High Energy physics. Two methods, Hopfield nets and multilayer nets, are analyzed and shown to have high potential for (resp.) clusterization and classification. Hopfield nets are used for the recognition of jets occurring during the fragmentation process of the e + e - reaction. Multilayer nets are used for the whole reaction analysis. Impediments are pointed out. Associated background noise is also examined. Multilayer nets may enhance the signal to noise ratio when looking for an upper limit for the production of a Higgs boson in the expected canal, and allow for the specific study of the γ b anti b

  2. An Improved Technology of Remote Sensing Image Fusion Based Waveled Packet and Pulse Coupled Neural Net

    Directory of Open Access Journals (Sweden)

    Wenxing Bao

    2012-09-01

    Full Text Available To resolve the problem of multi-spectral remote sensing image fusion ?in this paper, we put forward an algorithm based on the wavelet packet and pulse-coupled neural network (PCNN of remote sensing image fusion .The algorithm will be carried out as follows. Firstly, the TM images will be converted into HIS space, and then the luminance component and the high-resolution image will be broken into multi-scale by wavelet packet. Secondly, according to the frequency domain characteristics of the wavelet packet decomposition, we respectively use a method of weighted average in the low-frequency domain and a method of PCNN in the high frequency domain to select reconstruction coefficient.We can get a fused luminance component by taking inverse wavelet packet transform to be reconstructed. Finally, we can obtain the fusion image by taking inverse HIS transform. The experimental results show that the algorithm can be better to retain the image edge and texture details.   Keywords: image fusion; HSI; wavelet packet; pulse coupled neural networks  

  3. Built-in self-repair of VLSI memories employing neural nets

    Science.gov (United States)

    Mazumder, Pinaki

    1998-10-01

    The decades of the Eighties and the Nineties have witnessed the spectacular growth of VLSI technology, when the chip size has increased from a few hundred devices to a staggering multi-millon transistors. This trend is expected to continue as the CMOS feature size progresses towards the nanometric dimension of 100 nm and less. SIA roadmap projects that, where as the DRAM chips will integrate over 20 billion devices in the next millennium, the future microprocessors may incorporate over 100 million transistors on a single chip. As the VLSI chip size increase, the limited accessibility of circuit components poses great difficulty for external diagnosis and replacement in the presence of faulty components. For this reason, extensive work has been done in built-in self-test techniques, but little research is known concerning built-in self-repair. Moreover, the extra hardware introduced by conventional fault-tolerance techniques is also likely to become faulty, therefore causing the circuit to be useless. This research demonstrates the feasibility of implementing electronic neural networks as intelligent hardware for memory array repair. Most importantly, we show that the neural network control possesses a robust and degradable computing capability under various fault conditions. Overall, a yield analysis performed on 64K DRAM's shows that the yield can be improved from as low as 20 percent to near 99 percent due to the self-repair design, with overhead no more than 7 percent.

  4. Comparisons of a Quantum Annealing and Classical Computer Neural Net Approach for Inferring Global Annual CO2 Fluxes over Land

    Science.gov (United States)

    Halem, M.; Radov, A.; Singh, D.

    2017-12-01

    Investigations of mid to high latitude atmospheric CO2 show growing amplitudes in seasonal variations over the past several decades. Recent high-resolution satellite measurements of CO2 concentration are now available for three years from the Orbiting Carbon Observatory-2. The Atmospheric Radiation Measurement (ARM) program of DOE has been making long-term CO2-flux measurements (in addition to CO2 concentration and an array of other meteorological quantities) at several towers and mobile sites located around the globe at half-hour frequencies. Recent papers have shown CO2 fluxes inferred by assimilating CO2 observations into ecosystem models are largely inconsistent with station observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. Thus, new approaches for calculating CO2-flux for assimilation into land surface models are necessary for improving the prediction of annual carbon uptake. In this study, we calculate and compare the predicted CO2 fluxes results employing a Feed Forward Backward Propagation Neural Network model on two architectures, (i) an IBM Minsky Computer node and (ii) a hybrid version of the ARC D-Wave quantum annealing computer. We compare the neural net results of predictions of CO2 flux from ARM station data for three different DOE ecosystem sites; an arid plains near Oklahoma City, a northern arctic site at Barrows AL, and a tropical rainforest site in the Amazon. Training times and predictive results for the calculating annual CO2 flux for the two architectures for each of the three sites are presented. Comparative results of predictions as measured by RMSE and MAE are discussed. Plots and correlations of observed vs predicted CO2 flux are also presented for all three sites. We show the estimated training times for quantum and classical calculations when extended to calculating global annual Carbon Uptake over land. We also

  5. Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris.

    Directory of Open Access Journals (Sweden)

    Martin F Strube-Bloss

    Full Text Available To trigger innate behavior, sensory neural networks are pre-tuned to extract biologically relevant stimuli. Many male-female or insect-plant interactions depend on this phenomenon. Especially communication among individuals within social groups depends on innate behaviors. One example is the efficient recruitment of nest mates by successful bumblebee foragers. Returning foragers release a recruitment pheromone in the nest while they perform a 'dance' behavior to activate unemployed nest mates. A major component of this pheromone is the sesquiterpenoid farnesol. How farnesol is processed and perceived by the olfactory system, has not yet been identified. It is much likely that processing farnesol involves an innate mechanism for the extraction of relevant information to trigger a fast and reliable behavioral response. To test this hypothesis, we used population response analyses of 100 antennal lobe (AL neurons recorded in alive bumblebee workers under repeated stimulation with four behaviorally different, but chemically related odorants (geraniol, citronellol, citronellal and farnesol. The analysis identified a unique neural representation of the recruitment pheromone component compared to the other odorants that are predominantly emitted by flowers. The farnesol induced population activity in the AL allowed a reliable separation of farnesol from all other chemically related odor stimuli we tested. We conclude that the farnesol induced population activity may reflect a predetermined representation within the AL-neural network allowing efficient and fast extraction of a behaviorally relevant stimulus. Furthermore, the results show that population response analyses of multiple single AL-units may provide a powerful tool to identify distinct representations of behaviorally relevant odors.

  6. A modular artificial neural net for controlling a six-legged walking system.

    Science.gov (United States)

    Cruse, H; Bartling, C; Cymbalyuk, G; Dean, J; Dreifert, M

    1995-01-01

    A system that controls the leg movement of an animal or a robot walking over irregular ground has to ensure stable support for the body and at the same time propel it forward. To do so, it has to react adaptively to unpredictable features of the environment. As part of our study of the underlying mechanisms, we present here a model for the control of the leg movement of a 6-legged walking system. The model is based on biological data obtained from the stick insect. It represents a combined treatment of realistic kinematics and biologically motivated, adaptive gait generation. The model extends a previous algorithmic model by substituting simple networks of artificial neurons for the algorithms previously used to control leg state and interleg coordination. Each system controlling an individual leg consists of three subnets. A hierarchically superior net contains two sensory and two 'premotor' units; it rhythmically suppresses the output of one or the other of the two subordinate nets. These are continuously active. They might be called the 'swing module' and the 'stance module' because they are responsible for controlling the swing (return stroke) and the stance (power stroke) movements, respectively. The swing module consists of three motor units and seven sensory units. It can produce appropriate return stroke movements for a broad range of initial and final positions, can cope with mechanical disturbances of the leg movement, and is able to react to an obstacle which hinders the normal performance of the swing movement. The complete model is able to walk at different speeds over irregular surfaces. The control system rapidly reestablishes a stable gait when the movement of the legs is disturbed.

  7. Neural overlap of L1 and L2 semantic representations in speech : A decoding approach

    NARCIS (Netherlands)

    Van De Putte, Eowyn; De Baene, W.; Brass, Marcel; Duyck, Wouter

    2017-01-01

    Although research has now converged towards a consensus that both languages of a bilingual are represented in at least partly shared systems for language comprehension, it remains unclear whether both languages are represented in the same neural populations for production. We investigated the neural

  8. Recurrent Neural Network Approach Based on the Integral Representation of the Drazin Inverse.

    Science.gov (United States)

    Stanimirović, Predrag S; Živković, Ivan S; Wei, Yimin

    2015-10-01

    In this letter, we present the dynamical equation and corresponding artificial recurrent neural network for computing the Drazin inverse for arbitrary square real matrix, without any restriction on its eigenvalues. Conditions that ensure the stability of the defined recurrent neural network as well as its convergence toward the Drazin inverse are considered. Several illustrative examples present the results of computer simulations.

  9. Oscillatory neural representations in the sensory thalamus predict neuropathic pain relief by deep brain stimulation.

    Science.gov (United States)

    Huang, Yongzhi; Green, Alexander L; Hyam, Jonathan; Fitzgerald, James; Aziz, Tipu Z; Wang, Shouyan

    2018-01-01

    Understanding the function of sensory thalamic neural activity is essential for developing and improving interventions for neuropathic pain. However, there is a lack of investigation of the relationship between sensory thalamic oscillations and pain relief in patients with neuropathic pain. This study aims to identify the oscillatory neural characteristics correlated with pain relief induced by deep brain stimulation (DBS), and develop a quantitative model to predict pain relief by integrating characteristic measures of the neural oscillations. Measures of sensory thalamic local field potentials (LFPs) in thirteen patients with neuropathic pain were screened in three dimensional feature space according to the rhythm, balancing, and coupling neural behaviours, and correlated with pain relief. An integrated approach based on principal component analysis (PCA) and multiple regression analysis is proposed to integrate the multiple measures and provide a predictive model. This study reveals distinct thalamic rhythms of theta, alpha, high beta and high gamma oscillations correlating with pain relief. The balancing and coupling measures between these neural oscillations were also significantly correlated with pain relief. The study enriches the series research on the function of thalamic neural oscillations in neuropathic pain and relief, and provides a quantitative approach for predicting pain relief by DBS using thalamic neural oscillations. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Data Normalization to Accelerate Training for Linear Neural Net to Predict Tropical Cyclone Tracks

    Directory of Open Access Journals (Sweden)

    Jian Jin

    2015-01-01

    Full Text Available When pure linear neural network (PLNN is used to predict tropical cyclone tracks (TCTs in South China Sea, whether the data is normalized or not greatly affects the training process. In this paper, min.-max. method and normal distribution method, instead of standard normal distribution, are applied to TCT data before modeling. We propose the experimental schemes in which, with min.-max. method, the min.-max. value pair of each variable is mapped to (−1, 1 and (0, 1; with normal distribution method, each variable’s mean and standard deviation pair is set to (0, 1 and (100, 1. We present the following results: (1 data scaled to the similar intervals have similar effects, no matter the use of min.-max. or normal distribution method; (2 mapping data to around 0 gains much faster training speed than mapping them to the intervals far away from 0 or using unnormalized raw data, although all of them can approach the same lower level after certain steps from their training error curves. This could be useful to decide data normalization method when PLNN is used individually.

  11. HAWC Analysis of the Crab Nebula Using Neural-Net Energy Reconstruction

    Science.gov (United States)

    Marinelli, Samuel; HAWC Collaboration

    2017-01-01

    The HAWC (High-Altitude Water-Cherenkov) experiment is a TeV γ-ray observatory located 4100 m above sea level on the Sierra Negra mountain in Puebla, Mexico. The detector consists of 300 water-filled tanks, each instrumented with 4 photomuliplier tubes that utilize the water-Cherenkov technique to detect atmospheric air showers produced by cosmic γ rays. Construction of HAWC was completed in March, 2015. The experiment's wide field of view (2 sr) and high duty cycle (> 95 %) make it a powerful survey instrument sensitive to pulsar wind nebulae, supernova remnants, active galactic nuclei, and other γ-ray sources. The mechanisms of particle acceleration at these sources can be studied by analyzing their energy spectra. To this end, we have developed an event-by-event energy-reconstruction algorithm employing an artificial neural network to estimate energies of primary γ rays. The Crab Nebula, the brightest source of TeV photons, makes an excellent calibration source for this technique. We will present preliminary results from an analysis of the Crab energy spectrum using this new energy-reconstruction method. This work was supported by the National Science Foundation.

  12. Recognition of malignant processes with neural nets from ESR spectra of serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, P. [Inst. of Medical Physics and Biophysics, Univ. Leipzig (Germany); Gurachevsky, A.; Muravsky, V.; Schnurr, K.; Seibt, G. [Medinnovation GmbH, Wildau (Germany); Matthes, G. [Inst. of Transfusion Medicine, Univ. Hospital Leipzig (Germany)

    2005-07-01

    Cancer diseases are the focus of intense research due to their frequent occurrence. It is known from the literature that serum proteins are changed in the case of malignant processes. Changes of albumin conformation, transport efficiency, and binding characteristics can be determined by electron spin resonance spectroscopy (ESR). The present study analysed the binding/dissociation function of albumin with an ESR method using 16-doxyl stearate spin probe as reporter molecule and ethanol as modifier of hydrophobic interactions. Native and frozen plasma of healthy donors (608 samples), patients with malignant diseases (423 samples), and patients with benign conditions (221 samples) were analysed. The global specificity was 91% and the sensitivity 96%. In look-back samples of 27 donors, a malignant process could be detected up to 30 months before clinical diagnosis. To recognise different entities of malignant diseases from the ESR spectra, Artificial neural networks were implemented. For 48 female donors with breast cancer, the recognition specificity was 85%. Other carcinoma entities (22 colon, 18 prostate, 12 stomach) were recognised with specificities between 75% and 84%. Should these specificity values be reproduced in larger studies, the described method could be used as a new specific tumour marker for the early detection of malignant processes. Since transmission of cancer via blood transfusion cannot be excluded as yet, the described ESR method could also be used as a quality test for plasma products. (orig.)

  13. BrainSegNet: a convolutional neural network architecture for automated segmentation of human brain structures.

    Science.gov (United States)

    Mehta, Raghav; Majumdar, Aabhas; Sivaswamy, Jayanthi

    2017-04-01

    Automated segmentation of cortical and noncortical human brain structures has been hitherto approached using nonrigid registration followed by label fusion. We propose an alternative approach for this using a convolutional neural network (CNN) which classifies a voxel into one of many structures. Four different kinds of two-dimensional and three-dimensional intensity patches are extracted for each voxel, providing local and global (context) information to the CNN. The proposed approach is evaluated on five different publicly available datasets which differ in the number of labels per volume. The obtained mean Dice coefficient varied according to the number of labels, for example, it is [Formula: see text] and [Formula: see text] for datasets with the least (32) and the most (134) number of labels, respectively. These figures are marginally better or on par with those obtained with the current state-of-the-art methods on nearly all datasets, at a reduced computational time. The consistently good performance of the proposed method across datasets and no requirement for registration make it attractive for many applications where reduced computational time is necessary.

  14. Recognition of malignant processes with neural nets from ESR spectra of serum albumin

    International Nuclear Information System (INIS)

    Seidel, P.; Gurachevsky, A.; Muravsky, V.; Schnurr, K.; Seibt, G.; Matthes, G.

    2005-01-01

    Cancer diseases are the focus of intense research due to their frequent occurrence. It is known from the literature that serum proteins are changed in the case of malignant processes. Changes of albumin conformation, transport efficiency, and binding characteristics can be determined by electron spin resonance spectroscopy (ESR). The present study analysed the binding/dissociation function of albumin with an ESR method using 16-doxyl stearate spin probe as reporter molecule and ethanol as modifier of hydrophobic interactions. Native and frozen plasma of healthy donors (608 samples), patients with malignant diseases (423 samples), and patients with benign conditions (221 samples) were analysed. The global specificity was 91% and the sensitivity 96%. In look-back samples of 27 donors, a malignant process could be detected up to 30 months before clinical diagnosis. To recognise different entities of malignant diseases from the ESR spectra, Artificial neural networks were implemented. For 48 female donors with breast cancer, the recognition specificity was 85%. Other carcinoma entities (22 colon, 18 prostate, 12 stomach) were recognised with specificities between 75% and 84%. Should these specificity values be reproduced in larger studies, the described method could be used as a new specific tumour marker for the early detection of malignant processes. Since transmission of cancer via blood transfusion cannot be excluded as yet, the described ESR method could also be used as a quality test for plasma products. (orig.)

  15. Generation of daily solar irradiation by means of artificial neural net works

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Adalberto N.; Tiba, Chigueru; Fraidenraich, Naum [Departamento de Energia Nuclear, da Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, 1000 - CDU, CEP 50.740-540 Recife, Pernambuco (Brazil)

    2010-11-15

    The present study proposes the utilization of Artificial Neural Networks (ANN) as an alternative for generating synthetic series of daily solar irradiation. The sequences were generated from the use of daily temporal series of a group of meteorological variables that were measured simultaneously. The data used were measured between the years of 1998 and 2006 in two temperate climate localities of Brazil, Ilha Solteira (Sao Paulo) and Pelotas (Rio Grande do Sul). The estimates were taken for the months of January, April, July and October, through two models which are distinguished regarding the use or nonuse of measured bright sunshine hours as an input variable. An evaluation of the performance of the 56 months of solar irradiation generated by way of ANN showed that by using the measured bright sunshine hours as an input variable (model 1), the RMSE obtained were less or equal to 23.2% being that of those, although 43 of those months presented RMSE less or equal to 12.3%. In the case of the model that did not use the measured bright sunshine hours but used a daylight length (model 2), RMSE were obtained that varied from 8.5% to 37.5%, although 38 of those months presented RMSE less or equal to 20.0%. A comparison of the monthly series for all of the years, achieved by means of the Kolmogorov-Smirnov test (to a confidence level of 99%), demonstrated that of the 16 series generated by ANN model only two, obtained by model 2 for the months of April and July in Pelotas, presented significant difference in relation to the distributions of the measured series and that all mean deviations obtained were inferior to 0.39 MJ/m{sup 2}. It was also verified that the two ANN models were able to reproduce the principal statistical characteristics of the frequency distributions of the measured series such as: mean, mode, asymmetry and Kurtosis. (author)

  16. Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses

    Directory of Open Access Journals (Sweden)

    Mattia Rigotti

    2010-10-01

    Full Text Available Neural activity of behaving animals, especially in the prefrontal cortex, is highly heterogeneous, with selective responses to diverse aspects of the executed task. We propose a general model of recurrent neural networks that perform complex rule-based tasks, and we show that the diversity of neuronal responses plays a fundamental role when the behavioral responses are context dependent. Specifically, we found that when the inner mental states encoding the task rules are represented by stable patterns of neural activity (attractors of the neural dynamics, the neurons must be selective for combinations of sensory stimuli and inner mental states. Such mixed selectivity is easily obtained by neurons that connect with random synaptic strengths both to the recurrent network and to neurons encoding sensory inputs. The number of randomly connected neurons needed to solve a task is on average only three times as large as the number of neurons needed in a network designed ad hoc. Moreover, the number of needed neurons grows only linearly with the number of task-relevant events and mental states, provided that each neuron responds to a large proportion of events (dense/distributed coding. A biologically realistic implementation of the model captures several aspects of the activity recorded from monkeys performing context dependent tasks. Our findings explain the importance of the diversity of neural responses and provide us with simple and general principles for designing attractor neural networks that perform complex computation.

  17. A 3D Active Learning Application for NeMO-Net, the NASA Neural Multi-Modal Observation and Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    van den Bergh, Jarrett; Schutz, Joey; Li, Alan; Chirayath, Ved

    2017-01-01

    NeMO-Net, the NASA neural multi-modal observation and training network for global coral reef assessment, is an open-source deep convolutional neural network and interactive active learning training software aiming to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology as well as mapping of spatial distribution. We present an interactive video game prototype for tablet and mobile devices where users interactively label morphology classifications over mm-scale 3D coral reef imagery captured using fluid lensing to create a dataset that will be used to train NeMO-Nets convolutional neural network. The application currently allows for users to classify preselected regions of coral in the Pacific and will be expanded to include additional regions captured using our NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as lower-resolution airborne remote sensing data from the ongoing NASA CORAL campaign. Active learning applications present a novel methodology for efficiently training large-scale Neural Networks wherein variances in identification can be rapidly mitigated against control data. NeMO-Net periodically checks users input against pre-classified coral imagery to gauge their accuracy and utilize in-game mechanics to provide classification training. Users actively communicate with a server and are requested to classify areas of coral for which other users had conflicting classifications and contribute their input to a larger database for ranking. In partnering with Mission Blue and IUCN, NeMO-Net leverages an international consortium of subject matter experts to classify areas of confusion identified by NeMO-Net and generate additional labels crucial for identifying decision boundary locations in coral reef assessment.

  18. A 3D Active Learning Application for NeMO-Net, the NASA Neural Multi-Modal Observation and Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    van den Bergh, J.; Schutz, J.; Chirayath, V.; Li, A.

    2017-12-01

    NeMO-Net, the NASA neural multi-modal observation and training network for global coral reef assessment, is an open-source deep convolutional neural network and interactive active learning training software aiming to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology as well as mapping of spatial distribution. We present an interactive video game prototype for tablet and mobile devices where users interactively label morphology classifications over mm-scale 3D coral reef imagery captured using fluid lensing to create a dataset that will be used to train NeMO-Net's convolutional neural network. The application currently allows for users to classify preselected regions of coral in the Pacific and will be expanded to include additional regions captured using our NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as lower-resolution airborne remote sensing data from the ongoing NASA CORAL campaign.Active learning applications present a novel methodology for efficiently training large-scale Neural Networks wherein variances in identification can be rapidly mitigated against control data. NeMO-Net periodically checks users' input against pre-classified coral imagery to gauge their accuracy and utilizes in-game mechanics to provide classification training. Users actively communicate with a server and are requested to classify areas of coral for which other users had conflicting classifications and contribute their input to a larger database for ranking. In partnering with Mission Blue and IUCN, NeMO-Net leverages an international consortium of subject matter experts to classify areas of confusion identified by NeMO-Net and generate additional labels crucial for identifying decision boundary locations in coral reef assessment.

  19. Illusions in the spatial sense of the eye: geometrical-optical illusions and the neural representation of space.

    Science.gov (United States)

    Westheimer, Gerald

    2008-09-01

    Differences between the geometrical properties of simple configurations and their visual percept are called geometrical-optical illusions. They can be differentiated from illusions in the brightness or color domains, from ambiguous figures and impossible objects, from trompe l'oeil and perspective drawing with perfectly valid views, and from illusory contours. They were discovered independently by several scientists in a short time span in the 1850's. The clear distinction between object and visual space that they imply allows the question to be raised whether the transformation between the two spaces can be productively investigated in terms of differential geometry and metrical properties. Perceptual insight and psychophysical research prepares the ground for investigation of the neural representation of space but, because visual attributes are processed separately in parallel, one looks in vain for a neural map that is isomorphic with object space or even with individual forms it contains. Geometrical-optical illusions help reveal parsing rules for sensory signals by showing how conflicts are resolved when there is mismatch in the output of the processing modules for various primitives as a perceptual pattern's unitary structure is assembled. They point to a hierarchical ordering of spatial primitives: cardinal directions and explicit contours predominate over oblique orientation and implicit contours (Poggendorff illusion); rectilinearity yields to continuity (Hering illusion), point position and line length to contour orientation (Ponzo). Hence the geometrical-optical illusions show promise as analytical tools in unraveling neural processing in vision.

  20. Reward Selectively Modulates the Lingering Neural Representation of Recently Attended Objects in Natural Scenes.

    Science.gov (United States)

    Hickey, Clayton; Peelen, Marius V

    2017-08-02

    Theories of reinforcement learning and approach behavior suggest that reward can increase the perceptual salience of environmental stimuli, ensuring that potential predictors of outcome are noticed in the future. However, outcome commonly follows visual processing of the environment, occurring even when potential reward cues have long disappeared. How can reward feedback retroactively cause now-absent stimuli to become attention-drawing in the future? One possibility is that reward and attention interact to prime lingering visual representations of attended stimuli that sustain through the interval separating stimulus and outcome. Here, we test this idea using multivariate pattern analysis of fMRI data collected from male and female humans. While in the scanner, participants searched for examples of target categories in briefly presented pictures of cityscapes and landscapes. Correct task performance was followed by reward feedback that could randomly have either high or low magnitude. Analysis showed that high-magnitude reward feedback boosted the lingering representation of target categories while reducing the representation of nontarget categories. The magnitude of this effect in each participant predicted the behavioral impact of reward on search performance in subsequent trials. Other analyses show that sensitivity to reward-as expressed in a personality questionnaire and in reactivity to reward feedback in the dopaminergic midbrain-predicted reward-elicited variance in lingering target and nontarget representations. Credit for rewarding outcome thus appears to be assigned to the target representation, causing the visual system to become sensitized for similar objects in the future. SIGNIFICANCE STATEMENT How do reward-predictive visual stimuli become salient and attention-drawing? In the real world, reward cues precede outcome and reward is commonly received long after potential predictors have disappeared. How can the representation of environmental stimuli

  1. Estimation of net surface radiation from eddy flux tower measurements using artificial neural network for cloudy skies

    Directory of Open Access Journals (Sweden)

    Dangeti Venkata Mahalakshmi

    2016-01-01

    Full Text Available Accurate knowledge of net surface radiation (NSR is required to understand the soil-vegetation-atmosphere feedbacks. However, NSR is seldom measured due to the technical and economical limitations associated with direct measurements. An artificial neural network (ANN technique with Levenberg–Marquardt learning algorithm was used to estimate NSR for a tropical mangrove forest of Indian Sundarban with routinely measured meteorological variables. The root mean square error (RMSE, mean absolute error (MAE, modelling efficiency (ME, coefficient of residual mass (CRM and coefficient of determination (R2 between ANN estimated and measured NSR were 37 W m−2, 26 W m−2, 0.95, 0.017 and 0.97 respectively under all-weather conditions. Thus, the ANN estimated NSR values presented in this study are comparable to those reported in literature. Further, a detailed study on the estimated NSR for cloudy skies was also analysed. ANN estimated NSR values were compared with in situ measurements for cloudy days and non-cloudy days. The RMSE, MAE and CRM of the model decrease to half when considering the non-cloudy days. Thus, the results demonstrate that major source error in estimating NSR comes from the cloudy skies. Sensitivity of input variables to NSR was further analysed.

  2. SiNC: Saliency-injected neural codes for representation and efficient retrieval of medical radiographs.

    Directory of Open Access Journals (Sweden)

    Jamil Ahmad

    Full Text Available Medical image collections contain a wealth of information which can assist radiologists and medical experts in diagnosis and disease detection for making well-informed decisions. However, this objective can only be realized if efficient access is provided to semantically relevant cases from the ever-growing medical image repositories. In this paper, we present an efficient method for representing medical images by incorporating visual saliency and deep features obtained from a fine-tuned convolutional neural network (CNN pre-trained on natural images. Saliency detector is employed to automatically identify regions of interest like tumors, fractures, and calcified spots in images prior to feature extraction. Neuronal activation features termed as neural codes from different CNN layers are comprehensively studied to identify most appropriate features for representing radiographs. This study revealed that neural codes from the last fully connected layer of the fine-tuned CNN are found to be the most suitable for representing medical images. The neural codes extracted from the entire image and salient part of the image are fused to obtain the saliency-injected neural codes (SiNC descriptor which is used for indexing and retrieval. Finally, locality sensitive hashing techniques are applied on the SiNC descriptor to acquire short binary codes for allowing efficient retrieval in large scale image collections. Comprehensive experimental evaluations on the radiology images dataset reveal that the proposed framework achieves high retrieval accuracy and efficiency for scalable image retrieval applications and compares favorably with existing approaches.

  3. Imprecision and uncertainty in information representation and processing new tools based on intuitionistic fuzzy sets and generalized nets

    CERN Document Server

    Sotirov, Sotir

    2016-01-01

    The book offers a comprehensive and timely overview of advanced mathematical tools for both uncertainty analysis and modeling of parallel processes, with a special emphasis on intuitionistic fuzzy sets and generalized nets. The different chapters, written by active researchers in their respective areas, are structured to provide a coherent picture of this interdisciplinary yet still evolving field of science. They describe key tools and give practical insights into and research perspectives on the use of Atanassov's intuitionistic fuzzy sets and logic, and generalized nets for describing and dealing with uncertainty in different areas of science, technology and business, in a single, to date unique book. Here, readers find theoretical chapters, dealing with intuitionistic fuzzy operators, membership functions and algorithms, among other topics, as well as application-oriented chapters, reporting on the implementation of methods and relevant case studies in management science, the IT industry, medicine and/or ...

  4. Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation.

    Science.gov (United States)

    Xie, Jiaheng; Liu, Xiao; Dajun Zeng, Daniel

    2018-01-01

    Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers' e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media. Our deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network. Our Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed. Although the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. Training data representation in a neural based robot position estimation system

    International Nuclear Information System (INIS)

    Taraglio, S.; Di Fonzo, F.; Burrascano, P.

    1997-03-01

    The vision subsystem of an autonomous vehicle is studies. It is based on a multi layer perceptron that uses TV images to estimate the position of the vehicle. A comparative study of the effects of output data representation and input data processing is presented and discussed

  6. A study on neural network representation of reactor power control procedures

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Byung Soo; Park, J. C.; Kim, Y. T.; Yang, S. U.; Lee, H. C.; Hwang, I. A.; Hwang, H. S

    1997-12-01

    A neural algorithm to carry out the curve readings and arithmetic computations necessary for reactor power control is described in this report. The curve readings are for functions of the form z=f(x,y) and require fairly good interpolations. One of the functions is the total power defect as a function of reactor power and boron concentration. The second is the new position of control rod as a function of the current rod position and the increment of total power defect needed for the required power change. The curves involving xenon effect are also considered separately. We represented these curves by cubic spline interpolations first and then converted them to fuzzy systems so that they perform the identical interpolations as the splines. The resulting fuzzy systems are then converted to artificial neural networks similar to the RBF type neural network. These networks still carry the O(h`4) accuracy as the cubic spline interpolating functions. Also included is a description of an important result on how to find the spline interpolation coefficients without solving the matrix equation, when the function is a polynomial of the form f(t)=t`m. This result provides a systematic way of presenting continuous functions by fuzzy systems and hence by artificial neural networks without any training. (author). 10 refs., 2 tabs., 10 figs

  7. Prior Knowledge about Objects Determines Neural Color Representation in Human Visual Cortex.

    Science.gov (United States)

    Vandenbroucke, A R E; Fahrenfort, J J; Meuwese, J D I; Scholte, H S; Lamme, V A F

    2016-04-01

    To create subjective experience, our brain must translate physical stimulus input by incorporating prior knowledge and expectations. For example, we perceive color and not wavelength information, and this in part depends on our past experience with colored objects ( Hansen et al. 2006; Mitterer and de Ruiter 2008). Here, we investigated the influence of object knowledge on the neural substrates underlying subjective color vision. In a functional magnetic resonance imaging experiment, human subjects viewed a color that lay midway between red and green (ambiguous with respect to its distance from red and green) presented on either typical red (e.g., tomato), typical green (e.g., clover), or semantically meaningless (nonsense) objects. Using decoding techniques, we could predict whether subjects viewed the ambiguous color on typical red or typical green objects based on the neural response of veridical red and green. This shift of neural response for the ambiguous color did not occur for nonsense objects. The modulation of neural responses was observed in visual areas (V3, V4, VO1, lateral occipital complex) involved in color and object processing, as well as frontal areas. This demonstrates that object memory influences wavelength information relatively early in the human visual system to produce subjective color vision. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Social categories shape the neural representation of emotion: evidence from a visual face adaptation task

    NARCIS (Netherlands)

    Otten, M.; Banaji, M.R.

