WorldWideScience

Sample records for neural net models

  1. Bayesian Inference using Neural Net Likelihood Models for Protein Secondary Structure Prediction

    Directory of Open Access Journals (Sweden)

    Seong-Gon Kim

    2011-06-01

    Full Text Available Several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods have been used to approach the complex non-linear task of predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure in the past. This project introduces a new machine learning method by using an offline trained Multilayered Perceptrons (MLP as the likelihood models within a Bayesian Inference framework to predict secondary structures proteins. Varying window sizes are used to extract neighboring amino acid information and passed back and forth between the Neural Net models and the Bayesian Inference process until there is a convergence of the posterior secondary structure probability.

  2. Assessment of the expected construction company’s net profit using neural network and multiple regression models

    Directory of Open Access Journals (Sweden)

    H.H. Mohamad

    2013-09-01

    This research aims to develop a mathematical model for assessing the expected net profit of any construction company. To achieve the research objective, four steps were performed. First, the main factors affecting firms’ net profit were identified. Second, pertinent data regarding the net profit factors were collected. Third, two different net profit models were developed using the Multiple Regression (MR and the Neural Network (NN techniques. The validity of the proposed models was also investigated. Finally, the results of both MR and NN models were compared to investigate the predictive capabilities of the two models.

  3. Generalized Net Model of the Cognitive and Neural Algorithm for Adaptive Resonance Theory 1

    Directory of Open Access Journals (Sweden)

    Todor Petkov

    2013-12-01

    Full Text Available The artificial neural networks are inspired by biological properties of human and animal brains. One of the neural networks type is called ART [4]. The abbreviation of ART stands for Adaptive Resonance Theory that has been invented by Stephen Grossberg in 1976 [5]. ART represents a family of Neural Networks. It is a cognitive and neural theory that describes how the brain autonomously learns to categorize, recognize and predict objects and events in the changing world. In this paper we introduce a GN model that represent ART1 Neural Network learning algorithm [1]. The purpose of this model is to explain when the input vector will be clustered or rejected among all nodes by the network. It can also be used for explanation and optimization of ART1 learning algorithm.

  4. Neural Net Safety Monitor Design

    Science.gov (United States)

    Larson, Richard R.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) at the Dryden Flight Research Center (DFRC) has been conducting flight-test research using an F-15 aircraft (figure 1). This aircraft has been specially modified to interface a neural net (NN) controller as part of a single-string Airborne Research Test System (ARTS) computer with the existing quad-redundant flight control system (FCC) shown in figure 2. The NN commands are passed to FCC channels 2 and 4 and are cross channel data linked (CCDL) to the other computers as shown. Numerous types of fault-detection monitors exist in the FCC when the NN mode is engaged; these monitors would cause an automatic disengagement of the NN in the event of a triggering fault. Unfortunately, these monitors still may not prevent a possible NN hard-over command from coming through to the control laws. Therefore, an additional and unique safety monitor was designed for a single-string source that allows authority at maximum actuator rates but protects the pilot and structural loads against excessive g-limits in the case of a NN hard-over command input. This additional monitor resides in the FCCs and is executed before the control laws are computed. This presentation describes a floating limiter (FL) concept1 that was developed and successfully test-flown for this program (figure 3). The FL computes the rate of change of the NN commands that are input to the FCC from the ARTS. A window is created with upper and lower boundaries, which is constantly floating and trying to stay centered as the NN command rates are changing. The limiter works by only allowing the window to move at a much slower rate than those of the NN commands. Anywhere within the window, however, full rates are allowed. If a rate persists in one direction, it will eventually hit the boundary and be rate-limited to the floating limiter rate. When this happens, a persistent counter begins and after a limit is reached, a NN disengage command is generated. The

  5. Invariant visual object and face recognition: neural and computational bases, and a model, VisNet

    Directory of Open Access Journals (Sweden)

    Edmund T eRolls

    2012-06-01

    Full Text Available Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy modelin which invariant representations can be built by self-organizing learning based on the temporal and spatialstatistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associativesynaptic learning rule with a short term memory trace, and/or it can use spatialcontinuity in Continuous Spatial Transformation learning which does not require a temporal trace. The model of visual processing in theventral cortical stream can build representations of objects that are invariant withrespect to translation, view, size, and also lighting. The modelhas been extended to provide an account of invariant representations in the dorsal visualsystem of the global motion produced by objects such as looming, rotation, and objectbased movement. The model has been extended to incorporate top-down feedback connectionsto model the control of attention by biased competition in for example spatial and objectsearch tasks. The model has also been extended to account for how the visual system canselect single objects in complex visual scenes, and how multiple objects can berepresented in a scene. The model has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  6. Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet.

    Science.gov (United States)

    Rolls, Edmund T

    2012-01-01

    Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  7. Modulated error diffusion CGHs for neural nets

    Science.gov (United States)

    Vermeulen, Pieter J. E.; Casasent, David P.

    1990-05-01

    New modulated error diffusion CGHs (computer generated holograms) for optical computing are considered. Specific attention is given to their use in optical matrix-vector, associative processor, neural net and optical interconnection architectures. We consider lensless CGH systems (many CGHs use an external Fourier transform (FT) lens), the Fresnel sampling requirements, the effects of finite CGH apertures (sample and hold inputs), dot size correction (for laser recorders), and new applications for this novel encoding method (that devotes attention to quantization noise effects).

  8. Neural net prediction of tokamak plasma disruptions

    International Nuclear Information System (INIS)

    Hernandez, J.V.; Lin, Z.; Horton, W.; McCool, S.C.

    1994-10-01

    The computation based on neural net algorithms in predicting minor and major disruptions in TEXT tokamak discharges has been performed. Future values of the fluctuating magnetic signal are predicted based on L past values of the magnetic fluctuation signal, measured by a single Mirnov coil. The time step used (= 0.04ms) corresponds to the experimental data sampling rate. Two kinds of approaches are adopted for the task, the contiguous future prediction and the multi-timescale prediction. Results are shown for comparison. Both networks are trained through the back-propagation algorithm with inertial terms. The degree of this success indicates that the magnetic fluctuations associated with tokamak disruptions may be characterized by a relatively low-dimensional dynamical system

  9. Real-time applications of neural nets

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs

  10. Accelerator diagnosis and control by Neural Nets

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1989-01-01

    Neural Nets (NN) have been described as a solution looking for a problem. In the last conference, Artificial Intelligence (AI) was considered in the accelerator context. While good for local surveillance and control, its use for large complex systems (LCS) was much more restricted. By contrast, NN provide a good metaphor for LCS. It can be argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems, and therefore provide an ideal adaptive control system. Thus, where AI may be good for maintaining a 'golden orbit,' NN should be good for obtaining it via a quantitative approach to 'look and adjust' methods like operator tweaking which use pattern recognition to deal with hardware and software limitations, inaccuracies or errors as well as imprecise knowledge or understanding of effects like annealing and hysteresis. Further, insights from NN allow one to define feasibility conditions for LCS in terms of design constraints and tolerances. Hardware and software implications are discussed and several LCS of current interest are compared and contrasted. 15 refs., 5 figs

  11. Accelerator diagnosis and control by Neural Nets

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1989-01-01

    Neural Nets (NN) have been described as a solution looking for a problem. In the last conference, Artificial Intelligence (AI) was considered in the accelerator context. While good for local surveillance and control, its use for large complex systems (LCS) was much more restricted. By contrast, NN provide a good metaphore for LCS. It can be argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems and therefore provide an ideal adaptive control system. Thus, where A1 may be good for maintaining a golden orbit, NN should be good for obtaining it via a quantitative approach to look and adjust methods like operator tweaking which use pattern recognition to deal with hardware and software limitations, inaccuracies or errors as well as imprecise knowledge or understanding of effects like annealing and hysteresis. Further, insights from NN allow one to define feasibility conditions for LCS in terms of design constraints and tolerances. Hardware and software implications are discussed and several LCS of current interest are compared and contrasted. 15 refs., 5 figs

  12. Real-time applications of neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs.

  13. Real-time applications of neural nets

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1989-01-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas e.g. improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. In this paper, such issues are considered, examples given and possibilities discussed

  14. A Simple Quantum Neural Net with a Periodic Activation Function

    OpenAIRE

    Daskin, Ammar

    2018-01-01

    In this paper, we propose a simple neural net that requires only $O(nlog_2k)$ number of qubits and $O(nk)$ quantum gates: Here, $n$ is the number of input parameters, and $k$ is the number of weights applied to these parameters in the proposed neural net. We describe the network in terms of a quantum circuit, and then draw its equivalent classical neural net which involves $O(k^n)$ nodes in the hidden layer. Then, we show that the network uses a periodic activation function of cosine values o...

  15. 22nd Italian Workshop on Neural Nets

    CERN Document Server

    Bassis, Simone; Esposito, Anna; Morabito, Francesco

    2013-01-01

    This volume collects a selection of contributions which has been presented at the 22nd Italian Workshop on Neural Networks, the yearly meeting of the Italian Society for Neural Networks (SIREN). The conference was held in Italy, Vietri sul Mare (Salerno), during May 17-19, 2012. The annual meeting of SIREN is sponsored by International Neural Network Society (INNS), European Neural Network Society (ENNS) and IEEE Computational Intelligence Society (CIS). The book – as well as the workshop-  is organized in three main components, two special sessions and a group of regular sessions featuring different aspects and point of views of artificial neural networks and natural intelligence, also including applications of present compelling interest.

  16. Musical Audio Synthesis Using Autoencoding Neural Nets

    OpenAIRE

    Sarroff, Andy; Casey, Michael A.

    2014-01-01

    With an optimal network topology and tuning of hyperpa-\\ud rameters, artificial neural networks (ANNs) may be trained\\ud to learn a mapping from low level audio features to one\\ud or more higher-level representations. Such artificial neu-\\ud ral networks are commonly used in classification and re-\\ud gression settings to perform arbitrary tasks. In this work\\ud we suggest repurposing autoencoding neural networks as\\ud musical audio synthesizers. We offer an interactive musi-\\ud cal audio synt...

  17. Neural nets for massively parallel optimization

    Science.gov (United States)

    Dixon, Laurence C. W.; Mills, David

    1992-07-01

    To apply massively parallel processing systems to the solution of large scale optimization problems it is desirable to be able to evaluate any function f(z), z (epsilon) Rn in a parallel manner. The theorem of Cybenko, Hecht Nielsen, Hornik, Stinchcombe and White, and Funahasi shows that this can be achieved by a neural network with one hidden layer. In this paper we address the problem of the number of nodes required in the layer to achieve a given accuracy in the function and gradient values at all points within a given n dimensional interval. The type of activation function needed to obtain nonsingular Hessian matrices is described and a strategy for obtaining accurate minimal networks presented.

  18. Computation and control with neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Corneliusen, A.; Terdal, P.; Knight, T.; Spencer, J.

    1989-10-04

    As energies have increased exponentially with time so have the size and complexity of accelerators and control systems. NN may offer the kinds of improvements in computation and control that are needed to maintain acceptable functionality. For control their associative characteristics could provide signal conversion or data translation. Because they can do any computation such as least squares, they can close feedback loops autonomously to provide intelligent control at the point of action rather than at a central location that requires transfers, conversions, hand-shaking and other costly repetitions like input protection. Both computation and control can be integrated on a single chip, printed circuit or an optical equivalent that is also inherently faster through full parallel operation. For such reasons one expects lower costs and better results. Such systems could be optimized by integrating sensor and signal processing functions. Distributed nets of such hardware could communicate and provide global monitoring and multiprocessing in various ways e.g. via token, slotted or parallel rings (or Steiner trees) for compatibility with existing systems. Problems and advantages of this approach such as an optimal, real-time Turing machine are discussed. Simple examples are simulated and hardware implemented using discrete elements that demonstrate some basic characteristics of learning and parallelism. Future microprocessors' are predicted and requested on this basis. 19 refs., 18 figs.

  19. Computation and control with neural nets

    International Nuclear Information System (INIS)

    Corneliusen, A.; Terdal, P.; Knight, T.; Spencer, J.

    1989-01-01

    As energies have increased exponentially with time so have the size and complexity of accelerators and control systems. NN may offer the kinds of improvements in computation and control that are needed to maintain acceptable functionality. For control their associative characteristics could provide signal conversion or data translation. Because they can do any computation such as least squares, they can close feedback loops autonomously to provide intelligent control at the point of action rather than at a central location that requires transfers, conversions, hand-shaking and other costly repetitions like input protection. Both computation and control can be integrated on a single chip, printed circuit or an optical equivalent that is also inherently faster through full parallel operation. For such reasons one expects lower costs and better results. Such systems could be optimized by integrating sensor and signal processing functions. Distributed nets of such hardware could communicate and provide global monitoring and multiprocessing in various ways e.g. via token, slotted or parallel rings (or Steiner trees) for compatibility with existing systems. Problems and advantages of this approach such as an optimal, real-time Turing machine are discussed. Simple examples are simulated and hardware implemented using discrete elements that demonstrate some basic characteristics of learning and parallelism. Future 'microprocessors' are predicted and requested on this basis. 19 refs., 18 figs

  20. Multiflavor string-net models

    Science.gov (United States)

    Lin, Chien-Hung

    2017-05-01

    We generalize the string-net construction to multiple flavors of strings, each of which is labeled by the elements of an Abelian group Gi. The same flavor of strings can branch, while different flavors of strings can cross one another and thus they form intersecting string nets. We systematically construct the exactly soluble lattice Hamiltonians and the ground-state wave functions for the intersecting string-net condensed phases. We analyze the braiding statistics of the low-energy quasiparticle excitations and find that our model can realize all the topological phases as the string-net model with group G =∏iGi . In this respect, our construction provides various ways of building lattice models which realize topological order G , corresponding to different partitions of G and thus different flavors of string nets. In fact, our construction concretely demonstrates the Künneth formula by constructing various lattice models with the same topological order. As an example, we construct the G =Z2×Z2×Z2 string-net model which realizes a non-Abelian topological phase by properly intersecting three copies of toric codes.

  1. Vector control of wind turbine on the basis of the fuzzy selective neural net*

    Science.gov (United States)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    An article describes vector control of wind turbine based on fuzzy selective neural net. Based on the wind turbine system’s state, the fuzzy selective neural net tracks an maximum power point under random perturbations. Numerical simulations are accomplished to clarify the applicability and advantages of the proposed vector wind turbine’s control on the basis of the fuzzy selective neuronet. The simulation results show that the proposed intelligent control of wind turbine achieves real-time control speed and competitive performance, as compared to a classical control model with PID controllers based on traditional maximum torque control strategy.

  2. Artificial neural nets application in the cotton yarn industry

    Directory of Open Access Journals (Sweden)

    Gilberto Clóvis Antoneli

    2016-06-01

    Full Text Available The competitiveness in the yarn production sector has led companies to search for solutions to attain quality yarn at a low cost. Today, the difference between them, and thus the sector, is in the raw material, meaning processed cotton and its characteristics. There are many types of cotton with different characteristics due to its production region, harvest, storage and transportation. Yarn industries work with cotton mixtures, which makes it difficult to determine the quality of the yarn produced from the characteristics of the processed fibers. This study uses data from a conventional spinning, from a raw material made of 100% cotton, and presents a solution with artificial neural nets that determine the thread quality information, using the fibers’ characteristics values and settings of some process adjustments. In this solution a neural net of the type MultiLayer Perceptron with 11 entry neurons (8 characteristics of the fiber and 3 process adjustments, 7 output neurons (yarn quality and two types of training, Back propagation and Conjugate gradient descent. The selection and organization of the production data of the yarn industry of the cocamar® indústria de fios company are described, to apply the artificial neural nets developed. In the application of neural nets to determine yarn quality, one concludes that, although the ideal precision of absolute values is lacking, the presented solution represents an excellent tool to define yarn quality variations when modifying the raw material composition. The developed system enables a simulation to define the raw material percentage mixture to be processed in the plant using the information from the stocked cotton packs, thus obtaining a mixture that maintains the stability of the entire productive process.

  3. ChemNet: A Transferable and Generalizable Deep Neural Network for Small-Molecule Property Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Garrett B.; Siegel, Charles M.; Vishnu, Abhinav; Hodas, Nathan O.

    2017-12-08

    With access to large datasets, deep neural networks through representation learning have been able to identify patterns from raw data, achieving human-level accuracy in image and speech recognition tasks. However, in chemistry, availability of large standardized and labelled datasets is scarce, and with a multitude of chemical properties of interest, chemical data is inherently small and fragmented. In this work, we explore transfer learning techniques in conjunction with the existing Chemception CNN model, to create a transferable and generalizable deep neural network for small-molecule property prediction. Our latest model, ChemNet learns in a semi-supervised manner from inexpensive labels computed from the ChEMBL database. When fine-tuned to the Tox21, HIV and FreeSolv dataset, which are 3 separate chemical tasks that ChemNet was not originally trained on, we demonstrate that ChemNet exceeds the performance of existing Chemception models, contemporary MLP models that trains on molecular fingerprints, and it matches the performance of the ConvGraph algorithm, the current state-of-the-art. Furthermore, as ChemNet has been pre-trained on a large diverse chemical database, it can be used as a universal “plug-and-play” deep neural network, which accelerates the deployment of deep neural networks for the prediction of novel small-molecule chemical properties.

  4. The gamma model : a new neural network for temporal processing

    NARCIS (Netherlands)

    Vries, de B.

    1992-01-01

    In this paper we develop the gamma neural model, a new neural net architecture for processing of temporal patterns. Time varying patterns are normally segmented into a sequence of static patterns that are successively presented to a neural net. In the approach presented here segmentation is avoided.

  5. Unfolding code for neutron spectrometry based on neural nets technology

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Vega C, H. R.

    2012-10-01

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Neural Networks have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This unfolding code called Neutron Spectrometry and Dosimetry by means of Artificial Neural Networks was designed in a graphical interface under LabVIEW programming environment. The core of the code is an embedded neural network architecture, previously optimized by the R obust Design of Artificial Neural Networks Methodology . The main features of the code are: is easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6 Lil(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, only seven rate counts measurement with a Bonner spheres spectrometer are required for simultaneously unfold the 60 energy bins of the neutron spectrum and to calculate 15 dosimetric quantities, for radiation protection porpoises. This code generates a full report in html format with all relevant information. (Author)

  6. Unfolding code for neutron spectrometry based on neural nets technology

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M.; Vega C, H. R., E-mail: morvymm@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2012-10-15

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Neural Networks have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This unfolding code called Neutron Spectrometry and Dosimetry by means of Artificial Neural Networks was designed in a graphical interface under LabVIEW programming environment. The core of the code is an embedded neural network architecture, previously optimized by the {sup R}obust Design of Artificial Neural Networks Methodology{sup .} The main features of the code are: is easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a {sup 6}Lil(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, only seven rate counts measurement with a Bonner spheres spectrometer are required for simultaneously unfold the 60 energy bins of the neutron spectrum and to calculate 15 dosimetric quantities, for radiation protection porpoises. This code generates a full report in html format with all relevant information. (Author)

  7. Face recognition: Eigenface, elastic matching, and neural nets

    International Nuclear Information System (INIS)

    Zhang, J.; Lades, M.

    1997-01-01

    This paper is a comparative study of three recently proposed algorithms for face recognition: eigenface, autoassociation and classification neural nets, and elastic matching. After these algorithms were analyzed under a common statistical decision framework, they were evaluated experimentally on four individual data bases, each with a moderate subject size, and a combined data base with more than a hundred different subjects. Analysis and experimental results indicate that the eigenface algorithm, which is essentially a minimum distance classifier, works well when lighting variation is small. Its performance deteriorates significantly as lighting variation increases. The elastic matching algorithm, on the other hand, is insensitive to lighting, face position, and expression variations and therefore is more versatile. The performance of the autoassociation and classification nets is upper bounded by that of the eigenface but is more difficult to implement in practice

  8. Neural net generated seismic facies map and attribute facies map

    International Nuclear Information System (INIS)

    Addy, S.K.; Neri, P.

    1998-01-01

    The usefulness of 'seismic facies maps' in the analysis of an Upper Wilcox channel system in a 3-D survey shot by CGG in 1995 in Lavaca county in south Texas was discussed. A neural net-generated seismic facies map is a quick hydrocarbon exploration tool that can be applied regionally as well as on a prospect scale. The new technology is used to classify a constant interval parallel to a horizon in a 3-D seismic volume based on the shape of the wiggle traces using a neural network technology. The tool makes it possible to interpret sedimentary features of a petroleum deposit. The same technology can be used in regional mapping by making 'attribute facies maps' in which various forms of amplitude attributes, phase attributes or frequency attributes can be used

  9. NET model coil test possibilities

    International Nuclear Information System (INIS)

    Erb, J.; Gruenhagen, A.; Herz, W.; Jentzsch, K.; Komarek, P.; Lotz, E.; Malang, S.; Maurer, W.; Noether, G.; Ulbricht, A.; Vogt, A.; Zahn, G.; Horvath, I.; Kwasnitza, K.; Marinucci, C.; Pasztor, G.; Sborchia, C.; Weymuth, P.; Peters, A.; Roeterdink, A.

    1987-11-01

    A single full size coil for NET/INTOR represents an investment of the order of 40 MUC (Million Unit Costs). Before such an amount of money or even more for the 16 TF coils is invested as much risks as possible must be eliminated by a comprehensive development programme. In the course of such a programme a coil technology verification test should finally prove the feasibility of NET/INTOR TF coils. This study report is almost exclusively dealing with such a verification test by model coil testing. These coils will be built out of two Nb 3 Sn-conductors based on two concepts already under development and investigation. Two possible coil arrangements are discussed: A cluster facility, where two model coils out of the two Nb 3 TF-conductors are used, and the already tested LCT-coils producing a background field. A solenoid arrangement, where in addition to the two TF model coils another model coil out of a PF-conductor for the central PF-coils of NET/INTOR is used instead of LCT background coils. Technical advantages and disadvantages are worked out in order to compare and judge both facilities. Costs estimates and the time schedules broaden the base for a decision about the realisation of such a facility. (orig.) [de

  10. Do neural nets learn statistical laws behind natural language?

    Directory of Open Access Journals (Sweden)

    Shuntaro Takahashi

    Full Text Available The performance of deep learning in natural language processing has been spectacular, but the reasons for this success remain unclear because of the inherent complexity of deep learning. This paper provides empirical evidence of its effectiveness and of a limitation of neural networks for language engineering. Precisely, we demonstrate that a neural language model based on long short-term memory (LSTM effectively reproduces Zipf's law and Heaps' law, two representative statistical properties underlying natural language. We discuss the quality of reproducibility and the emergence of Zipf's law and Heaps' law as training progresses. We also point out that the neural language model has a limitation in reproducing long-range correlation, another statistical property of natural language. This understanding could provide a direction for improving the architectures of neural networks.

  11. Analysis of Salinity Intrusion in the San Francisco Bay-Delta Using a GA-Optimized Neural Net, and Application of the Model to Prediction in the Elkhorn Slough Habitat

    Science.gov (United States)

    Thompson, D. E.; Rajkumar, T.

    2002-12-01

    The San Francisco Bay Delta is a large hydrodynamic complex that incorporates the Sacramento and San Joaquin Estuaries, the Suisan Marsh, and the San Francisco Bay proper. Competition exists for the use of this extensive water system both from the fisheries industry, the agricultural industry, and from the marine and estuarine animal species within the Delta. As tidal fluctuations occur, more saline water pushes upstream allowing fish to migrate beyond the Suisan Marsh for breeding and habitat occupation. However, the agriculture industry does not want extensive salinity intrusion to impact water quality for human and plant consumption. The balance is regulated by pumping stations located along the estuaries and reservoirs whereby flushing of fresh water keeps the saline intrusion at bay. The pumping schedule is driven by data collected at various locations within the Bay Delta and by numerical models that predict the salinity intrusion as part of a larger model of the system. The Interagency Ecological Program (IEP) for the San Francisco Bay / Sacramento-San Joaquin Estuary collects, monitors, and archives the data, and the Department of Water Resources provides a numerical model simulation (DSM2) from which predictions are made that drive the pumping schedule. A problem with DSM2 is that the numerical simulation takes roughly 16 hours to complete a prediction. We have created a neural net, optimized with a genetic algorithm, that takes as input the archived data from multiple gauging stations and predicts stage, salinity, and flow at the Carquinez Straits (at the downstream end of the Suisan Marsh). This model seems to be robust in its predictions and operates much faster than the current numerical DSM2 model. Because the Bay-Delta is strongly tidally driven, we used both Principal Component Analysis and Fast Fourier Transforms to discover dominant features within the IEP data. We then filtered out the dominant tidal forcing to discover non-primary tidal effects

  12. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.

    Science.gov (United States)

    Kawahara, Jeremy; Brown, Colin J; Miller, Steven P; Booth, Brian G; Chau, Vann; Grunau, Ruth E; Zwicker, Jill G; Hamarneh, Ghassan

    2017-02-01

    We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Goal-seeking neural net for recall and recognition

    Science.gov (United States)

    Omidvar, Omid M.

    1990-07-01

    Neural networks have been used to mimic cognitive processes which take place in animal brains. The learning capability inherent in neural networks makes them suitable candidates for adaptive tasks such as recall and recognition. The synaptic reinforcements create a proper condition for adaptation, which results in memorization, formation of perception, and higher order information processing activities. In this research a model of a goal seeking neural network is studied and the operation of the network with regard to recall and recognition is analyzed. In these analyses recall is defined as retrieval of stored information where little or no matching is involved. On the other hand recognition is recall with matching; therefore it involves memorizing a piece of information with complete presentation. This research takes the generalized view of reinforcement in which all the signals are potential reinforcers. The neuronal response is considered to be the source of the reinforcement. This local approach to adaptation leads to the goal seeking nature of the neurons as network components. In the proposed model all the synaptic strengths are reinforced in parallel while the reinforcement among the layers is done in a distributed fashion and pipeline mode from the last layer inward. A model of complex neuron with varying threshold is developed to account for inhibitory and excitatory behavior of real neuron. A goal seeking model of a neural network is presented. This network is utilized to perform recall and recognition tasks. The performance of the model with regard to the assigned tasks is presented.

  14. Neural-net disruption predictor in JT-60U

    International Nuclear Information System (INIS)

    Yoshino, R.

    2003-01-01

    The prediction of major disruptions caused by the density limit, the plasma current ramp-down with high internal inductance l i , the low density locked mode and the β-limit has been investigated in JT-60U. The concept of 'stability level', newly proposed in this paper to predict the occurrence of a major disruption, is calculated from nine input parameters every 2 ms by the neural network and the start of a major disruption is predicted when the stability level decreases to a certain level, the 'alarm level'. The neural network is trained in two steps. It is first trained with 12 disruptive and six non-disruptive shots (total of 8011 data points). Second, the target output data for 12 disruptive shots are modified and the network is trained again with additional data points generated by the operator. The 'neural-net disruption predictor' obtained has been tested for 300 disruptive shots (128 945 data points) and 1008 non-disruptive shots (982 800 data points) selected from nine years of operation (1991-1999) of JT-60U. Major disruptions except for those caused by the -limit have been predicted with a prediction success rate of 97-98% at 10 ms prior to the disruption and higher than 90% at 30 ms prior to the disruption while the false alarm rate is 2.1% for non-disruptive shots. This prediction performance has been confirmed for 120 disruptive shots (56 163 data points), caused by the density limit, as well as 1032 non-disruptive shots (1004 611 data points) in the last four years of operation (1999-2002) of JT-60U. A careful selection of the input parameters supplied to the network and the newly developed two-step training of the network have reduced the false alarm rate resulting in a considerable improvement of the prediction success rate. (author)

  15. Neural nets for job-shop scheduling, will they do the job?

    NARCIS (Netherlands)

    Rooda, J.E.; Willems, T.M.; Goodwin, G.C.; Evans, R.J.

    1993-01-01

    A neural net structure has been developed which is capable of solving deterministic jobshop scheduling problems, part of the large class of np-complete problems. The problem was translated in an integer linear-programming format which facilitated translation in an adequate neural net structure. Use

  16. Wet gas metering with the v-cone and neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Toral, Haluk; Cai, Shiqian; Peters, Robert

    2005-07-01

    The paper presents analysis of extensive measurements taken at NEL, K-Lab and CEESI wet gas test loops. Differential and absolute pressure signals were sampled at high frequency across V-Cone meters. Turbulence characteristics of the flow captured in the sampled signals were characterized by pattern recognition techniques and related to the fractions and flow rates of individual phases. The sensitivity of over-reading to first and higher order features of the high frequency signals were investigated qualitatively. The sensitivities were quantified by means of the saliency test based on back propagating neural nets. A self contained wet gas meter based on neural net characterization of first and higher order features of the pressure, differential pressure and capacitance signals was proposed. Alternatively, a wet gas meter based on a neural net model of just pressure sensor inputs (based on currently available data) and liquid Froude number was shown to offer an accuracy of under 5% if the Froude number could be estimated with 25% accuracy. (author) (tk)

  17. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  18. LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices

    Directory of Open Access Journals (Sweden)

    Ziyang He

    2018-04-01

    Full Text Available By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices.

  19. LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices.

    Science.gov (United States)

    He, Ziyang; Zhang, Xiaoqing; Cao, Yangjie; Liu, Zhi; Zhang, Bo; Wang, Xiaoyan

    2018-04-17

    By running applications and services closer to the user, edge processing provides many advantages, such as short response time and reduced network traffic. Deep-learning based algorithms provide significantly better performances than traditional algorithms in many fields but demand more resources, such as higher computational power and more memory. Hence, designing deep learning algorithms that are more suitable for resource-constrained mobile devices is vital. In this paper, we build a lightweight neural network, termed LiteNet which uses a deep learning algorithm design to diagnose arrhythmias, as an example to show how we design deep learning schemes for resource-constrained mobile devices. Compare to other deep learning models with an equivalent accuracy, LiteNet has several advantages. It requires less memory, incurs lower computational cost, and is more feasible for deployment on resource-constrained mobile devices. It can be trained faster than other neural network algorithms and requires less communication across different processing units during distributed training. It uses filters of heterogeneous size in a convolutional layer, which contributes to the generation of various feature maps. The algorithm was tested using the MIT-BIH electrocardiogram (ECG) arrhythmia database; the results showed that LiteNet outperforms comparable schemes in diagnosing arrhythmias, and in its feasibility for use at the mobile devices.

  20. Enhancing the top-quark signal at Fermilab Tevatron using neural nets

    International Nuclear Information System (INIS)

    Ametller, L.; Garrido, L.; Talavera, P.

    1994-01-01

    We show, in agreement with previous studies, that neural nets can be useful for top-quark analysis at the Fermilab Tevatron. The main features of t bar t and background events in a mixed sample are projected on a single output, which controls the efficiency, purity, and statistical significance of the t bar t signal. We consider a feed-forward multilayer neural net for the CDF reported top-quark mass, using six kinematical variables as inputs. Our main results are based on the exhaustive comparison of the neural net performances with those obtainable from the standard experimental analysis, by imposing different sets of linear cuts over the same variables, showing how the neural net approach improves the standard analysis results

  1. Model and calculations for net infiltration

    International Nuclear Information System (INIS)

    Childs, S.W.; Long, A.

    1992-01-01

    In this paper a conceptual model for calculating net infiltration is developed and implemented. It incorporates the following important factors: viability of climate for the next 10,000 years, areal viability of net infiltration, and important soil/plant factors that affect the soil water budget of desert soils. Model results are expressed in terms of occurrence probabilities for time periods. In addition the variability of net infiltration is demonstrated both for change with time and differences among three soil/hydrologic units present at the site modeled

  2. DeepNet: An Ultrafast Neural Learning Code for Seismic Imaging

    International Nuclear Information System (INIS)

    Barhen, J.; Protopopescu, V.; Reister, D.

    1999-01-01

    A feed-forward multilayer neural net is trained to learn the correspondence between seismic data and well logs. The introduction of a virtual input layer, connected to the nominal input layer through a special nonlinear transfer function, enables ultrafast (single iteration), near-optimal training of the net using numerical algebraic techniques. A unique computer code, named DeepNet, has been developed, that has achieved, in actual field demonstrations, results unattainable to date with industry standard tools

  3. A bat's ear view of neural nets in physics

    International Nuclear Information System (INIS)

    Denby, B.

    1997-01-01

    The use of neural networks in high energy physics has become a field of its own which now has been in existence for ten years. This paper attempts to draw some conclusions on the utility of neural networks for physics applications, and also to make some projections for the future of this line of research. (orig.)

  4. Development of a neural net paradigm that predicts simulator sickness

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.

    1993-03-01

    A disease exists that affects pilots and aircrew members who use Navy Operational Flight Training Systems. This malady, commonly referred to as simulator sickness and whose symptomatology closely aligns with that of motion sickness, can compromise the use of these systems because of a reduced utilization factor, negative transfer of training, and reduction in combat readiness. A report is submitted that develops an artificial neural network (ANN) and behavioral model that predicts the onset and level of simulator sickness in the pilots and aircrews who sue these systems. It is proposed that the paradigm could be implemented in real time as a biofeedback monitor to reduce the risk to users of these systems. The model captures the neurophysiological impact of use (human-machine interaction) by developing a structure that maps the associative and nonassociative behavioral patterns (learned expectations) and vestibular (otolith and semicircular canals of the inner ear) and tactile interaction, derived from system acceleration profiles, onto an abstract space that predicts simulator sickness for a given training flight.

  5. Larger bases and mixed analog/digital neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    The paper overviews results dealing with the approximation capabilities of neural networks, and bounds on the size of threshold gate circuits. Based on an explicit numerical algorithm for Kolmogorov`s superpositions the authors show that minimum size neural networks--for implementing any Boolean function--have the identity function as the activation function. Conclusions and several comments on the required precision are ending the paper.

  6. NETS - A NEURAL NETWORK DEVELOPMENT TOOL, VERSION 3.0 (MACHINE INDEPENDENT VERSION)

    Science.gov (United States)

    Baffes, P. T.

    1994-01-01

    NETS, A Tool for the Development and Evaluation of Neural Networks, provides a simulation of Neural Network algorithms plus an environment for developing such algorithms. Neural Networks are a class of systems modeled after the human brain. Artificial Neural Networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to brain neurons. Problems which involve pattern matching readily fit the class of problems which NETS is designed to solve. NETS uses the back propagation learning method for all of the networks which it creates. The nodes of a network are usually grouped together into clumps called layers. Generally, a network will have an input layer through which the various environment stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to some features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. NETS allows the user to customize the patterns of connections between layers of a network. NETS also provides features for saving the weight values of a network during the learning process, which allows for more precise control over the learning process. NETS is an interpreter. Its method of execution is the familiar "read-evaluate-print" loop found in interpreted languages such as BASIC and LISP. The user is presented with a prompt which is the simulator's way of asking for input. After a command is issued, NETS will attempt to evaluate the command, which may produce more prompts requesting specific information or an error if the command is not understood. The typical process involved when using NETS consists of translating the problem into a format which uses input/output pairs, designing a network configuration for the problem, and finally training the network with input/output pairs until an acceptable error is reached. NETS

  7. NETS - A NEURAL NETWORK DEVELOPMENT TOOL, VERSION 3.0 (MACINTOSH VERSION)

    Science.gov (United States)

    Phillips, T. A.

    1994-01-01

    NETS, A Tool for the Development and Evaluation of Neural Networks, provides a simulation of Neural Network algorithms plus an environment for developing such algorithms. Neural Networks are a class of systems modeled after the human brain. Artificial Neural Networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to brain neurons. Problems which involve pattern matching readily fit the class of problems which NETS is designed to solve. NETS uses the back propagation learning method for all of the networks which it creates. The nodes of a network are usually grouped together into clumps called layers. Generally, a network will have an input layer through which the various environment stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to some features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. NETS allows the user to customize the patterns of connections between layers of a network. NETS also provides features for saving the weight values of a network during the learning process, which allows for more precise control over the learning process. NETS is an interpreter. Its method of execution is the familiar "read-evaluate-print" loop found in interpreted languages such as BASIC and LISP. The user is presented with a prompt which is the simulator's way of asking for input. After a command is issued, NETS will attempt to evaluate the command, which may produce more prompts requesting specific information or an error if the command is not understood. The typical process involved when using NETS consists of translating the problem into a format which uses input/output pairs, designing a network configuration for the problem, and finally training the network with input/output pairs until an acceptable error is reached. NETS

  8. Neural-net based unstable machine identification using individual energy functions. [Transient disturbances in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Institut Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D J; Pao, Yohhan [Case Western Reserve Univ., Cleveland, OH (United States)

    1991-10-01

    The identification of the mode of instability plays an essential role in generating principal energy boundary hypersurfaces. We present a new method for unstable machine identification based on the use of supervised learning neural-net technology, and the adaptive pattern recognition concept. It is shown that using individual energy functions as pattern features, appropriately trained neural-nets can retrieve the reliable characterization of the transient process including critical clearing time parameter, mode of instability and energy margins. Generalization capabilities of the neural-net processing allow for these assessments to be made independently of load levels. The results obtained from computer simulations are presented using the New England power system, as an example. (author).

  9. Neural-net based coordinated stabilizing control for the exciter and governor loops of low head hydropower plants

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.; Novicevic, M.; Dobrijevic, D.; Babic, B. [Electrical Engineering Inst. Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States); Pao, Y.H. [Case Western Reserve Univ., Cleveland, OH (United States)]|[AI WARE, Inc., Cleveland, OH (United States)

    1995-12-01

    This paper presents a design technique of a new adaptive optimal controller of the low head hydropower plant using artificial neural networks (ANN). The adaptive controller is to operate in real time to improve the generating unit transients through the exciter input, the guide vane position and the runner blade position. The new design procedure is based on self-organization and the predictive estimation capabilities of neural-nets implemented through the cluster-wise segmented associative memory scheme. The developed neural-net based controller (NNC) whose control signals are adjusted using the on-line measurements, can offer better damping effects for generator oscillations over a wide range of operating conditions than conventional controllers. Digital simulations of hydropower plant equipped with low head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-space optimal control and neural-net based control are presented. Results obtained on the non-linear mathematical model demonstrate that the effects of the NNC closely agree with those obtained using the state-space multivariable discrete-time optimal controllers.

  10. Neural-net based real-time economic dispatch for thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.; Milosevic, B. [Inst. Nikola Tesla, Belgrade (Yugoslavia). Dept. of Power Systems; Calovic, M. [Univ. of Belgrade (Yugoslavia). Dept. of Electrical Engineering; Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-12-01

    This paper proposes the application of artificial neural networks to real-time optimal generation dispatch of thermal units. The approach can take into account the operational requirements and network losses. The proposed economic dispatch uses an artificial neural network (ANN) for generation of penalty factors, depending on the input generator powers and identified system load change. Then, a few additional iterations are performed within an iterative computation procedure for the solution of coordination equations, by using reference-bus penalty-factors derived from the Newton-Raphson load flow. A coordination technique for environmental and economic dispatch of pure thermal systems, based on the neural-net theory for simplified solution algorithms and improved man-machine interface is introduced. Numerical results on two test examples show that the proposed algorithm can efficiently and accurately develop optimal and feasible generator output trajectories, by applying neural-net forecasts of system load patterns.

  11. Application of artificial neural nets to Shashlik calorimetry

    International Nuclear Information System (INIS)

    Bonesini, M.; Paganoni, M.; Terranova, F.

    1997-01-01

    Artificial neural networks (ANN) are powerful tools widely used in high-energy physics to solve track finding and particle identification problems. An entirely new class of application is related to the problem of recovering the information lost during data taking or signal transmission. Good performances can be reached by ANN when the events are described by quite regular patterns. Such a method was used for the DELPHI luminosity monitor (STIC) to recover calorimeter dead channels. A comparison with more traditional techniques is also given. (orig.)

  12. Deep Belief Nets for Topic Modeling

    DEFF Research Database (Denmark)

    Maaløe, Lars; Arngren, Morten; Winther, Ole

    2015-01-01

    -formative. In this paper we describe large-scale content based collaborative filtering for digital publishing. To solve the digital publishing recommender problem we compare two approaches: latent Dirichlet allocation (LDA) and deep be-lief nets (DBN) that both find low-dimensional latent representations for documents....... Efficient retrieval can be carried out in the latent representation. We work both on public benchmarks and digital media content provided by Issuu, an on-line publishing platform. This article also comes with a newly developed deep belief nets toolbox for topic modeling tailored towards performance...

  13. Neural net classification of x-ray pistachio nut data

    Science.gov (United States)

    Casasent, David P.; Sipe, Michael A.; Schatzki, Thomas F.; Keagy, Pamela M.; Le, Lan Chau

    1996-12-01

    Classification results for agricultural products are presented using a new neural network. This neural network inherently produces higher-order decision surfaces. It achieves this with fewer hidden layer neurons than other classifiers require. This gives better generalization. It uses new techniques to select the number of hidden layer neurons and adaptive algorithms that avoid other such ad hoc parameter selection problems; it allows selection of the best classifier parameters without the need to analyze the test set results. The agriculture case study considered is the inspection and classification of pistachio nuts using x- ray imagery. Present inspection techniques cannot provide good rejection of worm damaged nuts without rejecting too many good nuts. X-ray imagery has the potential to provide 100% inspection of such agricultural products in real time. Only preliminary results are presented, but these indicate the potential to reduce major defects to 2% of the crop with 1% of good nuts rejected. Future image processing techniques that should provide better features to improve performance and allow inspection of a larger variety of nuts are noted. These techniques and variations of them have uses in a number of other agricultural product inspection problems.

  14. A new neural net approach to robot 3D perception and visuo-motor coordination

    Science.gov (United States)

    Lee, Sukhan

    1992-01-01

    A novel neural network approach to robot hand-eye coordination is presented. The approach provides a true sense of visual error servoing, redundant arm configuration control for collision avoidance, and invariant visuo-motor learning under gazing control. A 3-D perception network is introduced to represent the robot internal 3-D metric space in which visual error servoing and arm configuration control are performed. The arm kinematic network performs the bidirectional association between 3-D space arm configurations and joint angles, and enforces the legitimate arm configurations. The arm kinematic net is structured by a radial-based competitive and cooperative network with hierarchical self-organizing learning. The main goal of the present work is to demonstrate that the neural net representation of the robot 3-D perception net serves as an important intermediate functional block connecting robot eyes and arms.

  15. A Petri Nets Model for Blockchain Analysis

    OpenAIRE

    Pinna, Andrea; Tonelli, Roberto; Orrú, Matteo; Marchesi, Michele

    2017-01-01

    A Blockchain is a global shared infrastructure where cryptocurrency transactions among addresses are recorded, validated and made publicly available in a peer- to-peer network. To date the best known and important cryptocurrency is the bitcoin. In this paper we focus on this cryptocurrency and in particular on the modeling of the Bitcoin Blockchain by using the Petri Nets formalism. The proposed model allows us to quickly collect information about identities owning Bitcoin addresses and to re...

  16. Squeeze-SegNet: a new fast deep convolutional neural network for semantic segmentation

    Science.gov (United States)

    Nanfack, Geraldin; Elhassouny, Azeddine; Oulad Haj Thami, Rachid

    2018-04-01

    The recent researches in Deep Convolutional Neural Network have focused their attention on improving accuracy that provide significant advances. However, if they were limited to classification tasks, nowadays with contributions from Scientific Communities who are embarking in this field, they have become very useful in higher level tasks such as object detection and pixel-wise semantic segmentation. Thus, brilliant ideas in the field of semantic segmentation with deep learning have completed the state of the art of accuracy, however this architectures become very difficult to apply in embedded systems as is the case for autonomous driving. We present a new Deep fully Convolutional Neural Network for pixel-wise semantic segmentation which we call Squeeze-SegNet. The architecture is based on Encoder-Decoder style. We use a SqueezeNet-like encoder and a decoder formed by our proposed squeeze-decoder module and upsample layer using downsample indices like in SegNet and we add a deconvolution layer to provide final multi-channel feature map. On datasets like Camvid or City-states, our net gets SegNet-level accuracy with less than 10 times fewer parameters than SegNet.

  17. NIRFaceNet: A Convolutional Neural Network for Near-Infrared Face Identification

    Directory of Open Access Journals (Sweden)

    Min Peng

    2016-10-01

    Full Text Available Near-infrared (NIR face recognition has attracted increasing attention because of its advantage of illumination invariance. However, traditional face recognition methods based on NIR are designed for and tested in cooperative-user applications. In this paper, we present a convolutional neural network (CNN for NIR face recognition (specifically face identification in non-cooperative-user applications. The proposed NIRFaceNet is modified from GoogLeNet, but has a more compact structure designed specifically for the Chinese Academy of Sciences Institute of Automation (CASIA NIR database and can achieve higher identification rates with less training time and less processing time. The experimental results demonstrate that NIRFaceNet has an overall advantage compared to other methods in the NIR face recognition domain when image blur and noise are present. The performance suggests that the proposed NIRFaceNet method may be more suitable for non-cooperative-user applications.

  18. Schema generation in recurrent neural nets for intercepting a moving target.

    Science.gov (United States)

    Fleischer, Andreas G

    2010-06-01

    The grasping of a moving object requires the development of a motor strategy to anticipate the trajectory of the target and to compute an optimal course of interception. During the performance of perception-action cycles, a preprogrammed prototypical movement trajectory, a motor schema, may highly reduce the control load. Subjects were asked to hit a target that was moving along a circular path by means of a cursor. Randomized initial target positions and velocities were detected in the periphery of the eyes, resulting in a saccade toward the target. Even when the target disappeared, the eyes followed the target's anticipated course. The Gestalt of the trajectories was dependent on target velocity. The prediction capability of the motor schema was investigated by varying the visibility range of cursor and target. Motor schemata were determined to be of limited precision, and therefore visual feedback was continuously required to intercept the moving target. To intercept a target, the motor schema caused the hand to aim ahead and to adapt to the target trajectory. The control of cursor velocity determined the point of interception. From a modeling point of view, a neural network was developed that allowed the implementation of a motor schema interacting with feedback control in an iterative manner. The neural net of the Wilson type consists of an excitation-diffusion layer allowing the generation of a moving bubble. This activation bubble runs down an eye-centered motor schema and causes a planar arm model to move toward the target. A bubble provides local integration and straightening of the trajectory during repetitive moves. The schema adapts to task demands by learning and serves as forward controller. On the basis of these model considerations the principal problem of embedding motor schemata in generalized control strategies is discussed.

  19. A Restricted Boltzman Neural Net to Infer Carbon Uptake from OCO-2 Satellite Data

    Science.gov (United States)

    Halem, M.; Dorband, J. E.; Radov, A.; Barr-Dallas, M.; Gentine, P.

    2015-12-01

    For several decades, scientists have been using satellite observations to infer climate budgets of terrestrial carbon uptake employing inverse methods in conjunction with ecosystem models and coupled global climate models. This is an extremely important Big Data calculation today since the net annual photosynthetic carbon uptake changes annually over land and removes on average ~20% of the emissions from human contributions to atmospheric loading of CO2 from fossil fuels. Unfortunately, such calculations have large uncertainties validated with in-situ networks of measuring stations across the globe. One difficulty in using satellite data for these budget calculations is that the models need to assimilate surface fluxes of CO2 as well as soil moisture, vegatation cover and the eddy covariance of latent and sensible heat to calculate the carbon fixed in the soil while satellite spectral observations only provide near surface concentrations of CO2. In July 2014, NASA successfully launched OCO-2 which provides 3km surface measurements of CO2 over land and oceans. We have collected nearly one year of Level 2 XCO2 data from the OCO-2 satellite for 3 sites of ~200 km2 at equatorial, temperate and high latitudes. Each selected site was part of the Fluxnet or ARM system with tower stations for measuring and collecting CO2 fluxes on an hourly basis, in addition to eddy transports of the other parameters. We are also planning to acquire the 4km NDVI products from MODIS and registering the data to the 3km XCO2 footprints for the three sites. We have implemented a restricted Boltzman machine on the quantum annealing D-Wave computer, a novel deep learning neural net, to be used for training with station data to infer CO2 fluxes from collocated XCO2, MODIS vegetative land cover and MERRA reanalysis surface exchange products. We will present performance assessments of the D-Wave Boltzman machine for generating XCO2 fluxes from the OCO-2 satellite observations for the 3 sites by

  20. tf_unet: Generic convolutional neural network U-Net implementation in Tensorflow

    Science.gov (United States)

    Akeret, Joel; Chang, Chihway; Lucchi, Aurelien; Refregier, Alexandre

    2016-11-01

    tf_unet mitigates radio frequency interference (RFI) signals in radio data using a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. The code is not tied to a specific segmentation and can be used, for example, to detect radio frequency interference (RFI) in radio astronomy or galaxies and stars in widefield imaging data. This U-Net implementation can outperform classical RFI mitigation algorithms.