    2012-01-01

    A number of recent behavioral studies have shown that emotional expressions are differently perceived depending on the race of a face, and that perception of race cues is influenced by emotional expressions. However, neural processes related to the perception of invariant cues that indicate the

  9. Image Classification System Based on Cortical Representations and Unsupervised Neural Network Learning

    NARCIS (Netherlands)

    Petkov, Nikolay

    1995-01-01

    A preprocessor based on a computational model of simple cells in the mammalian primary visual cortex is combined with a self-organising artificial neural network classifier. After learning with a sequence of input images, the output units of the system turn out to correspond to classes of input

  10. NeMO-Net - The Neural Multi-Modal Observation & Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    Li, A. S. X.; Chirayath, V.; Segal-Rosenhaimer, M.; Das, K.

    2017-12-01

    In the past decade, coral reefs worldwide have experienced unprecedented stresses due to climate change, ocean acidification, and anthropomorphic pressures, instigating massive bleaching and die-off of these fragile and diverse ecosystems. Furthermore, remote sensing of these shallow marine habitats is hindered by ocean wave distortion, refraction and optical attenuation, leading invariably to data products that are often of low resolution and signal-to-noise (SNR) ratio. However, recent advances in UAV and Fluid Lensing technology have allowed us to capture multispectral 3D imagery of these systems at sub-cm scales from above the water surface, giving us an unprecedented view of their growth and decay. Exploiting the fine-scaled features of these datasets, machine learning methods such as MAP, PCA, and SVM can not only accurately classify the living cover and morphology of these reef systems (below 8% error), but are also able to map the spectral space between airborne and satellite imagery, augmenting and improving the classification accuracy of previously low-resolution datasets.We are currently implementing NeMO-Net, the first open-source deep convolutional neural network (CNN) and interactive active learning and training software to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology. NeMO-Net will be built upon the QGIS platform to ingest UAV, airborne and satellite datasets from various sources and sensor capabilities, and through data-fusion determine the coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. To achieve this, we will exploit virtual data augmentation, the use of semi-supervised learning, and active learning through a tablet platform allowing for users to manually train uncertain or difficult to classify datasets. The project will make use of Python's extensive libraries for machine learning, as well as extending integration to GPU

  11. NeMO-Net: The Neural Multi-Modal Observation and Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    Chirayath, Ved

    2017-01-01

    In the past decade, coral reefs worldwide have experienced unprecedented stresses due to climate change, ocean acidification, and anthropomorphic pressures, instigating massive bleaching and die-off of these fragile and diverse ecosystems. Furthermore, remote sensing of these shallow marine habitats is hindered by ocean wave distortion, refraction and optical attenuation, leading invariably to data products that are often of low resolution and signal-to-noise (SNR) ratio. However, recent advances in UAV and Fluid Lensing technology have allowed us to capture multispectral 3D imagery of these systems at sub-cm scales from above the water surface, giving us an unprecedented view of their growth and decay. Exploiting the fine-scaled features of these datasets, machine learning methods such as MAP, PCA, and SVM can not only accurately classify the living cover and morphology of these reef systems (below 8 percent error), but are also able to map the spectral space between airborne and satellite imagery, augmenting and improving the classification accuracy of previously low-resolution datasets. We are currently implementing NeMO-Net, the first open-source deep convolutional neural network (CNN) and interactive active learning and training software to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology. NeMO-Net will be built upon the QGIS platform to ingest UAV, airborne and satellite datasets from various sources and sensor capabilities, and through data-fusion determine the coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. To achieve this, we will exploit virtual data augmentation, the use of semi-supervised learning, and active learning through a tablet platform allowing for users to manually train uncertain or difficult to classify datasets. The project will make use of Pythons extensive libraries for machine learning, as well as extending integration

  12. NeMO-Net The Neural Multi-Modal Observation Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    Li, Alan; Chirayath, Ved

    2017-01-01

    In the past decade, coral reefs worldwide have experienced unprecedented stresses due to climate change, ocean acidification, and anthropomorphic pressures, instigating massive bleaching and die-off of these fragile and diverse ecosystems. Furthermore, remote sensing of these shallow marine habitats is hindered by ocean wave distortion, refraction and optical attenuation, leading invariably to data products that are often of low resolution and signal-to-noise (SNR) ratio. However, recent advances in UAV and Fluid Lensing technology have allowed us to capture multispectral 3D imagery of these systems at sub-cm scales from above the water surface, giving us an unprecedented view of their growth and decay. Exploiting the fine-scaled features of these datasets, machine learning methods such as MAP, PCA, and SVM can not only accurately classify the living cover and morphology of these reef systems (below 8 error), but are also able to map the spectral space between airborne and satellite imagery, augmenting and improving the classification accuracy of previously low-resolution datasets.We are currently implementing NeMO-Net, the first open-source deep convolutional neural network (CNN) and interactive active learning and training software to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology. NeMO-Net will be built upon the QGIS platform to ingest UAV, airborne and satellite datasets from various sources and sensor capabilities, and through data-fusion determine the coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. To achieve this, we will exploit virtual data augmentation, the use of semi-supervised learning, and active learning through a tablet platform allowing for users to manually train uncertain or difficult to classify datasets. The project will make use of Pythons extensive libraries for machine learning, as well as extending integration to GPU and

  13. Assessment of the expected construction company’s net profit using neural network and multiple regression models

    OpenAIRE

    Mohamad, H.H.; Ibrahim, A.H.; Massoud, H.H.

    2013-01-01

    Net profit is an important financial performance indicator for any construction firm. Firm financial managers should strive to maximize this net profit. Modeling company’s net profit helps to investigate the serious effects of the different financial conditions on the expected net profit for the construction companies working in the Egyptian market. It simply helps financial managers to make sure that their companies business operations are running in a profitable manner. This research aim...

  14. Three-dimensional object representation and invariant recognition using continuous distance transform neural networks.

    Science.gov (United States)

    Tseng, Y H; Hwang, J N; Sheehan, F H

    1997-01-01

    3D object recognition under partial object viewing is a difficult pattern recognition task. In this paper, we introduce a neural-network solution that is robust to partial viewing of objects and noise corruption. This method directly utilizes the acquired 3D data and requires no feature extraction. The object is first parametrically represented by a continuous distance transform neural network (CDTNN) trained by the surface points of the exemplar object. The CDTNN maps any 3D coordinate into a value that corresponds to the distance between the point and the nearest surface point of the object. Therefore, a mismatch between the exemplar object and an unknown object can be easily computed. When encountered with deformed objects, this mismatch information can be backpropagated through the CDTNN to iteratively determine the deformation in terms of affine transform. Application to 3D heart contour delineation and invariant recognition of 3D rigid-body objects is presented.

  15. In Situ Representations and Access Consciousness in Neural Blackboard or Workspace Architectures

    OpenAIRE

    Frank van der Velde

    2018-01-01

    Phenomenal theories of consciousness assert that consciousness is based on specific neural correlates in the brain, which can be separated from all cognitive functions we can perform. If so, the search for robot consciousness seems to be doomed. By contrast, theories of functional or access consciousness assert that consciousness can be studied only with forms of cognitive access, given by cognitive processes. Consequently, consciousness and cognitive access cannot be fully dissociated. Here,...

  16. A multiple distributed representation method based on neural network for biomedical event extraction.

    Science.gov (United States)

    Wang, Anran; Wang, Jian; Lin, Hongfei; Zhang, Jianhai; Yang, Zhihao; Xu, Kan

    2017-12-20

    Biomedical event extraction is one of the most frontier domains in biomedical research. The two main subtasks of biomedical event extraction are trigger identification and arguments detection which can both be considered as classification problems. However, traditional state-of-the-art methods are based on support vector machine (SVM) with massive manually designed one-hot represented features, which require enormous work but lack semantic relation among words. In this paper, we propose a multiple distributed representation method for biomedical event extraction. The method combines context consisting of dependency-based word embedding, and task-based features represented in a distributed way as the input of deep learning models to train deep learning models. Finally, we used softmax classifier to label the example candidates. The experimental results on Multi-Level Event Extraction (MLEE) corpus show higher F-scores of 77.97% in trigger identification and 58.31% in overall compared to the state-of-the-art SVM method. Our distributed representation method for biomedical event extraction avoids the problems of semantic gap and dimension disaster from traditional one-hot representation methods. The promising results demonstrate that our proposed method is effective for biomedical event extraction.

  17. Learning representations for the early detection of sepsis with deep neural networks.

    Science.gov (United States)

    Kam, Hye Jin; Kim, Ha Young

    2017-10-01

    Sepsis is one of the leading causes of death in intensive care unit patients. Early detection of sepsis is vital because mortality increases as the sepsis stage worsens. This study aimed to develop detection models for the early stage of sepsis using deep learning methodologies, and to compare the feasibility and performance of the new deep learning methodology with those of the regression method with conventional temporal feature extraction. Study group selection adhered to the InSight model. The results of the deep learning-based models and the InSight model were compared. With deep feedforward networks, the area under the ROC curve (AUC) of the models were 0.887 and 0.915 for the InSight and the new feature sets, respectively. For the model with the combined feature set, the AUC was the same as that of the basic feature set (0.915). For the long short-term memory model, only the basic feature set was applied and the AUC improved to 0.929 compared with the existing 0.887 of the InSight model. The contributions of this paper can be summarized in three ways: (i) improved performance without feature extraction using domain knowledge, (ii) verification of feature extraction capability of deep neural networks through comparison with reference features, and (iii) improved performance with feedforward neural networks using long short-term memory, a neural network architecture that can learn sequential patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Distinct representations of subtraction and multiplication in the neural systems for numerosity and language

    Science.gov (United States)

    Prado, Jérôme; Mutreja, Rachna; Zhang, Hongchuan; Mehta, Rucha; Desroches, Amy S.; Minas, Jennifer E.; Booth, James R.

    2010-01-01

    It has been proposed that recent cultural inventions such as symbolic arithmetic recycle evolutionary older neural mechanisms. A central assumption of this hypothesis is that the degree to which a pre-existing mechanism is recycled depends upon the degree of similarity between its initial function and the novel task. To test this assumption, we investigated whether the brain region involved in magnitude comparison in the intraparietal sulcus (IPS), localized by a numerosity comparison task, is recruited to a greater degree by arithmetic problems that involve number comparison (single-digit subtractions) than by problems that involve retrieving facts from memory (single-digit multiplications). Our results confirmed that subtractions are associated with greater activity in the IPS than multiplications, whereas multiplications elicit greater activity than subtractions in regions involved in verbal processing including the middle temporal gyrus and inferior frontal gyrus that were localized by a phonological processing task. Pattern analyses further indicated that the neural mechanisms more active for subtraction than multiplication in the IPS overlap with those involved in numerosity comparison, and that the strength of this overlap predicts inter-individual performance in the subtraction task. These findings provide novel evidence that elementary arithmetic relies on the co-option of evolutionary older neural circuits. PMID:21246667

  19. Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations.

    Science.gov (United States)

    Freud, Erez; Macdonald, Scott N; Chen, Juan; Quinlan, Derek J; Goodale, Melvyn A; Culham, Jody C

    2018-01-01

    In the current era of touchscreen technology, humans commonly execute visually guided actions directed to two-dimensional (2D) images of objects. Although real, three-dimensional (3D), objects and images of the same objects share high degree of visual similarity, they differ fundamentally in the actions that can be performed on them. Indeed, previous behavioral studies have suggested that simulated grasping of images relies on different representations than actual grasping of real 3D objects. Yet the neural underpinnings of this phenomena have not been investigated. Here we used functional magnetic resonance imaging (fMRI) to investigate how brain activation patterns differed for grasping and reaching actions directed toward real 3D objects compared to images. Multivoxel Pattern Analysis (MVPA) revealed that the left anterior intraparietal sulcus (aIPS), a key region for visually guided grasping, discriminates between both the format in which objects were presented (real/image) and the motor task performed on them (grasping/reaching). Interestingly, during action planning, the representations of real 3D objects versus images differed more for grasping movements than reaching movements, likely because grasping real 3D objects involves fine-grained planning and anticipation of the consequences of a real interaction. Importantly, this dissociation was evident in the planning phase, before movement initiation, and was not found in any other regions, including motor and somatosensory cortices. This suggests that the dissociable representations in the left aIPS were not based on haptic, motor or proprioceptive feedback. Together, these findings provide novel evidence that actions, particularly grasping, are affected by the realness of the target objects during planning, perhaps because real targets require a more elaborate forward model based on visual cues to predict the consequences of real manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Tracking by Neural Nets

    CERN Document Server

    Jofrehei, Arash

    2015-01-01

    Current track reconstruction methods start with two points and then for each layer loop through all possible hits to find proper hits to add to that track. Another idea would be to use this large number of already reconstructed events and/or simulated data and train a machine on this data to find tracks given hit pixels. Training time could be long but real time tracking is really fast. Simulation might not be as realistic as real data but tracking efficiency is 100 percent for that while by using real data we would probably be limited to current efficiency. The fact that this approach can be a lot faster and even more efficient than current methods by using simulation data can make it a great alternative for current track reconstruction methods used in both triggering and tracking.

  1. [Neural representation of human body schema and corporeal self-consciousness].

    Science.gov (United States)

    Naito, Eiichi; Morita, Tomoyo

    2014-04-01

    The human brain processes every sensation evoked by altered posture and builds up a constantly changing postural model of the body. This is called a body schema, and somatic signals originating from skeletal muscles and joints, i.e. proprioceptive signals, largely contribute its formation. Recent neuroimaging techniques have revealed neuronal substrates for human body schema. A dynamic limb position model seems to be computed in the central motor network (represented by the primary motor cortex). Here, proprioceptive (kinesthetic) signals from muscle spindles are transformed into motor commands, which may underlie somatic perception of limb movement and facilitate its efficient motor control. Somatic signals originating from different body parts are integrated in the course of hierarchical somatosensory processing, and activity in higher-order somatosensory parietal cortices is capable of representing a postural model of the entire body. The left fronto-parietal network associates internal motor representation with external object representation, allowing the embodiment of external objects. In contrast, the right fronto-parietal regions connected by the most inferior branch of superior longitudinal fasciculus fibers seem to have the functions of monitoring bodily states and updating body schema. We hypothesize that activity in these right-sided fronto-parietal regions is deeply involved in corporeal self-consciousness.

  2. Dissociable neural representations of reinforcement and belief prediction errors underlie strategic learning.

    Science.gov (United States)

    Zhu, Lusha; Mathewson, Kyle E; Hsu, Ming

    2012-01-31

    Decision-making in the presence of other competitive intelligent agents is fundamental for social and economic behavior. Such decisions require agents to behave strategically, where in addition to learning about the rewards and punishments available in the environment, they also need to anticipate and respond to actions of others competing for the same rewards. However, whereas we know much about strategic learning at both theoretical and behavioral levels, we know relatively little about the underlying neural mechanisms. Here, we show using a multi-strategy competitive learning paradigm that strategic choices can be characterized by extending the reinforcement learning (RL) framework to incorporate agents' beliefs about the actions of their opponents. Furthermore, using this characterization to generate putative internal values, we used model-based functional magnetic resonance imaging to investigate neural computations underlying strategic learning. We found that the distinct notions of prediction errors derived from our computational model are processed in a partially overlapping but distinct set of brain regions. Specifically, we found that the RL prediction error was correlated with activity in the ventral striatum. In contrast, activity in the ventral striatum, as well as the rostral anterior cingulate (rACC), was correlated with a previously uncharacterized belief-based prediction error. Furthermore, activity in rACC reflected individual differences in degree of engagement in belief learning. These results suggest a model of strategic behavior where learning arises from interaction of dissociable reinforcement and belief-based inputs.

  3. The neural representation of personally familiar and unfamiliar faces in the distributed system for face perception.

    Science.gov (United States)

    Visconti di Oleggio Castello, Matteo; Halchenko, Yaroslav O; Guntupalli, J Swaroop; Gors, Jason D; Gobbini, M Ida

    2017-09-25

    Personally familiar faces are processed more robustly and efficiently than unfamiliar faces. The human face processing system comprises a core system that analyzes the visual appearance of faces and an extended system for the retrieval of person-knowledge and other nonvisual information. We applied multivariate pattern analysis to fMRI data to investigate aspects of familiarity that are shared by all familiar identities and information that distinguishes specific face identities from each other. Both identity-independent familiarity information and face identity could be decoded in an overlapping set of areas in the core and extended systems. Representational similarity analysis revealed a clear distinction between the two systems and a subdivision of the core system into ventral, dorsal and anterior components. This study provides evidence that activity in the extended system carries information about both individual identities and personal familiarity, while clarifying and extending the organization of the core system for face perception.

  4. Body-specific representations of action verbs: neural evidence from right- and left-handers.

    Science.gov (United States)

    Willems, Roel M; Hagoort, Peter; Casasanto, Daniel

    2010-01-01

    According to theories of embodied cognition, understanding a verb like throw involves unconsciously simulating the action of throwing, using areas of the brain that support motor planning. If understanding action words involves mentally simulating one's own actions, then the neurocognitive representation of word meanings should differ for people with different kinds of bodies, who perform actions in systematically different ways. In a test of the body-specificity hypothesis, we used functional magnetic resonance imaging to compare premotor activity correlated with action verb understanding in right- and left-handers. Right-handers preferentially activated the left premotor cortex during lexical decisions on manual-action verbs (compared with nonmanual-action verbs), whereas left-handers preferentially activated right premotor areas. This finding helps refine theories of embodied semantics, suggesting that implicit mental simulation during language processing is body specific: Right- and left-handers, who perform actions differently, use correspondingly different areas of the brain for representing action verb meanings.

  5. Not my future? Core values and the neural representation of future events.

    Science.gov (United States)

    Brosch, Tobias; Stussi, Yoann; Desrichard, Olivier; Sander, David

    2018-03-19

    Individuals with pronounced self-transcendence values have been shown to put greater weight on the long-term consequences of their actions when making decisions. Using functional magnetic resonance imaging, we investigated the neural mechanisms underlying the evaluation of events occurring several decades in the future as well as the role of core values in these processes. Thirty-six participants viewed a series of events, consisting of potential consequences of climate change, which could occur in the near future (around 2030), and thus would be experienced by the participants themselves, or in the far future (around 2080). We observed increased activation in anterior VMPFC (BA11), a region involved in encoding the personal significance of future events, when participants were envisioning far future events, demonstrating for the first time that the role of the VMPFC in future projection extends to the time scale of decades. Importantly, this activation increase was observed only in participants with pronounced self-transcendence values measured by self-report questionnaire, as shown by a statistically significant interaction of temporal distance and value structure. These findings suggest that future projection mechanisms are modulated by self-transcendence values to allow for a more extensive simulation of far future events. Consistent with this, these participants reported similar concern ratings for near and far future events, whereas participants with pronounced self-enhancement values were more concerned about near future events. Our findings provide a neural substrate for the tendency of individuals with pronounced self-transcendence values to consider the long-term consequences of their actions.

  6. Neural Correlates of Visual Short-term Memory Dissociate between Fragile and Working Memory Representations.

    Science.gov (United States)

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; de Vries, Jade G; Cohen, Michael X; Lamme, Victor A F

    2015-12-01

    Evidence is accumulating that the classic two-stage model of visual STM (VSTM), comprising iconic memory (IM) and visual working memory (WM), is incomplete. A third memory stage, termed fragile VSTM (FM), seems to exist in between IM and WM [Vandenbroucke, A. R. E., Sligte, I. G., & Lamme, V. A. F. Manipulations of attention dissociate fragile visual STM from visual working memory. Neuropsychologia, 49, 1559-1568, 2011; Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. Are there multiple visual STM stores? PLoS One, 3, e1699, 2008]. Although FM can be distinguished from IM using behavioral and fMRI methods, the question remains whether FM is a weak expression of WM or a separate form of memory with its own neural signature. Here, we tested whether FM and WM in humans are supported by dissociable time-frequency features of EEG recordings. Participants performed a partial-report change detection task, from which individual differences in FM and WM capacity were estimated. These individual FM and WM capacities were correlated with time-frequency characteristics of the EEG signal before and during encoding and maintenance of the memory display. FM capacity showed negative alpha correlations over peri-occipital electrodes, whereas WM capacity was positively related, suggesting increased visual processing (lower alpha) to be related to FM capacity. Furthermore, FM capacity correlated with an increase in theta power over central electrodes during preparation and processing of the memory display, whereas WM did not. In addition to a difference in visual processing characteristics, a positive relation between gamma power and FM capacity was observed during both preparation and maintenance periods of the task. On the other hand, we observed that theta-gamma coupling was negatively correlated with FM capacity, whereas it was slightly positively correlated with WM. These data show clear differences in the neural substrates of FM versus WM and suggest that FM depends more on

  7. Neural representations of confidence emerge from the process of decision formation during perceptual choices.

    Science.gov (United States)

    Gherman, Sabina; Philiastides, Marios G

    2015-02-01

    Choice confidence represents the degree of belief that one's actions are likely to be correct or rewarding and plays a critical role in optimizing our decisions. Despite progress in understanding the neurobiology of human perceptual decision-making, little is known about the representation of confidence. Importantly, it remains unclear whether confidence forms an integral part of the decision process itself or represents a purely post-decisional signal. To address this issue we employed a paradigm whereby on some trials, prior to indicating their decision, participants could opt-out of the task for a small but certain reward. This manipulation captured participants' confidence on individual trials and allowed us to discriminate between electroencephalographic signals associated with certain-vs.-uncertain trials. Discrimination increased gradually and peaked well before participants indicated their choice. These signals exhibited a temporal profile consistent with a process of evidence accumulation, culminating at time of peak discrimination. Moreover, trial-by-trial fluctuations in the accumulation rate of nominally identical stimuli were predictive of participants' likelihood to opt-out of the task, suggesting that confidence emerges from the decision process itself and is computed continuously as the process unfolds. Correspondingly, source reconstruction placed these signals in regions previously implicated in decision making, within the prefrontal and parietal cortices. Crucially, control analyses ensured that these results could not be explained by stimulus difficulty, lapses in attention or decision accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Common Sense in Choice: The Effect of Sensory Modality on Neural Value Representations

    Science.gov (United States)

    2018-01-01

    Abstract Although it is well established that the ventromedial prefrontal cortex (vmPFC) represents value using a common currency across categories of rewards, it is unknown whether the vmPFC represents value irrespective of the sensory modality in which alternatives are presented. In the current study, male and female human subjects completed a decision-making task while their neural activity was recorded using functional magnetic resonance imaging. On each trial, subjects chose between a safe alternative and a lottery, which was presented visually or aurally. A univariate conjunction analysis revealed that the anterior portion of the vmPFC tracks subjective value (SV) irrespective of the sensory modality. Using a novel cross-modality multivariate classifier, we were able to decode auditory value based on visual trials and vice versa. In addition, we found that the visual and auditory sensory cortices, which were identified using functional localizers, are also sensitive to the value of stimuli, albeit in a modality-specific manner. Whereas both primary and higher-order auditory cortices represented auditory SV (aSV), only a higher-order visual area represented visual SV (vSV). These findings expand our understanding of the common currency network of the brain and shed a new light on the interplay between sensory and value information processing. PMID:29619408

  9. Nice or nerdy? The neural representation of social and competence traits.

    Science.gov (United States)

    Van Overwalle, Frank; Ma, Ning; Baetens, Kris

    2016-12-01

    This study investigates to what extent social and competence traits are represented in a similar or different neural trait code. To localize these trait codes, we used functional magnetic resonance imaging repetition suppression, which is a rapid reduction of neuronal responses upon repeated presentation of the same implied trait. Participants had to infer an agent's trait from brief trait-implying behavioral descriptions. In each trial, the critical target sentence was preceded by a prime sentence that implied the same trait or a different competence-related trait which was also opposite in valence. The results revealed robust repetition suppression from prime to target in the ventral medial prefrontal cortex (mPFC) given a similar (social) as well as a dissimilar (competence) prime. The suppression given a similar prime confirms earlier research demonstrating that a trait code is represented in the ventral mPFC. The suppression given a dissimilar prime is interpreted as indicating that participants categorize a combination of competence and social information into novel subcategories, reflecting nice (but incompetent) or nerdy (but socially awkward) traits. A multi-voxel pattern analysis broadly confirmed these results, and pinpointed the inferior parietal cortex, cerebellum, temporo-parietal junction and mPFC as areas that differentiate between social and competence traits.

  10. Estimação do volume de árvores utilizando redes neurais artificiais Estimate of tree volume using artificial neural nets

    Directory of Open Access Journals (Sweden)

    Eric Bastos Gorgens

    2009-12-01

    Full Text Available Rede neural artificial consiste em um conjunto de unidades que contêm funções matemáticas, unidas por pesos. As redes são capazes de aprender, mediante modificação dos pesos sinápticos, e generalizar o aprendizado para outros arquivos desconhecidos. O projeto de redes neurais é composto por três etapas: pré-processamento, processamento e, por fim, pós-processamento dos dados. Um dos problemas clássicos que podem ser abordados por redes é a aproximação de funções. Nesse grupo, pode-se incluir a estimação do volume de árvores. Foram utilizados quatro arquiteturas diferentes, cinco pré-processamentos e duas funções de ativação. As redes que se apresentaram estatisticamente iguais aos dados observados também foram analisadas quanto ao resíduo e à distribuição dos volumes e comparadas com a estimação de volume pelo modelo de Schumacher e Hall. As redes neurais formadas por neurônios, cuja função de ativação era exponencial, apresentaram estimativas estatisticamente iguais aos dados observados. As redes treinadas com os dados normalizados pelo método da interpolação linear e equalizados tiveram melhor desempenho na estimação.The artificial neural network consists of a set of units containing mathematical functions connected by weights. Such nets are capable of learning by means of synaptic weight modification, generalizing learning for other unknown archives. The neural network project comprises three stages: pre-processing, processing and post-processing of data. One of the classical problems approached by networks is function approximation. Tree volume estimate can be included in this group. Four different architectures, five pre-processings and two activation functions were used. The nets which were statistically similar to the observed data were also analyzed in relation to residue and volume and compared to the volume estimate provided by the Schumacher and Hall equation. The neural nets formed by

  11. Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network

    Science.gov (United States)

    Laloy, Eric; Hérault, Romain; Lee, John; Jacques, Diederik; Linde, Niklas

    2017-12-01

    Efficient and high-fidelity prior sampling and inversion for complex geological media is still a largely unsolved challenge. Here, we use a deep neural network of the variational autoencoder type to construct a parametric low-dimensional base model parameterization of complex binary geological media. For inversion purposes, it has the attractive feature that random draws from an uncorrelated standard normal distribution yield model realizations with spatial characteristics that are in agreement with the training set. In comparison with the most commonly used parametric representations in probabilistic inversion, we find that our dimensionality reduction (DR) approach outperforms principle component analysis (PCA), optimization-PCA (OPCA) and discrete cosine transform (DCT) DR techniques for unconditional geostatistical simulation of a channelized prior model. For the considered examples, important compression ratios (200-500) are achieved. Given that the construction of our parameterization requires a training set of several tens of thousands of prior model realizations, our DR approach is more suited for probabilistic (or deterministic) inversion than for unconditional (or point-conditioned) geostatistical simulation. Probabilistic inversions of 2D steady-state and 3D transient hydraulic tomography data are used to demonstrate the DR-based inversion. For the 2D case study, the performance is superior compared to current state-of-the-art multiple-point statistics inversion by sequential geostatistical resampling (SGR). Inversion results for the 3D application are also encouraging.

  12. Assessment of Multivariate Neural Time Series by Phase Synchrony Clustering in a Time-Frequency-Topography Representation

    Directory of Open Access Journals (Sweden)

    M. A. Porta-Garcia

    2018-01-01

    Full Text Available Most EEG phase synchrony measures are of bivariate nature. Those that are multivariate focus on producing global indices of the synchronization state of the system. Thus, better descriptions of spatial and temporal local interactions are still in demand. A framework for characterization of phase synchrony relationships between multivariate neural time series is presented, applied either in a single epoch or over an intertrial assessment, relying on a proposed clustering algorithm, termed Multivariate Time Series Clustering by Phase Synchrony, which generates fuzzy clusters for each multivalued time sample and thereupon obtains hard clusters according to a circular variance threshold; such cluster modes are then depicted in Time-Frequency-Topography representations of synchrony state beyond mere global indices. EEG signals from P300 Speller sessions of four subjects were analyzed, obtaining useful insights of synchrony patterns related to the ERP and even revealing steady-state artifacts at 7.6 Hz. Further, contrast maps of Levenshtein Distance highlight synchrony differences between ERP and no-ERP epochs, mainly at delta and theta bands. The framework, which is not limited to one synchrony measure, allows observing dynamics of phase changes and interactions among channels and can be applied to analyze other cognitive states rather than ERP versus no ERP.

  13. Emotions in ‘black or white’ or shades of gray? How we think about emotion shapes our perception and neural representation of emotion

    Science.gov (United States)

    Satpute, Ajay B.; Nook, Erik C.; Narayanan, Sandhya; Shu, Jocelyn; Weber, Jochen; Ochsner, Kevin N.

    2016-01-01

    The demands of social life often require categorically judging whether someone's continuously varying facial movements express “calm” or “fear”, or whether our fluctuating internal states mean we feel “good” or “bad”. In two neuroimaging studies, we ask whether this kind of categorical, ‘black and white’, thinking can shape the perception and neural representation of emotion. Using psychometric and neuroimaging methods, we found that (1) across participants, judging emotions using a ‘black and white’ scale vs. a ‘shades of gray’ scale shifted subjective emotion perception thresholds, (2) these shifts corresponded with activity in regions associated with affective responding including the amygdala and ventral anterior insula, and (3) connectivity of these regions with the medial prefrontal cortex correlated with the magnitude of categorization-related shifts. These findings suggest that categorical thinking about emotion may actively shape the perception and neural representation of the emotions in question. PMID:27670663

  14. Emotions in "Black and White" or Shades of Gray? How We Think About Emotion Shapes Our Perception and Neural Representation of Emotion.

    Science.gov (United States)

    Satpute, Ajay B; Nook, Erik C; Narayanan, Sandhya; Shu, Jocelyn; Weber, Jochen; Ochsner, Kevin N

    2016-11-01

    The demands of social life often require categorically judging whether someone's continuously varying facial movements express "calm" or "fear," or whether one's fluctuating internal states mean one feels "good" or "bad." In two studies, we asked whether this kind of categorical, "black and white," thinking can shape the perception and neural representation of emotion. Using psychometric and neuroimaging methods, we found that (a) across participants, judging emotions using a categorical, "black and white" scale relative to judging emotions using a continuous, "shades of gray," scale shifted subjective emotion perception thresholds; (b) these shifts corresponded with activity in brain regions previously associated with affective responding (i.e., the amygdala and ventral anterior insula); and (c) connectivity of these regions with the medial prefrontal cortex correlated with the magnitude of categorization-related shifts. These findings suggest that categorical thinking about emotions may actively shape the perception and neural representation of the emotions in question. © The Author(s) 2016.

  15. Multispectral confocal microscopy images and artificial neural nets to monitor the photosensitizer uptake and degradation in Candida albicans cells

    Science.gov (United States)

    Romano, Renan A.; Pratavieira, Sebastião.; da Silva, Ana P.; Kurachi, Cristina; Guimarães, Francisco E. G.

    2017-07-01

    This study clearly demonstrates that multispectral confocal microscopy images analyzed by artificial neural networks provides a powerful tool to real-time monitoring photosensitizer uptake, as well as photochemical transformations occurred.

  16. The ImageNet Shuffle: Reorganized Pre-training for Video Event Detection

    NARCIS (Netherlands)

    Mettes, P.; Koelma, D.C.; Snoek, C.G.M.

    2016-01-01

    This paper strives for video event detection using a representation learned from deep convolutional neural networks. Different from the leading approaches, who all learn from the 1,000 classes defined in the ImageNet Large Scale Visual Recognition Challenge, we investigate how to leverage the

  17. NetTurnP – Neural Network Prediction of Beta-turns by Use of Evolutionary Information and Predicted Protein Sequence Features

    DEFF Research Database (Denmark)

    Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl

    2010-01-01

    is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino......β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method...... NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which...

  18. Neural Activity during Voluntary Movements in Each Body Representation of the Intracortical Microstimulation-Derived Map in the Macaque Motor Cortex.

    Science.gov (United States)

    Higo, Noriyuki; Kunori, Nobuo; Murata, Yumi

    2016-01-01

    In order to accurately interpret experimental data using the topographic body map identified by conventional intracortical microstimulation (ICMS), it is important to know how neurons in each division of the map respond during voluntary movements. Here we systematically investigated neuronal responses in each body representation of the ICMS map during a reach-grasp-retrieval task that involves the movements of multiple body parts. The topographic body map in the primary motor cortex (M1) generally corresponds to functional divisions of voluntary movements; neurons at the recording sites in each body representation with movement thresholds of 10 μA or less were differentially activated during the task, and the timing of responses was consistent with the movements of the body part represented. Moreover, neurons in the digit representation responded differently for the different types of grasping. In addition, the present study showed that neural activity depends on the ICMS current threshold required to elicit body movements and the location of the recording on the cortical surface. In the ventral premotor cortex (PMv), no correlation was found between the response properties of neurons and the body representation in the ICMS map. Neural responses specific to forelimb movements were often observed in the rostral part of PMv, including the lateral bank of the lower arcuate limb, in which ICMS up to 100 μA evoked no detectable movement. These results indicate that the physiological significance of the ICMS-derived maps is different between, and even within, areas M1 and PMv.

  19. Commonality of neural representations of sentences across languages: Predicting brain activation during Portuguese sentence comprehension using an English-based model of brain function.

    Science.gov (United States)

    Yang, Ying; Wang, Jing; Bailer, Cyntia; Cherkassky, Vladimir; Just, Marcel Adam

    2017-02-01

    The aim of the study was to test the cross-language generative capability of a model that predicts neural activation patterns evoked by sentence reading, based on a semantic characterization of the sentence. In a previous study on English monolingual speakers (Wang et al., submitted), a computational model performed a mapping from a set of 42 concept-level semantic features (Neurally Plausible Semantic Features, NPSFs) as well as 6 thematic role markers to neural activation patterns (assessed with fMRI), to predict activation levels in a network of brain locations. The model used two types of information gained from the English-based fMRI data to predict the activation for individual sentences in Portuguese. First, it used the mapping weights from NPSFs to voxel activation levels derived from the model for English reading. Second, the brain locations for which the activation levels were predicted were derived from a factor analysis of the brain activation patterns during English reading. These meta-language locations were defined by the clusters of voxels with high loadings on each of the four main dimensions (factors), namely people, places, actions and feelings, underlying the neural representations of the stimulus sentences. This cross-language model succeeded in predicting the brain activation patterns associated with the reading of 60 individual Portuguese sentences that were entirely new to the model, attaining accuracies reliably above chance level. The prediction accuracy was not affected by whether the Portuguese speaker was monolingual or Portuguese-English bilingual. The model's confusion errors indicated an accurate capture of the events or states described in the sentence at a conceptual level. Overall, the cross-language predictive capability of the model demonstrates the neural commonality between speakers of different languages in the representations of everyday events and states, and provides an initial characterization of the common meta

  20. NeMO-Net & Fluid Lensing: The Neural Multi-Modal Observation & Training Network for Global Coral Reef Assessment Using Fluid Lensing Augmentation of NASA EOS Data

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    We present preliminary results from NASA NeMO-Net, the first neural multi-modal observation and training network for global coral reef assessment. NeMO-Net is an open-source deep convolutional neural network (CNN) and interactive active learning training software in development which will assess the present and past dynamics of coral reef ecosystems. NeMO-Net exploits active learning and data fusion of mm-scale remotely sensed 3D images of coral reefs captured using fluid lensing with the NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as hyperspectral airborne remote sensing data from the ongoing NASA CORAL mission and lower-resolution satellite data to determine coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. Aquatic ecosystems, particularly coral reefs, remain quantitatively misrepresented by low-resolution remote sensing as a result of refractive distortion from ocean waves, optical attenuation, and remoteness. Machine learning classification of coral reefs using FluidCam mm-scale 3D data show that present satellite and airborne remote sensing techniques poorly characterize coral reef percent living cover, morphology type, and species breakdown at the mm, cm, and meter scales. Indeed, current global assessments of coral reef cover and morphology classification based on km-scale satellite data alone can suffer from segmentation errors greater than 40%, capable of change detection only on yearly temporal scales and decameter spatial scales, significantly hindering our understanding of patterns and processes in marine biodiversity at a time when these ecosystems are experiencing unprecedented anthropogenic pressures, ocean acidification, and sea surface temperature rise. NeMO-Net leverages our augmented machine learning algorithm that demonstrates data fusion of regional FluidCam (mm, cm-scale) airborne remote sensing with

  1. Harmonic Training and the Formation of Pitch Representation in a Neural Network Model of the Auditory Brain.

    Science.gov (United States)

    Ahmad, Nasir; Higgins, Irina; Walker, Kerry M M; Stringer, Simon M

    2016-01-01

    Attempting to explain the perceptual qualities of pitch has proven to be, and remains, a difficult problem. The wide range of sounds which elicit pitch and a lack of agreement across neurophysiological studies on how pitch is encoded by the brain have made this attempt more difficult. In describing the potential neural mechanisms by which pitch may be processed, a number of neural networks have been proposed and implemented. However, no unsupervised neural networks with biologically accurate cochlear inputs have yet been demonstrated. This paper proposes a simple system in which pitch representing neurons are produced in a biologically plausible setting. Purely unsupervised regimes of neural network learning are implemented and these prove to be sufficient in identifying the pitch of sounds with a variety of spectral profiles, including sounds with missing fundamental frequencies and iterated rippled noises.

  2. Harmonic Training and the formation of pitch representation in a neural network model of the auditory brain

    Directory of Open Access Journals (Sweden)

    Nasir eAhmad

    2016-03-01

    Full Text Available Attempting to explain the perceptual qualities of pitch has proven to be, and remains, a difficult problem. The wide range of sounds which illicit pitch and a lack of agreement across neurophysiological studies on how pitch is encoded by the brain have made this attempt more difficult. In describing the potential neural mechanisms by which pitch may be processed, a number of neural networks have been proposed and implemented. However, no unsupervised neural networks with biologically accurate cochlear inputs have yet been demonstrated. This paper proposes a simplified system in which pitch representing neurons are easily produced under a highly biological setting. Purely unsupervised regimes of neural network learning are implemented and these prove to be sufficient in identifying the pitch of sounds with a variety of spectral profiles, including missing fundamental sounds.

  3. Mapping the Spatial Distribution of Winter Crops at Sub-Pixel Level Using AVHRR NDVI Time Series and Neural Nets

    Directory of Open Access Journals (Sweden)

    Felix Rembold

    2013-03-01

    Full Text Available For large areas, it is difficult to assess the spatial distribution and inter-annual variation of crop acreages through field surveys. Such information, however, is of great value for governments, land managers, planning authorities, commodity traders and environmental scientists. Time series of coarse resolution imagery offer the advantage of global coverage at low costs, and are therefore suitable for large-scale crop type mapping. Due to their coarse spatial resolution, however, the problem of mixed pixels has to be addressed. Traditional hard classification approaches cannot be applied because of sub-pixel heterogeneity. We evaluate neural networks as a modeling tool for sub-pixel crop acreage estimation. The proposed methodology is based on the assumption that different cover type proportions within coarse pixels prompt changes in time profiles of remotely sensed vegetation indices like the Normalized Difference Vegetation Index (NDVI. Neural networks can learn the relation between temporal NDVI signatures and the sought crop acreage information. This learning step permits a non-linear unmixing of the temporal information provided by coarse resolution satellite sensors. For assessing the feasibility and accuracy of the approach, a study region in central Italy (Tuscany was selected. The task consisted of mapping the spatial distribution of winter crops abundances within 1 km AVHRR pixels between 1988 and 2001. Reference crop acreage information for network training and validation was derived from high resolution Thematic Mapper/Enhanced Thematic Mapper (TM/ETM+ images and official agricultural statistics. Encouraging results were obtained demonstrating the potential of the proposed approach. For example, the spatial distribution of winter crop acreage at sub-pixel level was mapped with a cross-validated coefficient of determination of 0.8 with respect to the reference information from high resolution imagery. For the eight years for which

  4. The Unification Space implemented as a localist neural net: predictions and error-tolerance in a constraint-based parser.

    Science.gov (United States)

    Vosse, Theo; Kempen, Gerard

    2009-12-01

    We introduce a novel computer implementation of the Unification-Space parser (Vosse and Kempen in Cognition 75:105-143, 2000) in the form of a localist neural network whose dynamics is based on interactive activation and inhibition. The wiring of the network is determined by Performance Grammar (Kempen and Harbusch in Verb constructions in German and Dutch. Benjamins, Amsterdam, 2003), a lexicalist formalism with feature unification as binding operation. While the network is processing input word strings incrementally, the evolving shape of parse trees is represented in the form of changing patterns of activation in nodes that code for syntactic properties of words and phrases, and for the grammatical functions they fulfill. The system is capable, at least qualitatively and rudimentarily, of simulating several important dynamic aspects of human syntactic parsing, including garden-path phenomena and reanalysis, effects of complexity (various types of clause embeddings), fault-tolerance in case of unification failures and unknown words, and predictive parsing (expectation-based analysis, surprisal effects). English is the target language of the parser described.

  5. Neural overlap of L1 and L2 semantic representations across visual and auditory modalities : A decoding approach

    NARCIS (Netherlands)

    Van De Putte, Eowyn; De Baene, W.; Price, Cathy J; Duyck, Wouter

    2018-01-01

    This study investigated whether brain activity in Dutch-French bilinguals during semantic access to concepts from one language could be used to predict neural activation during access to the same concepts from another language, in different language modalities/tasks. This was tested using

  6. Extracting the Neural Representation of Tone Onsets for Separate Voices of Ensemble Music Using Multivariate EEG Analysis

    DEFF Research Database (Denmark)

    Sturm, Irene; Treder, Matthias S.; Miklody, Daniel

    2015-01-01

    responses to tone onsets, such as N1/P2 ERP components. Music clips (resembling minimalistic electro-pop) were presented to 11 subjects, either in an ensemble version (drums, bass, keyboard) or in the corresponding three solo versions. For each instrument we train a spatio-temporal regression filter......When listening to ensemble music even non-musicians can follow single instruments effortlessly. Electrophysiological indices for neural sensory encoding of separate streams have been described using oddball paradigms which utilize brain reactions to sound events that deviate from a repeating...... standard pattern. Obviously, these paradigms put constraints on the compositional complexity of the musical stimulus. Here, we apply a regression-based method of multivariate EEG analysis in order to reveal the neural encoding of separate voices of naturalistic ensemble music that is based on cortical...

  7. Neural networks for action representation underlying automatic mimicry: A functional magnetic-resonance imaging and dynamic causal modeling study

    Directory of Open Access Journals (Sweden)

    Akihiro T Sasaki

    2012-08-01

    Full Text Available Automatic mimicry is based on the tight linkage between motor and perception action representations in which internal models play a key role. Based on the anatomical connection, we hypothesized that the direct effective connectivity from the posterior superior temporal sulcus (pSTS to the ventral premotor area (PMv formed an inverse internal model, converting visual representation into a motor plan, and that reverse connectivity formed a forward internal model, converting the motor plan into a sensory outcome of action. To test this hypothesis, we employed dynamic causal-modeling analysis with functional magnetic-resonance imaging. Twenty-four normal participants underwent a change-detection task involving two visually-presented balls that were either manually rotated by the investigator’s right hand (‘Hand’ or automatically rotated. The effective connectivity from the pSTS to the PMv was enhanced by hand observation and suppressed by execution, corresponding to the inverse model. Opposite effects were observed from the PMv to the pSTS, suggesting the forward model. Additionally, both execution and hand observation commonly enhanced the effective connectivity from the pSTS to the inferior parietal lobule (IPL, the IPL to the primary sensorimotor cortex (S/M1, the PMv to the IPL, and the PMv to the S/M1. Representation of the hand action therefore was implemented in the motor system including the S/M1. During hand observation, effective connectivity toward the pSTS was suppressed whereas that toward the PMv and S/M1 was enhanced. Thus the action-representation network acted as a dynamic feedback-control system during action observation.

  8. Commonalities and differences in the neural representations of English, Portuguese, and Mandarin sentences: When knowledge of the brain-language mappings for two languages is better than one.

    Science.gov (United States)

    Yang, Ying; Wang, Jing; Bailer, Cyntia; Cherkassky, Vladimir; Just, Marcel Adam

    2017-12-01

    This study extended cross-language semantic decoding (based on a concept's fMRI signature) to the decoding of sentences across three different languages (English, Portuguese and Mandarin). A classifier was trained on either the mapping between words and activation patterns in one language or the mappings in two languages (using an equivalent amount of training data), and then tested on its ability to decode the semantic content of a third language. The model trained on two languages was reliably more accurate than a classifier trained on one language for all three pairs of languages. This two-language advantage was selective to abstract concept domains such as social interactions and mental activity. Representational Similarity Analyses (RSA) of the inter-sentence neural similarities resulted in similar clustering of sentences in all the three languages, indicating a shared neural concept space among languages. These findings identify semantic domains that are common across these three languages versus those that are more language or culture-specific. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Changes in pitch height elicit both language-universal and language-dependent changes in neural representation of pitch in the brainstem and auditory cortex.

    Science.gov (United States)

    Krishnan, Ananthanarayan; Suresh, Chandan H; Gandour, Jackson T

    2017-03-27

    Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on (i) neural responses to variations in pitch height, (ii) presence of asymmetry in cortical pitch representation, and (iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na-Pb and Pb-Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na-Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Changes in pitch height elicit both language universal and language dependent changes in neural representation of pitch in the brainstem and auditory cortex

    Science.gov (United States)

    Krishnan, Ananthanarayan; Suresh, Chandan H.; Gandour, Jackson T.

    2017-01-01

    Language experience shapes encoding of pitch-relevant information at both brainstem and cortical levels of processing. Pitch height is a salient dimension that orders pitch from low to high. Herein we investigate the effects of language experience (Chinese, English) in the brainstem and cortex on i) neural responses to variations in pitch height, ii) presence of asymmetry in cortical pitch representation, and iii) patterns of relative changes in magnitude of pitch height between these two levels of brain structure. Stimuli were three nonspeech homologs of Mandarin Tone 2 varying in pitch height only. The frequency-following response (FFR) and the cortical pitch-specific response (CPR) were recorded concurrently. At the Fz-linked T7/T8 site, peak latency of Na, Pb, and Nb decreased with increasing pitch height for both groups. Peak-to-peak amplitude of Na–Pb and Pb–Nb increased with increasing pitch height across groups. A language-dependent effect was restricted to Na-Pb; the Chinese had larger amplitude than the English group. At temporal sites (T7/T8), the Chinese group had larger amplitude, as compared to English, across stimuli, but also limited to the Na-Pb component and right temporal site. In the brainstem, F0 magnitude decreased with increasing pitch height; Chinese had larger magnitude across stimuli. A comparison of CPR and FFR responses revealed distinct patterns of relative changes in magnitude common to both groups. CPR amplitude increased and FFR amplitude decreased with increasing pitch height. Experience-dependent effects on CPR components vary as a function of neural sensitivity to pitch height within a particular temporal window (Na–Pb). Differences between the auditory brainstem and cortex imply distinct neural mechanisms for pitch extraction at both levels of brain structure. PMID:28108254

  11. Meaningful Representations Prevent Catastrophic Interference

    NARCIS (Netherlands)

    Bieger, J.; Sprinkhuizen-Kuyper, I.G.; Rooij, I.J.E.I. van; Calders, T.; Tuyls, K.; Pechenizkiy, M.

    2009-01-01

    Artificial Neural Networks (ANNs) attempt to mimic human neural networks in order to perform tasks. In order to do this, tasks need to be represented in ways that the network understands. In ANNs these representations are often arbitrary, whereas in humans it seems that these representations are

  12. REM sleep and neural nets.

    Science.gov (United States)

    Crick, F; Mitchison, G

    1995-01-01

    The broad features of rapid eye movement (REM) sleep are reviewed. Memory storage in the brain is probably quite unlike that in a digital computer, being distributed, superimposed and robust. Such memory systems are easily overloaded. If the stored memories share common features, random stimulation often produces mixed outputs. Simulations show that such overloading can be reduced by a process we call 'reverse learning'. We propose that this process is what is happening in REM sleep and that it explains in an unforced manner the condensation commonly found in dreams. Evidence for and against the proposed theory is discussed and several alternative theories are briefly described. The absence of REM sleep in the Enchidna and in two species of dolphins (that have relatively large brains) suggests that REM may allow the brain to be smaller than if REM were lacking.

  13. Bearings Fault Diagnosis Based on Convolutional Neural Networks with 2-D Representation of Vibration Signals as Input

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available Periodic vibration signals captured by the accelerometers carry rich information for bearing fault diagnosis. Existing methods mostly rely on hand-crafted time-consuming preprocessing of data to acquire suitable features. In this paper, we use an easy and effective method to transform the 1-D temporal vibration signal into a 2-D image. With the signal image, convolutional Neural Network (CNN is used to train the raw vibration data. As powerful feature extractor and classifier for image recognition, CNN can learn to acquire features most suitable for the classification task by being trained. With the image format of vibration signals, the neuron in fully-connected layer of CNN can see farther and capture the periodic feature of signals. According to the results of the experiments, when fed in enough training samples, the proposed method outperforms other common methods. The proposed method can also be applied to solve intelligent diagnosis problems of other machine systems.

  14. Estimating Neural Control from Concentric vs. Eccentric Surface Electromyographic Representations during Fatiguing, Cyclic Submaximal Back Extension Exercises.

    Science.gov (United States)

    Ebenbichler, Gerold R; Unterlerchner, Lena; Habenicht, Richard; Bonato, Paolo; Kollmitzer, Josef; Mair, Patrick; Riegler, Sara; Kienbacher, Thomas

    2017-01-01

    Purpose: To investigate the differences in neural control of back muscles activated during the eccentric vs. the concentric portions of a cyclic, submaximal, fatiguing trunk extension exercise via the analysis of amplitude and time-frequency parameters derived from surface electromyographic (SEMG) data. Methods: Using back dynamometers, 87 healthy volunteers performed three maximum voluntary isometric trunk extensions (MVC's), an isometric trunk extension at 80% MVC, and 25 cyclic, dynamic trunk extensions at 50% MVC. Dynamic testing was performed with the trunk angular displacement ranging from 0° to 40° and the trunk angular velocity set at 20°/s. SEMG data was recorded bilaterally from the iliocostalis lumborum at L1, the longissimus dorsi at L2, and the multifidus muscles at L5. The initial value and slope of the root mean square (RMS-SEMG) and the instantaneous median frequency (IMDF-SEMG) estimates derived from the SEMG recorded during each exercise cycle were used to investigate the differences in MU control marking the eccentric vs. the concentric portions of the exercise. Results: During the concentric portions of the exercise, the initial RMS-SEMG values were almost twice those observed during the eccentric portions of the exercise. The RMS-SEMG values generally increased during the concentric portions of the exercise while they mostly remained unchanged during the eccentric portions of the exercise with significant differences between contraction types. Neither the initial IMDF-SEMG values nor the time-course of the IMDF-SEMG values significantly differed between the eccentric and the concentric portions of the exercise. Conclusions: The comparison of the investigated SEMG parameters revealed distinct neural control strategies during the eccentric vs. the concentric portions of the cyclic exercise. We explain these differences by relying upon the principles of orderly recruitment and common drive governing motor unit behavior.

  15. Estimating Neural Control from Concentric vs. Eccentric Surface Electromyographic Representations during Fatiguing, Cyclic Submaximal Back Extension Exercises

    Directory of Open Access Journals (Sweden)

    Gerold R. Ebenbichler

    2017-05-01

    Full Text Available Purpose: To investigate the differences in neural control of back muscles activated during the eccentric vs. the concentric portions of a cyclic, submaximal, fatiguing trunk extension exercise via the analysis of amplitude and time-frequency parameters derived from surface electromyographic (SEMG data.Methods: Using back dynamometers, 87 healthy volunteers performed three maximum voluntary isometric trunk extensions (MVC's, an isometric trunk extension at 80% MVC, and 25 cyclic, dynamic trunk extensions at 50% MVC. Dynamic testing was performed with the trunk angular displacement ranging from 0° to 40° and the trunk angular velocity set at 20°/s. SEMG data was recorded bilaterally from the iliocostalis lumborum at L1, the longissimus dorsi at L2, and the multifidus muscles at L5. The initial value and slope of the root mean square (RMS-SEMG and the instantaneous median frequency (IMDF-SEMG estimates derived from the SEMG recorded during each exercise cycle were used to investigate the differences in MU control marking the eccentric vs. the concentric portions of the exercise.Results: During the concentric portions of the exercise, the initial RMS-SEMG values were almost twice those observed during the eccentric portions of the exercise. The RMS-SEMG values generally increased during the concentric portions of the exercise while they mostly remained unchanged during the eccentric portions of the exercise with significant differences between contraction types. Neither the initial IMDF-SEMG values nor the time-course of the IMDF-SEMG values significantly differed between the eccentric and the concentric portions of the exercise.Conclusions: The comparison of the investigated SEMG parameters revealed distinct neural control strategies during the eccentric vs. the concentric portions of the cyclic exercise. We explain these differences by relying upon the principles of orderly recruitment and common drive governing motor unit behavior.

  16. GXNOR-Net: Training deep neural networks with ternary weights and activations without full-precision memory under a unified discretization framework.

    Science.gov (United States)

    Deng, Lei; Jiao, Peng; Pei, Jing; Wu, Zhenzhi; Li, Guoqi

    2018-04-01

    Although deep neural networks (DNNs) are being a revolutionary power to open up the AI era, the notoriously huge hardware overhead has challenged their applications. Recently, several binary and ternary networks, in which the costly multiply-accumulate operations can be replaced by accumulations or even binary logic operations, make the on-chip training of DNNs quite promising. Therefore there is a pressing need to build an architecture that could subsume these networks under a unified framework that achieves both higher performance and less overhead. To this end, two fundamental issues are yet to be addressed. The first one is how to implement the back propagation when neuronal activations are discrete. The second one is how to remove the full-precision hidden weights in the training phase to break the bottlenecks of memory/computation consumption. To address the first issue, we present a multi-step neuronal activation discretization method and a derivative approximation technique that enable the implementing the back propagation algorithm on discrete DNNs. While for the second issue, we propose a discrete state transition (DST) methodology to constrain the weights in a discrete space without saving the hidden weights. Through this way, we build a unified framework that subsumes the binary or ternary networks as its special cases, and under which a heuristic algorithm is provided at the website https://github.com/AcrossV/Gated-XNOR. More particularly, we find that when both the weights and activations become ternary values, the DNNs can be reduced to sparse binary networks, termed as gated XNOR networks (GXNOR-Nets) since only the event of non-zero weight and non-zero activation enables the control gate to start the XNOR logic operations in the original binary networks. This promises the event-driven hardware design for efficient mobile intelligence. We achieve advanced performance compared with state-of-the-art algorithms. Furthermore, the computational sparsity

  17. An fMRI study exploring the overlap and differences between neural representations of physical and recalled pain.

    Directory of Open Access Journals (Sweden)

    Merle Fairhurst

    Full Text Available Implementing a recall paradigm without hypnosis, we use functional MRI (fMRI to explore and compare nociceptive and centrally-driven pain experiences. We posit that a trace of a recent nociceptive event can be used to create sensory-re-experiencing of pain that can be qualified in terms of intensity and vividness. Fifteen healthy volunteers received three levels of thermal stimuli (warm, low pain and high pain and subsequently were asked to recall and then rate this experience. Neuroimaging results reveal that recalling a previous sensory experience activates an extensive network of classical pain processing structures except the contralateral posterior insular cortex. Nociceptive-specific activation of this structure and the rated intensity difference between physical and recalled pain events allow us to investigate the link between the quality of the original nociceptive stimulus and the mental trace, as well as the differences between the accompanying neural responses. Additionally, by incorporating the behavioural ratings, we explored which brain regions were separately responsible for generating either an accurate or vivid recall of the physical experience. Together, these observations further our understanding of centrally-mediated pain experiences and pain memory as well as the potential relevance of these factors in the maintenance of chronic pain.

  18. Independent Aftereffects of Fat and Muscle: Implications for neural encoding, body space representation, and body image disturbance.

    Science.gov (United States)

    Sturman, Daniel; Stephen, Ian D; Mond, Jonathan; Stevenson, Richard J; Brooks, Kevin R

    2017-01-10

    Although research addressing body size misperception has focused on socio-cognitive processes, such as internalization of the "ideal" images of bodies in the media, the perceptual basis of this phenomenon remains largely unknown. Further, most studies focus on body size per se even though this depends on both fat and muscle mass - variables that have very different relationships with health. We tested visual adaptation as a mechanism for inducing body fat and muscle mass misperception, and assessed whether these two dimensions of body space are processed independently. Observers manipulated the apparent fat and muscle mass of bodies to make them appear "normal" before and after inspecting images from one of four adaptation conditions (increased fat/decreased fat/increased muscle/decreased muscle). Exposure resulted in a shift in the point of subjective normality in the direction of the adapting images along the relevant (fat or muscle) axis, suggesting that the neural mechanisms involved in body fat and muscle perception are independent. This supports the viability of adaptation as a model of real-world body size misperception, and extends its applicability to clinical manifestations of body image disturbance that entail not only preoccupation with thinness (e.g., anorexia nervosa) but also with muscularity (e.g., muscle dysmorphia).

  19. Aural localization of silent objects by active human biosonar: neural representations of virtual echo-acoustic space.

    Science.gov (United States)

    Wallmeier, Ludwig; Kish, Daniel; Wiegrebe, Lutz; Flanagin, Virginia L

    2015-03-01

    Some blind humans have developed the remarkable ability to detect and localize objects through the auditory analysis of self-generated tongue clicks. These echolocation experts show a corresponding increase in 'visual' cortex activity when listening to echo-acoustic sounds. Echolocation in real-life settings involves multiple reflections as well as active sound production, neither of which has been systematically addressed. We developed a virtualization technique that allows participants to actively perform such biosonar tasks in virtual echo-acoustic space during magnetic resonance imaging (MRI). Tongue clicks, emitted in the MRI scanner, are picked up by a microphone, convolved in real time with the binaural impulse responses of a virtual space, and presented via headphones as virtual echoes. In this manner, we investigated the brain activity during active echo-acoustic localization tasks. Our data show that, in blind echolocation experts, activations in the calcarine cortex are dramatically enhanced when a single reflector is introduced into otherwise anechoic virtual space. A pattern-classification analysis revealed that, in the blind, calcarine cortex activation patterns could discriminate left-side from right-side reflectors. This was found in both blind experts, but the effect was significant for only one of them. In sighted controls, 'visual' cortex activations were insignificant, but activation patterns in the planum temporale were sufficient to discriminate left-side from right-side reflectors. Our data suggest that blind and echolocation-trained, sighted subjects may recruit different neural substrates for the same active-echolocation task. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Bigraphical Nets

    Directory of Open Access Journals (Sweden)

    Ian Mackie

    2013-02-01

    Full Text Available Interaction nets are a graphical model of computation, which has been used to define efficient evaluators for functional calculi, and specifically lambda calculi with patterns. However, the flat structure of interaction nets forces pattern matching and functional behaviour to be encoded at the same level, losing some potential parallelism. In this paper, we introduce bigraphical nets, or binets for short, as a generalisation of interaction nets using ideas from bigraphs and port graphs, and we present a formal notation and operational semantics for binets. We illustrate their expressive power by examples of applications.

  1. Petri Nets

    Indian Academy of Sciences (India)

    Modeling is a central part of all activities that lead up to the design, implementation, and deployment ... The primary motivation behind. Petri's work was to model concurrency and ... Technology became a leading centre for Petri net research and from then on, Petri nets became an active research area in several universities, ...

  2. Neural Representation of Conceptual Knowledge.

    Science.gov (United States)

    1986-06-01

    psychotherapy , public information and inter-personal communication (Roediger 1980]. Research in the behavioral and brain sciences entrails implicit assumptions...and saddle and hat, etc.? How do they fit together to keep a gestalt of the scene and scenario? What is happening with all the other visual

  3. Catamaran Nets

    Science.gov (United States)

    1990-01-01

    West Coast Netting, Inc.'s net of Hyperester twine, is made of three strands of fiber twisted together by a company-invented sophisticated twisting machine and process that maintain precisely the same tension on each strand. The resulting twine offers higher strength and improved abrasion resistance. The technology that created the Hyperester supertwine has found spinoff applications, first as an extra-efficient seine for tuna fishing, then as a capture net for law enforcement agencies. The newest one is as a deck for racing catamarans. Hyperester twine net has been used on most of the high performance racing catamarans of recent years, including the America's Cup Challenge boats. They are tough and hold up well in the continual exposure to sunlight and saltwater.

  4. Feature to prototype transition in neural networks

    Science.gov (United States)

    Krotov, Dmitry; Hopfield, John

    Models of associative memory with higher order (higher than quadratic) interactions, and their relationship to neural networks used in deep learning are discussed. Associative memory is conventionally described by recurrent neural networks with dynamical convergence to stable points. Deep learning typically uses feedforward neural nets without dynamics. However, a simple duality relates these two different views when applied to problems of pattern classification. From the perspective of associative memory such models deserve attention because they make it possible to store a much larger number of memories, compared to the quadratic case. In the dual description, these models correspond to feedforward neural networks with one hidden layer and unusual activation functions transmitting the activities of the visible neurons to the hidden layer. These activation functions are rectified polynomials of a higher degree rather than the rectified linear functions used in deep learning. The network learns representations of the data in terms of features for rectified linear functions, but as the power in the activation function is increased there is a gradual shift to a prototype-based representation, the two extreme regimes of pattern recognition known in cognitive psychology. Simons Center for Systems Biology.