  1. Intelligent control aspects of fuzzy logic and neural nets

    CERN Document Server

    Harris, C J; Brown, M

    1993-01-01

    With increasing demands for high precision autonomous control over wide operating envelopes, conventional control engineering approaches are unable to adequately deal with system complexity, nonlinearities, spatial and temporal parameter variations, and with uncertainty. Intelligent Control or self-organising/learning control is a new emerging discipline that is designed to deal with problems. Rather than being model based, it is experiential based. Intelligent Control is the amalgam of the disciplines of Artificial Intelligence, Systems Theory and Operations Research. It uses most recent expe

  2. Exemplar-based optical neural net classifier for color pattern recognition

    Science.gov (United States)

    Yu, Francis T. S.; Uang, Chii-Maw; Yang, Xiangyang

    1992-10-01

    We present a color exemplar-based neural network that can be used as an optimum image classifier or an associative memory. Color decomposition and composition technique is used for constructing the polychromatic interconnection weight matrix (IWM). The Hamming net algorithm is modified to relax the dynamic range requirement of the spatial light modulator and to reduce the number of iteration cycles in the winner-take-all layer. Computer simulation results demonstrated the feasibility of this approach

  3. Forecasting macroeconomic variables using neural network models and three automated model selection techniques

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    2016-01-01

    When forecasting with neural network models one faces several problems, all of which influence the accuracy of the forecasts. First, neural networks are often hard to estimate due to their highly nonlinear structure. To alleviate the problem, White (2006) presented a solution (QuickNet) that conv...

  4. Modelling of current loads on aquaculture net cages

    Science.gov (United States)

    Kristiansen, Trygve; Faltinsen, Odd M.

    2012-10-01

    In this paper we propose and discuss a screen type of force model for the viscous hydrodynamic load on nets. The screen model assumes that the net is divided into a number of flat net panels, or screens. It may thus be applied to any kind of net geometry. In this paper we focus on circular net cages for fish farms. The net structure itself is modelled by an existing truss model. The net shape is solved for in a time-stepping procedure that involves solving a linear system of equations for the unknown tensions at each time step. We present comparisons to experiments with circular net cages in steady current, and discuss the sensitivity of the numerical results to a set of chosen parameters. Satisfactory agreement between experimental and numerical prediction of drag and lift as function of the solidity ratio of the net and the current velocity is documented.

  5. [A method of recognizing biology surface spectrum using cascade-connection artificial neural nets].

    Science.gov (United States)

    Shi, Wei-Jie; Yao, Yong; Zhang, Tie-Qiang; Meng, Xian-Jiang

    2008-05-01

    A method of recognizing the visible spectrum of micro-areas on the biological surface with cascade-connection artificial neural nets is presented in the present paper. The visible spectra of spots on apples' pericarp, ranging from 500 to 730 nm, were obtained with a fiber-probe spectrometer, and a new spectrum recognition system consisting of three-level cascade-connection neural nets was set up. The experiments show that the spectra of rotten, scar and bumped spot on an apple's pericarp can be recognized by the spectrum recognition system, and the recognition accuracy is higher than 85% even when noise level is 15%. The new recognition system overcomes the disadvantages of poor accuracy and poor anti-noise with the traditional system based on single cascade neural nets. Finally, a new method of expression of recognition results was proved. The method is based on the conception of degree of membership in fuzzing mathematics, and through it the recognition results can be expressed exactly and objectively.

  6. Deep neural nets as a method for quantitative structure-activity relationships.

    Science.gov (United States)

    Ma, Junshui; Sheridan, Robert P; Liaw, Andy; Dahl, George E; Svetnik, Vladimir

    2015-02-23

    Neural networks were widely used for quantitative structure-activity relationships (QSAR) in the 1990s. Because of various practical issues (e.g., slow on large problems, difficult to train, prone to overfitting, etc.), they were superseded by more robust methods like support vector machine (SVM) and random forest (RF), which arose in the early 2000s. The last 10 years has witnessed a revival of neural networks in the machine learning community thanks to new methods for preventing overfitting, more efficient training algorithms, and advancements in computer hardware. In particular, deep neural nets (DNNs), i.e. neural nets with more than one hidden layer, have found great successes in many applications, such as computer vision and natural language processing. Here we show that DNNs can routinely make better prospective predictions than RF on a set of large diverse QSAR data sets that are taken from Merck's drug discovery effort. The number of adjustable parameters needed for DNNs is fairly large, but our results show that it is not necessary to optimize them for individual data sets, and a single set of recommended parameters can achieve better performance than RF for most of the data sets we studied. The usefulness of the parameters is demonstrated on additional data sets not used in the calibration. Although training DNNs is still computationally intensive, using graphical processing units (GPUs) can make this issue manageable.

  7. Modelling human factor with Petri nets

    International Nuclear Information System (INIS)

    Bedreaga, Luminita; Constantinescu, Cristina; Guzun, Basarab

    2007-01-01

    The human contribution to risk and safety of nuclear power plant operation can be best understood, assessed and quantified using tools to evaluate human reliability. Human reliability analysis becomes an important part of every probabilistic safety assessment and it is used to demonstrate that nuclear power plants designed with different safety levels are prepared to cope with severe accidents. Human reliability analysis in context of probabilistic safety assessment consists in: identifying human-system interactions important to safety; quantifying probabilities appropriate with these interactions. Nowadays, the complex system functions can be modelled using special techniques centred either on states space adequate to system or on events appropriate to the system. Knowing that complex system model consists in evaluating the likelihood of success, in other words, in evaluating the possible value for that system being in some state, the inductive methods which are based on the system states can be applied also for human reliability modelling. Thus, switching to the system states taking into account the human interactions, the underlying basis of the Petri nets can be successfully applied and the likelihoods appropriate to these states can also derived. The paper presents the manner to assess the human reliability quantification using Petri nets approach. The example processed in the paper is from human reliability documentation without a detailed human factor analysis (qualitative). The obtained results by these two kinds of methods are in good agreement. (authors)

  8. EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation.

    Science.gov (United States)

    Amidi, Afshine; Amidi, Shervine; Vlachakis, Dimitrios; Megalooikonomou, Vasileios; Paragios, Nikos; Zacharaki, Evangelia I

    2018-01-01

    During the past decade, with the significant progress of computational power as well as ever-rising data availability, deep learning techniques became increasingly popular due to their excellent performance on computer vision problems. The size of the Protein Data Bank (PDB) has increased more than 15-fold since 1999, which enabled the expansion of models that aim at predicting enzymatic function via their amino acid composition. Amino acid sequence, however, is less conserved in nature than protein structure and therefore considered a less reliable predictor of protein function. This paper presents EnzyNet, a novel 3D convolutional neural networks classifier that predicts the Enzyme Commission number of enzymes based only on their voxel-based spatial structure. The spatial distribution of biochemical properties was also examined as complementary information. The two-layer architecture was investigated on a large dataset of 63,558 enzymes from the PDB and achieved an accuracy of 78.4% by exploiting only the binary representation of the protein shape. Code and datasets are available at https://github.com/shervinea/enzynet.

  9. Spike Neural Models Part II: Abstract Neural Models

    Directory of Open Access Journals (Sweden)

    Johnson, Melissa G.

    2018-02-01

    Full Text Available Neurons are complex cells that require a lot of time and resources to model completely. In spiking neural networks (SNN though, not all that complexity is required. Therefore simple, abstract models are often used. These models save time, use less computer resources, and are easier to understand. This tutorial presents two such models: Izhikevich's model, which is biologically realistic in the resulting spike trains but not in the parameters, and the Leaky Integrate and Fire (LIF model which is not biologically realistic but does quickly and easily integrate input to produce spikes. Izhikevich's model is based on Hodgkin-Huxley's model but simplified such that it uses only two differentiation equations and four parameters to produce various realistic spike patterns. LIF is based on a standard electrical circuit and contains one equation. Either of these two models, or any of the many other models in literature can be used in a SNN. Choosing a neural model is an important task that depends on the goal of the research and the resources available. Once a model is chosen, network decisions such as connectivity, delay, and sparseness, need to be made. Understanding neural models and how they are incorporated into the network is the first step in creating a SNN.

  10. Transactions on Petri Nets and Other Models of Concurrency V

    DEFF Research Database (Denmark)

    submission track of ToPNoC. The 12 papers cover a diverse range of topics including model checking and system verification, synthesis, foundational work on specific classes of Petri nets, and innovative applications of Petri nets and other models of concurrency. Thus, this volume gives a good view of ongoing...... concurrent systems and Petri nets research...

  11. Sequential neural models with stochastic layers

    DEFF Research Database (Denmark)

    Fraccaro, Marco; Sønderby, Søren Kaae; Paquet, Ulrich

    2016-01-01

    How can we efficiently propagate uncertainty in a latent state representation with recurrent neural networks? This paper introduces stochastic recurrent neural networks which glue a deterministic recurrent neural network and a state space model together to form a stochastic and sequential neural...... generative model. The clear separation of deterministic and stochastic layers allows a structured variational inference network to track the factorization of the model's posterior distribution. By retaining both the nonlinear recursive structure of a recurrent neural network and averaging over...

  12. Neural net based determination of generator-shedding requirements in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Electrical Engineering Inst. ' Nikola Tesla' , Belgrade (Yugoslavia); Sobajic, D J; Pao, Y -H [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Applied Physics Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Computer Engineering and Science AI WARE Inc., Cleveland, OH (United States)

    1992-09-01

    This paper presents an application of artificial neural networks (ANN) in support of a decision-making process by power system operators directed towards the fast stabilisation of multi-machine systems. The proposed approach considers generator shedding as the most effective discrete supplementary control for improving the dynamic performance of faulted power systems and preventing instabilities. The sensitivity of the transient energy function (TEF) with respect to changes in the amount of dropped generation is used during the training phase of ANNs to assess the critical amount of generator shedding required to prevent the loss of synchronism. The learning capabilities of neural nets are used to establish complex mappings between fault information and the amount of generation to be shed, suggesting it as the control signal to the power system operator. (author)

  13. Artificial neural net system for interactive tissue classification with MR imaging and image segmentation

    International Nuclear Information System (INIS)

    Clarke, L.P.; Silbiger, M.; Naylor, C.; Brown, K.

    1990-01-01

    This paper reports on the development of interactive methods for MR tissue classification that permit mathematically rigorous methods for three-dimensional image segmentation and automatic organ/tumor contouring, as required for surgical and RTP planning. The authors investigate a number of image-intensity based tissue- classification methods that make no implicit assumptions on the MR parameters and hence are not limited by image data set. Similarly, we have trained artificial neural net (ANN) systems for both supervised and unsupervised tissue classification

  14. Three-dimensional neural net for learning visuomotor coordination of a robot arm.

    Science.gov (United States)

    Martinetz, T M; Ritter, H J; Schulten, K J

    1990-01-01

    An extension of T. Kohonen's (1982) self-organizing mapping algorithm together with an error-correction scheme based on the Widrow-Hoff learning rule is applied to develop a learning algorithm for the visuomotor coordination of a simulated robot arm. Learning occurs by a sequence of trial movements without the need for an external teacher. Using input signals from a pair of cameras, the closed robot arm system is able to reduce its positioning error to about 0.3% of the linear dimensions of its work space. This is achieved by choosing the connectivity of a three-dimensional lattice consisting of the units of the neural net.

  15. Nonlinear signal processing using neural networks: Prediction and system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A.; Farber, R.

    1987-06-01

    The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.

  16. Bootstrapped neural nets versus regression kriging in the digital mapping of pedological attributes: the automatic and time-consuming perspectives

    Science.gov (United States)

    Langella, Giuliano; Basile, Angelo; Bonfante, Antonello; Manna, Piero; Terribile, Fabio

    2013-04-01

    Digital soil mapping procedures are widespread used to build two-dimensional continuous maps about several pedological attributes. Our work addressed a regression kriging (RK) technique and a bootstrapped artificial neural network approach in order to evaluate and compare (i) the accuracy of prediction, (ii) the susceptibility of being included in automatic engines (e.g. to constitute web processing services), and (iii) the time cost needed for calibrating models and for making predictions. Regression kriging is maybe the most widely used geostatistical technique in the digital soil mapping literature. Here we tried to apply the EBLUP regression kriging as it is deemed to be the most statistically sound RK flavor by pedometricians. An unusual multi-parametric and nonlinear machine learning approach was accomplished, called BAGAP (Bootstrap aggregating Artificial neural networks with Genetic Algorithms and Principal component regression). BAGAP combines a selected set of weighted neural nets having specified characteristics to yield an ensemble response. The purpose of applying these two particular models is to ascertain whether and how much a more cumbersome machine learning method could be much promising in making more accurate/precise predictions. Being aware of the difficulty to handle objects based on EBLUP-RK as well as BAGAP when they are embedded in environmental applications, we explore the susceptibility of them in being wrapped within Web Processing Services. Two further kinds of aspects are faced for an exhaustive evaluation and comparison: automaticity and time of calculation with/without high performance computing leverage.

  17. Tools and Methods for RTCP-Nets Modeling and Verification

    Directory of Open Access Journals (Sweden)

    Szpyrka Marcin

    2016-09-01

    Full Text Available RTCP-nets are high level Petri nets similar to timed colored Petri nets, but with different time model and some structural restrictions. The paper deals with practical aspects of using RTCP-nets for modeling and verification of real-time systems. It contains a survey of software tools developed to support RTCP-nets. Verification of RTCP-nets is based on coverability graphs which represent the set of reachable states in the form of directed graph. Two approaches to verification of RTCP-nets are considered in the paper. The former one is oriented towards states and is based on translation of a coverability graph into nuXmv (NuSMV finite state model. The later approach is oriented towards transitions and uses the CADP toolkit to check whether requirements given as μ-calculus formulae hold for a given coverability graph. All presented concepts are discussed using illustrative examples

  18. Numerical modelling of new rockfall interception nets

    Science.gov (United States)

    von Boetticher, Albrecht; Volkwein, Axel; Wendeler, Corinna

    2010-05-01

    The design and certification of effective rockfall protection barriers is mainly achieved through 1:1 prototype testing. In order to reduce development costs of a prototype it is recommended that pre-studies using numerical simulations are performed. A large component to modelling rockfall protection systems is the numerical simulation of the nets. To date there exist several approaches to model the different mesh types such as ring nets or diagonal meshes (Nicot 1999, Cazzani et al. 2002, Volkwein 2004). However, the consideration of chain link meshes has not yet been realised. Chain link meshes are normally found as standard fence structures. However, they also exist in setups using high-strength steel and wire bundles. These variants show an enormous capacity to retain loads e.g. rockfalls, and at the same time are very efficient due to their low demand of steel material. The increasing application of chain link mesh in barrier systems requires an accurate model is available to complete prototype studies. A new approach now aims to perform a Finite Element simulation of such chain link meshes. The main challenge herein is to achieve the net deformation behaviour that is observed in field tests also in the simulation. A simulation using simple truss elements would not work since it neglects the out-of-plane-height of the mesh construction providing important reserves for local and global high deformations. Thus addressing this, a specially developed Discrete Element is able to reconstruct the mechanical behaviour of the single chain wire (bundles). As input parameters it utilises typical properties such as longitudinal and transversal mesh widths, and break loads resulting from in-plane-tension tests and steel strength. The single chain elements then can be combined to a complete mesh (e.g. 130 x 65 mm, 3 - 4 mm wire with a strength of 1770 N-mm2). Combining these elements with a supporting structure consisting of posts, ropes and energy absorbers, enables the

  19. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  20. Petri Net Modeling of Computer Virus Life Cycle | Ikekonwu ...

    African Journals Online (AJOL)

    Virus life cycle, which refers to the stages of development of a computer virus, is presented as a suitable area for the application of Petri nets. Petri nets a powerful modeling tool in the field of dynamic system analysis is applied to model the virus life cycle. Simulation of the derived model is also presented. The intention of ...

  1. Modeling of Biometric Identification System Using the Colored Petri Nets

    Science.gov (United States)

    Petrosyan, G. R.; Ter-Vardanyan, L. A.; Gaboutchian, A. V.

    2015-05-01

    In this paper we present a model of biometric identification system transformed into Petri Nets. Petri Nets, as a graphical and mathematical tool, provide a uniform environment for modelling, formal analysis, and design of discrete event systems. The main objective of this paper is to introduce the fundamental concepts of Petri Nets to the researchers and practitioners, both from identification systems, who are involved in the work in the areas of modelling and analysis of biometric identification types of systems, as well as those who may potentially be involved in these areas. In addition, the paper introduces high-level Petri Nets, as Colored Petri Nets (CPN). In this paper the model of Colored Petri Net describes the identification process much simpler.

  2. PETRI NET MODELING OF COMPUTER VIRUS LIFE CYCLE

    African Journals Online (AJOL)

    Dr Obe

    dynamic system analysis is applied to model the virus life cycle. Simulation of the derived model ... Keywords: Virus lifecycle, Petri nets, modeling. simulation. .... complex process. Figure 2 .... by creating Matlab files for five different computer ...

  3. ReSeg: A Recurrent Neural Network-Based Model for Semantic Segmentation

    OpenAIRE

    Visin, Francesco; Ciccone, Marco; Romero, Adriana; Kastner, Kyle; Cho, Kyunghyun; Bengio, Yoshua; Matteucci, Matteo; Courville, Aaron

    2015-01-01

    We propose a structured prediction architecture, which exploits the local generic features extracted by Convolutional Neural Networks and the capacity of Recurrent Neural Networks (RNN) to retrieve distant dependencies. The proposed architecture, called ReSeg, is based on the recently introduced ReNet model for image classification. We modify and extend it to perform the more challenging task of semantic segmentation. Each ReNet layer is composed of four RNN that sweep the image horizontally ...

  4. Modeling of water treatment plant using timed continuous Petri nets

    Science.gov (United States)

    Nurul Fuady Adhalia, H.; Subiono, Adzkiya, Dieky

    2017-08-01

    Petri nets represent graphically certain conditions and rules. In this paper, we construct a model of the Water Treatment Plant (WTP) using timed continuous Petri nets. Specifically, we consider that (1) the water pump always active and (2) the water source is always available. After obtaining the model, the flow through the transitions and token conservation laws are calculated.

  5. Structures and scan strategies of software net models

    International Nuclear Information System (INIS)

    Puhr-Westerheide, P.; Sandbaek, H.

    1984-01-01

    The present paper deals with some aspects of plant control and monitoring systems as used in nuclear power plants. These aspects concern executable net models to run on computers. A short survey on the nets' environment and on some net scan strategies is given. Among the strategies are the 'topologically ordered scan' and the 'signal propagation scan'. A combined method 'topologically ordered signal propagation (TOSIP) scan' will be outlined as well as a net model data structure that allows the definition of subsystems for the use of clear structuration and dischargement to distributed systems. (author)

  6. SCYNet. Testing supersymmetric models at the LHC with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip; Belkner, Sebastian; Hamer, Matthias [Universitaet Bonn, Bonn (Germany); Dercks, Daniel [Universitaet Hamburg, Hamburg (Germany); Keller, Tim; Kraemer, Michael; Sarrazin, Bjoern; Schuette-Engel, Jan; Tattersall, Jamie [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany)

    2017-10-15

    SCYNet (SUSY Calculating Yield Net) is a tool for testing supersymmetric models against LHC data. It uses neural network regression for a fast evaluation of the profile likelihood ratio. Two neural network approaches have been developed: one network has been trained using the parameters of the 11-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-11) as an input and evaluates the corresponding profile likelihood ratio within milliseconds. It can thus be used in global pMSSM-11 fits without time penalty. In the second approach, the neural network has been trained using model-independent signature-related objects, such as energies and particle multiplicities, which were estimated from the parameters of a given new physics model. (orig.)

  7. Comparison of the performance of net radiation calculation models

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.

    2009-01-01

    . The long-wave radiation models included a physically based model, an empirical model from the literature, and a new empirical model. Both empirical models used only solar radiation as required for meteorological input. The long-wave radiation models were used with model calibration coefficients from......Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily...... values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid, high-latitude environment and a semi-arid mid-latitude environment, were used to test the models...

  8. Petri Nets as Models of Linear Logic

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    1990-01-01

    The chief purpose of this paper is to appraise the feasibility of Girad's linear logic as a specification language for parallel processes. To this end we propose an interpretation of linear logic in Petri nets, with respect to which we investigate the expressive power of the logic...

  9. ConvNetQuake: Convolutional Neural Network for Earthquake Detection and Location

    Science.gov (United States)

    Denolle, M.; Perol, T.; Gharbi, M.

    2017-12-01

    Over the last decades, the volume of seismic data has increased exponentially, creating a need for efficient algorithms to reliably detect and locate earthquakes. Today's most elaborate methods scan through the plethora of continuous seismic records, searching for repeating seismic signals. In this work, we leverage the recent advances in artificial intelligence and present ConvNetQuake, a highly scalable convolutional neural network for probabilistic earthquake detection and location from single stations. We apply our technique to study two years of induced seismicity in Oklahoma (USA). We detect 20 times more earthquakes than previously cataloged by the Oklahoma Geological Survey. Our algorithm detection performances are at least one order of magnitude faster than other established methods.

  10. Transactions on Petri Nets and Other Models of Concurrency VII

    DEFF Research Database (Denmark)

    The first section is concerned with the creation of Petri net models and their validation The second section addresses semantic issues and analysis methods The third section is devoted to the automatic synthesis of Petri nets These Transactions publish archival papers in the broad area of Petri n...

  11. Comparisons of a Quantum Annealing and Classical Computer Neural Net Approach for Inferring Global Annual CO2 Fluxes over Land

    Science.gov (United States)

    Halem, M.; Radov, A.; Singh, D.

    2017-12-01

    Investigations of mid to high latitude atmospheric CO2 show growing amplitudes in seasonal variations over the past several decades. Recent high-resolution satellite measurements of CO2 concentration are now available for three years from the Orbiting Carbon Observatory-2. The Atmospheric Radiation Measurement (ARM) program of DOE has been making long-term CO2-flux measurements (in addition to CO2 concentration and an array of other meteorological quantities) at several towers and mobile sites located around the globe at half-hour frequencies. Recent papers have shown CO2 fluxes inferred by assimilating CO2 observations into ecosystem models are largely inconsistent with station observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. Thus, new approaches for calculating CO2-flux for assimilation into land surface models are necessary for improving the prediction of annual carbon uptake. In this study, we calculate and compare the predicted CO2 fluxes results employing a Feed Forward Backward Propagation Neural Network model on two architectures, (i) an IBM Minsky Computer node and (ii) a hybrid version of the ARC D-Wave quantum annealing computer. We compare the neural net results of predictions of CO2 flux from ARM station data for three different DOE ecosystem sites; an arid plains near Oklahoma City, a northern arctic site at Barrows AL, and a tropical rainforest site in the Amazon. Training times and predictive results for the calculating annual CO2 flux for the two architectures for each of the three sites are presented. Comparative results of predictions as measured by RMSE and MAE are discussed. Plots and correlations of observed vs predicted CO2 flux are also presented for all three sites. We show the estimated training times for quantum and classical calculations when extended to calculating global annual Carbon Uptake over land. We also

  12. Door and cabinet recognition using convolutional neural nets and real-time method fusion for handle detection and grasping

    DEFF Research Database (Denmark)

    Maurin, Adrian Llopart; Ravn, Ole; Andersen, Nils Axel

    2017-01-01

    In this paper we present a new method that robustly identifies doors, cabinets and their respective handles, with special emphasis on extracting useful features from handles to be then manipulated. The novelty of this system relies on the combination of a Convolutional Neural Net (CNN), as a form...

  13. Prediction of Disease Causing Non-Synonymous SNPs by the Artificial Neural Network Predictor NetDiseaseSNP

    DEFF Research Database (Denmark)

    Johansen, Morten Bo; Gonzalez-Izarzugaza, Jose Maria; Brunak, Søren

    2013-01-01

    We have developed a sequence conservation-based artificial neural network predictor called NetDiseaseSNP which classifies nsSNPs as disease-causing or neutral. Our method uses the excellent alignment generation algorithm of SIFT to identify related sequences and a combination of 31 features...

  14. LOGIC WITH EXCEPTION ON THE ALGEBRA OF FOURIER-DUAL OPERATIONS: NEURAL NET MECHANISM OF COGNITIVE DISSONANCE REDUCING

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    2014-01-01

    Full Text Available A mechanism of cognitive dissonance reducing is demonstrated with approach for non-monotonic fuzzy-valued logics by Fourier-holography technique implementation developing. Cognitive dissonance occurs under perceiving of new information that contradicts to the existing subjective pattern of the outside world, represented by double Fourier-transform cascade with a hologram – neural layers interconnections matrix of inner information representation and logical conclusion. The hologram implements monotonic logic according to “General Modus Ponens” rule. New information is represented by a hologram of exclusion that implements interconnections of logical conclusion and exclusion for neural layers. The latter are linked by Fourier transform that determines duality of the algebra forming operations of conjunction and disjunction. Hologram of exclusion forms conclusion that is dual to the “General Modus Ponens” conclusion. It is shown, that trained for the main rule and exclusion system can be represented by two-layered neural network with separate interconnection matrixes for direct and inverse iterations. The network energy function is involved determining the cyclic dynamics character; dissipative factor causing convergence type of the dynamics is analyzed. Both “General Modus Ponens” and exclusion holograms recording conditions on the dynamics and convergence of the system are demonstrated. The system converges to a stable status, in which logical conclusion doesn’t depend on the inner information. Such kind of dynamics, leading to tolerance forming, is typical for ordinary kind of thinking, aimed at inner pattern of outside world stability. For scientific kind of thinking, aimed at adequacy of the inner pattern of the world, a mechanism is needed to stop the net relaxation; the mechanism has to be external relative to the model of logic. Computer simulation results for the learning conditions adequate to real holograms recording are

  15. Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images.

    Science.gov (United States)

    Johnson, J L

    1994-09-10

    The linking-field neural network model of Eckhorn et al. [Neural Comput. 2, 293-307 (1990)] was introduced to explain the experimentally observed synchronous activity among neural assemblies in the cat cortex induced by feature-dependent visual activity. The model produces synchronous bursts of pulses from neurons with similar activity, effectively grouping them by phase and pulse frequency. It gives a basic new function: grouping by similarity. The synchronous bursts are obtained in the limit of strong linking strengths. The linking-field model in the limit of moderate-to-weak linking characterized by few if any multiple bursts is investigated. In this limit dynamic, locally periodic traveling waves exist whose time signal encodes the geometrical structure of a two-dimensional input image. The signal can be made insensitive to translation, scale, rotation, distortion, and intensity. The waves transmit information beyond the physical interconnect distance. The model is implemented in an optical hybrid demonstration system. Results of the simulations and the optical system are presented.

  16. PNet: A Python Library for Petri Net Modeling and Simulation

    OpenAIRE

    Zhu En Chay; Bing Feng Goh; Maurice HT Ling

    2016-01-01

    Petri Net is a formalism to describe changes between 2 or more states across discrete time and has been used to model many systems. We present PNet – a pure Python library for Petri Net modeling and simulation in Python programming language. The design of PNet focuses on reducing the learning curve needed to define a Petri Net by using a text-based language rather than programming constructs to define transition rules. Complex transition rules can be refined as regular Python functions. To de...

  17. Data Sources for NetZero Ft Carson Model

    Data.gov (United States)

    U.S. Environmental Protection Agency — Table of values used to parameterize and evaluate the Ft Carson NetZero integrated Model with published reference sources for each value. This dataset is associated...

  18. Software Design Modelling with Functional Petri Nets | Bakpo ...

    African Journals Online (AJOL)

    Software Design Modelling with Functional Petri Nets. ... of structured programs and a FPN Software prototype proposed for the conventional programming construct: if-then-else statement. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  19. A framework for quantifying net benefits of alternative prognostic models

    OpenAIRE

    Rapsomaniki, E.; White, I.R.; Wood, A.M.; Thompson, S.G.; Ford, I.

    2012-01-01

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit) of the treatment decisions they support, assuming a set of predetermined clinical treatment guidelines. The change in net benefit is more clinically interpretable than changes in traditional measure...

  20. MosquitoNet: investigating the use of UAV and artificial neural networks for integrated mosquito management

    Science.gov (United States)

    Case, E.; Ren, Y.; Shragai, T.; Erickson, D.

    2017-12-01

    Integrated mosquito control is expensive and resource intensive, and changing climatic factors are predicted to expand the habitable range of disease-carrying mosquitoes into new regions in the United States. Of particular concern in the northeastern United States are aedes albopictus, an aggressive, invasive species of mosquito that can transmit both native and exotic disease. Ae. albopictus prefer to live near human populations and breed in artificial containers with as little as two millimeters of standing water, exponentially increasing the difficulty of source control in suburban and urban areas. However, low-cost unmanned aerial vehicles (UAVs) can be used to photograph large regions at centimeter-resolution, and can image containers of interest in suburban neighborhoods. While proofs-of-concepts have been shown using UAVs to identify naturally occurring bodies of water, they have not been used to identify mosquito habitat in more populated areas. One of the primary challenges is that post-processing high-resolution aerial imagery is still time intensive, often labelled by hand or with programs built for satellite imagery. Artificial neural networks have been highly successful at image recognition tasks; in the past five years, convolutional neural networks (CNN) have surpassed or aided trained humans in identification of skin cancer, agricultural crops, and poverty levels from satellite imagery. MosquitoNet, a dual classifier built from the Single Shot Multibox Detector and VGG16 architectures, was trained on UAV­­­­­ aerial imagery taken during a larval study in Westchester County in southern New York State in July and August 2017. MosquitoNet was designed to assess the habitat risk of suburban properties by automating the identification and counting of containers like tires, toys, garbage bins, flower pots, etc. The SSD-based architecture marked small containers and other habitat indicators while the VGG16-based architecture classified the type of

  1. Fluid Survival Tool: A Model Checker for Hybrid Petri Nets

    NARCIS (Netherlands)

    Postema, Björn Frits; Remke, Anne Katharina Ingrid; Haverkort, Boudewijn R.H.M.; Ghasemieh, Hamed

    2014-01-01

    Recently, algorithms for model checking Stochastic Time Logic (STL) on Hybrid Petri nets with a single general one-shot transition (HPNG) have been introduced. This paper presents a tool for model checking HPNG models against STL formulas. A graphical user interface (GUI) not only helps to

  2. SOFTWARE DESIGN MODELLING WITH FUNCTIONAL PETRI NETS

    African Journals Online (AJOL)

    Dr Obe

    the system, which can be described as a set of conditions. ... FPN Software prototype proposed for the conventional programming construct: if-then-else ... mathematical modeling tool allowing for ... methods and techniques of software design.

  3. Modularity and Sparsity: Evolution of Neural Net Controllers in Physically Embodied Robots

    Directory of Open Access Journals (Sweden)

    Nicholas Livingston

    2016-12-01

    Full Text Available While modularity is thought to be central for the evolution of complexity and evolvability, it remains unclear how systems boot-strap themselves into modularity from random or fully integrated starting conditions. Clune et al. (2013 suggested that a positive correlation between sparsity and modularity is the prime cause of this transition. We sought to test the generality of this modularity-sparsity hypothesis by testing it for the first time in physically embodied robots. A population of ten Tadros — autonomous, surface-swimming robots propelled by a flapping tail — was used. Individuals varied only in the structure of their neural net control, a 2 x 6 x 2 network with recurrence in the hidden layer. Each of the 60 possible connections was coded in the genome, and could achieve one of three states: -1, 0, 1. Inputs were two light-dependent resistors and outputs were two motor control variables to the flapping tail, one for the frequency of the flapping and the other for the turning offset. Each Tadro was tested separately in a circular tank lit by a single overhead light source. Fitness was the amount of light gathered by a vertically oriented sensor that was disconnected from the controller net. Reproduction was asexual, with the top performer cloned and then all individuals entered into a roulette wheel selection process, with genomes mutated to create the offspring. The starting population of networks was randomly generated. Over ten generations, the population’s mean fitness increased two-fold. This evolution occurred in spite of an unintentional integer overflow problem in recurrent nodes in the hidden layer that caused outputs to oscillate. Our investigation of the oscillatory behavior showed that the mutual information of inputs and outputs was sufficient for the reactive behaviors observed. While we had predicted that both modularity and sparsity would follow the same trend as fitness, neither did so. Instead, selection gradients

  4. Business process modeling using Petri nets

    NARCIS (Netherlands)

    Hee, van K.M.; Sidorova, N.; Werf, van der J.M.E.M.; Jensen, K.; Aalst, van der W.M.P.; Balbo, G.; Koutny, M.; Wolf, K.

    2013-01-01

    Business process modeling has become a standard activity in many organizations. We start with going back into the history and explain why this activity appeared and became of such importance for organizations to achieve their business targets. We discuss the context in which business process

  5. A framework for quantifying net benefits of alternative prognostic models

    DEFF Research Database (Denmark)

    Rapsomaniki, Eleni; White, Ian R; Wood, Angela M

    2012-01-01

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit......) of the treatment decisions they support, assuming a set of predetermined clinical treatment guidelines. The change in net benefit is more clinically interpretable than changes in traditional measures and can be used in full health economic evaluations of prognostic models used for screening and allocating risk...... reduction interventions. We extend previous work in this area by quantifying net benefits in life years, thus linking prognostic performance to health economic measures; by taking full account of the occurrence of events over time; and by considering estimation and cross-validation in a multiple...

  6. A framework for quantifying net benefits of alternative prognostic models

    NARCIS (Netherlands)

    Rapsomaniki, E.; White, I.R.; Wood, A.M.; Thompson, S.G.; Feskens, E.J.M.; Kromhout, D.

    2012-01-01

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit)

  7. Segmentation of corneal endothelium images using a U-Net-based convolutional neural network.

    Science.gov (United States)

    Fabijańska, Anna

    2018-04-18

    Diagnostic information regarding the health status of the corneal endothelium may be obtained by analyzing the size and the shape of the endothelial cells in specular microscopy images. Prior to the analysis, the endothelial cells need to be extracted from the image. Up to today, this has been performed manually or semi-automatically. Several approaches to automatic segmentation of endothelial cells exist; however, none of them is perfect. Therefore this paper proposes to perform cell segmentation using a U-Net-based convolutional neural network. Particularly, the network is trained to discriminate pixels located at the borders between cells. The edge probability map outputted by the network is next binarized and skeletonized in order to obtain one-pixel wide edges. The proposed solution was tested on a dataset consisting of 30 corneal endothelial images presenting cells of different sizes, achieving an AUROC level of 0.92. The resulting DICE is on average equal to 0.86, which is a good result, regarding the thickness of the compared edges. The corresponding mean absolute percentage error of cell number is at the level of 4.5% which confirms the high accuracy of the proposed approach. The resulting cell edges are well aligned to the ground truths and require a limited number of manual corrections. This also results in accurate values of the cell morphometric parameters. The corresponding errors range from 5.2% for endothelial cell density, through 6.2% for cell hexagonality to 11.93% for the coefficient of variation of the cell size. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Modeling humanoid swarm robots with petri nets

    OpenAIRE

    Maharjan, Bikee

    2015-01-01

    Master's thesis in Computer science Robots have become a hot topic in today‟s electronic world. There are many definitions for it. One of the definition in Oxford dictionary states “a robot is a machine capable for carrying out a complex series of action automatically especially one programmable by a computer”. This paper deals with a special kind of robot, which is also known as humanoid robot. These robots are replication of human beings with head, torso, arms and legs. A model of hum...

  9. Possibilistic Fuzzy Net Present Value Model and Application

    Directory of Open Access Journals (Sweden)

    S. S. Appadoo

    2014-01-01

    Full Text Available The cash flow values and the interest rate in the net present value (NPV model are usually specified by either crisp numbers or random variables. In this paper, we first discuss some of the recent developments in possibility theory and find closed form expressions for fuzzy possibilistic net present value (FNPV. Then, following Carlsson and Fullér (2001, we discuss some of the possibilistic moments related to FNPV model along with an illustrative numerical example. We also give a unified approach to find higher order moments of FNPV by using the moment generating function introduced by Paseka et al. (2011.

  10. The EB factory project. I. A fast, neural-net-based, general purpose light curve classifier optimized for eclipsing binaries

    International Nuclear Information System (INIS)

    Paegert, Martin; Stassun, Keivan G.; Burger, Dan M.

    2014-01-01

    We describe a new neural-net-based light curve classifier and provide it with documentation as a ready-to-use tool for the community. While optimized for identification and classification of eclipsing binary stars, the classifier is general purpose, and has been developed for speed in the context of upcoming massive surveys such as the Large Synoptic Survey Telescope. A challenge for classifiers in the context of neural-net training and massive data sets is to minimize the number of parameters required to describe each light curve. We show that a simple and fast geometric representation that encodes the overall light curve shape, together with a chi-square parameter to capture higher-order morphology information results in efficient yet robust light curve classification, especially for eclipsing binaries. Testing the classifier on the ASAS light curve database, we achieve a retrieval rate of 98% and a false-positive rate of 2% for eclipsing binaries. We achieve similarly high retrieval rates for most other periodic variable-star classes, including RR Lyrae, Mira, and delta Scuti. However, the classifier currently has difficulty discriminating between different sub-classes of eclipsing binaries, and suffers a relatively low (∼60%) retrieval rate for multi-mode delta Cepheid stars. We find that it is imperative to train the classifier's neural network with exemplars that include the full range of light curve quality to which the classifier will be expected to perform; the classifier performs well on noisy light curves only when trained with noisy exemplars. The classifier source code, ancillary programs, a trained neural net, and a guide for use, are provided.

  11. CSL model checking of deterministic and stochastic Petri nets

    NARCIS (Netherlands)

    Martinez Verdugo, J.M.; Haverkort, Boudewijn R.H.M.; German, R.; Heindl, A.

    2006-01-01

    Deterministic and Stochastic Petri Nets (DSPNs) are a widely used high-level formalism for modeling discrete-event systems where events may occur either without consuming time, after a deterministic time, or after an exponentially distributed time. The underlying process dened by DSPNs, under

  12. Prediction of disease causing non-synonymous SNPs by the Artificial Neural Network Predictor NetDiseaseSNP.

    Directory of Open Access Journals (Sweden)

    Morten Bo Johansen

    Full Text Available We have developed a sequence conservation-based artificial neural network predictor called NetDiseaseSNP which classifies nsSNPs as disease-causing or neutral. Our method uses the excellent alignment generation algorithm of SIFT to identify related sequences and a combination of 31 features assessing sequence conservation and the predicted surface accessibility to produce a single score which can be used to rank nsSNPs based on their potential to cause disease. NetDiseaseSNP classifies successfully disease-causing and neutral mutations. In addition, we show that NetDiseaseSNP discriminates cancer driver and passenger mutations satisfactorily. Our method outperforms other state-of-the-art methods on several disease/neutral datasets as well as on cancer driver/passenger mutation datasets and can thus be used to pinpoint and prioritize plausible disease candidates among nsSNPs for further investigation. NetDiseaseSNP is publicly available as an online tool as well as a web service: http://www.cbs.dtu.dk/services/NetDiseaseSNP.

  13. Complex accident scenarios modelled and analysed by Stochastic Petri Nets

    International Nuclear Information System (INIS)

    Nývlt, Ondřej; Haugen, Stein; Ferkl, Lukáš

    2015-01-01

    This paper is focused on the usage of Petri nets for an effective modelling and simulation of complicated accident scenarios, where an order of events can vary and some events may occur anywhere in an event chain. These cases are hardly manageable by traditional methods as event trees – e.g. one pivotal event must be often inserted several times into one branch of the tree. Our approach is based on Stochastic Petri Nets with Predicates and Assertions and on an idea, which comes from the area of Programmable Logic Controllers: an accidental scenario is described as a net of interconnected blocks, which represent parts of the scenario. So the scenario is firstly divided into parts, which are then modelled by Petri nets. Every block can be easily interconnected with other blocks by input/output variables to create complex ones. In the presented approach, every event or a part of a scenario is modelled only once, independently on a number of its occurrences in the scenario. The final model is much more transparent then the corresponding event tree. The method is shown in two case studies, where the advanced one contains a dynamic behavior. - Highlights: • Event & Fault trees have problems with scenarios where an order of events can vary. • Paper presents a method for modelling and analysis of dynamic accident scenarios. • The presented method is based on Petri nets. • The proposed method solves mentioned problems of traditional approaches. • The method is shown in two case studies: simple and advanced (with dynamic behavior)

  14. Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging.

    Science.gov (United States)

    Mohseni Salehi, Seyed Sadegh; Erdogmus, Deniz; Gholipour, Ali

    2017-11-01

    Brain extraction or whole brain segmentation is an important first step in many of the neuroimage analysis pipelines. The accuracy and the robustness of brain extraction, therefore, are crucial for the accuracy of the entire brain analysis process. The state-of-the-art brain extraction techniques rely heavily on the accuracy of alignment or registration between brain atlases and query brain anatomy, and/or make assumptions about the image geometry, and therefore have limited success when these assumptions do not hold or image registration fails. With the aim of designing an accurate, learning-based, geometry-independent, and registration-free brain extraction tool, in this paper, we present a technique based on an auto-context convolutional neural network (CNN), in which intrinsic local and global image features are learned through 2-D patches of different window sizes. We consider two different architectures: 1) a voxelwise approach based on three parallel 2-D convolutional pathways for three different directions (axial, coronal, and sagittal) that implicitly learn 3-D image information without the need for computationally expensive 3-D convolutions and 2) a fully convolutional network based on the U-net architecture. Posterior probability maps generated by the networks are used iteratively as context information along with the original image patches to learn the local shape and connectedness of the brain to extract it from non-brain tissue. The brain extraction results we have obtained from our CNNs are superior to the recently reported results in the literature on two publicly available benchmark data sets, namely, LPBA40 and OASIS, in which we obtained the Dice overlap coefficients of 97.73% and 97.62%, respectively. Significant improvement was achieved via our auto-context algorithm. Furthermore, we evaluated the performance of our algorithm in the challenging problem of extracting arbitrarily oriented fetal brains in reconstructed fetal brain magnetic

  15. TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions

    Science.gov (United States)

    2017-01-01

    Although deep learning approaches have had tremendous success in image, video and audio processing, computer vision, and speech recognition, their applications to three-dimensional (3D) biomolecular structural data sets have been hindered by the geometric and biological complexity. To address this problem we introduce the element-specific persistent homology (ESPH) method. ESPH represents 3D complex geometry by one-dimensional (1D) topological invariants and retains important biological information via a multichannel image-like representation. This representation reveals hidden structure-function relationships in biomolecules. We further integrate ESPH and deep convolutional neural networks to construct a multichannel topological neural network (TopologyNet) for the predictions of protein-ligand binding affinities and protein stability changes upon mutation. To overcome the deep learning limitations from small and noisy training sets, we propose a multi-task multichannel topological convolutional neural network (MM-TCNN). We demonstrate that TopologyNet outperforms the latest methods in the prediction of protein-ligand binding affinities, mutation induced globular protein folding free energy changes, and mutation induced membrane protein folding free energy changes. Availability: weilab.math.msu.edu/TDL/ PMID:28749969

  16. Generation of daily solar irradiation by means of artificial neural net works

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Adalberto N.; Tiba, Chigueru; Fraidenraich, Naum [Departamento de Energia Nuclear, da Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, 1000 - CDU, CEP 50.740-540 Recife, Pernambuco (Brazil)

    2010-11-15

    The present study proposes the utilization of Artificial Neural Networks (ANN) as an alternative for generating synthetic series of daily solar irradiation. The sequences were generated from the use of daily temporal series of a group of meteorological variables that were measured simultaneously. The data used were measured between the years of 1998 and 2006 in two temperate climate localities of Brazil, Ilha Solteira (Sao Paulo) and Pelotas (Rio Grande do Sul). The estimates were taken for the months of January, April, July and October, through two models which are distinguished regarding the use or nonuse of measured bright sunshine hours as an input variable. An evaluation of the performance of the 56 months of solar irradiation generated by way of ANN showed that by using the measured bright sunshine hours as an input variable (model 1), the RMSE obtained were less or equal to 23.2% being that of those, although 43 of those months presented RMSE less or equal to 12.3%. In the case of the model that did not use the measured bright sunshine hours but used a daylight length (model 2), RMSE were obtained that varied from 8.5% to 37.5%, although 38 of those months presented RMSE less or equal to 20.0%. A comparison of the monthly series for all of the years, achieved by means of the Kolmogorov-Smirnov test (to a confidence level of 99%), demonstrated that of the 16 series generated by ANN model only two, obtained by model 2 for the months of April and July in Pelotas, presented significant difference in relation to the distributions of the measured series and that all mean deviations obtained were inferior to 0.39 MJ/m{sup 2}. It was also verified that the two ANN models were able to reproduce the principal statistical characteristics of the frequency distributions of the measured series such as: mean, mode, asymmetry and Kurtosis. (author)

  17. A framework for quantifying net benefits of alternative prognostic models.

    Science.gov (United States)

    Rapsomaniki, Eleni; White, Ian R; Wood, Angela M; Thompson, Simon G

    2012-01-30

    New prognostic models are traditionally evaluated using measures of discrimination and risk reclassification, but these do not take full account of the clinical and health economic context. We propose a framework for comparing prognostic models by quantifying the public health impact (net benefit) of the treatment decisions they support, assuming a set of predetermined clinical treatment guidelines. The change in net benefit is more clinically interpretable than changes in traditional measures and can be used in full health economic evaluations of prognostic models used for screening and allocating risk reduction interventions. We extend previous work in this area by quantifying net benefits in life years, thus linking prognostic performance to health economic measures; by taking full account of the occurrence of events over time; and by considering estimation and cross-validation in a multiple-study setting. The method is illustrated in the context of cardiovascular disease risk prediction using an individual participant data meta-analysis. We estimate the number of cardiovascular-disease-free life years gained when statin treatment is allocated based on a risk prediction model with five established risk factors instead of a model with just age, gender and region. We explore methodological issues associated with the multistudy design and show that cost-effectiveness comparisons based on the proposed methodology are robust against a range of modelling assumptions, including adjusting for competing risks. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Perti Net-Based Workflow Access Control Model

    Institute of Scientific and Technical Information of China (English)

    陈卓; 骆婷; 石磊; 洪帆

    2004-01-01

    Access control is an important protection mechanism for information systems. This paper shows how to make access control in workflow system. We give a workflow access control model (WACM) based on several current access control models. The model supports roles assignment and dynamic authorization. The paper defines the workflow using Petri net. It firstly gives the definition and description of the workflow, and then analyzes the architecture of the workflow access control model (WACM). Finally, an example of an e-commerce workflow access control model is discussed in detail.

  19. Deep Flare Net (DeFN) Model for Solar Flare Prediction

    Science.gov (United States)

    Nishizuka, N.; Sugiura, K.; Kubo, Y.; Den, M.; Ishii, M.

    2018-05-01

    We developed a solar flare prediction model using a deep neural network (DNN) named Deep Flare Net (DeFN). This model can calculate the probability of flares occurring in the following 24 hr in each active region, which is used to determine the most likely maximum classes of flares via a binary classification (e.g., ≥M class versus statistically predict flares, the DeFN model was trained to optimize the skill score, i.e., the true skill statistic (TSS). As a result, we succeeded in predicting flares with TSS = 0.80 for ≥M-class flares and TSS = 0.63 for ≥C-class flares. Note that in usual DNN models, the prediction process is a black box. However, in the DeFN model, the features are manually selected, and it is possible to analyze which features are effective for prediction after evaluation.