  5. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    , to location-based social networks and games, such as Foursquare and facebook. Warns of the threats these technologies, such as data surveillance, present to our sense of privacy, while also outlining the opportunities for pro-social developments. Provides a theory of the web in the context of the history......Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps...

  6. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  7. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry.

    Science.gov (United States)

    Norman, Berk; Pedoia, Valentina; Majumdar, Sharmila

    2018-03-27

    Purpose To analyze how automatic segmentation translates in accuracy and precision to morphology and relaxometry compared with manual segmentation and increases the speed and accuracy of the work flow that uses quantitative magnetic resonance (MR) imaging to study knee degenerative diseases such as osteoarthritis (OA). Materials and Methods This retrospective study involved the analysis of 638 MR imaging volumes from two data cohorts acquired at 3.0 T: (a) spoiled gradient-recalled acquisition in the steady state T1 ρ -weighted images and (b) three-dimensional (3D) double-echo steady-state (DESS) images. A deep learning model based on the U-Net convolutional network architecture was developed to perform automatic segmentation. Cartilage and meniscus compartments were manually segmented by skilled technicians and radiologists for comparison. Performance of the automatic segmentation was evaluated on Dice coefficient overlap with the manual segmentation, as well as by the automatic segmentations' ability to quantify, in a longitudinally repeatable way, relaxometry and morphology. Results The models produced strong Dice coefficients, particularly for 3D-DESS images, ranging between 0.770 and 0.878 in the cartilage compartments to 0.809 and 0.753 for the lateral meniscus and medial meniscus, respectively. The models averaged 5 seconds to generate the automatic segmentations. Average correlations between manual and automatic quantification of T1 ρ and T2 values were 0.8233 and 0.8603, respectively, and 0.9349 and 0.9384 for volume and thickness, respectively. Longitudinal precision of the automatic method was comparable with that of the manual one. Conclusion U-Net demonstrates efficacy and precision in quickly generating accurate segmentations that can be used to extract relaxation times and morphologic characterization and values that can be used in the monitoring and diagnosis of OA. © RSNA, 2018 Online supplemental material is available for this article.

  8. Petri Nets

    Indian Academy of Sciences (India)

    Institute of Science,. Bangalore. His research interests are broadly in the areas .... Qualitative Analysis: The Petri net model can be sub- jected to qualitative analysis to check system .... Performance evaluation of complex manufacturing architectures, leading to the design of optimal manufacturing strategies. • Modeling and ...

  9. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/09/0044-0052. Author Affiliations. Y Narahari ...

  10. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52 ... Author Affiliations. Y Narahari1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  11. Neural networks for aircraft control

    Science.gov (United States)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  12. Feedback Synthesizes Neural Codes for Motion.

    Science.gov (United States)

    Clarke, Stephen E; Maler, Leonard

    2017-05-08

    In senses as diverse as vision, hearing, touch, and the electrosense, sensory neurons receive bottom-up input from the environment, as well as top-down input from feedback loops involving higher brain regions [1-4]. Through connectivity with local inhibitory interneurons, these feedback loops can exert both positive and negative control over fundamental aspects of neural coding, including bursting [5, 6] and synchronous population activity [7, 8]. Here we show that a prominent midbrain feedback loop synthesizes a neural code for motion reversal in the hindbrain electrosensory ON- and OFF-type pyramidal cells. This top-down mechanism generates an accurate bidirectional encoding of object position, despite the inability of the electrosensory afferents to generate a consistent bottom-up representation [9, 10]. The net positive activity of this midbrain feedback is additionally regulated through a hindbrain feedback loop, which reduces stimulus-induced bursting and also dampens the ON and OFF cell responses to interfering sensory input [11]. We demonstrate that synthesis of motion representations and cancellation of distracting signals are mediated simultaneously by feedback, satisfying an accepted definition of spatial attention [12]. The balance of excitatory and inhibitory feedback establishes a "focal" distance for optimized neural coding, whose connection to a classic motion-tracking behavior provides new insight into the computational roles of feedback and active dendrites in spatial localization [13, 14]. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A Gloss Composition and Context Clustering Based Distributed Word Sense Representation Model

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2015-08-01

    Full Text Available In recent years, there has been an increasing interest in learning a distributed representation of word sense. Traditional context clustering based models usually require careful tuning of model parameters, and typically perform worse on infrequent word senses. This paper presents a novel approach which addresses these limitations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned representations outperform the publicly available embeddings on half of the metrics in the word similarity task, 6 out of 13 sub tasks in the analogical reasoning task, and gives the best overall accuracy in the word sense effect classification task, which shows the effectiveness of our proposed distributed distribution learning model.

  14. Deep feature representation with stacked sparse auto-encoder and convolutional neural network for hyperspectral imaging-based detection of cucumber defects

    Science.gov (United States)

    It is challenging to achieve rapid and accurate processing of large amounts of hyperspectral image data. This research was aimed to develop a novel classification method by employing deep feature representation with the stacked sparse auto-encoder (SSAE) and the SSAE combined with convolutional neur...

  15. ANT Advanced Neural Tool

    Energy Technology Data Exchange (ETDEWEB)

    Labrador, I.; Carrasco, R.; Martinez, L.

    1996-07-01

    This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs.

  16. ANT Advanced Neural Tool

    International Nuclear Information System (INIS)

    Labrador, I.; Carrasco, R.; Martinez, L.

    1996-01-01

    This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs

  17. Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation

    Science.gov (United States)

    Khaligh-Razavi, Seyed-Mahdi; Kriegeskorte, Nikolaus

    2014-01-01

    Inferior temporal (IT) cortex in human and nonhuman primates serves visual object recognition. Computational object-vision models, although continually improving, do not yet reach human performance. It is unclear to what extent the internal representations of computational models can explain the IT representation. Here we investigate a wide range of computational model representations (37 in total), testing their categorization performance and their ability to account for the IT representational geometry. The models include well-known neuroscientific object-recognition models (e.g. HMAX, VisNet) along with several models from computer vision (e.g. SIFT, GIST, self-similarity features, and a deep convolutional neural network). We compared the representational dissimilarity matrices (RDMs) of the model representations with the RDMs obtained from human IT (measured with fMRI) and monkey IT (measured with cell recording) for the same set of stimuli (not used in training the models). Better performing models were more similar to IT in that they showed greater clustering of representational patterns by category. In addition, better performing models also more strongly resembled IT in terms of their within-category representational dissimilarities. Representational geometries were significantly correlated between IT and many of the models. However, the categorical clustering observed in IT was largely unexplained by the unsupervised models. The deep convolutional network, which was trained by supervision with over a million category-labeled images, reached the highest categorization performance and also best explained IT, although it did not fully explain the IT data. Combining the features of this model with appropriate weights and adding linear combinations that maximize the margin between animate and inanimate objects and between faces and other objects yielded a representation that fully explained our IT data. Overall, our results suggest that explaining IT requires

  18. Deep supervised, but not unsupervised, models may explain IT cortical representation.

    Science.gov (United States)

    Khaligh-Razavi, Seyed-Mahdi; Kriegeskorte, Nikolaus

    2014-11-01

    Inferior temporal (IT) cortex in human and nonhuman primates serves visual object recognition. Computational object-vision models, although continually improving, do not yet reach human performance. It is unclear to what extent the internal representations of computational models can explain the IT representation. Here we investigate a wide range of computational model representations (37 in total), testing their categorization performance and their ability to account for the IT representational geometry. The models include well-known neuroscientific object-recognition models (e.g. HMAX, VisNet) along with several models from computer vision (e.g. SIFT, GIST, self-similarity features, and a deep convolutional neural network). We compared the representational dissimilarity matrices (RDMs) of the model representations with the RDMs obtained from human IT (measured with fMRI) and monkey IT (measured with cell recording) for the same set of stimuli (not used in training the models). Better performing models were more similar to IT in that they showed greater clustering of representational patterns by category. In addition, better performing models also more strongly resembled IT in terms of their within-category representational dissimilarities. Representational geometries were significantly correlated between IT and many of the models. However, the categorical clustering observed in IT was largely unexplained by the unsupervised models. The deep convolutional network, which was trained by supervision with over a million category-labeled images, reached the highest categorization performance and also best explained IT, although it did not fully explain the IT data. Combining the features of this model with appropriate weights and adding linear combinations that maximize the margin between animate and inanimate objects and between faces and other objects yielded a representation that fully explained our IT data. Overall, our results suggest that explaining IT requires

  19. Deep supervised, but not unsupervised, models may explain IT cortical representation.

    Directory of Open Access Journals (Sweden)

    Seyed-Mahdi Khaligh-Razavi

    2014-11-01

    Full Text Available Inferior temporal (IT cortex in human and nonhuman primates serves visual object recognition. Computational object-vision models, although continually improving, do not yet reach human performance. It is unclear to what extent the internal representations of computational models can explain the IT representation. Here we investigate a wide range of computational model representations (37 in total, testing their categorization performance and their ability to account for the IT representational geometry. The models include well-known neuroscientific object-recognition models (e.g. HMAX, VisNet along with several models from computer vision (e.g. SIFT, GIST, self-similarity features, and a deep convolutional neural network. We compared the representational dissimilarity matrices (RDMs of the model representations with the RDMs obtained from human IT (measured with fMRI and monkey IT (measured with cell recording for the same set of stimuli (not used in training the models. Better performing models were more similar to IT in that they showed greater clustering of representational patterns by category. In addition, better performing models also more strongly resembled IT in terms of their within-category representational dissimilarities. Representational geometries were significantly correlated between IT and many of the models. However, the categorical clustering observed in IT was largely unexplained by the unsupervised models. The deep convolutional network, which was trained by supervision with over a million category-labeled images, reached the highest categorization performance and also best explained IT, although it did not fully explain the IT data. Combining the features of this model with appropriate weights and adding linear combinations that maximize the margin between animate and inanimate objects and between faces and other objects yielded a representation that fully explained our IT data. Overall, our results suggest that explaining

  20. NetWeaver for EMDS user guide (version 1.1): a knowledge base development system.

    Science.gov (United States)

    Keith M. Reynolds

    1999-01-01

    The guide describes use of the NetWeaver knowledge base development system. Knowledge representation in NetWeaver is based on object-oriented fuzzy-logic networks that offer several significant advantages over the more traditional rulebased representation. Compared to rule-based knowledge bases, NetWeaver knowledge bases are easier to build, test, and maintain because...

  1. Direct Multitype Cardiac Indices Estimation via Joint Representation and Regression Learning.

    Science.gov (United States)

    Xue, Wufeng; Islam, Ali; Bhaduri, Mousumi; Li, Shuo

    2017-10-01

    Cardiac indices estimation is of great importance during identification and diagnosis of cardiac disease in clinical routine. However, estimation of multitype cardiac indices with consistently reliable and high accuracy is still a great challenge due to the high variability of cardiac structures and the complexity of temporal dynamics in cardiac MR sequences. While efforts have been devoted into cardiac volumes estimation through feature engineering followed by a independent regression model, these methods suffer from the vulnerable feature representation and incompatible regression model. In this paper, we propose a semi-automated method for multitype cardiac indices estimation. After the manual labeling of two landmarks for ROI cropping, an integrated deep neural network Indices-Net is designed to jointly learn the representation and regression models. It comprises two tightly-coupled networks, such as a deep convolution autoencoder for cardiac image representation, and a multiple output convolution neural network for indices regression. Joint learning of the two networks effectively enhances the expressiveness of image representation with respect to cardiac indices, and the compatibility between image representation and indices regression, thus leading to accurate and reliable estimations for all the cardiac indices. When applied with five-fold cross validation on MR images of 145 subjects, Indices-Net achieves consistently low estimation error for LV wall thicknesses (1.44 ± 0.71 mm) and areas of cavity and myocardium (204 ± 133 mm 2 ). It outperforms, with significant error reductions, segmentation method (55.1% and 17.4%), and two-phase direct volume-only methods (12.7% and 14.6%) for wall thicknesses and areas, respectively. These advantages endow the proposed method a great potential in clinical cardiac function assessment.

  2. An adaptable Boolean net trainable to control a computing robot

    International Nuclear Information System (INIS)

    Lauria, F. E.; Prevete, R.; Milo, M.; Visco, S.

    1999-01-01

    We discuss a method to implement in a Boolean neural network a Hebbian rule so to obtain an adaptable universal control system. We start by presenting both the Boolean neural net and the Hebbian rule we have considered. Then we discuss, first, the problems arising when the latter is naively implemented in a Boolean neural net, second, the method consenting us to overcome them and the ensuing adaptable Boolean neural net paradigm. Next, we present the adaptable Boolean neural net as an intelligent control system, actually controlling a writing robot, and discuss how to train it in the execution of the elementary arithmetic operations on operands represented by numerals with an arbitrary number of digits

  3. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  4. Poetic representation

    DEFF Research Database (Denmark)

    Wulf-Andersen, Trine Østergaard

    2012-01-01

    , and dialogue, of situated participants. The article includes a lengthy example of a poetic representation of one participant’s story, and the author comments on the potentials of ‘doing’ poetic representations as an example of writing in ways that challenges what sometimes goes unasked in participative social...

  5. Character Recognition Using Genetically Trained Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-10-01

    Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the

  6. Sequential neural models with stochastic layers

    DEFF Research Database (Denmark)

    Fraccaro, Marco; Sønderby, Søren Kaae; Paquet, Ulrich

    2016-01-01

    How can we efficiently propagate uncertainty in a latent state representation with recurrent neural networks? This paper introduces stochastic recurrent neural networks which glue a deterministic recurrent neural network and a state space model together to form a stochastic and sequential neural...... generative model. The clear separation of deterministic and stochastic layers allows a structured variational inference network to track the factorization of the model's posterior distribution. By retaining both the nonlinear recursive structure of a recurrent neural network and averaging over...

  7. Variational Neural Machine Translation

    OpenAIRE

    Zhang, Biao; Xiong, Deyi; Su, Jinsong; Duan, Hong; Zhang, Min

    2016-01-01

    Models of neural machine translation are often from a discriminative family of encoderdecoders that learn a conditional distribution of a target sentence given a source sentence. In this paper, we propose a variational model to learn this conditional distribution for neural machine translation: a variational encoderdecoder model that can be trained end-to-end. Different from the vanilla encoder-decoder model that generates target translations from hidden representations of source sentences al...

  8. Feature Extraction and Fusion Using Deep Convolutional Neural Networks for Face Detection

    Directory of Open Access Journals (Sweden)

    Xiaojun Lu

    2017-01-01

    Full Text Available This paper proposes a method that uses feature fusion to represent images better for face detection after feature extraction by deep convolutional neural network (DCNN. First, with Clarifai net and VGG Net-D (16 layers, we learn features from data, respectively; then we fuse features extracted from the two nets. To obtain more compact feature representation and mitigate computation complexity, we reduce the dimension of the fused features by PCA. Finally, we conduct face classification by SVM classifier for binary classification. In particular, we exploit offset max-pooling to extract features with sliding window densely, which leads to better matches of faces and detection windows; thus the detection result is more accurate. Experimental results show that our method can detect faces with severe occlusion and large variations in pose and scale. In particular, our method achieves 89.24% recall rate on FDDB and 97.19% average precision on AFW.

  9. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1987-01-01

    The author describes a Petri net model, called coloured Petri nets (CP-nets), by means of which it is possible to describe large systems without having to cope with unnecessary details. The author introduces CP-nets and provide a first impression of their modeling power and the suitability...

  10. Neural Expert Systems

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jiří

    1995-01-01

    Roč. 8, č. 2 (1995), s. 261-271 ISSN 0893-6080 R&D Projects: GA ČR GA201/95/0976 Keywords : expert system * knowledge representation * multilayered neural network * back propagation * interval neuron function * incomplete information * explanation Impact factor: 1.262, year: 1995

  11. Representational Machines

    DEFF Research Database (Denmark)

    to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological...

  12. Flexible body control using neural networks

    Science.gov (United States)

    Mccullough, Claire L.

    1992-01-01

    Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.

  13. Representational Machines

    DEFF Research Database (Denmark)

    Petersson, Dag; Dahlgren, Anna; Vestberg, Nina Lager

    Photography not only represents space. Space is produced photographically. Since its inception in the 19th century, photography has brought to light a vast array of represented subjects. Always situated in some spatial order, photographic representations have been operatively underpinned by social...... to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological......, technical, and institutional mechanisms. Geographically, bodily, and geometrically, the camera has positioned its subjects in social structures and hierarchies, in recognizable localities, and in iconic depth constructions which, although they show remarkable variation, nevertheless belong specifically...

  14. Planning of nets

    International Nuclear Information System (INIS)

    Carberry, M

    1996-01-01

    The paper is about the planning of nets in areas of low density like it is the case of the rural areas. The author includes economic and technological aspects, planning of nets, demands and management among others

  15. The neural representation of intrusive thoughts

    Science.gov (United States)

    Schmiedek, Florian; Brose, Annette; Schott, Björn H.; Lindenberger, Ulman; Lövden, Martin

    2013-01-01

    Based on the philosophical notion that language embodies thought we investigated whether a habitual tendency for intrusive thought that younger and older participants report over a period of 100 sessions, spread out over about 6 months, is associated with brain regions related to language production. In favour of this hypothesis, we found that individual differences in habitual intrusive thoughts are correlated with activity in the left inferior frontal gyrus (IFG, Broca’s area) as well as the cingulate cortex (CC) during a two-choice reaction-time task in fMRI. Participants who habitually tended to experience intrusive thoughts showed greater activity during task-free (baseline) compared to task periods in brain regions involved in language production. Task performance was unrelated to individual differences in intrusive thoughts. We conclude that intrusive thoughts may be represented in a language-like format and that individuals reporting a habitually higher tendency for intrusive thoughts may have stronger and more habitual inner speech processes. PMID:22563007

  16. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  17. Professional Enterprise NET

    CERN Document Server

    Arking, Jon

    2010-01-01

    Comprehensive coverage to help experienced .NET developers create flexible, extensible enterprise application code If you're an experienced Microsoft .NET developer, you'll find in this book a road map to the latest enterprise development methodologies. It covers the tools you will use in addition to Visual Studio, including Spring.NET and nUnit, and applies to development with ASP.NET, C#, VB, Office (VBA), and database. You will find comprehensive coverage of the tools and practices that professional .NET developers need to master in order to build enterprise more flexible, testable, and ext

  18. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    a method which makes it possible to associate auxiliary information, called annotations, with tokens without modifying the colour sets of the CP-net. Annotations are pieces of information that are not essential for determining the behaviour of the system being modelled, but are rather added to support...... a certain use of the CP-net. We define the semantics of annotations by describing a translation from a CP-net and the corresponding annotation layers to another CP-net where the annotations are an integrated part of the CP-net....

  19. Fuzzy Neuroidal Nets and Recurrent Fuzzy Computations

    Czech Academy of Sciences Publication Activity Database

    Wiedermann, Jiří

    2001-01-01

    Roč. 11, č. 6 (2001), s. 675-686 ISSN 1210-0552. [SOFSEM 2001 Workshop on Soft Computing. Piešťany, 29.11.2001-30.11.2001] R&D Projects: GA ČR GA201/00/1489; GA AV ČR KSK1019101 Institutional research plan: AV0Z1030915 Keywords : fuzzy computing * fuzzy neural nets * fuzzy Turing machines * non-uniform computational complexity Subject RIV: BA - General Mathematics

  20. Representational Thickness

    DEFF Research Database (Denmark)

    Mullins, Michael

    Contemporary communicational and informational processes contribute to the shaping of our physical environment by having a powerful influence on the process of design. Applications of virtual reality (VR) are transforming the way architecture is conceived and produced by introducing dynamic...... elements into the process of design. Through its immersive properties, virtual reality allows access to a spatial experience of a computer model very different to both screen based simulations as well as traditional forms of architectural representation. The dissertation focuses on processes of the current...... by ‘professionals’ to ‘laypeople’. The thesis articulates problems in VR’s current application, specifically the CAVE and Panorama theatres, and seeks an understanding of how these problems may be addressed. The central questions that have motivated this research project are thus: What is architectural VR...

  1. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike

    2010-01-01

    The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... and how the Net ZEB status should be calculated differs in most countries. This paper presents an overview of Net ZEBs energy calculation methodologies proposed by organisations representing eight different countries: Austria, Canada, Denmark, Germany, Italy, Norway, Switzerland and the USA. The different...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...

  2. WaveNet

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface ( GUI ) data management tool developed for Corps coastal...generates tabular and graphical information for project planning and design documents. The WaveNet is a web-based GUI designed to provide users with a...data from different sources, and employs a combination of Fortran, Python and Matlab codes to process and analyze data for USACE applications

  3. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  4. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex

    2007-01-01

    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  5. Deep learning for steganalysis via convolutional neural networks

    Science.gov (United States)

    Qian, Yinlong; Dong, Jing; Wang, Wei; Tan, Tieniu

    2015-03-01

    Current work on steganalysis for digital images is focused on the construction of complex handcrafted features. This paper proposes a new paradigm for steganalysis to learn features automatically via deep learning models. We novelly propose a customized Convolutional Neural Network for steganalysis. The proposed model can capture the complex dependencies that are useful for steganalysis. Compared with existing schemes, this model can automatically learn feature representations with several convolutional layers. The feature extraction and classification steps are unified under a single architecture, which means the guidance of classification can be used during the feature extraction step. We demonstrate the effectiveness of the proposed model on three state-of-theart spatial domain steganographic algorithms - HUGO, WOW, and S-UNIWARD. Compared to the Spatial Rich Model (SRM), our model achieves comparable performance on BOSSbase and the realistic and large ImageNet database.

  6. Tutorial on neural network applications in high energy physics: A 1992 perspective

    International Nuclear Information System (INIS)

    Denby, B.

    1992-04-01

    Feed forward and recurrent neural networks are introduced and related to standard data analysis tools. Tips are given on applications of neural nets to various areas of high energy physics. A review of applications within high energy physics and a summary of neural net hardware status are given

  7. Tutorial on neural network applications in high energy physics: A 1992 perspective

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B.

    1992-04-01

    Feed forward and recurrent neural networks are introduced and related to standard data analysis tools. Tips are given on applications of neural nets to various areas of high energy physics. A review of applications within high energy physics and a summary of neural net hardware status are given.

  8. Learning character-wise text representations with Elman nets

    NARCIS (Netherlands)

    Chrupala, Grzegorz

    2014-01-01

    Simple recurrent networks (SRNs) were introduced by Elman (1990) in order to model temporal structures in general and sequential structure in language in particular. More recently, SRN-based language models have become practical to train on large datasets and shown to outperform n-gram language

  9. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M

    2013-01-01

    Full Text Available Is it possible to develop a building that uses a net zero amount of water? In recent years it has become evident that it is possible to have buildings that use a net zero amount of electricity. This is possible when the building is taken off...

  10. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...

  11. Translating Colored Control Flow Nets into Readable Java via Annotated Java Workflow Nets

    DEFF Research Database (Denmark)

    Lassen, Kristian Bisgaard; Tjell, Simon

    2007-01-01

    In this paper, we present a method for developing Java applications from Colored Control Flow Nets (CCFNs), which is a special kind of Colored Petri Nets (CPNs) that we introduce. CCFN makes an explicit distinction between the representation of: The system, the environment of the system, and the ......In this paper, we present a method for developing Java applications from Colored Control Flow Nets (CCFNs), which is a special kind of Colored Petri Nets (CPNs) that we introduce. CCFN makes an explicit distinction between the representation of: The system, the environment of the system......, and the interface between the system and the environment. Our translation maps CCFNs into Anno- tated Java Workflow Nets (AJWNs) as an intermediate step, and these AJWNs are finally mapped to Java. CCFN is intended to enforce the modeler to describe the system in an imperative manner which makes the subsequent...... translation to Java easier to define. The translation to Java preserves data dependencies and control-flow aspects of the source CCFN. This paper contributes to the model-driven software development paradigm, by showing how to model a system, environment, and their interface, as a CCFN and presenting a fully...

  12. Fusion through the NET

    International Nuclear Information System (INIS)

    Spears, B.

    1987-01-01

    The paper concerns the next generation of fusion machines which are intended to demonstrate the technical viability of fusion. In Europe, the device that will follow on from JET is known as NET - the Next European Torus. If the design programme for NET proceeds, Europe could start to build the machine in 1994. The present JET programme hopes to achieve breakeven in the early 1990's. NET hopes to reach ignition in the next century, and so lay the foundation for a demonstration reactor. A description is given of the technical specifications of the components of NET, including: the first wall, the divertors to protect the wall, the array of magnets that provide the fields containing the plasma, the superconducting magnets, and the shield of the machine. NET's research programme is briefly outlined, including the testing programme to optimise conditions in the machine to achieve ignition, and its safety work. (U.K.)

  13. Using fuzzy logic to integrate neural networks and knowledge-based systems

    Science.gov (United States)

    Yen, John

    1991-01-01

    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.

  14. Windowed active sampling for reliable neural learning

    NARCIS (Netherlands)

    Barakova, E.I; Spaanenburg, L

    The composition of the example set has a major impact on the quality of neural learning. The popular approach is focused on extensive pre-processing to bridge the representation gap between process measurement and neural presentation. In contrast, windowed active sampling attempts to solve these

  15. Natural Language Video Description using Deep Recurrent Neural Networks

    Science.gov (United States)

    2015-11-23

    language with a single deep neural network. We use deep recurrent nets (RNNs), which have recently demonstrated strong results for machine translation (MT...Donahue, Marcus Rohrbach, Raymond Mooney, and Kate Saenko. Translating videos to natural language using deep recurrent neural net - works. In NAACL, 2015...Natural Language Video Description using Deep Recurrent Neural Networks Subhashini Venugopalan University of Texas at Austin vsub@cs.utexas.edu

  16. Automating Ontological Annotation with WordNet

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob L.; Hohimer, Ryan E.; White, Amanda M.

    2006-01-22

    Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.

  17. Ontological Annotation with WordNet

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob; Hohimer, Ryan E.; White, Amanda M.

    2006-06-06

    Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.

  18. Global reinforcement training of CrossNets

    Science.gov (United States)

    Ma, Xiaolong

    2007-10-01

    Hybrid "CMOL" integrated circuits, incorporating advanced CMOS devices for neural cell bodies, nanowires as axons and dendrites, and latching switches as synapses, may be used for the hardware implementation of extremely dense (107 cells and 1012 synapses per cm2) neuromorphic networks, operating up to 10 6 times faster than their biological prototypes. We are exploring several "Cross- Net" architectures that accommodate the limitations imposed by CMOL hardware and should allow effective training of the networks without a direct external access to individual synapses. Our studies have show that CrossNets based on simple (two-terminal) crosspoint devices can work well in at least two modes: as Hop-field networks for associative memory and multilayer perceptrons for classification tasks. For more intelligent tasks (such as robot motion control or complex games), which do not have "examples" for supervised learning, more advanced training methods such as the global reinforcement learning are necessary. For application of global reinforcement training algorithms to CrossNets, we have extended Williams's REINFORCE learning principle to a more general framework and derived several learning rules that are more suitable for CrossNet hardware implementation. The results of numerical experiments have shown that these new learning rules can work well for both classification tasks and reinforcement tasks such as the cartpole balancing control problem. Some limitations imposed by the CMOL hardware need to be carefully addressed for the the successful application of in situ reinforcement training to CrossNets.

  19. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  20. Pro NET Best Practices

    CERN Document Server

    Ritchie, Stephen D

    2011-01-01

    Pro .NET Best Practices is a practical reference to the best practices that you can apply to your .NET projects today. You will learn standards, techniques, and conventions that are sharply focused, realistic and helpful for achieving results, steering clear of unproven, idealistic, and impractical recommendations. Pro .NET Best Practices covers a broad range of practices and principles that development experts agree are the right ways to develop software, which includes continuous integration, automated testing, automated deployment, and code analysis. Whether the solution is from a free and

  1. Automated Pathogenesis-Based Diagnosis of Lumbar Neural Foraminal Stenosis via Deep Multiscale Multitask Learning.

    Science.gov (United States)

    Han, Zhongyi; Wei, Benzheng; Leung, Stephanie; Nachum, Ilanit Ben; Laidley, David; Li, Shuo

    2018-02-15

    Pathogenesis-based diagnosis is a key step to prevent and control lumbar neural foraminal stenosis (LNFS). It conducts both early diagnosis and comprehensive assessment by drawing crucial pathological links between pathogenic factors and LNFS. Automated pathogenesis-based diagnosis would simultaneously localize and grade multiple spinal organs (neural foramina, vertebrae, intervertebral discs) to diagnose LNFS and discover pathogenic factors. The automated way facilitates planning optimal therapeutic schedules and relieving clinicians from laborious workloads. However, no successful work has been achieved yet due to its extreme challenges since 1) multiple targets: each lumbar spine has at least 17 target organs, 2) multiple scales: each type of target organ has structural complexity and various scales across subjects, and 3) multiple tasks, i.e., simultaneous localization and diagnosis of all lumbar organs, are extremely difficult than individual tasks. To address these huge challenges, we propose a deep multiscale multitask learning network (DMML-Net) integrating a multiscale multi-output learning and a multitask regression learning into a fully convolutional network. 1) DMML-Net merges semantic representations to reinforce the salience of numerous target organs. 2) DMML-Net extends multiscale convolutional layers as multiple output layers to boost the scale-invariance for various organs. 3) DMML-Net joins a multitask regression module and a multitask loss module to prompt the mutual benefit between tasks. Extensive experimental results demonstrate that DMML-Net achieves high performance (0.845 mean average precision) on T1/T2-weighted MRI scans from 200 subjects. This endows our method an efficient tool for clinical LNFS diagnosis.

  2. NetSig

    DEFF Research Database (Denmark)

    Horn, Heiko; Lawrence, Michael S; Chouinard, Candace R

    2018-01-01

    Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (Net......Sig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that Net......Sig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified...

  3. Blanket testing in NET

    International Nuclear Information System (INIS)

    Chazalon, M.; Daenner, W.; Libin, B.

    1989-01-01

    The testing stages in NET for the performance assessment of the various breeding blanket concepts developed at the present time in Europe for DEMO (LiPb and ceramic blankets) and the requirements upon NET to perform these tests are reviewed. Typical locations available in NET for blanket testing are the central outboard segments and the horizontal ports of in-vessel sectors. These test positions will be connectable with external test loops. The number of test loops (helium, water, liquid metal) will be such that each major class of blankets can be tested in NET. The test positions, the boundary conditions and the external test loops are identified and the requirements for test blankets are summarized (author). 6

  4. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Musall, Eike

    2010-01-01

    The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...... parameters used in the calculations are discussed and the various renewable supply options considered in the methodologies are summarised graphically. Thus, the paper helps to understand different existing approaches to calculate energy balance in Net ZEBs, highlights the importance of variables selection...... and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo...

  5. PhysioNet

    Data.gov (United States)

    U.S. Department of Health & Human Services — The PhysioNet Resource is intended to stimulate current research and new investigations in the study of complex biomedical and physiologic signals. It offers free...

  6. Neural Mechanisms of Conceptual Relations

    Science.gov (United States)

    Lewis, Gwyneth A.

    2017-01-01

    An over-arching goal in neurolinguistic research is to characterize the neural bases of semantic representation. A particularly relevant goal concerns whether we represent features and events (a) together in a generalized semantic hub or (b) separately in distinct but complementary systems. While the left anterior temporal lobe (ATL) is strongly…

  7. Programming NET 35

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  8. Friends reunited? Evolutionary robotics and representational explanation.

    Science.gov (United States)

    Wheeler, Michael

    2005-01-01

    Robotics as practiced within the artificial life community is no longer the bitter enemy of representational explanation in the way that it sometimes seemed to be in the heady, revolutionary days of the 1990s. This rapprochement is, however, fragile, because the field of evolutionary robotics continues to pose two important challenges to the idea that real-time intelligent action must or should be explained by appeal to inner representations. The first of these challenges, the threat from nontrivial causal spread, occurs when extra-neural factors account for the kind of adaptive richness and flexibility normally associated with representation-based control. The second, the threat from continuous reciprocal causation, occurs when the causal contributions made by the systemic components collectively responsible for behavior generation are massively context-sensitive and variable over time. I argue that while the threat from nontrivial causal spread can be resisted, the threat from continuous reciprocal causation provides a stern test for our representational intuitions.

  9. Reconstruction of neutron spectra through neural networks

    International Nuclear Information System (INIS)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.

    2003-01-01

    A neural network has been used to reconstruct the neutron spectra starting from the counting rates of the detectors of the Bonner sphere spectrophotometric system. A group of 56 neutron spectra was selected to calculate the counting rates that would produce in a Bonner sphere system, with these data and the spectra it was trained the neural network. To prove the performance of the net, 12 spectra were used, 6 were taken of the group used for the training, 3 were obtained of mathematical functions and those other 3 correspond to real spectra. When comparing the original spectra of those reconstructed by the net we find that our net has a poor performance when reconstructing monoenergetic spectra, this attributes it to those characteristic of the spectra used for the training of the neural network, however for the other groups of spectra the results of the net are appropriate with the prospective ones. (Author)

  10. Knowledge representation and natural language processing

    Energy Technology Data Exchange (ETDEWEB)

    Weischedel, R.M.

    1986-07-01

    In principle, natural language and knowledge representation are closely related. This paper investigates this by demonstrating how several natural language phenomena, such as definite reference, ambiguity, ellipsis, ill-formed input, figures of speech, and vagueness, require diverse knowledge sources and reasoning. The breadth of kinds of knowledge needed to represent morphology, syntax, semantics, and pragmatics is surveyed. Furthermore, several current issues in knowledge representation, such as logic versus semantic nets, general-purpose versus special-purpose reasoners, adequacy of first-order logic, wait-and-see strategies, and default reasoning, are illustrated in terms of their relation to natural language processing and how natural language impact the issues.

  11. Neural network signal understanding for instrumentation

    DEFF Research Database (Denmark)

    Pau, L. F.; Johansen, F. S.

    1990-01-01

    A report is presented on the use of neural signal interpretation theory and techniques for the purpose of classifying the shapes of a set of instrumentation signals, in order to calibrate devices, diagnose anomalies, generate tuning/settings, and interpret the measurement results. Neural signal...... understanding research is surveyed, and the selected implementation and its performance in terms of correct classification rates and robustness to noise are described. Formal results on neural net training time and sensitivity to weights are given. A theory for neural control using functional link nets is given......, and an explanation facility designed to help neural signal understanding is described. The results are compared to those obtained with a knowledge-based signal interpretation system using the same instrument and data...

  12. On the Properties of Neural Machine Translation: Encoder-Decoder Approaches

    OpenAIRE

    Cho, Kyunghyun; van Merrienboer, Bart; Bahdanau, Dzmitry; Bengio, Yoshua

    2014-01-01

    Neural machine translation is a relatively new approach to statistical machine translation based purely on neural networks. The neural machine translation models often consist of an encoder and a decoder. The encoder extracts a fixed-length representation from a variable-length input sentence, and the decoder generates a correct translation from this representation. In this paper, we focus on analyzing the properties of the neural machine translation using two models; RNN Encoder--Decoder and...

  13. Biological Petri Nets

    CERN Document Server

    Wingender, E

    2011-01-01

    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  14. Net4Care

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2012-01-01

    propose a software ecosystem approach for telemedicine applications, providing a framework, Net4Care, encapsulating national/global design decisions with respect to standardization while allowing for local innovation. This paper presents an analysis of existing systems, of requirements for a software......, health centers are getting larger and more distributed, and the number of healthcare professionals does not follow the trend in chronic diseases. All of this leads to a need for telemedical and mobile health applications. In a Danish context, these applications are often developed through local...... ecosystem for telemedicine, and a summary of initial design decisions for the Net4Care framework....

  15. Representation as the representation of experience

    NARCIS (Netherlands)

    Ankersmit, FR

    This essay deals, mainly, with the notion of representation. Representation is associated with texts and, as such, is contrasted to the true singular statement. It is argued that the relationship between the text and what the text represents can never be modeled on the relationship between the true

  16. Distinguishing Representations as Origin and Representations as Input: Roles for Individual Cells

    Directory of Open Access Journals (Sweden)

    Jonathan C.W. Edwards

    2016-09-01

    Full Text Available It is widely perceived that there is a problem in giving a naturalistic account of mental representation that deals adequately with meaning, interpretation or significance (semantic content. It is suggested here that this problem may arise partly from the conflation of two vernacular senses of representation: representation-as-origin and representation-as-input. The flash of a neon sign may in one sense represent a popular drink, but to function as representation it must provide an input to a ‘consumer’ in the street. The arguments presented draw on two principles – the neuron doctrine and the need for a venue for ‘presentation’ or ‘reception’ of a representation at a specified site, consistent with the locality principle. It is also argued that domains of representation cannot be defined by signal traffic, since they can be expected to include ‘null’ elements based on non-firing cells. In this analysis, mental representations-as-origin are distributed patterns of cell firing. Each firing cell is given semantic value in its own right - some form of atomic propositional significance – since different axonal branches may contribute to integration with different populations of signals at different downstream sites. Representations-as-input are patterns of local co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws on the relationships between active and null inputs, forming ‘scenarios’ comprising a molecular combination of ‘premises’ from which a new output with atomic propositional significance is generated. In both types of representation, meaning, interpretation or significance pivots on events in an individual cell. (This analysis only applies to ‘occurrent’ representations based on current neural activity. The concept of representations-as-input emphasises the need for a ‘consumer’ of a representation and the dependence of meaning on the co-relationships involved in an

  17. Coloured Petri Nets

    CERN Document Server

    Jensen, Kurt

    2009-01-01

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. This book introduces the constructs of the CPN modelling language and presents the related analysis methods. It provides a comprehensive road map for the practical use of CPN.

  18. Game Theory .net.

    Science.gov (United States)

    Shor, Mikhael

    2003-01-01

    States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

  19. Net4Care platform

    DEFF Research Database (Denmark)

    2012-01-01

    , that in turn enables general practitioners and clinical staff to view observations. Use the menus above to explore the site's information resources. To get started, follow the short Hello, World! tutorial. The Net4Care project is funded by The Central Denmark Region and EU via Caretech Innovation....

  20. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...

  1. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism an...

  2. Safety nets or straitjackets?

    DEFF Research Database (Denmark)

    Ilsøe, Anna

    2012-01-01

    Does regulation of working hours at national and sector level impose straitjackets, or offer safety nets to employees seeking working time flexibility? This article compares legislation and collective agreements in the metal industries of Denmark, Germany and the USA. The industry has historically...

  3. Unsupervised Representation Learning by Predicting Image Rotations

    OpenAIRE

    Gidaris, Spyros; Singh, Praveer; Komodakis, Nikos

    2018-01-01

    Over the last years, deep convolutional neural networks (ConvNets) have transformed the field of computer vision thanks to their unparalleled capacity to learn high level semantic image features. However, in order to successfully learn those features, they usually require massive amounts of manually labeled data, which is both expensive and impractical to scale. Therefore, unsupervised semantic feature learning, i.e., learning without requiring manual annotation effort, is of crucial importan...

  4. Low dimensional representation of face space by face-selective inferior temporal neurons.

    Science.gov (United States)

    Salehi, Sina; Dehaqani, Mohammad-Reza A; Esteky, Hossein

    2017-05-01

    The representation of visual objects in primate brain is distributed and multiple neurons are involved in encoding each object. One way to understand the neural basis of object representation is to estimate the number of neural dimensions that are needed for veridical representation of object categories. In this study, the characteristics of the match between physical-shape and neural representational spaces in monkey inferior temporal (IT) cortex were evaluated. Specifically, we examined how the number of neural dimensions, stimulus behavioral saliency and stimulus category selectivity of neurons affected the correlation between shape and neural representational spaces in IT cortex. Single-unit recordings from monkey IT cortex revealed that there was a significant match between face space and its neural representation at lower neural dimensions, whereas the optimal match for the non-face objects was observed at higher neural dimensions. There was a statistically significant match between the face and neural spaces only in the face-selective neurons, whereas a significant match was observed for non-face objects in all neurons regardless of their category selectivity. Interestingly, the face neurons showed a higher match for the non-face objects than for the faces at higher neural dimensions. The optimal representation of face space in the responses of the face neurons was a low dimensional map that emerged early (~150 ms post-stimulus onset) and was followed by a high dimensional and relatively late (~300 ms) map for the non-face stimuli. These results support a multiplexing function for the face neurons in the representation of very similar shape spaces, but with different dimensionality and timing scales. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Experience-Dependent Enhancement of Linguistic Pitch Representation in the Brainstem Is Not Specific to a Speech Context

    Science.gov (United States)

    Krishnan, Ananthanarayan; Swaminathan, Jayaganesh; Gandour, Jackson T.

    2009-01-01

    Neural representation of pitch is influenced by lifelong experiences with music and language at both cortical and subcortical levels of processing. The aim of this article is to determine whether neural plasticity for pitch representation at the level of the brainstem is dependent upon specific "dimensions" of pitch contours that commonly occur as…

  6. Design of neural networks for classification of remotely sensed imagery

    Science.gov (United States)

    Chettri, Samir R.; Cromp, Robert F.; Birmingham, Mark

    1992-01-01

    Classification accuracies of a backpropagation neural network are discussed and compared with a maximum likelihood classifier (MLC) with multivariate normal class models. We have found that, because of its nonparametric nature, the neural network outperforms the MLC in this area. In addition, we discuss techniques for constructing optimal neural nets on parallel hardware like the MasPar MP-1 currently at GSFC. Other important discussions are centered around training and classification times of the two methods, and sensitivity to the training data. Finally, we discuss future work in the area of classification and neural nets.

  7. Net Balanced Floorplanning Based on Elastic Energy Model

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2008-01-01

    Floorplanning is becoming more and more important in VLSI design flows, especially for system-on-chip (SoC) designs where IP blocks dominate standard cells. Moreover, in deep sub-micron technologies, where process variations can introduce extra signal skew, it is desirable to have floorplans...... with balanced net delays to increase the safety margins of the design. In this paper, we investigate the properties of floorplanning based on the elastic energy model. The B*-tree, which is based on an ordered binary tree, is used for circuit representation and the elastic energy is used as the cost function....... To evaluate how well a net is balanced, we introduced a new metric 'unbalancing'. A more balanced net would have a smaller 'unbalancing' value. Experimental results show that our approach can not only meet fixed-outline constraints, but also achieve significant improvements in net balance for all the circuits...

  8. Neural networks

    International Nuclear Information System (INIS)

    Denby, Bruce; Lindsey, Clark; Lyons, Louis

    1992-01-01

    The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive

  9. Net Zero Water Update

    Science.gov (United States)

    2011-05-12

    Update 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...Opened to Collect Supplemental Data from Candidate Installations 15 Mar 11 Supplemental Data received from Army Commands 16-31 Mar 11 DOE...hierarchy (reduction, re-purpose, recycling & composting , energy recovery, and disposal) • Complied with Net Zero definitions • Demonstrated

  10. Army Net Zero Prove Out. Net Zero Waster Best Practices

    Science.gov (United States)

    2014-11-18

    Investment Ratio SRM Sustainment, Restoration and Modernization WWTP Waste Water Treatment Plant iii Task 0818, “Army Net Zero Prove Out” Net... WWTP ) to be free of the municipal system. In some cases, this may significantly enhance the installation’s ability to reduce water use and achieve...Net Zero. WWTP Design – Installations should include Net Zero considerations in the design and operation of WWTPs . There are many opportunities to

  11. Representation and processing of structures with binary sparse distributed codes

    OpenAIRE

    Rachkovskij, Dmitri A.

    1999-01-01

    The schemes for compositional distributed representations include those allowing on-the-fly construction of fixed dimensionality codevectors to encode structures of various complexity. Similarity of such codevectors takes into account both structural and semantic similarity of represented structures. In this paper we provide a comparative description of sparse binary distributed representation developed in the frames of the Associative-Projective Neural Network architecture and more well-know...

  12. Universal approximation in p-mean by neural networks

    NARCIS (Netherlands)

    Burton, R.M; Dehling, H.G

    A feedforward neural net with d input neurons and with a single hidden layer of n neurons is given by [GRAPHICS] where a(j), theta(j), w(ji) is an element of R. In this paper we study the approximation of arbitrary functions f: R-d --> R by a neural net in an L-p(mu) norm for some finite measure mu

  13. Net one, net two: the primary care network income statement.

    Science.gov (United States)

    Halley, M D; Little, A W

    1999-10-01

    Although hospital-owned primary care practices have been unprofitable for most hospitals, some hospitals are achieving competitive advantage and sustainable practice operations. A key to the success of some has been a net income reporting tool that separates practice operating expenses from the costs of creating and operating a network of practices to help healthcare organization managers, physicians, and staff to identify opportunities to improve the network's financial performance. This "Net One, Net Two" reporting allows operations leadership to be held accountable for Net One expenses and strategic leadership to be held accountable for Net Two expenses.

  14. Net metering: zero electricity bill

    International Nuclear Information System (INIS)

    Mangi, A.; Khan, Z.

    2011-01-01

    Worldwide move towards renewable energy sources, environmental concerns and decentralization of the power sector have made net metering an attractive option for power generation at small scale. This paper discusses the net metering, economical issues of renewable sources in Pakistan, technical aspects, installation suitability according to varying terrain, existing utility rules and formulation of legislation for net metering making it economically attractive. (author)

  15. Proof Nets for Lambek Calculus

    NARCIS (Netherlands)

    Roorda, Dirk

    1992-01-01

    The proof nets of linear logic are adapted to the non-commutative Lambek calculus. A different criterion for soundness of proof nets is given, which gives rise to new algorithms for proof search. The order sensitiveness of the Lambek calculus is reflected by the planarity condition on proof nets;

  16. Projection decomposition algorithm for dual-energy computed tomography via deep neural network.

    Science.gov (United States)

    Xu, Yifu; Yan, Bin; Chen, Jian; Zeng, Lei; Li, Lei

    2018-03-15

    Dual-energy computed tomography (DECT) has been widely used to improve identification of substances from different spectral information. Decomposition of the mixed test samples into two materials relies on a well-calibrated material decomposition function. This work aims to establish and validate a data-driven algorithm for estimation of the decomposition function. A deep neural network (DNN) consisting of two sub-nets is proposed to solve the projection decomposition problem. The compressing sub-net, substantially a stack auto-encoder (SAE), learns a compact representation of energy spectrum. The decomposing sub-net with a two-layer structure fits the nonlinear transform between energy projection and basic material thickness. The proposed DNN not only delivers image with lower standard deviation and higher quality in both simulated and real data, and also yields the best performance in cases mixed with photon noise. Moreover, DNN costs only 0.4 s to generate a decomposition solution of 360 × 512 size scale, which is about 200 times faster than the competing algorithms. The DNN model is applicable to the decomposition tasks with different dual energies. Experimental results demonstrated the strong function fitting ability of DNN. Thus, the Deep learning paradigm provides a promising approach to solve the nonlinear problem in DECT.

  17. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael

    Coloured Petri Nets (CPN) is a graphical language for modelling and validating concurrent and distributed systems, and other systems in which concurrency plays a major role. The development of such systems is particularly challenging because of inherent intricacies like possible nondeterminism...... and the immense number of possible execution sequences. In this textbook, Jensen and Kristensen introduce the constructs of the CPN modelling language and present the related analysis methods in detail. They also provide a comprehensive road map for the practical use of CPN by showcasing selected industrial case...... website that offers additional material such as slides, exercises and project proposals....

  18. Master Robotic Net

    Directory of Open Access Journals (Sweden)

    Vladimir Lipunov

    2010-01-01

    Full Text Available The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19-20. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovae (including SNIa, search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System, and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes.

  19. Embedded data representations

    DEFF Research Database (Denmark)

    Willett, Wesley; Jansen, Yvonne; Dragicevic, Pierre

    2017-01-01

    We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles ......-situated, situated, and embedded data displays, including both visualizations and physicalizations. Based on our observations, we identify a variety of design challenges for embedded data representation, and suggest opportunities for future research and applications....

  20. Action simulation: time course and representational mechanisms

    Science.gov (United States)

    Springer, Anne; Parkinson, Jim; Prinz, Wolfgang

    2013-01-01

    The notion of action simulation refers to the ability to re-enact foreign actions (i.e., actions observed in other individuals). Simulating others' actions implies a mirroring of their activities, based on one's own sensorimotor competencies. Here, we discuss theoretical and experimental approaches to action simulation and the study of its representational underpinnings. One focus of our discussion is on the timing of internal simulation and its relation to the timing of external action, and a paradigm that requires participants to predict the future course of actions that are temporarily occluded from view. We address transitions between perceptual mechanisms (referring to action representation before and after occlusion) and simulation mechanisms (referring to action representation during occlusion). Findings suggest that action simulation runs in real-time; acting on newly created action representations rather than relying on continuous visual extrapolations. A further focus of our discussion pertains to the functional characteristics of the mechanisms involved in predicting other people's actions. We propose that two processes are engaged, dynamic updating and static matching, which may draw on both semantic and motor information. In a concluding section, we discuss these findings in the context of broader theoretical issues related to action and event representation, arguing that a detailed functional analysis of action simulation in cognitive, neural, and computational terms may help to further advance our understanding of action cognition and motor control. PMID:23847563

  1. XML-BASED REPRESENTATION

    Energy Technology Data Exchange (ETDEWEB)

    R. KELSEY

    2001-02-01

    For focused applications with limited user and use application communities, XML can be the right choice for representation. It is easy to use, maintain, and extend and enjoys wide support in commercial and research sectors. When the knowledge and information to be represented is object-based and use of that knowledge and information is a high priority, then XML-based representation should be considered. This paper discusses some of the issues involved in using XML-based representation and presents an example application that successfully uses an XML-based representation.

  2. Social representations of women

    Directory of Open Access Journals (Sweden)

    Álvaro Estramiana, José Luis

    2006-05-01

    Full Text Available Social Representations is one of the most important theories in contemporary social psychology. Since the social psychologist Serge Moscovici developed his theory of social representations to explain how a scientific theory such as the psychoanalysis turns into a common sense knowledge many studies have been done by different social psychologists. The analysis of the social representations of women as represented in myths and popular beliefs is an excellent opportunity to study how this theory can be applied to this representational field. At the same time it makes possible to understand the formation of attitudes towards women

  3. NETS FOR PEACH PROTECTED CULTIVATION

    Directory of Open Access Journals (Sweden)

    Evelia Schettini

    2012-06-01

    Full Text Available The aim of this paper was to investigate the radiometric properties of coloured nets used to protect a peach cultivation. The modifications of the solar spectral distribution, mainly in the R and FR wavelength band, influence plant photomorphogenesis by means of the phytochrome and cryptochrome. The phytochrome response is characterized in terms of radiation rate in the red wavelengths (R, 600-700 nm to that in the farred radiation (FR, 700-800 nm, i.e. the R/FR ratio. The effects of the blue radiation (B, 400-500 nm is investigated by the ratio between the blue radiation and the far-red radiation, i.e. the B/FR ratio. A BLUE net, a RED net, a YELLOW net, a PEARL net, a GREY net and a NEUTRAL net were tested in Bari (Italy, latitude 41° 05’ N. Peach trees were located in pots inside the greenhouses and in open field. The growth of the trees cultivated in open field was lower in comparison to the growth of the trees grown under the nets. The RED, PEARL, YELLOW and GREY nets increased the growth of the trees more than the other nets. The nets positively influenced the fruit characteristics, such as fruit weight and flesh firmness.

  4. Waste management for NET

    International Nuclear Information System (INIS)

    Gulden, W.; Ponti, C.; Guetat, P.; Butterworth, G.J.

    1989-01-01

    Studies are under way to quantify and qualify radioactive wastes to be expected from NET (Next European Torus) and to identify a tentative strategy for its handling, conditioning and disposal. Waste management and disposal strategies developed for fission plants can be applied to low and medium level fusion wastes, provided that tritium has been sufficiently removed and/or immobilized. Handling and treatment of dismantled first wall and blanket segments (high level waste) will involve more complex procedures because of their volume, weight, afterheat and activation level. Assuming AISI-316 as structural material, an initial decay time in a short-term storage is needed before the spent components can be fragmented, compacted, detritiated and conditioned for intermediate and/or final storage. A first evaluation indicates that the steel components in NET have a total mass of about 7000 tonnes. For decommissioning the corresponding waste volume will be about 2,000 m 3 after packaging to be disposed of in a deep geological repository. (author). 10 refs.; 2 figs

  5. Neural Network Approach to Locating Cryptography in Object Code

    Energy Technology Data Exchange (ETDEWEB)

    Jason L. Wright; Milos Manic

    2009-09-01

    Finding and identifying cryptography is a growing concern in the malware analysis community. In this paper, artificial neural networks are used to classify functional blocks from a disassembled program as being either cryptography related or not. The resulting system, referred to as NNLC (Neural Net for Locating Cryptography) is presented and results of applying this system to various libraries are described.

  6. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    Science.gov (United States)

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  7. Incorporating linguistic knowledge for learning distributed word representations.

    Science.gov (United States)

    Wang, Yan; Liu, Zhiyuan; Sun, Maosong

    2015-01-01

    Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining.

  8. The equivalency between logic Petri workflow nets and workflow nets.

    Science.gov (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented.

  9. Intelligent control aspects of fuzzy logic and neural nets

    CERN Document Server

    Harris, C J; Brown, M

    1993-01-01

    With increasing demands for high precision autonomous control over wide operating envelopes, conventional control engineering approaches are unable to adequately deal with system complexity, nonlinearities, spatial and temporal parameter variations, and with uncertainty. Intelligent Control or self-organising/learning control is a new emerging discipline that is designed to deal with problems. Rather than being model based, it is experiential based. Intelligent Control is the amalgam of the disciplines of Artificial Intelligence, Systems Theory and Operations Research. It uses most recent expe

  10. Vector neural net identifying many strongly distorted and correlated patterns

    Science.gov (United States)

    Kryzhanovsky, Boris V.; Mikaelian, Andrei L.; Fonarev, Anatoly B.

    2005-01-01

    We suggest an effective and simple algorithm providing a polynomial storage capacity of a network of the form M ~ N2s+1, where N is the dimension of the stored binary patterns. In this problem the value of the free parameter s is restricted by the inequalities N >> slnN >= 1. The algorithm allows us to identify a large number of highly distorted similar patterns. The negative influence of correlations of the patterns is suppressed by choosing a sufficiently large value of the parameter s. We show the efficiency of the algorithm by the example of a perceptron identifier, but it also can be used to increase the storage capacity of full connected systems of associative memory.

  11. Statistical and neural net methods for automatic glaucoma diagnosis determination

    Czech Academy of Sciences Publication Activity Database

    Pluháček, F.; Pospíšil, Jaroslav

    2004-01-01

    Roč. 1, č. 2 (2004), s. 12-24 ISSN 1644-3608 Institutional research plan: CEZ:AV0Z1010921 Keywords : glaucoma * diagnostic methods * pallor * image analysis * statistical evaluation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.375, year: 2004

  12. An Automation Framework for Neural Nets that Learn

    Science.gov (United States)

    Kilmer, W. L.; Arbib, M. A.

    1973-01-01

    A discussion of several types of formal neurons, many of whose functions are modifiable by their own input stimuli. The language of finite automata is used to mathematicize the problem of adaptation sufficiently to remove some ambiguities of Brindley's approach. (Author)

  13. Statistical interpretation of WEBNET seismograms by artificial neural nets

    Czech Academy of Sciences Publication Activity Database

    Plešinger, Axel; Růžek, Bohuslav; Boušková, Alena

    2000-01-01

    Roč. 44, č. 2 (2000), s. 251-271 ISSN 0039-3169 R&D Projects: GA AV ČR IAA312104; GA ČR GA205/99/0907 Institutional research plan: CEZ:AV0Z3012916 Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.761, year: 2000

  14. SEMANTIC3D.NET: a New Large-Scale Point Cloud Classification Benchmark

    Science.gov (United States)

    Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J. D.; Schindler, K.; Pollefeys, M.

    2017-05-01

    This paper presents a new 3D point cloud classification benchmark data set with over four billion manually labelled points, meant as input for data-hungry (deep) learning methods. We also discuss first submissions to the benchmark that use deep convolutional neural networks (CNNs) as a work horse, which already show remarkable performance improvements over state-of-the-art. CNNs have become the de-facto standard for many tasks in computer vision and machine learning like semantic segmentation or object detection in images, but have no yet led to a true breakthrough for 3D point cloud labelling tasks due to lack of training data. With the massive data set presented in this paper, we aim at closing this data gap to help unleash the full potential of deep learning methods for 3D labelling tasks. Our semantic3D.net data set consists of dense point clouds acquired with static terrestrial laser scanners. It contains 8 semantic classes and covers a wide range of urban outdoor scenes: churches, streets, railroad tracks, squares, villages, soccer fields and castles. We describe our labelling interface and show that our data set provides more dense and complete point clouds with much higher overall number of labelled points compared to those already available to the research community. We further provide baseline method descriptions and comparison between methods submitted to our online system. We hope semantic3D.net will pave the way for deep learning methods in 3D point cloud labelling to learn richer, more general 3D representations, and first submissions after only a few months indicate that this might indeed be the case.

  15. Learning Deep Representations for Ground to Aerial Geolocalization (Open Access)

    Science.gov (United States)

    2015-10-15

    train our deep neural net - works, and test set, which is used to validate the effective- ness of the learned features. We divide our collected image pairs......proposed approach, Where-CNN, is inspired by deep learning success in face verification and achieves significant improvements over tra- ditional hand

  16. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    IAS Admin

    This article elucidates the important role the no- tion of symmetry has played in physics. It dis- cusses the proof of one of the important theorems of quantum mechanics, viz., Wigner's Symmetry. Representation Theorem. It also shows how the representations of various continuous and dis- crete symmetries follow from the ...

  17. Extensions of tempered representations

    NARCIS (Netherlands)

    Opdam, E.; Solleveld, M.

    2013-01-01

    Let π, π′ be irreducible tempered representations of an affine Hecke algebra H with positive parameters. We compute the higher extension groups Ext nH(π,π′) explicitly in terms of the representations of analytic R-groups corresponding to π and π′. The result has immediate applications to the

  18. Representation and Reference

    NARCIS (Netherlands)

    Ankersmit, F.R.

    2010-01-01

    This essay focuses on the historical text as a whole. It does so by conceiving of the historical text as representation - in the way the we may say of a photo or a painting that it represents the person depicted on it. It is argued that representation cannot be properly understood by modelling it on

  19. Art/Net/Work

    DEFF Research Database (Denmark)

    Andersen, Christian Ulrik; Lindstrøm, Hanne

    2006-01-01

    The seminar Art|Net|Work deals with two important changes in our culture. On one side, the network has become essential in the latest technological development. The Internet has entered a new phase, Web 2.0, including the occurrence of as ‘Wiki’s’, ‘Peer-2-Peer’ distribution, user controlled...... taxonomies (‘Folksonomy’) and ‘Weblogs’. Also, platforms, programming and software are today very often created in open communities – as seen in the ‘Free/Open Source’ movement. On the other side, following the technological development, the network also has become essential in the art sphere. Artists focus...... on the ‘network’ itself as a phenomenon and are often using technological networks as a mean of production and distribution. This changes the artistic practice and the distribution channels of art works – and the traditional notions of ‘work’, ‘origin’ and ‘rights’ are increasingly perceived as limiting...

  20. Phoneme representation and classification in primary auditory cortex.

    Science.gov (United States)

    Mesgarani, Nima; David, Stephen V; Fritz, Jonathan B; Shamma, Shihab A

    2008-02-01

    A controversial issue in neurolinguistics is whether basic neural auditory representations found in many animals can account for human perception of speech. This question was addressed by examining how a population of neurons in the primary auditory cortex (A1) of the naive awake ferret encodes phonemes and whether this representation could account for the human ability to discriminate them. When neural responses were characterized and ordered by spectral tuning and dynamics, perceptually significant features including formant patterns in vowels and place and manner of articulation in consonants, were readily visualized by activity in distinct neural subpopulations. Furthermore, these responses faithfully encoded the similarity between the acoustic features of these phonemes. A simple classifier trained on the neural representation was able to simulate human phoneme confusion when tested with novel exemplars. These results suggest that A1 responses are sufficiently rich to encode and discriminate phoneme classes and that humans and animals may build upon the same general acoustic representations to learn boundaries for categorical and robust sound classification.

  1. More than Skin Deep: Body Representation beyond Primary Somatosensory Cortex

    Science.gov (United States)

    Longo, Matthew R.; Azanon, Elena; Haggard, Patrick

    2010-01-01

    The neural circuits underlying initial sensory processing of somatic information are relatively well understood. In contrast, the processes that go beyond primary somatosensation to create more abstract representations related to the body are less clear. In this review, we focus on two classes of higher-order processing beyond Somatosensation.…

  2. Time-frequency representation based on time-varying ...

    Indian Academy of Sciences (India)

    A parametric time-frequency representation is presented based on timevarying autoregressive model (TVAR), followed by applications to non-stationary vibration signal processing. The identification of time-varying model coefficients and the determination of model order, are addressed by means of neural networks and ...

  3. Group and representation theory

    CERN Document Server

    Vergados, J D

    2017-01-01

    This volume goes beyond the understanding of symmetries and exploits them in the study of the behavior of both classical and quantum physical systems. Thus it is important to study the symmetries described by continuous (Lie) groups of transformations. We then discuss how we get operators that form a Lie algebra. Of particular interest to physics is the representation of the elements of the algebra and the group in terms of matrices and, in particular, the irreducible representations. These representations can be identified with physical observables. This leads to the study of the classical Lie algebras, associated with unitary, unimodular, orthogonal and symplectic transformations. We also discuss some special algebras in some detail. The discussion proceeds along the lines of the Cartan-Weyl theory via the root vectors and root diagrams and, in particular, the Dynkin representation of the roots. Thus the representations are expressed in terms of weights, which are generated by the application of the elemen...

  4. Neural engineering

    CERN Document Server

    2013-01-01

    Neural Engineering, 2nd Edition, contains reviews and discussions of contemporary and relevant topics by leading investigators in the field. It is intended to serve as a textbook at the graduate and advanced undergraduate level in a bioengineering curriculum. This principles and applications approach to neural engineering is essential reading for all academics, biomedical engineers, neuroscientists, neurophysiologists, and industry professionals wishing to take advantage of the latest and greatest in this emerging field.