  20. PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    R. Hadapiningradja Kusumodestoni

    2015-11-01

    Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.

  1. Modelling collective cell migration of neural crest.

    Science.gov (United States)

    Szabó, András; Mayor, Roberto

    2016-10-01

    Collective cell migration has emerged in the recent decade as an important phenomenon in cell and developmental biology and can be defined as the coordinated and cooperative movement of groups of cells. Most studies concentrate on tightly connected epithelial tissues, even though collective migration does not require a constant physical contact. Movement of mesenchymal cells is more independent, making their emergent collective behaviour less intuitive and therefore lending importance to computational modelling. Here we focus on such modelling efforts that aim to understand the collective migration of neural crest cells, a mesenchymal embryonic population that migrates large distances as a group during early vertebrate development. By comparing different models of neural crest migration, we emphasize the similarity and complementary nature of these approaches and suggest a future direction for the field. The principles derived from neural crest modelling could aid understanding the collective migration of other mesenchymal cell types. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. APPLYING PETRI NETS EXTENSIONS TO MODELING COMMERCIAL BANK ACTIVITY

    Directory of Open Access Journals (Sweden)

    Igor ENICOV

    2017-02-01

    Full Text Available The relevance of the study is determined by the need to improve the methods of modeling andsimulating commercial bank activity, including for the purpose of calculating, controlling and managingthe risk of the bank, in the context of the transition to the application of Basel III standards. Thisimprovement becomes necessary due to a direct transition to new regulatory standards when the internalassessments of the main risks become the initial data for calculating the capital adequacy of a bank. Thepurpose of this article is to argue the opportunity to formulate a theory of the commercial bank model onthe extensions of Petri nets theory. The main methods of research were the method of scientific abstractionand method of logical analysis. The main result obtained in the study and presented in the article is theargumentation of the possibility to analyze the quantitative and qualitative characteristics of acommercial bank with the help of Petri net extensions.

  3. Neural network tagging in a toy model

    International Nuclear Information System (INIS)

    Milek, Marko; Patel, Popat

    1999-01-01

    The purpose of this study is a comparison of Artificial Neural Network approach to HEP analysis against the traditional methods. A toy model used in this analysis consists of two types of particles defined by four generic properties. A number of 'events' was created according to the model using standard Monte Carlo techniques. Several fully connected, feed forward multi layered Artificial Neural Networks were trained to tag the model events. The performance of each network was compared to the standard analysis mechanisms and significant improvement was observed

  4. NET model coil test possibilities in the TOSKA TWIN configuration

    International Nuclear Information System (INIS)

    Gruenhagen, A.; Heller, R.; Herz, W.; Hofmann, A.; Jentzsch, K.; Kapulla, H.; Kneifel, B.; Komarek, P.; Lehmann, W.; Maurer, W.; Ulbricht, A.; Vogt, A.; Zahn, G.

    1989-07-01

    This report continues an earlier one on the possibilities of NET model coil testing in the TOSKA Upgrade facility at KfK. The investigation of a 'Cluster Test Facility' and a 'Solenoid Test Facility' is followed by the investigation of two further test arrangements. They are called 'Twin Configurations'. One common feature of both arrangements is that the EURATOM-LCT-coil delivers a background magnetic field. This coil should be operated at a temperature of 1.8 K and an enhanced current up to 20 kA compared to the LCT test where 3.5 K and up to 16 kA were the operating conditions. In one configuration the NET model test coil is adjacent to the LCT coil (ATC = Adjacent Twin Configuration), in the other one the NET model coil is inserted into the bore of LCT coil (ITC = Inserted Twin Configuration) either upright or with a 60 0 C slope. The configurations are investigated with respect to their electromagnetic mechanical and thermo-hydraulic properties. The requirements for the necessary mechanical support structure of the LCT coil were computed. Installation and cooling of the whole system were discussed. The time schedule and the costs for the test facility modification were estimated. Advantages and disadvantages for the configurations were discussed with respect to feasibility of the test arrangement and operation. (orig.) [de

  5. Modeling of system reliability Petri nets with aging tokens

    International Nuclear Information System (INIS)

    Volovoi, V.

    2004-01-01

    The paper addresses the dynamic modeling of degrading and repairable complex systems. Emphasis is placed on the convenience of modeling for the end user, with special attention being paid to the modeling part of a problem, which is considered to be decoupled from the choice of solution algorithms. Depending on the nature of the problem, these solution algorithms can include discrete event simulation or numerical solution of the differential equations that govern underlying stochastic processes. Such modularity allows a focus on the needs of system reliability modeling and tailoring of the modeling formalism accordingly. To this end, several salient features are chosen from the multitude of existing extensions of Petri nets, and a new concept of aging tokens (tokens with memory) is introduced. The resulting framework provides for flexible and transparent graphical modeling with excellent representational power that is particularly suited for system reliability modeling with non-exponentially distributed firing times. The new framework is compared with existing Petri-net approaches and other system reliability modeling techniques such as reliability block diagrams and fault trees. The relative differences are emphasized and illustrated with several examples, including modeling of load sharing, imperfect repair of pooled items, multiphase missions, and damage-tolerant maintenance. Finally, a simple implementation of the framework using discrete event simulation is described

  6. Data Normalization to Accelerate Training for Linear Neural Net to Predict Tropical Cyclone Tracks

    Directory of Open Access Journals (Sweden)

    Jian Jin

    2015-01-01

    Full Text Available When pure linear neural network (PLNN is used to predict tropical cyclone tracks (TCTs in South China Sea, whether the data is normalized or not greatly affects the training process. In this paper, min.-max. method and normal distribution method, instead of standard normal distribution, are applied to TCT data before modeling. We propose the experimental schemes in which, with min.-max. method, the min.-max. value pair of each variable is mapped to (−1, 1 and (0, 1; with normal distribution method, each variable’s mean and standard deviation pair is set to (0, 1 and (100, 1. We present the following results: (1 data scaled to the similar intervals have similar effects, no matter the use of min.-max. or normal distribution method; (2 mapping data to around 0 gains much faster training speed than mapping them to the intervals far away from 0 or using unnormalized raw data, although all of them can approach the same lower level after certain steps from their training error curves. This could be useful to decide data normalization method when PLNN is used individually.

  7. Competition and Cooperation in Neural Nets : U.S.-Japan Joint Seminar

    CERN Document Server

    Arbib, Michael

    1982-01-01

    The human brain, wi th its hundred billion or more neurons, is both one of the most complex systems known to man and one of the most important. The last decade has seen an explosion of experimental research on the brain, but little theory of neural networks beyond the study of electrical properties of membranes and small neural circuits. Nonetheless, a number of workers in Japan, the United States and elsewhere have begun to contribute to a theory which provides techniques of mathematical analysis and computer simulation to explore properties of neural systems containing immense numbers of neurons. Recently, it has been gradually recognized that rather independent studies of the dynamics of pattern recognition, pattern format::ion, motor control, self-organization, etc. , in neural systems do in fact make use of common methods. We find that a "competition and cooperation" type of interaction plays a fundamental role in parallel information processing in the brain. The present volume brings together 23 papers ...

  8. Adaptive control using a hybrid-neural model: application to a polymerisation reactor

    Directory of Open Access Journals (Sweden)

    Cubillos F.

    2001-01-01

    Full Text Available This work presents the use of a hybrid-neural model for predictive control of a plug flow polymerisation reactor. The hybrid-neural model (HNM is based on fundamental conservation laws associated with a neural network (NN used to model the uncertain parameters. By simulations, the performance of this approach was studied for a peroxide-initiated styrene tubular reactor. The HNM was synthesised for a CSTR reactor with a radial basis function neural net (RBFN used to estimate the reaction rates recursively. The adaptive HNM was incorporated in two model predictive control strategies, a direct synthesis scheme and an optimum steady state scheme. Tests for servo and regulator control showed excellent behaviour following different setpoint variations, and rejecting perturbations. The good generalisation and training capacities of hybrid models, associated with the simplicity and robustness characteristics of the MPC formulations, make an attractive combination for the control of a polymerisation reactor.

  9. Pattern recognition neural-net by spatial mapping of biology visual field

    Science.gov (United States)

    Lin, Xin; Mori, Masahiko

    2000-05-01

    The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.

  10. Neural network models of categorical perception.

    Science.gov (United States)

    Damper, R I; Harnad, S R

    2000-05-01

    Studies of the categorical perception (CP) of sensory continua have a long and rich history in psychophysics. In 1977, Macmillan, Kaplan, and Creelman introduced the use of signal detection theory to CP studies. Anderson and colleagues simultaneously proposed the first neural model for CP, yet this line of research has been less well explored. In this paper, we assess the ability of neural-network models of CP to predict the psychophysical performance of real observers with speech sounds and artificial/novel stimuli. We show that a variety of neural mechanisms are capable of generating the characteristics of CP. Hence, CP may not be a special model of perception but an emergent property of any sufficiently powerful general learning system.

  11. A quantum-implementable neural network model

    Science.gov (United States)

    Chen, Jialin; Wang, Lingli; Charbon, Edoardo

    2017-10-01

    A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.

  12. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  13. Associative memory model with spontaneous neural activity

    Science.gov (United States)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2012-05-01

    We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.

  14. Petri net modeling of encrypted information flow in federated cloud

    Science.gov (United States)

    Khushk, Abdul Rauf; Li, Xiaozhong

    2017-08-01

    Solutions proposed and developed for the cost-effective cloud systems suffer from a combination of secure private clouds and less secure public clouds. Need to locate applications within different clouds poses a security risk to the information flow of the entire system. This study addresses this by assigning security levels of a given lattice to the entities of a federated cloud system. A dynamic flow sensitive security model featuring Bell-LaPadula procedures is explored that tracks and authenticates the secure information flow in federated clouds. Additionally, a Petri net model is considered as a case study to represent the proposed system and further validate the performance of the said system.

  15. Neural nets with varying topology for high energy particle recognition. Theory and applications

    International Nuclear Information System (INIS)

    Perrone, A.L.; Basti, G.; Messi, R.; Paoluzi, L.; Picozza, P.

    1995-01-01

    In this paper we propose a strategy to solve the problem of parallel compuation based on a dynamic definition of the net topology showing its effectiveness for problems of particle track recognition in high-energy physics. In this way, we can maintain the linear architecture like in the geometric perceptron, but with a partial and dynamic connectivity so to overcome the intrinsic limiations of the geometric perceptron. Namely, the computation is truly parallel because of the partial connectivity but the net topology is always the optimal one because of its dynamic redefinition on the single input pattern. For these properties, we call this new architecture dynamic perceptron

  16. Net energy analysis in a Ramsey–Hotelling growth model

    International Nuclear Information System (INIS)

    Macías, Arturo; Matilla-García, Mariano

    2015-01-01

    This article presents a dynamic growth model with energy as an input in the production function. The available stock of energy resources is ordered by a quality parameter based on energy accounting: the “Energy Return on Energy Invested” (EROI). In our knowledge this is the first paper where EROI fits in a neoclassical growth model (with individual utility maximization and market equilibrium), establishing the economic use of “net energy analysis” on a firmer theoretical ground. All necessary concepts to link neoclassical economics and EROI are discussed before their use in the model, and a comparative static analysis of the steady states of a simplified version of the model is presented. - Highlights: • A neoclassical growth model with EROI (“Energy Return on Energy Invested”) is shown • All concepts linking neoclassical economics and net energy analysis are discussed • Any EROI decline can be compensated increasing gross activity in the energy sector. • The economic impact of EROI depends on some non-energy cost in the energy sector. • Comparative steady-state statics for different EROI levels is performed and discussed. • Policy implications are suggested.

  17. Artificial neural network cardiopulmonary modeling and diagnosis

    Science.gov (United States)

    Kangas, Lars J.; Keller, Paul E.

    1997-01-01

    The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.

  18. Neural modeling of prefrontal executive function

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.S. [Univ. of Texas, Arlington, TX (United States)

    1996-12-31

    Brain executive function is based in a distributed system whereby prefrontal cortex is interconnected with other cortical. and subcortical loci. Executive function is divided roughly into three interacting parts: affective guidance of responses; linkage among working memory representations; and forming complex behavioral schemata. Neural network models of each of these parts are reviewed and fit into a preliminary theoretical framework.

  19. Formal Requirements Modeling for Reactive Systems with Coloured Petri Nets

    DEFF Research Database (Denmark)

    Tjell, Simon

    This dissertation presents the contributions of seven publications all concerned with the application of Coloured Petri Nets (CPN) to requirements modeling for reactive systems. The publications are introduced along with relevant background material and related work, and their contributions...... to take into concern that the behavior of human actors is less likely to be predictable than the behavior of e.g. mechanical components.   In the second approach, the CPN model is parameterized and utilizes a generic and reusable CPN module operating as an SD interpreter. In addition to distinguishing...... and events. A tool is presented that allows automated validation of the structure of CPN models with respect to the guidelines. Next, three publications on integrating Jackson's Problem Frames with CPN requirements models are presented: The first publication introduces a method for systematically structuring...

  20. Detection and Modeling of Cyber Attacks with Petri Nets

    Directory of Open Access Journals (Sweden)

    Bartosz Jasiul

    2014-12-01

    Full Text Available The aim of this article is to present an approach to develop and verify a method of formal modeling of cyber threats directed at computer systems. Moreover, the goal is to prove that the method enables one to create models resembling the behavior of malware that support the detection process of selected cyber attacks and facilitate the application of countermeasures. The most common cyber threats targeting end users and terminals are caused by malicious software, called malware. The malware detection process can be performed either by matching their digital signatures or analyzing their behavioral models. As the obfuscation techniques make the malware almost undetectable, the classic signature-based anti-virus tools must be supported with behavioral analysis. The proposed approach to modeling of malware behavior is based on colored Petri nets. This article is addressed to cyber defense researchers, security architects and developers solving up-to-date problems regarding the detection and prevention of advanced persistent threats.

  1. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Massive small unmanned aerial vehicles are envisioned to operate in the near future. While there are lots of research problems need to be addressed before dense operations can happen, trajectory modeling remains as one of the keys to understand and develop policies, regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The fidelity requirement of a small unmanned vehicle trajectory model is high because these vehicles are sensitive to winds due to their small size and low operational altitude. Both vehicle control systems and dynamic models are needed for trajectory modeling, which makes the modeling a great challenge, especially considering the fact that manufactures are not willing to share their control systems. This work proposed to use a neural network approach for modelling small unmanned vehicle's trajectory without knowing its control system and bypassing exhaustive efforts for aerodynamic parameter identification. As a proof of concept, instead of collecting data from flight tests, this work used the trajectory data generated by a mathematical vehicle model for training and testing the neural network. The results showed great promise because the trained neural network can predict 4D trajectories accurately, and prediction errors were less than 2:0 meters in both temporal and spatial dimensions.

  2. Fault condition stress analysis of NET 16 TF coil model

    International Nuclear Information System (INIS)

    Jong, C.T.J.

    1992-04-01

    As part of the design process of the NET/ITER toroidal field coils (TFCs), the mechanical behaviour of the magnetic system under fault conditions has to be analysed in some detail. Under fault conditions, either electrical or mechanical, the magnetic loading of the coils becomes extreme and further mechanical failure of parts of the overall structure might occur (e.g. failure of the coil, gravitational support, intercoil structure). The mechanical behaviour of the magnetic system under fault conditions has been analysed with a finite element model of the complete TFC system. The analysed fault conditions consist of: a thermal fault, electrical faults and mechanical faults. The mechanical faults have been applied simultaneously with an electrical fault. This report described the work carried out to create the finite element model of 16 TFCs and contains an extensive presentation of the results, obtained with this model, of a normal operating condition analysis and 9 fault condition analyses. Chapter 2-5 contains a detailed description of the finite element model, boundary conditions and loading conditions of the analyses made. Chapters 2-4 can be skipped if the reader is only interested in results. To understand the results presented chapter 6 is recommended, which contains a detailed description of all analysed fault conditions. The dimensions and geometry of the model correspond to the status of the NET/ITER TFC design of May 1990. Compared with previous models of the complete magnetic system, the finite element model of 16 TFCs is 'detailed', and can be used for linear elastic analysis with faulted loads. (author). 8 refs.; 204 figs.; 134 tabs

  3. Functional model of biological neural networks.

    Science.gov (United States)

    Lo, James Ting-Ho

    2010-12-01

    A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.

  4. A biologically inspired neural net for trajectory formation and obstacle avoidance.

    Science.gov (United States)

    Glasius, R; Komoda, A; Gielen, S C

    1996-06-01

    In this paper we present a biologically inspired two-layered neural network for trajectory formation and obstacle avoidance. The two topographically ordered neural maps consist of analog neurons having continuous dynamics. The first layer, the sensory map, receives sensory information and builds up an activity pattern which contains the optimal solution (i.e. shortest path without collisions) for any given set of current position, target positions and obstacle positions. Targets and obstacles are allowed to move, in which case the activity pattern in the sensory map will change accordingly. The time evolution of the neural activity in the second layer, the motor map, results in a moving cluster of activity, which can be interpreted as a population vector. Through the feedforward connections between the two layers, input of the sensory map directs the movement of the cluster along the optimal path from the current position of the cluster to the target position. The smooth trajectory is the result of the intrinsic dynamics of the network only. No supervisor is required. The output of the motor map can be used for direct control of an autonomous system in a cluttered environment or for control of the actuators of a biological limb or robot manipulator. The system is able to reach a target even in the presence of an external perturbation. Computer simulations of a point robot and a multi-joint manipulator illustrate the theory.

  5. Temporal-pattern learning in neural models

    CERN Document Server

    Genís, Carme Torras

    1985-01-01

    While the ability of animals to learn rhythms is an unquestionable fact, the underlying neurophysiological mechanisms are still no more than conjectures. This monograph explores the requirements of such mechanisms, reviews those previously proposed and postulates a new one based on a direct electric coding of stimulation frequencies. Experi­ mental support for the option taken is provided both at the single neuron and neural network levels. More specifically, the material presented divides naturally into four parts: a description of the experimental and theoretical framework where this work becomes meaningful (Chapter 2), a detailed specifica­ tion of the pacemaker neuron model proposed together with its valida­ tion through simulation (Chapter 3), an analytic study of the behavior of this model when submitted to rhythmic stimulation (Chapter 4) and a description of the neural network model proposed for learning, together with an analysis of the simulation results obtained when varying seve­ ral factors r...

  6. Text Summarization Using FrameNet-Based Semantic Graph Model

    Directory of Open Access Journals (Sweden)

    Xu Han

    2016-01-01

    Full Text Available Text summarization is to generate a condensed version of the original document. The major issues for text summarization are eliminating redundant information, identifying important difference among documents, and recovering the informative content. This paper proposes a Semantic Graph Model which exploits the semantic information of sentence using FSGM. FSGM treats sentences as vertexes while the semantic relationship as the edges. It uses FrameNet and word embedding to calculate the similarity of sentences. This method assigns weight to both sentence nodes and edges. After all, it proposes an improved method to rank these sentences, considering both internal and external information. The experimental results show that the applicability of the model to summarize text is feasible and effective.

  7. Neural-net predictor for beta limit disruptions in JT-60U

    International Nuclear Information System (INIS)

    Yoshino, R.

    2005-01-01

    Prediction of major disruptions occurring at the β -limit for tokamak plasmas with a normal magnetic shear in JT-60U was conducted using neural networks. Since no clear precursors are generally observed a few tens of milliseconds before the β -limit disruption, a sub-neural network is trained to output the value of the β N limit every 2 ms. The target β N limit is artificially set by the operator in the first step to train a network with non-disruptive shots as well as disruptive shots, and then in the second step the target limit is modified using the β N limit output from the trained network. The adjusted target greatly improves the consistency between the input data and the output. This training, the 'self-teaching method', has greatly reduced the false alarm rate triggered for non-disruptive shots. To improve the prediction performance further, the difference between the output β N limit and the measured β N , and 11 parameters, are inputted to the main neural network to calculate the 'stability level'. The occurrence of a major disruption is predicted when the stability level decreases to the 'alarm level'. Major disruptions at the β -limit have been predicted by the main network with a prediction success rate of 80% at 10 ms prior to the disruption while the false alarm rate is lower than 4% for non-disruptive shots. This 80% value is much higher than that obtained for a network trained with a fixed target β N limit set to be the maximum β N observed at the start of a major disruption, lower than 10%. A prediction success rate of 90% with a false alarm rate of 12% at 10 ms prior to the disruption has also been obtained. This 12% value is about half of that obtained for a network trained with a fixed target β N limit

  8. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  9. Applying Petri nets in modelling the human factor

    International Nuclear Information System (INIS)

    Bedreaga, Luminita; Constntinescu, Cristina; Guzun, Basarab

    2007-01-01

    Usually, in the reliability analysis performed for complex systems, we determine the success probability to work with other performance indices, i.e. the likelihood associated with a given state. The possible values assigned to system states can be derived using inductive methods. If one wants to calculate the probability to occur a particular event in the system, then deductive methods should be applied. In the particular case of the human reliability analysis, as part of probabilistic safety analysis, the international regulatory commission have developed specific guides and procedures to perform such assessments. The paper presents the modality to obtain the human reliability quantification using the Petri nets approach. This is an efficient means to assess reliability systems because of their specific features. The examples showed in the paper are from human reliability documentation without a detailed human factor analysis (qualitative). We present human action modelling using event trees and Petri nets approach. The obtained results by these two kinds of methods are in good concordance. (authors)

  10. Fast neural-net based fake track rejection in the LHCb reconstruction

    CERN Document Server

    De Cian, Michel; Seyfert, Paul; Stahl, Sascha

    2017-01-01

    A neural-network based algorithm to identify fake tracks in the LHCb pattern recognition is presented. This algorithm, called ghost probability, retains more than 99 % of well reconstructed tracks while reducing the number of fake tracks by 60 %. It is fast enough to fit into the CPU time budget of the software trigger farm and thus reduces the combinatorics of the decay reconstructions, as well as the number of tracks that need to be processed by the particle identification algorithms. As a result, it strongly contributes to the achievement of having the same reconstruction online and offline in the LHCb experiment in Run II of the LHC.

  11. Ising model for neural data

    DEFF Research Database (Denmark)

    Roudi, Yasser; Tyrcha, Joanna; Hertz, John

    2009-01-01

    (dansk abstrakt findes ikke) We study pairwise Ising models for describing the statistics of multi-neuron spike trains, using data from a simulated cortical network. We explore efficient ways of finding the optimal couplings in these models and examine their statistical properties. To do this, we...... extract the optimal couplings for subsets of size up to $200$ neurons, essentially exactly, using Boltzmann learning. We then study the quality of several approximate methods for finding the couplings by comparing their results with those found from Boltzmann learning. Two of these methods -- inversion...... of the Thouless-Anderson-Palmer equations and an approximation proposed by Sessak and Monasson -- are remarkably accurate. Using these approximations for larger subsets of neurons, we find that extracting couplings using data from a subset smaller than the full network tends systematically to overestimate...

  12. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural

  13. Development of the neural net technique for particle physics. Study of the e+e- → Z0 → γH reaction

    International Nuclear Information System (INIS)

    Guicheney, C.

    1992-01-01

    This study is concerned with the application of pattern recognition methods through neural networks to High Energy physics. Two methods, Hopfield nets and multilayer nets, are analyzed and shown to have high potential for (resp.) clusterization and classification. Hopfield nets are used for the recognition of jets occurring during the fragmentation process of the e + e - reaction. Multilayer nets are used for the whole reaction analysis. Impediments are pointed out. Associated background noise is also examined. Multilayer nets may enhance the signal to noise ratio when looking for an upper limit for the production of a Higgs boson in the expected canal, and allow for the specific study of the γ b anti b

  14. Model for neural signaling leap statistics

    International Nuclear Information System (INIS)

    Chevrollier, Martine; Oria, Marcos

    2011-01-01

    We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T 37.5 0 C, awaken regime) and Levy statistics (T = 35.5 0 C, sleeping period), characterized by rare events of long range connections.

  15. Model for neural signaling leap statistics

    Science.gov (United States)

    Chevrollier, Martine; Oriá, Marcos

    2011-03-01

    We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T = 37.5°C, awaken regime) and Lévy statistics (T = 35.5°C, sleeping period), characterized by rare events of long range connections.

  16. Model for neural signaling leap statistics

    Energy Technology Data Exchange (ETDEWEB)

    Chevrollier, Martine; Oria, Marcos, E-mail: oria@otica.ufpb.br [Laboratorio de Fisica Atomica e Lasers Departamento de Fisica, Universidade Federal da ParaIba Caixa Postal 5086 58051-900 Joao Pessoa, Paraiba (Brazil)

    2011-03-01

    We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T 37.5{sup 0}C, awaken regime) and Levy statistics (T = 35.5{sup 0}C, sleeping period), characterized by rare events of long range connections.

  17. Built-in self-repair of VLSI memories employing neural nets

    Science.gov (United States)

    Mazumder, Pinaki

    1998-10-01

    The decades of the Eighties and the Nineties have witnessed the spectacular growth of VLSI technology, when the chip size has increased from a few hundred devices to a staggering multi-millon transistors. This trend is expected to continue as the CMOS feature size progresses towards the nanometric dimension of 100 nm and less. SIA roadmap projects that, where as the DRAM chips will integrate over 20 billion devices in the next millennium, the future microprocessors may incorporate over 100 million transistors on a single chip. As the VLSI chip size increase, the limited accessibility of circuit components poses great difficulty for external diagnosis and replacement in the presence of faulty components. For this reason, extensive work has been done in built-in self-test techniques, but little research is known concerning built-in self-repair. Moreover, the extra hardware introduced by conventional fault-tolerance techniques is also likely to become faulty, therefore causing the circuit to be useless. This research demonstrates the feasibility of implementing electronic neural networks as intelligent hardware for memory array repair. Most importantly, we show that the neural network control possesses a robust and degradable computing capability under various fault conditions. Overall, a yield analysis performed on 64K DRAM's shows that the yield can be improved from as low as 20 percent to near 99 percent due to the self-repair design, with overhead no more than 7 percent.

  18. Artificial Neural Network Modeling of an Inverse Fluidized Bed ...

    African Journals Online (AJOL)

    A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological decomposition of pollutants in the reactor. The neural network has been trained with experimental data ...

  19. Bio-inspired Artificial Intelligence: А Generalized Net Model of the Regularization Process in MLP

    Directory of Open Access Journals (Sweden)

    Stanimir Surchev

    2013-10-01

    Full Text Available Many objects and processes inspired by the nature have been recreated by the scientists. The inspiration to create a Multilayer Neural Network came from human brain as member of the group. It possesses complicated structure and it is difficult to recreate, because of the existence of too many processes that require different solving methods. The aim of the following paper is to describe one of the methods that improve learning process of Artificial Neural Network. The proposed generalized net method presents Regularization process in Multilayer Neural Network. The purpose of verification is to protect the neural network from overfitting. The regularization is commonly used in neural network training process. Many methods of verification are present, the subject of interest is the one known as Regularization. It contains function in order to set weights and biases with smaller values to protect from overfitting.

  20. Real-time classification of signals from three-component seismic sensors using neural nets

    Science.gov (United States)

    Bowman, B. C.; Dowla, F.

    1992-05-01

    Adaptive seismic data acquisition systems with capabilities of signal discrimination and event classification are important in treaty monitoring, proliferation, and earthquake early detection systems. Potential applications include monitoring underground chemical explosions, as well as other military, cultural, and natural activities where characteristics of signals change rapidly and without warning. In these applications, the ability to detect and interpret events rapidly without falling behind the influx of the data is critical. We developed a system for real-time data acquisition, analysis, learning, and classification of recorded events employing some of the latest technology in computer hardware, software, and artificial neural networks methods. The system is able to train dynamically, and updates its knowledge based on new data. The software is modular and hardware-independent; i.e., the front-end instrumentation is transparent to the analysis system. The software is designed to take advantage of the multiprocessing environment of the Unix operating system. The Unix System V shared memory and static RAM protocols for data access and the semaphore mechanism for interprocess communications were used. As the three-component sensor detects a seismic signal, it is displayed graphically on a color monitor using X11/Xlib graphics with interactive screening capabilities. For interesting events, the triaxial signal polarization is computed, a fast Fourier Transform (FFT) algorithm is applied, and the normalized power spectrum is transmitted to a backpropagation neural network for event classification. The system is currently capable of handling three data channels with a sampling rate of 500 Hz, which covers the bandwidth of most seismic events. The system has been tested in laboratory setting with artificial events generated in the vicinity of a three-component sensor.

  1. QML-AiNet: An immune network approach to learning qualitative differential equation models.

    Science.gov (United States)

    Pang, Wei; Coghill, George M

    2015-02-01

    In this paper, we explore the application of Opt-AiNet, an immune network approach for search and optimisation problems, to learning qualitative models in the form of qualitative differential equations. The Opt-AiNet algorithm is adapted to qualitative model learning problems, resulting in the proposed system QML-AiNet. The potential of QML-AiNet to address the scalability and multimodal search space issues of qualitative model learning has been investigated. More importantly, to further improve the efficiency of QML-AiNet, we also modify the mutation operator according to the features of discrete qualitative model space. Experimental results show that the performance of QML-AiNet is comparable to QML-CLONALG, a QML system using the clonal selection algorithm (CLONALG). More importantly, QML-AiNet with the modified mutation operator can significantly improve the scalability of QML and is much more efficient than QML-CLONALG.

  2. Petri neural network model for the effect of controlled thermomechanical process parameters on the mechanical properties of HSLA steels

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.

    1999-10-01

    The effect of composition and controlled thermomechanical process parameters on the mechanical properties of HSLA steels is modelled using the Widrow-Hoff's concept of training a neural net with feed-forward topology by applying Rumelhart's back propagation type algorithm for supervised learning, using a Petri like net structure. The data used are from laboratory experiments as well as from the published literature. The results from the neural network are found to be consistent and in good agreement with the experimented results. (author)

  3. Fast substation service restoration using intelligent petri-nets models

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.T.; Peng, P.C.; Jiang, H.L. [Chung Yuan Christian Univ., Chung Li, Taiwan (China)

    2006-07-01

    Service restoration of a substation is a stressful and immediate task that must be conducted by system operators following a blackout. Operators, including those of Taiwan Power Company (TPC), normally restore power loads on the basis of their past experiences and engineering heuristics. Due to the significant number of switching operations to be evaluated, a computer-aided decision support system can be quite valuable. In distribution system automation, installation of unmanned substations requires an automated restoration computer system to rapidly devise a switching plan after a fault event. The modeling technique of Petri Nets (PNs) encompasses fault diagnosis of distribution systems, protective scheming of relays, and generic restoration schedule of power transmission systems. Knowledge or configuration about the system concerned can be expressed systematically through a structured model with parallelism and synchronization. This paper proposed a new PNs knowledge representation scheme to achieve a fast, on-line service restoration plan of a substation. The paper described the task of service restoration in a substation as well as the heuristic rules adopted by the dispatchers of the TPC distribution systems. The paper also introduced the topic of Typical PN properties and the proposed matrix operations for PNs reasoning. The proposed basic PNs model for service restoration on the basis of the engineering heuristics were also identified. It was concluded that the proposed approach not only facilitated software programming, but was highly adaptive to the extension or maintenance of the developed programs, arising from the changes of the substation configuration. 18 refs., 1 tab., 8 figs.

  4. Recognition of malignant processes with neural nets from ESR spectra of serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, P. [Inst. of Medical Physics and Biophysics, Univ. Leipzig (Germany); Gurachevsky, A.; Muravsky, V.; Schnurr, K.; Seibt, G. [Medinnovation GmbH, Wildau (Germany); Matthes, G. [Inst. of Transfusion Medicine, Univ. Hospital Leipzig (Germany)

    2005-07-01

    Cancer diseases are the focus of intense research due to their frequent occurrence. It is known from the literature that serum proteins are changed in the case of malignant processes. Changes of albumin conformation, transport efficiency, and binding characteristics can be determined by electron spin resonance spectroscopy (ESR). The present study analysed the binding/dissociation function of albumin with an ESR method using 16-doxyl stearate spin probe as reporter molecule and ethanol as modifier of hydrophobic interactions. Native and frozen plasma of healthy donors (608 samples), patients with malignant diseases (423 samples), and patients with benign conditions (221 samples) were analysed. The global specificity was 91% and the sensitivity 96%. In look-back samples of 27 donors, a malignant process could be detected up to 30 months before clinical diagnosis. To recognise different entities of malignant diseases from the ESR spectra, Artificial neural networks were implemented. For 48 female donors with breast cancer, the recognition specificity was 85%. Other carcinoma entities (22 colon, 18 prostate, 12 stomach) were recognised with specificities between 75% and 84%. Should these specificity values be reproduced in larger studies, the described method could be used as a new specific tumour marker for the early detection of malignant processes. Since transmission of cancer via blood transfusion cannot be excluded as yet, the described ESR method could also be used as a quality test for plasma products. (orig.)

  5. HAWC Analysis of the Crab Nebula Using Neural-Net Energy Reconstruction

    Science.gov (United States)

    Marinelli, Samuel; HAWC Collaboration

    2017-01-01

    The HAWC (High-Altitude Water-Cherenkov) experiment is a TeV γ-ray observatory located 4100 m above sea level on the Sierra Negra mountain in Puebla, Mexico. The detector consists of 300 water-filled tanks, each instrumented with 4 photomuliplier tubes that utilize the water-Cherenkov technique to detect atmospheric air showers produced by cosmic γ rays. Construction of HAWC was completed in March, 2015. The experiment's wide field of view (2 sr) and high duty cycle (> 95 %) make it a powerful survey instrument sensitive to pulsar wind nebulae, supernova remnants, active galactic nuclei, and other γ-ray sources. The mechanisms of particle acceleration at these sources can be studied by analyzing their energy spectra. To this end, we have developed an event-by-event energy-reconstruction algorithm employing an artificial neural network to estimate energies of primary γ rays. The Crab Nebula, the brightest source of TeV photons, makes an excellent calibration source for this technique. We will present preliminary results from an analysis of the Crab energy spectrum using this new energy-reconstruction method. This work was supported by the National Science Foundation.

  6. Recognition of malignant processes with neural nets from ESR spectra of serum albumin

    International Nuclear Information System (INIS)

    Seidel, P.; Gurachevsky, A.; Muravsky, V.; Schnurr, K.; Seibt, G.; Matthes, G.

    2005-01-01

    Cancer diseases are the focus of intense research due to their frequent occurrence. It is known from the literature that serum proteins are changed in the case of malignant processes. Changes of albumin conformation, transport efficiency, and binding characteristics can be determined by electron spin resonance spectroscopy (ESR). The present study analysed the binding/dissociation function of albumin with an ESR method using 16-doxyl stearate spin probe as reporter molecule and ethanol as modifier of hydrophobic interactions. Native and frozen plasma of healthy donors (608 samples), patients with malignant diseases (423 samples), and patients with benign conditions (221 samples) were analysed. The global specificity was 91% and the sensitivity 96%. In look-back samples of 27 donors, a malignant process could be detected up to 30 months before clinical diagnosis. To recognise different entities of malignant diseases from the ESR spectra, Artificial neural networks were implemented. For 48 female donors with breast cancer, the recognition specificity was 85%. Other carcinoma entities (22 colon, 18 prostate, 12 stomach) were recognised with specificities between 75% and 84%. Should these specificity values be reproduced in larger studies, the described method could be used as a new specific tumour marker for the early detection of malignant processes. Since transmission of cancer via blood transfusion cannot be excluded as yet, the described ESR method could also be used as a quality test for plasma products. (orig.)

  7. Neural networks in economic modelling : An empirical study

    NARCIS (Netherlands)

    Verkooijen, W.J.H.

    1996-01-01

    This dissertation addresses the statistical aspects of neural networks and their usability for solving problems in economics and finance. Neural networks are discussed in a framework of modelling which is generally accepted in econometrics. Within this framework a neural network is regarded as a

  8. Flood routing modelling with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    R. Peters

    2006-01-01

    Full Text Available For the modelling of the flood routing in the lower reaches of the Freiberger Mulde river and its tributaries the one-dimensional hydrodynamic modelling system HEC-RAS has been applied. Furthermore, this model was used to generate a database to train multilayer feedforward networks. To guarantee numerical stability for the hydrodynamic modelling of some 60 km of streamcourse an adequate resolution in space requires very small calculation time steps, which are some two orders of magnitude smaller than the input data resolution. This leads to quite high computation requirements seriously restricting the application – especially when dealing with real time operations such as online flood forecasting. In order to solve this problem we tested the application of Artificial Neural Networks (ANN. First studies show the ability of adequately trained multilayer feedforward networks (MLFN to reproduce the model performance.

  9. Modeling Broadband Microwave Structures by Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    V. Otevrel

    2004-06-01

    Full Text Available The paper describes the exploitation of feed-forward neural networksand recurrent neural networks for replacing full-wave numerical modelsof microwave structures in complex microwave design tools. Building aneural model, attention is turned to the modeling accuracy and to theefficiency of building a model. Dealing with the accuracy, we describea method of increasing it by successive completing a training set.Neural models are mutually compared in order to highlight theiradvantages and disadvantages. As a reference model for comparisons,approximations based on standard cubic splines are used. Neural modelsare used to replace both the time-domain numeric models and thefrequency-domain ones.

  10. A 3D Active Learning Application for NeMO-Net, the NASA Neural Multi-Modal Observation and Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    van den Bergh, J.; Schutz, J.; Chirayath, V.; Li, A.

    2017-12-01

    NeMO-Net, the NASA neural multi-modal observation and training network for global coral reef assessment, is an open-source deep convolutional neural network and interactive active learning training software aiming to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology as well as mapping of spatial distribution. We present an interactive video game prototype for tablet and mobile devices where users interactively label morphology classifications over mm-scale 3D coral reef imagery captured using fluid lensing to create a dataset that will be used to train NeMO-Net's convolutional neural network. The application currently allows for users to classify preselected regions of coral in the Pacific and will be expanded to include additional regions captured using our NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as lower-resolution airborne remote sensing data from the ongoing NASA CORAL campaign.Active learning applications present a novel methodology for efficiently training large-scale Neural Networks wherein variances in identification can be rapidly mitigated against control data. NeMO-Net periodically checks users' input against pre-classified coral imagery to gauge their accuracy and utilizes in-game mechanics to provide classification training. Users actively communicate with a server and are requested to classify areas of coral for which other users had conflicting classifications and contribute their input to a larger database for ranking. In partnering with Mission Blue and IUCN, NeMO-Net leverages an international consortium of subject matter experts to classify areas of confusion identified by NeMO-Net and generate additional labels crucial for identifying decision boundary locations in coral reef assessment.

  11. A 3D Active Learning Application for NeMO-Net, the NASA Neural Multi-Modal Observation and Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    van den Bergh, Jarrett; Schutz, Joey; Li, Alan; Chirayath, Ved

    2017-01-01

    NeMO-Net, the NASA neural multi-modal observation and training network for global coral reef assessment, is an open-source deep convolutional neural network and interactive active learning training software aiming to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology as well as mapping of spatial distribution. We present an interactive video game prototype for tablet and mobile devices where users interactively label morphology classifications over mm-scale 3D coral reef imagery captured using fluid lensing to create a dataset that will be used to train NeMO-Nets convolutional neural network. The application currently allows for users to classify preselected regions of coral in the Pacific and will be expanded to include additional regions captured using our NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as lower-resolution airborne remote sensing data from the ongoing NASA CORAL campaign. Active learning applications present a novel methodology for efficiently training large-scale Neural Networks wherein variances in identification can be rapidly mitigated against control data. NeMO-Net periodically checks users input against pre-classified coral imagery to gauge their accuracy and utilize in-game mechanics to provide classification training. Users actively communicate with a server and are requested to classify areas of coral for which other users had conflicting classifications and contribute their input to a larger database for ranking. In partnering with Mission Blue and IUCN, NeMO-Net leverages an international consortium of subject matter experts to classify areas of confusion identified by NeMO-Net and generate additional labels crucial for identifying decision boundary locations in coral reef assessment.

  12. Modeling and control of magnetorheological fluid dampers using neural networks

    Science.gov (United States)

    Wang, D. H.; Liao, W. H.

    2005-02-01

    Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.

  13. Using neural networks and extreme value distributions to model electricity pool prices: Evidence from the Australian National Electricity Market 1998–2013

    International Nuclear Information System (INIS)

    Dev, Priya; Martin, Michael A.

    2014-01-01

    Highlights: • Neural nets are unable to properly capture spiky price behavior found in the electricity market. • We modeled electricity price data from the Australian National Electricity Market over 15 years. • Neural nets need to be augmented with other modeling techniques to capture price spikes. • We fit a Generalized Pareto Distribution to price spikes using a peaks-over-thresholds approach. - Abstract: Competitors in the electricity supply industry desire accurate predictions of electricity spot prices to hedge against financial risks. Neural networks are commonly used for forecasting such prices, but certain features of spot price series, such as extreme price spikes, present critical challenges for such modeling. We investigate the predictive capacity of neural networks for electricity spot prices using Australian National Electricity Market data. Following neural net modeling of the data, we explore extreme price spikes through extreme value modeling, fitting a Generalized Pareto Distribution to price peaks over an estimated threshold. While neural nets capture the smoother aspects of spot price data, they are unable to capture local, volatile features that characterize electricity spot price data. Price spikes can be modeled successfully through extreme value modeling

  14. Coloured Petri Nets and CPN Tools for Modelling and Validation of Concurrent Systems

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kristensen, Lars Michael; Wells, Lisa Marie

    2007-01-01

    Coloured Petri Nets (CPNs) is a language for the modeling and validation og systems in which concurrency, communication, and synchronisation play a major role. Coloured Petri Nets is a descrete-event modeling language combining Petri Nets with the funcitonal programming language Standard ML. Petr...... with user-defined Standard ML functions. A license for CPN Tools can be obtained free of charge, also for commercial use....

  15. Novel mathematical neural models for visual attention

    DEFF Research Database (Denmark)

    Li, Kang

    for the visual attention theories and spiking neuron models for single spike trains. Statistical inference and model selection are performed and various numerical methods are explored. The designed methods also give a framework for neural coding under visual attention theories. We conduct both analysis on real......Visual attention has been extensively studied in psychology, but some fundamental questions remain controversial. We focus on two questions in this study. First, we investigate how a neuron in visual cortex responds to multiple stimuli inside the receptive eld, described by either a response...... system, supported by simulation study. Finally, we present the decoding of multiple temporal stimuli under these visual attention theories, also in a realistic biophysical situation with simulations....

  16. Neural Network Based Models for Fusion Applications

    Science.gov (United States)

    Meneghini, Orso; Tema Biwole, Arsene; Luda, Teobaldo; Zywicki, Bailey; Rea, Cristina; Smith, Sterling; Snyder, Phil; Belli, Emily; Staebler, Gary; Canty, Jeff

    2017-10-01

    Whole device modeling, engineering design, experimental planning and control applications demand models that are simultaneously physically accurate and fast. This poster reports on the ongoing effort towards the development and validation of a series of models that leverage neural-­network (NN) multidimensional regression techniques to accelerate some of the most mission critical first principle models for the fusion community, such as: the EPED workflow for prediction of the H-Mode and Super H-Mode pedestal structure the TGLF and NEO models for the prediction of the turbulent and neoclassical particle, energy and momentum fluxes; and the NEO model for the drift-kinetic solution of the bootstrap current. We also applied NNs on DIII-D experimental data for disruption prediction and quantifying the effect of RMPs on the pedestal and ELMs. All of these projects were supported by the infrastructure provided by the OMFIT integrated modeling framework. Work supported by US DOE under DE-SC0012656, DE-FG02-95ER54309, DE-FC02-04ER54698.

  17. Prediction of power system frequency response after generator outages using neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M B; Popovic, D P [Electrotechnicki Inst. ' Nikola Tesla' , Belgrade (Yugoslavia); Sobajic, D J; Pao, Y -H [Case Western Reserve Univ., Cleveland, OH (United States)

    1993-09-01

    A new methodology is presented for estimating the frequency behaviour of power systems necessary for an indication of under-frequency load shedding in steady-state security assessment. It is well known that large structural disturbances such as generator tripping or load outages can initiate cascading outages, system separation into islands, and even the complete breakup. The approach provides a fairly accurate method of estimating the system average frequency response without making simplifications or neglecting non-linearities and small time constants in the equations of generating units, voltage regulators and turbines. The efficiency of the new procedure is demonstrated using the New England power system model for a series of characteristic perturbations. The validity of the proposed approach is verified by comparison with the simulation of short-term dynamics including effects of control and automatic devices. (author)

  18. NeMO-Net - The Neural Multi-Modal Observation & Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    Li, A. S. X.; Chirayath, V.; Segal-Rosenhaimer, M.; Das, K.

    2017-12-01

    In the past decade, coral reefs worldwide have experienced unprecedented stresses due to climate change, ocean acidification, and anthropomorphic pressures, instigating massive bleaching and die-off of these fragile and diverse ecosystems. Furthermore, remote sensing of these shallow marine habitats is hindered by ocean wave distortion, refraction and optical attenuation, leading invariably to data products that are often of low resolution and signal-to-noise (SNR) ratio. However, recent advances in UAV and Fluid Lensing technology have allowed us to capture multispectral 3D imagery of these systems at sub-cm scales from above the water surface, giving us an unprecedented view of their growth and decay. Exploiting the fine-scaled features of these datasets, machine learning methods such as MAP, PCA, and SVM can not only accurately classify the living cover and morphology of these reef systems (below 8% error), but are also able to map the spectral space between airborne and satellite imagery, augmenting and improving the classification accuracy of previously low-resolution datasets.We are currently implementing NeMO-Net, the first open-source deep convolutional neural network (CNN) and interactive active learning and training software to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology. NeMO-Net will be built upon the QGIS platform to ingest UAV, airborne and satellite datasets from various sources and sensor capabilities, and through data-fusion determine the coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. To achieve this, we will exploit virtual data augmentation, the use of semi-supervised learning, and active learning through a tablet platform allowing for users to manually train uncertain or difficult to classify datasets. The project will make use of Python's extensive libraries for machine learning, as well as extending integration to GPU

  19. BioModels.net Web Services, a free and integrated toolkit for computational modelling software.

    Science.gov (United States)

    Li, Chen; Courtot, Mélanie; Le Novère, Nicolas; Laibe, Camille

    2010-05-01

    Exchanging and sharing scientific results are essential for researchers in the field of computational modelling. BioModels.net defines agreed-upon standards for model curation. A fundamental one, MIRIAM (Minimum Information Requested in the Annotation of Models), standardises the annotation and curation process of quantitative models in biology. To support this standard, MIRIAM Resources maintains a set of standard data types for annotating models, and provides services for manipulating these annotations. Furthermore, BioModels.net creates controlled vocabularies, such as SBO (Systems Biology Ontology) which strictly indexes, defines and links terms used in Systems Biology. Finally, BioModels Database provides a free, centralised, publicly accessible database for storing, searching and retrieving curated and annotated computational models. Each resource provides a web interface to submit, search, retrieve and display its data. In addition, the BioModels.net team provides a set of Web Services which allows the community to programmatically access the resources. A user is then able to perform remote queries, such as retrieving a model and resolving all its MIRIAM Annotations, as well as getting the details about the associated SBO terms. These web services use established standards. Communications rely on SOAP (Simple Object Access Protocol) messages and the available queries are described in a WSDL (Web Services Description Language) file. Several libraries are provided in order to simplify the development of client software. BioModels.net Web Services make one step further for the researchers to simulate and understand the entirety of a biological system, by allowing them to retrieve biological models in their own tool, combine queries in workflows and efficiently analyse models.

  20. Two stage neural network modelling for robust model predictive control.

    Science.gov (United States)

    Patan, Krzysztof

    2018-01-01

    The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Bio-Inspired Neural Model for Learning Dynamic Models

    Science.gov (United States)

    Duong, Tuan; Duong, Vu; Suri, Ronald

    2009-01-01

    A neural-network mathematical model that, relative to prior such models, places greater emphasis on some of the temporal aspects of real neural physical processes, has been proposed as a basis for massively parallel, distributed algorithms that learn dynamic models of possibly complex external processes by means of learning rules that are local in space and time. The algorithms could be made to perform such functions as recognition and prediction of words in speech and of objects depicted in video images. The approach embodied in this model is said to be "hardware-friendly" in the following sense: The algorithms would be amenable to execution by special-purpose computers implemented as very-large-scale integrated (VLSI) circuits that would operate at relatively high speeds and low power demands.

  2. Transactions on Petri Nets and Other Models of Concurrency VI

    DEFF Research Database (Denmark)

    The sixth volume of ToPNoC includes revised versions of selected papers from workshops and tutorials held at the 32nd International Conference on Application and Theory of Petri Nets and Concurrency. It also contains a special section on Networks, Protocols, and Services, as well as a contributed...

  3. Estimating net present value variability for deterministic models

    NARCIS (Netherlands)

    van Groenendaal, W.J.H.

    1995-01-01

    For decision makers the variability in the net present value (NPV) of an investment project is an indication of the project's risk. So-called risk analysis is one way to estimate this variability. However, risk analysis requires knowledge about the stochastic character of the inputs. For large,

  4. Computationally efficient model predictive control algorithms a neural network approach

    CERN Document Server

    Ławryńczuk, Maciej

    2014-01-01

    This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include: ·         A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction. ·         Implementation details of the MPC algorithms for feedforward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models. ·         The MPC algorithms based on neural multi-models (inspired by the idea of predictive control). ·         The MPC algorithms with neural approximation with no on-line linearization. ·         The MPC algorithms with guaranteed stability and robustness. ·         Cooperation between the MPC algorithms and set-point optimization. Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require d...

  5. Hybrid neural network bushing model for vehicle dynamics simulation

    International Nuclear Information System (INIS)

    Sohn, Jeong Hyun; Lee, Seung Kyu; Yoo, Wan Suk

    2008-01-01

    Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers

  6. Mode Choice Modeling Using Artificial Neural Networks

    OpenAIRE

    Edara, Praveen Kumar

    2003-01-01

    Artificial intelligence techniques have produced excellent results in many diverse fields of engineering. Techniques such as neural networks and fuzzy systems have found their way into transportation engineering. In recent years, neural networks are being used instead of regression techniques for travel demand forecasting purposes. The basic reason lies in the fact that neural networks are able to capture complex relationships and learn from examples and also able to adapt when new data becom...

  7. Runoff Modelling in Urban Storm Drainage by Neural Networks

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Brorsen, Michael; Schaarup-Jensen, Kjeld

    1995-01-01

    A neural network is used to simulate folw and water levels in a sewer system. The calibration of th neural network is based on a few measured events and the network is validated against measureed events as well as flow simulated with the MOUSE model (Lindberg and Joergensen, 1986). The neural...... network is used to compute flow or water level at selected points in the sewer system, and to forecast the flow from a small residential area. The main advantages of the neural network are the build-in self calibration procedure and high speed performance, but the neural network cannot be used to extract...... knowledge of the runoff process. The neural network was found to simulate 150 times faster than e.g. the MOUSE model....

  8. Bayesian Recurrent Neural Network for Language Modeling.

    Science.gov (United States)

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  9. Turkey's net energy consumption

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezkaymak, Mehmet

    2005-01-01

    The main goal of this study is to develop the equations for forecasting net energy consumption (NEC) using an artificial neural-network (ANN) technique in order to determine the future level of energy consumption in Turkey. In this study, two different models were used in order to train the neural network. In one of them, population, gross generation, installed capacity and years are used in the input layer of the network (Model 1). Other energy sources are used in input layer of network (Model 2). The net energy consumption is in the output layer for two models. Data from 1975 to 2003 are used for the training. Three years (1981, 1994 and 2003) are used only as test data to confirm this method. The statistical coefficients of multiple determinations (R 2 -value) for training data are equal to 0.99944 and 0.99913 for Models 1 and 2, respectively. Similarly, R 2 values for testing data are equal to 0.997386 and 0.999558 for Models 1 and 2, respectively. According to the results, the net energy consumption using the ANN technique has been predicted with acceptable accuracy. Apart from reducing the whole time required, with the ANN approach, it is possible to find solutions that make energy applications more viable and thus more attractive to potential users. It is also expected that this study will be helpful in developing highly applicable energy policies

  10. Net-erosion profile model and simulation experiments

    International Nuclear Information System (INIS)

    Sagara, Akio

    2001-01-01

    Estimation of net-erosion profile is requisite for evaluating the lifetime of divertor plates under high heat and particle fluxes of fusion plasmas. As a reference in benchmark tests of numerical calculation codes, a self-consistent analytical solution is presented for a simplified divertor condition, wherein the magnetic field line is normal to the target plate and the ionization mean free path of sputtered particles is assumed constant. The primary flux profile of hydrogen and impurities are externally given as well as the return ratio of sputtered atoms to the target. In the direction along the divertor trace, all conditions are uniform. The analytical solution is compared with net-erosion experiments carried out using the Compact Helical System (CHS). The deposition profiles of Ti and O impurities are in very good agreement with the analytical predictions. Recent preliminary results observed on divertor plates in the Large Helical Device (LHD) are briefly presented. (author)

  11. Modeling biological gradient formation: combining partial differential equations and Petri nets.

    Science.gov (United States)

    Bertens, Laura M F; Kleijn, Jetty; Hille, Sander C; Heiner, Monika; Koutny, Maciej; Verbeek, Fons J

    2016-01-01

    Both Petri nets and differential equations are important modeling tools for biological processes. In this paper we demonstrate how these two modeling techniques can be combined to describe biological gradient formation. Parameters derived from partial differential equation describing the process of gradient formation are incorporated in an abstract Petri net model. The quantitative aspects of the resulting model are validated through a case study of gradient formation in the fruit fly.

  12. Fast And Flexible Modelling Of Real-Time Systems With Rtcp-Nets

    Directory of Open Access Journals (Sweden)

    Marcin Szpyrka

    2004-01-01

    Full Text Available A large number of formalisms has been proposed for real-time systems modelling. However, formal methods are not widely used in industrial software development. Such a situation could be treated as a result of a lack of suitable tools for fast designing of a model, its analysis and modification. RTCP-nets have been defined to facilitate fast modelling of embedded systems incorporating rule-based systems. Computer tools that are being developed for RTCP-nets, use a template mechanism to allow users to design models and manipulate its properties fast and effectively. Both theoretical and practical aspects of RTCP-nets are presented in the paper.

  13. Fast and Flexible Modelling of Real-Time Systems with RTCP-Nets

    Directory of Open Access Journals (Sweden)

    Marcin Szpyrka

    2004-01-01

    Full Text Available A large number of formalisms has been proposed for real-time systems modelling. However, formal methods are not widely used in industrial software development. Such a situation could be treated as a result of a lack of suitable tools for fast designing of a model, its analysis and modification. RTCP-nets have been defined to facilitate fast modelling of embedded systems incorporating rule-based systems. Computer tools that are being developed for RTCP-nets, use a template mechanism to allow users to design models and manipulate its properties fast and effectively. Both theoretical and practical aspects of RTCP-nets are presented in the paper.

  14. Ocean wave prediction using numerical and neural network models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...

  15. Computational modeling of neural plasticity for self-organization of neural networks.

    Science.gov (United States)

    Chrol-Cannon, Joseph; Jin, Yaochu

    2014-11-01

    Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. A neural network model of causative actions

    Directory of Open Access Journals (Sweden)

    Jeremy eLee-Hand

    2015-06-01

    Full Text Available A common idea in models of action representation is that actions are represented in terms of their perceptual effects (see e.g. Prinz, 1997; Hommel et al., 2001; Sahin et al., 2007; Umilta et al., 2008; Hommel et al., 2013. In this paper we extend existing models of effect-based action representations to account for a novel distinction. Some actions bring about effects that are independent events in their own right: for instance, if John 'smashes' a cup, he brings about the event of 'the cup smashing'. Other actions do not bring about such effects. For instance, if John 'grabs' a cup, this action does not cause the cup to 'do' anything: a grab action has well-defined perceptual effects, but these are not registered by the perceptual system that detects independent events involving external objects in the world. In our model, effect-based actions are implemented in several distinct neural circuits, which are organised into a hierarchy based on the complexity of their associated perceptual effects. The circuit at the top of this hierarchy is responsible for actions that bring about independently perceivable events. This circuit receives input from the perceptual module that recognises arbitrary events taking place in the world, and learns movements that reliably cause such events. We assess our model against existing experimental observations about effect-based motor representations, and make some novel experimental predictions. We also consider the possibility that the 'causative actions' circuit in our model can be identified with a motor pathway reported in other work, specialising in 'functional' actions on manipulable tools (Bub et al., 2008; Binkofski and Buxbaum, 2013.

  17. A neural network model of causative actions.

    Science.gov (United States)

    Lee-Hand, Jeremy; Knott, Alistair

    2015-01-01

    A common idea in models of action representation is that actions are represented in terms of their perceptual effects (see e.g., Prinz, 1997; Hommel et al., 2001; Sahin et al., 2007; Umiltà et al., 2008; Hommel, 2013). In this paper we extend existing models of effect-based action representations to account for a novel distinction. Some actions bring about effects that are independent events in their own right: for instance, if John smashes a cup, he brings about the event of the cup smashing. Other actions do not bring about such effects. For instance, if John grabs a cup, this action does not cause the cup to "do" anything: a grab action has well-defined perceptual effects, but these are not registered by the perceptual system that detects independent events involving external objects in the world. In our model, effect-based actions are implemented in several distinct neural circuits, which are organized into a hierarchy based on the complexity of their associated perceptual effects. The circuit at the top of this hierarchy is responsible for actions that bring about independently perceivable events. This circuit receives input from the perceptual module that recognizes arbitrary events taking place in the world, and learns movements that reliably cause such events. We assess our model against existing experimental observations about effect-based motor representations, and make some novel experimental predictions. We also consider the possibility that the "causative actions" circuit in our model can be identified with a motor pathway reported in other work, specializing in "functional" actions on manipulable tools (Bub et al., 2008; Binkofski and Buxbaum, 2013).

  18. Modelling the permeability of polymers: a neural network approach

    NARCIS (Netherlands)

    Wessling, Matthias; Mulder, M.H.V.; Bos, A.; Bos, A.; van der Linden, M.K.T.; Bos, M.; van der Linden, W.E.

    1994-01-01

    In this short communication, the prediction of the permeability of carbon dioxide through different polymers using a neural network is studied. A neural network is a numeric-mathematical construction that can model complex non-linear relationships. Here it is used to correlate the IR spectrum of a

  19. Neural network modeling of associative memory: Beyond the Hopfield model

    Science.gov (United States)

    Dasgupta, Chandan

    1992-07-01

    A number of neural network models, in which fixed-point and limit-cycle attractors of the underlying dynamics are used to store and associatively recall information, are described. In the first class of models, a hierarchical structure is used to store an exponentially large number of strongly correlated memories. The second class of models uses limit cycles to store and retrieve individual memories. A neurobiologically plausible network that generates low-amplitude periodic variations of activity, similar to the oscillations observed in electroencephalographic recordings, is also described. Results obtained from analytic and numerical studies of the properties of these networks are discussed.

  20. Prediction model for initial point of net vapor generation for low-flow boiling

    International Nuclear Information System (INIS)

    Sun Qi; Zhao Hua; Yang Ruichang

    2003-01-01

    The prediction of the initial point of net vapor generation is significant for the calculation of phase distribution in sub-cooled boiling. However, most of the investigations were developed in high-flow boiling, and there is no common model that could be successfully applied for the low-flow boiling. A predictive model for the initial point of net vapor generation for low-flow forced convection and natural circulation is established here, by the analysis of evaporation and condensation heat transfer. The comparison between experimental data and calculated results shows that this model can predict the net vapor generation point successfully in low-flow sub-cooled boiling

  1. The CAFE model: A net production model for global ocean phytoplankton

    Science.gov (United States)

    Silsbe, Greg M.; Behrenfeld, Michael J.; Halsey, Kimberly H.; Milligan, Allen J.; Westberry, Toby K.

    2016-12-01

    The Carbon, Absorption, and Fluorescence Euphotic-resolving (CAFE) net primary production model is an adaptable framework for advancing global ocean productivity assessments by exploiting state-of-the-art satellite ocean color analyses and addressing key physiological and ecological attributes of phytoplankton. Here we present the first implementation of the CAFE model that incorporates inherent optical properties derived from ocean color measurements into a mechanistic and accurate model of phytoplankton growth rates (μ) and net phytoplankton production (NPP). The CAFE model calculates NPP as the product of energy absorption (QPAR), and the efficiency (ϕμ) by which absorbed energy is converted into carbon biomass (CPhyto), while μ is calculated as NPP normalized to CPhyto. The CAFE model performance is evaluated alongside 21 other NPP models against a spatially robust and globally representative set of direct NPP measurements. This analysis demonstrates that the CAFE model explains the greatest amount of variance and has the lowest model bias relative to other NPP models analyzed with this data set. Global oceanic NPP from the CAFE model (52 Pg C m-2 yr-1) and mean division rates (0.34 day-1) are derived from climatological satellite data (2002-2014). This manuscript discusses and validates individual CAFE model parameters (e.g., QPAR and ϕμ), provides detailed sensitivity analyses, and compares the CAFE model results and parameterization to other widely cited models.

  2. Proposal of a model of mammalian neural induction

    Science.gov (United States)

    Levine, Ariel J.; Brivanlou, Ali H.

    2009-01-01

    How does the vertebrate embryo make a nervous system? This complex question has been at the center of developmental biology for many years. The earliest step in this process – the induction of neural tissue – is intimately linked to patterning of the entire early embryo, and the molecular and embryological basis these processes are beginning to emerge. Here, we analyze classic and cutting-edge findings on neural induction in the mouse. We find that data from genetics, tissue explants, tissue grafting, and molecular marker expression support a coherent framework for mammalian neural induction. In this model, the gastrula organizer of the mouse embryo inhibits BMP signaling to allow neural tissue to form as a default fate – in the absence of instructive signals. The first neural tissue induced is anterior and subsequent neural tissue is posteriorized to form the midbrain, hindbrain, and spinal cord. The anterior visceral endoderm protects the pre-specified anterior neural fate from similar posteriorization, allowing formation of forebrain. This model is very similar to the default model of neural induction in the frog, thus bridging the evolutionary gap between amphibians and mammals. PMID:17585896

  3. Spike neural models (part I: The Hodgkin-Huxley model

    Directory of Open Access Journals (Sweden)

    Johnson, Melissa G.

    2017-05-01

    Full Text Available Artificial neural networks, or ANNs, have grown a lot since their inception back in the 1940s. But no matter the changes, one of the most important components of neural networks is still the node, which represents the neuron. Within spiking neural networks, the node is especially important because it contains the functions and properties of neurons that are necessary for their network. One important aspect of neurons is the ionic flow which produces action potentials, or spikes. Forces of diffusion and electrostatic pressure work together with the physical properties of the cell to move ions around changing the cell membrane potential which ultimately produces the action potential. This tutorial reviews the Hodkgin-Huxley model and shows how it simulates the ionic flow of the giant squid axon via four differential equations. The model is implemented in Matlab using Euler's Method to approximate the differential equations. By using Euler's method, an extra parameter is created, the time step. This new parameter needs to be carefully considered or the results of the node may be impaired.

  4. Open critical area model and extraction algorithm based on the net flow-axis

    International Nuclear Information System (INIS)

    Wang Le; Wang Jun-Ping; Gao Yan-Hong; Xu Dan; Li Bo-Bo; Liu Shi-Gang

    2013-01-01

    In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missing material defects may result in the open circuit fault. Combining the mathematical morphology theory, we present a new computation model and a novel extraction algorithm for the open critical area based on the net flow-axis. Firstly, we find the net flow-axis for different nets. Then, the net flow-edges based on the net flow-axis are obtained. Finally, we can extract the open critical area by the mathematical morphology. Compared with the existing methods, the nets need not to divide into the horizontal nets and the vertical nets, and the experimental results show that our model and algorithm can accurately extract the size of the open critical area and obtain the location information of the open circuit critical area. (interdisciplinary physics and related areas of science and technology)

  5. Nonlinear adaptive inverse control via the unified model neural network

    Science.gov (United States)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  6. Neural network modeling for near wall turbulent flow

    International Nuclear Information System (INIS)

    Milano, Michele; Koumoutsakos, Petros

    2002-01-01

    A neural network methodology is developed in order to reconstruct the near wall field in a turbulent flow by exploiting flow fields provided by direct numerical simulations. The results obtained from the neural network methodology are compared with the results obtained from prediction and reconstruction using proper orthogonal decomposition (POD). Using the property that the POD is equivalent to a specific linear neural network, a nonlinear neural network extension is presented. It is shown that for a relatively small additional computational cost nonlinear neural networks provide us with improved reconstruction and prediction capabilities for the near wall velocity fields. Based on these results advantages and drawbacks of both approaches are discussed with an outlook toward the development of near wall models for turbulence modeling and control

  7. Neural Network Models for Time Series Forecasts

    OpenAIRE

    Tim Hill; Marcus O'Connor; William Remus

    1996-01-01

    Neural networks have been advocated as an alternative to traditional statistical forecasting methods. In the present experiment, time series forecasts produced by neural networks are compared with forecasts from six statistical time series methods generated in a major forecasting competition (Makridakis et al. [Makridakis, S., A. Anderson, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. Newton, E. Parzen, R. Winkler. 1982. The accuracy of extrapolation (time series) methods: Results of a ...

  8. A Petri Net-Based Software Process Model for Developing Process-Oriented Information Systems

    Science.gov (United States)

    Li, Yu; Oberweis, Andreas

    Aiming at increasing flexibility, efficiency, effectiveness, and transparency of information processing and resource deployment in organizations to ensure customer satisfaction and high quality of products and services, process-oriented information systems (POIS) represent a promising realization form of computerized business information systems. Due to the complexity of POIS, explicit and specialized software process models are required to guide POIS development. In this chapter we characterize POIS with an architecture framework and present a Petri net-based software process model tailored for POIS development with consideration of organizational roles. As integrated parts of the software process model, we also introduce XML nets, a variant of high-level Petri nets as basic methodology for business processes modeling, and an XML net-based software toolset providing comprehensive functionalities for POIS development.

  9. The principles of artificial neural network information processing

    International Nuclear Information System (INIS)

    Dai, Ru-Wei

    1993-01-01

    In this article, the basic structure of an artificial neuron is first introduced. In addition, principles of artificial neural network as well as several important artificial neural models such as perception, back propagation model, Hopfield net, and ART model are briefly discussed and analyzed. Finally the application of artificial neural network for Chinese character recognition is also given. (author)

  10. The principles of artificial neural network information processing

    International Nuclear Information System (INIS)

    Dai, Ru-Wei

    1993-01-01

    In this article, the basic structure of an artificial neuron is first introduced. In addition, principles of artificial neural network as well as several important artificial neural models such as Perceptron, Back propagation model, Hopfield net, and ART model are briefly discussed and analyzed. Finally, the application of artificial neural network for Chinese Character Recognition is also given. (author)

  11. Estimação do volume de árvores utilizando redes neurais artificiais Estimate of tree volume using artificial neural nets

    Directory of Open Access Journals (Sweden)

    Eric Bastos Gorgens

    2009-12-01

    Full Text Available Rede neural artificial consiste em um conjunto de unidades que contêm funções matemáticas, unidas por pesos. As redes são capazes de aprender, mediante modificação dos pesos sinápticos, e generalizar o aprendizado para outros arquivos desconhecidos. O projeto de redes neurais é composto por três etapas: pré-processamento, processamento e, por fim, pós-processamento dos dados. Um dos problemas clássicos que podem ser abordados por redes é a aproximação de funções. Nesse grupo, pode-se incluir a estimação do volume de árvores. Foram utilizados quatro arquiteturas diferentes, cinco pré-processamentos e duas funções de ativação. As redes que se apresentaram estatisticamente iguais aos dados observados também foram analisadas quanto ao resíduo e à distribuição dos volumes e comparadas com a estimação de volume pelo modelo de Schumacher e Hall. As redes neurais formadas por neurônios, cuja função de ativação era exponencial, apresentaram estimativas estatisticamente iguais aos dados observados. As redes treinadas com os dados normalizados pelo método da interpolação linear e equalizados tiveram melhor desempenho na estimação.The artificial neural network consists of a set of units containing mathematical functions connected by weights. Such nets are capable of learning by means of synaptic weight modification, generalizing learning for other unknown archives. The neural network project comprises three stages: pre-processing, processing and post-processing of data. One of the classical problems approached by networks is function approximation. Tree volume estimate can be included in this group. Four different architectures, five pre-processings and two activation functions were used. The nets which were statistically similar to the observed data were also analyzed in relation to residue and volume and compared to the volume estimate provided by the Schumacher and Hall equation. The neural nets formed by

  12. Neural nets for the plausibility check of measured values in the integrated measurement and information system for the surveillance of environmental radioactivity (IMIS)

    International Nuclear Information System (INIS)

    Haase, G.

    2003-01-01

    Neural nets to the plausibility check of measured values in the ''integrated measurement and information system for the surveillance of environmental radioactivity, IMIS'' is a research project supported by the Federal Minister for the Environment, Nature Conservation and Nuclear Safety. A goal of this project was the automatic recognition of implausible measured values in the data base ORACLE, which measured values from surveillance of environmental radioactivity of most diverse environmental media contained. The conversion of this project [ 1 ] was realized by institut of logic, complexity and deduction systems of the university Karlsruhe under the direction of Professor Dr. Menzel, Dr. Martin Riedmueller and Martin Lauer. (orig.)

  13. Statistical mechanics of attractor neural network models with synaptic depression

    International Nuclear Information System (INIS)

    Igarashi, Yasuhiko; Oizumi, Masafumi; Otsubo, Yosuke; Nagata, Kenji; Okada, Masato

    2009-01-01

    Synaptic depression is known to control gain for presynaptic inputs. Since cortical neurons receive thousands of presynaptic inputs, and their outputs are fed into thousands of other neurons, the synaptic depression should influence macroscopic properties of neural networks. We employ simple neural network models to explore the macroscopic effects of synaptic depression. Systems with the synaptic depression cannot be analyzed due to asymmetry of connections with the conventional equilibrium statistical-mechanical approach. Thus, we first propose a microscopic dynamical mean field theory. Next, we derive macroscopic steady state equations and discuss the stabilities of steady states for various types of neural network models.

  14. Numeral eddy current sensor modelling based on genetic neural network

    International Nuclear Information System (INIS)

    Yu Along

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method

  15. Particle swarm optimization of a neural network model in a ...

    Indian Academy of Sciences (India)

    . Since tool life is critically affected by the tool wear, accurate prediction of this wear ... In their work, they established an improvement in the quality ... objective optimization of hard turning using neural network modelling and swarm intelligence ...

  16. Time Extensions of Petri Nets for Modelling and Verification of Hard Real-Time Systems

    Directory of Open Access Journals (Sweden)

    Tomasz Szmuc

    2002-01-01

    Full Text Available The main aim ofthe paper is a presentation of time extensions of Petri nets appropriate for modelling and analysis of hard real-time systems. It is assumed, that the extensions must provide a model of time flow an ability to force a transition to fire within a stated timing constraint (the so-called the strong firing rule, and timing constraints represented by intervals. The presented survey includes extensions of classical Place/Transition Petri nets, as well as the ones applied to high-level Petri nets. An expressiveness of each time extension is illustrated using simple hard real-time system. The paper includes also a brief description of analysis and veryication methods related to the extensions, and a survey of software tools supporting modelling and analysis ofthe considered Petri nets.

  17. neural network based model o work based model of an industrial oil

    African Journals Online (AJOL)

    eobe

    technique. g, Neural Network Model, Regression, Mean Square Error, PID controller. ... during the training processes. An additio ... used to carry out simulation studies of the mode .... A two-layer feed-forward neural network with Matlab.

  18. Modelling of phase change materials in the Toronto SUI net zero energy house using TRNSYS

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, O.; Fung, A.; Zhang, D. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-08-15

    In the context of building applications, phase change materials (PCM), can be defined as any heat storage material that can absorb a large amount of thermal energy while undergoing a change in phase, such as from a solid to a liquid phase. The incorporation of PCM into the building envelope can enhance occupant comfort through the reduction of indoor temperature fluctuations. It has also been shown to cause a decrease in the overall energy consumption associated with the heating and cooling of buildings. This paper extended the analysis of the impact of using PCM, which has traditionally focused on homes of ordinary construction, to incorporate low to zero energy homes using a model of the Toronto net zero energy house developed in TRNSYS. The paper provided a description of the TRNSYS model/methodology, with reference to the wall layer used in the net zero energy house, and model of the layout of the net zero energy house in TRYNSYS. The TRYNSYS/type 204 PCM component was also presented along with the simulation results in terms of the temperature profile of the third floor of the net zero energy house on a typical winter day with varying PCM concentrations; the temperature profile of the third floor of the net zero energy house on a typical summer day with varying PCM concentrations; yearly heating/cooling load requirements of the net zero energy house for a variety of thermal mass used; temperature profile of the third floor of the net zero energy house on a typical summer day when PCM and concrete slab was used; yearly temperature profile of the third floor of the net zero energy house, illustrating the impact of using PCM; and the yearly heating/cooling load of the net zero energy house as the concentration of PCM was varied. It was concluded that the use of building integrated PCM can reduce temperature fluctuations considerably in the summer but only slightly in the winter. 16 refs., 1 tab., 8 figs.

  19. Reliability modelling of repairable systems using Petri nets and fuzzy Lambda-Tau methodology

    International Nuclear Information System (INIS)

    Knezevic, J.; Odoom, E.R.

    2001-01-01

    A methodology is developed which uses Petri nets instead of the fault tree methodology and solves for reliability indices utilising fuzzy Lambda-Tau method. Fuzzy set theory is used for representing the failure rate and repair time instead of the classical (crisp) set theory because fuzzy numbers allow expert opinions, linguistic variables, operating conditions, uncertainty and imprecision in reliability information to be incorporated into the system model. Petri nets are used because unlike the fault tree methodology, the use of Petri nets allows efficient simultaneous generation of minimal cut and path sets

  20. Multispectral confocal microscopy images and artificial neural nets to monitor the photosensitizer uptake and degradation in Candida albicans cells

    Science.gov (United States)

    Romano, Renan A.; Pratavieira, Sebastião.; da Silva, Ana P.; Kurachi, Cristina; Guimarães, Francisco E. G.

    2017-07-01

    This study clearly demonstrates that multispectral confocal microscopy images analyzed by artificial neural networks provides a powerful tool to real-time monitoring photosensitizer uptake, as well as photochemical transformations occurred.

  1. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  2. Artificial neural network model of pork meat cubes osmotic dehydration

    OpenAIRE

    Pezo, Lato L.; Ćurčić, Biljana Lj.; Filipović, Vladimir S.; Nićetin, Milica R.; Koprivica, Gordana B.; Mišljenović, Nevena M.; Lević, Ljubinko B.

    2013-01-01

    Mass transfer of pork meat cubes (M. triceps brachii), shaped as 1x1x1 cm, during osmotic dehydration (OD) and under atmospheric pressure was investigated in this paper. The effects of different parameters, such as concentration of sugar beet molasses (60-80%, w/w), temperature (20-50ºC), and immersion time (1-5 h) in terms of water loss (WL), solid gain (SG), final dry matter content (DM), and water activity (aw), were investigated using experimental results. Five artificial neural net...

  3. Numerical Analysis of Modeling Based on Improved Elman Neural Network

    Directory of Open Access Journals (Sweden)

    Shao Jie

    2014-01-01

    Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.

  4. Feed forward neural networks modeling for K-P interactions

    International Nuclear Information System (INIS)

    El-Bakry, M.Y.

    2003-01-01

    Artificial intelligence techniques involving neural networks became vital modeling tools where model dynamics are difficult to track with conventional techniques. The paper make use of the feed forward neural networks (FFNN) to model the charged multiplicity distribution of K-P interactions at high energies. The FFNN was trained using experimental data for the multiplicity distributions at different lab momenta. Results of the FFNN model were compared to that generated using the parton two fireball model and the experimental data. The proposed FFNN model results showed good fitting to the experimental data. The neural network model performance was also tested at non-trained space and was found to be in good agreement with the experimental data

  5. Neural Ranking Models with Weak Supervision

    NARCIS (Netherlands)

    Dehghani, M.; Zamani, H.; Severyn, A.; Kamps, J.; Croft, W.B.

    2017-01-01

    Despite the impressive improvements achieved by unsupervised deep neural networks in computer vision and NLP tasks, such improvements have not yet been observed in ranking for information retrieval. The reason may be the complexity of the ranking problem, as it is not obvious how to learn from

  6. Efficient Embedded Decoding of Neural Network Language Models in a Machine Translation System.

    Science.gov (United States)

    Zamora-Martinez, Francisco; Castro-Bleda, Maria Jose

    2018-02-22

    Neural Network Language Models (NNLMs) are a successful approach to Natural Language Processing tasks, such as Machine Translation. We introduce in this work a Statistical Machine Translation (SMT) system which fully integrates NNLMs in the decoding stage, breaking the traditional approach based on [Formula: see text]-best list rescoring. The neural net models (both language models (LMs) and translation models) are fully coupled in the decoding stage, allowing to more strongly influence the translation quality. Computational issues were solved by using a novel idea based on memorization and smoothing of the softmax constants to avoid their computation, which introduces a trade-off between LM quality and computational cost. These ideas were studied in a machine translation task with different combinations of neural networks used both as translation models and as target LMs, comparing phrase-based and [Formula: see text]-gram-based systems, showing that the integrated approach seems more promising for [Formula: see text]-gram-based systems, even with nonfull-quality NNLMs.

  7. Neural Network Based Model of an Industrial Oil-Fired Boiler System ...

    African Journals Online (AJOL)

    A two-layer feed-forward neural network with Hyperbolic tangent sigmoid ... The neural network model when subjected to test, using the validation input data; ... Proportional Integral Derivative (PID) Controller is used to control the neural ...

  8. NCWin — A Component Object Model (COM) for processing and visualizing NetCDF data

    Science.gov (United States)

    Liu, Jinxun; Chen, J.M.; Price, D.T.; Liu, S.

    2005-01-01

    NetCDF (Network Common Data Form) is a data sharing protocol and library that is commonly used in large-scale atmospheric and environmental data archiving and modeling. The NetCDF tool described here, named NCWin and coded with Borland C + + Builder, was built as a standard executable as well as a COM (component object model) for the Microsoft Windows environment. COM is a powerful technology that enhances the reuse of applications (as components). Environmental model developers from different modeling environments, such as Python, JAVA, VISUAL FORTRAN, VISUAL BASIC, VISUAL C + +, and DELPHI, can reuse NCWin in their models to read, write and visualize NetCDF data. Some Windows applications, such as ArcGIS and Microsoft PowerPoint, can also call NCWin within the application. NCWin has three major components: 1) The data conversion part is designed to convert binary raw data to and from NetCDF data. It can process six data types (unsigned char, signed char, short, int, float, double) and three spatial data formats (BIP, BIL, BSQ); 2) The visualization part is designed for displaying grid map series (playing forward or backward) with simple map legend, and displaying temporal trend curves for data on individual map pixels; and 3) The modeling interface is designed for environmental model development by which a set of integrated NetCDF functions is provided for processing NetCDF data. To demonstrate that the NCWin can easily extend the functions of some current GIS software and the Office applications, examples of calling NCWin within ArcGIS and MS PowerPoint for showing NetCDF map animations are given.

  9. Discriminative training of self-structuring hidden control neural models

    DEFF Research Database (Denmark)

    Sørensen, Helge Bjarup Dissing; Hartmann, Uwe; Hunnerup, Preben

    1995-01-01

    This paper presents a new training algorithm for self-structuring hidden control neural (SHC) models. The SHC models were trained non-discriminatively for speech recognition applications. Better recognition performance can generally be achieved, if discriminative training is applied instead. Thus...... we developed a discriminative training algorithm for SHC models, where each SHC model for a specific speech pattern is trained with utterances of the pattern to be recognized and with other utterances. The discriminative training of SHC neural models has been tested on the TIDIGITS database...

  10. NetTurnP – Neural Network Prediction of Beta-turns by Use of Evolutionary Information and Predicted Protein Sequence Features

    DEFF Research Database (Denmark)

    Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl

    2010-01-01

    is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino......β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method...... NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which...

  11. Teaching methodology for modeling reference evapotranspiration with artificial neural networks

    OpenAIRE

    Martí, Pau; Pulido Calvo, Inmaculada; Gutiérrez Estrada, Juan Carlos

    2015-01-01

    [EN] Artificial neural networks are a robust alternative to conventional models for estimating different targets in irrigation engineering, among others, reference evapotranspiration, a key variable for estimating crop water requirements. This paper presents a didactic methodology for introducing students in the application of artificial neural networks for reference evapotranspiration estimation using MatLab c . Apart from learning a specific application of this software wi...

  12. Comparing Neural Networks and ARMA Models in Artificial Stock Market

    Czech Academy of Sciences Publication Activity Database

    Krtek, Jiří; Vošvrda, Miloslav

    2011-01-01

    Roč. 18, č. 28 (2011), s. 53-65 ISSN 1212-074X R&D Projects: GA ČR GD402/09/H045 Institutional research plan: CEZ:AV0Z10750506 Keywords : neural networks * vector ARMA * artificial market Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2011/E/krtek-comparing neural networks and arma models in artificial stock market.pdf

  13. A Quantum Implementation Model for Artificial Neural Networks

    OpenAIRE

    Daskin, Ammar

    2016-01-01

    The learning process for multi layered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow-Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, this iterative formulas result in terms formed by the principal components of the weight matrix: i.e., the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the phase...

  14. A Quantum Implementation Model for Artificial Neural Networks

    OpenAIRE

    Ammar Daskin

    2018-01-01

    The learning process for multilayered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow–Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, these iterative formulas result in terms formed by the principal components of the weight matrix, namely, the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the pha...

  15. Models of neural networks temporal aspects of coding and information processing in biological systems

    CERN Document Server

    Hemmen, J; Schulten, Klaus

    1994-01-01

    Since the appearance of Vol. 1 of Models of Neural Networks in 1991, the theory of neural nets has focused on two paradigms: information coding through coherent firing of the neurons and functional feedback. Information coding through coherent neuronal firing exploits time as a cardinal degree of freedom. This capacity of a neural network rests on the fact that the neuronal action potential is a short, say 1 ms, spike, localized in space and time. Spatial as well as temporal correlations of activity may represent different states of a network. In particular, temporal correlations of activity may express that neurons process the same "object" of, for example, a visual scene by spiking at the very same time. The traditional description of a neural network through a firing rate, the famous S-shaped curve, presupposes a wide time window of, say, at least 100 ms. It thus fails to exploit the capacity to "bind" sets of coherently firing neurons for the purpose of both scene segmentation and figure-ground segregatio...

  16. Stimulus-dependent maximum entropy models of neural population codes.

    Directory of Open Access Journals (Sweden)

    Einat Granot-Atedgi

    Full Text Available Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME model-a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population.

  17. OtagoNet: One Region's Model for Virtual Schooling

    Science.gov (United States)

    Pratt, Keryn; Pullar, Ken

    2013-01-01

    Virtual schools are increasingly common in New Zealand and internationally as schools are challenged to meet the needs of their students. This article presents a description of the distance-learning model used by a group of schools in rural Otago for the last decade. The leadership team and roles are described, and the funding model, which is…

  18. NetTurnP--neural network prediction of beta-turns by use of evolutionary information and predicted protein sequence features.

    Directory of Open Access Journals (Sweden)

    Bent Petersen

    Full Text Available UNLABELLED: β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC=0.50, Qtotal=82.1%, sensitivity=75.6%, PPV=68.8% and AUC=0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17-0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. CONCLUSION: The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences.

  19. NetTurnP – Neural Network Prediction of Beta-turns by Use of Evolutionary Information and Predicted Protein Sequence Features

    Science.gov (United States)

    Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl

    2010-01-01

    β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC  = 0.50, Qtotal = 82.1%, sensitivity  = 75.6%, PPV  = 68.8% and AUC  = 0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17 – 0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. Conclusion The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences. PMID:21152409

  20. NetTurnP--neural network prediction of beta-turns by use of evolutionary information and predicted protein sequence features.

    Science.gov (United States)

    Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl

    2010-11-30

    β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC=0.50, Qtotal=82.1%, sensitivity=75.6%, PPV=68.8% and AUC=0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17-0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences.

  1. A Novel Grey Prediction Model Combining Markov Chain with Functional-Link Net and Its Application to Foreign Tourist Forecasting

    Directory of Open Access Journals (Sweden)

    Yi-Chung Hu

    2017-10-01

    Full Text Available Grey prediction models for time series have been widely applied to demand forecasting because only limited data are required for them to build a time series model without any statistical assumptions. Previous studies have demonstrated that the combination of grey prediction with neural networks helps grey prediction perform better. Some methods have been presented to improve the prediction accuracy of the popular GM(1,1 model by using the Markov chain to estimate the residual needed to modify a predicted value. Compared to the previous Grey-Markov models, this study contributes to apply the functional-link net to estimate the degree to which a predicted value obtained from the GM(1,1 model can be adjusted. Furthermore, the troublesome number of states and their bounds that are not easily specified in Markov chain have been determined by a genetic algorithm. To verify prediction performance, the proposed grey prediction model was applied to an important grey system problem—foreign tourist forecasting. Experimental results show that the proposed model provides satisfactory results compared to the other Grey-Markov models considered.

  2. Modelling of Biometric Identification System with Given Parameters Using Colored Petri Nets

    Science.gov (United States)

    Petrosyan, G.; Ter-Vardanyan, L.; Gaboutchian, A.

    2017-05-01

    Biometric identification systems use given parameters and function on the basis of Colored Petri Nets as a modelling language developed for systems in which communication, synchronization and distributed resources play an important role. Colored Petri Nets combine the strengths of Classical Petri Nets with the power of a high-level programming language. Coloured Petri Nets have both, formal intuitive and graphical presentations. Graphical CPN model consists of a set of interacting modules which include a network of places, transitions and arcs. Mathematical representation has a well-defined syntax and semantics, as well as defines system behavioural properties. One of the best known features used in biometric is the human finger print pattern. During the last decade other human features have become of interest, such as iris-based or face recognition. The objective of this paper is to introduce the fundamental concepts of Petri Nets in relation to tooth shape analysis. Biometric identification systems functioning has two phases: data enrollment phase and identification phase. During the data enrollment phase images of teeth are added to database. This record contains enrollment data as a noisy version of the biometrical data corresponding to the individual. During the identification phase an unknown individual is observed again and is compared to the enrollment data in the database and then system estimates the individual. The purpose of modeling biometric identification system by means of Petri Nets is to reveal the following aspects of the functioning model: the efficiency of the model, behavior of the model, mistakes and accidents in the model, feasibility of the model simplification or substitution of its separate components for more effective components without interfering system functioning. The results of biometric identification system modeling and evaluating are presented and discussed.

  3. Cognon Neural Model Software Verification and Hardware Implementation Design

    Science.gov (United States)

    Haro Negre, Pau

    Little is known yet about how the brain can recognize arbitrary sensory patterns within milliseconds using neural spikes to communicate information between neurons. In a typical brain there are several layers of neurons, with each neuron axon connecting to ˜104 synapses of neurons in an adjacent layer. The information necessary for cognition is contained in theses synapses, which strengthen during the learning phase in response to newly presented spike patterns. Continuing on the model proposed in "Models for Neural Spike Computation and Cognition" by David H. Staelin and Carl H. Staelin, this study seeks to understand cognition from an information theoretic perspective and develop potential models for artificial implementation of cognition based on neuronal models. To do so we focus on the mathematical properties and limitations of spike-based cognition consistent with existing neurological observations. We validate the cognon model through software simulation and develop concepts for an optical hardware implementation of a network of artificial neural cognons.

  4. Modeling polyvinyl chloride Plasma Modification by Neural Networks

    Science.gov (United States)

    Wang, Changquan

    2018-03-01

    Neural networks model were constructed to analyze the connection between dielectric barrier discharge parameters and surface properties of material. The experiment data were generated from polyvinyl chloride plasma modification by using uniform design. Discharge voltage, discharge gas gap and treatment time were as neural network input layer parameters. The measured values of contact angle were as the output layer parameters. A nonlinear mathematical model of the surface modification for polyvinyl chloride was developed based upon the neural networks. The optimum model parameters were obtained by the simulation evaluation and error analysis. The results of the optimal model show that the predicted value is very close to the actual test value. The prediction model obtained here are useful for discharge plasma surface modification analysis.

  5. Efficient Neural Network Modeling for Flight and Space Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Ayman Hamdy Kassem

    2011-01-01

    Full Text Available This paper represents an efficient technique for neural network modeling of flight and space dynamics simulation. The technique will free the neural network designer from guessing the size and structure for the required neural network model and will help to minimize the number of neurons. For linear flight/space dynamics systems, the technique can find the network weights and biases directly by solving a system of linear equations without the need for training. Nonlinear flight dynamic systems can be easily modeled by training its linearized models keeping the same network structure. The training is fast, as it uses the linear system knowledge to speed up the training process. The technique is tested on different flight/space dynamic models and showed promising results.

  6. Stability of a neural predictive controller scheme on a neural model

    DEFF Research Database (Denmark)

    Luther, Jim Benjamin; Sørensen, Paul Haase

    2009-01-01

    In previous works presenting various forms of neural-network-based predictive controllers, the main emphasis has been on the implementation aspects, i.e. the development of a robust optimization algorithm for the controller, which will be able to perform in real time. However, the stability issue....... The resulting controller is tested on a nonlinear pneumatic servo system.......In previous works presenting various forms of neural-network-based predictive controllers, the main emphasis has been on the implementation aspects, i.e. the development of a robust optimization algorithm for the controller, which will be able to perform in real time. However, the stability issue...... has not been addressed specifically for these controllers. On the other hand a number of results concerning the stability of receding horizon controllers on a nonlinear system exist. In this paper we present a proof of stability for a predictive controller controlling a neural network model...

  7. METHOD OF DISPLAYING AN EXECUTABLE BUSINESS PROCESS MODELS INTO PETRI NETS

    Directory of Open Access Journals (Sweden)

    Igor G. Fedorov

    2013-01-01

    Full Text Available Executable business process models, as well as programs, require evidence of a defect-free finish. The methods based on the formalism of Petri nets are widely used. A business process is a network of dishes, and its properties are set by the analysis of the properties of the network. The aim is to study the methods of displaying an executable business process model in a Petri net. Analysis of the properties of the resulting model allows us to prove a number of important properties: it is a network of free choice and clean without looping.

  8. A neural network model for credit risk evaluation.

    Science.gov (United States)

    Khashman, Adnan

    2009-08-01

    Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.

  9. DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG.

    Science.gov (United States)

    Supratak, Akara; Dong, Hao; Wu, Chao; Guo, Yike

    2017-11-01

    This paper proposes a deep learning model, named DeepSleepNet, for automatic sleep stage scoring based on raw single-channel EEG. Most of the existing methods rely on hand-engineered features, which require prior knowledge of sleep analysis. Only a few of them encode the temporal information, such as transition rules, which is important for identifying the next sleep stages, into the extracted features. In the proposed model, we utilize convolutional neural networks to extract time-invariant features, and bidirectional-long short-term memory to learn transition rules among sleep stages automatically from EEG epochs. We implement a two-step training algorithm to train our model efficiently. We evaluated our model using different single-channel EEGs (F4-EOG (left), Fpz-Cz, and Pz-Oz) from two public sleep data sets, that have different properties (e.g., sampling rate) and scoring standards (AASM and R&K). The results showed that our model achieved similar overall accuracy and macro F1-score (MASS: 86.2%-81.7, Sleep-EDF: 82.0%-76.9) compared with the state-of-the-art methods (MASS: 85.9%-80.5, Sleep-EDF: 78.9%-73.7) on both data sets. This demonstrated that, without changing the model architecture and the training algorithm, our model could automatically learn features for sleep stage scoring from different raw single-channel EEGs from different data sets without utilizing any hand-engineered features.

  10. Neural Networks for Modeling and Control of Particle Accelerators

    Science.gov (United States)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  11. Modeling net ecosystem carbon exchange of alpine grasslands with a satellite-driven model.

    Directory of Open Access Journals (Sweden)

    Wei Yan

    Full Text Available Estimate of net ecosystem carbon exchange (NEE between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP and ecosystem respiration (Reco has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model.

  12. Modelling an Interactive Road Signs System, Using Petri Nets

    Directory of Open Access Journals (Sweden)

    Kombe Timothee

    2017-03-01

    Full Text Available This paper is a contribution to the problems of road insecurity in Africa. Due to non-respect of road sign and to the lack of signing, roads have become places of all dangers. It becomes imperative to establish an interaction between the authorities and the offending drivers. To reach this goal, we modelled an interactive road-vehicle-signage system, who locally informs the driver on the requirements of traffic signs. This model having interest only in the event of driving by bad weather or deterioration of panels, we are amending by inserting functions aimed to warn and punish the driver in the event of maintenance of an offense. Indeed, when the driver is about to commit a fault, firstly the system issues a warming (visual, audible or mechanical. Then, a message (SMS is sent to the authorities. We include the concept of floating process engaged by devices other than the signage. We show that, with a few considerations, from the functional point of view, they are identical to the process engaged by the signage. Furthermore, in terms of performance, the model renewed warnings that occurred just before the end panel of prohibitions. It stores messages of offenses occurred without the network, then notifies them when a network is detected. We propose algorithms for incremental design and analysis of the model, whose processes are activated and / or are extinguished, according to the type of sign or tag encountered. We show by simulation and by linear algebra that, the model retains its properties of absence of blocking and boundedness during the evolution of the system, hence its validation.

  13. Modelling of word usage frequency dynamics using artificial neural network

    International Nuclear Information System (INIS)

    Maslennikova, Yu S; Bochkarev, V V; Voloskov, D S

    2014-01-01

    In this paper the method for modelling of word usage frequency time series is proposed. An artificial feedforward neural network was used to predict word usage frequencies. The neural network was trained using the maximum likelihood criterion. The Google Books Ngram corpus was used for the analysis. This database provides a large amount of data on frequency of specific word forms for 7 languages. Statistical modelling of word usage frequency time series allows finding optimal fitting and filtering algorithm for subsequent lexicographic analysis and verification of frequency trend models

  14. Mathematical-statistical model for analysis of Ulva algal net photosynthesis in Venice lagoon

    International Nuclear Information System (INIS)

    Izzo, G.; Rizzo, V.; Bella, A.; Picci, M.; Giordano, P.

    1996-08-01

    The algal net photosynthesis, an important factor for the characterization of water quality in Venice lagoon, has been studied experimentally providing a mathematical model, validated by using statistical methods. This model relates oxygen production with irradiance, according to a well known law in biological literature. Its observed an inverted proportion between algal oxygen production and temperature, thus seasonality

  15. Model-Based Testing of a Reactive System with Coloured Petri Nets

    DEFF Research Database (Denmark)

    Tjell, Simon

    2006-01-01

    In this paper, a reactive and nondeterministic system is tested. This is doneby applying a generic model that has been specified as a configurable Coloured PetriNet. In this way, model-based testing is possible for a wide class of reactive system atthe level of discrete events. Concurrently...