  5. Petri nets - part 1: concepts and application areas

    International Nuclear Information System (INIS)

    Sivertsen, Terje

    2004-03-01

    There exist a number of models, languages, methods, and tools that support the specification and analysis of system requirements. One important class comprises graphical methods based on the concept of Petri nets. Due to the wide variety of applications, these methods are relevant also in research and applications outside the digital systems safety domain. The present report constitutes the first of three parts of a unified exposition of graphical methods based on the concept of Petri nets. The report provides an introduction to basic concepts of Petri nets and an overview of a wide variety of application areas. The second part of the trilogy will present a number of techniques and tools. The third part will focus on analysis. Petri nets have been proposed for a wide variety of applications, and new areas are considered as new challenges emerge from scientific, technological, and social developments. The wide variety of application areas reflects a broad interest in Petri nets, coming from diverse directions. Empirically, as well as theoretically, there are good reasons to claim that Petri nets are applicable for many different kinds of problems. What is common to the different applications and problems addressed is the need for a formalism that allows adequate representation of important system characteristics like concurrency, asyncronicity, distribution, parallelism, and non-determinism. Several of the references in the report discuss NPP-related applications, or applications with great potentials for technology transfer from other areas to the nuclear domain. (Author)

  6. Semantic representations in the temporal pole predict false memories.

    Science.gov (United States)

    Chadwick, Martin J; Anjum, Raeesa S; Kumaran, Dharshan; Schacter, Daniel L; Spiers, Hugo J; Hassabis, Demis

    2016-09-06

    Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the "semantic hub" of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories.

  7. Towards semen quality assessment using neural networks

    DEFF Research Database (Denmark)

    Linneberg, Christian; Salamon, P.; Svarer, C.

    1994-01-01

    The paper presents the methodology and results from a neural net based classification of human sperm head morphology. The methodology uses a preprocessing scheme in which invariant Fourier descriptors are lumped into “energy” bands. The resulting networks are pruned using optimal brain damage...

  8. Cognitive And Neural Sciences Division 1992 Programs

    Science.gov (United States)

    1992-08-01

    Neuronal Micronets as Nodal Elements PRINCIPAL INVESTIGATOR: Thomas H. Brown Yale University Department of Psychology (203) 432-7008 R&T PROJECT CODE...of neural nets, and to develop a micronet architecture which captures the computations in neurons. Approach: Simulations will be conducted of the

  9. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid...

  10. High-level Petri Nets

    DEFF Research Database (Denmark)

    High-level Petri nets are now widely used in both theoretical analysis and practical modelling of concurrent systems. The main reason for the success of this class of net models is that they make it possible to obtain much more succinct and manageable descriptions than can be obtained by means...... of some of the most important papers on the application and theory of high-level Petri nets. In this way it makes the relevant literature more available. It is our hope that the book will be a useful source of information and that, e.g., it can be used in the organization of Petri net courses. To make...

  11. Initial CAD investigations for NET

    International Nuclear Information System (INIS)

    Katz, F.; Leinemann, K.; Ludwig, A.; Marek, U.; Olbrich, W.; Schlechtendahl, E.G.

    1985-11-01

    This report summarizes the work done under contract no. 164/84-7/FU-D-/NET between the Commission of the European Communities and KfK during the period from June 1, 1984, through May 31, 1985. The following topics are covered in this report: Initial modelling of NET version NET2A, CAD system extension for remote handling studies, analysis of the CAD information structure, work related to the transfer of CAD information between KfK and the NET team. (orig.) [de

  12. Neural modeling of prefrontal executive function

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.S. [Univ. of Texas, Arlington, TX (United States)

    1996-12-31

    Brain executive function is based in a distributed system whereby prefrontal cortex is interconnected with other cortical. and subcortical loci. Executive function is divided roughly into three interacting parts: affective guidance of responses; linkage among working memory representations; and forming complex behavioral schemata. Neural network models of each of these parts are reviewed and fit into a preliminary theoretical framework.

  13. Spatiotemporal representation of cardiac vectorcardiogram (VCG signals

    Directory of Open Access Journals (Sweden)

    Yang Hui

    2012-03-01

    Full Text Available Abstract Background Vectorcardiogram (VCG signals monitor both spatial and temporal cardiac electrical activities along three orthogonal planes of the body. However, the absence of spatiotemporal resolution in conventional VCG representations is a major impediment for medical interpretation and clinical usage of VCG. This is especially so because time-domain features of 12-lead ECG, instead of both spatial and temporal characteristics of VCG, are widely used for the automatic assessment of cardiac pathological patterns. Materials and methods We present a novel representation approach that captures critical spatiotemporal heart dynamics by displaying the real time motion of VCG cardiac vectors in a 3D space. Such a dynamic display can also be realized with only one lead ECG signal (e.g., ambulatory ECG through an alternative lag-reconstructed ECG representation from nonlinear dynamics principles. Furthermore, the trajectories are color coded with additional dynamical properties of space-time VCG signals, e.g., the curvature, speed, octant and phase angles to enhance the information visibility. Results In this investigation, spatiotemporal VCG signal representation is used to characterize various spatiotemporal pathological patterns for healthy control (HC, myocardial infarction (MI, atrial fibrillation (AF and bundle branch block (BBB. The proposed color coding scheme revealed that the spatial locations of the peak of T waves are in the Octant 6 for the majority (i.e., 74 out of 80 of healthy recordings in the PhysioNet PTB database. In contrast, the peak of T waves from 31.79% (117/368 of MI subjects are found to remain in Octant 6 and the rest (68.21% spread over all other octants. The spatiotemporal VCG signal representation is shown to capture the same important heart characteristics as the 12-lead ECG plots and more. Conclusions Spatiotemporal VCG signal representation is shown to facilitate the characterization of space-time cardiac

  14. Rare, but challenging tumors: NET

    International Nuclear Information System (INIS)

    Ivanova, D.; Balev, B.

    2013-01-01

    Full text: Introduction: Gastroenteropancreatic Neuroendocrine Tumors (GEP - NET) are a heterogeneous group of tumors with different locations and many different clinical, histological, and imaging performance. In a part of them a secretion of various organic substances is present. The morbidity of GEP - NET in the EU is growing, and this leads to increase the attention to them. What you will learn: Imaging methods used for localization and staging of GEP - NET, characteristics of the study’s protocols; Classification of GEP - NET; Demonstration of typical and atypical imaging features of GEP - NET in patients registered at the NET Center at University Hospital ‘St. Marina’, Varna; Features of metastatic NET, The role of imaging in the evaluation of treatment response and follow-up of the patients. Discussion: The image semiotics analysis is based on 19 cases of GEP - NET registered NET Center at University Hospital ‘St. Marina’. The main imaging method is multidetector CT (MDCT), and magnetic resonance imaging (MRI ) has advantages in the evaluation of liver lesions and the local prevalence of anorectal tumors. In patients with advanced disease and liver lesions the assessment of skeletal involvement (MRI/ nuclear medical method) is mandatory. The majority of GEP - NET have not any specific imaging findings. Therefore it is extremely important proper planning and conducting of the study (MDCT and MR enterography; accurate assessment phase of scanning, positive and negative contrast). Conclusion: GEP - NET is a major diagnostic challenge due to the absence of typical imaging characteristics and often an overlap with those of the tumors of different origin can be observed. Therefore, a good knowledge of clinical and imaging changes occurring at different locations is needed. MDCT is the basis for the diagnosis, staging and follow-up of these neoplasms

  15. Net Reclassification Improvement.

    Science.gov (United States)

    Jewell, Elizabeth S; Maile, Michael D; Engoren, Milo; Elliott, Michael

    2016-03-01

    When adding new markers to existing prediction models, it is necessary to evaluate the models to determine whether the additional markers are useful. The net reclassification improvement (NRI) has gained popularity in this role because of its simplicity, ease of estimation, and understandability. Although the NRI provides a single-number summary describing the improvement new markers bring to a model, it also has several potential disadvantages. Any improved classification by the new model is weighted equally, regardless of the direction of reclassification. In prediction models that already identify the high- and low-risk groups well, a positive NRI may not mean better classification of those with medium risk, where it could make the most difference. Also, overfitting, or otherwise misspecified training models, produce overly positive NRI results. Because of the unaccounted for uncertainty in the model coefficient estimation, investigators should rely on bootstrapped confidence intervals rather than on tests of significance. Keeping in mind the limitations and drawbacks, the NRI can be helpful when used correctly.

  16. NET plasma facing components

    International Nuclear Information System (INIS)

    Veieder, G.; Harrison, M.; Moons, F.

    1989-01-01

    The progress in the design and development of the first wall (FW) and divertor plates (DP) for the Next European Torus (NET) are summarized, highlighting the assumed main operating conditions, material choices, design options and their analysis as well as associated manufacturing studies and the ongoing testing programme. As plasma facing armor on both FW and DP, carbon based materials will be used at least during the initial physics phase due to their good performance in current tokamaks in respect to impurity control and disruption resistance. For the FW structure in water cooled austenitic steel, with radiation cooled armor adequate thermo-mechanical performance is predicted allowing peak heat fluxes of up to 0.8 MW/m 2 at 2 x 10 4 long duration burn pulses. For divertor concepts with the armor attached by brazing to a water cooled heatsink, the peak heat flux is about 10 MW/m 2 . However, the main critical issue for the DP is the lifetime which is critically limited by erosion. The demonstration of the basic feasibility of FW and DP design is in progress via manufacture and thermo-mechanical testing of prototypical mock-ups. (author). 26 refs.; 13 figs.; 2 tabs

  17. NET plasma facing components

    International Nuclear Information System (INIS)

    Vieider, G.; Harrison, M.; Moons, F.

    1989-01-01

    The progress in the design and development of the first wall (FW) and divertor plates (DP) for the Next European Torus (NET) are summarized, highlighting the assumed main operating conditions, material choices, design options and their analysis as well as associated manufacturing studies and the ongoing testing programme. As plasma facing armor on both FW and DP, carbon based materials will be used at least during the initial physics phase due to their good performance in current tokamaks in respect to impurity control and disruption resistance. For the FW structure in water cooled austenitic steel, with radiation cooled armor adequate thermo-mechanical performance is predicted allowing peak heat fluxes of up to 0.8 MW/m 2 at 2x10 4 long duration burn pulses. For divertor concepts with the armor attached by brazing to a water cooled heatsink, the peak heat flux is about 10 MW/m 2 . However, the main critical issue for the DP is the lifetime which is critically limited by erosion. The demonstation of the basic feasibility of FW and DP design is in progress via manufacture and thermo-mechanical testing of prototypical mock-ups. (orig.)

  18. Neural networks as a control methodology

    Science.gov (United States)

    Mccullough, Claire L.

    1990-01-01

    While conventional computers must be programmed in a logical fashion by a person who thoroughly understands the task to be performed, the motivation behind neural networks is to develop machines which can train themselves to perform tasks, using available information about desired system behavior and learning from experience. There are three goals of this fellowship program: (1) to evaluate various neural net methods and generate computer software to implement those deemed most promising on a personal computer equipped with Matlab; (2) to evaluate methods currently in the professional literature for system control using neural nets to choose those most applicable to control of flexible structures; and (3) to apply the control strategies chosen in (2) to a computer simulation of a test article, the Control Structures Interaction Suitcase Demonstrator, which is a portable system consisting of a small flexible beam driven by a torque motor and mounted on springs tuned to the first flexible mode of the beam. Results of each are discussed.

  19. Learning Semantic-Aligned Action Representation.

    Science.gov (United States)

    Ni, Bingbing; Li, Teng; Yang, Xiaokang

    2017-08-31

    A fundamental bottleneck for achieving highly discriminative action representation is that local motion/appearance features are usually not semantic aligned. Namely, a local feature, such as a motion vector or motion trajectory, does not possess any attribute that indicates which moving body part or operated object it is associated with. This mostly leads to global feature pooling/representation learning methods that are often too coarse. Inspired by the recent success of end-to-end (pixel-to-pixel) deep convolutional neural networks (DCNNs), in this paper, we first propose a DCNN architecture, which maps a human centric image region onto human body part response maps. Based on these response maps, we propose a second DCNN, which achieves semantic-aligned feature representation learning. Prior knowledge that only a few parts are responsible for a certain action is also utilized by introducing a group (part) sparseness prior during feature learning. The learned semantic-aligned feature not only boosts the discriminative capability of action representation, but also possesses the good nature of robustness to pose variations and occlusions. Finally, an iterative mining method is employed for learning discriminative action primitive detectors. Extensive experiments on action recognition benchmarks demonstrate a superior recognition performance of the proposed framework.

  20. A computational model of the development of separate representations of facial identity and expression in the primate visual system.

    Science.gov (United States)

    Tromans, James Matthew; Harris, Mitchell; Stringer, Simon Maitland

    2011-01-01

    Experimental studies have provided evidence that the visual processing areas of the primate brain represent facial identity and facial expression within different subpopulations of neurons. For example, in non-human primates there is evidence that cells within the inferior temporal gyrus (TE) respond primarily to facial identity, while cells within the superior temporal sulcus (STS) respond to facial expression. More recently, it has been found that the orbitofrontal cortex (OFC) of non-human primates contains some cells that respond exclusively to changes in facial identity, while other cells respond exclusively to facial expression. How might the primate visual system develop physically separate representations of facial identity and expression given that the visual system is always exposed to simultaneous combinations of facial identity and expression during learning? In this paper, a biologically plausible neural network model, VisNet, of the ventral visual pathway is trained on a set of carefully-designed cartoon faces with different identities and expressions. The VisNet model architecture is composed of a hierarchical series of four Self-Organising Maps (SOMs), with associative learning in the feedforward synaptic connections between successive layers. During learning, the network develops separate clusters of cells that respond exclusively to either facial identity or facial expression. We interpret the performance of the network in terms of the learning properties of SOMs, which are able to exploit the statistical indendependence between facial identity and expression.

  1. A computational model of the development of separate representations of facial identity and expression in the primate visual system.

    Directory of Open Access Journals (Sweden)

    James Matthew Tromans

    Full Text Available Experimental studies have provided evidence that the visual processing areas of the primate brain represent facial identity and facial expression within different subpopulations of neurons. For example, in non-human primates there is evidence that cells within the inferior temporal gyrus (TE respond primarily to facial identity, while cells within the superior temporal sulcus (STS respond to facial expression. More recently, it has been found that the orbitofrontal cortex (OFC of non-human primates contains some cells that respond exclusively to changes in facial identity, while other cells respond exclusively to facial expression. How might the primate visual system develop physically separate representations of facial identity and expression given that the visual system is always exposed to simultaneous combinations of facial identity and expression during learning? In this paper, a biologically plausible neural network model, VisNet, of the ventral visual pathway is trained on a set of carefully-designed cartoon faces with different identities and expressions. The VisNet model architecture is composed of a hierarchical series of four Self-Organising Maps (SOMs, with associative learning in the feedforward synaptic connections between successive layers. During learning, the network develops separate clusters of cells that respond exclusively to either facial identity or facial expression. We interpret the performance of the network in terms of the learning properties of SOMs, which are able to exploit the statistical indendependence between facial identity and expression.

  2. Hierarchies in Coloured Petri Nets

    DEFF Research Database (Denmark)

    Huber, Peter; Jensen, Kurt; Shapiro, Robert M.

    1991-01-01

    The paper shows how to extend Coloured Petri Nets with a hierarchy concept. The paper proposes five different hierarchy constructs, which allow the analyst to structure large CP-nets as a set of interrelated subnets (called pages). The paper discusses the properties of the proposed hierarchy cons...... tool package (see [1–5])....

  3. Linear Logic on Petri Nets

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...

  4. Reference Guide Microsoft.NET

    NARCIS (Netherlands)

    Zee M van der; Verspaij GJ; Rosbergen S; IMP; NMD

    2003-01-01

    Developers, administrators and managers can get more understanding of the .NET technology with this report. They can also make better choices how to use this technology. The report describes the results and conclusions of a study of the usability for the RIVM of this new generation .NET development

  5. Representations and Relations

    Czech Academy of Sciences Publication Activity Database

    Koťátko, Petr

    2014-01-01

    Roč. 21, č. 3 (2014), s. 282-302 ISSN 1335-0668 Institutional support: RVO:67985955 Keywords : representation * proposition * truth-conditions * belief-ascriptions * reference * externalism * fiction Subject RIV: AA - Philosophy ; Religion

  6. Boundary representation modelling techniques

    CERN Document Server

    2006-01-01

    Provides the most complete presentation of boundary representation solid modelling yet publishedOffers basic reference information for software developers, application developers and users Includes a historical perspective as well as giving a background for modern research.

  7. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...

  8. Semantic representation in the white matter pathway.

    Science.gov (United States)

    Fang, Yuxing; Wang, Xiaosha; Zhong, Suyu; Song, Luping; Han, Zaizhu; Gong, Gaolang; Bi, Yanchao

    2018-04-06

    Object conceptual processing has been localized to distributed cortical regions that represent specific attributes. A challenging question is how object semantic space is formed. We tested a novel framework of representing semantic space in the pattern of white matter (WM) connections by extending the representational similarity analysis (RSA) to structural lesion pattern and behavioral data in 80 brain-damaged patients. For each WM connection, a neural representational dissimilarity matrix (RDM) was computed by first building machine-learning models with the voxel-wise WM lesion patterns as features to predict naming performance of a particular item and then computing the correlation between the predicted naming score and the actual naming score of another item in the testing patients. This correlation was used to build the neural RDM based on the assumption that if the connection pattern contains certain aspects of information shared by the naming processes of these two items, models trained with one item should also predict naming accuracy of the other. Correlating the neural RDM with various cognitive RDMs revealed that neural patterns in several WM connections that connect left occipital/middle temporal regions and anterior temporal regions associated with the object semantic space. Such associations were not attributable to modality-specific attributes (shape, manipulation, color, and motion), to peripheral picture-naming processes (picture visual similarity, phonological similarity), to broad semantic categories, or to the properties of the cortical regions that they connected, which tended to represent multiple modality-specific attributes. That is, the semantic space could be represented through WM connection patterns across cortical regions representing modality-specific attributes.

  9. An analytical method for well-formed workflow/Petri net verification of classical soundness

    Directory of Open Access Journals (Sweden)

    Clempner Julio

    2014-12-01

    Full Text Available In this paper we consider workflow nets as dynamical systems governed by ordinary difference equations described by a particular class of Petri nets. Workflow nets are a formal model of business processes. Well-formed business processes correspond to sound workflow nets. Even if it seems necessary to require the soundness of workflow nets, there exist business processes with conditional behavior that will not necessarily satisfy the soundness property. In this sense, we propose an analytical method for showing that a workflow net satisfies the classical soundness property using a Petri net. To present our statement, we use Lyapunov stability theory to tackle the classical soundness verification problem for a class of dynamical systems described by Petri nets. This class of Petri nets allows a dynamical model representation that can be expressed in terms of difference equations. As a result, by applying Lyapunov theory, the classical soundness property for workflow nets is solved proving that the Petri net representation is stable. We show that a finite and non-blocking workflow net satisfies the sound property if and only if its corresponding PN is stable, i.e., given the incidence matrix A of the corresponding PN, there exists a Փ strictly positive m vector such that AՓ≤ 0. The key contribution of the paper is the analytical method itself that satisfies part of the definition of the classical soundness requirements. The method is designed for practical applications, guarantees that anomalies can be detected without domain knowledge, and can be easily implemented into existing commercial systems that do not support the verification of workflows. The validity of the proposed method is successfully demonstrated by application examples.

  10. Distributed Representation of Subgraphs

    OpenAIRE

    Adhikari, Bijaya; Zhang, Yao; Ramakrishnan, Naren; Prakash, B. Aditya

    2017-01-01

    Network embeddings have become very popular in learning effective feature representations of networks. Motivated by the recent successes of embeddings in natural language processing, researchers have tried to find network embeddings in order to exploit machine learning algorithms for mining tasks like node classification and edge prediction. However, most of the work focuses on finding distributed representations of nodes, which are inherently ill-suited to tasks such as community detection w...

  11. A Small Universal Petri Net

    Directory of Open Access Journals (Sweden)

    Dmitry A. Zaitsev

    2013-09-01

    Full Text Available A universal deterministic inhibitor Petri net with 14 places, 29 transitions and 138 arcs was constructed via simulation of Neary and Woods' weakly universal Turing machine with 2 states and 4 symbols; the total time complexity is exponential in the running time of their weak machine. To simulate the blank words of the weakly universal Turing machine, a couple of dedicated transitions insert their codes when reaching edges of the working zone. To complete a chain of a given Petri net encoding to be executed by the universal Petri net, a translation of a bi-tag system into a Turing machine was constructed. The constructed Petri net is universal in the standard sense; a weaker form of universality for Petri nets was not introduced in this work.

  12. NET remote workstation

    International Nuclear Information System (INIS)

    Leinemann, K.

    1990-10-01

    The goal of this NET study was to define the functionality of a remote handling workstation and its hardware and software architecture. The remote handling workstation has to fulfill two basic functions: (1) to provide the man-machine interface (MMI), that means the interface to the control system of the maintenance equipment and to the working environment (telepresence) and (2) to provide high level (task level) supporting functions (software tools) during the maintenance work and in the preparation phase. Concerning the man-machine interface, an important module of the remote handling workstation besides the standard components of man-machine interfacing is a module for graphical scene presentation supplementing viewing by TV. The technique of integrated viewing is well known from JET BOOM and TARM control using the GBsim and KISMET software. For integration of equipment dependent MMI functions the remote handling workstation provides a special software module interface. Task level support of the operator is based on (1) spatial (geometric/kinematic) models, (2) remote handling procedure models, and (3) functional models of the equipment. These models and the related simulation modules are used for planning, programming, execution monitoring, and training. The workstation provides an intelligent handbook guiding the operator through planned procedures illustrated by animated graphical sequences. For unplanned situations decision aids are available. A central point of the architectural design was to guarantee a high flexibility with respect to hardware and software. Therefore the remote handling workstation is designed as an open system based on widely accepted standards allowing the stepwise integration of the various modules starting with the basic MMI and the spatial simulation as standard components. (orig./HP) [de

  13. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lund, Ole

    2009-01-01

    this binding event. RESULTS: Here, we present a novel artificial neural network-based method, NN-align that allows for simultaneous identification of the MHC class II binding core and binding affinity. NN-align is trained using a novel training algorithm that allows for correction of bias in the training data...... due to redundant binding core representation. Incorporation of information about the residues flanking the peptide-binding core is shown to significantly improve the prediction accuracy. The method is evaluated on a large-scale benchmark consisting of six independent data sets covering 14 human MHC...... class II alleles, and is demonstrated to outperform other state-of-the-art MHC class II prediction methods. CONCLUSION: The NN-align method is competitive with the state-of-the-art MHC class II peptide binding prediction algorithms. The method is publicly available at http://www.cbs.dtu.dk/services/Net...

  14. Convolutional Neural Networks for Earthquake Detection and Location of Seismicity in Central Oklahoma

    Science.gov (United States)

    Perol, T.; Gharbi, M.; Denolle, M.

    2016-12-01

    Induced seismicity is characterized by localized activity of small-scale and moderate-magnitude earthquakes. Poor instrumental coverage limits the accuracy of traditional techniques for earthquake detection and localization. Currently, the most effective approach to detect new (and smaller) events is the so-called template matching method. It matches events' waveforms against previously-seen waveform templates. This restricts the search to events that are collocated with the cataloged events. We propose an alternative method, which we called ConvNetQuake, that leverages recent advances in convolutional neural networks for pattern recognition and classification. Once trained on a dataset of 3-component seismograms, ConvNetQuake learns a bank of finite impulse response filters that can discriminate seismic events against noise. First, we compare our algorithm to template matching on synthetic data. We generate synthetic waveforms by adding randomly scaled copies of a single 3-component template at random temporal offsets over a Gaussian noise floor. While the accuracy of ConvNetQuake is slightly lower than that of template matching, it has the advantage of a more compact non-linear representation that can detect new events that were not in the training set. Second, we cluster the Guthrie earthquakes using a Multivariate Gaussian Mixture Model (MGMM) based on the Oklahoma Geological Survey (OGS) catalog and sample a few events from each cluster. We proceed as before and construct synthetic seismograms with the additional information of the events' location. We now train our algorithm to discriminate events from the noise and, jointly, to estimate the probability than the event belongs to a particular cluster. Using the MGMM, we produce maps of the continuous probability distribution of event location. Finally, we apply ConvNetQuake to the Guthrie sequence by training it on data from February 15th, 2014 to August, 31th 2014 using the known cataloged seismicity provided

  15. Automated Modeling of Microwave Structures by Enhanced Neural Networks

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2006-12-01

    Full Text Available The paper describes the methodology of the automated creation of neural models of microwave structures. During the creation process, artificial neural networks are trained using the combination of the particle swarm optimization and the quasi-Newton method to avoid critical training problems of the conventional neural nets. In the paper, neural networks are used to approximate the behavior of a planar microwave filter (moment method, Zeland IE3D. In order to evaluate the efficiency of neural modeling, global optimizations are performed using numerical models and neural ones. Both approaches are compared from the viewpoint of CPU-time demands and the accuracy. Considering conclusions, methodological recommendations for including neural networks to the microwave design are formulated.

  16. The Development of Hand-Centered Visual Representations in the Primate Brain: A Computer Modeling Study Using Natural Visual Scenes.

    Science.gov (United States)

    Galeazzi, Juan M; Minini, Loredana; Stringer, Simon M

    2015-01-01

    Neurons that respond to visual targets in a hand-centered frame of reference have been found within various areas of the primate brain. We investigate how hand-centered visual representations may develop in a neural network model of the primate visual system called VisNet, when the model is trained on images of the hand seen against natural visual scenes. The simulations show how such neurons may develop through a biologically plausible process of unsupervised competitive learning and self-organization. In an advance on our previous work, the visual scenes consisted of multiple targets presented simultaneously with respect to the hand. Three experiments are presented. First, VisNet was trained with computerized images consisting of a realistic image of a hand and a variety of natural objects, presented in different textured backgrounds during training. The network was then tested with just one textured object near the hand in order to verify if the output cells were capable of building hand-centered representations with a single localized receptive field. We explain the underlying principles of the statistical decoupling that allows the output cells of the network to develop single localized receptive fields even when the network is trained with multiple objects. In a second simulation we examined how some of the cells with hand-centered receptive fields decreased their shape selectivity and started responding to a localized region of hand-centered space as the number of objects presented in overlapping locations during training increases. Lastly, we explored the same learning principles training the network with natural visual scenes collected by volunteers. These results provide an important step in showing how single, localized, hand-centered receptive fields could emerge under more ecologically realistic visual training conditions.

  17. The development of hand-centred visual representations in the primate brain: a computer modelling study using natural visual scenes.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Galeazzi

    2015-12-01

    Full Text Available Neurons that respond to visual targets in a hand-centred frame of reference have been found within various areas of the primate brain. We investigate how hand-centred visual representations may develop in a neural network model of the primate visual system called VisNet, when the model is trained on images of the hand seen against natural visual scenes. The simulations show how such neurons may develop through a biologically plausible process of unsupervised competitive learning and self-organisation. In an advance on our previous work, the visual scenes consisted of multiple targets presented simultaneously with respect to the hand. Three experiments are presented. First, VisNet was trained with computerized images consisting of a realistic image of a hand and and a variety of natural objects, presented in different textured backgrounds during training. The network was then tested with just one textured object near the hand in order to verify if the output cells were capable of building hand-centered representations with a single localised receptive field. We explain the underlying principles of the statistical decoupling that allows the output cells of the network to develop single localised receptive fields even when the network is trained with multiple objects. In a second simulation we examined how some of the cells with hand-centred receptive fields decreased their shape selectivity and started responding to a localised region of hand-centred space as the number of objects presented in overlapping locations during training increases. Lastly, we explored the same learning principles training the network with natural visual scenes collected by volunteers. These results provide an important step in showing how single, localised, hand-centered receptive fields could emerge under more ecologically realistic visual training conditions.

  18. A deep convolutional neural network for recognizing foods

    Science.gov (United States)

    Jahani Heravi, Elnaz; Habibi Aghdam, Hamed; Puig, Domenec

    2015-12-01

    Controlling the food intake is an efficient way that each person can undertake to tackle the obesity problem in countries worldwide. This is achievable by developing a smartphone application that is able to recognize foods and compute their calories. State-of-art methods are chiefly based on hand-crafted feature extraction methods such as HOG and Gabor. Recent advances in large-scale object recognition datasets such as ImageNet have revealed that deep Convolutional Neural Networks (CNN) possess more representation power than the hand-crafted features. The main challenge with CNNs is to find the appropriate architecture for each problem. In this paper, we propose a deep CNN which consists of 769; 988 parameters. Our experiments show that the proposed CNN outperforms the state-of-art methods and improves the best result of traditional methods 17%. Moreover, using an ensemble of two CNNs that have been trained two different times, we are able to improve the classification performance 21:5%.

  19. Questions of Representations in Architecture

    DEFF Research Database (Denmark)

    2015-01-01

    Questions of Representations in Architecture is the first major Danish contribution to the current international discussion on architects' use of representations and the significance of visual media for architecture.......Questions of Representations in Architecture is the first major Danish contribution to the current international discussion on architects' use of representations and the significance of visual media for architecture....

  20. Pro asynchronous programming with .NET

    CERN Document Server

    Blewett, Richard; Ltd, Rock Solid Knowledge

    2014-01-01

    Pro Asynchronous Programming with .NET teaches the essential skill of asynchronous programming in .NET. It answers critical questions in .NET application development, such as: how do I keep my program responding at all times to keep my users happy how do I make the most of the available hardware how can I improve performanceIn the modern world, users expect more and more from their applications and devices, and multi-core hardware has the potential to provide it. But it takes carefully crafted code to turn that potential into responsive, scalable applications.With Pro Asynchronous Programming

  1. Operator representations of frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Hasannasab, Marzieh

    2017-01-01

    The purpose of this paper is to consider representations of frames {fk}k∈I in a Hilbert space ℋ of the form {fk}k∈I = {Tkf0}k∈I for a linear operator T; here the index set I is either ℤ or ℒ0. While a representation of this form is available under weak conditions on the frame, the analysis...... of the properties of the operator T requires more work. For example it is a delicate issue to obtain a representation with a bounded operator, and the availability of such a representation not only depends on the frame considered as a set, but also on the chosen indexing. Using results from operator theory we show...... that by embedding the Hilbert space ℋ into a larger Hilbert space, we can always represent a frame via iterations of a bounded operator, composed with the orthogonal projection onto ℋ. The paper closes with a discussion of an open problem concerning representations of Gabor frames via iterations of a bounded...

  2. Representation Elements of Spatial Thinking

    Science.gov (United States)

    Fiantika, F. R.