  16. Stochastic Petri Net Modeling of Wave Sequences in Cardiac Arrhythmias.

    Science.gov (United States)

    1987-11-01

    Wolff - Parkinson - White syndrome . The ventricles are divided into two parts. One of these is excited normally and produces R...example, in a condition called the Wolff - Parkinson - White syn- drome the ECG displays an abnormally early onset of the ventricular activity. It also...8217. , ’ ", -’ , .’ %,,? .’ ,; ’ .- ’ ’ -’ € ’ , . ’ - I. 32 Wolfe- Parkinson - White Syndrome (Fig. 8c) This model uses "basic" elements for the

  17. Net Rotation of the Lithosphere in Mantle Convection Models with Self-consistent Plate Generation

    Science.gov (United States)

    Gerault, M.; Coltice, N.

    2017-12-01

    Lateral variations in the viscosity structure of the lithosphere and the mantle give rise to a discordant motion between the two. In a deep mantle reference frame, this motion is called the net rotation of the lithosphere. Plate motion reconstructions, mantle flow computations, and inferences from seismic anisotropy all indicate some amount of net rotation using different mantle reference frames. While the direction of rotation is somewhat consistent across studies, the predicted amplitudes range from 0.1 deg/Myr to 0.3 deg/Myr at the present-day. How net rotation rates could have differed in the past is also a subject of debate and strong geodynamic arguments are missing from the discussion. This study provides the first net rotation calculations in 3-D spherical mantle convection models with self-consistent plate generation. We run the computations for billions of years of numerical integration. We look into how sensitive the net rotation is to major tectonic events, such as subduction initiation, continental breakup and plate reorganisations, and whether some governing principles from the models could guide plate motion reconstructions. The mantle convection problem is solved with the finite volume code StagYY using a visco-pseudo-plastic rheology. Mantle flow velocities are solely driven by buoyancy forces internal to the system, with free slip upper and lower boundary conditions. We investigate how the yield stress, the mantle viscosity structure and the properties of continents affect the net rotation over time. Models with large lateral viscosity variations from continents predict net rotations that are at least threefold faster than those without continents. Models where continents cover a third of the surface produce net rotation rates that vary from nearly zero to over 0.3 deg/Myr with rapide increase during continental breakup. The pole of rotation appears to migrate along no particular path. For all models, regardless of the yield stress and the

  18. A Neural Parametric Singing Synthesizer Modeling Timbre and Expression from Natural Songs

    Directory of Open Access Journals (Sweden)

    Merlijn Blaauw

    2017-12-01

    Full Text Available We recently presented a new model for singing synthesis based on a modified version of the WaveNet architecture. Instead of modeling raw waveform, we model features produced by a parametric vocoder that separates the influence of pitch and timbre. This allows conveniently modifying pitch to match any target melody, facilitates training on more modest dataset sizes, and significantly reduces training and generation times. Nonetheless, compared to modeling waveform directly, ways of effectively handling higher-dimensional outputs, multiple feature streams and regularization become more important with our approach. In this work, we extend our proposed system to include additional components for predicting F0 and phonetic timings from a musical score with lyrics. These expression-related features are learned together with timbrical features from a single set of natural songs. We compare our method to existing statistical parametric, concatenative, and neural network-based approaches using quantitative metrics as well as listening tests.

  19. MODELLING OF CONCENTRATION LIMITS BASED ON NEURAL NETWORKS.

    Directory of Open Access Journals (Sweden)

    A. L. Osipov

    2017-02-01

    Full Text Available We study the forecasting model with the concentration limits is-the use of neural network technology. The software for the implementation of these models. It is shown that the efficiency of the system in the experimental material.

  20. A Quantum Implementation Model for Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ammar Daskin

    2018-02-01

    Full Text Available The learning process for multilayered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow–Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, these iterative formulas result in terms formed by the principal components of the weight matrix, namely, the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the phase estimation algorithm is known to provide speedups over the conventional algorithms for the eigenvalue-related problems. Combining the quantum amplitude amplification with the phase estimation algorithm, a quantum implementation model for artificial neural networks using the Widrow–Hoff learning rule is presented. The complexity of the model is found to be linear in the size of the weight matrix. This provides a quadratic improvement over the classical algorithms. Quanta 2018; 7: 7–18.

  1. Use of artificial neural networks for transport energy demand modeling

    International Nuclear Information System (INIS)

    Murat, Yetis Sazi; Ceylan, Halim

    2006-01-01

    The paper illustrates an artificial neural network (ANN) approach based on supervised neural networks for the transport energy demand forecasting using socio-economic and transport related indicators. The ANN transport energy demand model is developed. The actual forecast is obtained using a feed forward neural network, trained with back propagation algorithm. In order to investigate the influence of socio-economic indicators on the transport energy demand, the ANN is analyzed based on gross national product (GNP), population and the total annual average veh-km along with historical energy data available from 1970 to 2001. Comparing model predictions with energy data in testing period performs the model validation. The projections are made with two scenarios. It is obtained that the ANN reflects the fluctuation in historical data for both dependent and independent variables. The results obtained bear out the suitability of the adopted methodology for the transport energy-forecasting problem

  2. Neural network-based model reference adaptive control system.

    Science.gov (United States)

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  3. NeMO-Net & Fluid Lensing: The Neural Multi-Modal Observation & Training Network for Global Coral Reef Assessment Using Fluid Lensing Augmentation of NASA EOS Data

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    We present preliminary results from NASA NeMO-Net, the first neural multi-modal observation and training network for global coral reef assessment. NeMO-Net is an open-source deep convolutional neural network (CNN) and interactive active learning training software in development which will assess the present and past dynamics of coral reef ecosystems. NeMO-Net exploits active learning and data fusion of mm-scale remotely sensed 3D images of coral reefs captured using fluid lensing with the NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as hyperspectral airborne remote sensing data from the ongoing NASA CORAL mission and lower-resolution satellite data to determine coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. Aquatic ecosystems, particularly coral reefs, remain quantitatively misrepresented by low-resolution remote sensing as a result of refractive distortion from ocean waves, optical attenuation, and remoteness. Machine learning classification of coral reefs using FluidCam mm-scale 3D data show that present satellite and airborne remote sensing techniques poorly characterize coral reef percent living cover, morphology type, and species breakdown at the mm, cm, and meter scales. Indeed, current global assessments of coral reef cover and morphology classification based on km-scale satellite data alone can suffer from segmentation errors greater than 40%, capable of change detection only on yearly temporal scales and decameter spatial scales, significantly hindering our understanding of patterns and processes in marine biodiversity at a time when these ecosystems are experiencing unprecedented anthropogenic pressures, ocean acidification, and sea surface temperature rise. NeMO-Net leverages our augmented machine learning algorithm that demonstrates data fusion of regional FluidCam (mm, cm-scale) airborne remote sensing with

  4. Research on user behavior authentication model based on stochastic Petri nets

    Science.gov (United States)

    Zhang, Chengyuan; Xu, Haishui

    2017-08-01

    A behavioural authentication model based on stochastic Petri net is proposed to meet the randomness, uncertainty and concurrency characteristics of user behaviour. The use of random models in the location, changes, arc and logo to describe the characteristics of a variety of authentication and game relationships, so as to effectively implement the graphical user behaviour authentication model analysis method, according to the corresponding proof to verify the model is valuable.

  5. Modeling and Simulation of Multi-scale Environmental Systems with Generalized Hybrid Petri Nets

    Directory of Open Access Journals (Sweden)

    Mostafa eHerajy

    2015-07-01

    Full Text Available Predicting and studying the dynamics and properties of environmental systems necessitates the construction and simulation of mathematical models entailing different levels of complexities. Such type of computational experiments often require the combination of discrete and continuous variables as well as processes operating at different time scales. Furthermore, the iterative steps of constructing and analyzing environmental models might involve researchers with different background. Hybrid Petri nets may contribute in overcoming such challenges as they facilitate the implementation of systems integrating discrete and continuous dynamics. Additionally, the visual depiction of model components will inevitably help to bridge the gap between scientists with distinct expertise working on the same problem. Thus, modeling environmental systems with hybrid Petri nets enables the construction of complex processes while keeping the models comprehensible for researchers working on the same project with significantly divergent education path. In this paper we propose the utilization of a special class of hybrid Petri nets, Generalized Hybrid Petri Nets (GHPN, to model and simulate environmental systems exposing processes interacting at different time-scales. GHPN integrate stochastic and deterministic semantics as well as other types of special basic events. Moreover, a case study is presented to illustrate the use of GHPN in constructing and simulating multi-timescale environmental scenarios.

  6. Fuzzy Entropy: Axiomatic Definition and Neural Networks Model

    Institute of Scientific and Technical Information of China (English)

    QINGMing; CAOYue; HUANGTian-min

    2004-01-01

    The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy system is known as fuzzy entropy. Fuzzy entropy has been focused and studied by many researchers in various fields. In this paper, firstly, the axiomatic definition of fuzzy entropy is discussed. Then, neural networks model of fuzzy entropy is proposed, based on the computing capability of neural networks. In the end, two examples are discussed to show the efficiency of the model.

  7. Study of the Gray Scale, Polychromatic, Distortion Invariant Neural Networks Using the Ipa Model.

    Science.gov (United States)

    Uang, Chii-Maw

    Research in the optical neural network field is primarily motivated by the fact that humans recognize objects better than the conventional digital computers and the massively parallel inherent nature of optics. This research represents a continuous effort during the past several years in the exploitation of using neurocomputing for pattern recognition. Based on the interpattern association (IPA) model and Hamming net model, many new systems and applications are introduced. A gray level discrete associative memory that is based on object decomposition/composition is proposed for recognizing gray-level patterns. This technique extends the processing ability from the binary mode to gray-level mode, and thus the information capacity is increased. Two polychromatic optical neural networks using color liquid crystal television (LCTV) panels for color pattern recognition are introduced. By introducing a color encoding technique in conjunction with the interpattern associative algorithm, a color associative memory was realized. Based on the color decomposition and composition technique, a color exemplar-based Hamming net was built for color image classification. A shift-invariant neural network is presented through use of the translation invariant property of the modulus of the Fourier transformation and the hetero-associative interpattern association (IPA) memory. To extract the main features, a quadrantal sampling method is used to sampled data and then replace the training patterns. Using the concept of hetero-associative memory to recall the distorted object. A shift and rotation invariant neural network using an interpattern hetero-association (IHA) model is presented. To preserve the shift and rotation invariant properties, a set of binarized-encoded circular harmonic expansion (CHE) functions at the Fourier domain is used as the training set. We use the shift and symmetric properties of the modulus of the Fourier spectrum to avoid the problem of centering the CHE

  8. Health safety nets can break cycles of poverty and disease: a stochastic ecological model.

    Science.gov (United States)

    Plucinski, Mateusz M; Ngonghala, Calistus N; Bonds, Matthew H

    2011-12-07

    The persistence of extreme poverty is increasingly attributed to dynamic interactions between biophysical processes and economics, though there remains a dearth of integrated theoretical frameworks that can inform policy. Here, we present a stochastic model of disease-driven poverty traps. Whereas deterministic models can result in poverty traps that can only be broken by substantial external changes to the initial conditions, in the stochastic model there is always some probability that a population will leave or enter a poverty trap. We show that a 'safety net', defined as an externally enforced minimum level of health or economic conditions, can guarantee ultimate escape from a poverty trap, even if the safety net is set within the basin of attraction of the poverty trap, and even if the safety net is only in the form of a public health measure. Whereas the deterministic model implies that small improvements in initial conditions near the poverty-trap equilibrium are futile, the stochastic model suggests that the impact of changes in the location of the safety net on the rate of development may be strongest near the poverty-trap equilibrium.

  9. A modeling method of semiconductor fabrication flows with extended knowledge hybrid Petri nets

    Institute of Scientific and Technical Information of China (English)

    Zhou Binghai; Jiang Shuyu; Wang Shijin; Wu bin

    2008-01-01

    A modeling method of extended knowledge hybrid Petri nets (EKHPNs), incorporating object-oriented methods into hybrid Petri nets (HPNs), was presented and used for the representation and modeling of semiconductor wafer fabrication flows. To model the discrete and continuous parts of a complex semiconductor wafer fabrication flow, the HPNs were introduced into the EKHPNs. Object-oriented methods were combined into the EKHPNs for coping with the complexity of the fabrication flow. Knowledge annotations were introduced to solve input and output conflicts of the EKHPNs.Finally, to demonstrate the validity of the EKHPN method, a real semiconductor wafer fabrication case was used to illustrate the modeling procedure. The modeling results indicate that the proposed method can be used to model a complex semiconductor wafer fabrication flow expediently.

  10. Model-Based Requirements Analysis for Reactive Systems with UML Sequence Diagrams and Coloured Petri Nets

    DEFF Research Database (Denmark)

    Tjell, Simon; Lassen, Kristian Bisgaard

    2008-01-01

    In this paper, we describe a formal foundation for a specialized approach to automatically checking traces against real-time requirements. The traces are obtained from simulation of Coloured Petri Net (CPN) models of reactive systems. The real-time requirements are expressed in terms of a derivat...

  11. Description and evaluation of a net energy intake model as a function of dietary chewing index

    DEFF Research Database (Denmark)

    Jensen, Laura Mie; Markussen, Bo; Nielsen, N. I.

    2016-01-01

    Previously, a linear relationship has been found between net energy intake (NEI) and dietary chewing index (CI) of the diet for different types of cattle. Therefore, we propose to generalize and calibrate this relationship into a new model for direct prediction of NEI by dairy cows from CI values...... a value of 2, implying a constant maximum daily chewing time. The intercept NEI0 in the regression of NEI on CINE may be interpreted as metabolic net energy intake capacity of the cows fed without physical constraints on intake. Based on experimental data, the maximum chewing time was estimated as 1...

  12. Modeling of steam generator in nuclear power plant using neural network ensemble

    International Nuclear Information System (INIS)

    Lee, S. K.; Lee, E. C.; Jang, J. W.

    2003-01-01

    Neural network is now being used in modeling the steam generator is known to be difficult due to the reverse dynamics. However, Neural network is prone to the problem of overfitting. This paper investigates the use of neural network combining methods to model steam generator water level and compares with single neural network. The results show that neural network ensemble is effective tool which can offer improved generalization, lower dependence of the training set and reduced training time

  13. Advanced models of neural networks nonlinear dynamics and stochasticity in biological neurons

    CERN Document Server

    Rigatos, Gerasimos G

    2015-01-01

    This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

  14. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1987-01-01

    The author describes a Petri net model, called coloured Petri nets (CP-nets), by means of which it is possible to describe large systems without having to cope with unnecessary details. The author introduces CP-nets and provide a first impression of their modeling power and the suitability...

  15. Coupling of Petri Net Models of the Mycobacterial Infection Process and Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Rafael V. Carvalho

    2015-04-01

    Full Text Available Computational and mathematical modeling is important in support of a better understanding of complex behavior in biology. For the investigation of biological systems, researchers have used computers to construct, verify, and validate models that describe the mechanisms behind biological processes in multi-scale representations. In this paper we combine Petri net models that represent the mycobacterial infection process and innate immune response at various levels of organization, from molecular interaction to granuloma dissemination. In addition to the conventional graphical representation of the Petri net, the outcome of the model is projected onto a 3D model representing the zebrafish embryo. In this manner we provide a visualization of the process in a simulation framework that portrays the infection in the living system.

  16. Modeling of methane emissions using artificial neural network approach

    Directory of Open Access Journals (Sweden)

    Stamenković Lidija J.

    2015-01-01

    Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007

  17. Escherichia coli growth modeling using neural network | Shamsudin ...

    African Journals Online (AJOL)

    technique that has the ability to predict with efficient and good performance. Using NARX, a highly accurate model was developed to predict the growth of Escherichia coli (E. coli) based on pH water parameter. The multiparameter portable sensor and spectrophotometer data were used to build and train the neural network.

  18. A model of interval timing by neural integration.

    Science.gov (United States)

    Simen, Patrick; Balci, Fuat; de Souza, Laura; Cohen, Jonathan D; Holmes, Philip

    2011-06-22

    We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our assumptions include: that neural spike trains are approximately independent Poisson processes, that correlations among them can be largely cancelled by balancing excitation and inhibition, that neural populations can act as integrators, and that the objective of timed behavior is maximal accuracy and minimal variance. The model accounts for a variety of physiological and behavioral findings in rodents, monkeys, and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards, and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid (potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule's predictions regarding learning speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both types of behavior.

  19. Introducing Artificial Neural Networks through a Spreadsheet Model

    Science.gov (United States)

    Rienzo, Thomas F.; Athappilly, Kuriakose K.

    2012-01-01

    Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…

  20. A Constructive Neural-Network Approach to Modeling Psychological Development

    Science.gov (United States)

    Shultz, Thomas R.

    2012-01-01

    This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…

  1. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    Science.gov (United States)

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  2. Using artificial neural network approach for modelling rainfall–runoff ...

    Indian Academy of Sciences (India)

    Department of Civil Engineering, National Pingtung University of Science and Technology, Neipu Hsiang,. Pingtung ... study, a model for estimating runoff by using rainfall data from a river basin is developed and a neural ... For example, 2009 typhoon Morakot in Pingtung ... Tokar and Markus (2000) applied ANN to predict.

  3. DAILY RAINFALL-RUNOFF MODELLING BY NEURAL NETWORKS ...

    African Journals Online (AJOL)

    K. Benzineb, M. Remaoun

    2016-09-01

    Sep 1, 2016 ... The hydrologic behaviour modelling of w. Journal of ... i Ouahrane's basin from rainfall-runoff relation which is non-linea networks ... will allow checking efficiency of formal neural networks for flows simulation in semi-arid zone.

  4. THE USE OF NEURAL NETWORK TECHNOLOGY TO MODEL SWIMMING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    António José Silva

    2007-03-01

    Full Text Available The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility, swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports

  5. Neural network modeling of a dolphin's sonar discrimination capabilities

    DEFF Research Database (Denmark)

    Andersen, Lars Nonboe; René Rasmussen, A; Au, WWL

    1994-01-01

    The capability of an echo-locating dolphin to discriminate differences in the wall thickness of cylinders was previously modeled by a counterpropagation neural network using only spectral information of the echoes [W. W. L. Au, J. Acoust. Soc. Am. 95, 2728–2735 (1994)]. In this study, both time a...

  6. Pragmatic Bootstrapping: A Neural Network Model of Vocabulary Acquisition

    Science.gov (United States)

    Caza, Gregory A.; Knott, Alistair

    2012-01-01

    The social-pragmatic theory of language acquisition proposes that children only become efficient at learning the meanings of words once they acquire the ability to understand the intentions of other agents, in particular the intention to communicate (Akhtar & Tomasello, 2000). In this paper we present a neural network model of word learning which…

  7. Geometry of neural networks and models with singularities

    International Nuclear Information System (INIS)

    Fukumizu, Kenji

    2001-01-01

    This paper discusses maximum likelihood estimation with unidentifiability of parameters. Unidentifiability is formulated as a conic singularity of the model. It is known that the likelihood ratio may have unusually large order in unidentifiable cases. A sufficient condition for such large order is given and applied to neural networks

  8. Determination of the Corona model parameters with artificial neural networks

    International Nuclear Information System (INIS)

    Ahmet, Nayir; Bekir, Karlik; Arif, Hashimov

    2005-01-01

    Full text : The aim of this study is to calculate new model parameters taking into account the corona of electrical transmission line wires. For this purpose, a neural network modeling proposed for the corona frequent characteristics modeling. Then this model was compared with the other model developed at the Polytechnic Institute of Saint Petersburg. The results of development of the specified corona model for calculation of its influence on the wave processes in multi-wires line and determination of its parameters are submitted. Results of obtained calculation equations are brought for electrical transmission line with allowance for superficial effect in the ground and wires with reference to developed corona model

  9. Embedding recurrent neural networks into predator-prey models.

    Science.gov (United States)

    Moreau, Yves; Louiès, Stephane; Vandewalle, Joos; Brenig, Leon

    1999-03-01

    We study changes of coordinates that allow the embedding of ordinary differential equations describing continuous-time recurrent neural networks into differential equations describing predator-prey models-also called Lotka-Volterra systems. We transform the equations for the neural network first into quasi-monomial form (Brenig, L. (1988). Complete factorization and analytic solutions of generalized Lotka-Volterra equations. Physics Letters A, 133(7-8), 378-382), where we express the vector field of the dynamical system as a linear combination of products of powers of the variables. In practice, this transformation is possible only if the activation function is the hyperbolic tangent or the logistic sigmoid. From this quasi-monomial form, we can directly transform the system further into Lotka-Volterra equations. The resulting Lotka-Volterra system is of higher dimension than the original system, but the behavior of its first variables is equivalent to the behavior of the original neural network. We expect that this transformation will permit the application of existing techniques for the analysis of Lotka-Volterra systems to recurrent neural networks. Furthermore, our results show that Lotka-Volterra systems are universal approximators of dynamical systems, just as are continuous-time neural networks.

  10. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model

    Science.gov (United States)

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-01-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction. PMID:27617747

  11. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model.

    Science.gov (United States)

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-09-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction.

  12. Statistical modelling of neural networks in γ-spectrometry applications

    International Nuclear Information System (INIS)

    Vigneron, V.; Martinez, J.M.; Morel, J.; Lepy, M.C.

    1995-01-01

    Layered Neural Networks, which are a class of models based on neural computation, are applied to the measurement of uranium enrichment, i.e. the isotope ratio 235 U/( 235 U + 236 U + 238 U). The usual method consider a limited number of Γ-ray and X-ray peaks, and require previously calibrated instrumentation for each sample. But, in practice, the source-detector ensemble geometry conditions are critically different, thus a means of improving the above convention methods is to reduce the region of interest: this is possible by focusing on the K α X region where the three elementary components are present. Real data are used to study the performance of neural networks. Training is done with a Maximum Likelihood method to measure uranium 235 U and 238 U quantities in infinitely thick samples. (authors). 18 refs., 6 figs., 3 tabs

  13. Neural network versus classical time series forecasting models

    Science.gov (United States)

    Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam

    2017-05-01

    Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.

  14. HIV lipodystrophy case definition using artificial neural network modelling

    DEFF Research Database (Denmark)

    Ioannidis, John P A; Trikalinos, Thomas A; Law, Matthew

    2003-01-01

    OBJECTIVE: A case definition of HIV lipodystrophy has recently been developed from a combination of clinical, metabolic and imaging/body composition variables using logistic regression methods. We aimed to evaluate whether artificial neural networks could improve the diagnostic accuracy. METHODS......: The database of the case-control Lipodystrophy Case Definition Study was split into 504 subjects (265 with and 239 without lipodystrophy) used for training and 284 independent subjects (152 with and 132 without lipodystrophy) used for validation. Back-propagation neural networks with one or two middle layers...... were trained and validated. Results were compared against logistic regression models using the same information. RESULTS: Neural networks using clinical variables only (41 items) achieved consistently superior performance than logistic regression in terms of specificity, overall accuracy and area under...

  15. Distinguishing Environment and System in Coloured Petri Net Models of Reactive Systems

    DEFF Research Database (Denmark)

    Tjell, Simon

    2007-01-01

    This paper introduces and formally defines the environment-and-system-partitioned property for behavioral models of reactive systems expressed in the formal modeling language Coloured Petri Net. The purpose of the formalization is to make it possible to automatically validate any CPN model...... with respect to this property based on structural analysis. A model has the environment-and-system-partitioned property if it is based on a clear division between environment and system. This division is important in many model-driven approaches to software development such as model-based testing and automated...

  16. Petri Net-Based R&D Process Modeling and Optimization for Composite Materials

    Directory of Open Access Journals (Sweden)

    Xiaomei Hu

    2013-01-01

    Full Text Available Considering the current R&D process for new composite materials involves some complex details, such as formula design, specimen/sample production, materials/sample test, assessment, materials/sample feedback from customers, and mass production, the workflow model of Petri net-based R&D process for new composite materials’ is proposed. By analyzing the time property of the whole Petri net, the optimized model for new composite materials R&D workflow is further proposed. By analyzing the experiment data and application in some materials R&D enterprise, it is demonstrated that the workflow optimization model shortens the period of R&D on new materials for 15%, definitely improving the R&D efficiency. This indicates the feasibility and availability of the model.

  17. Robust modelling and simulation integration of SIMIO with coloured petri nets

    CERN Document Server

    De La Mota, Idalia Flores; Mujica Mota, Miguel; Angel Piera, Miquel

    2017-01-01

    This book presents for the first time a methodology that combines the power of a modelling formalism such as colored petri nets with the flexibility of a discrete event program such as SIMIO. Industrial practitioners have seen the growth of simulation as a methodology for tacking problems in which variability is the common denominator. Practically all industrial systems, from manufacturing to aviation are considered stochastic systems. Different modelling techniques have been developed as well as mathematical techniques for formalizing the cause-effect relationships in industrial and complex systems. The methodology in this book illustrates how complexity in modelling can be tackled by the use of coloured petri nets, while at the same time the variability present in systems is integrated in a robust fashion. The book can be used as a concise guide for developing robust models, which are able to efficiently simulate the cause-effect relationships present in complex industrial systems without losing the simulat...

  18. Threat driven modeling framework using petri nets for e-learning system.

    Science.gov (United States)

    Khamparia, Aditya; Pandey, Babita

    2016-01-01

    Vulnerabilities at various levels are main cause of security risks in e-learning system. This paper presents a modified threat driven modeling framework, to identify the threats after risk assessment which requires mitigation and how to mitigate those threats. To model those threat mitigations aspects oriented stochastic petri nets are used. This paper included security metrics based on vulnerabilities present in e-learning system. The Common Vulnerability Scoring System designed to provide a normalized method for rating vulnerabilities which will be used as basis in metric definitions and calculations. A case study has been also proposed which shows the need and feasibility of using aspect oriented stochastic petri net models for threat modeling which improves reliability, consistency and robustness of the e-learning system.

  19. A continuous-time neural model for sequential action.

    Science.gov (United States)

    Kachergis, George; Wyatte, Dean; O'Reilly, Randall C; de Kleijn, Roy; Hommel, Bernhard

    2014-11-05

    Action selection, planning and execution are continuous processes that evolve over time, responding to perceptual feedback as well as evolving top-down constraints. Existing models of routine sequential action (e.g. coffee- or pancake-making) generally fall into one of two classes: hierarchical models that include hand-built task representations, or heterarchical models that must learn to represent hierarchy via temporal context, but thus far lack goal-orientedness. We present a biologically motivated model of the latter class that, because it is situated in the Leabra neural architecture, affords an opportunity to include both unsupervised and goal-directed learning mechanisms. Moreover, we embed this neurocomputational model in the theoretical framework of the theory of event coding (TEC), which posits that actions and perceptions share a common representation with bidirectional associations between the two. Thus, in this view, not only does perception select actions (along with task context), but actions are also used to generate perceptions (i.e. intended effects). We propose a neural model that implements TEC to carry out sequential action control in hierarchically structured tasks such as coffee-making. Unlike traditional feedforward discrete-time neural network models, which use static percepts to generate static outputs, our biological model accepts continuous-time inputs and likewise generates non-stationary outputs, making short-timescale dynamic predictions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. The relationship between structural and functional connectivity: graph theoretical analysis of an EEG neural mass model

    NARCIS (Netherlands)

    Ponten, S.C.; Daffertshofer, A.; Hillebrand, A.; Stam, C.J.

    2010-01-01

    We investigated the relationship between structural network properties and both synchronization strength and functional characteristics in a combined neural mass and graph theoretical model of the electroencephalogram (EEG). Thirty-two neural mass models (NMMs), each representing the lump activity

  1. A neural model of decision making

    OpenAIRE

    Larsen, Torben

    2008-01-01

    Background: A descriptive neuroeconomic model is aimed for relativity of the concept of economic man to empirical science.Method: A 4-level client-server-integrator model integrating the brain models of McLean and Luria is the general framework for the model of empirical findings.Results: Decision making relies on integration across brain levels of emotional intelligence (LU) and logico-matematico intelligence (RIA), respectively. The integrated decision making formula approaching zero by bot...

  2. Enabling Grid Computing resources within the KM3NeT computing model

    Directory of Open Access Journals (Sweden)

    Filippidis Christos

    2016-01-01

    Full Text Available KM3NeT is a future European deep-sea research infrastructure hosting a new generation neutrino detectors that – located at the bottom of the Mediterranean Sea – will open a new window on the universe and answer fundamental questions both in particle physics and astrophysics. International collaborative scientific experiments, like KM3NeT, are generating datasets which are increasing exponentially in both complexity and volume, making their analysis, archival, and sharing one of the grand challenges of the 21st century. These experiments, in their majority, adopt computing models consisting of different Tiers with several computing centres and providing a specific set of services for the different steps of data processing such as detector calibration, simulation and data filtering, reconstruction and analysis. The computing requirements are extremely demanding and, usually, span from serial to multi-parallel or GPU-optimized jobs. The collaborative nature of these experiments demands very frequent WAN data transfers and data sharing among individuals and groups. In order to support the aforementioned demanding computing requirements we enabled Grid Computing resources, operated by EGI, within the KM3NeT computing model. In this study we describe our first advances in this field and the method for the KM3NeT users to utilize the EGI computing resources in a simulation-driven use-case.

  3. Modeling of surface dust concentrations using neural networks and kriging

    Science.gov (United States)

    Buevich, Alexander G.; Medvedev, Alexander N.; Sergeev, Alexander P.; Tarasov, Dmitry A.; Shichkin, Andrey V.; Sergeeva, Marina V.; Atanasova, T. B.

    2016-12-01

    Creating models which are able to accurately predict the distribution of pollutants based on a limited set of input data is an important task in environmental studies. In the paper two neural approaches: (multilayer perceptron (MLP)) and generalized regression neural network (GRNN)), and two geostatistical approaches: (kriging and cokriging), are using for modeling and forecasting of dust concentrations in snow cover. The area of study is under the influence of dust emissions from a copper quarry and a several industrial companies. The comparison of two mentioned approaches is conducted. Three indices are used as the indicators of the models accuracy: the mean absolute error (MAE), root mean square error (RMSE) and relative root mean square error (RRMSE). Models based on artificial neural networks (ANN) have shown better accuracy. When considering all indices, the most precision model was the GRNN, which uses as input parameters for modeling the coordinates of sampling points and the distance to the probable emissions source. The results of work confirm that trained ANN may be more suitable tool for modeling of dust concentrations in snow cover.

  4. Recursive Bayesian recurrent neural networks for time-series modeling.

    Science.gov (United States)

    Mirikitani, Derrick T; Nikolaev, Nikolay

    2010-02-01

    This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.

  5. Artificial Neural Network Based Model of Photovoltaic Cell

    Directory of Open Access Journals (Sweden)

    Messaouda Azzouzi

    2017-03-01

    Full Text Available This work concerns the modeling of a photovoltaic system and the prediction of the sensitivity of electrical parameters (current, power of the six types of photovoltaic cells based on voltage applied between terminals using one of the best known artificial intelligence technique which is the Artificial Neural Networks. The results of the modeling and prediction have been well shown as a function of number of iterations and using different learning algorithms to obtain the best results. 

  6. Neural network modeling of a dolphin's sonar discrimination capabilities

    OpenAIRE

    Andersen, Lars Nonboe; René Rasmussen, A; Au, WWL; Nachtigall, PE; Roitblat, H.

    1994-01-01

    The capability of an echo-locating dolphin to discriminate differences in the wall thickness of cylinders was previously modeled by a counterpropagation neural network using only spectral information of the echoes [W. W. L. Au, J. Acoust. Soc. Am. 95, 2728–2735 (1994)]. In this study, both time and frequency information were used to model the dolphin discrimination capabilities. Echoes from the same cylinders were digitized using a broadband simulated dolphin sonar signal with the transducer ...

  7. A Biophysical Neural Model To Describe Spatial Visual Attention

    International Nuclear Information System (INIS)

    Hugues, Etienne; Jose, Jorge V.

    2008-01-01

    Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We first constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations

  8. Adaptive control using neural networks and approximate models.

    Science.gov (United States)

    Narendra, K S; Mukhopadhyay, S

    1997-01-01

    The NARMA model is an exact representation of the input-output behavior of finite-dimensional nonlinear discrete-time dynamical systems in a neighborhood of the equilibrium state. However, it is not convenient for purposes of adaptive control using neural networks due to its nonlinear dependence on the control input. Hence, quite often, approximate methods are used for realizing the neural controllers to overcome computational complexity. In this paper, we introduce two classes of models which are approximations to the NARMA model, and which are linear in the control input. The latter fact substantially simplifies both the theoretical analysis as well as the practical implementation of the controller. Extensive simulation studies have shown that the neural controllers designed using the proposed approximate models perform very well, and in many cases even better than an approximate controller designed using the exact NARMA model. In view of their mathematical tractability as well as their success in simulation studies, a case is made in this paper that such approximate input-output models warrant a detailed study in their own right.

  9. Artificial Neural Network L* from different magnetospheric field models

    Science.gov (United States)

    Yu, Y.; Koller, J.; Zaharia, S. G.; Jordanova, V. K.

    2011-12-01

    The third adiabatic invariant L* plays an important role in modeling and understanding the radiation belt dynamics. The popular way to numerically obtain the L* value follows the recipe described by Roederer [1970], which is, however, slow and computational expensive. This work focuses on a new technique, which can compute the L* value in microseconds without losing much accuracy: artificial neural networks. Since L* is related to the magnetic flux enclosed by a particle drift shell, global magnetic field information needed to trace the drift shell is required. A series of currently popular empirical magnetic field models are applied to create the L* data pool using 1 million data samples which are randomly selected within a solar cycle and within the global magnetosphere. The networks, trained from the above L* data pool, can thereby be used for fairly efficient L* calculation given input parameters valid within the trained temporal and spatial range. Besides the empirical magnetospheric models, a physics-based self-consistent inner magnetosphere model (RAM-SCB) developed at LANL is also utilized to calculate L* values and then to train the L* neural network. This model better predicts the magnetospheric configuration and therefore can significantly improve the L*. The above neural network L* technique will enable, for the first time, comprehensive solar-cycle long studies of radiation belt processes. However, neural networks trained from different magnetic field models can result in different L* values, which could cause mis-interpretation of radiation belt dynamics, such as where the source of the radiation belt charged particle is and which mechanism is dominant in accelerating the particles. Such a fact calls for attention to cautiously choose a magnetospheric field model for the L* calculation.

  10. Hand Posture Prediction Using Neural Networks within a Biomechanical Model

    Directory of Open Access Journals (Sweden)

    Marta C. Mora

    2012-10-01

    Full Text Available This paper proposes the use of artificial neural networks (ANNs in the framework of a biomechanical hand model for grasping. ANNs enhance the model capabilities as they substitute estimated data for the experimental inputs required by the grasping algorithm used. These inputs are the tentative grasping posture and the most open posture during grasping. As a consequence, more realistic grasping postures are predicted by the grasping algorithm, along with the contact information required by the dynamic biomechanical model (contact points and normals. Several neural network architectures are tested and compared in terms of prediction errors, leading to encouraging results. The performance of the overall proposal is also shown through simulation, where a grasping experiment is replicated and compared to the real grasping data collected by a data glove device.

  11. Hierarchical modeling of molecular energies using a deep neural network

    Science.gov (United States)

    Lubbers, Nicholas; Smith, Justin S.; Barros, Kipton

    2018-06-01

    We introduce the Hierarchically Interacting Particle Neural Network (HIP-NN) to model molecular properties from datasets of quantum calculations. Inspired by a many-body expansion, HIP-NN decomposes properties, such as energy, as a sum over hierarchical terms. These terms are generated from a neural network—a composition of many nonlinear transformations—acting on a representation of the molecule. HIP-NN achieves the state-of-the-art performance on a dataset of 131k ground state organic molecules and predicts energies with 0.26 kcal/mol mean absolute error. With minimal tuning, our model is also competitive on a dataset of molecular dynamics trajectories. In addition to enabling accurate energy predictions, the hierarchical structure of HIP-NN helps to identify regions of model uncertainty.

  12. Neural Machine Translation with Recurrent Attention Modeling

    OpenAIRE

    Yang, Zichao; Hu, Zhiting; Deng, Yuntian; Dyer, Chris; Smola, Alex

    2016-01-01

    Knowing which words have been attended to in previous time steps while generating a translation is a rich source of information for predicting what words will be attended to in the future. We improve upon the attention model of Bahdanau et al. (2014) by explicitly modeling the relationship between previous and subsequent attention levels for each word using one recurrent network per input word. This architecture easily captures informative features, such as fertility and regularities in relat...

  13. Functional Modeling of Neural-Glia Interaction

    DEFF Research Database (Denmark)

    Postnov, D.E.; Brazhe, N.A.; Sosnovtseva, Olga

    2012-01-01

    Functional modeling is an approach that focuses on the representation of the qualitative dynamics of the individual components (e.g. cells) of a system and on the structure of the interaction network.......Functional modeling is an approach that focuses on the representation of the qualitative dynamics of the individual components (e.g. cells) of a system and on the structure of the interaction network....

  14. Evaluation of Cyber Security and Modelling of Risk Propagation with Petri Nets

    Directory of Open Access Journals (Sweden)

    Marcin Szpyrka

    2017-02-01

    Full Text Available This article presents a new method of risk propagation among associated elements. On thebasis of coloured Petri nets, a new class called propagation nets is defined. This class providesa formal model of a risk propagation. The proposed method allows for model relations betweennodes forming the network structure. Additionally, it takes into account the bidirectional relationsbetween components as well as relations between isomorphic, symmetrical components in variousbranches of the network. This method is agnostic in terms of use in various systems and it canbe adapted to the propagation model of any systems’ characteristics; however, it is intentionallyproposed to assess the risk of critical infrastructures. In this paper, as a proof of concept example, weshow the formal model of risk propagation proposed within the project Cyberspace Security ThreatsEvaluation System of the Republic of Poland. In the article, the idea of the method is presented aswell as its use case for evaluation of risk for cyber threats. With the adaptation of Petri nets, it ispossible to evaluate the risk for the particular node and assess the impact of this risk for all relatednodes including hierarchic relations of components as well as isomorphism of elements.

  15. Data acquisition in modeling using neural networks and decision trees

    Directory of Open Access Journals (Sweden)

    R. Sika

    2011-04-01

    Full Text Available The paper presents a comparison of selected models from area of artificial neural networks and decision trees in relation with actualconditions of foundry processes. The work contains short descriptions of used algorithms, their destination and method of data preparation,which is a domain of work of Data Mining systems. First part concerns data acquisition realized in selected iron foundry, indicating problems to solve in aspect of casting process modeling. Second part is a comparison of selected algorithms: a decision tree and artificial neural network, that is CART (Classification And Regression Trees and BP (Backpropagation in MLP (Multilayer Perceptron networks algorithms.Aim of the paper is to show an aspect of selecting data for modeling, cleaning it and reducing, for example due to too strong correlationbetween some of recorded process parameters. Also, it has been shown what results can be obtained using two different approaches:first when modeling using available commercial software, for example Statistica, second when modeling step by step using Excel spreadsheetbasing on the same algorithm, like BP-MLP. Discrepancy of results obtained from these two approaches originates from a priorimade assumptions. Mentioned earlier Statistica universal software package, when used without awareness of relations of technologicalparameters, i.e. without user having experience in foundry and without scheduling ranks of particular parameters basing on acquisition, can not give credible basis to predict the quality of the castings. Also, a decisive influence of data acquisition method has been clearly indicated, the acquisition should be conducted according to repetitive measurement and control procedures. This paper is based on about 250 records of actual data, for one assortment for 6 month period, where only 12 data sets were complete (including two that were used for validation of neural network and useful for creating a model. It is definitely too

  16. An improved null model for assessing the net effects of multiple stressors on communities.

    Science.gov (United States)

    Thompson, Patrick L; MacLennan, Megan M; Vinebrooke, Rolf D

    2018-01-01

    Ecological stressors (i.e., environmental factors outside their normal range of variation) can mediate each other through their interactions, leading to unexpected combined effects on communities. Determining whether the net effect of stressors is ecologically surprising requires comparing their cumulative impact to a null model that represents the linear combination of their individual effects (i.e., an additive expectation). However, we show that standard additive and multiplicative null models that base their predictions on the effects of single stressors on community properties (e.g., species richness or biomass) do not provide this linear expectation, leading to incorrect interpretations of antagonistic and synergistic responses by communities. We present an alternative, the compositional null model, which instead bases its predictions on the effects of stressors on individual species, and then aggregates them to the community level. Simulations demonstrate the improved ability of the compositional null model to accurately provide a linear expectation of the net effect of stressors. We simulate the response of communities to paired stressors that affect species in a purely additive fashion and compare the relative abilities of the compositional null model and two standard community property null models (additive and multiplicative) to predict these linear changes in species richness and community biomass across different combinations (both positive, negative, or opposite) and intensities of stressors. The compositional model predicts the linear effects of multiple stressors under almost all scenarios, allowing for proper classification of net effects, whereas the standard null models do not. Our findings suggest that current estimates of the prevalence of ecological surprises on communities based on community property null models are unreliable, and should be improved by integrating the responses of individual species to the community level as does our

  17. Hierarchical Colored Petri Nets for Modeling and Analysis of Transit Signal Priority Control Systems

    Directory of Open Access Journals (Sweden)

    Yisheng An

    2018-01-01

    Full Text Available In this paper, we consider the problem of developing a model for traffic signal control with transit priority using Hierarchical Colored Petri nets (HCPN. Petri nets (PN are useful for state analysis of discrete event systems due to their powerful modeling capability and mathematical formalism. This paper focuses on their use to formalize the transit signal priority (TSP control model. In a four-phase traffic signal control model, the transit detection and two kinds of transit priority strategies are integrated to obtain the HCPN-based TSP control models. One of the advantages to use these models is the clear presentation of traffic light behaviors in terms of conditions and events that cause the detection of a priority request by a transit vehicle. Another advantage of the resulting models is that the correctness and reliability of the proposed strategies are easily analyzed. After their full reachable states are generated, the boundness, liveness, and fairness of the proposed models are verified. Experimental results show that the proposed control model provides transit vehicles with better effectiveness at intersections. This work helps advance the state of the art in the design of signal control models related to the intersection of roadways.

  18. Modeling the Process of Color Image Recognition Using ART2 Neural Network

    Directory of Open Access Journals (Sweden)

    Todor Petkov

    2015-09-01

    Full Text Available This paper thoroughly describes the use of unsupervised adaptive resonance theory ART2 neural network for the purposes of image color recognition of x-ray images and images taken by nuclear magnetic resonance. In order to train the network, the pixel values of RGB colors are regarded as learning vectors with three values, one for red, one for green and one for blue were used. At the end the trained network was tested by the values of pictures and determines the design, or how to visualize the converted picture. As a result we had the same pictures with colors according to the network. Here we use the generalized net to prepare a model that describes the process of the color image recognition.

  19. Empirical modeling of nuclear power plants using neural networks

    International Nuclear Information System (INIS)

    Parlos, A.G.; Atiya, A.; Chong, K.T.

    1991-01-01

    A summary of a procedure for nonlinear identification of process dynamics encountered in nuclear power plant components is presented in this paper using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the nonlinear structure for system identification. In the overall identification process, the feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of time-dependent system nonlinearities. The standard backpropagation learning algorithm is modified and is used to train the proposed hybrid network in a supervised manner. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The nonlinear response of a representative steam generator is predicted using a neural network and is compared to the response obtained from a sophisticated physical model during both high- and low-power operation. The transient responses compare well, though further research is warranted for training and testing of recurrent neural networks during more severe operational transients and accident scenarios

  20. An Extensible NetLogo Model for Visualizing Message Routing Protocols

    Science.gov (United States)

    2017-08-01

    the hard sciences to the social sciences to computer-generated art. NetLogo represents the world as a set of...describe the model is shown here; for the supporting methods , refer to the source code. Approved for public release; distribution is unlimited. 4 iv...if ticks - last-inject > time-to-inject [inject] if run# > #runs [stop] end Next, we present some basic statistics collected for the

  1. Cost and cost effectiveness of long-lasting insecticide-treated bed nets - a model-based analysis

    Directory of Open Access Journals (Sweden)

    Pulkki-Brännström Anni-Maria

    2012-04-01

    Full Text Available Abstract Background The World Health Organization recommends that national malaria programmes universally distribute long-lasting insecticide-treated bed nets (LLINs. LLINs provide effective insecticide protection for at least three years while conventional nets must be retreated every 6-12 months. LLINs may also promise longer physical durability (lifespan, but at a higher unit price. No prospective data currently available is sufficient to calculate the comparative cost effectiveness of different net types. We thus constructed a model to explore the cost effectiveness of LLINs, asking how a longer lifespan affects the relative cost effectiveness of nets, and if, when and why LLINs might be preferred to conventional insecticide-treated nets. An innovation of our model is that we also considered the replenishment need i.e. loss of nets over time. Methods We modelled the choice of net over a 10-year period to facilitate the comparison of nets with different lifespan (and/or price and replenishment need over time. Our base case represents a large-scale programme which achieves high coverage and usage throughout the population by distributing either LLINs or conventional nets through existing health services, and retreats a large proportion of conventional nets regularly at low cost. We identified the determinants of bed net programme cost effectiveness and parameter values for usage rate, delivery and retreatment cost from the literature. One-way sensitivity analysis was conducted to explicitly compare the differential effect of changing parameters such as price, lifespan, usage and replenishment need. Results If conventional and long-lasting bed nets have the same physical lifespan (3 years, LLINs are more cost effective unless they are priced at more than USD 1.5 above the price of conventional nets. Because a longer lifespan brings delivery cost savings, each one year increase in lifespan can be accompanied by a USD 1 or more increase in price

  2. A Pruning Neural Network Model in Credit Classification Analysis

    Directory of Open Access Journals (Sweden)

    Yajiao Tang

    2018-01-01

    Full Text Available Nowadays, credit classification models are widely applied because they can help financial decision-makers to handle credit classification issues. Among them, artificial neural networks (ANNs have been widely accepted as the convincing methods in the credit industry. In this paper, we propose a pruning neural network (PNN and apply it to solve credit classification problem by adopting the well-known Australian and Japanese credit datasets. The model is inspired by synaptic nonlinearity of a dendritic tree in a biological neural model. And it is trained by an error back-propagation algorithm. The model is capable of realizing a neuronal pruning function by removing the superfluous synapses and useless dendrites and forms a tidy dendritic morphology at the end of learning. Furthermore, we utilize logic circuits (LCs to simulate the dendritic structures successfully which makes PNN be implemented on the hardware effectively. The statistical results of our experiments have verified that PNN obtains superior performance in comparison with other classical algorithms in terms of accuracy and computational efficiency.

  3. Empirical Modeling of the Plasmasphere Dynamics Using Neural Networks

    Science.gov (United States)

    Zhelavskaya, I. S.; Shprits, Y.; Spasojevic, M.

    2017-12-01

    We present a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm for the period of October 1, 2012 - July 1, 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distribution for 2 ≤ L ≤ 6 and all local times. We validate and test the model by measuring its performance on independent datasets withheld from the training set and by comparing the model predicted global evolution with global images of He+ distribution in the Earth's plasmasphere from the IMAGE Extreme UltraViolet (EUV) instrument. We identify the parameters that best quantify the plasmasphere dynamics by training and comparing multiple neural networks with different combinations of input parameters (geomagnetic indices, solar wind data, and different durations of their time history). We demonstrate results of both local and global plasma density reconstruction. This study illustrates how global dynamics can be reconstructed from local in-situ observations by using machine learning techniques.

  4. QUAL-NET, a high temporal-resolution eutrophication model for large hydrographic networks

    Directory of Open Access Journals (Sweden)

    C. Minaudo

    2018-04-01

    Full Text Available To allow climate change impact assessment of water quality in river systems, the scientific community lacks efficient deterministic models able to simulate hydrological and biogeochemical processes in drainage networks at the regional scale, with high temporal resolution and water temperature explicitly determined. The model QUALity-NETwork (QUAL-NET was developed and tested on the Middle Loire River Corridor, a sub-catchment of the Loire River in France, prone to eutrophication. Hourly variations computed efficiently by the model helped disentangle the complex interactions existing between hydrological and biological processes across different timescales. Phosphorus (P availability was the most constraining factor for phytoplankton development in the Loire River, but simulating bacterial dynamics in QUAL-NET surprisingly evidenced large amounts of organic matter recycled within the water column through the microbial loop, which delivered significant fluxes of available P and enhanced phytoplankton growth. This explained why severe blooms still occur in the Loire River despite large P input reductions since 1990. QUAL-NET could be used to study past evolutions or predict future trajectories under climate change and land use scenarios.