    2017-04-01

    This paper aims to add a reference in revealing spatial thinking. There several definitions of spatial thinking but it is not easy to defining it. We can start to discuss the concept, its basic a forming representation. Initially, the five sense catch the natural phenomenon and forward it to memory for processing. Abstraction plays a role in processing information into a concept. There are two types of representation, namely internal representation and external representation. The internal representation is also known as mental representation; this representation is in the human mind. The external representation may include images, auditory and kinesthetic which can be used to describe, explain and communicate the structure, operation, the function of the object as well as relationships. There are two main elements, representations properties and object relationships. These elements play a role in forming a representation.

  3. Representation Discovery using Harmonic Analysis

    CERN Document Server

    Mahadevan, Sridhar

    2008-01-01

    Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particu

  4. Introduction to computer data representation

    CERN Document Server

    Fenwick, Peter

    2014-01-01

    Introduction to Computer Data Representation introduces readers to the representation of data within computers. Starting from basic principles of number representation in computers, the book covers the representation of both integer and floating point numbers, and characters or text. It comprehensively explains the main techniques of computer arithmetic and logical manipulation. The book also features chapters covering the less usual topics of basic checksums and 'universal' or variable length representations for integers, with additional coverage of Gray Codes, BCD codes and logarithmic repre

  5. Contractions of group representations. - I

    International Nuclear Information System (INIS)

    Celeghini, E.; Tarlini, M.

    1981-01-01

    A new definition of contraction as a limit on the parameters defining the basis of the space of representations is given. From the representations of the original group, those of the contracted one are directly obtained. The contraction of inner automorphisms into outer automorphisms and the splitting of one representation into representations of the same or different group are discussed and illustrated by examples. The procedure is also a technique for the study of representations of non-semi-simple groups. (author)

  6. PolicyNet Publication System

    Data.gov (United States)

    Social Security Administration — The PolicyNet Publication System project will merge the Oracle-based Policy Repository (POMS) and the SQL-Server CAMP system (MSOM) into a new system with an Oracle...

  7. KM3NeT

    CERN Multimedia

    KM3NeT is a large scale next-generation neutrino telescope located in the deep waters of the Mediterranean Sea, optimized for the discovery of galactic neutrino sources emitting in the TeV energy region.

  8. Post-representational cartography

    Directory of Open Access Journals (Sweden)

    Rob Kitchin

    2010-03-01

    Full Text Available Over the past decade there has been a move amongst critical cartographers to rethink maps from a post-representational perspective – that is, a vantage point that does not privilege representational modes of thinking (wherein maps are assumed to be mirrors of the world and automatically presumes the ontological security of a map as a map, but rather rethinks and destabilises such notions. This new theorisation extends beyond the earlier critiques of Brian Harley (1989 that argued maps were social constructions. For Harley a map still conveyed the truth of a landscape, albeit its message was bound within the ideological frame of its creator. He thus advocated a strategy of identifying the politics of representation within maps in order to circumnavigate them (to reveal the truth lurking underneath, with the ontology of cartographic practice remaining unquestioned.

  9. Representations of distance

    DEFF Research Database (Denmark)

    Larsen, Gunvor Riber

    2017-01-01

    This paper explores how Danish tourists represent distance in relation to their holiday mobility and how these representations of distance are a result of being aero-mobile as opposed to being land-mobile. Based on interviews with Danish tourists, whose holiday mobility ranges from the European...... continent to global destinations, the first part of this qualitative study identifies three categories of representations of distance that show how distance is being ‘translated’ by the tourists into non-geometric forms: distance as resources, distance as accessibility, and distance as knowledge....... The representations of distance articulated by the Danish tourists show that distance is often not viewed in ‘just’ kilometres. Rather, it is understood in forms that express how transcending the physical distance through holiday mobility is dependent on individual social and economic contexts, and on whether...

  10. Petri Nets in Cryptographic Protocols

    DEFF Research Database (Denmark)

    Crazzolara, Federico; Winskel, Glynn

    2001-01-01

    A process language for security protocols is presented together with a semantics in terms of sets of events. The denotation of process is a set of events, and as each event specifies a set of pre and postconditions, this denotation can be viewed as a Petri net. By means of an example we illustrate...... how the Petri-net semantics can be used to prove security properties....

  11. Communicating with the Net Generation

    Science.gov (United States)

    2011-03-11

    Generation Y or Millennial Generation . This generation has learned to survive and thrive in the connected era. The Net Generation has... Generation is often referred to as Generation Y or Millennial Generation . This generation has learned to survive and thrive in the connected era. The Net...rich, digitally constructed communication and information world.2 Although this generation is often referred to as Generation Y or

  12. A theory of causal learning in children: causal maps and Bayes nets.

    Science.gov (United States)

    Gopnik, Alison; Glymour, Clark; Sobel, David M; Schulz, Laura E; Kushnir, Tamar; Danks, David

    2004-01-01

    The authors outline a cognitive and computational account of causal learning in children. They propose that children use specialized cognitive systems that allow them to recover an accurate "causal map" of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously understood in terms of the formalism of directed graphical causal models, or Bayes nets. Children's causal learning and inference may involve computations similar to those for learning causal Bayes nets and for predicting with them. Experimental results suggest that 2- to 4-year-old children construct new causal maps and that their learning is consistent with the Bayes net formalism.

  13. EmojiNet: An Open Service and API for Emoji Sense Discovery

    OpenAIRE

    Wijeratne, Sanjaya; Balasuriya, Lakshika; Sheth, Amit; Doran, Derek

    2017-01-01

    This paper presents the release of EmojiNet, the largest machine-readable emoji sense inventory that links Unicode emoji representations to their English meanings extracted from the Web. EmojiNet is a dataset consisting of: (i) 12,904 sense labels over 2,389 emoji, which were extracted from the web and linked to machine-readable sense definitions seen in BabelNet, (ii) context words associated with each emoji sense, which are inferred through word embedding models trained over Google News cor...

  14. MoleculeNet: a benchmark for molecular machine learning.

    Science.gov (United States)

    Wu, Zhenqin; Ramsundar, Bharath; Feinberg, Evan N; Gomes, Joseph; Geniesse, Caleb; Pappu, Aneesh S; Leswing, Karl; Pande, Vijay

    2018-01-14

    Molecular machine learning has been maturing rapidly over the last few years. Improved methods and the presence of larger datasets have enabled machine learning algorithms to make increasingly accurate predictions about molecular properties. However, algorithmic progress has been limited due to the lack of a standard benchmark to compare the efficacy of proposed methods; most new algorithms are benchmarked on different datasets making it challenging to gauge the quality of proposed methods. This work introduces MoleculeNet, a large scale benchmark for molecular machine learning. MoleculeNet curates multiple public datasets, establishes metrics for evaluation, and offers high quality open-source implementations of multiple previously proposed molecular featurization and learning algorithms (released as part of the DeepChem open source library). MoleculeNet benchmarks demonstrate that learnable representations are powerful tools for molecular machine learning and broadly offer the best performance. However, this result comes with caveats. Learnable representations still struggle to deal with complex tasks under data scarcity and highly imbalanced classification. For quantum mechanical and biophysical datasets, the use of physics-aware featurizations can be more important than choice of particular learning algorithm.

  15. An analysis of noise in recurrent neural networks: convergence and generalization.

    Science.gov (United States)

    Jim, K C; Giles, C L; Horne, B G

    1996-01-01

    Concerns the effect of noise on the performance of feedforward neural nets. We introduce and analyze various methods of injecting synaptic noise into dynamically driven recurrent nets during training. Theoretical results show that applying a controlled amount of noise during training may improve convergence and generalization performance. We analyze the effects of various noise parameters and predict that best overall performance can be achieved by injecting additive noise at each time step. Noise contributes a second-order gradient term to the error function which can be viewed as an anticipatory agent to aid convergence. This term appears to find promising regions of weight space in the beginning stages of training when the training error is large and should improve convergence on error surfaces with local minima. The first-order term is a regularization term that can improve generalization. Specifically, it can encourage internal representations where the state nodes operate in the saturated regions of the sigmoid discriminant function. While this effect can improve performance on automata inference problems with binary inputs and target outputs, it is unclear what effect it will have on other types of problems. To substantiate these predictions, we present simulations on learning the dual parity grammar from temporal strings for all noise models, and present simulations on learning a randomly generated six-state grammar using the predicted best noise model.

  16. Additive and polynomial representations

    CERN Document Server

    Krantz, David H; Suppes, Patrick

    1971-01-01

    Additive and Polynomial Representations deals with major representation theorems in which the qualitative structure is reflected as some polynomial function of one or more numerical functions defined on the basic entities. Examples are additive expressions of a single measure (such as the probability of disjoint events being the sum of their probabilities), and additive expressions of two measures (such as the logarithm of momentum being the sum of log mass and log velocity terms). The book describes the three basic procedures of fundamental measurement as the mathematical pivot, as the utiliz

  17. On the spinor representation

    Energy Technology Data Exchange (ETDEWEB)

    Hoff da Silva, J.M.; Rogerio, R.J.B. [Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Villalobos, C.H.C. [Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil); Rocha, Roldao da [Universidade Federal do ABC-UFABC, Centro de Matematica, Computacao e Cognicao, Santo Andre (Brazil)

    2017-07-15

    A systematic study of the spinor representation by means of the fermionic physical space is accomplished and implemented. The spinor representation space is shown to be constrained by the Fierz-Pauli-Kofink identities among the spinor bilinear covariants. A robust geometric and topological structure can be manifested from the spinor space, wherein the first and second homotopy groups play prominent roles on the underlying physical properties, associated to fermionic fields. The mapping that changes spinor fields classes is then exemplified, in an Einstein-Dirac system that provides the spacetime generated by a fermion. (orig.)

  18. Mobilities and Representations

    DEFF Research Database (Denmark)

    Thelle, Mikkel

    2017-01-01

    , literature, and film. Moreover, we hope the authors of future reviews will reflect on the ways they approached those representations. Such commentaries would provide valuable methodological insights, and we hope to begin that effort with this interview. We have asked four prominent mobility scholars......As the centerpiece of the eighth T2M yearbook, the following interview about representations of mobility signals a new and exciting focus area for Mobility in History. In future issues we hope to include reviews that grapple more with how mobilities have been imagined and represented in the arts...

  19. The evolution of representation in simple cognitive networks.

    Science.gov (United States)

    Marstaller, Lars; Hintze, Arend; Adami, Christoph

    2013-08-01

    Representations are internal models of the environment that can provide guidance to a behaving agent, even in the absence of sensory information. It is not clear how representations are developed and whether they are necessary or even essential for intelligent behavior. We argue here that the ability to represent relevant features of the environment is the expected consequence of an adaptive process, give a formal definition of representation based on information theory, and quantify it with a measure R. To measure how R changes over time, we evolve two types of networks--an artificial neural network and a network of hidden Markov gates--to solve a categorization task using a genetic algorithm. We find that the capacity to represent increases during evolutionary adaptation and that agents form representations of their environment during their lifetime. This ability allows the agents to act on sensorial inputs in the context of their acquired representations and enables complex and context-dependent behavior. We examine which concepts (features of the environment) our networks are representing, how the representations are logically encoded in the networks, and how they form as an agent behaves to solve a task. We conclude that R should be able to quantify the representations within any cognitive system and should be predictive of an agent's long-term adaptive success.

  20. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  1. A survey of visual preprocessing and shape representation techniques

    Science.gov (United States)

    Olshausen, Bruno A.

    1988-01-01

    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention).

  2. Decoding the dynamic representation of musical pitch from human brain activity.

    Science.gov (United States)

    Sankaran, N; Thompson, W F; Carlile, S; Carlson, T A

    2018-01-16

    In music, the perception of pitch is governed largely by its tonal function given the preceding harmonic structure of the music. While behavioral research has advanced our understanding of the perceptual representation of musical pitch, relatively little is known about its representational structure in the brain. Using Magnetoencephalography (MEG), we recorded evoked neural responses to different tones presented within a tonal context. Multivariate Pattern Analysis (MVPA) was applied to "decode" the stimulus that listeners heard based on the underlying neural activity. We then characterized the structure of the brain's representation using decoding accuracy as a proxy for representational distance, and compared this structure to several well established perceptual and acoustic models. The observed neural representation was best accounted for by a model based on the Standard Tonal Hierarchy, whereby differences in the neural encoding of musical pitches correspond to their differences in perceived stability. By confirming that perceptual differences honor those in the underlying neuronal population coding, our results provide a crucial link in understanding the cognitive foundations of musical pitch across psychological and neural domains.

  3. Generative Representations for Evolving Families of Designs

    Science.gov (United States)

    Hornby, Gregory S.

    2003-01-01

    Since typical evolutionary design systems encode only a single artifact with each individual, each time the objective changes a new set of individuals must be evolved. When this objective varies in a way that can be parameterized, a more general method is to use a representation in which a single individual encodes an entire class of artifacts. In addition to saving time by preventing the need for multiple evolutionary runs, the evolution of parameter-controlled designs can create families of artifacts with the same style and a reuse of parts between members of the family. In this paper an evolutionary design system is described which uses a generative representation to encode families of designs. Because a generative representation is an algorithmic encoding of a design, its input parameters are a way to control aspects of the design it generates. By evaluating individuals multiple times with different input parameters the evolutionary design system creates individuals in which the input parameter controls specific aspects of a design. This system is demonstrated on two design substrates: neural-networks which solve the 3/5/7-parity problem and three-dimensional tables of varying heights.

  4. Between Representation and Eternity

    DEFF Research Database (Denmark)

    Atzbach, Rainer

    2016-01-01

    . At death, an indi- vidual’s corpse and burial primarily reflect the social act of representation during the funeral. The position of the arms, which have incorrectly been used as a chronological tool in Scandinavia, may indicate an evolution from a more collective act of prayer up to the eleventh century...

  5. Reflective Abstraction and Representation.

    Science.gov (United States)

    Lewin, Philip

    Piaget's theory of reflective abstraction can supplement cognitive science models of representation by specifying both the act of construction and the component steps through which knowers pass as they acquire knowledge. But, while approaches suggested by cognitive science supplement Piaget by awakening researchers to the role of auxiliary factors…

  6. Hyperfinite representation of distributions

    Indian Academy of Sciences (India)

    A nonstandard treatment of the theory of distributions in terms of a hyperfinite representa- tion has been presented in papers [2,3] by Kinoshita. A further exploitation of this treatment in an N-dimensional context has been given by Grenier [1]. In the present paper we offer a different approach to the hyperfinite representation, ...

  7. Going beyond representational anthropology

    DEFF Research Database (Denmark)

    Winther, Ida Wentzel

    Going beyond representational anthropology: Re-presenting bodily, emotional and virtual practices in everyday life. Separated youngsters and families in Greenland Greenland is a huge island, with a total of four high-schools. Many youngsters (age 16-18) move far away from home in order to get...

  8. Representation of the Divine

    DEFF Research Database (Denmark)

    Loddegaard, Anne

    2009-01-01

    out of place in a novel belonging to the serious combat literature of the Catholic Revival, and the direct representation of the supernatural is also surprising because previous Catholic Revival novelists, such as Léon Bloy and Karl-Joris Huysmans, maintain a realistic, non-magical world and deal...

  9. Representation of the Divine

    DEFF Research Database (Denmark)

    Loddegaard, Anne

    2012-01-01

    out of place in a novel belonging to the serious combat literature of the Catholic Revival, and the direct representation of the supernatural is also surprising because previous Catholic Revival novelists, such as Léon Bloy and Karl-Joris Huysmans, maintain a realistic, non-magical world and deal...

  10. Moment graphs and representations

    DEFF Research Database (Denmark)

    Jantzen, Jens Carsten

    2012-01-01

    Moment graphs and sheaves on moment graphs are basically combinatorial objects that have be used to describe equivariant intersectiion cohomology. In these lectures we are going to show that they can be used to provide a direct link from this cohomology to the representation theory of simple Lie...

  11. Discriminative Elastic-Net Regularized Linear Regression.

    Science.gov (United States)

    Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen

    2017-03-01

    In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.

  12. What the success of brain imaging implies about the neural code.

    Science.gov (United States)

    Guest, Olivia; Love, Bradley C

    2017-01-19

    The success of fMRI places constraints on the nature of the neural code. The fact that researchers can infer similarities between neural representations, despite fMRI's limitations, implies that certain neural coding schemes are more likely than others. For fMRI to succeed given its low temporal and spatial resolution, the neural code must be smooth at the voxel and functional level such that similar stimuli engender similar internal representations. Through proof and simulation, we determine which coding schemes are plausible given both fMRI's successes and its limitations in measuring neural activity. Deep neural network approaches, which have been forwarded as computational accounts of the ventral stream, are consistent with the success of fMRI, though functional smoothness breaks down in the later network layers. These results have implications for the nature of the neural code and ventral stream, as well as what can be successfully investigated with fMRI.

  13. FGF Signaling Transforms Non-neural Ectoderm into Neural Crest

    OpenAIRE

    Yardley, Nathan; García-Castro, Martín I.

    2012-01-01

    The neural crest arises at the border between the neural plate and the adjacent non-neural ectoderm. It has been suggested that both neural and non-neural ectoderm can contribute to the neural crest. Several studies have examined the molecular mechanisms that regulate neural crest induction in neuralized tissues or the neural plate border. Here, using the chick as a model system, we address the molecular mechanisms by which non-neural ectoderm generates neural crest. We report that in respons...

  14. Bio-inspired Artificial Intelligence: А Generalized Net Model of the Regularization Process in MLP

    Directory of Open Access Journals (Sweden)

    Stanimir Surchev

    2013-10-01

    Full Text Available Many objects and processes inspired by the nature have been recreated by the scientists. The inspiration to create a Multilayer Neural Network came from human brain as member of the group. It possesses complicated structure and it is difficult to recreate, because of the existence of too many processes that require different solving methods. The aim of the following paper is to describe one of the methods that improve learning process of Artificial Neural Network. The proposed generalized net method presents Regularization process in Multilayer Neural Network. The purpose of verification is to protect the neural network from overfitting. The regularization is commonly used in neural network training process. Many methods of verification are present, the subject of interest is the one known as Regularization. It contains function in order to set weights and biases with smaller values to protect from overfitting.

  15. A Lesk-inspired Unsupervised Algorithm for Lexical Choice from WordNet Synsets

    NARCIS (Netherlands)

    Basile, Valerio; Basili, Roberto; Lenci, Allesandro; Magnini, Bernardo

    2014-01-01

    The generation of text from abstract meaning representations involves, among other tasks, the production of lexical items for the concepts to realize. Using WordNet as a foundational ontology, we exploit its internal network structure to predict the best lemmas for a given synset without the need

  16. Net zero building energy conservation

    Science.gov (United States)

    Kadam, Rohit

    This research deals with energy studies performed as part of a net-zero energy study for buildings. Measured data of actual energy utilization by a building for a continuous period of 33 months was collected and studied. The peak design day on which the building consumes maximum energy was found. The averages of the energy consumption for the peak month were determined. The DOE EnergyPlus software was used to simulate the energy requirements for the building and also obtain peak energy requirements for the peak month. Alternative energy sources such as ground source heat pump, solar photovoltaic (PV) panels and day-lighting modifications were applied to redesign the energy consumption for the building towards meeting net-zero energy requirements. The present energy use by the building, DOE Energy software simulations for the building as well as the net-zero model for the building were studied. The extents of the contributions of the individual energy harvesting measures were studied. For meeting Net Zero Energy requirement, it was found that the total energy load for the building can be distributed between alternative energy methods as 5.4% to daylighting modifications, 58% to geothermal and 36.6% to solar photovoltaic panels for electricity supply and thermal energy. Thus the directions to proceed towards achieving complete net-zero energy status were identified.

  17. Neuroeconomics: in search of the neural representation of brands.

    Science.gov (United States)

    Schaefer, Michael

    2009-01-01

    In modern economy the customer is confronted with a huge amount of consumer goods. In this situation, culturally based brands seem to play an important role in establishing strong emotional bonds between customers and goods and to guide people's economic behavior by biasing selections and preference decisions based on affect. Recently, neuroscientific approaches have demonstrated that cultural objects like brands or brand-related behavior may successfully be investigated with neuroimaging tools like fMRI. First studies suggested that structures associated with the reward circuit (striatum) and the dorsolateral part of the prefrontal cortex may be involved when perceiving a favorite brand. Hence, brands that have been associated with appetitive stimuli due to marketing efforts or cultural factors seem to engage similar brain networks than artificially associated reward stimuli. However, brands have different and complex meanings in our life far beyond representing objects of desire. For example, the possession of goods from certain kinds of brands often is used to mark the social state of the owner and to distinguish him or her from other groups. In particular, luxury goods often seem to have this function. Recent neuroimaging results support this observation by showing that viewing logos of luxury brands is associated with brain activity in the anterior medial prefrontal cortex, a region known to be associated with self-centered cognitions. Thus, it seems that brands of luxury goods improve self-relevant thoughts, pointing to the role of luxury brands to mark the superior position of the owner in society. These results demonstrate that cultural symbols like brands can successfully be examined with neuroimaging approaches. Thus, along with advanced cultural theories, neuroeconomics may provide important contributions to the understanding of brand-related or economic behavior.

  18. The sonar aperture and its neural representation in bats.

    Science.gov (United States)

    Heinrich, Melina; Warmbold, Alexander; Hoffmann, Susanne; Firzlaff, Uwe; Wiegrebe, Lutz

    2011-10-26

    As opposed to visual imaging, biosonar imaging of spatial object properties represents a challenge for the auditory system because its sensory epithelium is not arranged along space axes. For echolocating bats, object width is encoded by the amplitude of its echo (echo intensity) but also by the naturally covarying spread of angles of incidence from which the echoes impinge on the bat's ears (sonar aperture). It is unclear whether bats use the echo intensity and/or the sonar aperture to estimate an object's width. We addressed this question in a combined psychophysical and electrophysiological approach. In three virtual-object playback experiments, bats of the species Phyllostomus discolor had to discriminate simple reflections of their own echolocation calls differing in echo intensity, sonar aperture, or both. Discrimination performance for objects with physically correct covariation of sonar aperture and echo intensity ("object width") did not differ from discrimination performances when only the sonar aperture was varied. Thus, the bats were able to detect changes in object width in the absence of intensity cues. The psychophysical results are reflected in the responses of a population of units in the auditory midbrain and cortex that responded strongest to echoes from objects with a specific sonar aperture, regardless of variations in echo intensity. Neurometric functions obtained from cortical units encoding the sonar aperture are sufficient to explain the behavioral performance of the bats. These current data show that the sonar aperture is a behaviorally relevant and reliably encoded cue for object size in bat sonar.

  19. Neural Representation of Spatial Topology in the Rodent Hippocampus

    Science.gov (United States)

    Chen, Zhe; Gomperts, Stephen N.; Yamamoto, Jun; Wilson, Matthew A.

    2014-01-01

    Pyramidal cells in the rodent hippocampus often exhibit clear spatial tuning in navigation. Although it has been long suggested that pyramidal cell activity may underlie a topological code rather than a topographic code, it remains unclear whether an abstract spatial topology can be encoded in the ensemble spiking activity of hippocampal place cells. Using a statistical approach developed previously, we investigate this question and related issues in greater details. We recorded ensembles of hippocampal neurons as rodents freely foraged in one and two-dimensional spatial environments, and we used a “decode-to-uncover” strategy to examine the temporally structured patterns embedded in the ensemble spiking activity in the absence of observed spatial correlates during periods of rodent navigation or awake immobility. Specifically, the spatial environment was represented by a finite discrete state space. Trajectories across spatial locations (“states”) were associated with consistent hippocampal ensemble spiking patterns, which were characterized by a state transition matrix. From this state transition matrix, we inferred a topology graph that defined the connectivity in the state space. In both one and two-dimensional environments, the extracted behavior patterns from the rodent hippocampal population codes were compared against randomly shuffled spike data. In contrast to a topographic code, our results support the efficiency of topological coding in the presence of sparse sample size and fuzzy space mapping. This computational approach allows us to quantify the variability of ensemble spiking activity, to examine hippocampal population codes during off-line states, and to quantify the topological complexity of the environment. PMID:24102128

  20. The hippocampus and exploration: dynamically evolving behavior and neural representations

    Science.gov (United States)

    Johnson, Adam; Varberg, Zachary; Benhardus, James; Maahs, Anthony; Schrater, Paul

    2012-01-01

    We develop a normative statistical approach to exploratory behavior called information foraging. Information foraging highlights the specific processes that contribute to active, rather than passive, exploration and learning. We hypothesize that the hippocampus plays a critical role in active exploration through directed information foraging by supporting a set of processes that allow an individual to determine where to sample. By examining these processes, we show how information directed information foraging provides a formal theoretical explanation for the common hippocampal substrates of constructive memory, vicarious trial and error behavior, schema-based facilitation of memory performance, and memory consolidation. PMID:22848196

  1. The hippocampus and exploration: dynamically evolving behavior and neural representations

    Directory of Open Access Journals (Sweden)

    Adam eJohnson

    2012-07-01

    Full Text Available We develop a normative statistical approach to exploratory behavior called information foraging. Information foraging highlights the specific processes that contribute to active, rather than passive, exploration and learning. We hypothesize that the hippocampus plays a critical role in active exploration through directed information foraging by supporting a set of processes that allow an individual to determine where to sample. By examining these processes, we show how information directed information foraging provides a formal theoretical explanation for the common hippocampal substrates of constructive memory, vicarious trial and error behavior, schema-based facilitation of memory performance, and memory consolidation.

  2. Neural representations of airflow in Drosophila mushroom body.

    Directory of Open Access Journals (Sweden)

    Akira Mamiya

    Full Text Available The Drosophila mushroom body (MB is a higher olfactory center where olfactory and other sensory information are thought to be associated. However, how MB neurons of Drosophila respond to sensory stimuli other than odor is not known. Here, we characterized the responses of MB neurons to a change in airflow, a stimulus associated with odor perception. In vivo calcium imaging from MB neurons revealed surprisingly strong and dynamic responses to an airflow stimulus. This response was dependent on the movement of the 3(rd antennal segment, suggesting that Johnston's organ may be detecting the airflow. The calyx, the input region of the MB, responded homogeneously to airflow on. However, in the output lobes of the MB, different types of MB neurons responded with different patterns of activity to airflow on and off. Furthermore, detailed spatial analysis of the responses revealed that even within a lobe that is composed of a single type of MB neuron, there are subdivisions that respond differently to airflow on and off. These subdivisions within a single lobe were organized in a stereotypic manner across flies. For the first time, we show that changes in airflow affect MB neurons significantly and these effects are spatially organized into divisions smaller than previously defined MB neuron types.

  3. The neural basis of individual face and object representation

    Directory of Open Access Journals (Sweden)

    Rebecca eWatson

    2016-03-01

    Full Text Available We routinely need to process the identity of many faces around us, and how the brain achieves this is still the subject of much research in cognitive neuroscience. To date, insights on face identity processing have come from both healthy and clinical populations. However, in order to directly compare results across and within participant groups, and across different studies, it is crucial that a standard task is utilised which includes different exemplars (for example, non-face stimuli along with faces, is memory-neutral, and taps into identity recognition across orientation and across viewpoint change. The goal of this study was to test a previously behaviourally tested, optimised face and object identity matching design in a healthy control sample whilst being scanned using fMRI. Specifically, we investigated categorical, orientation, and category-specific orientation effects while participants were focused on identity processing of simultaneously presented exemplar stimuli. Alongside observing category and orientation specific effects in a distributed set of brain regions, we also saw an interaction between stimulus category and orientation in the bilateral fusiform gyrus and bilateral middle occipital gyrus. Generally these clusters showed the pattern of a heightened response to inverted, as opposed to upright faces; and to upright, as opposed to inverted shoes. These results are discussed in relation to previous studies and to potential future research within prosopagnosic individuals.

  4. Emergence of task-dependent representations in working memory circuits

    Directory of Open Access Journals (Sweden)

    Cristina eSavin

    2014-05-01

    Full Text Available A wealth of experimental evidence suggests that working memory circuits preferentially represent information that is behaviorally relevant. Still, we are missing a mechanistic account of how these representations come about. Here we provide a simple explanation for a range of experimental findings, in light of prefrontal circuits adapting to task constraints by reward-dependent learning. In particular, we model a neural network shaped by reward-modulated spike-timing dependent plasticity (r-STDP and homeostatic plasticity (intrinsic excitability and synaptic scaling. We show that the experimentally-observed neural representations naturally emerge in an initially unstructured circuit as it learns to solve several working memory tasks. These results point to a critical, and previously unappreciated, role for reward-dependent learning in shaping prefrontal cortex activity.

  5. Stochastic flows in the Brownian web and net

    Czech Academy of Sciences Publication Activity Database

    Schertzer, E.; Sun, R.; Swart, Jan M.

    2014-01-01

    Roč. 227, č. 1065 (2014), s. 1-160 ISSN 0065-9266 R&D Projects: GA ČR GA201/07/0237; GA ČR GA201/09/1931 Institutional support: RVO:67985556 Keywords : Brownian web * Brownian net * stochastic flow of kernels * measure-valued process * Howitt-Warren flow * linear system * random walk in random environment * finite graph representation Subject RIV: BA - General Mathematics Impact factor: 1.727, year: 2014 http://library.utia.cas.cz/separaty/2013/SI/swart-0396636.pdf

  6. TimeNET Optimization Environment

    Directory of Open Access Journals (Sweden)

    Christoph Bodenstein

    2015-12-01

    Full Text Available In this paper a novel tool for simulation-based optimization and design-space exploration of Stochastic Colored Petri nets (SCPN is introduced. The working title of this tool is TimeNET Optimization Environment (TOE. Targeted users of this tool are people modeling complex systems with SCPNs in TimeNET who want to find parameter sets that are optimal for a certain performance measure (fitness function. It allows users to create and simulate sets of SCPNs and to run different optimization algorithms based on parameter variation. The development of this tool was motivated by the need to automate and speed up tests of heuristic optimization algorithms to be applied for SCPN optimization. A result caching mechanism is used to avoid recalculations.

  7. On the reliability of the nervous (Nv) nets

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.; Frigo, J.R.; Moore, K.R.

    1998-12-31

    This paper investigates the reliability of a particular class of neural networks, the Nervous Nets (Nv). This is the class of nonsymmetric ring oscillator networks of inverters coupled through variable delays. They have been successfully applied to controlling walking robots, while many other applications will shortly be mentioned. The authors will then explain the robustness of Nv nets in the sense of their highly reliable functioning--which has been observed through many experiments. For doing that the authors will show that although the Nv net has an exponential number of periodic points, only a small (still exponential) part are stable, while all the others are saddle points. The ratio between the number of stable and periodic points quickly vanishes to zero as the number of nodes is increased, as opposed to classical finite state machines--where this ratio is relatively constant. These show that the Nv net will always converge quickly to a stable oscillatory state--a fact not true in general for finite state machines.

  8. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  9. Standard model of knowledge representation

    Science.gov (United States)

    Yin, Wensheng

    2016-09-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  10. Realizations of the canonical representation

    Indian Academy of Sciences (India)

    A characterisation of the maximal abelian subalgebras of the bounded operators on Hilbert space that are normalised by the canonical representation of the Heisenberg group is given. This is used to classify the perfect realizations of the canonical representation.