  5. QUAL-NET, a high temporal-resolution eutrophication model for large hydrographic networks

    Science.gov (United States)

    Minaudo, Camille; Curie, Florence; Jullian, Yann; Gassama, Nathalie; Moatar, Florentina

    2018-04-01

    To allow climate change impact assessment of water quality in river systems, the scientific community lacks efficient deterministic models able to simulate hydrological and biogeochemical processes in drainage networks at the regional scale, with high temporal resolution and water temperature explicitly determined. The model QUALity-NETwork (QUAL-NET) was developed and tested on the Middle Loire River Corridor, a sub-catchment of the Loire River in France, prone to eutrophication. Hourly variations computed efficiently by the model helped disentangle the complex interactions existing between hydrological and biological processes across different timescales. Phosphorus (P) availability was the most constraining factor for phytoplankton development in the Loire River, but simulating bacterial dynamics in QUAL-NET surprisingly evidenced large amounts of organic matter recycled within the water column through the microbial loop, which delivered significant fluxes of available P and enhanced phytoplankton growth. This explained why severe blooms still occur in the Loire River despite large P input reductions since 1990. QUAL-NET could be used to study past evolutions or predict future trajectories under climate change and land use scenarios.

  6. Role of SDF1/CXCR4 Interaction in Experimental Hemiplegic Models with Neural Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Noboru Suzuki

    2012-02-01

    Full Text Available Much attention has been focused on neural cell transplantation because of its promising clinical applications. We have reported that embryonic stem (ES cell derived neural stem/progenitor cell transplantation significantly improved motor functions in a hemiplegic mouse model. It is important to understand the molecular mechanisms governing neural regeneration of the damaged motor cortex after the transplantation. Recent investigations disclosed that chemokines participated in the regulation of migration and maturation of neural cell grafts. In this review, we summarize the involvement of inflammatory chemokines including stromal cell derived factor 1 (SDF1 in neural regeneration after ES cell derived neural stem/progenitor cell transplantation in mouse stroke models.

  7. Modeling of light absorption in tissue during infrared neural stimulation

    Science.gov (United States)

    Thompson, Alexander C.; Wade, Scott A.; Brown, William G. A.; Stoddart, Paul R.

    2012-07-01

    A Monte Carlo model has been developed to simulate light transport and absorption in neural tissue during infrared neural stimulation (INS). A range of fiber core sizes and numerical apertures are compared illustrating the advantages of using simulations when designing a light delivery system. A range of wavelengths, commonly used for INS, are also compared for stimulation of nerves in the cochlea, in terms of both the energy absorbed and the change in temperature due to a laser pulse. Modeling suggests that a fiber with core diameter of 200 μm and NA=0.22 is optimal for optical stimulation in the geometry used and that temperature rises in the spiral ganglion neurons are as low as 0.1°C. The results show a need for more careful experimentation to allow different proposed mechanisms of INS to be distinguished.

  8. Modeling of an industrial drying process by artificial neural networks

    Directory of Open Access Journals (Sweden)

    E. Assidjo

    2008-09-01

    Full Text Available A suitable method is needed to solve the nonquality problem in the grated coconut industry due to the poor control of product humidity during the process. In this study the possibility of using an artificial neural network (ANN, precisely a Multilayer Perceptron, for modeling the drying step of the production of grated coconut process is highlighted. Drying must confer to the product a final moisture of 3%. Unfortunately, under industrial conditions, this moisture varies from 1.9 to 4.8 %. In order to control this parameter and consequently reduce the proportion of the product that does not meet the humidity specification, a 9-4-1 neural network architecture was established using data gathered from an industrial plant. This Multilayer Perceptron can satisfactorily model the process with less bias, ranging from -0.35 to 0.34%, and can reduce the rate of rejected products from 92% to 3% during the first cycle of drying.

  9. Semi-empirical neural network models of controlled dynamical systems

    Directory of Open Access Journals (Sweden)

    Mihail V. Egorchev

    2017-12-01

    Full Text Available A simulation approach is discussed for maneuverable aircraft motion as nonlinear controlled dynamical system under multiple and diverse uncertainties including knowledge imperfection concerning simulated plant and its environment exposure. The suggested approach is based on a merging of theoretical knowledge for the plant with training tools of artificial neural network field. The efficiency of this approach is demonstrated using the example of motion modeling and the identification of the aerodynamic characteristics of a maneuverable aircraft. A semi-empirical recurrent neural network based model learning algorithm is proposed for multi-step ahead prediction problem. This algorithm sequentially states and solves numerical optimization subproblems of increasing complexity, using each solution as initial guess for subsequent subproblem. We also consider a procedure for representative training set acquisition that utilizes multisine control signals.

  10. Development of infill drilling recovery models for carbonates reservoirs using neural networks and multivariate statistical as a novel method

    International Nuclear Information System (INIS)

    Soto, R; Wu, Ch. H; Bubela, A M

    1999-01-01

    This work introduces a novel methodology to improve reservoir characterization models. In this methodology we integrated multivariate statistical analyses, and neural network models for forecasting the infill drilling ultimate oil recovery from reservoirs in San Andres and Clearfork carbonate formations in west Texas. Development of the oil recovery forecast models help us to understand the relative importance of dominant reservoir characteristics and operational variables, reproduce recoveries for units included in the database, forecast recoveries for possible new units in similar geological setting, and make operational (infill drilling) decisions. The variety of applications demands the creation of multiple recovery forecast models. We have developed intelligent software (Soto, 1998), oilfield intelligence (01), as an engineering tool to improve the characterization of oil and gas reservoirs. 01 integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphic design, and inference engine modules. One of the challenges in this research was to identify the dominant and the optimum number of independent variables. The variables include porosity, permeability, water saturation, depth, area, net thickness, gross thickness, formation volume factor, pressure, viscosity, API gravity, number of wells in initial water flooding, number of wells for primary recovery, number of infill wells over the initial water flooding, PRUR, IWUR, and IDUR. Multivariate principal component analysis is used to identify the dominant and the optimum number of independent variables. We compared the results from neural network models with the non-parametric approach. The advantage of the non-parametric regression is that it is easy to use. The disadvantage is that it retains a large variance of forecast results for a particular data set. We also used neural network concepts to develop recovery

  11. The Perspective on Data and Control Flow Analysis in Topological Functioning Models by Petri Nets

    Directory of Open Access Journals (Sweden)

    Asnina Erika

    2014-12-01

    Full Text Available The perspective on integration of two mathematical formalisms, i.e., Colored Petri Nets (CPNs and Topological Functioning Model (TFM, is discussed in the paper. The roots of CPNs are in modeling system functionality. The TFM joins principles of system theory and algebraic topology, and formally bridges the solution domain with the problem domain. It is a base for further automated construction of software design models. The paper discusses a perspective on check of control and data flows in the TFM by CPNs formalism. The research result is definition of mappings from TFMs to CPNs.

  12. Accurate lithography simulation model based on convolutional neural networks

    Science.gov (United States)

    Watanabe, Yuki; Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki

    2017-07-01

    Lithography simulation is an essential technique for today's semiconductor manufacturing process. In order to calculate an entire chip in realistic time, compact resist model is commonly used. The model is established for faster calculation. To have accurate compact resist model, it is necessary to fix a complicated non-linear model function. However, it is difficult to decide an appropriate function manually because there are many options. This paper proposes a new compact resist model using CNN (Convolutional Neural Networks) which is one of deep learning techniques. CNN model makes it possible to determine an appropriate model function and achieve accurate simulation. Experimental results show CNN model can reduce CD prediction errors by 70% compared with the conventional model.

  13. A dynamic neural field model of temporal order judgments.

    Science.gov (United States)

    Hecht, Lauren N; Spencer, John P; Vecera, Shaun P

    2015-12-01

    Temporal ordering of events is biased, or influenced, by perceptual organization-figure-ground organization-and by spatial attention. For example, within a region assigned figural status or at an attended location, onset events are processed earlier (Lester, Hecht, & Vecera, 2009; Shore, Spence, & Klein, 2001), and offset events are processed for longer durations (Hecht & Vecera, 2011; Rolke, Ulrich, & Bausenhart, 2006). Here, we present an extension of a dynamic field model of change detection (Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009) that accounts for both the onset and offset performance for figural and attended regions. The model posits that neural populations processing the figure are more active, resulting in a peak of activation that quickly builds toward a detection threshold when the onset of a target is presented. This same enhanced activation for some neural populations is maintained when a present target is removed, creating delays in the perception of the target's offset. We discuss the broader implications of this model, including insights regarding how neural activation can be generated in response to the disappearance of information. (c) 2015 APA, all rights reserved).

  14. Neural Network Models for Free Radical Polymerization of Methyl Methacrylate

    International Nuclear Information System (INIS)

    Curteanu, S.; Leon, F.; Galea, D.

    2003-01-01

    In this paper, a neural network modeling of the batch bulk methyl methacrylate polymerization is performed. To obtain conversion, number and weight average molecular weights, three neural networks were built. Each was a multilayer perception with one or two hidden layers. The choice of network topology, i.e. the number of hidden layers and the number of neurons in these layers, was based on achieving a compromise between precision and complexity. Thus, it was intended to have an error as small as possible at the end of back-propagation training phases, while using a network with reduced complexity. The performances of the networks were evaluated by comparing network predictions with training data, validation data (which were not uses for training), and with the results of a mechanistic model. The accurate predictions of neural networks for monomer conversion, number average molecular weight and weight average molecular weight proves that this modeling methodology gives a good representation and generalization of the batch bulk methyl methacrylate polymerization. (author)

  15. Risk prediction model: Statistical and artificial neural network approach

    Science.gov (United States)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  16. The Influence of Herbivory on the net rate of Increase of Gypsy Moth Abundance: A Modeling Analysis

    Science.gov (United States)

     Harry T.  Valentine

    1983-01-01

    A differential equation model of gypsy moth abundance, average larval dry weight, and food abundance was used to analyze the effects of changes in foliar chemistry on the net per capita rate of increase in a gypsy moth population. If relative consumption rate per larva is unaffected by herbivory, a reduction in the nutritional value of foliage reduces the net rate of...

  17. Artificial neural network modelling in heavy ion collisions

    International Nuclear Information System (INIS)

    El-dahshan, E.; Radi, A.; El-Bakry, M.Y.; El Mashad, M.

    2008-01-01

    The neural network (NN) model and parton two fireball model (PTFM) have been used to study the pseudo-rapidity distribution of the shower particles for C 12, O 16, Si 28 and S 32 on nuclear emulsion. The trained NN shows a better fitting with experimental data than the PTFM calculations. The NN is then used to predict the distributions that are not present in the training set and matched them effectively. The NN simulation results prove a strong presence modeling in heavy ion collisions

  18. Trend time-series modeling and forecasting with neural networks.

    Science.gov (United States)

    Qi, Min; Zhang, G Peter

    2008-05-01

    Despite its great importance, there has been no general consensus on how to model the trends in time-series data. Compared to traditional approaches, neural networks (NNs) have shown some promise in time-series forecasting. This paper investigates how to best model trend time series using NNs. Four different strategies (raw data, raw data with time index, detrending, and differencing) are used to model various trend patterns (linear, nonlinear, deterministic, stochastic, and breaking trend). We find that with NNs differencing often gives meritorious results regardless of the underlying data generating processes (DGPs). This finding is also confirmed by the real gross national product (GNP) series.

  19. Neural Networks in Modelling Maintenance Unit Load Status

    Directory of Open Access Journals (Sweden)

    Anđelko Vojvoda

    2002-03-01

    Full Text Available This paper deals with a way of applying a neural networkfor describing se1vice station load in a maintenance unit. Dataacquired by measuring the workload of single stations in amaintenance unit were used in the process of training the neuralnetwork in order to create a model of the obse1ved system.The model developed in this way enables us to make more accuratepredictions over critical overload. Modelling was realisedby developing and using m-functions of the Matlab software.

  20. Data Driven Broiler Weight Forecasting using Dynamic Neural Network Models

    DEFF Research Database (Denmark)

    Johansen, Simon Vestergaard; Bendtsen, Jan Dimon; Riisgaard-Jensen, Martin

    2017-01-01

    In this article, the dynamic influence of environmental broiler house conditions and broiler growth is investigated. Dynamic neural network forecasting models have been trained on farm-scale broiler batch production data from 12 batches from the same house. The model forecasts future broiler weight...... and uses environmental conditions such as heating, ventilation, and temperature along with broiler behavior such as feed and water consumption. Training data and forecasting data is analyzed to explain when the model might fail at generalizing. We present ensemble broiler weight forecasts to day 7, 14, 21...

  1. Hypothetical neural mechanism that may play a role in mental rotation: an attractor neural network model.

    Science.gov (United States)

    Benusková, L; Estok, S

    1998-11-01

    We propose an attractor neural network (ANN) model that performs rotation-invariant pattern recognition in such a way that it can account for a neural mechanism being involved in the image transformation accompanying the experience of mental rotation. We compared the performance of our ANN model with the results of the chronometric psychophysical experiments of Cooper and Shepard (Cooper L A and Shepard R N 1973 Visual Information Processing (New York: Academic) pp 204-7) on discrimination of alphanumeric characters presented in various angular departures from their canonical upright position. Comparing the times required for pattern retrieval in its canonical upright position with the reaction times of human subjects, we found agreement in that (i) retrieval times for clockwise and anticlockwise departures of the same angular magnitude (up to 180 degrees) were not different, (ii) retrieval times increased with departure from upright and (iii) increased more sharply as departure from upright approached 180 degrees. The rotation-invariant retrieval of the activity pattern has been accomplished by means of the modified algorithm of Dotsenko (Dotsenko V S 1988 J. Phys. A: Math. Gen. 21 L783-7) proposed for translation-, rotation- and size-invariant pattern recognition, which uses relaxation of neuronal firing thresholds to guide the evolution of the ANN in state space towards the desired memory attractor. The dynamics of neuronal relaxation has been modified for storage and retrieval of low-activity patterns and the original gradient optimization of threshold dynamics has been replaced with optimization by simulated annealing.

  2. Validating neural-network refinements of nuclear mass models

    Science.gov (United States)

    Utama, R.; Piekarewicz, J.

    2018-01-01

    Background: Nuclear astrophysics centers on the role of nuclear physics in the cosmos. In particular, nuclear masses at the limits of stability are critical in the development of stellar structure and the origin of the elements. Purpose: We aim to test and validate the predictions of recently refined nuclear mass models against the newly published AME2016 compilation. Methods: The basic paradigm underlining the recently refined nuclear mass models is based on existing state-of-the-art models that are subsequently refined through the training of an artificial neural network. Bayesian inference is used to determine the parameters of the neural network so that statistical uncertainties are provided for all model predictions. Results: We observe a significant improvement in the Bayesian neural network (BNN) predictions relative to the corresponding "bare" models when compared to the nearly 50 new masses reported in the AME2016 compilation. Further, AME2016 estimates for the handful of impactful isotopes in the determination of r -process abundances are found to be in fairly good agreement with our theoretical predictions. Indeed, the BNN-improved Duflo-Zuker model predicts a root-mean-square deviation relative to experiment of σrms≃400 keV. Conclusions: Given the excellent performance of the BNN refinement in confronting the recently published AME2016 compilation, we are confident of its critical role in our quest for mass models of the highest quality. Moreover, as uncertainty quantification is at the core of the BNN approach, the improved mass models are in a unique position to identify those nuclei that will have the strongest impact in resolving some of the outstanding questions in nuclear astrophysics.

  3. A Multiobjective Sparse Feature Learning Model for Deep Neural Networks.

    Science.gov (United States)

    Gong, Maoguo; Liu, Jia; Li, Hao; Cai, Qing; Su, Linzhi

    2015-12-01

    Hierarchical deep neural networks are currently popular learning models for imitating the hierarchical architecture of human brain. Single-layer feature extractors are the bricks to build deep networks. Sparse feature learning models are popular models that can learn useful representations. But most of those models need a user-defined constant to control the sparsity of representations. In this paper, we propose a multiobjective sparse feature learning model based on the autoencoder. The parameters of the model are learnt by optimizing two objectives, reconstruction error and the sparsity of hidden units simultaneously to find a reasonable compromise between them automatically. We design a multiobjective induced learning procedure for this model based on a multiobjective evolutionary algorithm. In the experiments, we demonstrate that the learning procedure is effective, and the proposed multiobjective model can learn useful sparse features.

  4. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling

    Directory of Open Access Journals (Sweden)

    Miguel Aguilera

    2016-09-01

    Full Text Available The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioural metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioural preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioural flexibility with an equivalent model from the point of view of 'internalist neuroscience'. A statistical characterization of our model and tools from information theory allows us to show how (1 the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2 the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioural patterns that sustain sensorimotor metastable states, and (3 these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling

  5. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling.

    Science.gov (United States)

    Aguilera, Miguel; Bedia, Manuel G; Barandiaran, Xabier E

    2016-01-01

    The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of "internalist neuroscience." A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We

  6. Method for the traveling salesman problem by controlling two parameters of the Hopfield neural network; Parameter seigyogata hop field net ni yoru junkai salesman mondai no kaiho

    Energy Technology Data Exchange (ETDEWEB)

    Setsu, N.; Murakami, K.; Ohori, T.; Watanabe, K. [Hokkaido Institute of Technology, Sapporo (Japan)

    1996-01-20

    For solving the traveling salesman problem (TSP) by using a continuous value outputting neural net (NN), an investigation was given on the accuracy of solution and the possibility on traveling routes by using the penalty coefficient and temperature as the parameters for energy functions. The parameter range to obtain high-quality traveling routes was shown by a numerical experiment. The experimental result revealed that, when the penalty coefficient `r` is large, the traveling route possibility tends to become higher, but the route length increases, and when the `r` is small, the traveling route possibility becomes lower, but the route length decreases, also in the continuous value outputting NN as in the two-value outputting NN. Noticing this fact, and in order to improve the traveling route possibility as well as the solution quality, a method was proposed to expand the penalty control method which was proposed previously by the authors on the two-value outputting NN, into the continuous value outputting NN. In addition, a proposal was also made on a method to derive an optimal temperature efficiently by using the golden section method. It was found that the relative error has been reduced by 48% on the average as compared with that in the conventional method in which the temperature is fixed. 6 refs., 5 figs.

  7. Computational Models and Emergent Properties of Respiratory Neural Networks

    Science.gov (United States)

    Lindsey, Bruce G.; Rybak, Ilya A.; Smith, Jeffrey C.

    2012-01-01

    Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components, including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions, enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered. PMID:23687564

  8. Finite element model updating of a small steel frame using neural networks

    International Nuclear Information System (INIS)

    Zapico, J L; González, M P; Alonso, R; González-Buelga, A

    2008-01-01

    This paper presents an experimental and analytical dynamic study of a small-scale steel frame. The experimental model was physically built and dynamically tested on a shaking table in a series of different configurations obtained from the original one by changing the mass and by causing structural damage. Finite element modelling and parameterization with physical meaning is iteratively tried for the original undamaged configuration. The finite element model is updated through a neural network, the natural frequencies of the model being the net input. The updating process is made more accurate and robust by using a regressive procedure, which constitutes an original contribution of this work. A novel simplified analytical model has been developed to evaluate the reduction of bending stiffness of the elements due to damage. The experimental results of the rest of the configurations have been used to validate both the updated finite element model and the analytical one. The statistical properties of the identified modal data are evaluated. From these, the statistical properties and a confidence interval for the estimated model parameters are obtained by using the Latin Hypercube sampling technique. The results obtained are successful: the updated model accurately reproduces the low modes identified experimentally for all configurations, and the statistical study of the transmission of errors yields a narrow confidence interval for all the identified parameters

  9. Modelling the protocol stack in NCS with deterministic and stochastic petri net

    Science.gov (United States)

    Hui, Chen; Chunjie, Zhou; Weifeng, Zhu

    2011-06-01

    Protocol stack is the basis of the networked control systems (NCS). Full or partial reconfiguration of protocol stack offers both optimised communication service and system performance. Nowadays, field testing is unrealistic to determine the performance of reconfigurable protocol stack; and the Petri net formal description technique offers the best combination of intuitive representation, tool support and analytical capabilities. Traditionally, separation between the different layers of the OSI model has been a common practice. Nevertheless, such a layered modelling analysis framework of protocol stack leads to the lack of global optimisation for protocol reconfiguration. In this article, we proposed a general modelling analysis framework for NCS based on the cross-layer concept, which is to establish an efficiency system scheduling model through abstracting the time constraint, the task interrelation, the processor and the bus sub-models from upper and lower layers (application, data link and physical layer). Cross-layer design can help to overcome the inadequacy of global optimisation based on information sharing between protocol layers. To illustrate the framework, we take controller area network (CAN) as a case study. The simulation results of deterministic and stochastic Petri-net (DSPN) model can help us adjust the message scheduling scheme and obtain better system performance.

  10. Neural network connectivity and response latency modelled by stochastic processes

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano

    is connected to thousands of other neurons. The rst question is: how to model neural networks through stochastic processes? A multivariate Ornstein-Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the proposed answer. Obviously, dependencies between neurons imply dependencies......Stochastic processes and their rst passage times have been widely used to describe the membrane potential dynamics of single neurons and to reproduce neuronal spikes, respectively.However, cerebral cortex in human brains is estimated to contain 10-20 billions of neurons and each of them...... between their spike times. Therefore, the second question is: how to detect neural network connectivity from simultaneously recorded spike trains? Answering this question corresponds to investigate the joint distribution of sequences of rst passage times. A non-parametric method based on copulas...

  11. Adaptive model predictive process control using neural networks

    Science.gov (United States)

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  12. Evolutionary neural network modeling for software cumulative failure time prediction

    International Nuclear Information System (INIS)

    Tian Liang; Noore, Afzel

    2005-01-01

    An evolutionary neural network modeling approach for software cumulative failure time prediction based on multiple-delayed-input single-output architecture is proposed. Genetic algorithm is used to globally optimize the number of the delayed input neurons and the number of neurons in the hidden layer of the neural network architecture. Modification of Levenberg-Marquardt algorithm with Bayesian regularization is used to improve the ability to predict software cumulative failure time. The performance of our proposed approach has been compared using real-time control and flight dynamic application data sets. Numerical results show that both the goodness-of-fit and the next-step-predictability of our proposed approach have greater accuracy in predicting software cumulative failure time compared to existing approaches

  13. Super capacitor modeling with artificial neural network (ANN)

    Energy Technology Data Exchange (ETDEWEB)

    Marie-Francoise, J.N.; Gualous, H.; Berthon, A. [Universite de Franche-Comte, Lab. en Electronique, Electrotechnique et Systemes (L2ES), UTBM, INRETS (LRE T31) 90 - Belfort (France)

    2004-07-01

    This paper presents super-capacitors modeling using Artificial Neural Network (ANN). The principle consists on a black box nonlinear multiple inputs single output (MISO) model. The system inputs are temperature and current, the output is the super-capacitor voltage. The learning and the validation of the ANN model from experimental charge and discharge of super-capacitor establish the relationship between inputs and output. The learning and the validation of the ANN model use experimental results of 2700 F, 3700 F and a super-capacitor pack. Once the network is trained, the ANN model can predict the super-capacitor behaviour with temperature variations. The update parameters of the ANN model are performed thanks to Levenberg-Marquardt method in order to minimize the error between the output of the system and the predicted output. The obtained results with the ANN model of super-capacitor and experimental ones are in good agreement. (authors)

  14. Estimating Net Primary Production of Swedish Forest Landscapes by Combining Mechanistic Modeling and Remote Sensing

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Smith, Benjamin; Løfgren, Anders

    2009-01-01

    and the Beer-Lambert law. LAI estimates were compared with satellite-extrapolated field estimates of LAI, and the results were generally acceptable. NPP estimates directly from the dynamic vegetation model and estimates obtained by combining the model estimates with remote sensing information were, on average......The aim of this study was to investigate a combination of satellite images of leaf area index (LAI) with processbased vegetation modeling for the accurate assessment of the carbon balances of Swedish forest ecosystems at the scale of a landscape. Monthly climatologic data were used as inputs...... in a dynamic vegetation model, the Lund Potsdam Jena-General Ecosystem Simulator. Model estimates of net primary production (NPP) and the fraction of absorbed photosynthetic active radiation were constrained by combining them with satellite-based LAI images using a general light use efficiency (LUE) model...

  15. Analysis of Neural-BOLD Coupling through Four Models of the Neural Metabolic Demand

    Directory of Open Access Journals (Sweden)

    Christopher W Tyler

    2015-12-01

    Full Text Available The coupling of the neuronal energetics to the blood-oxygen-level-dependent (BOLD response is still incompletely understood. To address this issue, we compared the fits of four plausible models of neurometabolic coupling dynamics to available data for simultaneous recordings of the local field potential (LFP and the local BOLD response recorded from monkey primary visual cortex over a wide range of stimulus durations. The four models of the metabolic demand driving the BOLD response were: direct coupling with the overall LFP; rectified coupling to the LFP; coupling with a slow adaptive component of the implied neural population response; and coupling with the non-adaptive intracellular input signal defined by the stimulus time course. Taking all stimulus durations into account, the results imply that the BOLD response is most closely coupled with metabolic demand derived from the intracellular input waveform, without significant influence from the adaptive transients and nonlinearities exhibited by the LFP waveform.

  16. The risk management of perishable supply chain based on coloured Petri Net modeling

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2018-03-01

    Full Text Available The supply chain of perishable products is a combination of information organization, sharing and integration. The information modeling of supply chain is constructed to abstract key quality information including environment information, processing procedures and product quality assessments based on principle of quality safety factors and property of decay rate. The coloured Petri Net is applied for integrated description of independent information classification, aiming at risk identification and risk management framework. Well, according to the quality deterioration tendency, risk grades management and decision-making system are established. Practically, the circulation system of aquatic products is studied in this paper for full processing description. The simulation experiments are manipulated on environmental information, processing information and product quality information by the coloured Petri Net. Eventually, the conclusion turns out precisely as such that the coloured Petri Net conclusive for information classification and information transmission while integrated information management is available of efficient risk identification and decision-making system in supply chain of perishable products. Meanwhile, the validity of evaluating management and shelf-life estimation of perishable products are technically feasible.

  17. Reactor pressure vessel embrittlement: Insights from neural network modelling

    Science.gov (United States)

    Mathew, J.; Parfitt, D.; Wilford, K.; Riddle, N.; Alamaniotis, M.; Chroneos, A.; Fitzpatrick, M. E.

    2018-04-01

    Irradiation embrittlement of steel pressure vessels is an important consideration for the operation of current and future light water nuclear reactors. In this study we employ an ensemble of artificial neural networks in order to provide predictions of the embrittlement using two literature datasets, one based on US surveillance data and the second from the IVAR experiment. We use these networks to examine trends with input variables and to assess various literature models including compositional effects and the role of flux and temperature. Overall, the networks agree with the existing literature models and we comment on their more general use in predicting irradiation embrittlement.

  18. Optimizing Markovian modeling of chaotic systems with recurrent neural networks

    International Nuclear Information System (INIS)

    Cechin, Adelmo L.; Pechmann, Denise R.; Oliveira, Luiz P.L. de

    2008-01-01

    In this paper, we propose a methodology for optimizing the modeling of an one-dimensional chaotic time series with a Markov Chain. The model is extracted from a recurrent neural network trained for the attractor reconstructed from the data set. Each state of the obtained Markov Chain is a region of the reconstructed state space where the dynamics is approximated by a specific piecewise linear map, obtained from the network. The Markov Chain represents the dynamics of the time series in its statistical essence. An application to a time series resulted from Lorenz system is included

  19. Model petri net of adaptive traffic lights and its collaboration with a special event

    Directory of Open Access Journals (Sweden)

    Tristono Tomi

    2018-01-01

    Full Text Available Traffic lights have an important role as the system control of vehicles flow on the urban network. Commonly, most countries still using fixed time strategy. Our research proposes the adaptive traffic lights model to response the traffic demand. It uses basic Petri net as a general modeling framework. Foractuating method of minimum and maximum green signal time interval, the green traffic lights have three-time extension units. Next, we collaborate on a case of the existence of railways that crosses on the southern arm of an intersection. We introduce both of collaboration model design of traffic lights and the railway's gate which always closes while a train passing. Verification and validation of the model are based on the simulation result of vehicles queue. The collaboration model design of traffic lights has excellent performance, and it can resolve the congestion problem better than conventional schedule.

  20. Time Series Neural Network Model for Part-of-Speech Tagging Indonesian Language

    Science.gov (United States)

    Tanadi, Theo

    2018-03-01

    Part-of-speech tagging (POS tagging) is an important part in natural language processing. Many methods have been used to do this task, including neural network. This paper models a neural network that attempts to do POS tagging. A time series neural network is modelled to solve the problems that a basic neural network faces when attempting to do POS tagging. In order to enable the neural network to have text data input, the text data will get clustered first using Brown Clustering, resulting a binary dictionary that the neural network can use. To further the accuracy of the neural network, other features such as the POS tag, suffix, and affix of previous words would also be fed to the neural network.

  1. Calculations of dose distributions using a neural network model

    International Nuclear Information System (INIS)

    Mathieu, R; Martin, E; Gschwind, R; Makovicka, L; Contassot-Vivier, S; Bahi, J

    2005-01-01

    The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journees Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map

  2. A neural network model of lateralization during letter identification.

    Science.gov (United States)

    Shevtsova, N; Reggia, J A

    1999-03-01

    The causes of cerebral lateralization of cognitive and other functions are currently not well understood. To investigate one aspect of function lateralization, a bihemispheric neural network model for a simple visual identification task was developed that has two parallel interacting paths of information processing. The model is based on commonly accepted concepts concerning neural connectivity, activity dynamics, and synaptic plasticity. A combination of both unsupervised (Hebbian) and supervised (Widrow-Hoff) learning rules is used to train the model to identify a small set of letters presented as input stimuli in the left visual hemifield, in the central position, and in the right visual hemifield. Each visual hemifield projects onto the contralateral hemisphere, and the two hemispheres interact via a simulated corpus callosum. The contribution of each individual hemisphere to the process of input stimuli identification was studied for a variety of underlying asymmetries. The results indicate that multiple asymmetries may cause lateralization. Lateralization occurred toward the side having larger size, higher excitability, or higher learning rate parameters. It appeared more intensively with strong inhibitory callosal connections, supporting the hypothesis that the corpus callosum plays a functionally inhibitory role. The model demonstrates clearly the dependence of lateralization on different hemisphere parameters and suggests that computational models can be useful in better understanding the mechanisms underlying emergence of lateralization.

  3. A neural network model of ventriloquism effect and aftereffect.

    Science.gov (United States)

    Magosso, Elisa; Cuppini, Cristiano; Ursino, Mauro

    2012-01-01

    Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i) the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii) amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii) ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli). By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm.

  4. A neural network model of ventriloquism effect and aftereffect.

    Directory of Open Access Journals (Sweden)

    Elisa Magosso

    Full Text Available Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli. By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm.

  5. Continuous Online Sequence Learning with an Unsupervised Neural Network Model.

    Science.gov (United States)

    Cui, Yuwei; Ahmad, Subutar; Hawkins, Jeff

    2016-09-14

    The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variableorder temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.

  6. Neural-net based calculation of voltage dips at maximum angular swing in direct transient stability analysis [of power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Inst. ' Nikola Tesla' , Belgrade (Yugoslavia); Sobajic, D J; Pao, Yohhan [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Applied Physics Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Computer Engineering and Science AI WARE inc., Cleveland, OH (United States)

    1992-10-01

    In heavily stressed power systems, post-fault transient voltage dips can lead to undesired tripping of industrial drives and large induction motors. The lowest transient voltage dips occur when fault clearing times are less than critical ones. In this paper, we propose a new iterative analytical methodology to obtain more accurate estimates of voltage dips at maximum angular swing in direct transient stability analysis. We also propose and demonstrate the possibility of storing the results of these computations in the associative memory (AM) system, which exhibits remarkable generalization capabilities. Feature-based models stored in the AM can be utilized for fast and accurate prediction of the location, duration and the amount of the worst voltage dips, thereby avoiding the need and cost for lengthy time-domain simulations. Numerical results obtained using the example of the New England power system are presented to illustrate our approach. (Author)

  7. A Method for Modeling the Virtual Instrument Automatic Test System Based on the Petri Net

    Institute of Scientific and Technical Information of China (English)

    MA Min; CHEN Guang-ju

    2005-01-01

    Virtual instrument is playing the important role in automatic test system. This paper introduces a composition of a virtual instrument automatic test system and takes the VXIbus based a test software platform which is developed by CAT lab of the UESTC as an example. Then a method to model this system based on Petri net is proposed. Through this method, we can analyze the test task scheduling to prevent the deadlock or resources conflict. At last, this paper analyzes the feasibility of this method.

  8. Description and evaluation of a net energy intake model as a function of dietary chewing index

    DEFF Research Database (Denmark)

    Jensen, L.M.; Markussen, B.; Nielsen, N.I.

    2016-01-01

    Previously, a linear relationship has been found between net energy intake (NEI) and dietary chewing index (CI) of the diet for different types of cattle. Therefore, we propose to generalize and calibrate this relationship into a new model for direct prediction of NEI by dairy cows from CI values...... (CINE; min/MJ of NE). Furthermore, we studied the forage-to-concentrate substitution rate in this new NEI model. To calibrate the model on a diverse set of situations, we built a database of mean intake from 14 production experiments with a total of 986 primi- and multiparous lactating dairy cows......, and disturbance, across and within experiments on independent data from 19 experiments including 812 primi- and multiparous lactating dairy cows of different breeds fed 80 different diets ad libitum. The NEI model predicted NEI with an MSPE of 8% of observed, and across the 19 experiments the error central...

  9. Models of neural dynamics in brain information processing - the developments of 'the decade'

    International Nuclear Information System (INIS)

    Borisyuk, G N; Borisyuk, R M; Kazanovich, Yakov B; Ivanitskii, Genrikh R

    2002-01-01

    Neural network models are discussed that have been developed during the last decade with the purpose of reproducing spatio-temporal patterns of neural activity in different brain structures. The main goal of the modeling was to test hypotheses of synchronization, temporal and phase relations in brain information processing. The models being considered are those of temporal structure of spike sequences, of neural activity dynamics, and oscillatory models of attention and feature integration. (reviews of topical problems)

  10. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange

    Science.gov (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.

    2016-12-01

    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  11. Modeling and Speed Control of Induction Motor Drives Using Neural Networks

    Directory of Open Access Journals (Sweden)

    V. Jamuna

    2010-08-01

    Full Text Available Speed control of induction motor drives using neural networks is presented. The mathematical model of single phase induction motor is developed. A new simulink model for a neural network-controlled bidirectional chopper fed single phase induction motor is proposed. Under normal operation, the true drive parameters are real-time identified and they are converted into the controller parameters through multilayer forward computation by neural networks. Comparative study has been made between the conventional and neural network controllers. It is observed that the neural network controlled drive system has better dynamic performance, reduced overshoot and faster transient response than the conventional controlled system.

  12. Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model

    International Nuclear Information System (INIS)

    Veroustraete, F.; Patyn, J.; Myneni, R.B.

    1996-01-01

    The evaluation and prediction of changes in carbon dynamics at the ecosystem level is a key issue in studies of global change. An operational concept for the determination of carbon fluxes for the Belgian territory is the goal of the presented study. The approach is based on the integration of remotely sensed data into ecosystem models in order to evaluate photosynthetic assimilation and net ecosystem exchange (NEE). Remote sensing can be developed as an operational tool to determine the fraction of absorbed photosynthetically active radiation (feAR). A review of the methodological approach of mapping fPAR dynamics at the regional scale by means of NOAA11-A VHRR / 2 data for the year 1990 is given. The processing sequence from raw radiance values to fPAR is presented. An interesting aspect of incorporating remote sensing derived fPAR in ecosystem models is the potential for modeling actual as opposed to potential vegetation. Further work should prove whether the concepts presented and the assumptions made in this study are valid. (NEE). Complex ecosystem models with a highly predictive value for a specific ecosystem are generally not suitable for global or regional applications, since they require a substantial set of ancillary data becoming increasingly larger with increasing complexity of the model. The ideal model for our purpose is one that is simple enough to be used in global scale modeling, and which can be adapted for different ecosystems or vegetation types. The fraction of absorbed photosynthetically active radiation (fPAR) during the growing season determines in part net photosynthesis and phytomass production (Ruimy, 1995). Remotely measured red and near-infrared spectral reflectances can be used to estimate fPAR. Therefore, a possible approach is to estimate net photosynthesis, phytomass, and NEE from a combination of satellite data and an ecosystem model that includes carbon dynamics. It has to be stated that some parts of the work presented in this

  13. Computational modeling of neural activities for statistical inference

    CERN Document Server

    Kolossa, Antonio

    2016-01-01

    This authored monograph supplies empirical evidence for the Bayesian brain hypothesis by modeling event-related potentials (ERP) of the human electroencephalogram (EEG) during successive trials in cognitive tasks. The employed observer models are useful to compute probability distributions over observable events and hidden states, depending on which are present in the respective tasks. Bayesian model selection is then used to choose the model which best explains the ERP amplitude fluctuations. Thus, this book constitutes a decisive step towards a better understanding of the neural coding and computing of probabilities following Bayesian rules. The target audience primarily comprises research experts in the field of computational neurosciences, but the book may also be beneficial for graduate students who want to specialize in this field. .

  14. Stimulus Sensitivity of a Spiking Neural Network Model

    Science.gov (United States)

    Chevallier, Julien

    2018-02-01

    Some recent papers relate the criticality of complex systems to their maximal capacity of information processing. In the present paper, we consider high dimensional point processes, known as age-dependent Hawkes processes, which have been used to model spiking neural networks. Using mean-field approximation, the response of the network to a stimulus is computed and we provide a notion of stimulus sensitivity. It appears that the maximal sensitivity is achieved in the sub-critical regime, yet almost critical for a range of biologically relevant parameters.

  15. Neural network modeling of chaotic dynamics in nuclear reactor flows

    International Nuclear Information System (INIS)

    Welstead, S.T.

    1992-01-01

    Neural networks have many scientific applications in areas such as pattern classification and time series prediction. The universal approximation property of these networks, however, can also be exploited to provide researchers with tool for modeling observed nonlinear phenomena. It has been shown that multilayer feed forward networks can capture important global nonlinear properties, such as chaotic dynamics, merely by training the network on a finite set of observed data. The network itself then provides a model of the process that generated the data. Characterizations such as the existence and general shape of a strange attractor and the sign of the largest Lyapunov exponent can then be extracted from the neural network model. In this paper, the author applies this idea to data generated from a nonlinear process that is representative of convective flows that can arise in nuclear reactor applications. Such flows play a role in forced convection heat removal from pressurized water reactors and boiling water reactors, and decay heat removal from liquid-metal-cooled reactors, either by natural convection or by thermosyphons

  16. Modelling electric trains energy consumption using Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Fernandez, P.; Garcia Roman, C.; Insa Franco, R.

    2016-07-01

    Nowadays there is an evident concern regarding the efficiency and sustainability of the transport sector due to both the threat of climate change and the current financial crisis. This concern explains the growth of railways over the last years as they present an inherent efficiency compared to other transport means. However, in order to further expand their role, it is necessary to optimise their energy consumption so as to increase their competitiveness. Improving railways energy efficiency requires both reliable data and modelling tools that will allow the study of different variables and alternatives. With this need in mind, this paper presents the development of consumption models based on neural networks that calculate the energy consumption of electric trains. These networks have been trained based on an extensive set of consumption data measured in line 1 of the Valencia Metro Network. Once trained, the neural networks provide a reliable estimation of the vehicles consumption along a specific route when fed with input data such as train speed, acceleration or track longitudinal slope. These networks represent a useful modelling tool that may allow a deeper study of railway lines in terms of energy expenditure with the objective of reducing the costs and environmental impact associated to railways. (Author)

  17. Modelling and Analysis of the Feeding Regimen Induced Entrainment of Hepatocyte Circadian Oscillators Using Petri Nets

    Science.gov (United States)

    Tareen, Samar Hayat Khan; Ahmad, Jamil

    2015-01-01

    Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system. PMID:25789928

  18. Petri Nets Based Modelling of Control Flow for Memory-Aid Interactive Programs in Telemedicine

    CERN Document Server

    Khoromskaia, V K

    2004-01-01

    Petri Nets (PN) based modelling of the control flow for the interactive memory assistance programs designed for personal pocket computers and having special requirements for robustness is considered. The proposed concept allows one to elaborate the programs which can give users a variety of possibilities for a day-time planning in the presence of environmental and time restrictions. First, a PN model for a known simple algorithm is constructed and analyzed using the corresponding state equations and incidence matrix. Then a PN graph for a complicated algorithm with overlapping actions and choice possibilities is designed, supplemented by an example of its analysis. Dynamic behaviour of this graph is tested by tracing of all possible paths of the flow of control using the PN simulator. It is shown that PN based modelling provides reliably predictable performance of interactive algorithms with branched structures and concurrency requirements.

  19. A Petri net-based modelling of replacement strategies under technological obsolescence

    Energy Technology Data Exchange (ETDEWEB)

    Clavareau, Julien [Universite Libre de Bruxelles (U.L.B.), Service de Metrologie Nucleaire, Av. F.D. Roosevelt, 50 (CP165/84), Bruxelles B-1050 (Belgium)], E-mail: jclavare@ulb.ac.be; Labeau, Pierre-Etienne [Universite Libre de Bruxelles (U.L.B.), Service de Metrologie Nucleaire, Av. F.D. Roosevelt, 50 (CP165/84), Bruxelles B-1050 (Belgium)

    2009-02-15

    The technological obsolescence of a unit is characterised by the existence of challenger units displaying identical functionalities, but with higher performances. Though this issue is commonly encountered in practice, it has received little consideration in the literature. Previous exploratory works have treated the problem of replacing old-technology items by new ones, for identical components facing a unique new generation of items. This paper aims to define, in a realistic way, possible replacement policies when several types of challenger units are available and when the performances of these newly available units improve with time. Since no fully generic model can exist in maintenance optimisation, a modular modelling of the problem, allowing easy adaptations to features corresponding to specific applications is highly desirable. This work therefore proposes a modular Petri net model for this problem, underlying a Monte Carlo (MC) estimation of the costs incurred by the different possible replacement strategies under consideration.

  20. Modelling and analysis of the feeding regimen induced entrainment of hepatocyte circadian oscillators using petri nets.

    Directory of Open Access Journals (Sweden)

    Samar Hayat Khan Tareen

    Full Text Available Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system.

  1. A simulation model for the actual, long wave and net solar radiation computing

    International Nuclear Information System (INIS)

    Kolev, B.; Stoilov, A.; Lyubomirov, L.

    2004-01-01

    The main purpose of this study is to present a calculating procedure for the components of the radiation balance - actual, long-wave and net radiation calculation, using the sunshine duration and the standard meteorological information, through a previously prepared program product.To calculate the actual solar radiation using the total cloudiness only, an empirical regression model has been developed. The results of the coefficient of correlation R(0.75-0.88), respectively for the spring and summer periods (March-May; June-August) show the adequacy of the chosen model. The verification of the model on the independent experimental material prove that the approach that authors suggested, can be successfully applied to the calculation of the actual radiation of the current place

  2. Artificial Neural Network versus Linear Models Forecasting Doha Stock Market

    Science.gov (United States)

    Yousif, Adil; Elfaki, Faiz

    2017-12-01

    The purpose of this study is to determine the instability of Doha stock market and develop forecasting models. Linear time series models are used and compared with a nonlinear Artificial Neural Network (ANN) namely Multilayer Perceptron (MLP) Technique. It aims to establish the best useful model based on daily and monthly data which are collected from Qatar exchange for the period starting from January 2007 to January 2015. Proposed models are for the general index of Qatar stock exchange and also for the usages in other several sectors. With the help of these models, Doha stock market index and other various sectors were predicted. The study was conducted by using various time series techniques to study and analyze data trend in producing appropriate results. After applying several models, such as: Quadratic trend model, double exponential smoothing model, and ARIMA, it was concluded that ARIMA (2,2) was the most suitable linear model for the daily general index. However, ANN model was found to be more accurate than time series models.

  3. Local TEC Modelling and Forecasting using Neural Networks

    Science.gov (United States)

    Tebabal, A.; Radicella, S. M.; Nigussie, M.; Damtie, B.; Nava, B.; Yizengaw, E.

    2017-12-01

    Abstract Modelling the Earth's ionospheric characteristics is the focal task for the ionospheric community to mitigate its effect on the radio communication, satellite navigation and technologies. However, several aspects of modelling are still challenging, for example, the storm time characteristics. This paper presents modelling efforts of TEC taking into account solar and geomagnetic activity, time of the day and day of the year using neural networks (NNs) modelling technique. The NNs have been designed with GPS-TEC measured data from low and mid-latitude GPS stations. The training was conducted using the data obtained for the period from 2011 to 2014. The model prediction accuracy was evaluated using data of year 2015. The model results show that diurnal and seasonal trend of the GPS-TEC is well reproduced by the model for the two stations. The seasonal characteristics of GPS-TEC is compared with NN and NeQuick 2 models prediction when the latter one is driven by the monthly average value of solar flux. It is found that NN model performs better than the corresponding NeQuick 2 model for low latitude region. For the mid-latitude both NN and NeQuick 2 models reproduce the average characteristics of TEC variability quite successfully. An attempt of one day ahead forecast of TEC at the two locations has been made by introducing as driver previous day solar flux and geomagnetic index values. The results show that a reasonable day ahead forecast of local TEC can be achieved.

  4. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    Science.gov (United States)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  5. Development of a numerical model for fluid-structure interaction analysis of flow through and around an aquaculture net cage

    DEFF Research Database (Denmark)

    Chen, Hao; Christensen, Erik Damgaard

    2017-01-01

    In the present work, we developed a numerical model for fluid-structure interaction analysis of flow through and around an aquaculture net cage. The numerical model is based on the coupling between the porous media model and the lumped mass structural model. A novel interface was implemented...

  6. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  7. The application of neural networks with artificial intelligence technique in the modeling of industrial processes

    International Nuclear Information System (INIS)

    Saini, K. K.; Saini, Sanju

    2008-01-01

    Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

  8. Petri Net and Probabilistic Model Checking Based Approach for the Modelling, Simulation and Verification of Internet Worm Propagation.

    Directory of Open Access Journals (Sweden)

    Misbah Razzaq

    Full Text Available Internet worms are analogous to biological viruses since they can infect a host and have the ability to propagate through a chosen medium. To prevent the spread of a worm or to grasp how to regulate a prevailing worm, compartmental models are commonly used as a means to examine and understand the patterns and mechanisms of a worm spread. However, one of the greatest challenge is to produce methods to verify and validate the behavioural properties of a compartmental model. This is why in this study we suggest a framework based on Petri Nets and Model Checking through which we can meticulously examine and validate these models. We investigate Susceptible-Exposed-Infectious-Recovered (SEIR model and propose a new model Susceptible-Exposed-Infectious-Recovered-Delayed-Quarantined (Susceptible/Recovered (SEIDQR(S/I along with hybrid quarantine strategy, which is then constructed and analysed using Stochastic Petri Nets and Continuous Time Markov Chain. The analysis shows that the hybrid quarantine strategy is extremely effective in reducing the risk of propagating the worm. Through Model Checking, we gained insight into the functionality of compartmental models. Model Checking results validate simulation ones well, which fully support the proposed framework.

  9. An effective convolutional neural network model for Chinese sentiment analysis

    Science.gov (United States)

    Zhang, Yu; Chen, Mengdong; Liu, Lianzhong; Wang, Yadong

    2017-06-01

    Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo's sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.

  10. Neural field model of memory-guided search.

    Science.gov (United States)

    Kilpatrick, Zachary P; Poll, Daniel B

    2017-12-01

    Many organisms can remember locations they have previously visited during a search. Visual search experiments have shown exploration is guided away from these locations, reducing redundancies in the search path before finding a hidden target. We develop and analyze a two-layer neural field model that encodes positional information during a search task. A position-encoding layer sustains a bump attractor corresponding to the searching agent's current location, and search is modeled by velocity input that propagates the bump. A memory layer sustains persistent activity bounded by a wave front, whose edges expand in response to excitatory input from the position layer. Search can then be biased in response to remembered locations, influencing velocity inputs to the position layer. Asymptotic techniques are used to reduce the dynamics of our model to a low-dimensional system of equations that track the bump position and front boundary. Performance is compared for different target-finding tasks.

  11. Neural field model of memory-guided search

    Science.gov (United States)

    Kilpatrick, Zachary P.; Poll, Daniel B.

    2017-12-01

    Many organisms can remember locations they have previously visited during a search. Visual search experiments have shown exploration is guided away from these locations, reducing redundancies in the search path before finding a hidden target. We develop and analyze a two-layer neural field model that encodes positional information during a search task. A position-encoding layer sustains a bump attractor corresponding to the searching agent's current location, and search is modeled by velocity input that propagates the bump. A memory layer sustains persistent activity bounded by a wave front, whose edges expand in response to excitatory input from the position layer. Search can then be biased in response to remembered locations, influencing velocity inputs to the position layer. Asymptotic techniques are used to reduce the dynamics of our model to a low-dimensional system of equations that track the bump position and front boundary. Performance is compared for different target-finding tasks.

  12. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  13. The Consolidated Net Worth of Private Colleges. Recommendation of a Model.

    Science.gov (United States)

    Jenny, Hans H.

    One of several essential tools for assessing how the financial health of educational institutions is evolving is the Consolidated Net Worth Statement. This essay explores various aspects of conventional "funds" balance sheets and compares them with the Consolidated Net Worth. Emphasis is placed on how the Consolidated Net Worth Statement…

  14. Models of neural networks IV early vision and attention

    CERN Document Server

    Cowan, Jack; Domany, Eytan

    2002-01-01

    Close this book for a moment and look around you. You scan the scene by directing your attention, and gaze, at certain specific objects. Despite the background, you discern them. The process is partially intentional and partially preattentive. How all this can be done is described in the fourth volume of Models of Neural Networks devoted to Early Vision and Atten­ tion that you are holding in your hands. Early vision comprises the first stages of visual information processing. It is as such a scientific challenge whose clarification calls for a penetrating review. Here you see the result. The Heraeus Foundation (Hanau) is to be thanked for its support during the initial phase of this project. John Hertz, who has extensive experience in both computational and ex­ perimental neuroscience, provides in "Neurons, Networks, and Cognition" to neural modeling. John Van Opstal explains in a theoretical introduction "The Gaze Control System" how the eye's gaze control is performed and presents a novel theoretical des...

  15. Free-fermion descriptions of parafermion chains and string-net models

    Science.gov (United States)

    Meichanetzidis, Konstantinos; Turner, Christopher J.; Farjami, Ashk; Papić, Zlatko; Pachos, Jiannis K.

    2018-03-01

    Topological phases of matter remain a focus of interest due to their unique properties: fractionalization, ground-state degeneracy, and exotic excitations. While some of these properties can occur in systems of free fermions, their emergence is generally associated with interactions between particles. Here, we quantify the role of interactions in general classes of topological states of matter in one and two spatial dimensions, including parafermion chains and string-net models. Surprisingly, we find that certain topological states can be exactly described by free fermions, while others saturate the maximum possible distance from their optimal free-fermion description [C. J. Turner et al., Nat. Commun. 8, 14926 (2017), 10.1038/ncomms14926]. Our work opens the door to understanding the complexity of topological models by establishing new types of fermionization procedures to describe their low-energy physics, thus making them amenable to experimental realizations.

  16. Modeling and Application of Vehicular Cyber Physical System Based Petri Nets

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2014-11-01

    Full Text Available Mobile cyber physical system (MCPS has been a hot research area, where mobile nodes can mobile, and communicate with each other. As a typical MCPS, vehicular cyber physical system (VCPS plays an important role in intelligent transportation, especially in collision avoidance. There is no, however, a formal modeling and analysis method for VCPS. In the paper, the modeling method based Petri nets (PN is presented. Furthermore, the behavior expression analysis method is also presented which can deal with arbitrary distribution timed transitions. Finally, a case is introduced to verify the effectiveness about proposed method, and the results show that VCPS can greatly reduce the reaction time of vehicles behind when emergent accident occurs and then enhance the traffic safety.

  17. SHER: A Colored Petri Net Based Random Mobility Model for Wireless Communications

    Science.gov (United States)

    Khan, Naeem Akhtar; Ahmad, Farooq; Khan, Sher Afzal

    2015-01-01

    In wireless network research, simulation is the most imperative technique to investigate the network’s behavior and validation. Wireless networks typically consist of mobile hosts; therefore, the degree of validation is influenced by the underlying mobility model, and synthetic models are implemented in simulators because real life traces are not widely available. In wireless communications, mobility is an integral part while the key role of a mobility model is to mimic the real life traveling patterns to study. The performance of routing protocols and mobility management strategies e.g. paging, registration and handoff is highly dependent to the selected mobility model. In this paper, we devise and evaluate the Show Home and Exclusive Regions (SHER), a novel two-dimensional (2-D) Colored Petri net (CPN) based formal random mobility model, which exhibits sociological behavior of a user. The model captures hotspots where a user frequently visits and spends time. Our solution eliminates six key issues of the random mobility models, i.e., sudden stops, memoryless movements, border effect, temporal dependency of velocity, pause time dependency, and speed decay in a single model. The proposed model is able to predict the future location of a mobile user and ultimately improves the performance of wireless communication networks. The model follows a uniform nodal distribution and is a mini simulator, which exhibits interesting mobility patterns. The model is also helpful to those who are not familiar with the formal modeling, and users can extract meaningful information with a single mouse-click. It is noteworthy that capturing dynamic mobility patterns through CPN is the most challenging and virulent activity of the presented research. Statistical and reachability analysis techniques are presented to elucidate and validate the performance of our proposed mobility model. The state space methods allow us to algorithmically derive the system behavior and rectify the

  18. SynechoNET: integrated protein-protein interaction database of a model cyanobacterium Synechocystis sp. PCC 6803

    OpenAIRE

    Kim, Woo-Yeon; Kang, Sungsoo; Kim, Byoung-Chul; Oh, Jeehyun; Cho, Seongwoong; Bhak, Jong; Choi, Jong-Soon

    2008-01-01

    Background Cyanobacteria are model organisms for studying photosynthesis, carbon and nitrogen assimilation, evolution of plant plastids, and adaptability to environmental stresses. Despite many studies on cyanobacteria, there is no web-based database of their regulatory and signaling protein-protein interaction networks to date. Description We report a database and website SynechoNET that provides predicted protein-protein interactions. SynechoNET shows cyanobacterial domain-domain interactio...

  19. Uncertainty estimation of the velocity model for stations of the TrigNet GPS network

    Science.gov (United States)

    Hackl, M.; Malservisi, R.; Hugentobler, U.

    2010-12-01

    Satellite based geodetic techniques - above all GPS - provide an outstanding tool to measure crustal motions. They are widely used to derive geodetic velocity models that are applied in geodynamics to determine rotations of tectonic blocks, to localize active geological features, and to estimate rheological properties of the crust and the underlying asthenosphere. However, it is not a trivial task to derive GPS velocities and their uncertainties from positioning time series. In general time series are assumed to be represented by linear models (sometimes offsets, annual, and semi-annual signals are included) and noise. It has been shown that error models accounting only for white noise tend to underestimate the uncertainties of rates derived from long time series and that different colored noise components (flicker noise, random walk, etc.) need to be considered. However, a thorough error analysis including power spectra analyses and maximum likelihood estimates is computationally expensive and is usually not carried out for every site, but the uncertainties are scaled by latitude dependent factors. Analyses of the South Africa continuous GPS network TrigNet indicate that the scaled uncertainties overestimate the velocity errors. So we applied a method similar to the Allan Variance that is commonly used in the estimation of clock uncertainties and is able to account for time dependent probability density functions (colored noise) to the TrigNet time series. Comparisons with synthetic data show that the noise can be represented quite well by a power law model in combination with a seasonal signal in agreement with previous studies, which allows for a reliable estimation of the velocity error. Finally, we compared these estimates to the results obtained by spectral analyses using CATS. Small differences may originate from non-normal distribution of the noise.

  20. Uncertainty estimation of the velocity model for the TrigNet GPS network

    Science.gov (United States)

    Hackl, Matthias; Malservisi, Rocco; Hugentobler, Urs; Wonnacott, Richard

    2010-05-01

    Satellite based geodetic techniques - above all GPS - provide an outstanding tool to measure crustal motions. They are widely used to derive geodetic velocity models that are applied in geodynamics to determine rotations of tectonic blocks, to localize active geological features, and to estimate rheological properties of the crust and the underlying asthenosphere. However, it is not a trivial task to derive GPS velocities and their uncertainties from positioning time series. In general time series are assumed to be represented by linear models (sometimes offsets, annual, and semi-annual signals are included) and noise. It has been shown that models accounting only for white noise tend to underestimate the uncertainties of rates derived from long time series and that different colored noise components (flicker noise, random walk, etc.) need to be considered. However, a thorough error analysis including power spectra analyses and maximum likelihood estimates is quite demanding and are usually not carried out for every site, but the uncertainties are scaled by latitude dependent factors. Analyses of the South Africa continuous GPS network TrigNet indicate that the scaled uncertainties overestimate the velocity errors. So we applied a method similar to the Allan Variance that is commonly used in the estimation of clock uncertainties and is able to account for time dependent probability density functions (colored noise) to the TrigNet time series. Finally, we compared these estimates to the results obtained by spectral analyses using CATS. Comparisons with synthetic data show that the noise can be represented quite well by a power law model in combination with a seasonal signal in agreement with previous studies.

  1. Acquiring neural signals for developing a perception and cognition model

    Science.gov (United States)

    Li, Wei; Li, Yunyi; Chen, Genshe; Shen, Dan; Blasch, Erik; Pham, Khanh; Lynch, Robert

    2012-06-01

    The understanding of how humans process information, determine salience, and combine seemingly unrelated information is essential to automated processing of large amounts of information that is partially relevant, or of unknown relevance. Recent neurological science research in human perception, and in information science regarding contextbased modeling, provides us with a theoretical basis for using a bottom-up approach for automating the management of large amounts of information in ways directly useful for human operators. However, integration of human intelligence into a game theoretic framework for dynamic and adaptive decision support needs a perception and cognition model. For the purpose of cognitive modeling, we present a brain-computer-interface (BCI) based humanoid robot system to acquire brainwaves during human mental activities of imagining a humanoid robot-walking behavior. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model. The BCI system consists of a data acquisition unit with an electroencephalograph (EEG), a humanoid robot, and a charge couple CCD camera. An EEG electrode cup acquires brainwaves from the skin surface on scalp. The humanoid robot has 20 degrees of freedom (DOFs); 12 DOFs located on hips, knees, and ankles for humanoid robot walking, 6 DOFs on shoulders and arms for arms motion, and 2 DOFs for head yaw and pitch motion. The CCD camera takes video clips of the human subject's hand postures to identify mental activities that are correlated to the robot-walking behaviors. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model.

  2. Understanding and preventing type 1 diabetes through the unique working model of TrialNet.

    Science.gov (United States)

    Battaglia, Manuela; Anderson, Mark S; Buckner, Jane H; Geyer, Susan M; Gottlieb, Peter A; Kay, Thomas W H; Lernmark, Åke; Muller, Sarah; Pugliese, Alberto; Roep, Bart O; Greenbaum, Carla J; Peakman, Mark

    2017-11-01

    Type 1 diabetes is an autoimmune disease arising from the destruction of pancreatic insulin-producing beta cells. The disease represents a continuum, progressing sequentially at variable rates through identifiable stages prior to the onset of symptoms, through diagnosis and into the critical periods that follow, culminating in a variable depth of beta cell depletion. The ability to identify the very earliest of these presymptomatic stages has provided a setting in which prevention strategies can be trialled, as well as furnishing an unprecedented opportunity to study disease evolution, including intrinsic and extrinsic initiators and drivers. This niche opportunity is occupied by Type 1 Diabetes TrialNet, an international consortium of clinical trial centres that leads the field in intervention and prevention studies, accompanied by deep longitudinal bio-sampling. In this review, we focus on discoveries arising from this unique bioresource, comprising more than 70,000 samples, and outline the processes and science that have led to new biomarkers and mechanistic insights, as well as identifying new challenges and opportunities. We conclude that via integration of clinical trials and mechanistic studies, drawing in clinicians and scientists and developing partnership with industry, TrialNet embodies an enviable and unique working model for understanding a disease that to date has no cure and for designing new therapeutic approaches.

  3. A novel transferable individual tree crown delineation model based on Fishing Net Dragging and boundary classification

    Science.gov (United States)

    Liu, Tao; Im, Jungho; Quackenbush, Lindi J.

    2015-12-01

    This study provides a novel approach to individual tree crown delineation (ITCD) using airborne Light Detection and Ranging (LiDAR) data in dense natural forests using two main steps: crown boundary refinement based on a proposed Fishing Net Dragging (FiND) method, and segment merging based on boundary classification. FiND starts with approximate tree crown boundaries derived using a traditional watershed method with Gaussian filtering and refines these boundaries using an algorithm that mimics how a fisherman drags a fishing net. Random forest machine learning is then used to classify boundary segments into two classes: boundaries between trees and boundaries between branches that belong to a single tree. Three groups of LiDAR-derived features-two from the pseudo waveform generated along with crown boundaries and one from a canopy height model (CHM)-were used in the classification. The proposed ITCD approach was tested using LiDAR data collected over a mountainous region in the Adirondack Park, NY, USA. Overall accuracy of boundary classification was 82.4%. Features derived from the CHM were generally more important in the classification than the features extracted from the pseudo waveform. A comprehensive accuracy assessment scheme for ITCD was also introduced by considering both area of crown overlap and crown centroids. Accuracy assessment using this new scheme shows the proposed ITCD achieved 74% and 78% as overall accuracy, respectively, for deciduous and mixed forest.

  4. Short-Term Load Forecasting Model Based on Quantum Elman Neural Networks

    Directory of Open Access Journals (Sweden)

    Zhisheng Zhang

    2016-01-01

    Full Text Available Short-term load forecasting model based on quantum Elman neural networks was constructed in this paper. The quantum computation and Elman feedback mechanism were integrated into quantum Elman neural networks. Quantum computation can effectively improve the approximation capability and the information processing ability of the neural networks. Quantum Elman neural networks have not only the feedforward connection but also the feedback connection. The feedback connection between the hidden nodes and the context nodes belongs to the state feedback in the internal system, which has formed specific dynamic memory performance. Phase space reconstruction theory is the theoretical basis of constructing the forecasting model. The training samples are formed by means of K-nearest neighbor approach. Through the example simulation, the testing results show that the model based on quantum Elman neural networks is better than the model based on the quantum feedforward neural network, the model based on the conventional Elman neural network, and the model based on the conventional feedforward neural network. So the proposed model can effectively improve the prediction accuracy. The research in the paper makes a theoretical foundation for the practical engineering application of the short-term load forecasting model based on quantum Elman neural networks.

  5. Neural network error correction for solving coupled ordinary differential equations

    Science.gov (United States)

    Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.

    1992-01-01

    A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.

  6. Daily rainfall-runoff modelling by neural networks in semi-arid zone ...

    African Journals Online (AJOL)

    This research work will allow checking efficiency of formal neural networks for flows' modelling of wadi Ouahrane's basin from rainfall-runoff relation which is non-linear. Two models of neural networks were optimized through supervised learning and compared in order to achieve this goal, the first model with input rain, and ...

  7. An artificial neural network model for periodic trajectory generation

    Science.gov (United States)

    Shankar, S.; Gander, R. E.; Wood, H. C.

    A neural network model based on biological systems was developed for potential robotic application. The model consists of three interconnected layers of artificial neurons or units: an input layer subdivided into state and plan units, an output layer, and a hidden layer between the two outer layers which serves to implement nonlinear mappings between the input and output activation vectors. Weighted connections are created between the three layers, and learning is effected by modifying these weights. Feedback connections between the output and the input state serve to make the network operate as a finite state machine. The activation vector of the plan units of the input layer emulates the supraspinal commands in biological central pattern generators in that different plan activation vectors correspond to different sequences or trajectories being recalled, even with different frequencies. Three trajectories were chosen for implementation, and learning was accomplished in 10,000 trials. The fault tolerant behavior, adaptiveness, and phase maintenance of the implemented network are discussed.

  8. A Neural Network Model for Prediction of Sound Quality

    DEFF Research Database (Denmark)

    Nielsen,, Lars Bramsløw

    An artificial neural network structure has been specified, implemented and optimized for the purpose of predicting the perceived sound quality for normal-hearing and hearing-impaired subjects. The network was implemented by means of commercially available software and optimized to predict results...... obtained in subjective sound quality rating experiments based on input data from an auditory model. Various types of input data and data representations from the auditory model were used as input data for the chosen network structure, which was a three-layer perceptron. This network was trained by means...... the physical signal parameters and the subjectively perceived sound quality. No simple objective-subjective relationship was evident from this analysis....

  9. A case study to estimate costs using Neural Networks and regression based models

    Directory of Open Access Journals (Sweden)

    Nadia Bhuiyan

    2012-07-01

    Full Text Available Bombardier Aerospace’s high performance aircrafts and services set the utmost standard for the Aerospace industry. A case study in collaboration with Bombardier Aerospace is conducted in order to estimate the target cost of a landing gear. More precisely, the study uses both parametric model and neural network models to estimate the cost of main landing gears, a major aircraft commodity. A comparative analysis between the parametric based model and those upon neural networks model will be considered in order to determine the most accurate method to predict the cost of a main landing gear. Several trials are presented for the design and use of the neural network model. The analysis for the case under study shows the flexibility in the design of the neural network model. Furthermore, the performance of the neural network model is deemed superior to the parametric models for this case study.

  10. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    Science.gov (United States)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press

  11. Applying and Individual-Based Model to Simultaneously Evaluate Net Ecosystem Production and Tree Diameter Increment

    Science.gov (United States)

    Fang, F. J.

    2017-12-01

    Reconciling observations at fundamentally different scales is central in understanding the global carbon cycle. This study investigates a model-based melding of forest inventory data, remote-sensing data and micrometeorological-station data ("flux towers" estimating forest heat, CO2 and H2O fluxes). The individual tree-based model FORCCHN was used to evaluate the tree DBH increment and forest carbon fluxes. These are the first simultaneous simulations of the forest carbon budgets from flux towers and individual-tree growth estimates of forest carbon budgets using the continuous forest inventory data — under circumstances in which both predictions can be tested. Along with the global implications of such findings, this also improves the capacity for forest sustainable management and the comprehensive understanding of forest ecosystems. In forest ecology, diameter at breast height (DBH) of a tree significantly determines an individual tree's cross-sectional sapwood area, its biomass and carbon storage. Evaluation the annual DBH increment (ΔDBH) of an individual tree is central to understanding tree growth and forest ecology. Ecosystem Carbon flux is a consequence of key ecosystem processes in the forest-ecosystem carbon cycle, Gross and Net Primary Production (GPP and NPP, respectively) and Net Ecosystem Respiration (NEP). All of these closely relate with tree DBH changes and tree death. Despite advances in evaluating forest carbon fluxes with flux towers and forest inventories for individual tree ΔDBH, few current ecological models can simultaneously quantify and predict the tree ΔDBH and forest carbon flux.

  12. Modeling Message Queueing Services with Reliability Guarantee in Cloud Computing Environment Using Colored Petri Nets

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-01-01

    Full Text Available Motivated by the need for loosely coupled and asynchronous dissemination of information, message queues are widely used in large-scale application areas. With the advent of virtualization technology, cloud-based message queueing services (CMQSs with distributed computing and storage are widely adopted to improve availability, scalability, and reliability; however, a critical issue is its performance and the quality of service (QoS. While numerous approaches evaluating system performance are available, there is no modeling approach for estimating and analyzing the performance of CMQSs. In this paper, we employ both the analytical and simulation modeling to address the performance of CMQSs with reliability guarantee. We present a visibility-based modeling approach (VMA for simulation model using colored Petri nets (CPN. Our model incorporates the important features of message queueing services in the cloud such as replication, message consistency, resource virtualization, and especially the mechanism named visibility timeout which is adopted in the services to guarantee system reliability. Finally, we evaluate our model through different experiments under varied scenarios to obtain important performance metrics such as total message delivery time, waiting number, and components utilization. Our results reveal considerable insights into resource scheduling and system configuration for service providers to estimate and gain performance optimization.

  13. Phased mission modelling of systems with maintenance-free operating periods using simulated Petri nets

    Energy Technology Data Exchange (ETDEWEB)

    Chew, S.P.; Dunnett, S.J. [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leics (United Kingdom); Andrews, J.D. [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leics (United Kingdom)], E-mail: j.d.andrews@lboro.ac.uk

    2008-07-15

    A common scenario in engineering is that of a system which operates throughout several sequential and distinct periods of time, during which the modes and consequences of failure differ from one another. This type of operation is known as a phased mission, and for the mission to be a success the system must successfully operate throughout all of the phases. Examples include a rocket launch and an aeroplane flight. Component or sub-system failures may occur at any time during the mission, yet not affect the system performance until the phase in which their condition is critical. This may mean that the transition from one phase to the next is a critical event that leads to phase and mission failure, with the root cause being a component failure in a previous phase. A series of phased missions with no maintenance may be considered as a maintenance-free operating period (MFOP). This paper describes the use of a Petri net (PN) to model the reliability of the MFOP and phased missions scenario. The model uses Monte-Carlo simulation to obtain its results, and due to the modelling power of PNs, can consider complexities such as component failure rate interdependencies and mission abandonment. The model operates three different types of PN which interact to provide the overall system reliability modelling. The model is demonstrated and validated by considering two simple examples that can be solved analytically.

  14. Phased mission modelling of systems with maintenance-free operating periods using simulated Petri nets

    International Nuclear Information System (INIS)

    Chew, S.P.; Dunnett, S.J.; Andrews, J.D.

    2008-01-01

    A common scenario in engineering is that of a system which operates throughout several sequential and distinct periods of time, during which the modes and consequences of failure differ from one another. This type of operation is known as a phased mission, and for the mission to be a success the system must successfully operate throughout all of the phases. Examples include a rocket launch and an aeroplane flight. Component or sub-system failures may occur at any time during the mission, yet not affect the system performance until the phase in which their condition is critical. This may mean that the transition from one phase to the next is a critical event that leads to phase and mission failure, with the root cause being a component failure in a previous phase. A series of phased missions with no maintenance may be considered as a maintenance-free operating period (MFOP). This paper describes the use of a Petri net (PN) to model the reliability of the MFOP and phased missions scenario. The model uses Monte-Carlo simulation to obtain its results, and due to the modelling power of PNs, can consider complexities such as component failure rate interdependencies and mission abandonment. The model operates three different types of PN which interact to provide the overall system reliability modelling. The model is demonstrated and validated by considering two simple examples that can be solved analytically

  15. Neural network modeling of nonlinear systems based on Volterra series extension of a linear model

    Science.gov (United States)

    Soloway, Donald I.; Bialasiewicz, Jan T.

    1992-01-01

    A Volterra series approach was applied to the identification of nonlinear systems which are described by a neural network model. A procedure is outlined by which a mathematical model can be developed from experimental data obtained from the network structure. Applications of the results to the control of robotic systems are discussed.

  16. Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    such as the neural network model is not appropriate if the data is generated by a linear mechanism. Hence, it might be appropriate to test the null of linearity prior to building a nonlinear model. We investigate whether this kind of pretesting improves the forecast accuracy compared to the case where...

  17. Neural network models for biological waste-gas treatment systems.

    Science.gov (United States)

    Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian

    2011-12-15

    This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression

  18. GXNOR-Net: Training deep neural networks with ternary weights and activations without full-precision memory under a unified discretization framework.

    Science.gov (United States)

    Deng, Lei; Jiao, Peng; Pei, Jing; Wu, Zhenzhi; Li, Guoqi

    2018-04-01

    Although deep neural networks (DNNs) are being a revolutionary power to open up the AI era, the notoriously huge hardware overhead has challenged their applications. Recently, several binary and ternary networks, in which the costly multiply-accumulate operations can be replaced by accumulations or even binary logic operations, make the on-chip training of DNNs quite promising. Therefore there is a pressing need to build an architecture that could subsume these networks under a unified framework that achieves both higher performance and less overhead. To this end, two fundamental issues are yet to be addressed. The first one is how to implement the back propagation when neuronal activations are discrete. The second one is how to remove the full-precision hidden weights in the training phase to break the bottlenecks of memory/computation consumption. To address the first issue, we present a multi-step neuronal activation discretization method and a derivative approximation technique that enable the implementing the back propagation algorithm on discrete DNNs. While for the second issue, we propose a discrete state transition (DST) methodology to constrain the weights in a discrete space without saving the hidden weights. Through this way, we build a unified framework that subsumes the binary or ternary networks as its special cases, and under which a heuristic algorithm is provided at the website https://github.com/AcrossV/Gated-XNOR. More particularly, we find that when both the weights and activations become ternary values, the DNNs can be reduced to sparse binary networks, termed as gated XNOR networks (GXNOR-Nets) since only the event of non-zero weight and non-zero activation enables the control gate to start the XNOR logic operations in the original binary networks. This promises the event-driven hardware design for efficient mobile intelligence. We achieve advanced performance compared with state-of-the-art algorithms. Furthermore, the computational sparsity

  19. A business case evaluation of workplace engineering noise control: a net-cost model.

    Science.gov (United States)

    Lahiri, Supriya; Low, Colleen; Barry, Michael

    2011-03-01

    This article provides a convenient tool for companies to determine the costs and benefits of alternative interventions to prevent noise-induced hearing loss (NIHL). Contextualized for Singapore and in collaboration with Singapore's Ministry of Manpower, the Net-Cost model evaluates costs of intervention for equipment and labor, avoided costs of productivity losses and medical care, and productivity gains from the employer's economic perspective. To pilot this approach, four case studies are presented, with varying degrees of economic benefits to the employer, including one in which multifactor productivity is the main driver. Although compliance agencies may not require economic analysis of NIHL, given scarce resources in a market-driven economy, this tool enables stakeholders to understand and compare the costs and benefits of NIHL interventions comprehensively and helps in determining risk management strategies.

  20. Fermi hyper-netted chain theory on a lattice: The Hubbard model

    International Nuclear Information System (INIS)

    Wang, X.Q.; Wang, X.Q.G.; Fantoni, S.; Tosatti, E.; Yu Lu.

    1990-02-01

    We review a new lattice version of Fermi Hyper-Netted Chain method for the study of strongly interacting electrons. The ordinary paramagnetic and the spin density wave functions have been correlated with Jastrow-type and e-d correlations, and the corresponding FHNC equations for the pair distribution function, the one body density matrix and the staggered magnetization are discussed. Results for the 1D chain and 2D square lattice models are presented and compared with the available results obtained within Quantum Monte Carlo, variational Monte Carlo and exact diagonalization of a 4x4 Hubbard cluster. Particularly interesting are the strong effects of e-d correlations on E/Nt and on the momentum distribution as well as antiferromagnetic behavior away from half filling found in our FHNC calculations in agreement with other studies. (author). 35 refs, 8 figs, 2 tabs

  1. The Energy Coding of a Structural Neural Network Based on the Hodgkin-Huxley Model.

    Science.gov (United States)

    Zhu, Zhenyu; Wang, Rubin; Zhu, Fengyun

    2018-01-01

    Based on the Hodgkin-Huxley model, the present study established a fully connected structural neural network to simulate the neural activity and energy consumption of the network by neural energy coding theory. The numerical simulation result showed that the periodicity of the network energy distribution was positively correlated to the number of neurons and coupling strength, but negatively correlated to signal transmitting delay. Moreover, a relationship was established between the energy distribution feature and the synchronous oscillation of the neural network, which showed that when the proportion of negative energy in power consumption curve was high, the synchronous oscillation of the neural network was apparent. In addition, comparison with the simulation result of structural neural network based on the Wang-Zhang biophysical model of neurons showed that both models were essentially consistent.

  2. Memory and learning in a class of neural network models

    International Nuclear Information System (INIS)

    Wallace, D.J.

    1986-01-01

    The author discusses memory and learning properties of the neural network model now identified with Hopfield's work. The model, how it attempts to abstract some key features of the nervous system, and the sense in which learning and memory are identified in the model are described. A brief report is presented on the important role of phase transitions in the model and their implications for memory capacity. The results of numerical simulations obtained using the ICL Distributed Array Processors at Edinburgh are presented. A summary is presented on how the fraction of images which are perfectly stored, depends on the number of nodes and the number of nominal images which one attempts to store using the prescription in Hopfield's paper. Results are presented on the second phase transition in the model, which corresponds to almost total loss of storage capacity as the number of nominal images is increased. Results are given on the performance of a new iterative algorithm for exact storage of up to N images in an N node model

  3. Ground Motion Prediction Model Using Artificial Neural Network

    Science.gov (United States)

    Dhanya, J.; Raghukanth, S. T. G.

    2018-03-01

    This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg-Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude ( M w), closest distance to rupture plane ( R rup), shear wave velocity in the region ( V s30) and focal mechanism ( F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.

  4. Fluid Petri Nets and hybrid model-checking: a comparative case study

    International Nuclear Information System (INIS)

    Gribaudo, M.; Horvath, A.; Bobbio, A.; Tronci, E.; Ciancamerla, E.; Minichino, M.

    2003-01-01

    The modeling and analysis of hybrid systems is a recent and challenging research area which is actually dominated by two main lines: a functional analysis based on the description of the system in terms of discrete state (hybrid) automata (whose goal is to ascertain conformity and reachability properties), and a stochastic analysis (whose aim is to provide performance and dependability measures). This paper investigates a unifying view between formal methods and stochastic methods by proposing an analysis methodology of hybrid systems based on Fluid Petri Nets (FPNs). FPNs can be analyzed directly using appropriate tools. Our paper shows that the same FPN model can be fed to different functional analyzers for model checking. In order to extensively explore the capability of the technique, we have converted the original FPN into languages for discrete as well as hybrid as well as stochastic model checkers. In this way, a first comparison among the modeling power of well known tools can be carried out. Our approach is illustrated by means of a 'real world' hybrid system: the temperature control system of a co-generative plant

  5. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  6. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    Science.gov (United States)

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  7. The effect of nonstationarity on models inferred from neural data

    International Nuclear Information System (INIS)

    Tyrcha, Joanna; Roudi, Yasser; Marsili, Matteo; Hertz, John

    2013-01-01

    Neurons subject to a common nonstationary input may exhibit a correlated firing behavior. Correlations in the statistics of neural spike trains also arise as the effect of interaction between neurons. Here we show that these two situations can be distinguished with machine learning techniques, provided that the data are rich enough. In order to do this, we study the problem of inferring a kinetic Ising model, stationary or nonstationary, from the available data. We apply the inference procedure to two data sets: one from salamander retinal ganglion cells and the other from a realistic computational cortical network model. We show that many aspects of the concerted activity of the salamander retinal neurons can be traced simply to the external input. A model of non-interacting neurons subject to a nonstationary external field outperforms a model with stationary input with couplings between neurons, even accounting for the differences in the number of model parameters. When couplings are added to the nonstationary model, for the retinal data, little is gained: the inferred couplings are generally not significant. Likewise, the distribution of the sizes of sets of neurons that spike simultaneously and the frequency of spike patterns as a function of their rank (Zipf plots) are well explained by an independent-neuron model with time-dependent external input, and adding connections to such a model does not offer significant improvement. For the cortical model data, robust couplings, well correlated with the real connections, can be inferred using the nonstationary model. Adding connections to this model slightly improves the agreement with the data for the probability of synchronous spikes but hardly affects the Zipf plot. (paper)

  8. The effect of nonstationarity on models inferred from neural data

    Energy Technology Data Exchange (ETDEWEB)

    Tyrcha, Joanna [Department of Mathematical Statistics, Stockholm University, SE-10691 Stockholm (Sweden); Roudi, Yasser [Kavli Institute for Systems Neuroscience, NTNU, NO-7010 Trondheim (Norway); Marsili, Matteo [The Abdus Salam ICTP, Strada Costiera 11, I-34151, Trieste (Italy); Hertz, John [Nordita, Royal Institute of Technology and Stockholm University, SE-106 91 Stockholm (Sweden)

    2013-03-01

    Neurons subject to a common nonstationary input may exhibit a correlated firing behavior. Correlations in the statistics of neural spike trains also arise as the effect of interaction between neurons. Here we show that these two situations can be distinguished with machine learning techniques, provided that the data are rich enough. In order to do this, we study the problem of inferring a kinetic Ising model, stationary or nonstationary, from the available data. We apply the inference procedure to two data sets: one from salamander retinal ganglion cells and the other from a realistic computational cortical network model. We show that many aspects of the concerted activity of the salamander retinal neurons can be traced simply to the external input. A model of non-interacting neurons subject to a nonstationary external field outperforms a model with stationary input with couplings between neurons, even accounting for the differences in the number of model parameters. When couplings are added to the nonstationary model, for the retinal data, little is gained: the inferred couplings are generally not significant. Likewise, the distribution of the sizes of sets of neurons that spike simultaneously and the frequency of spike patterns as a function of their rank (Zipf plots) are well explained by an independent-neuron model with time-dependent external input, and adding connections to such a model does not offer significant improvement. For the cortical model data, robust couplings, well correlated with the real connections, can be inferred using the nonstationary model. Adding connections to this model slightly improves the agreement with the data for the probability of synchronous spikes but hardly affects the Zipf plot. (paper)

  9. Modeling and Control of CSTR using Model based Neural Network Predictive Control

    OpenAIRE

    Shrivastava, Piyush

    2012-01-01

    This paper presents a predictive control strategy based on neural network model of the plant is applied to Continuous Stirred Tank Reactor (CSTR). This system is a highly nonlinear process; therefore, a nonlinear predictive method, e.g., neural network predictive control, can be a better match to govern the system dynamics. In the paper, the NN model and the way in which it can be used to predict the behavior of the CSTR process over a certain prediction horizon are described, and some commen...

  10. Superensemble of a Regional Climate Model for the Western US using Climateprediction.net

    Science.gov (United States)

    Mote, P.; Salahuddin, A.; Allen, M.; Jones, R.

    2010-12-01

    For over a decade, a citizen science experiment called climateprediction.net organized by Oxford University has used computer time contributed by over 80,000 volunteers around the world to create superensembles of global climate simulations. A new climateprediction.net experiment built by the UK Meteorological Office and Oxford, and released in late summer 2010, brings these computing resources to bear on regional climate modeling for the Western US, western Europe, and southern Africa. For the western US, the spatial resolution of 25km permits important topological features -- mountain ranges and valleys -- to be resolved and to influence simulated climate, which consequently includes many important observed features of climate like the fact that California’s Central Valley is hottest at the north and south ends in summer, and cooler in the middle owing to the maritime influence that leaks through the gap in the coast range in the San Francisco area. We designed the output variables to satisfy both research needs and societal and environmental impacts needs. These include atmospheric circulation on regional and global scales, surface fluxes of energy, and hydrologic variables; extremes of temperature, precipitation, and wind; and derived quantities like frost days and number of consecutive dry days. Early results from pre-release beta testing suggest that the simulated fields compare favorably with available observations, and that the model performs as well in the distributed computing environment as on a dedicated high-performance machine. The advantages of a superensemble in interpreting regional climate change will permit an unprecedented combination of statistical completeness and spatial resolution.

  11. Model-Based Fault Diagnosis in Electric Drive Inverters Using Artificial Neural Network

    National Research Council Canada - National Science Library

    Masrur, Abul; Chen, ZhiHang; Zhang, Baifang; Jia, Hongbin; Murphey, Yi-Lu

    2006-01-01

    .... A normal model and various faulted models of the inverter-motor combination were developed, and voltages and current signals were generated from those models to train an artificial neural network for fault diagnosis...

  12. Modeling Distillation Column Using ARX Model Structure and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza Pirmoradi

    2012-04-01

    Full Text Available Distillation is a complex and highly nonlinear industrial process. In general it is not always possible to obtain accurate first principles models for high-purity distillation columns. On the other hand the development of first principles models is usually time consuming and expensive. To overcome these problems, empirical models such as neural networks can be used. One major drawback of empirical models is that the prediction is valid only inside the data domain that is sufficiently covered by measurement data. Modeling distillation columns by means of neural networks is reported in literature by using recursive networks. The recursive networks are proper for modeling purpose, but such models have the problems of high complexity and high computational cost. The objective of this paper is to propose a simple and reliable model for distillation column. The proposed model uses feed forward neural networks which results in a simple model with less parameters and faster training time. Simulation results demonstrate that predictions of the proposed model in all regions are close to outputs of the dynamic model and the error in negligible. This implies that the model is reliable in all regions.

  13. Estimation of net primary productivity using a process-based model in Gansu Province, Northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peijuan; Xie, Donghui; Zhou, Yuyu; E, Youhao; Zhu, Qijiang

    2014-01-16

    The ecological structure in the arid and semi-arid region of Northwest China with forest, grassland, agriculture, Gobi, and desert, is complex, vulnerable, and unstable. It is a challenging and sustaining job to keep the ecological structure and improve its ecological function. Net primary productivity (NPP) modeling can help to improve the understanding of the ecosystem, and therefore, improve ecological efficiency. The boreal ecosystem productivity simulator (BEPS) model provides the possibility of NPP modeling in terrestrial ecosystem, but it has some limitations for application in arid and semi-arid regions. In this paper we improve the BEPS model, in terms of its water cycle by adding the processes of infiltration and surface runoff, to be applicable in arid and semi-arid regions. We model the NPP of forest, grass, and crop in Gansu Province as an experimental area in Northwest China in 2003 using the improved BEPS model, parameterized with moderate resolution remote sensing imageries and meteorological data. The modeled NPP using improved BEPS agrees better with the ground measurements in Qilian Mountain than that with original BEPS, with a higher R2 of 0.746 and lower root mean square error (RMSE) of 46.53 gC/m2 compared to R2 of 0.662 and RMSE of 60.19 gC/m2 from original BEPS. The modeled NPP of three vegetation types using improved BEPS show evident differences compared to that using original BEPS, with the highest difference ratio of 9.21% in forest and the lowest value of 4.29% in crop. The difference ratios between different vegetation types lie on the dependence on natural water sources. The modeled NPP in five geographic zones using improved BEPS are higher than those with original BEPS, with higher difference ratio in dry zones and lower value in wet zones.

  14. A Method of Sample Models of Program Construction in Terms of Petri Nets

    Directory of Open Access Journals (Sweden)

    D. I. Kharitonov

    2015-01-01

    Full Text Available In the article a method of automated construction of Petri nets simulating the behaviour of imperative programs is considered from the formal point of view. Petri net samples with certain characteristics are necessary in programming new algorithms for program analysis; in particular, they can be used for developing or optimizing algorithms of Petri nets compositions and decompositions, building the reachability tree, checking invariants and so on. The generation process consists of two stages. At the first stage, construction templates for a resulting net and parameters for construction are described. With the help of these parameters it is possible to regulate the final size and the absolute or relative amount of certain structures in the resulting net. At the second stage, iterative process of automated net construction is used for Petri net generation of any size, limited only by an available computer memory. In the first section of the article the minimum necessary definitions are given and a new version of Petri nets composition operation by places is introduced. Commutative and associative properties of introduced binary operation allow to synchronize any number of Petri nets in arbitrary order. Then construction template is defined as a marked Petri net with input and output interfaces and rules for templates composition using this interfaces. A number of construction templates can be united in a collection, for which the evolution rules are defined. The completeness property of a collection guarantees that the collection evolution results in a Petri net that simulates the imperative program behavior. The article provides a version of the construction templates complete collection and an example of Petri net simulating sequential imperative program construction.

  15. Connectivity effects in the dynamic model of neural networks

    International Nuclear Information System (INIS)

    Choi, J; Choi, M Y; Yoon, B-G

    2009-01-01

    We study, via extensive Monte Carlo calculations, the effects of connectivity in the dynamic model of neural networks, to observe that the Mattis-state order parameter increases with the number of coupled neurons. Such effects appear more pronounced when the average number of connections is increased by introducing shortcuts in the network. In particular, the power spectra of the order parameter at stationarity are found to exhibit power-law behavior, depending on how the average number of connections is increased. The cluster size distribution of the 'memory-unmatched' sites also follows a power law and possesses strong correlations with the power spectra. It is further observed that the distribution of waiting times for neuron firing fits roughly to a power law, again depending on how neuronal connections are increased

  16. Optimization of recurrent neural networks for time series modeling

    DEFF Research Database (Denmark)

    Pedersen, Morten With

    1997-01-01

    The present thesis is about optimization of recurrent neural networks applied to time series modeling. In particular is considered fully recurrent networks working from only a single external input, one layer of nonlinear hidden units and a li near output unit applied to prediction of discrete time...... series. The overall objective s are to improve training by application of second-order methods and to improve generalization ability by architecture optimization accomplished by pruning. The major topics covered in the thesis are: 1. The problem of training recurrent networks is analyzed from a numerical...... of solution obtained as well as computation time required. 3. A theoretical definition of the generalization error for recurrent networks is provided. This definition justifies a commonly adopted approach for estimating generalization ability. 4. The viability of pruning recurrent networks by the Optimal...

  17. Early Model of Traffic Sign Reminder Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Budi Rahmani

    2012-12-01

    Full Text Available Recognizing the traffic signs installed on the streets is one of the requirements of driving on the road. Laxity in driving may result in traffic accident. This paper describes a real-time reminder model, by utilizing a camera that can be installed in a car to capture image of traffic signs, and is processed and later to inform the driver. The extracting feature harnessing the morphological elements (strel is used in this paper. Artificial Neural Networks is used to train the system and to produce a final decision. The result shows that the accuracy in detecting and recognizing the ten types of traffic signs in real-time is 80%.

  18. Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.

    Science.gov (United States)

    Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel

    2016-02-01

    Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.

  19. Neural Network Modeling to Predict Shelf Life of Greenhouse Lettuce

    Directory of Open Access Journals (Sweden)

    Wei-Chin Lin

    2009-04-01

    Full Text Available Greenhouse-grown butter lettuce (Lactuca sativa L. can potentially be stored for 21 days at constant 0°C. When storage temperature was increased to 5°C or 10°C, shelf life was shortened to 14 or 10 days, respectively, in our previous observations. Also, commercial shelf life of 7 to 10 days is common, due to postharvest temperature fluctuations. The objective of this study was to establish neural network (NN models to predict the remaining shelf life (RSL under fluctuating postharvest temperatures. A box of 12 - 24 lettuce heads constituted a sample unit. The end of the shelf life of each head was determined when it showed initial signs of decay or yellowing. Air temperatures inside a shipping box were recorded. Daily average temperatures in storage and averaged shelf life of each box were used as inputs, and the RSL was modeled as an output. An R2 of 0.57 could be observed when a simple NN structure was employed. Since the "future" (or remaining storage temperatures were unavailable at the time of making a prediction, a second NN model was introduced to accommodate a range of future temperatures and associated shelf lives. Using such 2-stage NN models, an R2 of 0.61 could be achieved for predicting RSL. This study indicated that NN modeling has potential for cold chain quality control and shelf life prediction.

  20. Recurrent Neural Network Model for Constructive Peptide Design.

    Science.gov (United States)

    Müller, Alex T; Hiss, Jan A; Schneider, Gisbert

    2018-02-26

    We present a generative long short-term memory (LSTM) recurrent neural network (RNN) for combinatorial de novo peptide design. RNN models capture patterns in sequential data and generate new data instances from the learned context. Amino acid sequences represent a suitable input for these machine-learning models. Generative models trained on peptide sequences could therefore facilitate the design of bespoke peptide libraries. We trained RNNs with LSTM units on pattern recognition of helical antimicrobial peptides and used the resulting model for de novo sequence generation. Of these sequences, 82% were predicted to be active antimicrobial peptides compared to 65% of randomly sampled sequences with the same amino acid distribution as the training set. The generated sequences also lie closer to the training data than manually designed amphipathic helices. The results of this study showcase the ability of LSTM RNNs to construct new amino acid sequences within the applicability domain of the model and motivate their prospective application to peptide and protein design without the need for the exhaustive enumeration of sequence libraries.

  1. A business planning model to identify new safety net clinic locations.

    Science.gov (United States)

    Langabeer, James; Helton, Jeffrey; DelliFraine, Jami; Dotson, Ebbin; Watts, Carolyn; Love, Karen

    2014-01-01

    Community health clinics serving the poor and underserved are geographically expanding due to changes in U.S. health care policy. This paper describes the experience of a collaborative alliance of health care providers in a large metropolitan area who develop a conceptual and mathematical decision model to guide decisions on expanding its network of community health clinics. Community stakeholders participated in a collaborative process that defined constructs they deemed important in guiding decisions on the location of community health clinics. This collaboration also defined key variables within each construct. Scores for variables within each construct were then totaled and weighted into a community-specific optimal space planning equation. This analysis relied entirely on secondary data available from published sources. The model built from this collaboration revolved around the constructs of demand, sustainability, and competition. It used publicly available data defining variables within each construct to arrive at an optimal location that maximized demand and sustainability and minimized competition. This is a model that safety net clinic planners and community stakeholders can use to analyze demographic and utilization data to optimize capacity expansion to serve uninsured and Medicaid populations. Communities can use this innovative model to develop a locally relevant clinic location-planning framework.

  2. Modelling a variable valve timing spark ignition engine using different neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Beham, M. [BMW AG, Munich (Germany); Yu, D.L. [John Moores University, Liverpool (United Kingdom). Control Systems Research Group

    2004-10-01

    In this paper different neural networks (NN) are compared for modelling a variable valve timing spark-ignition (VVT SI) engine. The overall system is divided for each output into five neural multi-input single output (MISO) subsystems. Three kinds of NN, multilayer Perceptron (MLP), pseudo-linear radial basis function (PLRBF), and local linear model tree (LOLIMOT) networks, are used to model each subsystem. Real data were collected when the engine was under different operating conditions and these data are used in training and validation of the developed neural models. The obtained models are finally tested in a real-time online model configuration on the test bench. The neural models run independently of the engine in parallel mode. The model outputs are compared with process output and compared among different models. These models performed well and can be used in the model-based engine control and optimization, and for hardware in the loop systems. (author)

  3. An Adaptive Neural Mechanism with a Lizard Ear Model for Binaural Acoustic Tracking

    DEFF Research Database (Denmark)

    Shaikh, Danish; Manoonpong, Poramate

    2016-01-01

    expensive algorithms. We present a novel bioinspired solution to acoustic tracking that uses only two microphones. The system is based on a neural mechanism coupled with a model of the peripheral auditory system of lizards. The peripheral auditory model provides sound direction information which the neural...

  4. Evaluation and inversion of a net ecosystem carbon exchange model for grasslands and croplands

    Science.gov (United States)

    Herbst, M.; Klosterhalfen, A.; Weihermueller, L.; Graf, A.; Schmidt, M.; Huisman, J. A.; Vereecken, H.