  11. Net4Care PHMR Library

    DEFF Research Database (Denmark)

    2014-01-01

    The Net4Care PHMR library contains a) A GreenCDA approach for constructing a data object representing a PHMR document: SimpleClinicalDocument, and b) A Builder which can produce a XML document representing a valid Danish PHMR (following the MedCom profile) document from the SimpleClinicalDocument......The Net4Care PHMR library contains a) A GreenCDA approach for constructing a data object representing a PHMR document: SimpleClinicalDocument, and b) A Builder which can produce a XML document representing a valid Danish PHMR (following the MedCom profile) document from the Simple...

  12. Implementing NetScaler VPX

    CERN Document Server

    Sandbu, Marius

    2014-01-01

    An easy-to-follow guide with detailed step-by step-instructions on how to implement the different key components in NetScaler, with real-world examples and sample scenarios.If you are a Citrix or network administrator who needs to implement NetScaler in your virtual environment to gain an insight on its functionality, this book is ideal for you. A basic understanding of networking and familiarity with some of the different Citrix products such as XenApp or XenDesktop is a prerequisite.

  13. Pro DLR in NET 4

    CERN Document Server

    Wu, Chaur

    2011-01-01

    Microsoft's Dynamic Language Runtime (DLR) is a platform for running dynamic languages such as Ruby and Python on an equal footing with compiled languages such as C#. Furthermore, the runtime is the foundation for many useful software design and architecture techniques you can apply as you develop your .NET applications. Pro DLR in .NET 4 introduces you to the DLR, showing how you can use it to write software that combines dynamic and static languages, letting you choose the right tool for the job. You will learn the core DLR components such as LINQ expressions, call sites, binders, and dynami

  14. Self-Taught convolutional neural networks for short text clustering.

    Science.gov (United States)

    Xu, Jiaming; Xu, Bo; Wang, Peng; Zheng, Suncong; Tian, Guanhua; Zhao, Jun; Xu, Bo

    2017-04-01

    Short text clustering is a challenging problem due to its sparseness of text representation. Here we propose a flexible Self-Taught Convolutional neural network framework for Short Text Clustering (dubbed STC 2 ), which can flexibly and successfully incorporate more useful semantic features and learn non-biased deep text representation in an unsupervised manner. In our framework, the original raw text features are firstly embedded into compact binary codes by using one existing unsupervised dimensionality reduction method. Then, word embeddings are explored and fed into convolutional neural networks to learn deep feature representations, meanwhile the output units are used to fit the pre-trained binary codes in the training process. Finally, we get the optimal clusters by employing K-means to cluster the learned representations. Extensive experimental results demonstrate that the proposed framework is effective, flexible and outperform several popular clustering methods when tested on three public short text datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Functional representations for quantized fields

    International Nuclear Information System (INIS)

    Jackiw, R.

    1988-01-01

    This paper provides information on Representing transformations in quantum theory bosonic quantum field theories: Schrodinger Picture; Represnting Transformations in Bosonic Quantum Field Theory; Two-Dimensional Conformal Transformations, Schrodinger picture representation, Fock space representation, Inequivalent Schrodinger picture representations; Discussion, Self-Dual and Other Models; Field Theory in de Sitter Space. Fermionic Quantum Field Theories: Schroedinger Picture; Schrodinger Picture Representation for Two-Dimensional; Conformal Transformations; Fock Space Dynamics in the Schrodinger Picture; Fock Space Evaluation of Anomalous Current and Conformal Commutators

  16. Harmonic Analysis and Group Representation

    CERN Document Server

    Figa-Talamanca, Alessandro

    2011-01-01

    This title includes: Lectures - A. Auslander, R. Tolimeri - Nilpotent groups and abelian varieties, M Cowling - Unitary and uniformly bounded representations of some simple Lie groups, M. Duflo - Construction de representations unitaires d'un groupe de Lie, R. Howe - On a notion of rank for unitary representations of the classical groups, V.S. Varadarajan - Eigenfunction expansions of semisimple Lie groups, and R. Zimmer - Ergodic theory, group representations and rigidity; and, Seminars - A. Koranyi - Some applications of Gelfand pairs in classical analysis.

  17. ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation

    OpenAIRE

    Visin, Francesco; Ciccone, Marco; Romero, Adriana; Kastner, Kyle; Cho, Kyunghyun; Bengio, Yoshua; Matteucci, Matteo; Courville, Aaron

    2015-01-01

    We propose a structured prediction architecture, which exploits the local generic features extracted by Convolutional Neural Networks and the capacity of Recurrent Neural Networks (RNN) to retrieve distant dependencies. The proposed architecture, called ReSeg, is based on the recently introduced ReNet model for image classification. We modify and extend it to perform the more challenging task of semantic segmentation. Each ReNet layer is composed of four RNN that sweep the image horizontally ...

  18. The Challenges of Neural Mind-reading Paradigms

    Directory of Open Access Journals (Sweden)

    Oscar eVilarroya

    2013-06-01

    Full Text Available Neural mind-reading studies, based on multivariate pattern analysis (MVPA methods, are providing exciting new studies. Some of the results obtained with these paradigms have raised high expectations, such as the possibility of creating brain reading devices. However, such hopes are based on the assumptions that: a the BOLD signal is a marker of neural activity; b the BOLD pattern identified by a MVPA is a neurally sound pattern; c the MVPA’s feature space is a good mapping of the neural representation of a stimulus, and d the pattern identified by a MVPA corresponds to a representation. I examine here the challenges that still have to be met before fully accepting such assumptions.

  19. Control of 12-Cylinder Camless Engine with Neural Networks

    OpenAIRE

    Ashhab Moh’d Sami

    2017-01-01

    The 12-cyliner camless engine breathing process is modeled with artificial neural networks (ANN’s). The inputs to the net are the intake valve lift (IVL) and intake valve closing timing (IVC) whereas the output of the net is the cylinder air charge (CAC). The ANN is trained with data collected from an engine simulation model which is based on thermodynamics principles and calibrated against real engine data. A method for adapting single-output feed-forward neural networks is proposed and appl...

  20. Naturalising Representational Content

    Science.gov (United States)

    Shea, Nicholas

    2014-01-01

    This paper sets out a view about the explanatory role of representational content and advocates one approach to naturalising content – to giving a naturalistic account of what makes an entity a representation and in virtue of what it has the content it does. It argues for pluralism about the metaphysics of content and suggests that a good strategy is to ask the content question with respect to a variety of predictively successful information processing models in experimental psychology and cognitive neuroscience; and hence that data from psychology and cognitive neuroscience should play a greater role in theorising about the nature of content. Finally, the contours of the view are illustrated by drawing out and defending a surprising consequence: that individuation of vehicles of content is partly externalist. PMID:24563661

  1. 2D neural hardware versus 3D biological ones

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    This paper will present important limitations of hardware neural nets as opposed to biological neural nets (i.e. the real ones). The author starts by discussing neural structures and their biological inspirations, while mentioning the simplifications leading to artificial neural nets. Going further, the focus will be on hardware constraints. The author will present recent results for three different alternatives of implementing neural networks: digital, threshold gate, and analog, while the area and the delay will be related to neurons' fan-in and weights' precision. Based on all of these, it will be shown why hardware implementations cannot cope with their biological inspiration with respect to their power of computation: the mapping onto silicon lacking the third dimension of biological nets. This translates into reduced fan-in, and leads to reduced precision. The main conclusion is that one is faced with the following alternatives: (1) try to cope with the limitations imposed by silicon, by speeding up the computation of the elementary silicon neurons; (2) investigate solutions which would allow one to use the third dimension, e.g. using optical interconnections.

  2. Multiple Sparse Representations Classification

    Science.gov (United States)

    Plenge, Esben; Klein, Stefan S.; Niessen, Wiro J.; Meijering, Erik

    2015-01-01

    Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy. We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and

  3. Higher Representations Duals

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    We uncover novel solutions of the 't Hooft anomaly matching conditions for scalarless gauge theories with matter transforming according to higher dimensional representations of the underlying gauge group. We argue that, if the duals exist, they are gauge theories with fermions transforming accord......-Dyson approximation. We use the solutions to gain useful insight on the conformal window of the associated electric theory. A consistent picture emerges corroborating previous results obtained via different analytic methods and in agreement with first principle lattice explorations....

  4. The Knowledge Representation Project

    Science.gov (United States)

    1989-07-01

    representing k nowledge. I,- ONE was designed to represent the kinds of knowlodge constriicts encountered by developers of natural language processing systems...project called Empirically Valid Knowledge Representation in 1986. One of the first tasks of the new project was to translate NIKL into Common LISP -- a...constraints -- the syntactic structures that appear in LOO% :constraints or implies clauses translate into knowledge structures for which we have

  5. Representation of Knowledge

    Science.gov (United States)

    1980-03-01

    methodology involves the design of programs that exhibit Intelligent behavior, Al researchers have often taken a rather pragmatic approach to the subject...This article has not been about representation formalisms per se, but rather about the pragmatics of epistemology, the study of the nature of knowledge...1977. Levels of complexity In discourse for anaphora disambiguation and speech act interpretation. IJCAI 3, 43-49. Carbonell, J. R. 1970. Al in CAI: An

  6. Compact Information Representations

    Science.gov (United States)

    2016-08-02

    information representations, for solving very large-scale engineering problems in data stream computations, real-time network monitoring & anomaly...algorithms. Under the support of this AFOSR grant, a lot of excited research problems have been solved and many more arise. We will continue many...applied computer science, and applied math . Within the scope of this proposal, the focus is preliminarily on the fundamental, theoretical research

  7. Could representations influence strategy?

    OpenAIRE

    Diaz Ruiz, Carlos; Kowalkowski, Christian

    2014-01-01

    A central question in industrial marketing is whether the form in which the external environment of a firm is represented influences the marketing strategy. This influence has been studied generally through case study research, and quantitative evidence is limited. In response to this limitation, this paper reports on a quasi-experiment investigating whether market representations have a constructive aspect in business. Empirically, this study compares two types of ostensive and performative ...

  8. Non-Representational Theory

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2016-01-01

    Dette kapitel gennemgår den såkaldte ”Non-Representational Theory” (NRT), der primært er kendt fra den Angelsaksiske humangeografi, og som særligt er blevet fremført af den engelske geograf Nigel Thrift siden midten af 2000 årtiet. Da positionen ikke kan siges at være specielt homogen vil kapitlet...

  9. Representation Without Reconstruction

    OpenAIRE

    Edelman, Shimon

    1994-01-01

    According to the paradigmatic reconstructionist approach to vision, a visual system must first reconstruct the world internally, then extract from the resulting representation whatever features are necessary for the task at hand. Recent developments in computational vision and visual neuroscience show that many of the features needed for tasks ranging from spatial discrimination to object recognition can be extracted from the image directly, much as in Gibson's hypothesis of direct perception...

  10. Application of a neural network for reflectance spectrum classification

    Science.gov (United States)

    Yang, Gefei; Gartley, Michael

    2017-05-01

    Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.

  11. Metric representation of DNA sequences.

    Science.gov (United States)

    Wu, Z B

    2000-07-01

    A metric representation of DNA sequences is borrowed from symbolic dynamics. In view of this method, the pattern seen in the chaos game representation of DNA sequences is explained as the suppression of certain nucleotide strings in the DNA sequences. Frequencies of short nucleotide strings and suppression of the shortest ones in the DNA sequences can be determined by using the metric representation.

  12. Mental Representations of Weekdays.

    Directory of Open Access Journals (Sweden)

    David A Ellis

    Full Text Available Keeping social appointments involves keeping track of what day it is. In practice, mismatches between apparent day and actual day are common. For example, a person might think the current day is Wednesday when in fact it is Thursday. Here we show that such mismatches are highly systematic, and can be traced to specific properties of their mental representations. In Study 1, mismatches between apparent day and actual day occurred more frequently on midweek days (Tuesday, Wednesday, and Thursday than on other days, and were mainly due to intrusions from immediately neighboring days. In Study 2, reaction times to report the current day were fastest on Monday and Friday, and slowest midweek. In Study 3, participants generated fewer semantic associations for "Tuesday", "Wednesday" and "Thursday" than for other weekday names. Similarly, Google searches found fewer occurrences of midweek days in webpages and books. Analysis of affective norms revealed that participants' associations were strongly negative for Monday, strongly positive for Friday, and graded over the intervening days. Midweek days are confusable because their mental representations are sparse and similar. Mondays and Fridays are less confusable because their mental representations are rich and distinctive, forming two extremes along a continuum of change.

  13. [Time perceptions and representations].

    Science.gov (United States)

    Tordjman, S

    2015-09-01

    Representations of time and time measurements depend on subjective constructs that vary according to changes in our concepts, beliefs, societal needs and technical advances. Similarly, the past, the future and the present are subjective representations that depend on each individual's psychic time and biological time. Therefore, there is no single, one-size-fits-all time for everyone, but rather a different, subjective time for each individual. We need to acknowledge the existence of different inter-individual times but also intra-individual times, to which different functions and different rhythms are attached, depending on the system of reference. However, the construction of these time perceptions and representations is influenced by objective factors (physiological, physical and cognitive) related to neuroscience which will be presented and discussed in this article. Thus, studying representation and perception of time lies at the crossroads between neuroscience, human sciences and philosophy. Furthermore, it is possible to identify several constants among the many and various representations of time and their corresponding measures, regardless of the system of time reference. These include the notion of movements repeated in a stable rhythmic pattern involving the recurrence of the same interval of time, which enables us to define units of time of equal and invariable duration. This rhythmicity is also found at a physiological level and contributes through circadian rhythms, in particular the melatonin rhythm, to the existence of a biological time. Alterations of temporality in mental disorders will be also discussed in this article illustrated by certain developmental disorders such as autism spectrum disorders. In particular, the hypothesis will be developed that children with autism would need to create discontinuity out of continuity through stereotyped behaviors and/or interests. This discontinuity repeated at regular intervals could have been

  14. Pioneers of representation theory

    CERN Document Server

    Curtis, Charles W

    1999-01-01

    The year 1897 was marked by two important mathematical events: the publication of the first paper on representations of finite groups by Ferdinand Georg Frobenius (1849-1917) and the appearance of the first treatise in English on the theory of finite groups by William Burnside (1852-1927). Burnside soon developed his own approach to representations of finite groups. In the next few years, working independently, Frobenius and Burnside explored the new subject and its applications to finite group theory. They were soon joined in this enterprise by Issai Schur (1875-1941) and some years later, by Richard Brauer (1901-1977). These mathematicians' pioneering research is the subject of this book. It presents an account of the early history of representation theory through an analysis of the published work of the principals and others with whom the principals' work was interwoven. Also included are biographical sketches and enough mathematics to enable readers to follow the development of the subject. An introductor...

  15. Nonlinear Lateral Command Control Using Neural Network for F-16 Aircraft

    OpenAIRE

    Suresh, S; Kannan, N; Omkar, SN; Mani, V

    2005-01-01

    A discrete time neural network based lateral controller design for an F-16 nonlinear model is presented. The controller is designed using model reference indirect adaptive control and the input output representation and control law for nonlinear model are established using system theory. The input-output representation and control law are approximated using neural networks with linear filters. The design takes into account the multi input multi output nature of the lateral model. Roll rate an...

  16. Representation Learning Based Speech Assistive System for Persons With Dysarthria.

    Science.gov (United States)

    Chandrakala, S; Rajeswari, Natarajan

    2017-09-01

    An assistive system for persons with vocal impairment due to dysarthria converts dysarthric speech to normal speech or text. Because of the articulatory deficits, dysarthric speech recognition needs a robust learning technique. Representation learning is significant for complex tasks such as dysarthric speech recognition. We focus on robust representation for dysarthric speech recognition that involves recognizing sequential patterns of varying length utterances. We propose a hybrid framework that uses a generative learning based data representation with a discriminative learning based classifier. In this hybrid framework, we propose to use Example Specific Hidden Markov Models (ESHMMs) to obtain log-likelihood scores for a dysarthric speech utterance to form fixed dimensional score vector representation. This representation is used as an input to discriminative classifier such as support vector machine.The performance of the proposed approach is evaluatedusingUA-Speechdatabase.The recognitionaccuracy is much better than the conventional hidden Markov model based approach and Deep Neural Network-Hidden Markov Model (DNN-HMM). The efficiency of the discriminative nature of score vector representation is proved for "very low" intelligibility words.

  17. D.NET case study

    International Development Research Centre (IDRC) Digital Library (Canada)

    lremy

    participation capacity of common people;. Generating capacity at the grass root level to understand implications of ICT for livelihood in rural areas. As an applied research organization, D.Net decided to work with the model of formulating innovative ideas and projects around different themes (using ICT), and piloting them to ...

  18. The Net Reclassification Index (NRI)

    DEFF Research Database (Denmark)

    Pepe, Margaret S.; Fan, Jing; Feng, Ziding

    2015-01-01

    The Net Reclassification Index (NRI) is a very popular measure for evaluating the improvement in prediction performance gained by adding a marker to a set of baseline predictors. However, the statistical properties of this novel measure have not been explored in depth. We demonstrate the alarming...

  19. Net Neutrality in the Netherlands

    NARCIS (Netherlands)

    van Eijk, N.

    2014-01-01

    The Netherlands is among the first countries that have put specific net neutrality standards in place. The decision to implement specific regulation was influenced by at least three factors. The first was the prevailing social and academic debate, partly due to developments in the United States. The

  20. Surgery for GEP-NETs

    DEFF Research Database (Denmark)

    Knigge, Ulrich; Hansen, Carsten Palnæs

    2012-01-01

    Surgery is the only treatment that may cure the patient with gastroentero-pancreatic (GEP) neuroendocrine tumours (NET) and neuroendocrine carcinomas (NEC) and should always be considered as first line treatment if R0/R1 resection can be achieved. The surgical and interventional procedures for GEP...

  1. Net4Care PHMR Tutorial

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    Goal To demonstrate how to use the Net4Care PHMR builder module to a) Create a SimpleClinicalDocument instance and populate it with relevant administrative and medical information to form a tele medical report of a set of measurements, b) Use the provided DanishPHMRBuilder to generate a correctly...

  2. Reference Guide Microsoft.NET

    NARCIS (Netherlands)

    Zee M van der; Verspaij GJ; Rosbergen S; IMP; NMD

    2003-01-01

    Met behulp van het rapport kunnen ontwikkelaars, beheerders en betrokken managers bij ICT projecten meer inzicht krijgen in de .NET technologie en een goede keuze maken in de inzetbaarheid van deze technologie. Het rapport geeft de bevindingen en conclusies van een verkennende studie naar het

  3. Reduced representations capacity in visual working memory in trait anxiety.

    Science.gov (United States)

    Qi, Senqing; Chen, Jie; Hitchman, Glenn; Zeng, Qinghong; Ding, Cody; Li, Hong; Hu, Weiping

    2014-12-01

    Neural processes that support individual differences in trait anxiety and the amount of representations in visual-spatial working memory (WM) are currently unclear. We measured the contralateral delay activity (CDA) in a lateralized change detection task to explore this question. Different levels of memory load were varied within each block. Despite their unimpaired behavioral performance, individuals with high traitanxious(HTA) displayed several changes in the neuronal markers of the memory processes. The CDA amplitudes reached asymptote at loads of three and four items for HTA and low traitanxious(LTA) individuals, respectively. This result indicates that HTA individuals reach the upper limit of representation capacity with a smaller memory load than LTA individuals. Furthermore, the smaller CDA amplitudes in HTA individuals under high memory loads could be attributed to less contralateral cortical activity, which further indicates that HTA individuals are associated with reduced representations of taskrelevantitems in WM. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Net alkalinity and net acidity 2: Practical considerations

    Science.gov (United States)

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the initial alkalinity. Acidity calculated from the pH and dissolved metals concentrations, assuming equivalents of 2 per mole of Fe and Mn and 3 per mole of Al, was equivalent to that calculated based on complete aqueous speciation of FeII/FeIII. Despite changes in

  5. A Model of Representational Spaces in Human Cortex.

    Science.gov (United States)

    Guntupalli, J Swaroop; Hanke, Michael; Halchenko, Yaroslav O; Connolly, Andrew C; Ramadge, Peter J; Haxby, James V

    2016-06-01

    Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions. © The Author 2016. Published by Oxford University Press.

  6. Unstable representation of sound: a biological marker of dyslexia.

    Science.gov (United States)

    Hornickel, Jane; Kraus, Nina

    2013-02-20

    Learning to read proceeds smoothly for most children, yet others struggle to translate verbal language into its written form. Poor readers often have a host of auditory, linguistic, and attention deficits, including abnormal neural representation of speech and inconsistent performance on psychoacoustic tasks. We hypothesize that this constellation of deficits associated with reading disorders arises from the human auditory system failing to respond to sound in a consistent manner, and that this inconsistency impinges upon the ability to relate phonology and orthography during reading. In support of this hypothesis, we show that poor readers have significantly more variable auditory brainstem responses to speech than do good readers, independent of resting neurophysiological noise levels. Thus, neural variability may be an underlying biological contributor to well established behavioral and neural deficits found in poor readers.

  7. Effects of development and enculturation on number representation in the brain.

    Science.gov (United States)

    Ansari, Daniel

    2008-04-01

    A striking way in which humans differ from non-human primates is in their ability to represent numerical quantity using abstract symbols and to use these 'mental tools' to perform skills such as exact calculations. How do functional brain circuits for the symbolic representation of numerical magnitude emerge? Do neural representations of numerical magnitude change as a function of development and the learning of mental arithmetic? Current theories suggest that cultural number symbols acquire their meaning by being mapped onto non-symbolic representations of numerical magnitude. This Review provides an evaluation of this contention and proposes hypotheses to guide investigations into the neural mechanisms that constrain the acquisition of cultural representations of numerical magnitude.

  8. Categorification and higher representation theory

    CERN Document Server

    Beliakova, Anna

    2017-01-01

    The emergent mathematical philosophy of categorification is reshaping our view of modern mathematics by uncovering a hidden layer of structure in mathematics, revealing richer and more robust structures capable of describing more complex phenomena. Categorified representation theory, or higher representation theory, aims to understand a new level of structure present in representation theory. Rather than studying actions of algebras on vector spaces where algebra elements act by linear endomorphisms of the vector space, higher representation theory describes the structure present when algebras act on categories, with algebra elements acting by functors. The new level of structure in higher representation theory arises by studying the natural transformations between functors. This enhanced perspective brings into play a powerful new set of tools that deepens our understanding of traditional representation theory. This volume exhibits some of the current trends in higher representation theory and the diverse te...

  9. Caught in the Net: Perineuronal Nets and Addiction

    Directory of Open Access Journals (Sweden)

    Megan Slaker

    2016-01-01

    Full Text Available Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM. Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs. This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction.

  10. .net

    Directory of Open Access Journals (Sweden)

    Le Comité de Rédaction d' EspacesTemps.net

    2002-06-01

    Full Text Available EspacesTemps lance aujourd'hui deux objets différents : un site internet et, sur ce site, Le Journal . Il s'agit donc de bien plus, et, au fond, de tout autre chose qu'un simple outil de communication destiné à informer nos lecteurs de nos parutions. Ce n'est pas non plus la « mise en ligne » de nos numéros-papier. L'internet nous donne au contraire l'occasion de réaliser, dans de meilleures conditions, ce que nous avons tenté de faire depuis quelques ...

  11. Net alkalinity and net acidity 2: Practical considerations

    Science.gov (United States)

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH mine drainage treatment can lead to systems with insufficient Alkalinity to neutralize metal and H+ acidity and is not recommended. The use of net alkalinity = -Hot Acidity titration is recommended for the planning of mine drainage treatment. The use of net alkalinity = (Alkalinitymeasured - Aciditycalculated) is recommended with some cautions

  12. End-to-end unsupervised deformable image registration with a convolutional neural network

    NARCIS (Netherlands)

    de Vos, Bob D.; Berendsen, Floris; Viergever, Max A.; Staring, Marius; Išgum, Ivana

    2017-01-01

    In this work we propose a deep learning network for deformable image registration (DIRNet). The DIRNet consists of a convolutional neural network (ConvNet) regressor, a spatial transformer, and a resampler. The ConvNet analyzes a pair of fixed and moving images and outputs parameters for the spatial

  13. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, Majbrit; Stensballe, Allan; Rasmussen, Thomas E

    2011-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...

  14. Comparing visual representations across human fMRI and computational vision.

    Science.gov (United States)

    Leeds, Daniel D; Seibert, Darren A; Pyles, John A; Tarr, Michael J

    2013-11-22

    Feedforward visual object perception recruits a cortical network that is assumed to be hierarchical, progressing from basic visual features to complete object representations. However, the nature of the intermediate features related to this transformation remains poorly understood. Here, we explore how well different computer vision recognition models account for neural object encoding across the human cortical visual pathway as measured using fMRI. These neural data, collected during the viewing of 60 images of real-world objects, were analyzed with a searchlight procedure as in Kriegeskorte, Goebel, and Bandettini (2006): Within each searchlight sphere, the obtained patterns of neural activity for all 60 objects were compared to model responses for each computer recognition algorithm using representational dissimilarity analysis (Kriegeskorte et al., 2008). Although each of the computer vision methods significantly accounted for some of the neural data, among the different models, the scale invariant feature transform (Lowe, 2004), encoding local visual properties gathered from "interest points," was best able to accurately and consistently account for stimulus representations within the ventral pathway. More generally, when present, significance was observed in regions of the ventral-temporal cortex associated with intermediate-level object perception. Differences in model effectiveness and the neural location of significant matches may be attributable to the fact that each model implements a different featural basis for representing objects (e.g., more holistic or more parts-based). Overall, we conclude that well-known computer vision recognition systems may serve as viable proxies for theories of intermediate visual object representation.

  15. Representation of speech variability.

    Science.gov (United States)

    Bent, Tessa; Holt, Rachael F

    2017-07-01

    Speech signals provide both linguistic information (e.g., words and sentences) as well as information about the speaker who produced the message (i.e., social-indexical information). Listeners store highly detailed representations of these speech signals, which are simultaneously indexed with linguistic and social category membership. A variety of methodologies-forced-choice categorization, rating, and free classification-have shed light on listeners' cognitive-perceptual representations of the social-indexical information present in the speech signal. Specifically, listeners can accurately identify some talker characteristics, including native language status, approximate age, sex, and gender. Additionally, listeners have sensitivity to other speaker characteristics-such as sexual orientation, regional dialect, native language for non-native speakers, race, and ethnicity-but listeners tend to be less accurate or more variable at categorizing or rating speakers based on these constructs. However, studies have not necessarily incorporated more recent conceptions of these constructs (e.g., separating listeners' perceptions of race vs ethnicity) or speakers who do not fit squarely into specific categories (e.g., for sex perception, intersex individuals; for gender perception, genderqueer speakers; for race perception, multiracial speakers). Additional research on how the intersections of social-indexical categories influence speech perception is also needed. As the field moves forward, scholars from a variety of disciplines should be incorporated into investigations of how listeners' extract and represent facets of personal identity from speech. Further, the impact of these representations on our interactions with one another in contexts outside of the laboratory should continue to be explored. WIREs Cogn Sci 2017, 8:e1434. doi: 10.1002/wcs.1434 This article is categorized under: Linguistics > Language Acquisition Linguistics > Language in Mind and Brain Psychology

  16. Representations of commonsense knowledge

    CERN Document Server

    Davis, Ernest

    1990-01-01

    Representations of Commonsense Knowledge provides a rich language for expressing commonsense knowledge and inference techniques for carrying out commonsense knowledge. This book provides a survey of the research on commonsense knowledge.Organized into 10 chapters, this book begins with an overview of the basic ideas on artificial intelligence commonsense reasoning. This text then examines the structure of logic, which is roughly analogous to that of a programming language. Other chapters describe how rules of universal validity can be applied to facts known with absolute certainty to deduce ot

  17. Representations from the past

    DEFF Research Database (Denmark)

    Sammut, Gordon; Tsirogianni, Stavroula; Wagoner, Brady

    2012-01-01

    a deconstructive effort that maps the evolutionary trajectory of a representational project in terms of its adaptation over time. We go on to illustrate our proposal visiting data that emerged in an inquiry investigating Maltese immigrants’ perspectives towards their countries of settlement and origin. This data...... explain how Maltese immigrants to Britain opt for certain forms of intercultural relations than others that are normally Integr preferable. We demonstrate that these preferences rely on an evolved justification of the Maltese getting by with foreign rulers that other scholars have traced back...

  18. Encoding of phonology in a recurrent neural model of grounded speech

    NARCIS (Netherlands)

    Alishahi, Afra; Barking, Marie; Chrupala, Grzegorz; Levy, Roger; Specia, Lucia

    2017-01-01

    We study the representation and encoding of phonemes in a recurrent neural network model of grounded speech. We use a model which processes images and their spoken descriptions, and projects the visual and auditory representations into the same semantic space. We perform a number of analyses on how

  19. Deciphering Neural Codes of Memory during Sleep.

    Science.gov (United States)

    Chen, Zhe; Wilson, Matthew A

    2017-05-01

    Memories of experiences are stored in the cerebral cortex. Sleep is critical for the consolidation of hippocampal memory of wake experiences into the neocortex. Understanding representations of neural codes of hippocampal-neocortical networks during sleep would reveal important circuit mechanisms in memory consolidation and provide novel insights into memory and dreams. Although sleep-associated ensemble spike activity has been investigated, identifying the content of memory in sleep remains challenging. Here we revisit important experimental findings on sleep-associated memory (i.e., neural activity patterns in sleep that reflect memory processing) and review computational approaches to the analysis of sleep-associated neural codes (SANCs). We focus on two analysis paradigms for sleep-associated memory and propose a new unsupervised learning framework ('memory first, meaning later') for unbiased assessment of SANCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Representational Similarity of Body Parts in Human Occipitotemporal Cortex.

    Science.gov (United States)

    Bracci, Stefania; Caramazza, Alfonso; Peelen, Marius V

    2015-09-23

    Regions in human lateral and ventral occipitotemporal cortices (OTC) respond selectively to pictures of the human body and its parts. What are the organizational principles underlying body part responses in these regions? Here we used representational similarity analysis (RSA) of fMRI data to test multiple possible organizational principles: shape similarity, physical proximity, cortical homunculus proximity, and semantic similarity. Participants viewed pictures of whole persons, chairs, and eight body parts (hands, arms, legs, feet, chests, waists, upper faces, and lower faces). The similarity of multivoxel activity patterns for all body part pairs was established in whole person-selective OTC regions. The resulting neural similarity matrices were then compared with similarity matrices capturing the hypothesized organizational principles. Results showed that the semantic similarity model best captured the neural similarity of body parts in lateral and ventral OTC, which followed an organization in three clusters: (1) body parts used as action effectors (hands, feet, arms, and legs), (2) noneffector body parts (chests and waists), and (3) face parts (upper and lower faces). Whole-brain RSA revealed, in addition to OTC, regions in parietal and frontal cortex in which neural similarity was related to semantic similarity. In contrast, neural similarity in occipital cortex was best predicted by shape similarity models. We suggest that the semantic organization of body parts in high-level visual cortex relates to the different functions associated with the three body part clusters, reflecting the unique processing and connectivity demands associated with the different types of information (e.g., action, social) different body parts (e.g., limbs, faces) convey. Significance statement: While the organization of body part representations in motor and somatosensory cortices has been well characterized, the principles underlying body part representations in visual cortex