    2017-12-01

    A one-dimensional soil water, heat, and CO2 flux model (SOILCO2), a pool concept of soil carbon turnover (RothC), and a crop growth module (SUCROS) was coupled to predict the net ecosystem exchange (NEE) of carbon. This model, further referred to as AgroC, was extended with routines for managed grassland as well as for root exudation and root decay. In a first step, the coupled model was applied to two winter wheat sites and one upland grassland site in Germany. The model was calibrated based on soil water content, soil temperature, biometric, and soil respiration measurements for each site, and validated in terms of hourly NEE measured with the eddy covariance technique. The overall model performance of AgroC was acceptable with a model efficiency >0.78 for NEE. In a second step, AgroC was optimized with the eddy covariance NEE measurements to examine the effect of various objective functions, constraints, and data-transformations on estimated NEE, which showed a distinct sensitivity to the choice of objective function and the inclusion of soil respiration data in the optimization process. Both, day and nighttime fluxes, were found to be sensitive to the selected optimization strategy. Additional consideration of soil respiration measurements improved the simulation of small positive fluxes remarkably. Even though the model performance of the selected optimization strategies did not diverge substantially, the resulting annual NEE differed substantially. We conclude that data-transformation, definition of objective functions, and data sources have to be considered cautiously when using a terrestrial ecosystem model to determine carbon balances by means of eddy covariance measurements.

  5. A novel neural-net-based nonlinear adaptive control and application to the cross-direction deviations control of a polymer film spread line

    International Nuclear Information System (INIS)

    Chen Zengqiang; Li Xiang; Liu Zhongxin; Yuan Zhuzhi

    2008-01-01

    A novel neural adaptive controller is presented to effectively control multivariable nonlinear systems. The proposed neural controller has been successfully applied to the cross-direction deviation control system of a polymer film spread line, whose good performance has been verified with real-time running results

  6. Neural Networks for Modeling and Control of Particle Accelerators

    CERN Document Server

    Edelen, A.L.; Chase, B.E.; Edstrom, D.; Milton, S.V.; Stabile, P.

    2016-01-01

    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  7. Training Spiking Neural Models Using Artificial Bee Colony

    Science.gov (United States)

    Vazquez, Roberto A.; Garro, Beatriz A.

    2015-01-01

    Spiking neurons are models designed to simulate, in a realistic manner, the behavior of biological neurons. Recently, it has been proven that this type of neurons can be applied to solve pattern recognition problems with great efficiency. However, the lack of learning strategies for training these models do not allow to use them in several pattern recognition problems. On the other hand, several bioinspired algorithms have been proposed in the last years for solving a broad range of optimization problems, including those related to the field of artificial neural networks (ANNs). Artificial bee colony (ABC) is a novel algorithm based on the behavior of bees in the task of exploring their environment to find a food source. In this paper, we describe how the ABC algorithm can be used as a learning strategy to train a spiking neuron aiming to solve pattern recognition problems. Finally, the proposed approach is tested on several pattern recognition problems. It is important to remark that to realize the powerfulness of this type of model only one neuron will be used. In addition, we analyze how the performance of these models is improved using this kind of learning strategy. PMID:25709644

  8. Metadynamics for training neural network model chemistries: A competitive assessment

    Science.gov (United States)

    Herr, John E.; Yao, Kun; McIntyre, Ryker; Toth, David W.; Parkhill, John

    2018-06-01

    Neural network model chemistries (NNMCs) promise to facilitate the accurate exploration of chemical space and simulation of large reactive systems. One important path to improving these models is to add layers of physical detail, especially long-range forces. At short range, however, these models are data driven and data limited. Little is systematically known about how data should be sampled, and "test data" chosen randomly from some sampling techniques can provide poor information about generality. If the sampling method is narrow, "test error" can appear encouragingly tiny while the model fails catastrophically elsewhere. In this manuscript, we competitively evaluate two common sampling methods: molecular dynamics (MD), normal-mode sampling, and one uncommon alternative, Metadynamics (MetaMD), for preparing training geometries. We show that MD is an inefficient sampling method in the sense that additional samples do not improve generality. We also show that MetaMD is easily implemented in any NNMC software package with cost that scales linearly with the number of atoms in a sample molecule. MetaMD is a black-box way to ensure samples always reach out to new regions of chemical space, while remaining relevant to chemistry near kbT. It is a cheap tool to address the issue of generalization.

  9. Learning Data Set Influence on Identification Accuracy of Gas Turbine Neural Network Model

    Science.gov (United States)

    Kuznetsov, A. V.; Makaryants, G. M.

    2018-01-01

    There are many gas turbine engine identification researches via dynamic neural network models. It should minimize errors between model and real object during identification process. Questions about training data set processing of neural networks are usually missed. This article presents a study about influence of data set type on gas turbine neural network model accuracy. The identification object is thermodynamic model of micro gas turbine engine. The thermodynamic model input signal is the fuel consumption and output signal is the engine rotor rotation frequency. Four types input signals was used for creating training and testing data sets of dynamic neural network models - step, fast, slow and mixed. Four dynamic neural networks were created based on these types of training data sets. Each neural network was tested via four types test data sets. In the result 16 transition processes from four neural networks and four test data sets from analogous solving results of thermodynamic model were compared. The errors comparison was made between all neural network errors in each test data set. In the comparison result it was shown error value ranges of each test data set. It is shown that error values ranges is small therefore the influence of data set types on identification accuracy is low.

  10. Exploring Neural Network Models with Hierarchical Memories and Their Use in Modeling Biological Systems

    Science.gov (United States)

    Pusuluri, Sai Teja

    Energy landscapes are often used as metaphors for phenomena in biology, social sciences and finance. Different methods have been implemented in the past for the construction of energy landscapes. Neural network models based on spin glass physics provide an excellent mathematical framework for the construction of energy landscapes. This framework uses a minimal number of parameters and constructs the landscape using data from the actual phenomena. In the past neural network models were used to mimic the storage and retrieval process of memories (patterns) in the brain. With advances in the field now, these models are being used in machine learning, deep learning and modeling of complex phenomena. Most of the past literature focuses on increasing the storage capacity and stability of stored patterns in the network but does not study these models from a modeling perspective or an energy landscape perspective. This dissertation focuses on neural network models both from a modeling perspective and from an energy landscape perspective. I firstly show how the cellular interconversion phenomenon can be modeled as a transition between attractor states on an epigenetic landscape constructed using neural network models. The model allows the identification of a reaction coordinate of cellular interconversion by analyzing experimental and simulation time course data. Monte Carlo simulations of the model show that the initial phase of cellular interconversion is a Poisson process and the later phase of cellular interconversion is a deterministic process. Secondly, I explore the static features of landscapes generated using neural network models, such as sizes of basins of attraction and densities of metastable states. The simulation results show that the static landscape features are strongly dependent on the correlation strength and correlation structure between patterns. Using different hierarchical structures of the correlation between patterns affects the landscape features

  11. Modeling the influence of snow cover on low Arctic net ecosystem exchange

    International Nuclear Information System (INIS)

    Luus, K A; Kelly, R E J; Lin, J C; Humphreys, E R; Lafleur, P M; Oechel, W C

    2013-01-01

    The Arctic net ecosystem exchange (NEE) of CO 2 between the land surface and the atmosphere is influenced by the timing of snow onset and melt. The objective of this study was to examine whether uncertainty in model estimates of NEE could be reduced by representing the influence of snow on NEE using remote sensing observations of snow cover area (SCA). Observations of NEE and time-lapse images of SCA were collected over four locations at a low Arctic site (Daring Lake, NWT) in May–June 2010. Analysis of these observations indicated that SCA influences NEE, and that good agreement exists between SCA derived from time-lapse images, Landsat and MODIS. MODIS SCA was therefore incorporated into the vegetation photosynthesis respiration model (VPRM). VPRM was calibrated using observations collected in 2005 at Daring Lake. Estimates of NEE were then generated over Daring Lake and Ivotuk, Alaska (2004–2007) using VPRM formulations with and without explicit representations of the influence of SCA on respiration and/or photosynthesis. Model performance was assessed by comparing VPRM output against unfilled eddy covariance observations from Daring Lake and Ivotuk (2004–2007). The uncertainty in VPRM estimates of NEE was reduced when respiration was estimated as a function of air temperature when SCA ≤ 50% and as a function of soil temperature when SCA > 50%. (letter)

  12. Application of Artificial Neural Networks in the Heart Electrical Axis Position Conclusion Modeling

    Science.gov (United States)

    Bakanovskaya, L. N.

    2016-08-01

    The article touches upon building of a heart electrical axis position conclusion model using an artificial neural network. The input signals of the neural network are the values of deflections Q, R and S; and the output signal is the value of the heart electrical axis position. Training of the network is carried out by the error propagation method. The test results allow concluding that the created neural network makes a conclusion with a high degree of accuracy.

  13. Model checking of time Petri nets using the state class timed automaton

    DEFF Research Database (Denmark)

    Lime, Didier; Roux, Olivier H.

    2006-01-01

    In this paper, we propose a method for building the state class graph of a bounded time Petri net (TPN) as a timed automaton (TA), which we call the state class timed automaton. We consider bounded TPN, whose underlying net is not necessarily bounded. We prove that our translation preserves the b...

  14. Characterizing uncertainties in recent trends of global terrestrial net primary production through ensemble modeling

    Science.gov (United States)

    Wang, W.; Hashimoto, H.; Ganguly, S.; Votava, P.; Nemani, R. R.; Myneni, R. B.

    2010-12-01

    Large uncertainties exist in our understanding of the trends and variability in global net primary production (NPP) and its controls. This study attempts to address this question through a multi-model ensemble experiment. In particular, we drive ecosystem models including CASA, LPJ, Biome-BGC, TOPS-BGC, and BEAMS with a long-term climate dataset (i.e., CRU-NCEP) to estimate global NPP from 1901 to 2009 at a spatial resolution of 0.5 x 0.5 degree. We calculate the trends of simulated NPP during different time periods and test their sensitivities to climate variables of solar radiation, air temperature, precipitation, vapor pressure deficit (VPD), and atmospheric CO2 levels. The results indicate a large diversity among the simulated NPP trends over the past 50 years, ranging from nearly no trend to an increasing trend of ~0.1 PgC/yr. Spatial patterns of the NPP generally show positive trends in boreal forests, induced mainly by increasing temperatures in these regions; they also show negative trends in the tropics, although the spatial patterns are more diverse. These diverse trends result from different climatic sensitivities of NPP among the tested models. Depending the ecological processes (e.g., photosynthesis or respiration) a model emphasizes, it can be more or less responsive to changes in solar radiation, temperatures, water, or atmospheric CO2 levels. Overall, these results highlight the limit of current ecosystem models in simulating NPP, which cannot be easily observed. They suggest that the traditional single-model approach is not ideal for characterizing trends and variability in global carbon cycling.

  15. Petri Nets

    Indian Academy of Sciences (India)

    In a computer system, for example, typical discrete events ... This project brought out a series of influential reports on Petri net theory in the mid and late ... Technology became a leading centre for Petri net research and from then on, Petri nets ...

  16. Distributed Recurrent Neural Forward Models with Neural Control for Complex Locomotion in Walking Robots

    DEFF Research Database (Denmark)

    Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin

    2015-01-01

    here, an artificial bio-inspired walking system which effectively combines biomechanics (in terms of the body and leg structures) with the underlying neural mechanisms. The neural mechanisms consist of (1) central pattern generator based control for generating basic rhythmic patterns and coordinated......Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental...... conditions, like uneven terrains, gaps, obstacles etc. Biological study has revealed that such complex behaviors are a result of a combination of biomechanics and neural mechanism thus representing the true nature of embodied interactions. While the biomechanics helps maintain flexibility and sustain...

  17. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    Science.gov (United States)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  18. Unloading arm movement modeling using neural networks for a rotary hearth furnace

    Directory of Open Access Journals (Sweden)

    Iulia Inoan

    2011-12-01

    Full Text Available Neural networks are being applied in many fields of engineering having nowadays a wide range of application. Neural networks are very useful for modeling dynamic processes for which the mathematical modeling is hard to obtain, or for processes that can’t be modeled using mathematical equations. This paper describes the modeling process for the unloading arm movement from a rotary hearth furnace using neural networks with back propagation algorithm. In this case the designed network was trained using the simulation results from a previous calculated mathematical model.

  19. Artificial neural network model of pork meat cubes osmotic dehydratation

    Directory of Open Access Journals (Sweden)

    Pezo Lato L.

    2013-01-01

    Full Text Available Mass transfer of pork meat cubes (M. triceps brachii, shaped as 1x1x1 cm, during osmotic dehydration (OD and under atmospheric pressure was investigated in this paper. The effects of different parameters, such as concentration of sugar beet molasses (60-80%, w/w, temperature (20-50ºC, and immersion time (1-5 h in terms of water loss (WL, solid gain (SG, final dry matter content (DM, and water activity (aw, were investigated using experimental results. Five artificial neural network (ANN models were developed for the prediction of WL, SG, DM, and aw in OD of pork meat cubes. These models were able to predict process outputs with coefficient of determination, r2, of 0.990 for SG, 0.985 for WL, 0.986 for aw, and 0.992 for DM compared to experimental measurements. The wide range of processing variables considered for the formulation of these models, and their easy implementation in a spreadsheet calculus make it very useful and practical for process design and control.

  20. Simple Electromagnetic Modeling of Small Airplanes: Neural Network Approach

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper deals with the development of simple electromagnetic models of small airplanes, which can contain composite materials in their construction. Electromagnetic waves can penetrate through the surface of the aircraft due to the specific electromagnetic properties of the composite materials, which can increase the intensity of fields inside the airplane and can negatively influence the functionality of the sensitive avionics. The airplane is simulated by two parallel dielectric layers (the left-hand side wall and the right-hand side wall of the airplane. The layers are put into a rectangular metallic waveguide terminated by the absorber in order to simulate the illumination of the airplane by the external wave (both of the harmonic nature and pulse one. Thanks to the simplicity of the model, the parametric analysis can be performed, and the results can be used in order to train an artificial neural network. The trained networks excel in further reduction of CPU-time demands of an airplane modeling.

  1. A neural model of figure-ground organization.

    Science.gov (United States)

    Craft, Edward; Schütze, Hartmut; Niebur, Ernst; von der Heydt, Rüdiger

    2007-06-01

    Psychophysical studies suggest that figure-ground organization is a largely autonomous process that guides--and thus precedes--allocation of attention and object recognition. The discovery of border-ownership representation in single neurons of early visual cortex has confirmed this view. Recent theoretical studies have demonstrated that border-ownership assignment can be modeled as a process of self-organization by lateral interactions within V2 cortex. However, the mechanism proposed relies on propagation of signals through horizontal fibers, which would result in increasing delays of the border-ownership signal with increasing size of the visual stimulus, in contradiction with experimental findings. It also remains unclear how the resulting border-ownership representation would interact with attention mechanisms to guide further processing. Here we present a model of border-ownership coding based on dedicated neural circuits for contour grouping that produce border-ownership assignment and also provide handles for mechanisms of selective attention. The results are consistent with neurophysiological and psychophysical findings. The model makes predictions about the hypothetical grouping circuits and the role of feedback between cortical areas.

  2. Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns

    Directory of Open Access Journals (Sweden)

    Melike Bildirici

    2014-01-01

    Full Text Available The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100. Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray’s MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray’s MS-GARCH model. Therefore, the models are promising for various economic applications.

  3. assessment of neural networks performance in modeling rainfall ...

    African Journals Online (AJOL)

    Sholagberu

    neural network architecture for precipitation prediction of Myanmar, World Academy of. Science, Engineering and Technology, 48, pp. 130 – 134. Kumarasiri, A.D. and Sonnadara, D.U.J. (2006). Rainfall forecasting: an artificial neural network approach, Proceedings of the Technical Sessions,. 22, pp. 1-13 Institute of Physics ...

  4. Commentary. Integrative Modeling and the Role of Neural Constraints

    Czech Academy of Sciences Publication Activity Database

    Bantegnie, Brice

    2017-01-01

    Roč. 8, SEP 5 (2017), s. 1-2, č. článku 1531. ISSN 1664-1078 Institutional support: RVO:67985955 Keywords : mechanistic explanation * functional analysis * mechanistic integration * reverse inference * neural plasticity * neural networks Subject RIV: AA - Philosophy ; Religion Impact factor: 2.323, year: 2016

  5. Urban net-zero water treatment and mineralization: experiments, modeling and design.

    Science.gov (United States)

    Englehardt, James D; Wu, Tingting; Tchobanoglous, George

    2013-09-01

    Water and wastewater treatment and conveyance account for approximately 4% of US electric consumption, with 80% used for conveyance. Net zero water (NZW) buildings would alleviate demands for a portion of this energy, for water, and for the treatment of drinking water for pesticides and toxic chemical releases in source water. However, domestic wastewater contains nitrogen loads much greater than urban/suburban ecosystems can typically absorb. The purpose of this work was to identify a first design of a denitrifying urban NZW treatment process, operating at ambient temperature and pressure and circum-neutral pH, and providing mineralization of pharmaceuticals (not easily regulated in terms of environmental half-life), based on laboratory tests and mass balance and kinetic modeling. The proposed treatment process is comprised of membrane bioreactor, iron-mediated aeration (IMA, reported previously), vacuum ultrafiltration, and peroxone advanced oxidation, with minor rainwater make-up and H2O2 disinfection residual. Similar to biological systems, minerals accumulate subject to precipitative removal by IMA, salt-free treatment, and minor dilution. Based on laboratory and modeling results, the system can produce potable water with moderate mineral content from commingled domestic wastewater and 10-20% rainwater make-up, under ambient conditions at individual buildings, while denitrifying and reducing chemical oxygen demand to below detection (<3 mg/L). While economics appear competitive, further development and study of steady-state concentrations and sludge management options are needed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Modeling of the chemical stage in water radiolysis using Petri nets

    International Nuclear Information System (INIS)

    Barilla, J; Simr, P; Lokajíček, M; Pisaková, H

    2014-01-01

    The biological effect of ionizing radiation is mediated practically always by the clusters of radicals formed by densely ionizing track ends of primary or secondary particles. In the case of low-LET radiation the direct effect may be practically neglected and the radical clusters meet a DNA molecule always some time after their formation. The corresponding damage effect (formation of DSB) depends then on the evolution running in individual clusters, being influenced by present chemical agents. Two main parallel processes influence then final effect: diffusion of corresponding radical clusters (lowering radical concentrations) and chemical reactions of all chemical substances present in the clusters. The processes running in the corresponding radical clusters will be modeled with the help of continuous Petri net, which enables us to study the concurrent influence of both the processes: lowering concentration of radicals due diffusion and due chemical reactions. The given model may be helpful especially when the effect of radicals on DSB formation (DNA damage) at the presence of different substances influencing radiobiological effect is to be studied

  7. Net modelling of energy mix among European Countries: A proposal for ruling new scenarios

    International Nuclear Information System (INIS)

    Dassisti, M.; Carnimeo, L.

    2012-01-01

    European energy policy pursues the objective of a sustainable, competitive and secure supply of energy. In 2007, the European Commission adopted an energy policy for Europe, which was supported by several documents on different aspects of energy and included an action plan to meet the major energy challenges Europe has to face. A farsighted diversified yearly mix of energies was suggested to countries, aiming at increasing security of supply and efficiency, but a wide and contemporary view of energy interchanges between states was not available. In a previous work of the same authors, energy import/export interchanges between European States were used to develop a geographic overview at one-glance. In this paper, the enhanced Interchange Energy Network (IEN) is investigated from a modelling point of view, as a Small-World Net, by supposing that connections can exist between States with a probability depending also on economic/political relations between countries. -- Highlights: ► Different view of the imports and exports of electric energy flows between European for potential use in ruling exchanges. ► Panel data from 1996 to 2008 as part of a network of exchanges was considered from Eurostat official database. ► The European import/export energy flows modelled as a network with Small-World phenomena, interpreting the evolution over the years. ► Interesting behavioural features as outcome derived, as shown for the case example of the Germany.

  8. SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.

    Science.gov (United States)

    Jimenez-Romero, Cristian; Johnson, Jeffrey

    2017-01-01

    The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.

  9. Nondestructive pavement evaluation using ILLI-PAVE based artificial neural network models.

    Science.gov (United States)

    2008-09-01

    The overall objective in this research project is to develop advanced pavement structural analysis models for more accurate solutions with fast computation schemes. Soft computing and modeling approaches, specifically the Artificial Neural Network (A...

  10. Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling.

    Science.gov (United States)

    Lorenz, Carmen; Prigione, Alessandro

    2017-12-01

    Modulation of energy metabolism is emerging as a key aspect associated with cell fate transition. The establishment of a correct metabolic program is particularly relevant for neural cells given their high bioenergetic requirements. Accordingly, diseases of the nervous system commonly involve mitochondrial impairment. Recent studies in animals and in neural derivatives of human pluripotent stem cells (PSCs) highlighted the importance of mitochondrial metabolism for neural fate decisions in health and disease. The mitochondria-based metabolic program of early neurogenesis suggests that PSC-derived neural stem cells (NSCs) may be used for modeling neurological disorders. Understanding how metabolic programming is orchestrated during neural commitment may provide important information for the development of therapies against conditions affecting neural functions, including aging and mitochondrial disorders. Copyright © 2017. Published by Elsevier Ltd.

  11. Bacterial DNA Sequence Compression Models Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Armando J. Pinho

    2013-08-01

    Full Text Available It is widely accepted that the advances in DNA sequencing techniques have contributed to an unprecedented growth of genomic data. This fact has increased the interest in DNA compression, not only from the information theory and biology points of view, but also from a practical perspective, since such sequences require storage resources. Several compression methods exist, and particularly, those using finite-context models (FCMs have received increasing attention, as they have been proven to effectively compress DNA sequences with low bits-per-base, as well as low encoding/decoding time-per-base. However, the amount of run-time memory required to store high-order finite-context models may become impractical, since a context-order as low as 16 requires a maximum of 17.2 x 109 memory entries. This paper presents a method to reduce such a memory requirement by using a novel application of artificial neural networks (ANN to build such probabilistic models in a compact way and shows how to use them to estimate the probabilities. Such a system was implemented, and its performance compared against state-of-the art compressors, such as XM-DNA (expert model and FCM-Mx (mixture of finite-context models , as well as with general-purpose compressors. Using a combination of order-10 FCM and ANN, similar encoding results to those of FCM, up to order-16, are obtained using only 17 megabytes of memory, whereas the latter, even employing hash-tables, uses several hundreds of megabytes.

  12. Spatio Temporal EEG Source Imaging with the Hierarchical Bayesian Elastic Net and Elitist Lasso Models.

    Science.gov (United States)

    Paz-Linares, Deirel; Vega-Hernández, Mayrim; Rojas-López, Pedro A; Valdés-Hernández, Pedro A; Martínez-Montes, Eduardo; Valdés-Sosa, Pedro A

    2017-01-01

    The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem due to the non-uniqueness of the solution and regularization or prior information is needed to undertake Electrophysiology Source Imaging. Structured Sparsity priors can be attained through combinations of (L1 norm-based) and (L2 norm-based) constraints such as the Elastic Net (ENET) and Elitist Lasso (ELASSO) models. The former model is used to find solutions with a small number of smooth nonzero patches, while the latter imposes different degrees of sparsity simultaneously along different dimensions of the spatio-temporal matrix solutions. Both models have been addressed within the penalized regression approach, where the regularization parameters are selected heuristically, leading usually to non-optimal and computationally expensive solutions. The existing Bayesian formulation of ENET allows hyperparameter learning, but using the computationally intensive Monte Carlo/Expectation Maximization methods, which makes impractical its application to the EEG IP. While the ELASSO have not been considered before into the Bayesian context. In this work, we attempt to solve the EEG IP using a Bayesian framework for ENET and ELASSO models. We propose a Structured Sparse Bayesian Learning algorithm based on combining the Empirical Bayes and the iterative coordinate descent procedures to estimate both the parameters and hyperparameters. Using realistic simulations and avoiding the inverse crime we illustrate that our methods are able to recover complicated source setups more accurately and with a more robust estimation of the hyperparameters and behavior under different sparsity scenarios than classical LORETA, ENET and LASSO Fusion solutions. We also solve the EEG IP using data from a visual attention experiment, finding more interpretable neurophysiological patterns with our methods. The Matlab codes used in this work, including Simulations, Methods

  13. Stability of a neural network model with small-world connections

    International Nuclear Information System (INIS)

    Li Chunguang; Chen Guanrong

    2003-01-01

    Small-world networks are highly clustered networks with small distances among the nodes. There are many biological neural networks that present this kind of connection. There are no special weightings in the connections of most existing small-world network models. However, this kind of simply connected model cannot characterize biological neural networks, in which there are different weights in synaptic connections. In this paper, we present a neural network model with weighted small-world connections and further investigate the stability of this model

  14. Validation of protein models by a neural network approach

    Directory of Open Access Journals (Sweden)

    Fantucci Piercarlo

    2008-01-01

    Full Text Available Abstract Background The development and improvement of reliable computational methods designed to evaluate the quality of protein models is relevant in the context of protein structure refinement, which has been recently identified as one of the bottlenecks limiting the quality and usefulness of protein structure prediction. Results In this contribution, we present a computational method (Artificial Intelligence Decoys Evaluator: AIDE which is able to consistently discriminate between correct and incorrect protein models. In particular, the method is based on neural networks that use as input 15 structural parameters, which include energy, solvent accessible surface, hydrophobic contacts and secondary structure content. The results obtained with AIDE on a set of decoy structures were evaluated using statistical indicators such as Pearson correlation coefficients, Znat, fraction enrichment, as well as ROC plots. It turned out that AIDE performances are comparable and often complementary to available state-of-the-art learning-based methods. Conclusion In light of the results obtained with AIDE, as well as its comparison with available learning-based methods, it can be concluded that AIDE can be successfully used to evaluate the quality of protein structures. The use of AIDE in combination with other evaluation tools is expected to further enhance protein refinement efforts.

  15. Neural Networks Modelling of Municipal Real Estate Market Rent Rates

    Directory of Open Access Journals (Sweden)

    Muczyński Andrzej

    2016-12-01

    Full Text Available This paper presents the results of research on the application of neural networks modelling of municipal real estate market rent rates. The test procedure was based on selected networks trained on the local real estate market data and transformation of the detected dependencies – through established models – to estimate the potential market rent rates of municipal premises. On this basis, the assessment of the adequacy of the actual market rent rates of municipal properties was made. Empirical research was conducted on the local real estate market of the city of Olsztyn in Poland. In order to describe the phenomenon of market rent rates formation an unidirectional three-layer network and a network of radial base was selected. Analyses showed a relatively low degree of convergence of the actual municipal rent rents with potential market rent rates. This degree was strongly varied depending on the type of business ran on the property and its’ social and economic impact. The applied research methodology and the obtained results can be used in order to rationalize municipal property management, including the activation of rental policy.

  16. Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Aminmohammad Saberian

    2014-01-01

    Full Text Available This paper presents a solar power modelling method using artificial neural networks (ANNs. Two neural network structures, namely, general regression neural network (GRNN feedforward back propagation (FFBP, have been used to model a photovoltaic panel output power and approximate the generated power. Both neural networks have four inputs and one output. The inputs are maximum temperature, minimum temperature, mean temperature, and irradiance; the output is the power. The data used in this paper started from January 1, 2006, until December 31, 2010. The five years of data were split into two parts: 2006–2008 and 2009-2010; the first part was used for training and the second part was used for testing the neural networks. A mathematical equation is used to estimate the generated power. At the end, both of these networks have shown good modelling performance; however, FFBP has shown a better performance comparing with GRNN.

  17. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance

    International Nuclear Information System (INIS)

    Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy

    2016-01-01

    There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. Furthermore, the Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.

  18. Neural systems language: a formal modeling language for the systematic description, unambiguous communication, and automated digital curation of neural connectivity.

    Science.gov (United States)

    Brown, Ramsay A; Swanson, Larry W

    2013-09-01

    Systematic description and the unambiguous communication of findings and models remain among the unresolved fundamental challenges in systems neuroscience. No common descriptive frameworks exist to describe systematically the connective architecture of the nervous system, even at the grossest level of observation. Furthermore, the accelerating volume of novel data generated on neural connectivity outpaces the rate at which this data is curated into neuroinformatics databases to synthesize digitally systems-level insights from disjointed reports and observations. To help address these challenges, we propose the Neural Systems Language (NSyL). NSyL is a modeling language to be used by investigators to encode and communicate systematically reports of neural connectivity from neuroanatomy and brain imaging. NSyL engenders systematic description and communication of connectivity irrespective of the animal taxon described, experimental or observational technique implemented, or nomenclature referenced. As a language, NSyL is internally consistent, concise, and comprehensible to both humans and computers. NSyL is a promising development for systematizing the representation of neural architecture, effectively managing the increasing volume of data on neural connectivity and streamlining systems neuroscience research. Here we present similar precedent systems, how NSyL extends existing frameworks, and the reasoning behind NSyL's development. We explore NSyL's potential for balancing robustness and consistency in representation by encoding previously reported assertions of connectivity from the literature as examples. Finally, we propose and discuss the implications of a framework for how NSyL will be digitally implemented in the future to streamline curation of experimental results and bridge the gaps among anatomists, imagers, and neuroinformatics databases. Copyright © 2013 Wiley Periodicals, Inc.

  19. A NetCDF version of the two-dimensional energy balance model based on the full multigrid algorithm

    Science.gov (United States)

    Zhuang, Kelin; North, Gerald R.; Stevens, Mark J.

    A NetCDF version of the two-dimensional energy balance model based on the full multigrid method in Fortran is introduced for both pedagogical and research purposes. Based on the land-sea-ice distribution, orbital elements, greenhouse gases concentration, and albedo, the code calculates the global seasonal surface temperature. A step-by-step guide with examples is provided for practice.

  20. Modelling the limits on the response of net carbon exchange to fertilization in a south-eastern pine forest

    Science.gov (United States)

    Chun-Tai. Lai; G. Katul; J. Butnor; M. Siqueira; D. Ellsworth; C. Maier; Kurt Johnsen; S. Mickeand; R. Oren

    2002-01-01

    Using a combination of model simulations and detailed measurements at a hierarchy of scales conducted at a sandhills forest site, the effect of fertilization on net ecosystem exchange (NEE) and its components in 6-year-old Pinus taeda stands was quantified. The detailed measurements, collected over a 20-d period in September and October, included gas...

  1. Transparency about net neutrality : A translation of the new European rules into a multi-stakeholder model

    NARCIS (Netherlands)

    Nooren, P.; Prins, M.J.

    2011-01-01

    The new European framework directive contains a number of policy objectives in the area of net neutrality. In support of these objectives, the universal service directive includes a transparency obligation for ISPs. This paper proposes a multi-stakeholder model for the implementation of this

  2. Modelling and Analysing Deadlock in Flexible Manufacturing System using Timed Petri Net

    Directory of Open Access Journals (Sweden)

    Assem Hatem Taha

    2017-03-01

    Full Text Available Flexible manufacturing system (FMS has several advantages compared to conventional systems such as higher machine utilization, higher efficiency, less inventory, and less production time. On the other hand, FMS is expensive and complicated. One of the main problems that may happen is the deadlock. Deadlock is a case that happens when one operation or more are unable to complete their tasks because of waiting of resources that are used by other processes. This may occur due to inappropriate sharing of the resources or improper resource allocation logic which may lead to deadlock occurrence due to the complexity of assigning shared resources to different tasks in an efficient way. One of the most effective tools to model and detect the deadlocks is the petri net. In this research the Matlab software has been used to detect the deadlock in two parallel lines with one shared machines. The analysis shows that deadlock exists at transition with high utilization and place with high waiting time

  3. Modeling the Economic Feasibility of Large-Scale Net-Zero Water Management: A Case Study.

    Science.gov (United States)

    Guo, Tianjiao; Englehardt, James D; Fallon, Howard J

      While municipal direct potable water reuse (DPR) has been recommended for consideration by the U.S. National Research Council, it is unclear how to size new closed-loop DPR plants, termed "net-zero water (NZW) plants", to minimize cost and energy demand assuming upgradient water distribution. Based on a recent model optimizing the economics of plant scale for generalized conditions, the authors evaluated the feasibility and optimal scale of NZW plants for treatment capacity expansion in Miami-Dade County, Florida. Local data on population distribution and topography were input to compare projected costs for NZW vs the current plan. Total cost was minimized at a scale of 49 NZW plants for the service population of 671,823. Total unit cost for NZW systems, which mineralize chemical oxygen demand to below normal detection limits, is projected at ~$10.83 / 1000 gal, approximately 13% above the current plan and less than rates reported for several significant U.S. cities.

  4. Simulation of Net Primary Productivity in Mongolia Using CASA Model, During 2000-2004

    Directory of Open Access Journals (Sweden)

    Narangarav Dugarsuren

    2016-12-01

    Full Text Available Vegetation net primary productivity (NPP is always used as an indicator of carbon cycling in terrestrial ecosystems at landscape and regional scales. Based on the CASA model, we analyzed the spatiotemporal pattern of growing season NPP from 2000 to 2004 using MODIS/NDVI and its relationship with precipitation. The result shows that the annual NPP in Mongolia has a tendency to slightly decrease from 61.13 in 2000 to 60 gC/m2 /yr in 2004, with an annual mean decrement of -0.259 gC/ m2 /yr. However, annual and inter-annual NPP trends showed spatial and temporal heterogeneity. NPP in forest and grassland has decreased with an average annual decrement of -1.03 (r2=0.262 and -0.49 (r2=0.324, meanwhile NPP in desert steppe and desert has increased with the annual average increment of 0.4327 (r2=0.322 and 0.2401 (r2=0.283, respectively. The correlation coeffi cient showed that mean growing season NPP in grassland and desert steppe were closely correlated with precipitation than forest and desert.

  5. A comparative study on entrepreneurial attitudes modeled with logistic regression and Bayes nets.

    Science.gov (United States)

    López Puga, Jorge; García García, Juan

    2012-11-01

    Entrepreneurship research is receiving increasing attention in our context, as entrepreneurs are key social agents involved in economic development. We compare the success of the dichotomic logistic regression model and the Bayes simple classifier to predict entrepreneurship, after manipulating the percentage of missing data and the level of categorization in predictors. A sample of undergraduate university students (N = 1230) completed five scales (motivation, attitude towards business creation, obstacles, deficiencies, and training needs) and we found that each of them predicted different aspects of the tendency to business creation. Additionally, our results show that the receiver operating characteristic (ROC) curve is affected by the rate of missing data in both techniques, but logistic regression seems to be more vulnerable when faced with missing data, whereas Bayes nets underperform slightly when categorization has been manipulated. Our study sheds light on the potential entrepreneur profile and we propose to use Bayesian networks as an additional alternative to overcome the weaknesses of logistic regression when missing data are present in applied research.

  6. Modeling Net Land Occupation of Hydropower Reservoirs in Norway for Use in Life Cycle Assessment.

    Science.gov (United States)

    Dorber, Martin; May, Roel; Verones, Francesca

    2018-02-20

    Increasing hydropower electricity production constitutes a unique opportunity to mitigate climate change impacts. However, hydropower electricity production also impacts aquatic and terrestrial biodiversity through freshwater habitat alteration, water quality degradation, and land use and land use change (LULUC). Today, no operational model exists that covers any of these cause-effect pathways within life cycle assessment (LCA). This paper contributes to the assessment of LULUC impacts of hydropower electricity production in Norway in LCA. We quantified the inundated land area associated with 107 hydropower reservoirs with remote sensing data and related it to yearly electricity production. Therewith, we calculated an average net land occupation of 0.027 m 2 ·yr/kWh of Norwegian storage hydropower plants for the life cycle inventory. Further, we calculated an adjusted average land occupation of 0.007 m 2 ·yr/kWh, accounting for an underestimation of water area in the performed maximum likelihood classification. The calculated land occupation values are the basis to support the development of methods for assessing the land occupation impacts of hydropower on biodiversity in LCA at a damage level.

  7. Estimating Net Primary Productivity Beneath Snowpack Using Snowpack Radiative Transfer Modeling and Global Satellite Data

    Science.gov (United States)

    Barber, D. E.; Peterson, M. C.

    2002-05-01

    Sufficient photosynthetically active radiation (PAR) penetrates snow for plants to grow beneath snowpack during late winter or early spring in tundra ecosystems. During the spring in this ecosystem, the snowpack creates an environment with higher humidity and less variable and milder temperatures than on the snow-free land. Under these conditions, the amount of PAR available is likely to be the limiting factor for plant growth. Current methods for determining net primary productivity (NPP) of tundra ecosystems do not account for this plant growth beneath snowpack, apparently resulting in underestimating plant production there. We are currently in the process of estimating the magnitude of this early growth beneath snow for tundra ecosystems. Our method includes a radiative transfer model that simulates diffuse and direct PAR penetrating snowpack based on downwelling PAR values and snow depth data from global satellite databases. These PAR levels are convolved with plant growth for vegetation that thrives beneath snowpacks, such as lichen. We expect to present the net primary production for Cladonia species (a common Arctic lichen) that has the capability of photosynthesizing at low temperatures beneath snowpack. This method may also be used to study photosynthesis beneath snowpacks in other hardy plants. Lichens are used here as they are common in snow-covered regions, flourish under snowpack, and provide an important food source for tundra herbivores (e.g. caribou). In addition, lichens are common in arctic-alpine environments and our results can be applied to these ecosystems as well. Finally, the NPP of lichen beneath snowpack is relatively well understood compared to other plants, making it ideal vegetation for this first effort at estimating the potential importance of photosynthesis at large scales. We are examining other candidate plants for their photosynthetic potential beneath snowpack at this time; however, little research has been done on this topic. We

  8. ASAS centennial paper: net energy systems for beef cattle--concepts, application, and future models.

    Science.gov (United States)

    Ferrell, C L; Oltjen, J W

    2008-10-01

    Development of nutritional energetics can be traced to the 1400s. Lavoisier established relationships among O(2) use, CO(2) production and heat production in the late 1700s, and the laws of thermodynamics and law of Hess were discovered during the 1840s. Those discoveries established the fundamental bases for nutritional energetics and enabled the fundamental entity ME = retained energy + heat energy to be established. Objectives became: 1) to establish relationships between gas exchange and heat energy, 2) to devise bases for evaluation of foods that could be related to energy expenditures, and 3) to establish causes of energy expenditures. From these endeavors, the basic concepts of energy partitioning by animals were developed, ultimately resulting in the development of feeding systems based on NE concepts. The California Net Energy System, developed for finishing beef cattle, was the first to be based on retained energy as determined by comparative slaughter and the first to use 2 NE values (NE(m) and NE(g)) to describe feed and animal requirements. The system has been broadened conceptually to encompass life cycle energy requirements of beef cattle and modified by the inclusion of numerous adjustments to address factors known to affect energy requirements and value of feed to meet those needs. The current NE system remains useful but is empirical and static in nature and thus fails to capture the dynamics of energy utilization by diverse animals as they respond to changing environmental conditions. Consequently, efforts were initiated to develop dynamic simulation models that captured the underlying biology and thus were sensitive to variable genetic and environmental conditions. Development of a series of models has been described to show examples of the conceptual evolution of dynamic, mechanistic models and their applications. Generally with each new system, advances in prediction accuracy came about by adding new terms to conceptually validated models

  9. Transport energy demand modeling of South Korea using artificial neural network

    International Nuclear Information System (INIS)

    Geem, Zong Woo

    2011-01-01

    Artificial neural network models were developed to forecast South Korea's transport energy demand. Various independent variables, such as GDP, population, oil price, number of vehicle registrations, and passenger transport amount, were considered and several good models (Model 1 with GDP, population, and passenger transport amount; Model 2 with GDP, number of vehicle registrations, and passenger transport amount; and Model 3 with oil price, number of vehicle registrations, and passenger transport amount) were selected by comparing with multiple linear regression models. Although certain regression models obtained better R-squared values than neural network models, this does not guarantee the fact that the former is better than the latter because root mean squared errors of the former were much inferior to those of the latter. Also, certain regression model had structural weakness based on P-value. Instead, neural network models produced more robust results. Forecasted results using the neural network models show that South Korea will consume around 37 MTOE of transport energy in 2025. - Highlights: → Transport energy demand of South Korea was forecasted using artificial neural network. → Various variables (GDP, population, oil price, number of registrations, etc.) were considered. → Results of artificial neural network were compared with those of multiple linear regression.

  10. Neural Control and Adaptive Neural Forward Models for Insect-like, Energy-Efficient, and Adaptable Locomotion of Walking Machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast...... on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models...... allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show...

  11. Comparing Models GRM, Refraction Tomography and Neural Network to Analyze Shallow Landslide

    Directory of Open Access Journals (Sweden)

    Armstrong F. Sompotan

    2011-11-01

    Full Text Available Detailed investigations of landslides are essential to understand fundamental landslide mechanisms. Seismic refraction method has been proven as a useful geophysical tool for investigating shallow landslides. The objective of this study is to introduce a new workflow using neural network in analyzing seismic refraction data and to compare the result with some methods; that are general reciprocal method (GRM and refraction tomography. The GRM is effective when the velocity structure is relatively simple and refractors are gently dipping. Refraction tomography is capable of modeling the complex velocity structures of landslides. Neural network is found to be more potential in application especially in time consuming and complicated numerical methods. Neural network seem to have the ability to establish a relationship between an input and output space for mapping seismic velocity. Therefore, we made a preliminary attempt to evaluate the applicability of neural network to determine velocity and elevation of subsurface synthetic models corresponding to arrival times. The training and testing process of the neural network is successfully accomplished using the synthetic data. Furthermore, we evaluated the neural network using observed data. The result of the evaluation indicates that the neural network can compute velocity and elevation corresponding to arrival times. The similarity of those models shows the success of neural network as a new alternative in seismic refraction data interpretation.

  12. Neural Control and Adaptive Neural Forward Models for Insect-like, Energy-Efficient, and Adaptable Locomotion of Walking Machines

    Directory of Open Access Journals (Sweden)

    Poramate eManoonpong

    2013-02-01

    Full Text Available Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs and sensory feedback (afferent-based control but also on internal forward models (efference copies. They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines.

  13. A new neural network model for solving random interval linear programming problems.

    Science.gov (United States)

    Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza

    2017-05-01

    This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control.

    Science.gov (United States)

    Yang, Shiju; Li, Chuandong; Huang, Tingwen

    2016-03-01

    The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Lukasiewicz-Topos Models of Neural Networks, Cell Genome and Interactome Nonlinear Dynamic Models

    CERN Document Server

    Baianu, I C

    2004-01-01

    A categorical and Lukasiewicz-Topos framework for Lukasiewicz Algebraic Logic models of nonlinear dynamics in complex functional systems such as neural networks, genomes and cell interactomes is proposed. Lukasiewicz Algebraic Logic models of genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous logical models of both genetic activities and neural networks. An algebraic formulation of variable 'next-state functions' is extended to a Lukasiewicz Topos with an n-valued Lukasiewicz Algebraic Logic subobject classifier description that represents non-random and nonlinear network activities as well as their transformations in developmental processes and carcinogenesis.

  16. Modeling the dynamics of evaluation: a multilevel neural network implementation of the iterative reprocessing model.

    Science.gov (United States)

    Ehret, Phillip J; Monroe, Brian M; Read, Stephen J

    2015-05-01

    We present a neural network implementation of central components of the iterative reprocessing (IR) model. The IR model argues that the evaluation of social stimuli (attitudes, stereotypes) is the result of the IR of stimuli in a hierarchy of neural systems: The evaluation of social stimuli develops and changes over processing. The network has a multilevel, bidirectional feedback evaluation system that integrates initial perceptual processing and later developing semantic processing. The network processes stimuli (e.g., an individual's appearance) over repeated iterations, with increasingly higher levels of semantic processing over time. As a result, the network's evaluations of stimuli evolve. We discuss the implications of the network for a number of different issues involved in attitudes and social evaluation. The success of the network supports the IR model framework and provides new insights into attitude theory. © 2014 by the Society for Personality and Social Psychology, Inc.

  17. SWANN: The Snow Water Artificial Neural Network Modelling System

    Science.gov (United States)

    Broxton, P. D.; van Leeuwen, W.; Biederman, J. A.

    2017-12-01

    Snowmelt from mountain forests is important for water supply and ecosystem health. Along Arizona's Mogollon Rim, snowmelt contributes to rivers and streams that provide a significant water supply for hydro-electric power generation, agriculture, and human consumption in central Arizona. In this project, we are building a snow monitoring system for the Salt River Project (SRP), which supplies water and power to millions of customers in the Phoenix metropolitan area. We are using process-based hydrological models and artificial neural networks (ANNs) to generate information about both snow water equivalent (SWE) and snow cover. The snow-cover data is generated with ANNs that are applied to Landsat and MODIS satellite reflectance data. The SWE data is generated using a combination of gridded SWE estimates generated by process-based snow models and ANNs that account for variations in topography, forest cover, and solar radiation. The models are trained and evaluated with snow data from SNOTEL stations as well as from aerial LiDAR and field data that we collected this past winter in northern Arizona, as well as with similar data from other sites in the Southwest US. These snow data are produced in near-real time, and we have built a prototype decision support tool to deliver them to SRP. This tool is designed to provide daily-to annual operational monitoring of spatial and temporal changes in SWE and snow cover conditions over the entire Salt River Watershed (covering 17,000 km2), and features advanced web mapping capabilities and watershed analytics displayed as graphical data.

  18. A neural model of mechanisms of empathy deficits in narcissism

    Science.gov (United States)

    Jankowiak-Siuda, Kamila; Zajkowski, Wojciech

    2013-01-01

    From a multidimensional perspective, empathy is a process that includes affective sharing and imagining and understanding the emotions of others. The primary brain structures involved in mediating the components of empathy are the anterior insula (AI), the anterior cingulate cortex (ACC), and specific regions of the medial prefrontal cortex (MPFC). The AI and ACC are the main nodes in the salience network (SN), which selects and coordinates the information flow from the intero- and exteroreceptors. AI might play a role as a crucial hub – a dynamic switch between 2 separate networks of cognitive processing: the central executive network (CEN), which is concerned with effective task execution, and the default mode network (DMN), which is involved with self-reflective processes. Given various classifications, a deficit in empathy may be considered a central dysfunctional trait in narcissism. A recent fMRI study suggests that deficit in empathy is due to a dysfunction in the right AI. Based on the acquired data, we propose a theoretical model of imbalanced SN functioning in narcissism in which the dysfunctional AI hub is responsible for constant DMN activation, which, in turn, centers one’s attention on the self. This might hinder the ability to affectively share and understand the emotions of others. This review paper on neural mechanisms of empathy deficits in narcissism aims to inspire and direct future research in this area. PMID:24189465

  19. ALADDIN: a neural model for event classification in dynamic processes

    International Nuclear Information System (INIS)

    Roverso, Davide

    1998-02-01

    ALADDIN is a prototype system which combines fuzzy clustering techniques and artificial neural network (ANN) models in a novel approach to the problem of classifying events in dynamic processes. The main motivation for the development of such a system derived originally from the problem of finding new principled methods to perform alarm structuring/suppression in a nuclear power plant (NPP) alarm system. One such method consists in basing the alarm structuring/suppression on a fast recognition of the event generating the alarms, so that a subset of alarms sufficient to efficiently handle the current fault can be selected to be presented to the operator, minimizing in this way the operator's workload in a potentially stressful situation. The scope of application of a system like ALADDIN goes however beyond alarm handling, to include diagnostic tasks in general. The eventual application of the system to domains other than NPPs was also taken into special consideration during the design phase. In this document we report on the first phase of the ALADDIN project which consisted mainly in a comparative study of a series of ANN-based approaches to event classification, and on the proposal of a first system prototype which is to undergo further tests and, eventually, be integrated in existing alarm, diagnosis, and accident management systems such as CASH, IDS, and CAMS. (author)

  20. Neural network models: from biology to many - body phenomenology

    International Nuclear Information System (INIS)

    Clark, J.W.

    1993-01-01

    The current surge of research on practical side of neural networks and their utility in memory storage/recall, pattern recognition and classification is given in this article. The initial attraction of neural networks as dynamical and statistical system has been investigated. From the view of many-body theorist, the neurons may be thought of as particles, and the weighted connection between the units, as the interaction between these particles. Finally, the author has seen the impressive capabilities of artificial neural networks in pattern recognition and classification may be exploited to solve data management problems in experimental physics and the discovery of radically new theoretically description of physical problems and neural networks can be used in physics. (A.B.)